
BACHELORTHESIS
Mykhailo Svyrydovych

RPC-based cross-platform
GUI application for
configuring sensor modules
over PROFIBUS and storing
data

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES
Hochschule für Angewandte
Wissenschaften Hamburg

Mykhailo Svyrydovych

RPC-based cross-platform GUI application for con�guring
sensor modules over PROFIBUS and storing data

Bachelor Thesis based on the examination and study regulations

for the Bachelor of Engineering degree program

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Pawel Buczek

Second examiner: Prof. Dr. Marc Hensel

Day of delivery: 5. October 2021

Mykhailo Svyrydovych

Thema der Arbeit
RPC-basierte plattformübergreifende GUI-Anwendung zum Kon�gurieren von Sensormodulen

über PROFIBUS und Speichern von Daten

Stichworte
Electron.js, JavaScript, Python, PROFIBUS, gRPC, Sensor, XML

Kurzzusammenfassung
Dieses Dokument beschreibt den Prozess der Implementierung einer komplexen Softwarean-

wendung zur Kommunikation mit Sensormodulen über das PROFIBUS-Protokoll. Die Anwen-

dung besteht aus mehreren Teilen: Python-basiertes Backend zum Senden von Befehlen und

Abrufen von Daten von Sensormodulen, Graphical User Interface zum Kon�gurieren der Sen-

sormodule und Graphical User Interface zum Kon�gurieren und Steuern der Datenspeicherung.

Diese Komponenten kommunizieren über den Remote Procedure Call-Mechanismus unter Ver-

wendung der gRPC-Bibliothek von Google und können auf separate Computer verteilt werden.

Die GUI wurde mit JavaScript unter Verwendung des Electron-Frameworks erstellt, das eine

Desktop-ähnliche Anwendungserfahrung bietet. Das Programm wurde für die Ansteuerung

von Sensormodulen im Solar House an der TU Lübeck entwickelt. Mit den Sensormodulen

werden Wetterdaten (Windgeschwindigkeit, Lichtstärke etc.) gesammelt, gespeichert und für

weitere Forschungen verwendet.

Mykhailo Svyrydovych

Title of the paper
RPC-based cross-platform GUI application for con�guring sensor modules over PROFIBUS

and storing data

Keywords
Electron.js, JavaScript, Python, PROFIBUS, gRPC, Sensor, XML

Abstract
This document describes the process of implementing a complex software application for

communicating with sensor modules via PROFIBUS protocol. The application consists of

several parts: Python-based backend for sending commands and retrieving data from sensor

modules, Graphical User Interface for con�guring the sensor modules and Graphical User

Interface for con�guring and controlling data storage. These components communicating via

Remote Procedure Call mechanism using gRPC library from google and can be distributed

over separate machines. The GUI has been built with JavaScript using Electron framework

that provides desktop-like application experience. The program was developed to be used at

TU Lübeck for controlling sensor modules at Solar House. The sensor modules are used to

collect weather data(wind speed, light intensity etc.), the data is stored and used in further

researches.

iii

Contents

1 Introduction 1

2 Project requirements 4

3 Planning and preparation 6
3.1 Lab hardware setup overview . 6

3.1.1 Components . 6

3.1.2 Connections . 7

3.1.3 Serial Transmission . 8

3.2 Lab pre-existing software overview . 9

3.2.1 Module con�guration software . 9

3.2.2 Module readings . 9

3.3 PROFIBUS . 10

3.3.1 OSI model . 10

3.3.2 PROFIBUS Layer 1 . 11

3.3.3 PROFIBUS Layer 2 . 11

3.3.4 PROFIBUS Reverse Engineering . 13

4 Technologies 14
4.1 Graphical User Interface . 14

4.1.1 GUI vs CLI . 14

4.1.2 Modern GUI . 15

4.2 Node.js and npm . 19

4.3 Communication via COM port(RS232) . 21

4.4 Python Pipenv environment . 21

4.5 gRPC . 22

4.5.1 RPC . 22

4.5.2 gRPC overview . 22

4.5.3 Protocol bu�ers . 23

5 Concept 26

6 Implementation 27
6.1 Project structure . 27

6.1.1 General Architecture diagram . 27

6.1.2 Storage diagram . 29

6.1.3 Directories structure . 29

iv

Contents

6.2 gRPC server API . 30

6.3 Implemented Python modules . 31

6.3.1 Con�g . 31

6.3.2 Local Storage . 33

6.3.3 Pro�bus . 34

6.4 Telegrams reverse engineering results . 34

6.4.1 Requests . 34

6.4.2 Responses . 41

6.4.3 Findings . 42

6.5 UI overview . 43

6.5.1 Sensor con�guration app . 43

6.5.2 Sensor readings app . 47

6.6 JavaScript Design Patterns . 49

6.6.1 Overview . 49

6.6.2 Singleton . 50

6.6.3 Callback . 51

6.6.4 Bridge . 52

6.7 Testing . 53

6.7.1 Testing with ISM-111 test module . 53

6.7.2 Testing with Mock objects . 53

6.8 Setting up and running the project . 53

6.8.1 Getting the project . 54

6.8.2 Setting up directories . 54

6.8.3 Installing Python packages . 54

6.8.4 Installing Node packages . 54

6.9 Challenges . 55

6.10 Results . 56

7 Appendices 57
7.1 Appendix A: Installation Guide . 57

7.2 Appendix B: Con�guration app User Guide . 58

7.3 Appendix C: Storage app User Guide . 59

7.4 Appendix D: Developer Notes . 60

v

1 Introduction

The application has been developed for TU Lübeck to be used in Solar House lab. It is a

software that sends and reads data from sensors’ modules and has a GUI
1
. The lab contains

several sensor modules with connected analogue sensors which are collecting various weather

data. Sensors are connected to each other into a cluster and the cluster can be connected to a

computer via COM/USB port using RS232
2
. PROFIBUS

3
protocol is used for communication

between a computer and sensor modules. Up to 126 sensor modules can be connected together,

each one connected to 4 sensors. The data coming from sensors should be stored intermedi-

ately on the local machine and then transferred to a remote server which has a PostgreSQL
4

database installed. Sensor modules has a small memory by themselves that is used to contain a

con�guration data: baud rate
5
, protocol, location, address, sensors names, sensors precision

etc. Local computer also should store some con�guration data. The application can be divided

into 2 parts, each part has its own user interface: Module con�guration app and Data saving

app. The GUI parts are written in JavaScript, HTML and CSS using Electron.js library. And

there is a back-end that sends and reads data from sensors’ modules and it is written in Python.

1

"A graphical user interface (GUI) is an interface through which a user interacts with electronic devices such as com-

puters and smartphones through the use of icons, menus and other visual indicators or representations (graph-

ics)" (Graphical User Interface (GUI) by Justin Stoltzfus, https://www.techopedia.com/de�nition/5435/graphical-

user-interface-gui)

2

RS232 is a hardware interface that is developed for handling data transfer between two devices with a distance

limits of 20-40 meters(that depends on the bit rate and cable type) These days it is used to connect PC to an

embedded system Axelson (2007) p.43,44

3

PROFIBUS (PROcessFIeldBUS) - an open �eldbus system that complies with EN(EuropaNorm) standard, and

whose protocol has been specialized for decentralized peripherals (DP) Josef Weigmann (2004) preface

4

PostgreSQL - open source object-relational database system that extends SQL. It implements many fea-

tures that are required by SQL standard, but sometimes has di�erent syntax or function. In addi-

tion, it has many new features related to data types, security, reliability, performance and extensibility

(https://www.postgresql.org/about/)

5

"A baud is de�ned as one pulse or bit per second, named after the French engineer Baudot." Schleicher M. (2001)

1

1 Introduction

JavaScript and Python parts are communicating via RPC
6

using gRPC
7

library. The architecture

will be explained later in more details.

Figure 1.1: ISM111 Sensor Module

ISM111
8

module can measure up to 4 analog inputs and 4 digital I/Os. The module uses

RS485
9

�eldbus interface which can support communication via three protocols: PROFIBUS,

ASCII and MODBUS. For the current application PROFIBUS and ASCII had been chosen.

List of sensors currently available at the Solar House:

• 6 pyranometers(light)

• barometer(pressure)

• thermometer(temperature)

• 2 anemometers(wind)

Main subject of this Thesis is a software design and a desktop program development. In

addition, an introduction to a hardware and bus communication protocols will be given. The

6

Remote Procedure Calls(RPC) - is a protocol for inter-process communication that provides the high level

communication paradigm used in the operating system. The "RPC protocol enables users to work with remote

procedures as if the procedures were local". (https://www.ibm.com/docs/en/aix/7.1?topic=concepts-remote-

procedure-call)

7

gRPC is a modern open source high performance Remote Procedure Call (RPC) framework developed by Google

that can run in any environment(https://grpc.io/about/)

8

Intelligent Sensor Module produced by Gantner Instruments

9

RS485 - is an interface that allows communication over longer distances and higher speeds than RS232. Axelson

(2007) p.79

2

1 Introduction

software is using PROFIBUS telegrams for communication with Sensor Modules, so some

preparation and research has been done on that side.

