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Abstract

When the CPU performance is not fully used by the software, energy is wasted. The
goal of this thesis is to improve assessing task properties at runtime to be able to sense
the software utilization of the CPU performance. This allows selecting more energy effi-
cient frequency and voltage settings by applying Dynamic Voltage and Frequency Scaling
(DVFS). Debug and trace features are available on multiple different Cortex-M CPUs.
This thesis evaluates the debug and trace features as a resource for assessing task prop-
erties. A feedback mechanism is designed and implemented that uses the trace features
without dedicated hardware debug probes. 69 different Bristol/Embecosm Embedded
Benchmark Suite (BEEBS) tasks are selected to measure task properties with the task
characterization model and to measure the energy efficiency at different hardware config-
urations. Lastly, the measured task properties are evaluated by their ability to sense the
performance utilization by the use of energy measurements. The task characterization
model detects whether tasks have a high flash, low RAM or special peripheral access.
It can also track the number of cycles the CPU is sleeping or how many instructions
are executed for a specific task. A threshold technique that uses the task property cy-
cles per instruction selects the most energy efficient or a more energy efficient frequency
setting for 78.7% of all processing tasks. Thereby, the task property only needs to be
traced at a single CPU frequency. The BEEBS tasks use up to 35% less energy with
30% longer execution time by reducing the CPU frequency. Tracing the task property
instructions executed additionally increases the power consumption of BEEBS tasks by
6.32% to 8.01%, but tracing does not always need to be active.
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Kurzzusammenfassung

Nutzt eine Software die Leistung der CPU nicht vollständig, so wird Energie verschwen-
det. Ziel dieser Thesis ist es, das Zuweisen von Task-Eigenschaften während der Lauf-
zeit zu optimieren, sodass die Nutzung der CPU-Leistung erkannt wird. Dabei kön-
nen mit Dynamic Voltage and Frequency Scaling (DVFS) energieeffizientere Frequenz-
und Spannungseinstellungen ausgewählt werden. Auf mehreren Cortex-M CPUs sind
“debug and trace features” vorhanden. Letztere werden in dieser Arbeit evaluiert, um
Task-Eigenschaften zu messen. Es wird ein Feedback-Mechanismus entworfen und imple-
mentiert, der die “trace features” ohne dedizierte Debug-Adapter nutzt. 69 verschiedene
Bristol/Embecosm Embedded Benchmark Suite (BEEBS) Tasks werden ausgewählt, um
Task-Eigenschaften sowie die Energieeffizienz mit verschiedenen Hardwareeinstellungen
zu messen. Zuletzt wird unter der Hinzunahme von Energiemessungen evaluiert, ob
durch die gemessenen Task-Eigenschaften die Nutzung der CPU-Leistung erkennbar ist.
Das Modell zur Task-Charakterisierung zeigt an, ob Tasks einen hohen Flash, eine nied-
rigen RAM oder Peripherie-Zugriff besitzen. Es kann außerdem detektieren, für wie viele
Zyklen eine CPU schläft oder wie viele Instruktionen für einen Task ausgeführt werden.
Mit der Task-Eigenschaft “Zyklen pro Instruktionen” können für 78,7 % aller Tasks die
effizienteste oder eine effizientere Frequenzeinstellung erkannt werden. Hierbei muss die
Task-Eigenschaft nur bei einer einzigen Frequenzeinstellung gemessen werden. Durch
Reduzierung der CPU-Frequenz nutzen einige BEEBs Tasks bis zu 35 % weniger Energie
bei nur 30 % längerer Laufzeit. Der Verbrauch der BEEBS Tasks wird beim Messen der
ausgeführten Instruktionen um 6,32 % bis 8,01 % zusätzlich erhöht, doch das Messen der
Task-Eigenschaften muss nicht durchgehend aktiv sein.

iv



Contents

List of Figures ix

List of Tables xv

Abbreviations xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Related Work 4
2.1 Source and Composition of Energy Consumption . . . . . . . . . . . . . . 4

2.1.1 CMOS Transistor Structure and Behavior . . . . . . . . . . . . . . 4
2.1.2 Propagation Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Static Power Consumption . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Dynamic Power Consumption . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Total Energy Consumption . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Types of Energy-Saving Techniques . . . . . . . . . . . . . . . . . . 9
2.2.2 DVFS Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Debug and Trace Features with Arm Cortex-M . . . . . . . . . . . . . . . 13
2.3.1 Common Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Debug Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Trace Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Scope of Thesis 16
3.1 Potential Performance-Controlling Approach . . . . . . . . . . . . . . . . . 16
3.2 Goals and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



Contents

4 Debug and Trace Feature Evaluation for Usability 19
4.1 Data Watchpoint and Trace unit (DWT) . . . . . . . . . . . . . . . . . . . 19

4.1.1 Profiling Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Embedded Trace Macrocell (ETM) . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Instrumentation Trace Macrocell (ITM) . . . . . . . . . . . . . . . . . . . 24
4.4 Trace Packet Path and Trace Port Interface Unit (TPIU) . . . . . . . . . 24
4.5 Summary of Feature Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Concept of Task Characterization Model 26
5.1 Accessibility Discussion of Trace Features . . . . . . . . . . . . . . . . . . 26

5.1.1 Register Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Deserialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Counting of Trace Packet Flanks . . . . . . . . . . . . . . . . . . . 28

5.2 Feedback Mechanism with Timer Counter . . . . . . . . . . . . . . . . . . 29
5.3 Concept of Software Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Spread of Concept Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Implementation of Task Characterization Model 35
6.1 Board Choice for Implementation . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Hardware Assembly on the Nucleo-L476RG . . . . . . . . . . . . . . . . . 36

6.2.1 Requirements for Access to Serial Wire Output (SWO) Line . . . . 36
6.2.2 Wiring for Feedback Mechanism . . . . . . . . . . . . . . . . . . . 37

6.3 Software Implementation of Trace Utility . . . . . . . . . . . . . . . . . . . 38
6.3.1 Memory Coverage with Comparators on STM32L476RGT6 . . . . 40
6.3.2 Peripheral Device Coverage with Comparators on STM32L476RGT6 41

6.4 Summary of Implementation constraints . . . . . . . . . . . . . . . . . . . 42

7 TPIU Configuration 43
7.1 TPIU encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 TPIU prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.1 TPIU Prescaler for ECP . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.2 TPIU Prescaler with DTP . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Flanks Per DTAOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



Contents

8 Methodology of Measurements 51
8.1 Measurement Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1.1 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.1.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.1.3 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.4 Verifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.1 Software Components . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.2 Experiment Procedure and Interaction . . . . . . . . . . . . . . . . 55
8.2.3 Time Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2.4 Power and Energy Measurements . . . . . . . . . . . . . . . . . . . 57

8.3 Selecting a Benchmark Suite for Embedded Devices . . . . . . . . . . . . . 59
8.3.1 SPEC CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3.2 MediaBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3.3 MiBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3.4 ERCBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3.5 BEEBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.4 Measurements and Data Processing . . . . . . . . . . . . . . . . . . . . . . 61
8.4.1 Frequency, Voltage and Flash Wait State (FWS) Configuration . . 61
8.4.2 Data Processing for Traced Task Properties . . . . . . . . . . . . . 63

9 Overhead of Task Characterization 65
9.1 Delay of ECP and DTAOP . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2 Overhead in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.3 Overhead in Power Consumption . . . . . . . . . . . . . . . . . . . . . . . 71

10 Evaluation of Tracing and Energy Results 79
10.1 Register, RAM or Flash intensive Workloads . . . . . . . . . . . . . . . . . 79
10.2 I/O Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3 Inactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.4 Application-focused Tasks with BEEBS . . . . . . . . . . . . . . . . . . . 90

10.4.1 Model-Independent Task Properties . . . . . . . . . . . . . . . . . 91
10.4.2 Tracing Inaccuracies . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.4.3 Tracing the Cycle Amount . . . . . . . . . . . . . . . . . . . . . . . 96
10.4.4 Tracing with Comparators . . . . . . . . . . . . . . . . . . . . . . . 100
10.4.5 Tracing with Profiling Counters . . . . . . . . . . . . . . . . . . . . 110

vii



Contents

10.4.6 Counter Combinations to Improve the Most Energy Efficient CPU
Frequency (MEECF) Selection . . . . . . . . . . . . . . . . . . . . 115

10.4.7 Cycle Tracings at Different CPU Frequencies . . . . . . . . . . . . 119
10.5 Tracing Overhead for Selected Task Properties in Practice . . . . . . . . . 125

10.5.1 Cycles Per Instruction . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.5.2 Cycles Saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.5.3 Flash Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11 Conclusion and Outlook 127
11.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 131

Glossary 139
Declaration of Autorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

viii



List of Figures

2.1 CMOS schematic, based on [1, sec. 5.2]. . . . . . . . . . . . . . . . . . . . 4
2.2 MOS transistor cross-section, based on [2]. . . . . . . . . . . . . . . . . . . 5
2.3 Behavior of a switching CMOS inverter, based on [1, sec. 5.2]. . . . . . . . 6
2.4 Overview of trace and debug connections in the MCU and the connection

to the host PC, based on [3, 4]. . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 High-level schematic of a potential performance-controlling approach. . . . 16

4.1 Format of an Event Counter Packet, based on [4, sec. D.3.1]. . . . . . . . 20
4.2 Format of a Data Trace Address Offset Packet (DTAOP), which is a type

of Data Trace Packets (DTPs). It is dependent on the comparator ID and
the offset of the matched address. Based on [4, sec. D.3.4]. . . . . . . . . . 22

4.3 Relation of the Microcontroller Profile of Version 7 of the Arm Architecture
(ARMv7-M) trace components and the path of different packet streams,
based on [4, sec. C1.7.1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Exemplary CPI overflow Event Counter Packet (ECP) packet represented
as a signal with flanks and the reading with a timer counter. . . . . . . . . 29

5.2 Existing connection of relevant trace components (blue) and additional
connection of components that enable the feedback of the trace packets
(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Procedure concept of tracing a task with a profiling counter. Exemplary
measuring the LSU counter is shown. . . . . . . . . . . . . . . . . . . . . . 31

5.4 Component diagram of software components for the task characterization
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 RIOT (2021.07 version) boards with Cortex-M processors that are po-
tentially suitable for task characterization model. Boards analyzed via
Kconfig via the cpu and boards directory. . . . . . . . . . . . . . . . . . . 34

ix



List of Figures

6.1 Debug component and connection overview with Serial Wire / JTAG De-
bug Port (SWJ-DP) zoomed in (left) for the STM32L476RGT6. Figure
based on [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Connection of pins with cables on the Nucleo-L476RG board to count
generated trace packets with the feedback mechanism. Figure based on [6]. 37

6.3 Class diagram of trace utility as designed in Figure 5.4. . . . . . . . . . . 39
6.4 RAM and flash memory address space in comparison to the sum of all

mask-able address ranges of the comparators on the STM32L476RGT6
MCU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 Comparison of CYCLE ECP signals between the Non Return to Zero
(NRZ) and Manchester encoding. The signals are measured with an oscil-
loscope (see Section 8.2.3) at a CPU frequency of 13 MHz and a configured
Trace Port Interface Unit (TPIU) prescaler of 2. . . . . . . . . . . . . . . . 44

7.2 Measured flanks of fixed number of generated CYCLE ECPs. Experiment
performed with different TPIU prescaler values and at a CPU frequency
of 53 and 80 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Measured Data Trace Address Offset Packet (DTAOP) flanks per iteration
of flash data access (left) vs theoretically generate-able DTAOP flanks
(right) at a CPU frequency of 80 MHz and different TPIU prescaler values. 48

7.4 Frequency of Flanks per Packet of DTAOPs across all available compara-
tors (0 to 3) and all available data address offset values (0x0 to 0xffff) at
a CPU frequency of 80 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1 Component diagram of the measurement setup. . . . . . . . . . . . . . . . 53
8.2 Sequence diagram of the interaction of different experiment setup compo-

nents. The interaction of benchmarking a task running on a microcon-
troller and measuring the current with the multimeter is shown. . . . . . . 55

8.3 Measured delay between two GPIO flanks dependent on their polarity and
number of GPIO used at different CPU frequencies. . . . . . . . . . . . . . 57

8.4 Connection of the Nucleo-L476RG board and the Digital Multimeter (DMM)
to measure the microcontroller current, Figure based on [7]. . . . . . . . . 58

8.5 Relation between Flash Wait State (FWS), CPU voltage and CPU fre-
quencies dependent on the configured Dynamic Voltage Scaling Policy
(DVS Policy) and enabled Dynamic Voltage Scaling (DVS). . . . . . . . . 62

x



List of Figures

9.1 Delay between the generation of different hardware source packets and
the arrival of the first packet flank at timer counter. Measured at different
CPU frequencies and a TPIU prescaler value of 0. . . . . . . . . . . . . . . 66

9.2 Delay between the generation of CYCLE ECPs and the arrival of the first
flank at the timer counter. Measured at different CPU frequencies and
different TPIU prescaler values. . . . . . . . . . . . . . . . . . . . . . . . . 66

9.3 Packet length (delay between first and last flank) for trace packets (ECP(left),
DTAOP(right)). Measured at different TPIU prescaler values and different
CPU frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.4 Delay of Figure 9.3 combined with the inaccuracy of using General Purpose
Input/Outputs (GPIOs) pins for triggering (see Figure 8.3). . . . . . . . . 68

9.5 Overhead delay performing the tracing initialization steps. . . . . . . . . . 69
9.6 Overhead delay of tracing control functions dependent on trace method

(profiling counter, comparator). . . . . . . . . . . . . . . . . . . . . . . . . 70
9.7 Visualization of different trace configurations measured for power con-

sumption in Figure 9.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.8 Overhead power consumption of different trace configurations in propor-

tion to overhead power consumption of TRACE_NO_SWO, grouped by
different workloads and measured at a CPU frequency of 80 MHz. . . . . . 72

9.9 Overhead power consumption of tracing different task properties and cor-
responding traced counter flanks. The trace has been performed at a CPU
frequency of 80 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.10 Overhead power consumption of tracing flash data accesses at different
CPU frequencies, with enabled Flash Wait State Adaption and selected
Fast Flash DVS Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.11 Overhead power consumption of enabled tracing in proportion to the power
consumption of workloads without enabling tracing. Illustrated with dif-
ferent workloads and CPU frequencies. Measured with Flash Wait State
Adaption has been enabled and the Fast Flash DVS Policy has been selected. 77

10.1 Normalized profiling counter results measured with tasks of different mem-
ory access types and math operations. The measurements were performed
at a CPU frequency of 80MHz. . . . . . . . . . . . . . . . . . . . . . . . . 80

10.2 Normalized flash/ Random-Access Memory (RAM) data access measured
for tasks with different memory access types and math operation types.
The task properties are measured at a CPU frequency of 80MHz. . . . . . 81

xi



List of Figures

10.3 Profiling counter and cycle trace results of tasks performing ADD oper-
ation with different memory access types. The measurements were per-
formed at different CPU frequencies, with enabled Flash Wait State Adap-
tion and Fast Flash DVS Policy. . . . . . . . . . . . . . . . . . . . . . . . 82

10.4 Energy consumption at different CPU frequencies in proportion to the
energy consumption at 80MHz. The proportion results are grouped by
the math operation type and memory access type, and separated by the
DVS Policy. The energy consumption is measured with enabled FWSA
and DVS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10.5 Trace results for the SPI intensive workload executed at different Serial
Peripheral Interface (SPI) frequencies and CPU frequencies. The task
properties are measured with enabled Flash Wait State Adaption and Fast
Flash DVS Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.6 RAM/flash data access per cycle measured with the SPI workload. The
results are grouped by SPI frequency and CPU frequency. The task prop-
erties are traced with enabled FWS and Fast Flash DVS Policy. . . . . . . 87

10.7 Energy consumption at different CPU frequencies in proportion to the
energy consumption at 80 MHz measured with the SPI workload. The
proportion results are grouped by the DVS Policy and the selected SPI
frequency. The energy consumption is measured with enabled FWSA and
DVS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.8 Peripheral data accesses per cycle of the SPI intensive workload. The data
accesses are measured with DAM, as seen in Section 6.3.2. . . . . . . . . . 89

10.9 SLEEP intensive workload properties measured at different CPU frequen-
cies and different DVS Policy. . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.10Execution time per iteration at a CPU frequency of 80 MHz. The y-axis
is shown in logarithmic scale and the tasks are sorted by the highest value. 91

10.11Average power consumption at different CPU frequencies. Grouped by
CPU frequency and the DVS Policy. The power consumption was mea-
sured with enabled Flash Wait State Adaption. The tasks are sorted by
the highest power consumption at 80MHz. . . . . . . . . . . . . . . . . . . 92

10.12Energy consumption at different CPU frequencies and different DVS Policy
in proportion to energy consumption at 80 MHz. The energy was measured
with enabled Flash Wait State Adaption and DVS. The tasks are first
sorted by the biggest energy consumption saving and secondly by the
biggest energy consumption increase. . . . . . . . . . . . . . . . . . . . . . 93

xii



List of Figures

10.13Execution time increase of different CPU frequency to 80 MHz. The exe-
cution time has been measured with enabled Flash Wait State Adaption
and different DVS Policys (upper/lower figure). The tasks are sorted by
the task order of energy saving potential as seen in Figure 10.12. . . . . . 94

10.14Standard deviation of measured counters in proportion to mean of the
measured counters that is calculated with ten repetitions. The proportion
is grouped by the counter type and the CPU frequency. The tasks are
sorted by the task order of energy saving potential as seen in Figure 10.12. 96

10.15Cycle count at different CPU frequencies in proportion to the cycle count
at 80 MHz. The measurements were performed with enabled Flash Wait
State Adaption and the FAST FLASH DVS Policy. The tasks are sorted
by the task order of energy saving potential as seen in Figure 10.12. . . . . 97

10.16Cycle count at different CPU frequencies in proportion cycle count at 80
MHz. The cycles were measured with disabled Flash Wait State Adaption
and configured FAST FLASH DVS Policy. The tasks are sorted by the
task order of energy saving potential as seen in Figure 10.12. . . . . . . . . 98

10.17Energy consumption at different CPU frequencies in proportion to energy
consumption at 80 MHz. The measurements were performed with disabled
Flash Wait State Adaption, different DVS Policys and enabled DVS. The
tasks are sorted by the task order of energy saving potential as seen in
Figure 10.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.18Memory accesses per cycle measured at a CPU frequency of 80 MHz. The
tasks are sorted by the task order of energy saving potential as seen in
Figure 10.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.19Difference of normalized comparator counter results (13MHz - 80MHz)
with enabled FAST FLASH DVS Policy and enabled Flash Wait State
Adaption (FWSA). The tasks are sorted by the task order of energy saving
potential as seen in Figure 10.12. . . . . . . . . . . . . . . . . . . . . . . . 103

10.20Comparison between the count of saved cycles at 13MHz with different
flash cache states and the normalized flash access at an CPU frequency of
80 MHz. The tasks are sorted by the task order of energy saving potential
as seen in Figure 10.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.21Amount of instructions per task assembler file. The tasks are sorted by
the task order of energy saving potential as seen in Figure 10.12. . . . . . 107

xiii



List of Figures

10.22Amount of float and double operation instructions per task assembler file.
The tasks are sorted by the task order of energy saving potential as seen
in Figure 10.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.23Energy consumption at different CPU frequencies in proportion to the
energy consumption at 80MHz measured with the REG task of Section
10.1, but with float and double variables. The plot is grouped by the math
operation and used variable types. The data was measured with enabled
FWSA and Fast Flash DVS Policy. . . . . . . . . . . . . . . . . . . . . . . 109

10.24LSU, FOLD and CPI profiling counter in proportion to cycles. Measured
at a CPU frequency of 80 MHz. The tasks are sorted by the task order of
energy saving potential as seen in Figure 10.12. . . . . . . . . . . . . . . . 111

10.25NCC of Equation 10.1 at a CPU Frequency of 80 MHz. The tasks are
sorted by the task order of energy saving potential as seen in Figure 10.12. 116

10.26LSU and CPI counters in proportion to cycles for tasks with lower counters
than 0.2. Measured at a CPU frequency of 80 MHz and The tasks are
sorted by the task order of energy saving potential as seen in Figure 10.12. 117

10.27Cycles in proportion to the calculated instruction count (see Equation 4.1)
at a CPU frequency of 80 MHz. The tasks are sorted by the task order of
energy saving potential as seen in Figure 10.12. . . . . . . . . . . . . . . . 118

10.28Calculated number of cycles per CPU frequency in proportion to the num-
ber of cycles at 80 MHz. The calculation is based on Equation 10.3 and
uses cycle measurements at 80 and 53 MHz. The tasks are sorted by the
task order of energy saving potential as seen in Figure 10.12. . . . . . . . . 121

10.29Average static power consumption per CPU frequency of all tasks of Figure
10.11 and extrapolated power consumption to a CPU frequency of 0 MHz. 122

10.30Calculated α · C factor at different CPU frequencies with Equation 10.5.
The tasks are sorted by the task order of energy saving potential as seen
in Figure 10.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.31Estimated Energy Consumption as shown in Equation 10.4 with cycle
measurements of 80 and 13 MHz, grouped by CPU frequency. The tasks
are sorted by the task order of energy saving potential as seen in Figure
10.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiv



List of Tables

3.1 Thesis goals and requirements. . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Description of available profiling counters and CYC counter of the DWT,
based on [4, 8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Summary of debug and trace features as potential indicators of perfor-
mance utilization and constraints for usability at runtime. . . . . . . . . . 25

5.1 Supported trace features of Cortex-M processors. Table based on [3, table
9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Address space and the number of comparators needed to trace the data
access of different peripherals on the STM32L476RGT6 Microcontroller
Unit (MCU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Summary of tracing constraints with the Nucleo-L476RG board. . . . . . 42

7.1 Summary of ideal TPIU configuration in regard to transmission accuracy
and highest possible throughput. . . . . . . . . . . . . . . . . . . . . . . . 50

8.1 Properties to look for when searching for a suitable benchmark suite for
this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.2 Trace method properties to calculate the original counter reading from
measured flanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9.1 Summary of the task characterization overhead. . . . . . . . . . . . . . . . 78

10.1 Potential indicators for more energy efficient frequency settings. . . . . . . 84
10.2 Actual SPI frequency dependent on the CPU and selected SPI frequency. . 86
10.3 Linear correlation of all BEEBS tasks between the saved cycle proportion

of Figure 10.15 and the energy proportion of Figure 10.12 and grouped by
the CPU frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xv



List of Tables

10.4 Findings for selecting a higher/lower MEECF with Data Address Matching
(DAM) and the BEEBS tasks. . . . . . . . . . . . . . . . . . . . . . . . . . 110

10.5 Highest linear correlation between profiling counter results of Figure 10.24
and the saved cycles of Figure 10.15. . . . . . . . . . . . . . . . . . . . . . 111

10.6 Profiling counter findings with BEEBS tasks for selecting a higher/lower
MEECF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.7 Highest correlations between the cycles per instructions task property at
a CPU frequency of 80 MHz and the saved cycles of Figure 10.15, grouped
by the task subgroups of Figure 10.12. . . . . . . . . . . . . . . . . . . . . 119

xvi



Abbreviations

ARMv7-M Microcontroller Profile of Version 7 of the Arm Architecture.