3

2 Project requirements

• Business requirements

– Separate program with GUI for reading/writing data into a sensor module

– Separate program with GUI for controlling storage of the sensors’ readings obtained

from a sensor module(Intermediate local storage and remote database)

– Common con�guration �les that contain module settings

• Architectural and Design requirements

– A user can see a window with navigation buttons, module address and connection

status

– A user can obtain current module con�guration from a module

– A user can obtain current sensor readings from a module

– A user can change module con�guration

– A user can connect/disconnect module on serial port and specify port settings

– A user can store con�guration in xml �le

– A user is noti�ed in case there is a di�erence between xml �le and current module

actual settings

– A user can initiate storing data to a local storage or remote database

– A user can add new sensors to a database

– A user gets a noti�cation when any error occurs

– A user can set readings interval

– A user can start/stop recording data to local/remote storage

• System and Integration requirements

– Con�guration application

4

2 Project requirements

∗ Navbar contains following parts: Module address (1-126), Port status with

connect/disconnect buttons, navigation buttons for Module Overview, Mea-

surements, Variable Con�guration, Device Con�guration.

∗ Module address can be set from 1 to 126 to connect to corresponding device

∗ When user clicks ‘Connect’ a dialog should be shown where the user can

specify Port Name and Baud rate. Previous data should be stored and auto

�lled.

∗ Noti�cations and errors should be displayed as toast messages.

∗ Overview tab displays module info: Vendor, Module type, HW and SW versions,

Location, S/N number, Number of channels.

∗ Measurements tab displays a table with sensors’ names and readings. It should

be refreshed with an interval set by user.

∗ Variable con�guration displays a table with all sensors for the current module

with all possible settings. User can change these settings and send to the

module and save in a local xml con�guration �le. The di�erence between

these 2 should be noti�ed to the user.

∗ Device con�guration displays following: Location, User, Data and time of last

change, address, baud rate, char format.

∗ Initial setup in case con�g folder is empty

– Storage application

∗ Reading/saving interval can be con�gured

∗ Readings stored �rst locally in txt �les

∗ Txt �les are saved in folders corresponding to year and month (i.e. 2021/07/2021-

07-01.txt)

∗ Readings can be set to remote database

∗ User Interface to con�gure connection to remote database

5

3 Planning and preparation

3.1 Lab hardware setup overview

3.1.1 Components

Figure 3.1: Lab hardware setup

There are 3 Sensors’ Modules: ISM-001,002,003. Each of them has 4 analogue inputs and is

currently connected to 10 analogue sensors.

6

3 Planning and preparation

1. Terminal block

2. LEDs I/O 1-4

3. LEDs LED RUN

4. LEDs LED ERR

5. Infrared window

6. Module binder connection

Figure 3.2: ISM111(from GE-ISM111/5097d documentation p.22)

3.1.2 Connections

Three modules are connected together via Module binder connection(6). Each module must

have a unique address from 001 to 127. Next, modules are connected to ICK100 converter that

converts RS485 to RS232
1
. ISK 100 Converter is connected to a computer with COM/USB port.

1

both RS-485 and RS-232 are industrial speci�cations that de�ne the electrical interface and physical layer for

point-to-point communication of electrical devices. The RS-485 standard allows for long cabling distances in

7

3 Planning and preparation

3.1.3 Serial Transmission

Serial transmission is used for longer routes and has reduced susceptibility to interference.

Figure 3.3: Serial transmission (Schleicher M.)

In this kind of transmission a data bits are sent one after the other, e.g. over a two-wire

circuit. This method is much slower than parallel transmission, but it is used in automation

engineering because of its suitability for bus systems.
2

RS232

The RS232 standard is a serial interface that is a low-performance character interface. It converts

digital data from parallel format to serial format for sending between devices. Originally, it was

used to connect modems to computer terminals. It was established in 1960 by the Electronic

Industries Association and published as ’Recommended Standard 232’. This standard is widely

used, but there are some limitations with regard to the maximum bit rate (20 Kbits/sec),

transmission distance and the use of the common signal ground. The RS232 speci�es the

maximum duration of the transition time from High to Low and vice versa. This limits the

amount of stray capacitance allowed in a cable, because the transition time is a function of

capacitance. Also the standard speci�es the maximum cable capacitance - 2500 picofarads.

This means that the maximum cable length can be 62m. In practice such long distances are not

recommended.

In RS232 interface all the control and data signals are referenced to a common signal ground.

electrically noisy environments and can support multiple devices on the same bus. RS-232 is used for a shorter

distances(up to 15 m) and connects 2 devices. https://www.seeedstudio.com/blog/2019/12/06/what-is-rs485-

and-its-di�erence-between-rs232/

2

Schleicher M. (2001) p.13, 14

8

3 Planning and preparation

It leads to a possibility of transmission errors in case of a signi�cant di�erence in ground

potential between two ends of the cable. This is another reason to keep the cables short.
3

RS485

This standard o�ers longer distances and higher speeds than RS232. In addition, it is not

limited to two devices. It can connect up to 256 computers with a single pair of wires. The

interface is de�ned by TIA-485-A: Electrical Characteristics of generators and receivers for use in

balanced digital multi-point systems. The advantages are: low cost, networking ability, long

links, speed.
4

3.2 Lab pre-existing so�ware overview

3.2.1 Module configuration so�ware

Lab computer had an old Con�guration program written in Delphi and running on Windows

XP. The code cannot be reverse engineered, but module commands could be obtained by

listening on the COM port. The new software that is developed as part of the thesis has the

main functionality of the old application. The old program contained following screens:

• "Info" - general module information

• "Measurements" - readings from connected sensors

• "Variables" - settings for each connected sensor(precision, type, units etc.)

• "Module Con�guration" - username, physical location, bus address, baud rate etc.

The main problem of this old software is that it was written for an old Windows version. And

it is not possible to use on Linux, Mac and newer Windows versions. The other problem is

that it is not open source and cannot be adjusted and modi�ed for future needs.

3.2.2 Module readings

There were some Python scripts that are reading data from modules and sending it to a Postgres

database. Python is using "pyserial" library for communications over COM port with modules.

The program obtains data from a sensor by sending a special ASCII command that contains

module and variable addresses. There was no user interface: scripts could be run via command

3

Richard W. D. Nickalls (1995)

4

Axelson (2007)

9

3 Planning and preparation

line and could not be controlled once started

ASCII command format:

$ aa R kk < cr >

where aa - module address,

R - command to read a value,

kk - sensor address

There is a very limited set of ASCII commands and to access more functions of the module

PROFIBUS protocol should be used instead.

3.3 PROFIBUS

3.3.1 OSI model

PROFIBUS is a standard for a �eldbus
5

communication developed in 1989 by German depart-

ment of education and research and then used by Siemens. It makes use of OSI(Open Systems

Interconnection) model.

Figure 3.4: ISO/OSI model for communication standards Josef Weigmann (2004)p.13

5

Fieldbus - a name for a family of industrial computer networks

10

3 Planning and preparation

Layers 1 and 2 and, if necessary, layer 7 are implemented for the PROFIBUS protocol.

PROFIBUS can be divided into 3 versions: DP, FMS and PA. The Thesis equipment uses

PROFIBUS-DP(Decentralised Peripherals). This version has 2 OSI Layers: 1 and 2 and User

Interface. Other Layers are not implemented in DP-version. This type of the protocol provides a

high-speed transmission. It is designed for communication between a programmable controller

and distributed I/O devices at the �eld level.

3.3.2 PROFIBUS Layer 1

On Layer 1 PROFIBUS uses shielded twisted pair cables with transmission speeds of 9.6 kbit/s

to 12 kbit/s. It uses RS 485 transmission prosedure
6
. RS 485 is a standard that de�nes electrical

characteristics of drivers and receiver devices in serial communication systems
7
. It is based on

semi-duplex
8
, asynchronous, gap-free synchronization. Data transmission is done in 11-bit

character frames in NRZ code
9
.

3.3.3 PROFIBUS Layer 2

In PROFIBUS Layer 2 is called FDL Layer(Fieldbus Data Link). Telegram
10

formats are providing

a high level of transmission security. The hamming distance
11

of call telegrams is 4. It means

that 3 bit errors can be detected. DP version supports following transmission: SRD(Send and

Request Data with Acknowledge) and SDN(Send Data without Acknowledge).
12

Telegram formats

Figure 3.5: Telegram with �xed information �eld without data �eld Manual p.130

6

Josef Weigmann (2004)p.15,16

7

https://en.wikipedia.org/wiki/RS-485

8

a device can send and receive data but not in the same time

9

a binary code where ones are reprezented by a positive voltage and zeros are represented by negative voltage

10

Telegram is a de�ned format(framework) of the transmitted message. Schleicher M. (2001)

11

number of positions at which the corresponding symbols are di�erent

12

Josef Weigmann (2004)p.23

11

3 Planning and preparation

Figure 3.6: Telegram with variable length information �eld with data �eld Manual p.130

Figure 3.7: Telegram with �xed information �eld with data �eld Manual p.130

Telegram formats are distinguished by Start-Delimiter(SD): SD1, SD2 and SD3. Receive and

transmit telegrams may have di�erent formats and do not need to follow the same SD. In

addition, there is a telegram that consists only of one symbol "SC" and is a response telegram

that can have a positive or negative meaning.

SD(1 byte) - is a start delimiter in a telegram.

Figure 3.8: SD in PROFIBUS Manual p.131

LE(1 byte) - length, used for telegrams with variable data �eld. It is the length from DA to

the end of Data Unit �eld.

LEr(1 byte) - length repeated, used for data safety control.

DA(1 byte) - destination address of the communication partner(from 0 to 127).

12

3 Planning and preparation

SA(1 byte) - source address(from 0 to 127).

FC(1 byte) - frame control. This byte contains a telegram type, a station type, a way of

data transfer.

ReqDataUnit(0..n byte) - data �eld that is being sent to a communication partner with address

DA.

ResDataUnit(0..n byte) - received data �eld from a communication partner.

FCS(1 byte) - Frame-Check-Sequence, checksum of the telegram. It is calculated as ASCII

value of �elds from DA to DataUnit modulo 256.

ED(1 byte) - End Delimiter, in PROFIBUS protocol it is hex 16.

3.3.4 PROFIBUS Reverse Engineering

As Module manual does not contain PROFIBUS commands for module con�guration, they may

to be reverse engineered. It can be done by using an old software for module con�guration

together with any COM monitoring tool. The process including setting some new data in the

software, sending it to a module and monitoring which bytes are appearing on the COM port to

get PROFIBUS telegrams from it."Reverse Engineering is a process of measuring, analyzing and

testing to reconstruct the mirror image of an object or retrieve past event."
13

. A reverse engineer

has to have an understanding of the original functionality and skills to reproduce its details.

Nowadays, reverse engineering is one of the primary methodologies used in many industries,

manufacturers all over the world are practising this technique in product development. The

main question of the reverse engineering is how a part was made and not why this part is so

designed.
14

13

Wang (2011)

14

Wang (2011) p.1

13

4 Technologies

4.1 Graphical User Interface

4.1.1 GUI vs CLI

Graphical User Interface(GUI) is an important part of a desktop application. Generally modern

applications can have two types of user interfaces: GUI and CLI(Command Line Interface).

Each of them has own advantages and disadvantages
1
.

Advantages of CLI:

• Speed. Using keyboard only can speed up the input performance

• Computer resources. CLI requires much less PC resources than a modern GUI

• Stability. It does not change so much as GUI, new commands can be introduces, but the

original commands often remain the same.

Disadvantages of CLI:

• Not user friendly. It is much harder to familiarize and memorize commands.

• Harder to do multitasking. CLI does not o�er the same ease and ability as GUI to view

multiple things.

• Higher risk of strain. CLI can have more strain on a user’s vision. In addition, risk of

Carpal Tunnel Syndrome is higher as user has to type commands on a keyboard all the

time.

Advantages of GUI:

• User friendly. Learning goes much faster than with CLI

1

Command line vs. GUI https://www.computerhope.com/issues/ch000619.htm

14

4 Technologies

• Multitasking. Desktop GUI provides windows that allow user to view and control several

programs

• Less strain. Using mouse in addition to a keyboard reduces strain. Also GUI has more

colors and is more visually appealing, leading to a reduction in visual strain

Disadvantages of GUI:

• Speed. Mouse usage is reducing operating speed compared to CLI

• Computer resources. GUI requires much more computer resources than CLI.

• Diversity. Di�erent programs can have much di�erent GUIs. So user have to deal with

di�erent patterns to perform tasks.

Considering all of these and the fact that the program may be used in future by personal not

familiar with CLI interfaces, it was decided to use a GUI.

4.1.2 Modern GUI

Ten Principles for Good GUI Design

Leslie Cortes in his work called "Designing a Graphical User Interface" stated 10 principles of

good GUI design
2
. It was written in 1997 but remains undeniable also today. Here is a short

summary of his �ndings:

1. User must be able to understand a widget’s behavior from its visual properties: every

part of UI should behave in a consistent way, i.e. if one button responds to a single click

than all such buttons should behave the same.

2. User must be able to understand the behavior of the program with help of knowledge

gained from other programs: it means consistency in abstractions, menu placements,

icons, toolbars etc.

3. Every warning or error dialog is an opportunity to improve the GUI: "prevent, don’t

complain!"

4. Adequate user feedback should be provided: user should see that his action did something,

i.e. click button animation.

2

Leslie (1997)

15

4 Technologies

5. Safe environment for exploration: encourage user to safely explore the UI, e.g. with

undo/redo option.

6. Self-evidence: self-evident interface relieves a user from reading huge manuals, can be

achieved by widget arrangement, labels etc.

7. Use sound, color, animation and multimedia sparingly.

8. User should be able to customise the working environment.

9. Modal behaviors should be avoided: user should not be forced to perform tasks in a

speci�c order. Example of accepted modal behavior: in Paint program when a user picks

Brush, he can paint, when a user picks Text, he can type text. So selecting a widget alters

the subsequent function of the program and therefore results in the modal behavior. It is

accepted, because it is based on a real world analogy.

10. Interface should be designed in a such way that users can accomplish tasks while being

minimally aware of the interface itself: principle of transparency.

GUI libraries

GUI programs became really popular in the past years. In 90s and 2000s the main tools com-

monly used for GUI application development were: Visual Basic, Delphi and C++
3
. Nowadays,

web interfaces are becoming the most popular. They are written in HTML, CSS and JavaScript

and require a modern web browser to run. On the other hand, there are some libraries and

frameworks apart from web interfaces that is still used for desktop programs. It was decided

not to use the web GUI in the project, because it is assumed that the application will have only

one user at a time and does not require to have GUI opened on several machines. Moreover,

no need to support several browsers and support the application code for the future browser

versions, and no need to have a browser installed at all. The modern cross-platform GUI

libraries and frameworks are: Qt, Java FX, GTK and others.

Advantages of Web-GUI

• Maximum platform independence: can run on any device/OS that has a browser installed

and JavaScript support enabled

• Development speed: HTML, CSS and JavaScript allow to implement UI elements fast

3

Leslie (1997)

16

4 Technologies

• Knowledge base: lots of documentation, tutorials and discussions available online

• Future perspective: web-GUI are at the leading place and will stay for many years, so

there will be people available to support/update the code

Disadvantages of Web-GUI

• Performance: less than classical compiled programs.

• Must be compatible with di�erent browser versions, also in future: in this aspect it is

harder to develop and maintain a web-GUI

• Design di�ers from native desktop applications: i.e web-apps do not have same toolbars

and dropdown menus as desktop window applications

• Security limitations: due to a security policy of web browsers, there are limits to what

hardware/software features of the computer the app can access

Advantages of Desktop-GUI

• Performance: compiled programs give the best performance then scripts running in a

browser and require less PC resources.

• Native design: App that is developed for a particular OS uses standard navbars and

menus, so styling looks familiar to a user.

• There is no dependency on 3rd party web browsers: less issues to deal with.

Disadvantages of Desktop-GUI

• Less popular: less developers working with desktop-GUI today, so web-GUI are growing

faster. It means the chance to �nd someone to support the code for classical GUI in

future is less. Not so many libraries to choose from(that is still being developed and not

abandoned).

• Development speed: usually less as it is done in C++. And it usually takes years to

develop a program.

• Licensing: Popular frameworks, like Qt are free only for open-source projects, otherwise

a license must be purchased.

17

4 Technologies

Electron.js

A hybrid solution has been chosen for the project - Electron.js

This framework appeared in 2013 when Node.js
4

was becoming popular. It is used to develop

desktop programs with JavaScript. Electron allows to create desktop apps for Windows, Linux

and Mac with the same code used for web apps. It means a lot for code and skills reusability

and use huge Node.js ecosystem. Electron was created by GitHub company, they used it for

their text editor called Atom. After o�cial release in November, 2013 it became very popular

and a huge number of startups and large businesses started to use it for desktop apps develop-

ment. Electron is combined with Node.js through Chromium’s
5

content API and uses Node.js’s

node_bindings. Electron use separate JavaScript contexts - one is for a back-end process that

starts the app window(main process), one is for each app window(renderer process).
6

Electron features
7
:

• Create multiple windows, each with own JavaScript context

• Create tray apps

• Control and tracking PC power management - prevent PC from going into power saving

mode etc.

• Integrating with OS features

• Creating OS speci�c menus and menu items

• Global keyboard shortcuts

• App updates

• Reporting crashes

• Customizing dock menu icons

• OS noti�cations

• Creating setup installers

4

Node.js is an open-source, cross-platform, back-end JavaScript runtime environment that runs on the V8 engine

and executes JavaScript code outside a web browser.(wikipedia)

5

Chromium - is a free and open-source codebase for a web browser, principally developed and maintained by

Google(Wikipedia)

6

Jensen (2017) p.4, 17. 18

7

Jensen (2017) p.23,24

18

4 Technologies

Apps created with Electron:

• Visual Studio Code (VS Code)

• Slack

• Tusk

• Mailspring

• Skype

• Discord

• Streamlabs OBS

• WordPress Desktop

• WhatsApp Desktop

• Atom

4.2 Node.js and npm

Electron framework uses Node.js
8
. It is an open source JavaScript runtime environment that

inherits event-driven model. Node.js uses the same engine like Chrome browser - V8, this

allows it to be very performant. The important part that comes with Node is npm
9

- the

world’s largest software registry. It consists of three parts: the website, the Command Line

Interface(CLI), the registry. Npm registry contains packages. A package is a �le or a directory

that is described by package.json �le.