ART Accelerator Adaptive Real-Time Memory Accelerator.

BEEBS Bristol/Embecosm Embedded Benchmark Suite.

CMOS Complementary Metal-Oxide-Semiconductor.

DAM Data Address Matching.

DMM Digital Multimeter.

DTAOP Data Trace Address Offset Packet.

DTP Data Trace Packet.

DVFS Dynamic Voltage and Frequency Scaling.

DVS Dynamic Voltage Scaling.

DVS Policy Dynamic Voltage Scaling Policy.

DWT Data Watchpoint and Trace unit.

ECP Event Counter Packet.

ETM Embedded Trace Macrocell.

FWS Flash Wait State.

FWSA Flash Wait State Adaption.

GPIO General Purpose Input/Output.

xvii



Abbreviations

IAM Instruction Address Matching.

IoT Internet of Things.

ITM Instrumentation Trace Macrocell.

MCU Microcontroller Unit.

MEECF Most Energy Efficient CPU Frequency.

NRZ Non Return to Zero.

PMU Performance Monitoring Unit.

RAM Random-Access Memory.

SPI Serial Peripheral Interface.

SWD Serial Wire Debug.

SWJ-DP Serial Wire / JTAG Debug Port.

SWO Serial Wire Output.

TPIU Trace Port Interface Unit.

xviii



1 Introduction

1.1 Motivation

The diversity in applications of embedded devices is high. Home automation, industrial
controls or ubiquitous urban sensing [9] are just some examples of these applications [10].
While the embedded devices differ in their availability of energy from permanently wired
devices to energy-harvesting devices [9], they share the same goal of maximizing energy
efficiency to be conformed to green computing or as it extends battery life [11].

As embedded systems often perform a few predefined tasks with specific requirements,
many embedded Internet of Things (IoT) operating systems only implement “the clock
configuration in static code that is only configurable before compilation [10]”. A static
clock frequency compromises energy efficiency [12] because a single clock configuration
can not be most energy efficient for every task [10]. A widely known technique to improve
this situation is to dynamically change the system clock frequency and voltage to trade-
off between energy and performance at runtime [13]. This technique is called Dynamic
Voltage and Frequency Scaling (DVFS) and can potentially save energy when the CPU
performance is not fully used [10].

This thesis focuses on finding resources that point to “mismatches between the perfor-
mance configuration of the hardware and the utilization by software [10]” at runtime to
potentially increase energy efficiency. Sensing the utilization at runtime is often achieved
by comparing the execution time of the idle process to the non-idle execution time [14] or
by using hardware performance counters that can be used to detect memory bottlenecks
[15]. While the idle metric is susceptible to tasks that only appear to require high per-
formance [10], hardware performance counters are not common on low-power embedded
devices.

The IoT operating system RIOT [16] offers the module ScaleClock [17] to enable dynamic
clock reconfiguration at runtime. At the time of this research the boards Nucleo-L476RG
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by STMicroelectronics [18] and the SLSTK3402A EFM32 Pearl Gecko PG12 by Silicon
Labs [19] were already ported to the ScaleClock implementation. Each Microcontroller
Unit (MCU) of both boards is based on the ARM Cortex-M4 CPU, which offers debug
components that trace performance statistics, data access or even instruction fetching [4,
sec. C1.1].

The question of this thesis is whether the features of the debug components can be
used as a resource to trace task properties at runtime and to which extent the traced
task properties indicate tasks which improve their energy efficiency by lowering the CPU
frequency. Hence, the debug and trace features are evaluated for usability, a feedback
mechanism is designed to get access to the trace features at runtime and the mechanism
is used to trace different task properties of 69 different tasks of the Bristol/Embecosm
Embedded Benchmark Suite (BEEBS)[20].

1.2 Outline

Chapter 2 shows the background of energy consumption for Complementary Metal-Oxide-
Semiconductor (CMOS) circuitry, the spectrum of devices that use Dynamic Voltage and
Frequency Scaling (DVFS) and an introduction to the Cortex-M debug and trace fea-
tures. Chapter 3 goes into detail about the goal of this thesis and which steps are taken
to achieve this goal. The first step is Chapter 4 where the trace and debug features of the
ARM Cortex-M4 CPU will be evaluated regarding their usability to trace task properties,
which potentially indicate the performance utilization. After that, Chapter 5 outlines
possible ways of enabling access to the trace features without the use of a dedicated de-
bug probe. A feedback mechanism is designed that has a low realization cost and is not
invasive in terms of CPU load. Chapter 6 goes into detail about the implementation of
the feedback mechanism in hardware on the Nucleo-L476RG, which is the chosen target
board. Furthermore, an implementation of the tracing utility in software is presented.
The TPIU configuration, which affects the tracing accuracy, will be examined in Chapter
7. Chapter 8 shows the measurement methodology regarding measurement setup, selec-
tion of a benchmark task suite and measurement data processing. In Chapter 9 the trace
features and the implementation of the feedback mechanism will be examined in terms
of time and energy overhead. The traced task properties are evaluated in Chapter 10 on
synthetic tasks and further on tasks of a more representative benchmark suite. Chapter
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11 summarizes the approach, highlights problems and gives further note on what could
be done to improve the designed task characterization model.
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2 Background and Related Work

2.1 Source and Composition of Energy Consumption

DVFS is said to be a trade-off between high performance and low power [13]. Thereby,
it alters the clock frequency (f) and the system voltage (V ). To understand why this
manipulation alters the performance and power consumption of a system like a microcon-
troller, it is useful to first zoom from this high-level understanding to the elements that
a circuit is made of. Thereby, the Complementary Metal-Oxide-Semiconductor (CMOS)
circuitry is only inspected schematically.

2.1.1 CMOS Transistor Structure and Behavior

“The electrical behavior of complex circuits [such as NAND, NOR, or XOR, which in
turn form the building blocks for processors,] can be almost completely derived by ex-
trapolating the results obtained for inverters [1, sec. 5.1]”.

Fig. 2.1 shows the schematic for a genuine CMOS inverter. The inverter consists of
two MOS transistors (a NMOS and a PMOS transistor) with complementary behavior
regarding the Vin level.

GND

CL

GND

VDD

Vin Vout


PMOS

NMOS

Figure 2.1: CMOS schematic, based on [1, sec. 5.2].
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When Vin is equal to 0, the PMOS transistor is on, while the NMOS transistor is off.
This enables a connection between Vout and the VDD, resulting in a steady-state high
output voltage. When Vin is equal to VDD, the inverter’s Vout is connected to ground
and therefore has a “steady-state value of 0[1, sec. 5.2]”.

The underlying MOS transistors are simple switches with an infinite resistance for |Vin| <
|VT | and a finite on-resistance for |Vin| > |VT | [1, sec.5.2].

drain Dsource S
body B

gate GW

L

Channel

Figure 2.2: MOS transistor cross-section, based on [2].

A MOS transistor consists of a source, drain, body and a gate. The source and the drain
are isolated from each other by the body, through which current ideally can not flow.
A current flow ID between the source and drain is controlled by the voltage at the gate
terminal relative to the source VGS [1, sec.3.3.1].

Because the gate is isolated from the rest, with more voltage an electrical field builds up,
influencing the material between the source and the drain. This electrical field acts as a
capacitor (CL) to its driving circuitry [2, sec.2].

The voltage VGS required to turn on the transistor is the threshold voltage VT . Once the
gate capacitor is fully charged to its desired state, no further current is ideally required
to maintain that state [2, sec. 2].

The threshold voltage VT which gives a transistor the switch-like behavior is dependent
on many material constants. In contrast to the switch-like behavior, the current ID

that flows between the drain and the source rises exponentially with the increase of
VGS . Unfortunately, with VGS < VT an unwanted current flow is present, which is the
subthreshold leakage that is part of the static power consumption [1, sec.3.3, 5.5.2].
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2.1.2 Propagation Delay

In normal operation in a circuitry, inverters are switched off or on many times in a short
timespan. The propagation delay is the duration it takes to switch an inverter. This
duration is determined by how long it takes to charge or discharge the load capacitance CL

of the NMOS and PMOS transistors through a resistor Req, which is voltage-dependent
[1, sec.5.4.2, sec.1].

Figure 2.3 shows the inverter switching states which consist of a low-to-high or a high-
to-low transition. The overall propagation delay of an inverter is defined as the average
of these two phases. The propagation delay rises with the reduction of VDD and has a
more significant increase starting below ≈ 2VT , which therefore should be avoided [1,
sec.5.4.2].

GND

CL

Vout


GND

Vdd

Rp

Vin = 0

(a) High-to-Low transition

GND

CL

Vout


GND

Vdd

Rn

Vin = VDD

(b) Low-to-High transition

Figure 2.3: Behavior of a switching CMOS inverter, based on [1, sec. 5.2].

As the propagation delay rises with the reduction of VDD and the clock frequency defines
how often an inverter is switched per second, the clock frequency has to be reduced if the
voltage is reduced. Otherwise, the time to charge/discharge the load capacitance will be
too short to guarantee the proper functioning of the inverter.
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2.1.3 Static Power Consumption

The static power dissipation is a result of various leakage modes of the MOS transistors,
with its highest component being conflicted with the subthreshold leakage [2, sec. 2].
Therefore, static power consumption is not dependent on the currently performing work-
load but is always present if the system is powered on and is dependent on technology
parameters [2, sec. 1].

The overall static power consumption of CMOS circuitry is modelled by the formula [2,
sec. 1]:

Pleak = VDD · Ileak ·N · kdesign (2.1)

With kdesign representing a device design factor, N being the number of transistors in the
design, V being the power supply voltage and Ileak representing the current that flows
between the supply rails in the absence of switching activity (subthreshold leakage). [2,
abstract]

2.1.4 Dynamic Power Consumption

The dynamic power dissipation mainly takes place when the transistor is switching. Each
switching cycle consists of a Low-to-High and a High-to-Low inverter transition. During
each inverter transition, the load capacitor CL gets charged or discharged, and its voltage
rises from 0 to VDD. Thereby, both transitions are dissipating energy and collectively
consume the amount of energy equal to CLV

2
DD [1, sec. 5.5.1, ].

Equation 2.2 formulates the dynamic power consumption which also considers a time
component on how often the inverter switching is happening:

Pdyn = V 2 · α · CL · f (2.2)

With f being the tunable system clock frequency, CL being the total load capacitance
of the circuitry, which is hardware dependent, and α being the switching activity, which
is task dependent. The switching activity is a factor taking into account that in the
actual circuit not all inverters are switching in each cycle. Therefore, α represents a
value between 0 and 1. [21, 2, 11, 12]
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2.1.5 Total Energy Consumption

When measuring the energy a system is consuming, the current that the system draws
from the power supply with a certain voltage is measured over a certain amount of time.

This energy consumption is the combination of static and dynamic power consumption
over a certain amount of time t, which can simplified be formulated as: [1, sec. 5.5.3,
sec. 5.7]

Ptotal = Pdyn + Pleak (2.3)

Etotal = t · Ptotal = t · Pdyn + t · Pleak (2.4)

Considering a system is performing a task at a certain clock frequency for a certain
amount of time, the number of cycles needed to perform that task can be formulated
by:

t =
CY C

f
(2.5)

with CY C being cycles [22].

Combining Equation 2.4 with Equation 2.5 forms the following:

Etotal = CY C · V 2 · α · CL +
CY C

f
· Pleak (2.6)

With the knowledge of how the total energy consumption of a system is composed of,
a better explanation can be made on why DVFS trades off performance for power and
energy reduction [23, sec. 1].

A reduction in frequency reduces dynamic power consumption, which results in a lower
total power consumption, but also more time is needed to perform a certain number of
cycles. An increase in clock frequency increases the total power consumption but reduces
the task duration with a constant number of cycles, meaning a higher performance.
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2.1.6 Energy Efficiency

Reducing the frequency reduces the dynamic power consumption but increases the exe-
cution time. Considering Equation 2.6, if the number of cycles stays the same and the
execution time increases, the proportion of the static energy consumption compared to
the total energy rises. Hence, if the same number of cycles at lower CPU frequencies is
needed, it is most energy efficient to configure the highest CPU frequency.

Only with a further voltage reduction at a low enough clock frequency [1, 24] the static
power can also be reduced, which might result in lower total energy consumption. [25,
sec. 1 Introduction] But the range available for voltage on modern MCUs is significantly
more limited than for frequency [10].

Furthermore, derived from Equation 2.6, a lower and more energy efficient frequency
might be possible if the number of cycles is reduced at lower clock frequencies, as this
reduces both dynamic and static energy consumption.

Therefore, precise knowledge of the task behavior is key to selecting the optimal frequency
[10] and the goal is to avoid or at minimum reduce needless cycles [2].

2.2 Related Work

To better understand the field of energy saving techniques and especially the field of
DVFS, a short overview is given.

2.2.1 Types of Energy-Saving Techniques

The potential of DVFS is fundamentally to reduce the electrical energy consumption
without significantly compromising performance at runtime [26]. Even though this thesis
concentrates on DVFS, the spectrum of CMOS techniques that also share the same basic
goal is wide and should be surveyed first. Mittal [11, sec. 3] categorizes the spectrum
of embedded energy consumption reduction techniques into 4 classes with one being
DVFS.

The second class are low power modes of device hardware. Different modes disable
or reduce the functionality of different parts of the system, for example through clock
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gating, disabling the clock for clock tree branches [27, sec. Background]. Thereby,
different modes save different amounts of energy but also take different time to return
to normal mode. In comparison to DVFS, a MCU can not perform work while a low
power mode disables the CPU and the performance in normal mode is not controllable
[10, sec. 4.1.1]. Power modes should not be seen as a competitor technology but could
be combined with DVFS [11, sec. 4.2].

The third class is characterized by techniques that exploit application behavior and apply
for specific components. The stated are mainly techniques for RAM/cache usage, like
RAM compression [11, sec. 4.3].

The last class is categorized as using special hardware like GPUs, FPGAs, ASICs that
are especially efficient for a specific application type. For example, matrix multiplication
is very efficient on GPUs in comparison to CPUs [11, sec. 4.4].

2.2.2 DVFS Spectrum

This thesis is focused on DVFS at the CPU-level, but more precisely about single core,
low-power embedded devices with no real-time constraints. First, an overview of the
DVFS research is given to strengthen the differentiation of this thesis to other DVFS
topics.

The range of platforms performing DVFS is wide. It ranges from multicore server systems
[28, 29] over general purpose systems [24, Introduction] to the embedded, low power
systems [30, 31, 25, 32, 33, 34, 35, 36].

On high performance platforms DVFS reduces power consumption due to increasing
energy and cooling costs or affected chip reliability with high die temperatures [37].
Research regarding embedded DVFS ranges from real-time constraints [30, 32, 21, 38,
39, 31, 40, 33] to energy harvesting and battery life constraints [41, 12, 42, 43, 9, 11].
The constraints heavily influence the behavior of applied algorithms, for example with
real-time constraints with lower frequency a higher execution time is to be expected,
which conflicts with task deadlines. For energy harvesting constraints the performance
is adjusted to the remaining battery life to keep the system functional [44].
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What are requirements of DVFS?

To perform the scaling of voltage hardware-wise, software programmable DC-DC con-
verters are needed [11]. Scaling frequency requires multipliers and dividers that can
manipulate the clock signal [10].

Frequency scaling is more complex, as MCUs are built and managed through a clock
tree. Manipulating certain components of the clock tree may require complex transitions
as many system components are dependent on a certain clock tree node. The complexity
further rises if the frequency has to be configurable at runtime [10].

Regarding different MCUs, clock trees can be very different and unique. The usage of
a more generic architecture is preferable like Intel’s SpeedStep for desktop or laptop
architectures [45], or in this thesis ScaleClock, the work of Rottleuthner et al. [10] for
constrained embedded devices.

What are limitations of DVFS?

The time overhead to perform voltage or frequency scaling is different. As described in
[10], the time overhead of voltage scaling is relatively static in the order of several µs
per 10mV. The time overhead of frequency scaling ranges from being instantaneous (e.g.,
when switching a mux) to multiple ms (e.g., cold-starting an oscillator).

Further, apart from energy and time overhead, the software enabling the clock tree
transition or voltage adjustments also incorporates ROM overhead. This is especially
the case when using more generic solutions, as it is the case with ScaleClock [10, sec.
2.4].

Where energy efficiency can be improved

The CPU performance can be limited by memory bandwidth rather than CPU speed.
In those cases, a frequency reduction will have a small effect on CPU performance, but
reduce energy consumption, since memory performance is not affected by a change in
CPU frequency. This phenomenon is called sub-linear performance slowdown, which can
be exploited by reducing the CPU performance when the CPU-boundedness of a code
region is low [23].
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Further, energy efficiency can be improved in situations where the CPU is idling for long
periods of time and a higher CPU performance is only required occasionally. This is
especially the case for IoT applications that have low duty cycle processing [35].

Rottleuthner et al. [10] state, a region of high CPU utilization is dominated by in-
structions requiring mostly access to CPU registers or Random-Access Memory (RAM).
Regions that are limited by slow peripherals, I/O access or other asynchronous interac-
tions have a lower CPU utilization.

More generally, energy is wasted whenever there is “a mismatch between the hardware
configuration of the CPU and the utilization of the software [10]”.

Indicators of Software Utilization

CPU utilization knowledge can be based on off-line source code profiling that quantifies
regions of CPU or memory activity coupled with compiler transformations to adjust the
CPU frequency at runtime [46, 22]. The need for source code and compiler support
makes these approaches less practical. As input data sets might change at runtime and
result in different program behavior, energy savings are limited [23].