Package formats:

• A folder containing a program described by a package.json �le

• A gzipped tarball
10

• A URL that resolves to a gzipped tarball

8

https://nodejs.org

9

https://www.npmjs.com

10

On Unix systems �les can be packed into a tar �le that can be compressed with gzip

19

4 Technologies

• A <name>@<version> that is published on the registry with a URL

• A <name>@<tag> that points to <name>@<version>

• A <name> that has a latest tag satisfying <name>@<tag> pair

• A git url that, when cloned, results in a folder that contains a program code.

A module is a separate �le(JavaScript) or directory(containing package.json with ’main’ �eld)

located in node_modules folder and can be loaded into JS code using require() function.

Npm packages can be searched on https://npms.io website. Required package can be installed

locally or globally. By default all packages are installed locally(scoped to one local project).

Downloading and installing a package globally allows to use this package in any project on

the computer.

List of used npm packages and modules:

• electron - framework for developing cross-platform desktop applications using JavaScript,

HTML and CSS

• @electron/remote - electron module that bridges JavaScript objects from the main

process to the renderer process(used for calling dialog windows)

• @fortawesome/fontawesome-free - free css icons used for navbar buttons

• @grpc/grpc-js - JavaScript gRPC Client

• @grpc/proto-loader - utility package for loading .proto �les for use with gRPC

• google-protobuf - Google protocol bu�ers for gRPC

• async - provides a set of functions for working with asynchronous JavaScript

• lodash - JavaScript utility library

• minimist - argument parser

• tcp-port-used - to check if a TCP port is currently in use

20

4 Technologies

4.3 Communication via COM port(RS232)

As there were some existing Python script for communication with the ISM device, it was

decided to continue using them and to wright an additional code to extend their functionality.

Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics
11

. Built-in data structures, dynamic binding and dynamic typing makes it popular

for rapid application development. It has a simple syntax and it makes it easy to learn. One

of the key library used in the project is pySerial. This module encapsulates the access for the

serial port.

Features of pySerial module
12

:

• Same class based interface on all supported platforms

• Access to the port settings through Python properties

• Support for di�erent byte sizes, stop bits, parity and �ow control with RTS/CTS and/or

Xon/Xo�

• Working with or without receive timeout

• File like API with “read” and “write” (“readline” etc. also supported)

• The �les in the package are 100% pure Python

• The port is set up for binary transmission. No NULL byte stripping, CR-LF translation

etc. (which are many times enabled for POSIX.) This makes this module universally

useful

• Compatible with io library

4.4 Python Pipenv environment

Pipenv is a tool that provides a virtual enviroment for a Python project. It helps to manage

project dependencies on 3rd party modules. Installing and uninstalling is done through ’Pip�le’

�le.

Pipenv can be installed with a following command:

11

https://www.python.org/doc/essays/blurb/

12

https://pyserial.readthedocs.io/en/latest/pyserial.html

21

4 Technologies

1 sudo -H pip install pipenv

It will install Pipenv with Home variable set to home directory of current user (root by default).

Packages can be installed with:

1 pipenv install <name>

The main packages are:

• grpcio - for Remote Procedure Calls

• grpcio-tools

• pyserial - for communication over serial port

Others can be found in the ’Pip�le’.

4.5 gRPC

4.5.1 RPC

The Remote Procedure Call (RPC) is a mechanism that allows to implement client-server

applications in a simple way. It keeps details of network communications out of the application

code. Each side behaves as much as possible if it would be normal traditional application. To

keep this illusion there is some hidden code that handles all the networking.
13

RPC technology is much older than the Web. A credit for creating a generic formal mechanism

used to call procedures and return results over a network belongs to Sun Microsystems company.

It was �tting very well with the procedure approach that dominated in 90s.
14

4.5.2 gRPC overview

RPC is used to connect Python back-end scripts with Electron.js front-end GUI. With this

technique these two parts can even be physically located on two di�erent machines. To

achieve RPC communication gRPC
15

library developed by Google is used. gRPC is used by

such companies: Net�ix, CISCO, Jupiter Networks, Square, Core OS. Originally gRPC was

developed for internal usage. It was called Stubby and was used to connect the large number

of microservices that were running across various Google data centers. In March 2015, google

13

Ward Rosenberry (1995) p.1

14

Simon St. Laurent (2001) p.10

15

A high performance, open source universal RPC framework (https://grpc.io/)

22

4 Technologies

released the next version and made it open source. From that time many organizations are using

gRPC. gRPC operates a client-server architecture. A client program can call a method/function

on a server program that can be on a di�erent machine as if it were a local object. gRPC is

based around idea of specifying a service that contains all possible methods to be called, their

parameters and their return values. It is located on the server side. And on the client side there

is a stub that provides the same methods as the server.

Figure 4.1: gRPC overview

4.5.3 Protocol bu�ers

Protocol bu�ers is a mechanism used by gRPC for serializing data. They are de�ned in �les

with .proto extension. The data is structured in messages, each message contains �elds in

key-value pairs.

Here is an example of a protocol bu�er message form a project’s proto �le:

1 message DeviceConfig {

23

4 Technologies

2 int32 deviceAddress = 1;
3 string location = 2;
4 string user = 3;
5 string date = 4;
6 string time = 5;
7 optional int32 newAddress = 6;
8 }

Besides that proto �les contain services. A service should contain methods that will be remotely

called by the client. Here is an example of a service from the project:

1 service DeviceCommunication {
2 rpc ConnectToSerialPort (PortConfig) returns (Answer) {}
3 rpc DisconnectPort (PortMsg) returns (Answer) {}
4

5 rpc GetDeviceInformation (DeviceAddress) returns (DeviceInfo) {}
6 rpc GetDeviceConfig (DeviceAddress) returns (DeviceConfig) {}
7 rpc GetPortInformation (PortMsg) returns (PortInfo) {}
8 rpc GetMeasurements(MeasurementsMsg) returns (Measurements) {}
9

10 rpc SetDeviceConfig(DeviceConfig) returns (Answer) {}
11 rpc SetVariableConfig(VariableConfigRequest) returns (Answer) {}
12

13 rpc StoreVariablesConfig(VariablesConfigXml) returns (Answer) {}
14 rpc ReadVariablesConfig(DeviceAddress)
15 returns (VariablesConfigXml) {}
16 rpc ReadGlobalConfig(GlobalConfigXml) returns (GlobalConfigXml) {}
17 rpc WriteGlobalConfig(GlobalConfigXml) returns (GlobalConfigXml) {}
18

19 rpc StoreOverviewConfig(OverviewConfig) returns (Answer) {}
20 }

There are 4 kinds of service methods:

• Unary RPC - client sends a single request to the server and gets back a single response.

1 rpc SayHello(HelloRequest) returns (HelloResponse);

• Server streaming RPC - client sends a request to the server and gets a stream to read

back. It reads from the stream until there are no more messages.

1 rpc LotsOfReplies(HelloRequest)
2 returns (stream HelloResponse);

24

4 Technologies

• Client streaming RPC - client writes a message sequence and sends it as a stream to the

server. Then it waits until the server �nishes reading.

1 rpc LotsOfGreetings(stream HelloRequest)
2 returns (HelloResponse);

• Bidirectional RPC streaming - both streams operate independently

1 rpc BidiHello(stream HelloRequest)
2 returns (stream HelloResponse);

Once proto �le is �lled with services and messages it can be used to generate actual code for

client and server. In our case, 2 python �les are generated.

25

5 Concept

Background

Solar House at TU Lübeck has a set of ISM-111 modules with connected meteo sensors. These

are connected to a Windows PC via Serial port. There is an old software used to con�gure

the modules called "Combilog" and some Python scripts that communicate with the modules

over ASCII protocol. ISM modules can communicate with a computer via ASCII, PROFIBUS

or MODBUS protocols. ASCII commands are very limited, PROFIBUS and MODBUS provide

more control over the module.

Purpose

The project addresses a data collection automation problem. There is a need of a system

that can communicate with meteo sensors. It should be written in a modern language, using

modern technologies and be extendable and ready to be used on di�erent Operating Systems.

Possible extensions can include various data processing and sending the data to other systems.

It should have modern and clear Graphical User Interface, so even a person with non-technical

background can use it. The old software consisted of a closed non-expandable program for

con�guration the modules and some Python script without GUI. The aim of the project is to

have a centralized system(but non-monolithic in the same time) with opened code so it can be

extended in future.

Main activities

• Researching such subjects as: PROFIBUS, Electron.js, gRPC, Python, Serial Port reverse

engineering

• Writing code for gRPC communication, GUI, communication with ISM modules

• COM Port Reverse engineering to �nd out PROFIBUS telegrams structure for particular

commands

• Running, adjusting and testing the developed system on a real set up at Solar House

26

6 Implementation

6.1 Project structure

6.1.1 General Architecture diagram

The application can be roughly divided into a front-end and back-end parts. On the front-end

there are two separate Electron.js apps with some shared code. These apps provide a User

Interface for the whole application - one is for con�guring Sensor Modules and the other one is

for obtaining and storing the sensors’ reading. Front-end communicates with Python back-end

via gRPC(and gRPC server itself is a Python process). There are three main back-end parts:

Communication with sensor modules over PROFIBUS, Reading/Writing Xml con�g �les and

Communication with Database.