Another group of approaches bases their evaluation on past program activity at runtime.
The calculation of the CPU utilization has been primary based on the ratio of processor
idle to busy time in a given time interval [14, 47, 48, 49, 25]. But this does not consider
tasks appearing to utilize the CPU that are in fact limited by operations that do not
require high performance. Rottleuthner et al. [10] therefore base their performance
utilization metric on the context switching count and average CPU-time measured at
different clock frequencies to also detect situations where the CPU might be bottlenecked
by low performance operations.

Further research bases their CPU utilization on Performance Monitoring Units (PMUs)
that are included in many modern processors [15, 50, 51, 38, 52]. PMUs count events
that occur within different components of the processor like cache hit/miss ratio [38] or
memory access counts [52]. They enable the knowledge on hardware resource usage and
are used to detect performance bottlenecks or detect memory related performance issues.
Beneficial to the usage of PMUs is that the reading of counters does not imply a high
performance overhead for the CPU [52].
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2.3 Debug and Trace Features with Arm Cortex-M

The IoT operating system RIOT [16] offers the module ScaleClock [17], which implements
a generic interface to alter the clock tree to change the system clock frequency and to
alter the system voltage.

At the time of writing this thesis, two boards were already supported to be used with
ScaleClock, the STM32 Nucleo-64 development board with STM32L476RGT6 MCU [18]
and the SLSTK3402A starter kit with the EFM32PG12B500F1024GL125 MCU [19].
Both MCUs are based on the ARM Cortex-M4 CPU, which is part of the Microcontroller
Profile of Version 7 of the Arm Architecture (ARMv7-M) [3]. Even though they do
not specify hardware counters that are intended to be used at runtime, the ARMv7-M
specifies non-invasive debug components that trace performance statistics, data access
or even instruction fetching [4, sec. C1.1].

2.3.1 Common Use

Usually the debug and trace features are intended to help debugging source code during
development. For that, the developer has to connect their PC to the board via a debug
adaptor. This enables communication with the debug and trace modules of the CPU
over JTAG or Serial Wire Debug (SWD), as seen in Figure 2.4.

ETM

DWT

ITM

FPB

SWO signal (1 pin)

TPIU

Processor Core

Internal Bus

Cortex-M3/M4 processor

Microcontroller

Bridge

C
on

ne
ct

or

Trace Port signals (5 pins)

Trace Data

Debug Access

Legend

USB

JTAG/

 SWD

Debug Probe

Figure 2.4: Overview of trace and debug connections in the MCU and the connection to
the host PC, based on [3, 4].
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The trace features are typically used to analyze code for coverage or performance and can
be visualized in several ways. One example is the Keil µVison debugger, which is part of
the Keil Microcontroller Development Kit [53]. There is a difference between debug and
trace features, which will be examined in the following sections [3].

2.3.2 Debug Features

A debug connection allows an external debugger to:

• access debug/ trace feature registers
• access core registers (only when the processor is halted)
• access the memory map (possible while the processor is running)
• add breakpoints via the Flash Patch and Breakpoint Unit (FPB)

The debug connection is handled by 2 different connection types. Those are the industry
standard JTAG with 4-5 pins and the newer SWD with only 2 required pins but which
handles all features of JTAG [3].

2.3.3 Trace Features

A “trace connection allows an external debugger to collect information about program
execution in real time (with a small delay) during program execution [3, sec. 6.3]”.

The information collected could be from [3]:

• Data Watchpoint and Trace unit (DWT) - enables data trace of selected
memory address ranges and profiling trace with counters that track the number of
cycles the CPU used in different operations

• Embedded Trace Macrocell (ETM) - enables to access the instruction execu-
tion history

• Instrumentation Trace Macrocell (ITM) - enables applications to send logging
or event words to the debugger (via the Trace Port Interface Unit (TPIU)) and
provides control of timestamp packets

To provide external visibility to the debugger for these 3 described modules, a MCU
implementation typically includes a TPIU. The trace connection of the TPIU can be
handled by 2 different connection types [4, sec. C1.10]:
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• Serial Wire Output (SWO) - provides asynchronous trace of DWT and ITM
(single pin)

• Trace Port - provides high bandwidth parallel trace port and supports trace of
DWT, ITM and ETM (multi data path pins, clock pin, optional control pin)

Nevertheless, first the processor family and more important the MCU implementation
determines whether certain debug or trace components are implemented [4]. Therefore,
this can only be determined by looking at the MCU specific reference manuals like for
the STM32L476RGT6 [5] or the EFM32PG12B500F1024GL125 [54].
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3 Scope of Thesis

3.1 Potential Performance-Controlling Approach

Figure 3.1 shows a schematic of a potential module that optimizes a system for energy
efficiency by controlling the CPU performance. This schematic has been designed to
give an outlook on what already might be possible on modern processors with dedicated
hardware performance counter. This thesis evaluates the usability and overhead of certain
debug components in terms of similar usage to hardware performance counter.

controlManager:

configuration calculation

initiateSensing:

measure software

utilization

Resources:

debug performance counter, 


...

Granularity:

task, interval

ScaleClock:

alter frequency and

voltage 

Application

Overhead:

Sensing & ScaleClock

overhead

Frequency:

once, continuous

performing 

duties

Energy Efficiency Optimization

Frequency

Voltage

hardware

Energy Efficiency

Configuration Space 

enables

Figure 3.1: High-level schematic of a potential performance-controlling approach.
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3 Scope of Thesis

Shown is a schematic of a module that enables optimization for energy efficiency by ap-
plying DVFS. The module can be enabled by an application and performs measurements
of the application state. The measurements are based on resources that are suitable
to assess the software utilization like, e.g., performance counters. The manager module
further has to decide at which granularity and frequency these measurements need to be
performed. With the gained knowledge, a calculation estimates the most energy efficient
voltage and frequency setting for the currently running tasks (blue dot). The calculation
should also consider the overhead of measuring the software utilization and the upcoming
time and energy overhead performing DVFS.

3.2 Goals and Requirements

The focus of this thesis is to design a way of measuring task properties with debug or
trace components at runtime with the aim of realizing a similar module to Figure 3.1 in
the future. Using the measured task properties as an indicator for performance utilization
will be evaluated. The evaluation should be based on an appropriate set of tasks. With
that in mind a list of requirements is formed as:
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3 Scope of Thesis

No. Description Importance
1 Evaluate Usability of Debug and Trace features to trace

task properties at runtime
High

1.1 Not invasive in terms of CPU load and program execution High
1.2 Retrieval of task properties without task customization or prior

task knowledge
High

1.3 Task properties potential usable as indicators of performance
utilization

High

2 Design and Implementation of a model that enables to
trace task properties with the debug and trace features

High

2.1 Preserve requirement 1.1 High
2.2 Simple deployment by other users without special hardware High
2.3 Assessment of overhead in time and energy High
2.4 Comprehensive and modular software API Medium

3 Select a set of tasks to evaluate the implemented model High
3.1 Task features that expose different energy consumption (e.g.,

via I/O tasks, flash or RAM memory access)
High

3.2 It should be representative for embedded use Medium

4 Evaluation of the traced task properties as indicators
for performance utilization

High

4.1 Which task behavior and energy consumption characteristics
are observable?

High

4.2 Which sensed task properties point to a lower Most Energy
Efficient CPU Frequency (MEECF) setting?

High

4.3 What is the overhead in terms of tracing steps for selected task
properties?

Medium

Table 3.1: Thesis goals and requirements.
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4 Debug and Trace Feature Evaluation for
Usability

In the following, the trace features of the ARMv7-M will be evaluated regarding their
usability to trace task properties at runtime. The evaluation adheres to the requirements
of goal 1. of Table 3.1. Thereby, the task properties should potentially be usable as
indicators of performance utilization.

Debug features like halting the processor via the Flash Patch and Breakpoint Unit (FPB)
will not be considered, as they stop the program execution (see 1.1 of Table 3.1). The
FPB also allows remapping specific instruction addresses from the code region of system
memory to addresses in the SRAM region [4, sec. C1.11]. This could potentially be
used to instrument applications to retrieve specific task properties, but this violates with
requirement 1.2 (see Table 3.1).

4.1 Data Watchpoint and Trace unit (DWT)

The Data Watchpoint and Trace unit (DWT) provides non-intrusive profiling counters.
The DWT comparators enable Data Address Matching (DAM) and Instruction Address
Matching (IAM) [4, C1.8]. In the following, these features will be examined in more
detail.

4.1.1 Profiling Counters

Table 4.1 shows the available profiling counters. Each counter tracks different CPU
behavior and is readable/ writable by software via memory-mapped registers. Except
the CYC counter, each counter has a size of 8 Bit [4, sec. C1.8.7].
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4 Debug and Trace Feature Evaluation for Usability

Counter Type Description Size (Bit)
CPI Counts additional cycles required to execute multi-

cycle instructions, except those recorded by LSU
counter, and counts any instruction fetch stalls.

8

EX Counts the total cycles spent in exception processing. 8
SLEEP Counts the total number of cycles that the processor

is sleeping.
8

LSU Increments on any additional cycles required to exe-
cute load or store instructions.

8

FOLD Increments on each instruction that takes 0 cycles. 8
CYC Increments on each processor clock cycle. 32

Table 4.1: Description of available profiling counters and CYC counter of the DWT,
based on [4, 8].

“The profiling counter size and the DWT event generation model are designed for non-
intrusive operation, where the DWT generates information for remote tracing, with-
out the system overhead of software reads and processing by the processor itself [4,
sec.C1.8.4]”. Thereby, if the counters are remotely traced, they preserve the requirement
1.1 of Table 3.1. Remote tracing is the case when using a debug probe as seen in Figure
2.4.

The counters can be individually enabled by the DWT_CTRL register. If a counter
reaches the value 256 it overflows to 0 and generates an Event Counter Packet (ECP).
This 2-Byte packet is part of a set of DWT hardware source packets and its format is
described in Figure 4.1 [4, sec.C1.8.4].

(0)
0 0 0 0 0 1 0 1

(0) CYC FOLD LSU SLEEP EXC CPI

01234567 Bit

Header

Payload

LSBMSB

Figure 4.1: Format of an Event Counter Packet, based on [4, sec. D.3.1].

Every overflowed counter can be represented in the payload by an appropriate flag set
to 1. The DWT can generate packets with multiple counter bits set to 1, indicating a
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4 Debug and Trace Feature Evaluation for Usability

combination of counters wrapping to zero, if multiple counters are active and overflow
at the same time. This reduces the number of packets that have to be generated [4, sec.
D.3.1].

Regarding the accuracy, the ARMV7-M Architecture Reference Manual describes that
“the counters provide approximately accurate performance count information, but the
architecture accepts a reasonable degree of inaccuracy in the counts [4, sec. C1.8.4]”.

Regarding the usability for performance utilization, the profiling counters are similar to
hardware performance counters as mentioned in Section 2.2.2 and therefore very inter-
esting to be evaluated with actual tasks. The SLEEP counter could be used to detect
applications that have a low duty cycle. The LSU counter might give insights on the
frequency of memory accesses, which might detect slow peripherals, as mentioned in
Section 2.2.2. Nonetheless, the downside is that they are hard to be accessed at run-
time by their memory-mapping, as a counter overflow happens every 256 counter cycles.
Even though the overflow generates a packet, these are not tracked anywhere else with
a further counter.

Executed Instructions

Implementations that do not have access to the Embedded Trace Macrocell (ETM) mod-
ule, where every instruction is reported in the exported stream, a combination of the
profiling counters can be used to calculate the total executed instructions [55]. This
combination is seen in Equation 4.1:

INSTRexecuted = CY CCNT−CPICNT−EXCNT−SLEEPCNT−LSUCNT+FOLDCNT

(4.1)

The calculated total executed instructions might also be used in combination with the
cycle counter to create the ratio cycles per instructions. This ratio and further dedicated
hardware counters have been used by Choi et al. [51] to create DVFS technique, which
saves up to 70% energy for memory bound programs on a XScale platform.
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4 Debug and Trace Feature Evaluation for Usability

4.1.2 Comparators

Dependent on the MCU implementation, a DWT can include up to 15 comparators. A
comparator is defined by three different registers (DWT_COMP, DWT_FUNCTION,
DWT_MASK ). The DWT_COMP register is used to compare the held address with
one of the following CPU activities [4, sec. C.1.8.1]:

• access to an instruction address
• access to data address
• access to a data value
• the cycle count value

For address range comparison the DWT_MASK register defines how many addresses the
comparator observes. The register DWT_FUNCTION defines the type of CPU activity
that is observed. It also defines which type of access (read, write, both) should be tracked
and which event or Data Trace Packet (DTP) is generated on a successful comparator
address match [4, sec. C.1.8.1]. A DTP is also part of the set of DWT hardware source
packets [4, sec. D.3].

0 1 CMPN[1:0] 1 1 1 0
OFFSET[7:0]

01234567 Bit

Header

Payload byte 0

LSBMSB

OFFSET[15:8] Payload byte 1

Figure 4.2: Format of a Data Trace Address Offset Packet (DTAOP), which is a type of
DTPs. It is dependent on the comparator ID and the offset of the matched
address. Based on [4, sec. D.3.4].

There is a difference between packet and event generation. Packets are forward from the
DWT to the Instrumentation Trace Macrocell (ITM), while CMPMATCH[N] events are
only forwarded to the ETM [4, sec. C.1.8.1]. When the CPU accesses a data structure
from memory and an address match occurs, either a CMPMATCH[N] event or a DTP
(see Figure 4.2) can be generated. When the CPU, for example, loads an instruction from
flash and an address match occurs, only the generation of an CMPMATCH[N] event is
permitted [4, table. C1-21]. The reason for this constraint has not been described in
the reference manuals but could be related to the higher frequency of instruction fetches
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4 Debug and Trace Feature Evaluation for Usability

compared to data accesses. While DTPs can be serialized and output via the SWO
line, packets generated by the ETM are only accessible via the trace port connection,
which offers higher bandwidth than the SWO line [4, sec. C1.3]. Therefore, boards
that prevent access to the trace port connection also lose the opportunity of tracing
Instruction Address Matching (IAM).

Regarding usability for performance utilization, comparing for a single data value or the
cycle count value is not considered to be useful. Data value comparison can only observe
one address per comparator and would predefine application knowledge (see Table 3.1).
The cycle count value is redundant to the already existing CYCCNT that has a high bit
size of 32 Bit and can be read directly by the software. A match for a data or instruction
address range might be useful to analyze the access to RAM, flash or peripherals via
their memory addresses. But the comparator matching only generates packets or events
that are not tracked by any counter, which means that this information is not directly
accessible by the microcontroller software.

4.2 Embedded Trace Macrocell (ETM)

As already mentioned, the ETM module accepts CMPMATCH[N] events as a trigger
input. Thereby, it enables to trace IAM and more advanced address matching filtering
[56, sec. 2.6].

Cortex-M4 CoreSight ETM implementations [57] only accept input from the DWT com-
parators, other specifications include their own comparators that also trace data ad-
dresses. The ETM can also include sequencers to enable more complex multi-stage
trigger schemes [56, sec. 2.2.3]. Packets transmitted by the ETM are only put out over
the parallel trace port of the TPIU [4, sec. C1.3].

As the ETM enables to match against access for a range of instruction addresses, it
might be useful to detect memory bottlenecks of the flash memory. Unfortunately, the
IAM is not coupled with any counter to be read by the software but needs even stricter
requirements for the TPIU to sent packets to a debug probe.
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4 Debug and Trace Feature Evaluation for Usability

4.3 Instrumentation Trace Macrocell (ITM)

The ITM can on one side be used as a memory-mapped register interface to enable
application logging to a trace sink, like the TPIU. Furthermore, it controls the generation
of timestamps or synchronization packets and merges them with events of other trace
components into a single trace stream [4, sec. C1.7.1] (see Figure 4.3).

Regarding usability for performance utilization, the application logging could be useful
to signal the start of certain application parts. For example, application parts that are
known to not fully use the CPU performance like data persisting via slow peripherals.
Unfortunately, the generated packets are not tracked by any counter and are only sent to
the TPIU for remote tracing use. Furthermore, the application logging requires inserting
certain commands into the application code to write to the ITM registers, which conflicts
with the requirement 1.2 of Table 3.1.

4.4 Trace Packet Path and Trace Port Interface Unit
(TPIU)

Figure 4.3 shows the relation and packet path between the trace feature components.

Embedded Trace Macrocell

(ETM)

Data Watchpoint and Trace unit

(DWT)

Instrumentation Trace Macrocell

(ITM)

Trace Port Interface Unit

(TPIU)

Serial Wire

Synchronous parallel

ECP + DTAOP

SynchronizationTimestamps

CMPMATCH[N]

Figure 4.3: Relation of the ARMv7-M trace components and the path of different packet
streams, based on [4, sec. C1.7.1].

The DWT sends a trace packet in the case of an overflow of a profiling counter (ECP) or a
comparator data address match (DTAOP) to the ITM which in turn can send packets to
any suitable trace sink. The ITM merges packets from the ITM (local/ global timestamp
packets or synchronization packets) and DWT (source packets) and forwards them to
the TPIU as a single data stream. The TPIU merges this data stream with the data

24



4 Debug and Trace Feature Evaluation for Usability

from the ETM (if the ETM is enabled) and provides external visibility through a trace
interface connection (see 2.3.2). An asynchronous SWO or synchronous parallel trace
port is provided [4, sec. C1.7]. An output path for the packet stream from the ITM is
minimally supported by the TPIU support for the ARMv7-M [4, sec. C1.10].

4.5 Summary of Feature Evaluation

Table 4.2 shows a summary of the debug and trace features of the Arm Cortem-M4
processor and their usability as resource for obtaining characteristic task properties at
runtime (as described in the prior subsections):

Feature Potential usability as
indicator of perfor-
mance utilization

Constraint

FPB - Remapping & Break-
points

None halts the processor, needs
task specific address knowl-
edge

DWT Profiling Counters High 8 Bit per counter, except
CYCCNT

DWT Comparators - Data
Address Matching (DAM)

High Not directly accessible via
software

ITM - Application Logging Low Not directly accessible via
software

ETM - Instruction Address
Matching (IAM)

Medium Not directly accessible via
software

Table 4.2: Summary of debug and trace features as potential indicators of performance
utilization and constraints for usability at runtime.
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5 Concept of Task Characterization Model

The term task characterization model describes a component that dispenses task prop-
erties for a given task by tracing the task. It uses resources like, for example, cortex-M
trace features to trace task properties. The resources are made accessible with a feedback
mechanism of some kind, for example with a timer counter. Software defines the start-
and endpoint of a trace. The aim of the model is to capture task properties that indicate
the performance utilization of the traced task.

The term task characterization describes the process to trace a set of task properties for
a given task with the task characterization model.

The concept of the task characterization model in this thesis uses the Cortex-M trace
features as a resource and a timer counter as feedback mechanism. Thereby, with the
usage of the term task characterization model this specific model is meant.

5.1 Accessibility Discussion of Trace Features

In the following a handful of possible ways to get access to the profiling counters (see 4.1)
or comparator address matching at runtime by the firmware will be discussed. Thereby,
the realization cost and the level of invasiveness in terms of CPU load will be examined.

5.1.1 Register Polling

As it is possible to directly read the profiling counter registers, a trivial idea might be
to periodically check the count of each interesting profiling counter. This procedure has
a low realization cost but tracing a longer period of time without missing any counter
information means reading any profiling counter every 256 cycles continuously.
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5 Concept of Task Characterization Model

To implement this kind of behavior without instrumenting the application software di-
rectly would be achievable in two ways. First, by a concurrent thread that polls the
cycle count for n (n < 256) cycles and then reads the DWT profiling counter. Sec-
ondly, by a timer that is instrumented to generate an interrupt every n (n < 256) cycles,
which further triggers an Interrupt Service Routine (ISR) and checks the DWT registers.
Therefore, the realization is considerably small.

Regarding the level of invasiveness, this very frequent reading of the DWT registers by
polling or interrupts generates a very intrusive situation. In a system that has multi-cores
and uses polling, a single core would spend all of its execution time for a thread reading
the profiling registers but preserves the other cores from polling. Still, this approach vio-
lates with requirement 2.1 of Table 3.1 and the Cortex-M4 is only equipped with a single
core. The interrupt approach avoids polling, but the context-switch overhead, in terms
of pushing/popping registers, interferes heavily with the normal application execution.
Therefore, in both cases the non-invasive DWT property would be destroyed.

Furthermore, the CPU processing power is not only wasted by continuously polling or
plagued by the interrupt overhead, but the named approaches probably also skew the
measurements of the counters and affect the accuracy. This would disguise the actual
benefit of using the profiling counters. Lastly, this approach would only enable to use
the profiling performance counters. The access to comparator address matching would
still need to be enabled on an additional way.

5.1.2 Deserialization

Another approach would be to use the available generation of trace packets and to de-
serialize the packets in other ways than with a debug probe. This would enable to use
both the profiling counters and the generated packets of the comparators.

Similar to a debug probe, an external hardware shield could be designed, which deseri-
alizes the ECPs/DTP that are being output by the TPIU. It would further consist of
counters bigger than 8 Bit for each profiling counter/comparator matching. To access the
designed counters by the application, the external hardware would need to be accessible
via a serial communication interface like Serial Peripheral Interface (SPI).

A positive aspect of this approach is that the deserialization process is completely decou-
pled from the microcontroller CPU, preserving the non-invasiveness property. Further-
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5 Concept of Task Characterization Model

more, querying the profiling counter values via a peripheral communication interface is
probably less invasive than the Register Polling approach discussed above.

Without considering the time overhead generated by the deserialization and peripheral
communication, or the additional power consumption incurred by powering the external
shield, this approach has some significant limitations regarding realization cost. First of
all, this piece of hardware does not exist yet. Secondly, designing an external shield is
a huge effort for a potential low reward, considering the trace features of Section 4 are
not usable for performance utilization tracings. Before investing this effort, the usability
should be proved first.

Further, usability-wise after designing and producing this piece of hardware, an outside
user would need to buy or build extra hardware to potentially save energy for their
applications.

5.1.3 Counting of Trace Packet Flanks

While the deserialization approach has the benefit of translating all information hidden
in the encoded hardware source packets, the question has to be asked whether this is
actually necessary. As the event generation for each profiling counter is individually
configurable, and known by the firmware, just the presence of a single ECP/ DTP shows
whether an overflow or match has occurred.

Therefore, given the trace packet stream of the deserialization approach without the need
to actually translate the encoding of a packet, enables to simply forward the packets into
a unit that only counts the flanks of an analog hardware source packet.

Regarding the realization cost, on many boards this can be achieved via a peripheral
timer module that is configured as a counter with an external clock source. The external
clock source of the counter is a channel that is connected to a GPIO pin. With signals
arriving to the GPIO pin, the counter counts up or down when a rising or falling flank
is detected. In hardware, a cable needs to forward the output signal of the TPIU to a
GPIO pin of the timer counter. Software-wise, the firmware only has to keep track on
the enabled profiling counter, which then can be associated with the timer counter.

The downside of this approach is that an ECP can represent multiple counter overflows
at the same time. To count any type of trace feature requires enabling only this one
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counter type at a time and has the downside of exclusively using the DWT profiling
counters or the comparator matching.

Regarding the level of invasiveness, the only thing that affects the CPU operation is
the timer counter register read. This should only be necessary very infrequently when
choosing a timer with a bigger counter than 8 Bit. Gandraß et al. [58] performed a survey
for timer peripherals on MCUs. It covers 43 MCU device families, which are supported
by RIOT. Thereby, they identified that all platforms provide at least 16 Bit timers, 90%
of all platforms provide a counter width of 32 Bit. Furthermore, 92% of all timers can
be driven by one external clock source.

To conclude, as this approach should preserve the non-invasiveness of the CPU operation
and produces a low realization cost compared to the deserialization approach, it will be
realized in the following sections.

5.2 Feedback Mechanism with Timer Counter

While the trace packets are usually sent to a debug adapter to be viewed by dedicated
Desktop software tools, the approach is to simply count the outgoing ECPs/ DTPs packet
flanks by a timer counter and read the memory-mapped timer counter register with the
application firmware.

Figure 5.1 shows the basic idea of flank counting, as a packet is sent over the line as a
signal with rising and falling flanks.

Voltage V

time t

1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
LSB MSB LSB MSBECP Header ECP Payload

+1 +1 +1 Timer Counter: 3

Figure 5.1: Exemplary CPI overflow ECP packet represented as a signal with flanks and
the reading with a timer counter.
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To achieve this signal reading, the output of the TPIU, which is externally accessible by
a GPIO pin, simply needs to be connected to the input of a timer counter, as seen in
5.2.

Legend

ETM

DWT

ITM

FPB

TRACESWO


TPIU

Processor Core

Internal Bus

Cortex-M3/M4 processor

Microcontroller

JTAG/

 SWD

Bridge

C
on

ne
ct

or

Trace Port signals (5 pins)

Trace Data

Debug Access

Peripheral

32 Bit TIMER

Figure 5.2: Existing connection of relevant trace components (blue) and additional con-
nection of components that enable the feedback of the trace packets (green).

This feedback mechanism enables to access the profiling counters, Data Address Matching
(DAM) and Instruction Address Matching (IAM) features independent of the TPIU port
(trace port or SWO). The concept is applicable for many cortex-M processor (see Section
5.4). The presented mechanism might also be used with trace features of other processors
that were designed to be used with a debugger.

Size of Timer Counter

A profiling counter overflow event stands for a counter that was incremented 256 times.
The comparator matching approach does not have a granularity reduction but generates
a DTP every time an address match occurs.

Therefore, the timer counter size should preferably be bigger than 8 or 16 Bit. The bigger
size on one hand maximizes the timespan before the timer counter should be read. On
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the other hand, because the timer counter logic is as simply as reading the flanks of a
packet on the trace line, any ECP or DTP increments the timer counter by a number
that is similar to the packet byte size (see formats in Figure 4.1 and 4.2).

5.3 Concept of Software Trace

Software-wise a task or code section should be able to be measured with different profiling
counters or configured comparator address ranges. Prior to starting a trace, the trace
components (DWT, ITM, TPIU) should be enabled. To save energy, it should also be
possible to disable the trace components. Figure 5.3 shows the trace concept at an
exemplary sequence of a LSU trace.

time

Task

Trace
Components

& Timer
Counter


Initialization
Enable
LSU

Trace
Components

& Timer 

Counter


Deinitialization

...Reset
Timer
Counter

Read
Cycle

Counter

Disable
LSU

Read
Timer
Counter

Read
Cycle

Counter

Start Trace Stop Trace

Figure 5.3: Procedure concept of tracing a task with a profiling counter. Exemplary
measuring the LSU counter is shown.

This trace concept should be able to be accomplished with a user-friendly interface by a
single component.

Figure 5.4 shows the software components of the task characterization model conforming
to separation of concern.
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Peripheral:

DWT, ITM, TPIU

Peripheral:

TIMER

«Component»

Trace Utility

«HAL»

Timer Counter

«HAL»

ARM Debug Utility

Trace API

Figure 5.4: Component diagram of software components for the task characterization
model.

Trace Utility This component is concerned about offering an application-focused inter-
face to initialize/start/stop a task trace. Therefore, it needs access to the Arm Debug
Utility and the Timer Counter hardware abstraction layers.

Timer Counter This component abstracts the memory-mapped timer counter register
interface to comprehensive functions specifically for trace usage. Further, the focus on the
separation of concern enables to easily adjust the implementation to timers of different
boards without modifying other components.

ARM Debug Utility This component focuses on the abstraction of memory-mapped
debug unit registers of the DWT, ITM and TPIU. It is mainly responsible for the ini-
tialization of the packet generation and ensures the debug component collaboration.

5.4 Spread of Concept Use

Regarding wider usability of the task characterization model, Table 5.1 points out which
cortex-M CPUs also support the evaluated trace features of Section 4.
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PLATFORM
FEATURE\

Cortex-
M0/M1

Cortex-
M0+

Cortex-
M3/M4

Cortex-
M7

Cortex-
M23

Cortex-
M33

Architecture Armv6-
M

Armv6-
M

Armv7-
M/
Armv7E-
M

Armv7E-
M

Armv8-
M Base-
line

Armv8-
M Main-
line

Protocol of
trace connec-
tion

- - Trace
port/
Serial
Wire
Viewer

Trace
port/
Serial
Wire
Viewer

Trace
port/
Serial
Wire
Viewer

Trace
port/
Serial
Wire
Viewer

Profiling
Counter Trace
(using DWT)

- - Yes Yes - Yes

Selective Data
Trace (using
DWT)

- - Yes Yes - Yes

Instruction
Trace (using
ETM)

- - Yes Yes Yes Yes

DWT Com-
parators

Up to 2 Up to 2 Up to 4 Up to 4 Up to 4 Up to 4

Table 5.1: Supported trace features of Cortex-M processors. Table based on [3, table 9].

As shown by Table 5.1, the Cortex M3, M4, M7 and M33 support the DWT profiling
counters, data address matching (DAM) and the instruction address matching (IAM) by
the ETM module. Based on that, Figure 5.5 shows how many boards of RIOT use one
of the mentioned CPUs and can thereby potentially be instrumented to obtain access to
the trace features at runtime.

The data of Figure 5.5 has been collected by resolving the path from a board Kconfig
file in directory boards to the used CPU Kconfig file defined in directory cpu. It is shown
that the designed task characterization model can potentially be used by 49.23% of all
RIOT boards.
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M4F

M33

M3

M4 M7

Other
71

2

31
20 5

133

Not usable
Potentially usable

Figure 5.5: RIOT (2021.07 version) boards with Cortex-M processors that are potentially
suitable for task characterization model. Boards analyzed via Kconfig via the
cpu and boards directory.
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6 Implementation of Task
Characterization Model

6.1 Board Choice for Implementation

The choice of a board to implement the concept of Section 5 with, has been between
the Nucleo-L476RG [18] and the SLSTK3402A [19] board, as they are already ported to
the ScaleClock implementation. The Nucleo-L476RG board has been chosen, as it has
ARDUINO Uno V3 connectivity support [6], which makes extending the functionality
with specialized shields easy. It has been used by the ScaleClock paper for the networking
case study [10], which increases the research base for this board. Furthermore, the Nucleo
development board is six times cheaper to purchase than the SLSTK3402A.

This choice has been made at the beginning of this research, when only the profiling
counters as a resource for obtaining task properties were sighted. Using the DWT com-
parators to track the access to RAM or flash has been discovered late in the research pro-
cess. While the Nucleo-L476RG board is well suited for enabling the access to the DWT
profiling counters and the DAM with comparators, it is not suited to track IAM with the
DWT comparators. This limitation is caused by the package of the STM32L476RGT6
MCU, which does not provide access to the parallel trace port connection. But IAM
only allows to generate CMPMATCH[N] events, which are only sent to the ETM mod-
ule. The ETM only allows to output packets over the parallel trace port of the TPIU [4,
sec. C1.3].

Regarding future work, the SLSTK3402A board with the EFM32PG12B500F1024GL125
MCU provides the DWT and ETM trace features [54]. Furthermore, the package of the
MCU provides access to the trace connections SWO over the DBG_SWO alternate func-
tion and the parallel trace port connection over ETM_TD0 and ETM_TCLK alternate
functions [59].
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6.2 Hardware Assembly on the Nucleo-L476RG

6.2.1 Requirements for Access to SWO Line

To get access to the trace data by the TPIU block on the STM32L476RGT6 MCU, the
asynchronous SWO (here TRACESWO) port is used, which only requires a single line.
The use of the parallel trace port is not possible with the package of the MCU, but it
should also be possible to get access to trace data with MCUs that offer the trace port
connection.
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Figure 6.1: Debug component and connection overview with SWJ-DP zoomed in (left)
for the STM32L476RGT6. Figure based on [5].

Figure 6.1 shows the bus connections between the system and debug components. Fur-
ther, the component SWJ-DP is zoomed in. It should be noticed that there are two
TRACESWO ports shown (left and right). The right one is only accessible over the
trace port connection, which the LQFP64 package of the STM32L476RGT6 does not
provide [60, sec. 4 Pinouts and pin description].
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6 Implementation of Task Characterization Model

The left TRACESWO line is connected to the SWJ-DP and multiplexed with the JTDO
line. Therefore, the asynchronous trace can only be used with Serial Wire Debug Port
enabled and not JTAG Debug Port. By default, the JTAG Debug Port is active. If
the external debugger host wants to switch to Serial Wire Debug Port, it must provide
a dedicated JTAG sequence on the JTMS/SWDIO and JTCK/SWCLK lines. This
sequence can be seen at [5, sec. 48.3.1].

6.2.2 Wiring for Feedback Mechanism

Figure 6.2 shows the low hardware overhead to enable the feedback mechanism of reading
the flanks of debug trace packets with a timer counter. Thereby, only three cables and
two 1k resistors are needed.
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Figure 6.2: Connection of pins with cables on the Nucleo-L476RG board to count gener-
ated trace packets with the feedback mechanism. Figure based on [6].
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The Nucleo-L476RG has a MCU part and ST-Link part by default (see Figure 6.2). When
the ST-Link part is not cut, the SWD/JTAG pins are connected to the CN4 connector
(see red pins of Figure 6.2) [6].

The TRACESWO line, which is accessible via connector CN4 pin 6, is connected to
the GPIO pin PA15, which is input to the timer counter via GPIO alternate functions
[60]. The used wire should be as short as possible to reduce the resistance and parasitic
capacitance of the wire, which reduces the fault susceptibility of the connection for data
transfer at higher frequencies.

Usually an external debugger is needed to switch the debug port from JTAG mode to
SWD to get access to the TRACESWO line [5, sec. 48.3.1]. But this can be avoided by
sending the switch sequence over any synchronous bus interface, like for example SPI.
Using a SPI module for the short JTAG sequence might not be possible for certain boards
as they do not have a dedicated module or the module is are already occupied with other
sensors. Therefore, the synchronous communication can be emulated with GPIO pins
over bit-banging, which reduces the hardware requirements.

By connecting the GPIO pin PB14 to SWCLK/JTCK and GPIO pin PB13 to
SWDIO/JTMS, the SWJ-DP can be switched to SWD mode by sending the sequence [5,
sec. 48.3.1] at runtime via bit-banging. The two cable connections each have a resistor
of 1k ohms inserted as a current limiter. This is a safety precaution as the board might
switch each pin on both connection ends to mode GPIO_OUT at reboot, which would
create a short circuit without a resistor.

6.3 Software Implementation of Trace Utility

Figure 6.3 shows the class diagram of the trace utility.
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riot/drivers/armv7m_dbg_task_characterization

<<HAL>>

dbg_utils

+ dwt_toggle_cycle_cnt(enable: bool): void
+ dwt_toggle_counter_event_generation(mask: uint32_t, enable: bool): Void
+ dwt_stop_all_counter_events(void): void
+ dwt_reset_counter(mask: uint32_t): void
+ dwt_set_counter(mask: uint32_t, value: uint8_t): void
+ dwt_read_counter(mask: uint32_t): uint32_t
+ dwt_is_valid_event_mask(mask: uint32_t): int
+ dwt_cnt_index_to_mask(index: uint8_t): uint32_t
+ dwt_cnt_mask_to_string(mask: uint32_t, string: char*): void

+ dwt_set_comparator(comp_id: uint8_t, comp: uint32_t, mask: uint32_t, func: uint32_t)
+ dwt_comparator_matched(comp_id: uint8_t)
+ dwt_comparator_reset(comp_id: uint8_t)
+ dwt_comparator_reset_all(comp_id: uint8_t)

+ dwt_comp_manager_add_address(address: uint32_t, mask: uint32_t)
+ dwt_comp_manager_forget_address(address; uint32_t)

+ swo_dbgmcu_init(void): void
+ swo_dbgmcu_deinit(void): void
+ swo_tpiu_init(prescaler: uint16_t, encoding: uint32_t): void
+ swo_itm_init(ter_portmask: uint32_t): void
+ swo_itm_deinit(void): void
+ swo_dwt_init(void): void
+ swo_swdp_init(clk_pin: gpio_t, data_pin: gpio_t)

<<HAL>>

tim_cnt_utils

+ tim_cnt_gpio_init(timer_pin: gpio_t, timer_pin_af: gpio_af_t, pull_down: bool): void
+ tim_cnt_init(timer: TIM_TypeDef*, ccmr1_channel: uint8_t, smcr_ts: uint8_t): void
+ tim_cnt_deinit(timer: TIM_TypeDef*): void
+ tim_cnt_reset(timer: TIM_TypeDef*): void
+ tim_cnt_read(timer: TIM_TypeDef*): void

<<interface>>
swo_trace_utils

+ swo_trace_init(config: struct swo_trace_conf, switch_dp: bool): int

+ swo_trace_deinit(config: struct swo_trace_conf): int

+ swo_trace_start(config: struct swo_trace_conf, 
	 	 	        	trace_data: struct swo_trace_data*,
	 	 	 	 track_cycles: bool): void
+ swo_trace_stop(	config: struct swo_trace_conf, 
	 	 	 	 trace_data: struct swo_trace_data*,
	 	 	 	 track_cycles: bool): int

+ swo_trace_comp_start( 	 config: struct swo_trace_conf, 
	 	 	 	 trace_data: struct swo_trace_data*,
	 	 	 	 track_cycles: bool,
	 	 	 	 comp_config: struct swo_trace_comp_config): void
+ swo_trace_comp_stop(	config: struct swo_trace_conf, 
	 	 	 	 trace_data: struct swo_trace_data*,
	 	 	 	 track_cycles: bool): int

+ swo_trace_calc_normalized_cnt(	 trace_data: struct swo_trace_data, 
	 	 	 	 	 	 	 	 is_dwt_cnt: bool): uint32_t

Use

Use

<<ENUM>>
swo_trace_data

+ cnt_mask: uint32_t
+ cnt_stop: uint32_t
+ reg_stop: uint32_t
+ tim_diff: uint32_t
+ cyc_diff: uint32_t

<<ENUM>>
swo_trace_conf

+ tim_cnt_dev: struct timer_counter_conf
+ tpiu_swo_dev: struct tpiu_swo_conf
+ swdp_switch_dev: struct swdp_switch_conf
+ trace_time_calculation_type: uint8_t

<<ENUM>>
swdp_switch_bitbang_conf

+ clk_pin: gpio_t
+ data_pin: gpio_t

<<ENUM>>
tpiu_swo_conf

+ swo_port_mask: uint8_t
+ swo_prescaler: uint16_t
+ swo_encoding: uint32_t

<<ENUM>>
timer_counter_conf

+ cnt_pin: gpio_t

+ cnt_pin_af: gpio_af_t
+ cnt_tim: TIM_TypeDef *
+ cnt_tim_ccmr1_channel: uint8_t
+ cnt_tim_smcr_ts: uint8_t

Use Use

Use Use Use

Figure 6.3: Class diagram of trace utility as designed in Figure 5.4.

In the following only the application-focused interface of the trace utility component,
depicted in Figure 5.4, will be described further:

swo_trace_init / swo_trace_deinit Initializes/Deinitializes the debug units for
packet generation and packet forwarding. It triggers switching the SWJ-DP and sets the
timer counter up to start listening for packet flanks. The init and the following functions
use a config struct as an input to simplify the usage.

swo_trace_start / swo_trace_stop Starts/Stops a trace using a selected perfor-
mance counter, tracks the timer counter value dependent on the given timer device at
the end of the trace and saves the trace data in the struct swo_trace_data.

swo_trace_start_comp / swo_trace_stop_comp Starts/Stops a trace using se-
lected comparator address range. It tracks the timer counter value of the given timer
device at the end of the trace and saves the trace data in the struct swo_trace_data.
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6 Implementation of Task Characterization Model

swo_trace_calc_normalized_cnt Normalizes the counter readings to compare task
properties between tasks with different trace lengths. The normalization will be explained
in detail in Section 8.4.2.

6.3.1 Memory Coverage with Comparators on STM32L476RGT6

As already mentioned in Section 4.1.2, the comparators can be used to trace access to
RAM or flash memory. Figure 6.4 visualizes the size of the flash and RAM memory in
comparison to the total address range that can be observed on a single trace with the
comparators of the STM32L476RGT6 MCU.
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memory...

SR
AM

2

SR
AM

1

...

0x0800 0000 0x080F FFFF

0x1000 0000 - 0x1000 7FFF

0x2000 0000 - 0x2001 7FFF

4 COMPs
[0x0 0000 -
0x1 FFFF]


Figure 6.4: RAM and flash memory address space in comparison to the sum of all mask-
able address ranges of the comparators on the STM32L476RGT6 MCU.