27

6 Implementation

Figure 6.1: General Architecture diagram

28

6 Implementation

6.1.2 Storage diagram

Figure 6.2: Storage diagram

Measurement reading process is triggered from UI application at some con�gurable time

interval. This interval can be set by User in UI or in xml con�g �le. First, readings are stored

into a memory bu�er. When the bu�er is full, the readings are transferred into a txt �le and

into a database. Both of these options can be enabled/disabled.

6.1.3 Directories structure

• con�g (storing xml con�guration �les)

• measurements (storing measurements locally, in txt format)

• src

• con�g (code for reading/writing into xml con�g �les)

29

6 Implementation

• db (database communication related code)

• localStorage (code for storing measurements)

• postgresql (database communication related code)

• pro�bus (module communication)

• rpc (protocol bu�ers)

• test (various python tests and mock objects)

• UI (Electron.js)

• database-ui

• sensors-ui

• shared

• node_modules (generated with "npm install")

• utility

6.2 gRPC server API

The entry point is implemented with api.py �le. This program is started when one of the UI

apps is been opened. The gRPC server is started on localhost port 50051(default gRPC port).

The api.py implements a number of functions that may be called over RPC:

• ConnectToSerialPort - establishes connection that can be reused by other calls

• DisconnectPort

• GetDeviceInformation - returns ISM module information such as id, status etc.

• GetPortInformation - if port is currently opened or no(checks if port is busy)

• GetMeasurements - gets readings from all sensors of the module, adds them to measure-

ments bu�er. In case if bu�er is full - writes data to local txt �le, send to remote database

and clears the bu�er

• GetDeviceCon�g - gets location, user, date and time from the module

• SetDeviceCon�g

• GetVariableCon�g - gets con�guration for sensors: type, name, format, length, precision

and unit

30

6 Implementation

• SetVariableCon�g - store in the module memory

• StoreVariableCon�g - store in xml con�g �le, on computer.

• ReadVariablesCon�g - from xml �le

• WriteGlobalCon�g - to xml �le

• StoreOverviewCon�g - stores ISM module info into xml �le

• CheckCon�g - checks if xml con�g �le is exist for selected ISM module

Also api.py can be switched from normal to test mode. Test mode uses mocked devices with

fake data instead of real serial port communication. This function can be called from Electron.js

UI apps like:

1 client.ConnectToSerialPort(...)

6.3 Implemented Python modules

6.3.1 Config

This Python module is responsible for storing ISM module con�guration locally, in xml �les.

It consists of two clases: GlobalXmlCon�g and XmlCon�g. First operates with one con�g

�le and the second one assumes a separate �le for each module that contains more speci�c

con�guration. To create and parse xml �les it uses minidom package that is a part of the

Python standard library.

Here is an example of global con�g xml �le:

1 <?xml version="1.0" ?>
2 <config>
3 <readingIntervalMs>1000</readingIntervalMs>
4 <database>
5 <name>zeus-db</name>
6 <host>localhost</host>
7 <port>5433</port>
8 <username>postgres</username>
9 <password></password>

10 </database>
11 <modules>
12 <module>

31

6 Implementation

13 <address>7</address>
14 </module>
15 </modules>
16 </config>

It is used by Database UI app and contains reading interval in milliseconds, an array of modules

with addresses and database credentials.

Password is stored in encrypted format, so it is not exposed to xml con�g viewers. A Python

library named cryptography is used for the encryption and decryption.

In addition, a separate con�g �le is created for each module that is connected to a computer.

Here is an example of such �le:

1 <?xml version="1.0" ?>
2 <module>
3 <address>6</address>
4 <vendor>Gantner</vendor>
5 <module-type>ISM-111</module-type>
6 <hw-version>M3.20</hw-version>
7 <sw-version>U5.41</sw-version>
8 <location>Hamburg</location>
9 <sn>077379</sn>

10 <channels>4</channels>
11 <variables>
12 <variable>
13 <address>1</address>
14 <name>Pyranometer1</name>
15 <globalIndex>21</globalIndex>
16 <type>AI</type>
17 <format>Real</format>
18 <length>8</length>
19 <unit>W/m2</unit>
20 <precision>5</precision>
21 </variable>
22 <variable>
23 <address>2</address>
24 <name>Pyranometer2</name>
25 <globalIndex>22</globalIndex>
26 <type>AI</type>
27 <format>Real</format>

32

6 Implementation

28 <length>8</length>
29 <unit>W/m2</unit>
30 <precision>6</precision>
31 </variable>
32 <variable>
33 <address>3</address>
34 <name>Virtual1</name>
35 <globalIndex>23</globalIndex>
36 <type>AI</type>
37 <format>Real</format>
38 <length>8</length>
39 <unit> V</unit>
40 <precision>4</precision>
41 </variable>
42 <variable>
43 <address>4</address>
44 <name>Virtual2</name>
45 <globalIndex>24</globalIndex>
46 <type>AI</type>
47 <format>Real</format>
48 <length>8</length>
49 <unit> V</unit>
50 <precision>4</precision>
51 </variable>
52 </variables>
53 </module>

6.3.2 Local Storage

This module is responsible for storing readings from connected sensors to a local computer. It

is an intermediate step before sending the data to a remote database. It allows to be sure that

data is stored even if the database is not available. There are 2 formats supported: xml and

txt. Text format is the simplest one and takes less space. MeasurementsTxt class stores the

data in a text �les. Each �le has a name that contains a date, so each day a new �le is created.

First, readings are written into a Python memory bu�er every time GetMeasurements api call

is done. When bu�er is full, it is written into the txt �le.

33

6 Implementation

6.3.3 Profibus

This module was extended with some classes required for communication with the ISM via

PROFIBUS. It contains various types of telegrams that can be send and received. The telegrams

are explained in "Reverse Engineering" section in more detail.

6.4 Telegrams reverse engineering results

6.4.1 Requests

Module configuration edit

Implemented in pro�bus/con�g_edit_request.py

This telegram allows to set the following parameters:

• ISM module location - e.g. room number or name (not more that 20 bytes)

• Username - not more that 20 bytes

• Date and time of last editing

34

6 Implementation

Byte number Description Byte value

1 Start Delimiter, const 0x68

2 Length, const 0x46

3 Length, const 0x46

4 Start Delimiter, const 0x68

5 Module Address 0x80 + actual address(1-127)

6 Source Address, const 0x80

7 Frame Control, const 0x4C

8 DSAP, const 0x28

9 SSAP, const 0x00

10 Command, const 0x64

[11:30] Module Location string not more then 20 chars

[31:38] Unknown bytes, const 0x00 0x32 0x00 0x04 0x00 0x6F 0x17 0x70

[39:58] Username not more then 20 chars

[59:68] Date and time yymmddHHMM

[69:74] Unknown bytes 0x00 0x01 0x00 0x01 0x00 0x00

75 Checksum [DA+SA+FC+DataUnit] mod 256

76 End byte 0x16

Notes:

• Bytes marked "const" should not be modi�ed

• DSAP - Destination Service Access Point

• SSAP - Source Service Access Point

• Fields should be always zero padded if their length is less than maximum

Sensor configuration edit

Implemented in pro�bus/variable_edit_request.py

This telegram allows to set the following parameters:

• Type

35

6 Implementation

• Name

• Additional Name

• Format

• Length

• Precision(number of decimals)

• Unit

36

6 Implementation

Byte number Description Byte value

1 Start Delimiter, const 0x68

2 Length, const 0x46

3 Length, const 0x46

4 Start Delimiter, const 0x68

5 Module Address 0x80 + actual address(1-127)

6 Source Address, const 0x80

7 Frame Control, const 0x4C

8 DSAP, const 0x28

9 SSAP, const 0x00

10 Sensor address 1-4

11 Sensor Type See sensor types subsection

12 Padding, const 0x00

[13:32] Sensor name up to 20 chars(zero padded)

[33:52] Additional Name up to 20 chars(zero padded)

53 Variable format. Not tested properly. 0x03 (real number format)

54 Length up to 8

55 Precision For real numbers: not more than Length - 2

56 Padding 0x00

[57:60] Unit max 4 chars

[61:74] Padding 0x00

75 Checksum [DA+SA+FC+DataUnit] mod 256

76 End byte 0x16

Device address change

Implemented in pro�bus/address_edit_request.py

It allows to set new ISM module address(1-127). It is important not to connect two modules

with the same address to prevent con�icts.

37

6 Implementation

Byte number Description Byte value

1 Start Delimiter, const 0x68

2 Length, const 0x46

3 Length, const 0x46

4 Start Delimiter, const 0x68

5 Module Address 0x80 + actual address(1-127)

6 Source Address, const 0x80

7 Frame Control, const 0x4C

8 DSAP, const 0x28

9 SSAP, const 0x00

10 Command 0x6E

11 New address from 0x01 to 0x7F

12 Unknown byte, const 0x01

13 Unknown byte, const 0x4B

[14:74] Padding 0x00

75 Checksum [DA+SA+FC+DataUnit] mod 256

76 End byte 0x16

Get Module configuration

Implemented in pro�bus/module_con�g_read_request.py

Requests a telegram with ISM module con�guration.