The total address range of the DWT comparators that can be observed on a single trace
depends on the maximum address mask size and the number of comparators. The number
of comparators and the comparator mask size is dependent on the implementation of the
MCU [4, sec. C1.8.1]. The number of comparator can be determined by the NUMCOMP
field of the DWT_CTRL register [4, sec. C1.8.7]. The comparator mask size can be
determined with the DWT_MASK register.

On the STM32L476RGT6 MCU four DWT comparators and a maximum mask size of 4
Bit per comparator are available. Together the comparators can compare a total address
range of 0x20000 addresses at a time (each 0x8000 addresses), which enables to easily
match against RAM usage in one trace. To cover the whole flash memory of 1MByte,
eight different traces are needed.
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The division into separate traces complicates the comparator tracing of the flash memory,
a MCU implementation with more than four comparators or a bigger mask size per
comparator could remedy these complications.

6.3.2 Peripheral Device Coverage with Comparators on
STM32L476RGT6

The comparators can also be used to track the access to peripherals via their memory-
mapping. This can be useful if many accesses to a certain peripheral are an indicator for
a performance bottleneck. Table 6.1 lists a few exemplary devices that can be traced,
compared with how many comparators are required to observe the complete address
range of the device type.

For example, to fully trace the access of all Low Power Timers (LPTIM) minimally two
comparators are needed. This is because the addresses mapped to the timer registers
are not next to each other and the DWT comparators can only cover an address space
with a start and an end point. More complex address matching with excluding areas
in-between two addresses is only possible with comparators of the module ETM [56, sec.
2.6].

In Section 10 the peripheral SPI will be traced.

Peripheral De-
vice

Address Space Required Com-
parators

Mask Size Per
Comparator

SPI 1 - 3 0x40013000-
0x400133FF,
0x40003800-
0x40003FFF

2 10, 11

LPTIM 1 - 2 0x40007C00-
0x40007FFF,
0x40009400-
0x400097FF

2 10, 10

Table 6.1: Address space and the number of comparators needed to trace the data access
of different peripherals on the STM32L476RGT6 MCU.
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6.4 Summary of Implementation constraints

The following table summarizes the tracing constraints of the implemented task charac-
terization model over the SWO output connection:

Trace
Method

Constraint Description

Profiling
counter

limited simultaneous tracing of
different profiling counters

When multiple profiling counters
are enabled to generate events, the
DWT can merge multiple events
into one packet.

Profiling
counter &
Compara-
tor

no deserialization Counting packet flanks makes dif-
ferent encoded packets in the
same data stream indistinguish-
able. Only one trace source (pro-
filing counters or comparators) at
a time should be configured.

Comparator total range of 0x20000 addresses
observable per trace

The STM32L476RGT6 is only
equipped with four comparators
and a maximum address mask-
ing range of 0x8000 addresses per
comparator

Table 6.2: Summary of tracing constraints with the Nucleo-L476RG board.
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7 TPIU Configuration

Before taking measurements of the overhead and before tracing tasks with the task
characterization model, the encoding of the packet transmission and the transmission
speed of the TPIU should be configured.

Ideally the TPIU should be configured so that the transmission has the properties of
a high accuracy (no packets are lost), low latency, high throughput, and a low energy
overhead (the fewer flanks, the better).

7.1 TPIU encoding

The SWO transmission encoding should be configured as standard UART (NRZ) mode
instead of the Manchester encoding. While both provide the same information of a single
data packet transmitted, the Manchester encoding produces packets with 3 times more
flanks (5 for NRZ and 15 for Manchester encoding with an ECP). A higher number of
flanks per packet increases energy consumption of the packet transmission, increases the
transmission time per packet (see Figure 7.1) and the timer counter is incremented more
quickly.

Figure 7.1 shows the difference in transmission time of a packet encoded with NRZ mode
(orange) and the same packet encoded with Manchester mode.
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Figure 7.1: Comparison of CYCLE ECP signals between the NRZ and Manchester en-
coding. The signals are measured with an oscilloscope (see Section 8.2.3) at
a CPU frequency of 13 MHz and a configured TPIU prescaler of 2.

7.2 TPIU prescaler

The TPIU prescaler divides the TRACECLKIN clock domain, which is the clock input
of the TPIU, and therefore defines the data output speed. The higher the prescaler value,
the slower the data is transmitted.

On the STM32L476RGT6 MCU, the TRACECLKIN connection is tied to the HCLK
clock domain [5, p. 1862], which also clocks the CPU. With enabled NRZ mode, a config-
ured prescaler value of 0 (TPI_ACPRregister) and a CPU frequency of 80 MHz, the time
between two neighboring flanks was measured at 25ns. This stands for a transmission
frequency of 40 MHz.

The choice of the prescaler configuration is on one hand constraint by the timer counter
ability to recognize flanks at high signal frequencies. On the other hand, a slower TPIU
output signal frequency might cause packet congestion in the TPIU with a high rate of
generated ECPs/DTAOPs by the DWT.

Regarding the timer capability, the datasheet of the STM32L476RGT6 MCU [60, sec.
6.3.27 Timer characteristics] defines the maximum detectable timer channel input fre-
quency as 40 MHz (fEXT ).
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The packet congestion is dependent on the selected trace method. Profiling counters
generate ECPs and comparators generate DTP. In the following, each trace method will
be examined separately:

7.2.1 TPIU Prescaler for ECP

Regarding the congestion of packets, the highest frequency of generated ECPs can be
calculated. An overflow of a single profiling counter is generated at the shortest timespan
of 256 cycles and an ECP has a length of 16 Bit. Therefore, at a CPU frequency of 80MHz
an overflow is generated at the highest frequency of 312.5 kHz and the TPIU would need
16 clock cycles to transmit a single ECP (see Equation 7.2). Meaning the TPIU prescaler
should be low enough so that the TPIU output frequency is not smaller than 5 MHz for
profiling counters. Therefore, with a prescaler of 0 (40MHz) or 1 (26MHz), a congestion
should not be a problem with ECPs.

fmaxECP =
1

CY CLES
· fCPU ·Bitspacket (7.1)

=
1

256
· 80 · 106 · 16 = 312.5kHz · 16Bit = 5 · 106Hz (7.2)

To prevent a possible source of error with task tracing, an experiment (see Figure 7.2)
was further performed to be certain about the minimal possible prescaler value for ECPs,
as the maximum detectable timer channel input frequency is 40 MHz. The experiment
involved configuring the DWT POSTCNT to a reset value of 4 and the SYNCTAP
register to increment the POSTCNT every 64 cycles. This effectively generates a CYCLE
ECPs every 256 cycles by the DWT. The ECP encoded with the cycle flag (see Figure
4.1) is representative for all profiling counters, as all profiling counter ECPs have the
same transmission time per packet and are generating 5 rising flanks per packet. To
compare the results at different TPIU prescaler values and different CPU frequencies
the CPU polls an incrementing counter for the same fixed number of counter values for
all measurements. The generated ECPs are lastly traced by the timer counter and the
resulting timer counter values can be evaluated.
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Figure 7.2: Measured flanks of fixed number of generated CYCLE ECPs. Experiment
performed with different TPIU prescaler values and at a CPU frequency of
53 and 80 MHz.

Figure 7.2 shows that the timer counter readings for the prescaler 0 configuration and at
a CPU frequency of 80 MHz fluctuate with a standard deviation of 297,52 flanks. This
behavior can not be caused by the conveying congesting caused by a slow transmission
speed, because the flank counter readings with the prescaler values of 1 or 2 show almost
no fluctuations. Here the total flank counter readings show a standard deviation of
maximum 1,18 flanks, which is negligible considering the value height of 172000 flanks.
With an oscilloscope it is visible that the packet flanks per packet are still clearly visible
at a prescaler value of 0 and a CPU frequency of 80MHz. The reason for the lost flanks
might have to do with the maximum timer input frequency of 40 MHz, which is present
at a TPIU prescaler value 0 and a CPU frequency of 80 MHz.

Therefore, the decision has to be made between a prescaler of 1 with a slower packet
transmission and potential lost packets or a prescaler value of 0 with faster packet trans-
mission and lost flanks per packet. As the measurements with lower prescaler values than
0 show no lost packet flanks and because in a real scenario a profiling counter overflows at
a higher timespan than 256 cycles, potential of lost packets can be excluded. Therefore,
the TPIU prescaler should minimally be configured to a value of 1 for profiling counters,
which prioritizes the transmission accuracy over the transmission speed.

7.2.2 TPIU Prescaler with DTP

Before defining the TPIU prescaler value for comparator address matching, a
COMP_FUNCTION has to be selected. As the TPIU prescaler choice depends on the

46



7 TPIU Configuration

packet size, a COMP_FUNCTION has been chosen that generates the smallest packets.
The smallest DTP is the DTAOP with a packet size of 24 Bit, as seen in the format
Figure 4.2.

Regarding the packet congestion, the maximum necessary frequency of a DTAOP genera-
tion can be calculated with the cycle count of a load/store instruction, which is minimally
2 (see [61, sec. 3.3]).

With the Equation 7.2, a RAM intensive task can generate DTAOP at a frequency of
40 MHz, if the CPU clocks at 80 MHz. This would require the transmission speed to be
minimally 960 MHz (24 Bit · 40MHz). Therefore, the output frequency of 40 MHz of the
TPIU with one data output line is definitely a bottleneck.

To fully catch all DTAOP packets with an available transmission frequency of 40 MHz,
a DTAOP should only be generated at a frequency of 1.6MHz (see Equation 7.3)

fDTAOPGEN =
fmaxTPIU

Bitspacket
=

40 ∗ 106

24
= 1.6MHz (7.3)

Choosing the most useful TPIU prescaler value for DTAOPs is conflicted with the talked
about inaccuracy of ECPs at a TPIU prescaler value of 0 and the bottleneck of the
transmission frequency. Therefore, a further experiment was performed.

For n iterations, the experiment repeats the access to a data array that was prior config-
ured to be matched by a single comparator. The looped data access provokes a situation
where every next instruction should produce a DTAOP. Concurrently to the data ac-
cess loop, the resulting packet flanks are counted by the timer counter to evaluate the
bottleneck at different TPIU prescaler values and different CPU frequencies. (see Figure
7.3).
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Figure 7.3: Measured DTAOP flanks per iteration of flash data access (left) vs theoreti-
cally generate-able DTAOP flanks (right) at a CPU frequency of 80 MHz and
different TPIU prescaler values.

Figure 7.3 shows that with decreasing TPIU prescaler value, higher number of DTAOP
are measured. In comparison to the theoretically calculated flanks, even at the lowest
prescaler value a bottleneck is present.

Highlighted by the different dotted prediction lines, which are extrapolated with the
measured flank count of the first measured DTAOP packet, a lost flank can still occur.

The congestion of the packets due to the bandwidth bottleneck makes a bigger difference
in total read packet flanks than the inaccuracy at a CPU frequency of 80 MHz. Therefore,
for the DTAOP a TPIU prescaler value of 0 should be used. Regarding the task property
measurements by counting the data access to RAM and flash, the RAM matching is
probably going to generate less useful results than flash data access matching. RAM can
be accessed faster than flash, therefore RAM usage probably creates a higher rate of data
access in the same amount of time.

7.3 Flanks Per DTAOP

With ECPs, the number of flanks per packet stay the same even with different profiling
counters. Therefore, it is fairly easy to calculate the exact cycles tracked by any profiling
counter based on the measured flanks (see Section 8.4.2).
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To calculate the exact number of data accesses by tracking the flank count of DTAOP is
more challenging. As seen in the format Figure 4.2, the flank number per packet changes
because it depends on the used comparator identification and the data address offset a
match occurred with.

Tracing the data access to RAM or flash results in different number of flanks per packet,
because all 4 comparators are used and a range of addresses will be observed (see Section
6.3.1). To at least get a sense of how many data access are made with a certain timer
counter value, the flanks per DTAOP can be approximated. To approximate the average
flanks per packet, an experiment has been performed that traced all packet combinations
dependent on the finite number of address offsets (0x0000 to 0xFFFF) and comparator
identifications (0 - 3).
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Figure 7.4: Frequency of Flanks per Packet of DTAOPs across all available comparators
(0 to 3) and all available data address offset values (0x0 to 0xffff) at a CPU
frequency of 80 MHz.

Figure 7.4 shows the frequencies of occurrence of flank counts per DTAOPs. The flanks
per packet differ as the experiment generated DTAOPs with different matched address
offsets (0x0000 to 0xFFFF) and different comparator identifications (0 - 3). The Figure
shows the frequencies of flank occurrences at a CPU frequency of 80 MHz but was also
performed with lower CPU frequencies that gave the same results.

Calculating the average of flanks per packet weighted by the flank occurrence across all
used comparators results in 8.254 flanks per DTAOP.
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Type ECP DTAOP
TPIU Encoding NRZ NRZ
Prescaler Value 1 0
Flanks per Packet 5 avg. 8.254

Table 7.1: Summary of ideal TPIU configuration in regard to transmission accuracy and
highest possible throughput.
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In this chapter, the measurement setup will be presented, the selection of the Bris-
tol/Embecosm Embedded Benchmark Suite (BEEBS) will be examined and the data
processing of traced task properties will be highlighted.

8.1 Measurement Principles

8.1.1 Reproducibility

When measuring metrics or testing certain behaviors of a system, the system should
ideally respond to a set of inputs with a set of outputs which will not change, even if the
process is repeated multiple times. To achieve this reproducibility, each measurement
should always start from a system state that has not been changed by prior measure-
ments.

To achieve this system behavior with a microcontroller, each measurement is mini-
mally started by a microcontroller reboot. While there are system properties that, when
changed, still persist after a system reboot, the optimal clean system state would be
established by a full power down. As the full power down fails on the lack of automation,
whenever a situation forms which can only start from a clean system state by a power
down, a note is given.

8.1.2 Soundness

In the subsequent chapters, certain properties of the tracing utility are analyzed by
measuring current and debug counter readings on the basis of running workloads that
demand the system in different ways. To be certain that these properties are sufficiently
captured, each workload is at least measured for 1 second and with an individual number
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of iterations. The keyword iteration is used to describe how many times a workload is
iterated for a single measurement.

As it is still possible that some trace recordings fail, e.g., when remote controlling an
oscilloscope or a Digital Multimeter (DMM), and to be sure that identified properties are
no outliers, a measurement is minimally repeated 10 times. Outliers that find their way
into data for evaluation can be pointed at and will be removed. Therefore, repetitions
is the keyword for how many times a measurement is repeated.

The combination of iterations and repetitions create the possibility of identifying some
statistical properties and support the soundness of the findings.

8.1.3 Automation

As the implications of the property Reproducibility induces a microcontroller reboot be-
fore each measurement and the property soundness induces to minimally run a measure-
ment for 1 second repeated at least 10 times, an accomplishment by manually performing
the data collection would increase the total benchmark time overhead and would make
the benchmarking process infeasible.

Therefore, a benchmark setup has been implemented to automate the data retrieval,
which also increases the ability to be performed in the same way by other developers.

8.1.4 Verifiability

The measured data is saved in an object format for persistence. This enables the data
to be verifiable and to be used by other researchers.

A further level of verifiability is to use an open-source set of tasks to measure the task
properties with. Therefore, a benchmark suite has been searched and ported to RIOT,
as seen in Section 8.3.

52



8 Methodology of Measurements

8.2 Measurement Setup

8.2.1 Software Components

Periperal:

Flash, Voltage, 


Freq_divider

«Component»

Task Benchmark Utility

«Component»

Workloads

«Component»

ScaleClock

«Component»

Digital Multimeter Control

«Component»

Experiment Utility

«Component»

Oszilloscope Control

HW: 

RigolDS1054Z

HW: 

DMM7510

Measurement_Utils/

Riot/

swo_trace_(de)init()

swo_trace_(start/stop)()


swo_calc_nomalized_cnt()

gclk_manager_enable_voltage_auto_scale()
gclk_manager_enable_flashws_auto_update()


gclk_manager_set_dvs_policy()

gclk_manager_scale_core_freq()


swo_bench(shell)

energy_bench(shell)

delay_bench(shell)


PC

Nucleo-L476RG
«Component»


Debug Task Charactization




configuration

«Component»

Beebs Pkginitialise_benchmark()

benchmark()
verify_benchmark()
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Figure 8.1: Component diagram of the measurement setup.

Figure 8.1 shows the cooperation of components which enable to create an automation
setup for benchmarking the energy/ task characterization or delay measurements. The
icons on the right and the separation line in the middle illustrate the execution location of
software components. The source code of the measurement setup and the implementation
of the task characterization model is available on GitHub [62].

Experiment Utility This is a python script, which is the point of contact for the user
to start an automated task characterization benchmark and energy or delay measure-
ment. It implements a shell argument interface with the python module argparse and its
behavior is controllable with the input of JSON files.

Dependent on the configured behavior, the script accesses a hardware abstraction layer
module for the digital multimeter DMM7510 (see Section 8.2.4) or the oscilloscope
RigolDS1054Z (see Section 8.2.3).
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The microcontroller is connected to the PC over the STLink USB connection, to com-
municate with the USART of the MCU. The script communicates with the software
component Task Benchmark Utility via the RIOT sys module Shell.

After a measurement procedure has been finished, the data is acquired from the micro-
controller, DMM or oscilloscope. The acquired data is made persistent to an object file
format of the python module pickle for further data analysis and data illustration.

Digital Multimeter Control This python module communicates with the Keithley 7.5
Digit Graphical Sampling Multimeter (Model DMM7510) over USBTMC commands. It
has already been implemented prior to this thesis work and could be used immediately.

Oscilloscope Control This python module communicates with the RigolDS1054Z os-
cilloscope over USBTMC by sending SCPI commands [63]. The module has been imple-
mented during the work of this thesis.

Task Benchmark Utility This component implements a shell argument interface. It is
the contact point to the automation script but can also be used by the user to quickly test
or perform workloads for measuring the task properties with the task characterization
model (swo_bench), energy consumption (energy_bench) or delay between two events
(delay_bench).

To signal the start/end of a workload for energy or delay measurements, GPIO pins are
triggered to communicate with the DMM or oscilloscope.

To start/stop the task characterization the access to the module de-
bug_task_characterization is needed (see Section 5 and 6).

To alter the system state regarding Flash Wait State Adaption, core voltage, CPU fre-
quency or Dynamic Voltage Scaling Policy (DVS Policy) the access to the module Scale-
Clock [10] is needed. Further, to alter the Flash Cache state, the peripheral registers of
the flash is used.

Any traced/measured workload is defined by the module workloads and accessible by
a simple uniform interface to execute the task with a certain number of iterations and
workload specific arguments. The module Workloads offers, among synthetic tasks, the
workloads of the Riot package Beebs (see Section 8.3).

54



8 Methodology of Measurements

8.2.2 Experiment Procedure and Interaction

Figure 8.2 illustrates an experiment sequence to measure energy consumption of a work-
load dependent on the given JSON experiment configuration.

for
combinations,


repetitions

:ExperimentUtility

experiment_start(json)

experiment_ 

combinations()

:TaskBenchingUtility

handle_dvfs()

handle_flash_cache()

iter = measure_iterations_

for_time(1000)

workload_loop(workload,iter)

:DMM

energy_bench(combination_string)

measure_current()

pickle.save(data))

initialize_listening()

log(workload_data)

gpio.trigger_start()

gpio.trigger_stop()

retrieve_data()

return data

Figure 8.2: Sequence diagram of the interaction of different experiment setup compo-
nents. The interaction of benchmarking a task running on a microcontroller
and measuring the current with the multimeter is shown.
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This is an example of the communication with the DMM. An experiment measuring the
delay would look similar, only the DMM would be replaced by an oscilloscope and the
oscilloscope would measure the delay. An experiment tracing a task property with the
task characterization model would look similar too. Only the DMM would be removed
completely and the GPIO trigger functions would be replaced by swo_trace_start or
swo_trace_stop functions, where the results are returned by the MCU.

8.2.3 Time Measurements

To accurately measure time between two events in software, the RigolDS1054Z oscillo-
scope [64] is used. It offers a maximum samplerate of 500MS s−1 for two input channels
and 1GS s−1 for one input channel.

Measuring the delay between events in software is made possible by mapping these events
to signals on GPIO pins. Therefore, the time difference between generating high or low
signals with GPIO pins can be accurately measured with an oscilloscope.

When using a GPIO trigger pin as a start point for time measurements, there is also
some delay between setting the GPIO by software and finally measuring a low or high
signal on the pin. This delay can be neglected when a time measurement uses the same
trigger pin method for the start and end point, as this adds the delay on both sides of
the measurement. An inaccuracy might exist where the measurement only starts or ends
with a single GPIO trigger pin. To expose this inaccuracy, a GPIO delay measurement
was performed as seen in Figure 8.3, which uses the same software trigger functions that
are also used for successive delay experiments. This measurement involves measuring
the time between two flanks (rising or falling) of one or two pins with the oscilloscope.
The triggering of the pins has been performed with successively executed gpio_set() or
gpio_clear() functions.

The samplerate of minimally 500MS s−1 with 2 input channels should suffice the experi-
ment needs as the minimal GPIO delay is 116ns, meaning with the smallest GPIO delay,
a worst-case deviation of 4% exists, which is acceptable.
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Figure 8.3: Measured delay between two GPIO flanks dependent on their polarity and
number of GPIO used at different CPU frequencies.

Each repetition of the GPIO delay measurement precedes a reboot of the microcontroller.
This is especially important when measuring the delay with GPIO pins where the first
access to memory-mapped registers involves loading addresses into the CPU or cache
which takes additional time. This fact is of magnitude as successive delay measurements
also only trigger the GPIO pin once or two times every measurement cycle and are
therefore affected by that loading delay as well.

8.2.4 Power and Energy Measurements

The metrics power and energy are based on current measurements. All current measure-
ments were performed with Keithley ’s 7.5 Digit Graphical Sampling Multimeter (Model
DMM7510) [7].

To measure the MCU current, the DMM probe cables are connected to the jumper
connection JP6 (IDD) [6] by replacing the prior jumper (see Figure 8.4). Internally
the DMM connects a precision-resistor to the shown front panel inputs and samples the
voltage that drops on the resistor. As the voltage and resistance of the precision-resistor
is known by the DMM, the current can easily be calculated with Ohm’s law: I = U

R .
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Figure 8.4: Connection of the Nucleo-L476RG board and the DMM to measure the mi-
crocontroller current, Figure based on [7].

The current is measured for the duration of a workload by signaling the measurement
start and end of the DMM via a GPIO pin that is triggered by the MCU. Further, the
current is sampled at a minimal rate of 10000 samples per second.

When the current is measured for all kinds of workload configurations, the power, which
is P = I ∗ V , and the energy, which is E = I · V · t, can be calculated. Thereby, the
current values relate to a static supply of 3.3V.

A power comparison will be used, for example, to identify the consumption overhead of
the tracing utility (see 9.3). Here the exact number of workload iterations or tracing
length is not important and an average of the traced power consumption is viewed at.

When trying to find the most energy efficient frequency setting for a specific workload
configuration, the metric of total energy is of interest. To correctly compare the different
energy consumption for one workload configuration, the workload should be performed
with the same number of iterations across different CPU frequencies.
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8.3 Selecting a Benchmark Suite for Embedded Devices

The premise for this section is to select a broad set of different tasks to evaluate the
task characterization model with. Thereby, creating not all tasks saves a lot of time
and energy, avoids creating unrealistic tasks and enables other researchers to more easily
verify the results presented in Section 10.

The selection for a suite is accompanied by the following requirements:

Property Description
Comprehensible
code base

This means among others things no debug messages with printf
for example

Open source Porting the benchmark suite as package to RIOT, a free and open
source license is preferable

Embedded use Represents a wide variety of embedded application areas
Variety of system
stressing proper-
ties

Has tasks with different RAM and Flash memory access, tasks
that provide different CPU loads or tasks that use I/O

Table 8.1: Properties to look for when searching for a suitable benchmark suite for this
thesis.

8.3.1 SPEC CPU

Widely used benchmark suites are the Standard Performance Evaluation Corporation
(SPEC) CPU Benchmarks [65, 66]. Unfortunately, they are designed for general-purpose
computing performance and are not designed for embedded devices [67].

8.3.2 MediaBench

MediaBench [68] and MediaBenchII [69] contain complete software applications for the
application areas of video, graphics, image compression, audio, speech and security.

Even though the application areas appear interesting, they are not designed for the
embedded / IoT area. Furthermore, source code is available on their website [69], but
an open-source license statement can not be found.
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8.3.3 MiBench

The MiBench suite [66], in the form of the repository MiBench2 [70], is a free and open-
source suite that divides the code base into six different areas of the embedded market.

Unfortunately, it uses file I/O and usability-wise the source code still consists of many
prints. The source code is not well documented and contains huge datasets, which makes
the the suite unusable for lower ROM/RAM systems.

8.3.4 ERCBench

ERCBench [67] is an open-source benchmark suite for embedded and reconfigurable com-
puting. It covers the application areas, audio processing, communications, cryptography,
and image and video processing. It not only offers software but also hardware benchmarks
for reconfigurable devices like FPGAs.

Unfortunately, source code for the package implementation analysis has not been found.

8.3.5 BEEBS

The Bristol/Embecosm Embedded Benchmark Suite (BEEBS) [20] is open-source, opti-
mized for embedded devices and contains a large set of workloads. The variety of tasks
evaluated mostly originate from other benchmark suites. The tasks are categorized by
the same application areas as the MiBench paper. The application areas Automotive,
Consumer, Network, Telecommunication and Security are covered.

In the paper [20], Pallister et al. select 10 different tasks justified for resulting in dif-
ferent energy consumption. Nonetheless, the paper appendix lists all benchmarks that
were evaluated to choose the set of 10 tasks from. The list structures the tasks by
their task properties targeted at evaluating energy consumption, fit in MCU ROM and
gives insights on the embedded applicability. The embedded applicability represents the
likelihood the task functionality would be used in real embedded systems. The task
properties that the group of 10 selected tasks differ at, and which also affects energy
consumption, are the usage of integer operations, usage of floating point operations, the
memory access intensity and the branching frequency. The paper tests the benchmarks
on different processors, with the Cortem-M3 being verified to compile and run with the
benchmarks.
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To conclude, this benchmark suite satisfies most of the targeted requirements. The
code base does not use debug messages and could be implemented as a RIOT package
with reasonable effort. I/O or peripherals are excluded from the benchmark tasks for
portability reasons, but a task will be created as a replacement, as seen in Section 10.2.
Even though the selected 10 tasks of the paper [20] have the highest suitability of their
used metrics, tracing the less suitable benchmarks with the task characterization model
increases the quality of a comprehensive evaluation (see Section 10.4).

8.4 Measurements and Data Processing

In Chapter 10 energy measurements at different frequencies of tasks are examined.
Thereby, changing the CPU frequency enables to also change the CPU voltage and Flash
Wait State (FWS). This relation is illustrated in Section 8.4.1.

Furthermore, Chapter 10 also tries to correlate certain energy measurements with task
properties traced with the task characterization model. For this correlation the trace
measurements are normalized, which is shown in Section 8.4.2.

8.4.1 Frequency, Voltage and Flash Wait State (FWS) Configuration

Chapter 10 evaluates measurements on the most energy efficient setting regarding CPU
frequency and choice of DVS Policy. Reducing the CPU frequency reduces the dynamic
power consumption, whereas a lower voltage reduces dynamic and static power consump-
tion. Many MCUs are equipped with an embedded flash memory peripheral for persistent
data storage, whose access latency is dependent on the configured CPU frequency and
voltage. As the CPU often runs at a higher frequency than the flash memory, the number
of Flash Wait State (FWS) must be correctly programmed to read valid data from flash
memory [5, sec. 3.3.3 Read access latency].

The voltage range for the STM32L476RGT6 MCU can be configured to two different
ranges. A high-performance range, where the main regulator provides a typical output
voltage of 1.2V and the system clock frequency can be configured to up to 80 MHz.
Secondly, a low-power range, where the main regulator provides a typical output voltage
of 1.0V and the system clock frequency can only be configured to up to 26 MHz [5, sec.
5.1.8 Dynamic voltage scaling management].
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The direction of dependency between voltage, frequency and FWS depends on the per-
spective. From the perspective of wanting to scale the CPU frequency, the lower the
frequency, the lower the FWS can be configured, and the more CPU cycles can be saved
when accessing the flash memory. On the other hand, the lower the CPU frequency,
the lower the voltage can be configured. When lowering the CPU frequencies, there are
configurations where only the voltage or the FWS can be minimized. This context is han-
dled by the selection of a Dynamic Voltage Scaling Policy (DVS Policy) of the ScaleClock
implementation [17]. The scaling policy Fast Flash prioritizes a FWS reduction when
lowering the frequency. The policy Low Voltage prioritizes a reduction of the voltage
range, if the CPU frequency is in the bounds of the lower voltage range.
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Figure 8.5: Relation between FWS, CPU voltage and CPU frequencies dependent on the
configured DVS Policy and enabled DVS.

Figure 8.5 visualizes the two DVS Policys in terms of FWS, CPU voltage and CPU
clock frequency. As the measurements of the following sections are performed at the
frequencies of 13 MHz, 26MHz, 40MHz, 53MHz and 80 MHz, the two policies only differ
at a CPU frequency of 13 MHz. To make use of the reduction of FWS when lowering
the CPU frequency, the ScaleClock functionality of Flash Wait State Adaption (FWSA)
has to be enabled. To make use of the reduction of voltage, the functionality of Dynamic
Voltage Scaling (DVS) has to be enabled.
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8.4.2 Data Processing for Traced Task Properties

Original Counter Reading

To be able to calculate the correct executed instructions (see Equation 4.1) with the
profiling counter results, the timer counter readings need to be processed as they only
represent hardware source packet flanks. As seen in Table 8.2 the profiling counters
overflow at a value of 256, meaning one ECP is equal to a cycle count of 256. A DTAOP
is generated per data access of the CPU, therefore a single DTAOP is equal to a single
data access.

With the knowledge of flanks per packet, a scaling factor can be formed that calculates
the original value (profiling counter cycles or data access) from the measured flanks
dependent on the trace method.

Trace Method Unit per Event Measured Flanks
per Packet

Scaling Factor

Profiling Counters 256 Cycles 5 (see Table 7.1) 256/5
Comparator Ad-
dress Matching

1 Data Access 8.25 (see Table 7.1) 1/8.25

Table 8.2: Trace method properties to calculate the original counter reading from mea-
sured flanks.

Counter Normalization

What do we want? We want to compare tasks by their task properties that are
traced with the task characterization model. Tasks need a different number of cycles
to be executed, therefore the absolute values of the traced flanks per task property also
depend on the number of cycles the trace lasted. The absolute tracing values need to
be normalized to compare the task properties independent of the tracing length. This
should enable to form sentences like, e.g., a task needs 20% of all tracing cycles to perform
load/store operations.

How should the data be processed? The absolute tracing measurements are not
only scaled to the original counter (see Table 8.2) but are also normalized by the number
of cycles a trace lasts.
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Normalizing only by the time a trace lasted would make comparing tracings at different
CPU frequencies difficult. A trace at different CPU frequencies, but with the same
number of cycles, would artificially normalize the results at lower CPU frequencies to
lower values because cycles take longer at lower frequencies.

Traced task properties are normalized as follows:

Pnormalized =
CNTRAW

fCPU · ttrace
=

CNTRAW

CY C
(8.1)

What does the normalized data represent? The trace results originate from two
different trace methods. The profiling counters represent cycles spent in different CPU
operations (except FOLD) and the comparator counters represent absolute data ac-
cesses.

Inserting the raw counter readings of the two different trace methods into Equation 8.1
produces results of different meaning. With the profiling counters representing cycles,
the normalization Equation 8.1 produces percentages and the normalized values should
be in the range of 0 to 1. For example, inserting LSU measurements into the equation
results in a percentage of load/store instruction cycles of total cycles.

The normalized DAM results represent data accesses per cycle. Therefore, the values do
not represent percentages. The maximum normalized comparator counter value could
not be calculated a priori as DAM generates packets with different flanks and as the
packet stream is bottlenecked by the bandwidth (as seen in Section 7.3). Based on
measurements conducted in Section 10, a range of values between 0 and 0.04 have been
observed. (as seen in Figure 10.18). The normalized DAM results are not scaled to a
range between 0 and 1 to keep the data processing uniform for both trace methods.
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This Chapter discloses the delay between the generation of hardware source packets
(ECP, DTAOP) and the recognition by the feedback mechanism. This delay is important
if the task characterization model should be used for live feedback of different tasks.
Secondly, this Chapter investigates the initialization duration of the tracing utility, which
is overhead in terms of CPU usage. Lastly, the energy overhead of tracing certain task
properties will be examined, as this reduces the energy savings when optimizing the
performance utilization.

9.1 Delay of ECP and DTAOP

The time between the generation of a ECP or DTAOP and afterwards the detection by
the timer counter is not zero. This delay is of importance considering the task charac-
terization model is intended to be used for live feedback during the execution of different
tasks. To correctly attribute a packet to the executed task, the delay should be known
prior. Therefore, an experiment was conducted to give a worst-case estimate on the delay
between an ECP/DTAOP generation and the full recognition by the timer counter.

The CPI and LSU overflow packets can’t be precisely triggered as they count additional
cycles for certain CPU instructions. The CYCLE counter on the other hand determin-
istically increments every cycle and can therefore be configured to trigger an event right
after enabling the event generation. Although the different profiling counters result in
different packet encoding, all packet signals should take the same route from the DWT
block to the final timer counter input channel. Further all packets have the same first
and last flanks on the line in common and have therefore the same transmission time.

As the comparator matching always triggers a DTAOP event, it is also possible to pre-
cisely generate a DTAOP when conducting the time measurement.
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The estimate methodology consists of three steps: First, setting the specific internal
profiling counter one counter increment (decrement for the cycle counter) before a counter
overflow occurs. Second, triggering a GPIO pin, at best one instruction prior to enabling
event generation, in order to measure the delay between the generation and the first
packet flank by the oscilloscope. And lastly, enabling the overflow event or triggering a
data address match.
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Figure 9.1: Delay between the generation of different hardware source packets and the
arrival of the first packet flank at timer counter. Measured at different CPU
frequencies and a TPIU prescaler value of 0.

Figure 9.1 shows that the cycle counter results in the smallest ECP delay, because it is
triggered right after triggering the GPIO pin. The CPI and LSU ECPs probably have
the same delay but are triggered later as they react only to specific CPU instructions.
The actual time between ECP generation and the first flank seen by the timer counter
is therefore best illustrated by the delay of the cycle counter packets.
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Figure 9.2: Delay between the generation of CYCLE ECPs and the arrival of the first
flank at the timer counter. Measured at different CPU frequencies and dif-
ferent TPIU prescaler values.
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Figure 9.2 shows that the delay between generation and arrival of the first flank of an ECP
is not affected by the TPIU prescaler setting. Figure 9.3 shows that the packet length
(delay between first and last flank) changes due to changing the TPIU prescaler value,
as this changes the output frequency. For the ECPs the red line should be considered,
as prescaler 1 has been proved to be the ideal configuration regarding accuracy. For the
DTAOP, the green dotted line should be considered, as prescaler 0 provides the ideal
configuration regarding most packets observed (see Table 7.1).
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Figure 9.3: Packet length (delay between first and last flank) for trace packets (ECP(left),
DTAOP(right)). Measured at different TPIU prescaler values and different
CPU frequencies.

The total ECP delay is therefore calculated by adding the data of figs. 9.2 and 9.3 grouped
by the TPIU prescaler and CPU frequency, and considering the GPIO delay of Figure
8.3 as a potential inaccuracy. The GPIO inaccuracy is given as a potential value that
the ECP delay might fluctuate with.
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Figure 9.4: Delay of Figure 9.3 combined with the inaccuracy of using GPIOs pins for
triggering (see Figure 8.3).

To put the ECP delay into perspective, a context switch at 80 MHz has been measured
to take around 2760ns. Assuming a system does not only perform context switching, this
delay is considered small enough to precisely attribute events to corresponding tasks or
code sections.

9.2 Overhead in Time

To quantify the time overhead of different operations needed for controlling the tracing,
we examine the initialization of the used debug modules, and the starting and stopping
of traces dependent on the trace method.

Figure 9.5 shows the time delay of the swo_trace_init initialization steps from enabling
the packet conveying (SWO_INIT ) to enabling the timer counter (TIM_...), as intro-
duced in Section 6.3. Part (a) of the Figure shows all initialization steps and part (b)
excludes the step of switching the SWJ-DP to SWD-Mode, as this step takes significantly
longer.
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(a) Initialization with switching SWJ-DP to SWD mode.
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(b) Initialization without switching SWJ-DP to SWD mode.

Figure 9.5: Overhead delay performing the tracing initialization steps.

While the first 3 initialization steps take only 7µs at 80MHz, switching the Debug Port
from JTAG to SWD mode takes the longest time (SWDP_SWITCH ). Ignoring the SWD-
switch, the initialization of the debug components takes only 30% of the initialization
duration, while the timer counter GPIO and registers take 70% of the initialization
duration.

The reason for the high SWD-switch delay is the emulation of the synchronous bus in-
terface via GPIO bit-banging and the slow transfer time of the specified switch sequence,
which does not compensate for the difference in CPU frequency. While the switching
represents 97% of the initialization delay, it is actually only necessary once per micro-
controller power down and won’t be switched back via a reset.
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Figure 9.6 shows the rest of the necessary tracing steps as introduced in
Section 6.3. The initialization over starting/stopping the event generation
(TRACE_[COMP_]_START/STOP) dependent on the trace method is shown, to cal-
culating the normalization by TRACE_CALC (as described in Section 8.4.2).

Further, the result TRACE_INIT in Figure 9.6 does not consider the delay created by
the debug port switching.
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(a) Profiling counter control function and the initialization, deinitialization, normalization func-
tions.
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Figure 9.6: Overhead delay of tracing control functions dependent on trace method (pro-
filing counter, comparator).
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Comparing part (a) and (b) of Figure 9.6 shows that starting and stopping tracing with
comparators takes almost twice as long as tracing with the profiling counters. This is
probably caused by the fact that multiple DWT comparators have to be configured.

9.3 Overhead in Power Consumption

Before examining the power consumption results, the methodology of the experiments
should be noted. In the following, different trace configurations are measured for current
while performing three different workloads. To compare the power overhead of the trace
configuration per workload, a current measurement of the workload has been performed
without activating any tracing (reference current measurement). Therefore, the current
overhead of certain trace configurations can be calculated by subtracting the measured
current of a workload with activated tracing by the reference current measurement.

Regarding the three different workloads, FLASH_ADD performs integer ADD math
operations with values that are constantly read from Flash memory. REG_DIV performs
integer DIVIDE math operations that are tried to be kept in CPU registers without
memory loading. The workload SLEEP does a CPU sleep for a specified time. These
workloads have been chosen to represent different aspects of system behavior.

Share of Tracing Configurations Figure 9.8 shows the overhead power consumption
of the different tracing configurations (see Figure 9.7) in proportion to the overhead
power consumption of only counting the CYCLE profiling counter, without activating
the packet generation, packet conveying and timer counter.

Packet Recognition 

with timer counter

Packet Conveying and 

Transmitting over SWO

Cycle Counter and 

DWT Output

TRACE_NO_SWO
TRACE_NO_TIMCNT

TRACE

DWT ITM

SWO Timer

Figure 9.7: Visualization of different trace configurations measured for power consump-
tion in Figure 9.8.
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9 Overhead of Task Characterization

The trace configurations are shown in Figure 9.7.TRACE_NO_SWO only enables the
CYCLE profiling counter and event generation, but disables the conveying of packets
over ITM, over the SWO output or to the timer counter. The TRACE_NO_TIMCNT
configuration enables a profiling counter, the event generation and packet conveying,
but does not activate the timer counter. Lastly, the TRACE configuration represents
a normal trace with enabled profiling counter, event generation, packet conveying and
enabled timer Counter.
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Figure 9.8: Overhead power consumption of different trace configurations in proportion
to overhead power consumption of TRACE_NO_SWO, grouped by different
workloads and measured at a CPU frequency of 80 MHz.

Figure 9.8 illustrates that the packet conveying and the timer counter are responsible for
most of the overhead power consumption.

Figure 9.8 only shows the relation of overhead power consumption between the trace con-
figuration. It is reasonable to mention the actual power consumption of the workloads
without any tracing enabled and the proportion of the tracing overhead power consump-
tion to the actual workload power consumption. The actual workload of FLASH_ADD
has the highest mean power consumption of 46.95mW, the REG_DIV workload con-
sumes 33.98mW and the SLEEP workload has the lowest mean power consumption of
21.18mW. Thereby, the TRACE configuration increases the FLASH_ADD power con-
sumption by 7.62%, REG_DIV is increased by 9.63% and the SLEEP workload power
consumption is increased by 24.11%.