38

6 Implementation

Byte number Description Byte value

1 Start Delimiter, const 0x68

2 Length, const 0x06

3 Length, const 0x06

4 Start Delimiter, const 0x68

5 Module Address 0x80 + actual address(1-127)

6 Source Address, const 0x80

7 Frame Control, const 0x4C

8 DSAP, const 0x29

9 SSAP, const 0x00

10 Command 0x64

11 Checksum [DA+SA+FC+DataUnit] mod 256

12 End byte 0x16

Get Sensor configuration

Implemented in pro�bus/variable_con�g_read_request.py

Requests a telegram with variable(sensor) con�guration.

39

6 Implementation

Byte number Description Byte value

1 Start Delimiter, const 0x68

2 Length, const 0x06

3 Length, const 0x06

4 Start Delimiter, const 0x68

5 Module Address 0x80 + actual address(1-127)

6 Source Address, const 0x80

7 Frame Control, const 0x4C

8 DSAP, const 0x0C

9 SSAP, const 0x00

10 Sensor address 1-4

11 Checksum [DA+SA+FC+DataUnit] mod 256

12 End byte 0x16

Get Sensors Readings

Implemented in pro�bus/measurement_request.py

Requests a telegram with variable(sensor) value for a selected module.

40

6 Implementation

Byte number Description Byte value

1 Start Delimiter, const 0x68

2 Length, const 0x06

3 Length, const 0x06

4 Start Delimiter, const 0x68

5 Module Address 0x80 + actual address(1-127)

6 Source Address, const 0x80

7 Frame Control, const 0x4C

8 DSAP, const 0x0D

9 SSAP, const 0x00

10 Sensor address

11 Checksum [DA+SA+FC+DataUnit] mod 256

12 End byte 0x16

6.4.2 Responses

Module configuration

Implemented in pro�bus/con�g_answer.py

The Data�eld of the response telegram contains following data:

• Location - data�eld bytes [2:21]

• Username - [30:49]

• Date - [50:55]

• Time - [56:59]

Sensor configuration

Implemented in pro�bus/variable_con�g_answer.py

The Data�eld of the response telegram contains following data:

• Type - data�eld byte 2

• Name - [3:22]

41

6 Implementation

• Additional Name - [24:43]

• Format - 44

• Length - 45

• Precision - 46

• Unit - [48:51]

Sensor readings

Implemented in pro�bus/measurements_response.py

The Data�eld of the response telegram contains following data:

• DSAP - byte 0

• SSAP - byte 1

• Sensor data [2:]

6.4.3 Findings

• All request telegrams that are writing some data into the ISM module always have

constant length - 76 bytes. All of this telegrams can be distinguished to each other by

looking at �rst three bytes in Data Field. Data Field starts with DSAP byte followed by

SSAP byte. And the third byte is unique for each type of the telegram.

• Frame Control byte is always 0x4C. According to PROFIBUS speci�cation document,

Frame Control(FC or Control Octet) indicates the frame type. And, in addition, it has

the station type information and function and control information, which prevents loss

and multiplication of messages. 0x4C is 0100 1100 in binary format. From right to left,

�rst 4 bits(1100) represent function. In current case the function is Send and Request

Data Low. Bit 5 and 6 can represent Station Type or Frame Count depending on bit 7

value(�ag), in this case - frame count(00 indicates request with no acknowledgement).

Bit 7 - �ag. Bit 8 - reserved.
1

1

PROFIBUS speci�cation 1.0

42

6 Implementation

6.5 UI overview

6.5.1 Sensor configuration app

Connection dialog

Figure 6.3: Connection dialog

This dialog is shown if the app is opened �rst time. It asks User to select a port name(starts

with "COM..." in Windows, and "/dev/..." in Unix. It must be a Serial Port that is used for a

connection to the device. Next �eld is a baud rate and it is 19200 by default.

Figure 6.4: Serial port selection dropdown (Mac)

43

6 Implementation

Configuration

Figure 6.5: Con�guration dialog

This dialog is shown when there is no xml �le in "con�g" folder detected. In this case the �le

can be generated and �lled with module data automatically.

Navigation/Status Bar

Figure 6.6: Navigation/Status Bar

The bar is shown on all app screens. It allows User to set an address of ISM Module that he

wants to con�gure. It contains navigation buttons leading to di�erent app screens and, �nally,

it contains Serial Port status and control buttons. Elements have tooltips that are shown on

hovering.

44

6 Implementation

Welcome

Figure 6.7: Welcome screen

This screen User sees after he opens the app, it appears when Serial connection with ISM

Module is successfully established. It contains some introductory information, so User can get

familiar with what he can do next.

Overview

Figure 6.8: Overview

The overview screen shows data requested from the ISM module memory. It displays module’s

characteristics and allows to write these into xml con�g �le("Update con�g �le").

45

6 Implementation

Measurements

Figure 6.9: Measurements

In Sensors Con�guration app Measurements sections carries only informational function. It

just displays current readings and does not store it anywhere, as it is done in the Database app.

Sensor names are taken from local xml con�g �le to avoid querrying the ISM module.

Sensor Configuration

Figure 6.10: Sensor Con�guration

One of the most important screens. It allows to con�gure each sensor’s name, output length

and precision and unit. Also it displays sensor type and output format. The maximum length

of real numbers is 8, and decimal digits should take not more that length - 2. Clicking "Send to

module" sends data to ISM module and writes into local xml con�g �le as well. "O�set" and

"Factor" are local settings that are not stored in the module. They are used to map voltage

46

6 Implementation

levels to actual values. If User does not want to overwrite data in ISM module memory, he can

just update xml con�g �le manually.

Module Configuration

Figure 6.11: Module Con�guration

Here User can set location of the ISM Module(room number etc.), username and set a new

module address. "Send to module" button sends the data into ISM memory as well as storing it

locally in xml con�g �le.

6.5.2 Sensor readings app

Se�ings dialog

When the Application started for the �rst time, a settings dialog is shown. An xml con�g �le

will be generated and these settings will be stored there.

47

6 Implementation

Figure 6.12: Application Con�guration

Later on the Settings can be accessed via navigation toolbar. They contain the interval in

milliseconds with which module get requested for the sensors’ readings. These readings can

be then stored locally and sent to a remote database. Modules’ addresses allow to specify

all connected modules that can provide the readings. The important part is the Database. It

contains remote Postgres database credentials needed to connect to the database. Password is

stored locally in xml �le in an encoded and encrypted format.

Control bar

Figure 6.13: Control bar

Control bar shows the connection status of the serial port. It allows to disconnect or connect

to another serial port. Also a database connection status is shown. It is possible to try to

48

6 Implementation

reconnect in case of an error. In addition User can disable/enable storing sensors’ readings

locally to txt �le and remotely to the database.

Readings screen

Figure 6.14: Readings screen

The Application makes requests to ISM sensor modules in intervals that were set, the obtained

readings are showed to the User and added to a bu�er. When bu�er is full, the readings are

recorded both locally and in the database.

6.6 JavaScript Design Pa�erns

6.6.1 Overview

Originally object oriented design patterns were documented by Erich Gamma, Richard Helm,

Ralph Johnson and John Vlissides(the Gang of Four) and have been used in many object-

oriented languages. JavaScript di�ers from such languages as C++ or Java and it makes it hard

to straightforward apply the patterns of the Gang of Four. First, JavaScript is a dynamically

typed language, it means that the type of variables is determined at the runtime. So, to apply

some speci�c patterns, a range of special tricks and techniques needs to be used that makes

it questionable if the e�ort worth it.
2

The patterns used in the project are rather simple and

do not require these. Patterns are needed to make the code more modular, e�cient and more

readable and understandable.

2

Ross Harmes (2008) Introduction

49

6 Implementation

6.6.2 Singleton

The Singleton is one of the most basic designed patterns and it is used in JavaScript a lot. It

groups a piece of code into a single logical unit that can be assigned to a single variable. There

are several use cases for the Singleton. It can be used for namespacing, to prevent function

names clash. It can encapsulate browser di�erences with a technique called branching(not

relevant for the current project as it does not use browsers). And it can be used to keep the

code organized
3
. In JavaScript, the Singleton can be created in a manner that di�ers from other

languages:

1 const Singleton = {
2 attribute1: true,
3 attribute2: 5,
4

5 method1: () => {
6 \\method code ...
7 }
8 }
9

10 \\this can be accessed as:
11 Singleton.attribute1;
12 Singleton.method1();

Here is an example of one of the Singletons from the project:

1 const XmlConfig = {
2 client: null,
3 _send: (action, message, deadline, callback) => {
4 //Code removed for simplicity. Method is sending request to ISM
5 },
6 checkConfig: (deadline, params, callback) => {
7 XmlConfig._send(’CheckConfig’, params,
8 { deadline }, callback);
9 },

10 storeDeviceConfig: (deadline, params, callback) => {
11 XmlConfig._send(’StoreOverviewConfig’, params,
12 { deadline }, callback);
13 }
14 }

Other example of a Singleton is SerialPort.js.