Considering the overhead power consumption relation between the tracing components
shown in Figure 9.8 and the overhead power consumption in relation to the power
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9 Overhead of Task Characterization

consumption of the actual workload, the event generation is responsible for 2.66%
(REG_DIV ) to 5.92% (SLEEP) overhead power consumption. The packet conveying
is responsible for 1.34% (FLASH_ADD) to 10.67% (SLEEP) and the timer counter is
responsible for 3.02% (FLASH_ADD) to 7.52% (SLEEP).

It is shown that the timer counter can be responsible to up to 50% of the overhead power
consumption (see REG_DIV in Figure 9.8). Therefore, the task characterization model
can benefit from timer optimizations to reduce the total overhead power consumption.

This section appointed power consumption measurements to different trace configura-
tions with enabled CYCLE profiling counter, as it generates ECPs independent of the
current workload. It would also have been interesting to appoint power consumption
values to trace configurations with DAM, but the comparators can not observe addresses
and generate packets independent on the traced workload. As the packet conveying
and packet recognition by the timer counter is also used for DAM, the overhead power
consumption should be similar to the mentioned values. Only the power consumption
of matching data accesses by the comparators are missing. This might be exposed by
future researchers.

Event Generation Dependency Another interesting question is whether the power
consumption of the tracing utility is dependent on the number of generated packets.
Therefore, measurements were performed with the mentioned 3 workloads and enabled
tracing with profiling counters or DAM.
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(a) Overhead Power Consumption with caps as standard deviation.

FLASH_ADD REG_DIV SLEEP
Workload

0

1

2

3

4

5

6

7

Tr
ac

ed
 C

ou
nt

er
 [#

]

1e6
Counter Type
CYCLE
LSU
CPI
COMP_DATA_FLASH

(b) Trace Counter Flanks.

Figure 9.9: Overhead power consumption of tracing different task properties and corre-
sponding traced counter flanks. The trace has been performed at a CPU
frequency of 80 MHz.

Before evaluating Figure 9.9, it has to be noted that each workload has been performed
with a thousand iterations, which results in different execution times. As part (b) shows
the total count of read flanks per counter type, the height is dependent on the per-
formed workload. Further, when tracing the cycle counter the flank counter readings are
not higher than all other counter types, because a cycle ECP is only generated every
1024 cycles dependent on the POST_CNT and SYNC_TAP field of the DWT_CTRL
register.

FLASH_ADD of Figure 9.9 shows that the overhead power only correlates with the count
of read flanks for the comparator counter, not for the profiling counters. On the other

74



9 Overhead of Task Characterization

hand, the overhead power consumption for profiling counters at the workload REG_DIV
does show this correlation.

When comparing the power consumption, the difference between no packet generation
and packet generation is quite small for the profiling counter events. But there is a huge
power increase when the DAM generates DTAOP in comparison to no packets. This
proves that the packet generation has an effect on the overhead power consumption.

As Figure 9.9 shows only the overhead power consumption, it is reasonable to again
mention the actual power consumption of the workloads without any tracing enabled,
which are similar to Figure 9.8. The actual workload of FLASH_ADD has the highest
mean power consumption of 46.84mW, the REG_DIV workload consumes 33.87mW and
the SLEEP workload has the lowest mean power consumption of 21.49mW.

To summarize, the overhead power consumption for profiling counters ranges from 3mW
to 3.8mW (8.85% to 8.1% in proportion to the actual workloads) for load intensive
workloads (REG_DIV and FLASH_ADD) and can grow to 4.7mW (21.8%) with no
CPU load (SLEEP). Thereby, the overhead power consumption increases by up to 0.7mW
(2%) due to the generation and reading of the ECPs. The overhead power consumption
for DAM ranges from 3.1mW (9.15%) for load intensive workloads to 4.6mW (21.4%)
with no CPU load. Hereby, the overhead power consumption increases by up to 4.7mW
(10.03%) due to the generation and reading of the DTAOPs. This increase of overhead
power consumption comes from the significant higher number of packets transferred.
DAM generates a trace packet directly after a match, whereas the profiling counters only
generate a packet when the internal profiling counter overflows.

To also name the overhead power consumption at different CPU frequencies, Figure
9.10 shows the overhead power consumption with enabled flash DAM. The trace with
comparator is chosen as it covers the whole power consumption range of the three work-
loads, as seen in Figure 9.9. Figure 9.10 shows that the overhead power consumption is
proportional to the frequency selection.
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Figure 9.10: Overhead power consumption of tracing flash data accesses at different CPU
frequencies, with enabled Flash Wait State Adaption and selected Fast Flash
DVS Policy.

Share of Overhead Power Consumption at different frequencies Lastly,
Figure 9.11 shows the magnitude of overhead power consumption of CPI and
COMP_DATA_FLASH tracing in proportion to the power consumption without trac-
ing. Only CPI and COMP_DATA_FLASH tracing is shown, as they cover the whole
power consumption range of the three workloads.

This comparison is made to show the overhead power consumption share to the actual
workloads at different CPU frequencies. Users that want to evaluate the usefulness of
the task characterization model in combination with their application should use the
absolute overhead power consumption values that have been shown in Figure 9.9.
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(a) Tracing the CPI profiling counter.

FLASH_ADD REG_DIV SLEEP
Workload

0.00

0.05

0.10

0.15

0.20

Ov
er

. P
ow

er
 C

on
s. 

/ P
ow

er
 C

on
s. 

(n
o 

tra
cin

g)

CPU Frequency [MHz]
13
26
40
53
80

(b) Tracing flash access with comparators.

Figure 9.11: Overhead power consumption of enabled tracing in proportion to the power
consumption of workloads without enabling tracing. Illustrated with dif-
ferent workloads and CPU frequencies. Measured with Flash Wait State
Adaption has been enabled and the Fast Flash DVS Policy has been se-
lected.

Figure 9.11 shows that the share of overhead power consumption often gets smaller with
a lower CPU frequency. Further, it is shown that the share is higher when the CPU has
no load (SLEEP) and that the share is generally task dependent. Again, by looking at
the workload FLASH_ADD it is visible that tracing with comparators has a big effect
on the overhead power consumption if comparator matches occur.
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9 Overhead of Task Characterization

Property Profiling Counter (ECP) Comparators (DTAOP)
Delay between Packet
Generation and complete
Timer Counter Recogni-
tion (min to max)

80MHz:260ns to 720ns and
13MHz:1440ns to 4260ns

80MHz:160ns to 570ns and
13MHz:800ns to 3600ns

Overhead Delay for Trace
Start/Stop Utility Func-
tions

80MHz: 5.26µs / 2.45µs 80MHz: 13.40µs / 4.06µs

Overhead Power Con-
sumption Range at 80MHz

task dependence: 3 to
4.8 mW, increase due to
counter activeness: 0.7mW

task dependence: 3.1 to
4.6 mW, increase due to
counter activeness: 4.7mW

Table 9.1: Summary of the task characterization overhead.
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10 Evaluation of Tracing and Energy
Results

This section presents tracing and energy results of synthetic and the Bristol/Embecosm
Embedded Benchmark Suite (BEEBS) tasks.

Thereby, the following questions will be examined further:

1. What do certain counter readings tell about a task behavior?

• Is the task CPU intensive?
• Is RAM and/or flash memory used significantly?
• Are I/O units used?
• Which operations are used?

2. Can certain counter readings alone or combinations be used to point to the Most
Energy Efficient CPU Frequency (MEECF) setting?

3. What is the overhead in terms of tracing steps for selected task properties?

10.1 Register, RAM or Flash intensive Workloads

To start off analyzing the potential of the task characterization model to indicate the
performance utilization, an experiment trying to mainly use a single "memory" type
(RAM, Flash or no memory only Register) at a time is performed. The synthetic tasks
are also performed with different math operations and an unsigned 32 Bit variable.
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10 Evaluation of Tracing and Energy Results

Task Information at the default CPU Frequency (80 MHz)

Figure 10.1 visualizes the profiling counter measurements in proportion to the CPU cycles
at a CPU Frequency of 80MHz (see normalized counter calculation in Section 8.4.2).

Note: Due to the normalization with the total count of traced cycles, e.g., a normalized
LSU counter of 0.5 implies that a task spends 50% of all cycles for load/store instructions.
A normalized flash comparator counter of 0.03 implies 0.03 flash memory accesses per
cycle.
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Figure 10.1: Normalized profiling counter results measured with tasks of different mem-
ory access types and math operations. The measurements were performed
at a CPU frequency of 80MHz.

Looking at Figure 10.1, the LSU counter correlates with the access latency of RAM and
Flash. With a higher memory access latency, the counter gets bigger as more cycles are
needed for instructions, which use more cycles at higher frequencies. To be certain that
the LSU counter results for the RAM benchmark are caused by the RAM access, the
benchmark was traced via the comparator trace method, as seen in 10.2. Furthermore,
even though the workload REG needs to load the workload instructions from flash, they
are not tracked by the LSU counter. Looking at the CPI counter, it positively correlates
with the cost of operations. The operation divide needs 2 to 12 cycles to complete,
whereas add or multiply only need around 1 cycle [61, sec. 3.3.1].
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Figure 10.2: Normalized flash/ RAM data access measured for tasks with different mem-
ory access types and math operation types. The task properties are mea-
sured at a CPU frequency of 80MHz.

Comparing the results for flash or RAM access with Figure 10.2, only the flash benchmark
shows flash matches and only the RAM benchmark shows RAM access. Meaning the LSU
counter reacts to both RAM and flash access. This confirms the profiling counter descrip-
tion (see Table 4.1), as it counts on additional cycles needed for load/store instructions,
which are needed to access both flash and RAM.

Figure 10.2 shows that the comparator counter results do not differ with the different
math operations. This is probably because every math operation needs to load the same
number of operands before the calculation and calculates a single result that also requires
the same number of writes to RAM.

Comparing Tracing Results at different CPU Frequencies

Figure 10.3 shows the normalized counter values at different CPU frequencies in part (a).
Part (b) shows the number of cycles needed to perform the respective tasks at different
CPU frequencies in proportion to the cycles needed at a CPU frequency of 80 MHz. This
proportion is used to highlight and compare the cycle reduction across different tasks
and different CPU frequencies.
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(a) Normalized profiling counter results.
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(b) Cycles at different CPU frequencies in proportion to cycles at a 80MHz - with annotated
number of cycles at 80 MHz.

Figure 10.3: Profiling counter and cycle trace results of tasks performing ADD operation
with different memory access types. The measurements were performed at
different CPU frequencies, with enabled Flash Wait State Adaption and Fast
Flash DVS Policy.

It is shown that with lower CPU frequencies, the LSU counter proportion and the total
cycles are only reduced with workloads that intensively use the flash memory. The
reduction in traced cycles is a result of reducing the FWS as described in Section 8.4.1.
Per lowered FWS the total number of cycles is reduced by around 5%. This saves
around 97 million cycles at the lowest frequency of 483 million cycles in the default
configuration.

Most Energy Efficient Frequency and Policy

Before considering the meaning of Figure 10.4, it should be made clear which data is
shown. The Figure is a result of current measurements with enabled Flash Wait State
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Adaption and DVS. This is the same workload which is traced for Figure 10.1. All current
measurements of this chapter are measured without performing task characterization. For
each workload configuration the total energy is calculated. To show the MEECF setting,
each energy result is divided by the total energy consumption at a CPU frequency of 80
MHz. An energy proportion value lower than 1 means the configuration is more energy
efficient. Configurations with a higher value than 1 are less energy efficient.

NOTE: This workload intensively only provokes a certain behavior of the target system.
The correlation between the traced task properties and the energy measurements might
therefore diverge from workloads that represent more realistic tasks. For example, tasks
that are frequently interrupted or do more a mix of instructions.
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(a) DVS Policy: Low Voltage.
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(b) DVS Policy: Fast Flash.

Figure 10.4: Energy consumption at different CPU frequencies in proportion to the en-
ergy consumption at 80MHz. The proportion results are grouped by the
math operation type and memory access type, and separated by the DVS
Policy. The energy consumption is measured with enabled FWSA and DVS.
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Consequently, Figure 10.4 shows that tasks working mostly with RAM and no frequent
memory access (REG) scale well with the CPU frequency. Meaning the highest frequency
is executed most energy efficient. Only if the policy LOW_VOLTAGE is used, the CPU
voltage can be lowered to the frequency setting of 13MHz and is therefore most energy
efficiently executed (compare with Figure 8.5).

Workloads requiring mostly flash accesses (FLASH ) are most energy efficient at lower
frequencies as the lower FWSs reduce the total cycles used. It should be noted that
the DIV math operation, which takes more cycles to be performed and is more CPU
demanding, is executed most energy efficiently at a higher CPU frequency than ADD or
MUL. This shows that energy consumption is dependent on many task properties.

Concluding and regarding the second question of the beginning of this chapter, comparing
the figures in this section about the traced task properties and the most energy efficient
frequencies, a relation could be shown by:

Higher Energy Efficiency at Lower
Frequencies

Higher Energy Efficiency at Higher
Frequencies

• a noticeable flash data access count
and no RAM access (see Figure
10.2)

• a high LSU count (around 30 %)
(see Figure 10.1)

• a reduction in cycles needed at lower
CPU frequencies (see Figure 10.3)

• no memory access or only RAM ac-
cess (see Figure 10.2)

• higher CPI count (see div in Figure
10.1)

• no reduction in cycles (see Figure
10.3)

Table 10.1: Potential indicators for more energy efficient frequency settings.

10.2 I/O Workload

In this section a workload that mainly uses the serial communication interface SPI is
examined. The usage of SPI is common on embedded devices and enables, e.g., to use
external sensors, to persist data to external memory or send data wirelessly over radio
interfaces. These are only a few examples of tasks that are limited by I/O access, which
should execute more efficiently at a lower core frequency [10, sec. 4.1.2].
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SPI Communication Intensive Workload

The SPI benchmark consists of transferring data via the low-level SPI driver, which uses
the hardware SPI peripheral of the MCU. The benchmark is performed with different
SPI speeds and with the same fixed number of transaction iterations. Each transaction
consists of acquiring the bus, transferring 1024 Bytes of data and releasing the bus
again.
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(a) Normalized profiling counter results.
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(b) Cycles needed for execution.

Figure 10.5: Trace results for the SPI intensive workload executed at different SPI fre-
quencies and CPU frequencies. The task properties are measured with en-
abled Flash Wait State Adaption and Fast Flash DVS Policy.

Part (a) of Figure 10.5 shows that across all SPI frequencies at a CPU frequency of 80
MHz, the normalized LSU counter stays fairly high at around 42 percent. Furthermore,
the profiling counter results are not affected by the different selected SPI frequencies.
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Looking at the workload implementation, the LSU result of more than 40% is probably
caused by the data that has to be loaded from the input buffer or has to be stored to
an output buffer to transfer data over the SPI driver. Even though all workload config-
urations are performed with the same number of iterations, the different SPI frequencies
affect the number of cycles that are needed to transfer the same number of data. Re-
garding the task behavior across different CPU frequencies, part (b) of Figure 10.5 shows
a reduction of cycles with lower CPU frequencies for all traced SPI frequencies.

To investigate the reason for the reduced cycles at lower CPU frequencies, a test is
performed that reveals the actual configured SPI frequencies that are hidden behind the
selected ones at different CPU frequencies.

Selected SPI frequency
CPU Frequency

1 MHz 5MHz 10MHz

80 MHz 0.625MHz 5MHz 10MHz
53 MHz 0.833MHz 3.33MHz 6.66MHz
40 MHz 0.625MHz 5MHz 10MHz
26 MHz 0.833MHz 3.33MHz 6.66MHz
13 MHz 0.833MHz 3.33MHz 6.66MHz

Table 10.2: Actual SPI frequency dependent on the CPU and selected SPI frequency.

Table 10.2 shows that a cycle reduction is not caused by an increase of the actual SPI
frequency. Further, performing the SPI benchmark with disabled FWSA proves that the
cycle reduction is not caused by a reduction of FWS.

By investigating the implementation of the SPI driver, it is shown that each byte of the
input buffer is written to a peripheral data register. After each byte the CPU needs to
wait for the completion of the byte transmission by polling a peripheral status register.
Therefore, the number of total cycles required to transfer a fixed number of data bytes
is highest when the difference between CPU and SPI frequency is highest.
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Figure 10.6: RAM/flash data access per cycle measured with the SPI workload. The re-
sults are grouped by SPI frequency and CPU frequency. The task properties
are traced with enabled FWS and Fast Flash DVS Policy.

Figure 10.6 shows almost no flash usage. This indicates that the high LSU property
is caused by many load/store operations on RAM. The normalized comparator counter
results do not get higher than the value 0.03, which is also seen by Figure 10.2. This is
caused by the bandwidth bottleneck of the TPIU mentioned in Section 7.2.2.

With the 1MHz SPI configuration, the increasing normalized RAM access counter with
lower CPU frequencies is caused by the reduction of cycles, shown in part (b) of Fig-
ure 10.5, and a consistent non-normalized RAM access counter. With the 10MHz SPI
configuration, the consistent normalized RAM access counter at all CPU frequencies is
caused by the reduction of cycles and a reduction of the non-normalized RAM counter
values with lower CPU frequencies. For the 5MHz SPI configuration, the normalized
RAM counter dip at the CPU frequencies of 53 and 80 MHz in comparison to 26 and 40
MHz are caused by the reduction of cycles for 26 and 40 MHz and the same amount of
non-normalized RAM counter values for both CPU frequency groups.

SPI Workload Energy Results

Figure 10.7 is based on the same methodology as Figure 10.4 and shows the most en-
ergy efficient CPU frequency and DVS Policy setting dependent on the configured SPI
frequency.
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Figure 10.7: Energy consumption at different CPU frequencies in proportion to the en-
ergy consumption at 80 MHz measured with the SPI workload. The propor-
tion results are grouped by the DVS Policy and the selected SPI frequency.
The energy consumption is measured with enabled FWSA and DVS.

As already suggested by the saved cycles of Figure 10.5, the cycle reduction also reduces
the total energy consumption. When using the Low Voltage DVS Policy, even more
energy can be saved at the lowest CPU frequency.

SPI Task Differentiation

In Section 10.1 a task is shown that performs many RAM access and is most energy
efficiently executed at the highest frequency. With the SPI tracing and energy results, a
high normalized LSU counter of more than 42% is seen that is almost completely caused
by RAM usage, but the SPI task is executed most energy efficiently at a lowermost CPU
frequency. Therefore, using a high LSU counter as an indicator to a more energy efficient
CPU frequency setting is questionable.

Fortunately, with the comparators it is also possible to match memory addresses that
point to specific peripheral registers.
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Figure 10.8: Peripheral data accesses per cycle of the SPI intensive workload. The data
accesses are measured with DAM, as seen in Section 6.3.2.

Figure 10.8 shows the trace results with comparators that observe the address range
of the SPI peripheral registers (see Table 6.1). The task characterization model can
detect tasks with SPI usage. Regarding the height of the peripheral access values, future
experiments need to be performed with tasks that do a mixture of operations. Thereby,
it can be investigated whether the counter height can be used to detect different SPI
frequencies or even as an indicator for selecting a lower MEECF setting. The presented
task tracing is a proof-of-concept.

Concluding this section, task properties that potentially indicate a lower MEECF setting
are:

• a reduction in cycles at lower CPU frequencies (see Figure 10.5)

• a high SPI peripheral access

10.3 Inactivity

Some applications may need to wait for certain events to happen, in the meantime
the system might not need to perform any calculations and can therefore idle for a
certain amount of time. Waiting for an event to finish can be done via sleeping until
interrupted.
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10 Evaluation of Tracing and Energy Results

SLEEP intensive Workload

Figure 10.9 is a result of a benchmark that sleeps for 1 second. Part (a) shows the
normalized profiling counter results. Part (b) shows the relation between the energy and
CPU frequency, which reveals the most energy efficient frequency.
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Figure 10.9: SLEEP intensive workload properties measured at different CPU frequencies
and different DVS Policy.