3

Ross Harmes (2008) p. 65

50

6 Implementation

Benefits of the Singleton

One of the advantages of using the Singleton is that it keeps the code organized. Grouping

related methods together in a single location, which cannot be instantiated several times, it is

easier to debug and maintain the code. Namespacing protects the methods from accidental

overwriting and prevents the global namespace pollution.

Drawbacks of the Singleton

The Singleton patterns has a potential of tightly coupling modules together by providing

a single access point. It can be better to create an instantiated class even it will be only

instantiated once in a program lifetime. The Singleton also makes unit testing harder because

of classes coupling.
4

6.6.3 Callback

A Callback is a function that is invoked for result propagation in case of an asynchronous

operation. It is based on a fact that JavaScript supports passing any functions as a parameter

of another function. It makes the Callback easy implementable. Also JavaScript closures

allows the callback to access the context in which asynchronous operation was requested,

and not to depend on when or where the Callback was invoked. In JavaScript, the Callback

pattern is achieved by creating a function that has another(callback) function as a parameter(by

convention - last parameter).
5

Let’s have a look into one of the previous examples:

1 const XmlConfig = {
2 client: null,
3 _send: (action, message, deadline, callback) => {
4 try {
5 XmlConfig.client[action](message, deadline, function (err,
6 response) {
7 if (err) {
8 callback.onError(err);
9 return;

10 }
11 if (!response) {
12 callback.onError(’Got undefined response’);
13 return;

4

Ross Harmes (2008) p.82

5

Casciaro (2014) p.18,19

51

6 Implementation

14 }
15 callback.onSuccess(response);
16 });
17 } catch (error) {
18 callback.onError(’Got unexpected error: ’ + error);
19 }
20 },
21 checkConfig: (deadline, params, callback) => {
22 XmlConfig._send(’CheckConfig’, params,
23 { deadline }, callback);
24 },
25 storeDeviceConfig: (deadline, params, callback) => {
26 XmlConfig._send(’StoreOverviewConfig’, params,
27 { deadline }, callback);
28 }
29 }

Here a callback is passed to checkCon�g() or storeDeviceCon�g() and then to _send(). Some

asynchronous operation is done inside _send() and, when it is �nished, the callback is executed.

The callback is an object that has two member functions: onError() and onSuccess(), that are

executed in case of an error or success respectively.

6.6.4 Bridge

Bridges can be useful when implementing an API. It is one of the simplest patterns and it is easy

to implement and put into practice. The purpose of this pattern is to decouple an abstraction

from its implementation.
6

If you look at the example from the previous Callback pattern description you will see a

Bridge there as well. It has an API that is represented by two functions: checkCon�g() and

storeDeviceCon�g(). They are abstractions over rpc client calls which are done via XmlCon-

�g.client object. The implementation is the _send() function.

Benefits of the Bridge

Using the Bridge can increase the code maintainability. Parts of the code can be managed

independently when abstractions are separated and decoupled from implementations. It makes

it easier to �nd bugs, and the code is less likely to be seriously broken.

6

Ross Harmes (2008) p.109

52

6 Implementation

Drawbacks of the Bridge

This pattern has a few disadvantages. Performance of the program can be a�ected by the fact

that the Bridge creates another function call. Bridges also add complexity, which can make the

code harder to debug and read.
7

6.7 Testing

6.7.1 Testing with ISM-111 test module

A separate ISM-111 module with two connected pyranometers has been provided by TU Lübeck.

It was used during the development process of the application. It di�ers from the real set up,

because it does not have several interconnected modules and the number of sensors is much

less. Other than that the test set up has all the functionality as the main set up and can be used

to develop and test some required features. To improve the testing some mocking had to be

done.

6.7.2 Testing with Mock objects

With a mock object the serial communication can be simulated. Instead of sending and getting

data from COM port, object functions are called. There are 3 classes in "src/test/mocks"

directory.

• "Pro�busMock" is used instead of "Pro�busAsciiMaster". It mocks 127 ISM modules with

4 sensors in each module and it has the functions from "Pro�busAsciiMaster".

• "ModuleMock" represents ISM module. It contains sensor con�gurations as byte arrays

in PROFIBUS telegram format and provide return values for di�erent requests that are

coming from User.

• "SensorMock" contains sensor name and measurement.

6.8 Se�ing up and running the project

Currently it is supposed that all project components are running and hosted on a single

machine(except the Database). In future it can be easily distributed after some small adjustments

if needed. The project can be started on Windows, Linux or Mac. After downloading the folder

(e.g. from git), node and Python packages should be installed.

7

Ross Harmes (2008) p.123

53

6 Implementation

6.8.1 Ge�ing the project

The project can be cloned from GitLab instance. Current url is https://gitlab.tphys.jku.at/haw-

hamburg/solarhaus/meteosystem/meteo-control-software.git

6.8.2 Se�ing up directories

Root directory of the project contains following directories: docker and src. The �rst one

is related to Database docker image and the latter contains the source code. In addition

two directories should be manually created in the root directory of the project: con�g and

measurements. The �rst one will be used to store xml con�g �les and the latter is for storing

measurements in txt �les.

6.8.3 Installing Python packages

Python is using Pipenv(see section 4.4) which makes it easy to install or required packages.

Make sure that Python 3 as well as pipenv is installed and is available in the PATH (can be called

with ’python3’ or ’python’ and ’pipenv’ from a command line). To install all packages from

the Pip�le user must navigate to the project directory(where Pip�le is located) and execute the

following command:

1 pipenv install

To test the pipenv the following command can be executed:

1 pipenv shell

It creates a new pipenv shell process. It can be terminated by typing exit command.

Missing packages can be installed with:

1 pipenv install <package-name>

6.8.4 Installing Node packages

Once Node.js is installed(make sure that it was added to PATH) all required packages can be

installed by navigating to src/UI directory and running ’npm install’ command(see section 4.2).

A new directory called ’node_modules’ will be created - it contains all the required modules to

run both ISM Con�guration app and Database app as they share the code.

54

6 Implementation

6.9 Challenges

Time frame

Bachelor project has a �xed time frame. And the most important thing here is to have a

�xed plan and to choose the right technologies. JavaScript and Python showed to be suitable

languages for rapid development.

Project size

It turned to be quite large project. It contains several components that are communicating over

gRPC: GUI apps for sensor con�guration and for readings storage, backend python service that

communicates with ISM modules, GUI apps, database and �lesystem. Some prior experience

and knowledge is crucial here, as it is impossible to learn from scratch in this case.

Lack of ISM-111 module documentation

Not all PROFIBUS commands are o�cially documented. I.e. commands for setting sensors

con�guration. So they had to be reverse engineered by using old software(Combilog) and

listening on a COM port. Both request and response telegrams had to be deciphered. It requires

deep understanding of serial communication and PROFIBUS Telegram formats.

Small prior experience with Python

Python di�ers from C-style languages, so it takes some time to get used to it. OOP also di�ers

from other languages(like Java or C++). An example of interesting feature: class member

variables are all static by default(it took quite a lot of time to understand what is going on).

Lack of good books on PROFIBUS

Seems to be a niche technology. Not so many people involved nowadays, that is why there

are not many authors. But, at the end, it turned out that o�cial PROFIBUS speci�cation and

ISM-111 user manual was enough.

Cross-platform issues

The Application was developed and tested using Mac computer. Installing and running it

on Windows 10 took some time. The main di�culty was to deal with security errors that

were coming from Windows platform, so the code had to be adjusted. The other trick was a

55

6 Implementation

di�erence in COM port naming. Also processes spawning and killing di�ers between platforms.

Other than that, Electron.js and Python �t perfectly for the cross-platform development.

Test System vs Real System

Testing is an important phase in software development. The main challenge of the project was

that real system had some di�erences from the testing system: di�erent length of cables(more

distortion), more interconnected modules, di�erent number of sensors per a module. And

the main system was located in Lübeck. Test System consisted of one ISM-111 module and 2

connected sensors. Real System(located at the Solar House) consisted of three ISM-111 modules

connected between each other and single RS232 cable. First, the application did not run smooth

with the real system. Some adjustments needed in handling corrupted telegrams with wrong

checksums. Also some adjustments were made to handle di�erent number of sensors that can

be connected to a module.

6.10 Results

• GUI technologies have been researched. Electron.js has been used to create both sensor

con�guration and readings storage clients.

• Inter Process Communication technology has been researched and gRPC has been used

to implement communication between Python back-end and Electron.js front-ends.

• The Application can be installed on Windows, Linux or Mac.

• User can obtain module information from the internal storage of the module. This data

is presented in GUI.

• Use can write con�guration data into a module

• Con�guration data is also stored on PC in xml �les.

• Readings are stored in txt �les and also in a remote database

56

7 Appendices

7.1 Appendix A: Installation Guide

This guide describes the installation process on Windows as the main focus platform. Installa-

tion on Linux and Mac slightly di�ers. The installation is mainly happening using cmd.exe

tool which is a command line terminal included in each Windows installation by default.

1. Download project �les from https://gitlab.tphys.jku.at/haw-hamburg/solarhaus/meteosystem/meteo-

control-software.git.

2. Set up directories. Root directory of the project contains following directories: docker

and src. The �rst one is related to Database docker image and the latter contains the

source code. In addition two directories should be manually created in the root directory

of the project: con�g and measurements. The �rst one will be used to store xml con�g

�les and the latter is for storing measurements in txt �les.

3. Check if Python 3 is installed (open cmd.exe and type python -V). Python 3.9 has been

used for development, but other versions may work as well. It can be downloaded from

https://www.python.org/downloads/

4. Open cmd.exe(command line tool). Go to Project’s root directory. Type "pipenv install".

If you see an error, then pypenv is not installed or is not part of the PATH system variable.

To install pipenv type: "pip install –user pipenv". After installation it will display a path

to pipenv. This location should be added to PATH enviromental variable(more info here:

https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/). More in-

formation on pip installation: https://www.geeksforgeeks.org/how-to-install-pip-on-

windows/. More information on pipenv installation: https://www.pythontutorial.net/python-

basics/install-pipenv-windows/

5. If pipenv is installed correctly cmd command "pipenv shell" should create a new pipenv

shell process. Type ".exit" to exit the shell.

57

7 Appendices

6. Download Node.js(https://nodejs.org/en/download/) and add to PATH. The installation

can be checked with "node -V" cmd command.

7. Navigate to src/UI directory and run "npm install" command. It will download and install

all required Node packages.

7.2 Appendix B: Configuration app User Guide

Con�guration App is used to read and write data to internal ISM module memory. Also it

stores the con�guration in ’/con�g’ directory. These �les can be also created and modi�ed

manually without using the Con�guration App.

Starting the App

It can be started by double clicking "start_con�g.bat" �le located in the Project’s root directory.

In case of an error the App can be restarted manually by using CTRL+R. If the error related to

Python background process, it should be killed from Task Manager. At the initial start, if there

are no xml con�guration �les found, the App will ask to generate it. It may not work well if

several modules are connected together. One solution is to disconnect them and use one by

one. Easier and better solution - manually create and adjust xml �les. Root directory contains

’con�g_template.xml’

Manually creating xml configuration

1. Copy ’con�g_template.xml’ into ’con�g’ directory.

2. Rename ’con�g_template.xml’ into ’module_address.xml’. I.e. ’1.xml’, ’2.xml’ or ’3.xml’.

3. Open the �le and adjust the contents. You can use the Con�g App to get the data.

Variable Config Screen

It displays sensors’ con�guration data. If you are using it with several interconnected ISM

modules, some of them can provide a corrupted data. "Send to module" button stores/updates

local xml con�g �le and also writes data into ISM module memory. O�set and Factor are only

stored locally. Rest of the settings are stored both locally and in the module’s memory. It is not

recommended to send to a module if several modules are connected together. The workaround

is to manually edit xml �les in ’/con�g’ directory as ISM module memory data is not really

used.

58

7 Appendices

More Information

More description can be found in section 5.5.1

7.3 Appendix C: Storage app User Guide

Storage App is used to request readings from sensors in a regular intervals, store them in txt

�les in ’/mesurements’ directory and send them to a remote database.

Starting the App

It can be started by double clicking "start_reading.bat" �le located in the Project’s root directory.

In case of an error the App can be restarted manually by using CTRL+R. If the error related

to Python background process, it should be killed from Task Manager. At the initial start, if

there is no global xml con�guration �le found, the App will ask to generate it. Alternatively it

can be manually created by copying ’con�g_global_template.xml’ into ’con�g’ directory and

renaming the �le into ’global.xml’.

Se�ings

The most important settings are: readings interval and modules’ addresses. Reading interval

should be adjusted not to bee too short as requesting the data itself takes some time and can be

around one second for each module. The recommended interval is from 5000 ms and above. In

case if a lot of telegrams come corrupted, the interval should be increased as the program retries

the request if it gets corrupted telegram. Modules’ addresses are the addresses of connected

ISM modules(i.e. 1, 2, 3). Other settings group is needed for a Postgres database access. In case

the database is o�ine the application will display an error, but can continue to store the data

locally.

Saving modes

1. Save Locally: stores the data in local txt �le that is located in ’/measurements’ directory.

The �le has three columns: Sensor Global Index, Timestamp, Value(adjusted with o�set

and factor)

2. Send to Database: sends data to Postgres database in a regular intervals. Data is written

into ’measurements’ table.

59

7 Appendices

Manual Transfer

In case if there is a di�erence between local storage and remote database, you can transfer

missing readings from local txt �les to the database. Uncheck modes checkboxes and click

’Manual Transfer’. It will show the di�erence in timestamps. Click ’Apply’ to transfer missing

data from txt �les to the database.

More information

More description can be found in section 5.5.2

7.4 Appendix D: Developer Notes

Pipenv

The Application uses pipenv. If some new python package is required it should be added via

executing following cmd command in project root directory: pipenv install <package-name>

Python backend process

Python process is running as a daemon process. The main thing to consider: if you update

some python code, this process should be killed from the Task Manager(open Task Manager

with CTRL-ALT-DEL search for Python and kill all Python processes). Otherwise changes to

the code will be not visible as old process continues to run. Also in case of Python related

error it may be required to kill the process and restart the app after that. When any of the UI

apps is started, it spawns a python background process(if not yet started).

gRPC

The application uses gRPC for communication between Python back-end and Electron.js

front-ends. Python server api functions are implemented in "api.py" �le. These functions

are using generated �les from "/rpc" directory. In case some new function is needed it

should be added into "/rpc/device.proto". Then new python �les should be generated with

the following cmd command(executed from rpc directory): python -m grpc_tools.protoc –

proto_path=/Users/User/PATH-TO-PROGRAM/meteo-control-software/src/rpc –python_out=.

–grpc_python_out=. device.proto –experimental_allow_proto3_optional (Linux. In case of

Windows path separators are di�erent!). Make sure that generated "device_pb2_grpc.py" in

60

7 Appendices

line 5 has : "import rpc.device_pb2 as device__pb2". For more information see:

https://grpc.io/docs/languages/python/basics/#generating-client-and-server-code

Node modules

Both UI apps use shared node modules. "/UI" directory contains package.json �le, so all

required modules can be installed by running "npm install" in this directory. Do no do it inside

"sensors-ui" or "database-ui"

Testing

The application can be started in Test Mode(without connecting to real device via COM port).

To do this, open api.py and change line 54 to TEST_MODE = True. Close the app and kill

Python processes from Task Manager. Testing Mode uses "/src/test/mocks" python code. It

contains a mock classes for ISM sensor module and sensors. It supports some important

requests. Both sensors-ui and database-ui can be started in Test Mode.

61

Bibliography

[Axelson 2007] Axelson, Jan: Serial Port Complete: COM Ports, USB Virtual COM Ports,

and Ports for Embedded Systems (Complete Guides series). Lakeview Research, 2007. – ISBN

9781931448062

[Casciaro 2014] Casciaro, Mario: Node.js Design Patterns. Packt Publishing, 2014. – ISBN

1783287314,9781783287314

[Jensen 2017] Jensen, Paul B.: Cross-Platform Desktop Applications using Electron and NW.js.

Manning Publications Co., 2017. – ISBN 9781617292842

[Josef Weigmann 2004] Josef Weigmann, Gerhard K.: Decentralization with PROFIBUS

DP DPV1: Architecture and Fundamentals, Con�guration and Use with SIMATIC S7. Publicis

Corporate Publishing, Erlangen, 2004. – ISBN 3895782181,9783895782183

[Leslie 1997] Leslie, Cortes: Designing a Graphical User Interface. Clinical Information

Engines, Austin Texas, 1997. – ISBN 0-201-60842-1,0-385-26774-6,0-442-01750-2,1-55615-

439-9,1-55615-679-0

[Manual] Manual, ISM M.: Intelligentes Sensor Module ISM 111 Gerätebeschreibung V

2.21.

[Richard W. D. Nickalls 1995] Richard W. D. Nickalls, R. R.: Interfacing the IBM-PC to

Medical Equipment: The Art of Serial Communication. Cambridge University Press, 1995. –

ISBN 0521462800,9780521462808

[Ross Harmes 2008] Ross Harmes, Dustin D.: Pro JavaScript Design Patterns. Apress, 2008. –

ISBN 978-1-59059-908-2, 978-1-4302-0495-4

[Schleicher M. 2001] Schleicher M., Blasinger F.: Digital interfaces and bus systems for

communication. M.K. JUCHHEIM & Co, Fulda, 2001. – ISBN 3935742037

[Simon St. Laurent 2001] Simon St. Laurent, Joe J.: Programming Web Services with

XML-RPC. O’Reilly Internet Series, 2001. – ISBN 9780596001193,0596001193

62

Bibliography

[Wang 2011] Wang, Wego: Reverse Engineering. Technology of reinvention. CRC Press Taylor

& Francis Group, 2011. – ISBN 9781439806319

[Ward Rosenberry 1995] Ward Rosenberry, John S.: Microsoft RPC Programming Guide.

O’Reilly Media, 1995. – ISBN 1565920708,9781565920705

63

I declare that this Bachelor Thesis has been completed by myself independently without outside

help and only the de�ned sources and study aids were used.

Hamburg, 5. October 2021 Mykhailo Svyrydovych