Part (a) shows that the task characterization model detects whether the CPU is sleeping,
as the sleep cycles show a share of 100% to all cycles. Therefore, the most energy efficient
frequency is the lowest, as a higher CPU activity is not contributing to the tasks progress.
Workloads that sleep most of the time probably save more energy if the system is put
into a low power mode after the CPU intensive workload is finished. Future research
with tasks that only sleep part of the task execution need to investigate at which sleep
counter height a higher energy efficient CPU frequency is preferable.

Concluding and regarding the second question of 10, the figures in this section show that
a high normalized SLEEP counter is an indicator of a lower MEECF setting.

10.4 Application-focused Tasks with BEEBS

The prior sections focus on synthetic benchmarks that explore corner cases like only
provoking peripherals or using mainly one memory type at a time. We now want to
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10 Evaluation of Tracing and Energy Results

evaluate how the task characterization model behaves under more application-focused
loads. Therefore, the benchmark suite BEEBS is selected (see Section 8.3).

First, the ground truth task properties are investigated that are not collected via the
implemented task characterization model. This expands the knowledge base for devel-
opers working with the benchmark suite in the future and justifies the selection of the
benchmark.

Note: The following traced task properties for the BEEBS tasks are most often viewed
at a CPU frequency of 80 MHz. Devices with static clock configuration typically select
the highest CPU frequency as it provides the best performance. Performing tracings at
lower frequencies is left for future work.

10.4.1 Model-Independent Task Properties

To start off this section, Figure 10.10 shows the time needed to perform an iteration de-
pendent on the selected task. This shows that the benchmark suite includes a wide range
of task complexity. The magnitude in task complexity is further increased considering
that the Figure shows logarithmic scale on the y-axis.
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Figure 10.10: Execution time per iteration at a CPU frequency of 80 MHz. The y-axis is
shown in logarithmic scale and the tasks are sorted by the highest value.

Next to the duration in time, the range of power consumption is investigated. Figure
10.11 shows that power usage at a CPU frequency of 80 MHz ranges from 42.7 to 56.6
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mW and at the lowest frequency from 6.6 to 11.4 mW. It has to be noted that the power
consumption results are calculated from current averages of a complete trace.
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Figure 10.11: Average power consumption at different CPU frequencies. Grouped by
CPU frequency and the DVS Policy. The power consumption was measured
with enabled Flash Wait State Adaption. The tasks are sorted by the
highest power consumption at 80MHz.

As the tasks are sorted by the highest power consumption, it is visible that some tasks
lower their power consumption differently at lower frequencies than the neighboring ones.
(see tasks beebs_nettle_md5, beebs_nettle_sha256, beebs_stb_perlin, etc.)

Continuing with the benchmark suite properties, the ground truth about the most en-
ergy efficient frequency/voltage setting per task is shown in Figure 10.12. The energy
proportion is calculated in the same way as already described prior to Figure 10.4.
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Figure 10.12: Energy consumption at different CPU frequencies and different DVS Policy
in proportion to energy consumption at 80 MHz. The energy was measured
with enabled Flash Wait State Adaption and DVS. The tasks are first sorted
by the biggest energy consumption saving and secondly by the biggest
energy consumption increase.

Regarding the DVS Policy, Figure 10.12 shows with enabled Low Voltage policy it is
most energy efficient in most cases to select the lowest CPU frequency. If a Fast Flash is
preferred, a grouping between tasks that save energy with lower CPU frequencies (from
left to task beebs_picojpeg) and tasks that do not save energy with lower frequencies
(from task beebs_slre to the right) is seen.

To better understand why the left group of tasks is more energy efficient at lower CPU
frequencies than the right group of tasks, most of the following plots have a task ordering
that is similar to Figure 10.12 (task order of energy saving potential). The same task
ordering makes it on one hand easier to differentiate between the group of tasks that save
energy at lower CPU frequencies at tasks that do not. Furthermore, task behaviors for a
specific task are easier to compare between different plots if the tasks keep their position
on the x-axis.
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With the knowledge of the energy saving potential of Figure 10.12, it is appropriate to
also mention the overhead power consumption results for the tracing utility from Section
9.3 applied to the BEEBS tasks. To give a comprehensive statement, only the overhead
power consumption for the load intensive workloads of Section 9.3 at a CPU frequency
of 80 MHz are used and applied to a power consumption mean between all BEEBS tasks
of Figure 10.11. The mean power consumption between all BEEBS tasks can be seen
in Figure 10.29, which is 47.423mW at the highest here measured CPU frequency. Each
profiling counter tracing increases the average power consumption by 6.32 % ( 3mW

47.423mW )
to 8.01 % ( 3.8mW

47.423mW ). The DAM increases the power consumption by 6.5% ( 3.1mW
47.423mW )

to 16.44 % ( 7.8mW
47.423mW ). In a real setting multiple different counters might have to be

traced after another, but a tracing is ideally not performed always.

The last task characterization model independent metric is the measure of time. Figure
10.13 shows the proportion of time to the highest CPU frequency (80 MHz).
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Figure 10.13: Execution time increase of different CPU frequency to 80 MHz. The ex-
ecution time has been measured with enabled Flash Wait State Adaption
and different DVS Policys (upper/lower figure). The tasks are sorted by
the task order of energy saving potential as seen in Figure 10.12.
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It is shown that the leftmost group of tasks does not increase the task duration propor-
tional to the CPU frequency reduction like most tasks of the rightmost group.

The illustration of time grouped by the DVS Policy further highlights the risk of always
selecting the Low Voltage policy. Even though the voltage reduction ensures the high-
est energy efficiency at the lowest CPU frequency for all tasks (see Figure 10.12), the
execution time for the rightmost group of tasks is still increased by the factor of 6.

Further, Figure 10.13 and 10.12 show that frequency scaling is a double-edged sword. On
one hand, a frequency lowering can increase the energy efficiency and thereby increase
the execution time at a lower factor than the frequency decrease. On the other hand, a
misconfigured CPU frequency can result in an energy increase of up to 30% and increase
the execution time by a factor of 6 (as seen by most tasks of the rightmost group).

Coming back to the observation of Figure 10.11 about specific tasks that have higher
power consumption than their neighbor tasks at lower CPU frequencies. As seen by
Figure 10.12 and 10.13, these are the same tasks that save energy when lowering the CPU
frequency and do not increase their execution time at the same factor as the frequency
reduction. This probably has something to do with the switching activity α (mentioned in
Equation 2.2), which increases at lower CPU frequencies because of a lower bottleneck.

To conclude, this subsection justifies the usage of BEEBS as a base to evaluate the traced
task properties with. BEEBS offers tasks that save energy and execution time at lower
CPU frequencies and tasks that are most energy efficiently performed at the highest CPU
frequency.

10.4.2 Tracing Inaccuracies

In the following sections the tracing results for the BEEBS tasks will be evaluated as an
indicator of when CPU frequency should be reduced to increase the energy efficiency. To
estimate the soundness of the tracing results, a notice about the fluctuation of the tracings
is given. Figure 10.14 shows the standard deviation of counter readings in proportion
to the mean of the counter readings per task among the 10 tracing repetitions. The
proportion is used because the standard deviation is dependent on the absolute counter
readings and would create a false impression about tasks that have a higher execution
time.
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Figure 10.14: Standard deviation of measured counters in proportion to mean of the
measured counters that is calculated with ten repetitions. The proportion
is grouped by the counter type and the CPU frequency. The tasks are
sorted by the task order of energy saving potential as seen in Figure 10.12.

Regarding the semantics of the standard deviation proportion, it is visible that only
measurements taken at a CPU frequency of 80 MHz and with the comparator trace
method show a fluctuation in the counter readings. This is probably caused by the
nature of the different address offsets in the DTAOPs and the SWO is a bottleneck to
packet conveying. Therefore, the following results traced due to DTAOP packets will
also be illustrated with their standard deviation values, as seen in Figure 10.18 by the
black caps. But the standard deviation proportion is quite small with many values being
under 0.2%.

10.4.3 Tracing the Cycle Amount

The prior sections (like Section 10.1) show that the cycle saving potential is a good
measure to find the most energy efficient frequency. Therefore, the evaluation of the
tracings results is started by looking at the count of cycles at different CPU frequencies.
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Figure 10.15: Cycle count at different CPU frequencies in proportion to the cycle count
at 80 MHz. The measurements were performed with enabled Flash Wait
State Adaption and the FAST FLASH DVS Policy. The tasks are sorted
by the task order of energy saving potential as seen in Figure 10.12.

Figure 10.15 indeed shows that there is a correlation between the count of cycles that
certain tasks can save at lower frequencies and the actual energy savings, as seen in
Figure 10.12. Table 10.3 shows the linear correlation of the saved cycles to the saved
energy grouped by the CPU frequencies.

Selected Group Linear Correlation (Pearson)
FREQ:13MHz 0.901
FREQ:26MHz 0.915
FREQ:40MHz 0.970
FREQ:53MHz 0.989

Table 10.3: Linear correlation of all BEEBS tasks between the saved cycle proportion of
Figure 10.15 and the energy proportion of Figure 10.12 and grouped by the
CPU frequency.

The pearson correlation can be explained as how close points are to a fitted line and its
value ranges from -1 to 1, with 0 meaning no correlation at all. A positive correlation
value means that the two set of values are evolving into the same direction, meaning if
values of one set get bigger the values of the other set also show an increase. A negative
correlation means that when values of one set get smaller values of the other set get
bigger.
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10 Evaluation of Tracing and Energy Results

Regarding the correlation outcome shown in Table 10.3, the calculated correlation val-
ues get smaller with the decrease in grouped CPU frequency. This is probably on one
hand caused by tasks like beebs_miniz that save cycles, but not energy with lower CPU
frequencies. On the other hand, tasks from beebs_sqrt to beebs_picojpeg do save energy
with lower CPU frequencies, but they do not save the most energy with the lowest fre-
quency. Nonetheless, it is shown that the saved cycles strongly correlate with the more
energy efficient frequency settings with enabled Fast Flash DVS Policy. This means that
the saved cycles at different CPU frequencies can be used as the ground truth for energy
reduction potential.

Is a lower CPU frequency only more energy efficient if cycles are saved due
to lower FWS?

As seen in Section 10.2, cycles can also be saved with disabled Flash Wait State Adaption
at lower CPU frequencies due to asynchronous communication. To answer this section’s
question, another measurement was performed with the suite benchmarks and disabled
Flash Wait State Adaption, as seen in figures 10.16 and 10.17.
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Figure 10.16: Cycle count at different CPU frequencies in proportion cycle count at 80
MHz. The cycles were measured with disabled Flash Wait State Adaption
and configured FAST FLASH DVS Policy. The tasks are sorted by the
task order of energy saving potential as seen in Figure 10.12.

Figure 10.16 shows than no cycles are saved with disabled Flash Wait State Adaption
when lowering the CPU frequency. The BEEBS tasks are solely computation tasks
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without time dependencies (timeouts, waits, etc.) and “other factors such as I/O and
peripherals [are] excluded for portability [20, sec. 2]”. In more complex applications with
timers and I/O there would still be cycle potential with disabled FWSA. The evaluation
of more complex systems was not the goal of this thesis but should be investigated in
future work.

All synthetic tasks with configured Fast Flash DVS Policy are only more energy efficient
at lower frequencies if cycles are saved. Further, it is interesting whether this is also the
case for the BEEBS tasks.
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Figure 10.17: Energy consumption at different CPU frequencies in proportion to energy
consumption at 80 MHz. The measurements were performed with disabled
Flash Wait State Adaption, different DVS Policys and enabled DVS. The
tasks are sorted by the task order of energy saving potential as seen in
Figure 10.12.

Part (a) of Figure 10.17 indicates that very few tasks also save energy without lowering
the FWS (see tasks beebs_nettle_sha256 ), even if this energy reduction is small at around
1%. Part (b) shows that the voltage reduction once again has a big effect on the total
energy consumption with energy savings up to 10%, even without saving cycles. But

99



10 Evaluation of Tracing and Energy Results

the missing FWS reduction ensures that the task duration increases proportional to the
CPU frequency reduction factor.

10.4.4 Tracing with Comparators

This subsection evaluates the task properties traced with the DWT comparators, which
can be used to separately observe the data access to RAM and flash memory.
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Figure 10.18: Memory accesses per cycle measured at a CPU frequency of 80 MHz. The
tasks are sorted by the task order of energy saving potential as seen in
Figure 10.12.

Before going into detail about certain Data Address Matching (DAM) results and their
meaning regarding task type, looking at Figure 10.18 shows that both memory access
types neither correlate with the cycle-savings shown in Figure 10.15. This indicates that
just tracing the access to memory is not an indicator to save cycle or energy at lower CPU
frequencies. Furthermore, it is visible that more tasks have a high RAM comparator
counter of 0.03 than there are tasks that have a high flash comparator counter. This
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10 Evaluation of Tracing and Energy Results

indicates that the RAM is used more frequent than the flash and that the RAM counter
is more affected by the bandwidth bottleneck of the SWO connection.

Inspecting Source Code of Selected Tasks

Before investigating the low correlation between the memory access and the cycle-saving
potential of tasks, the source code written in C of selected tasks is observed. Thereby,
tasks with similar counter type results are compared.

RAM As the tasks with a high comparator counter are limited by the packet conveying
bottleneck of the TPIU, it makes more sense to look at the fewer tasks with a low
RAM counter. Thereby, the tasks beebs_prime and beebs_fasta and also beebs_fir and
beebs_miniz will be examined further regarding their RAM usage.

The tasks beebs_fasta and beebs_prime both have a low RAM comparator counter and
a very low ROM footprint. The prime task uses only a single volatile variable at the
end of one iteration, which is loaded to RAM avoiding the compiler optimization of
the benchmark. There are no arrays that need to be loaded to RAM, therefore most
operations can probably be held in the CPU registers. On the other hand, the fasta task
definitely works on small data structures that are held in RAM.

The tasks beebs_fir and beebs_miniz have similar RAM counter readings at around
0.075. These are higher than the prior tasks, but half as small as the majority of tasks.
The fir task performs a filter function that loads a huge data set from a const array
(saved in flash) as an input, but actively calculates on an array in RAM. The miniz task
performs a compression and decompression function. The input data is a const literal
that is saved in flash, but the compression and decompression is performed on arrays
that are allocated in RAM.

The comparison between the prime and miniz tasks show that the RAM counter height
between very low and medium values is visible in source code.

Flash To evaluate the flash access matching ability, the tasks beebs_fac and beebs_crc
are compared as they differ heavily in flash data access.

The fac task (low flash counter) has a very low footprint, has no data structures and
performs a faculty calculation implemented via recursion. The recursion is probably the
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10 Evaluation of Tracing and Energy Results

reason why the RAM counter is very high at a value of 0.03. Only one literal is used,
and no other variables have to be reloaded from flash.

The crc task (high flash counter) has a very low footprint and performs a cycle redun-
dancy check. The algorithm loop uses a const unsigned char array that is stored on
flash.

This very basic comparison of a low and a high flash counter task supports the working
of the flash data address matching. Though a statement regarding the fine-grained
difference in height can not be made.

Does a low RAM and low flash counter point to a higher MEECF?

The comparison of the RAM counter results from the sections 10.1 and 10.2 show that a
high RAM access does not correlate with any CPU frequency setting. But the comparator
counter results for no memory use show a higher MEECF.

The only tasks that have a very low RAM and flash usage are the tasks beebs_prime and
beebs_fasta, which are already evaluated. As in Figure 10.12 they actually do perform
most energy efficiently at the highest CPU frequency.

Do the tracing results differ across CPU frequencies?

As of completeness, in Figure 10.18 only the tracing results at a CPU frequency of 80
MHz are shown, but in Figure 10.15 cycle results across different CPU frequency are
compared. Therefore, the question arises whether there is also a difference in tracing
results for the comparator usage.
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Figure 10.19: Difference of normalized comparator counter results (13MHz - 80MHz) with
enabled FAST FLASH DVS Policy and enabled FWSA. The tasks are
sorted by the task order of energy saving potential as seen in Figure 10.12.

Figure 10.19 shows the difference between tracing results of the CPU frequencies 13MHz
and 80 MHz. It is noticeable that a difference is almost only present with the group of
tasks that also show cycle savings, as seen in Figure 10.15. This difference is only visible
because of the cycle reduction and therefore this additional information is redundant.
The cycle count does not need to be traced by the timer counter feedback mechanism
of Section 5.2, but can be read directly from the DWT register, which has a size of 32
Bit. Therefore, the information of saved cycles is easier to obtain and comes with a lower
energy overhead.

Why does more flash access not indicate savable cycles?

Since the cycle savings of Figure 10.15 are a result of reducing the FWS at lower CPU
frequencies, it could be argued that cycles are savable if the task shows a high flash data
access.

It is apparant, by comparing the flash data access results of Figure 10.18 and the saved
cycles at different CPU frequencies of Figure 10.15, that not only those tasks that save cy-
cles due to Flash Wait State Adaption have more flash access. Regarding the bandwidth
bottleneck of the TPIU with DAM (see Section 7.2.2), it could be argued that the im-
portant difference in counter height is hidden. The important difference might be visible
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10 Evaluation of Tracing and Energy Results

with normalized values above 0.04. Nonetheless, some cycle-saving and non-cycle-saving
tasks that also have a high flash access will be examined further.

Tasks that do have a high flash count but no cycle savings are for example the beebs_crc,
which performs a cycle redundancy check on a string saved in flash, the task beebs_strstr,
which performs a substring search on a string that is saved in flash, or the task
beebs_newlib_log that calculates a logarithm with float values that are saved in flash.
These tasks have in common that they do work with literals or structures saved in flash,
but do not require much flash space. The structures might be stored temporarily in flash
cache for future access without the need of actual loads from flash and without the need
to wait the minimum number of FWSs.

The embedded flash memory on the STM32L476RGT6 MCU is actually equipped with
the Adaptive Real-Time Memory Accelerator (ART Accelerator) that comes with an
instruction prefetch feature, a 1KByte instruction cache and a 256 Byte data cache [5,
sec. 3.3.4 ART Accelerator]. With that in mind, tasks that show a high flash data access
and save cycles due to Flash Wait State Adaption need to have a flash access behavior
that the ART Accelerator cache is not able to accelerate.

Trying to verify that hypothesis, beebs_nettle_cast128 performs symmetric-key block
cipher encryption with access to 8 blocks of data stored in flash that each consist of
256 data points á 4 Bytes. The encryption algorithm also seems to access many values
distributed across the used const arrays. This flash access behavior might also be impor-
tant as caches work with the concept of spatial locality. Furthermore, beebs_rijndael for
example also performs a symmetric-key block cipher encryption with at least 2 blocks
of data saved in flash that each consist of 256 data points á 4 Bytes. To further prove
the hypothesis about the flash data cache, a further measurement for the benchmark
tasks was performed with disabled data flash cache. The results are shown in part (b) of
Figure 10.20.
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(a) Normalized flash access, as in Figure 10.18.
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Figure 10.20: Comparison between the count of saved cycles at 13MHz with different
flash cache states and the normalized flash access at an CPU frequency of
80 MHz. The tasks are sorted by the task order of energy saving potential
as seen in Figure 10.12.

Part (b) of Figure 10.20 shows that many tasks right from task beebs_picojpeg are saving
more cycles with disabled data flash cache (green dots) than with both enabled instruction
and data flash cache (red dots). Part (a) of Figure 10.20 shows that the additional saved
cycles due to disabling the data flash cache are often only present with a medium/higher
flash comparator counter. The bar height alone does not define the amount of cycle
saving improvement, as seen by the three rightmost tasks (beebs_crc etc.). This might
be caused by the hidden difference above 0.03 or by the flash access behavior.

Tasks that were already saving cycles prior to the data flash cache disabling partially
show a further cycle saving improvement. Some of them also show no improvement, as
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seen by the three leftmost tasks for example. The lack of improvement could be caused
by the flash access behavior that contradicts the cache concept of data access locality.

To sum up, it is shown that DAM reacts to flash data access. Whether the flash data
actually has to be loaded from flash or whether the data access can be fulfilled by the
cache is not differentiable by the flash data access counter.

Why do some tasks have a high count of saved cycles and show no flash
usage?

Tasks that have low flash access compared to other tasks and save a big proportion of cy-
cles at lower CPU frequencies are the tasks beebs_nbody, beebs_sqrt and beebs_nsichneu,
as seen in Figure 10.18. With disabled data flash cache (see Figure 10.20), these tasks
also do not save additional cycles. On the other hand, Figure 10.16 shows no saved cycles
at lower CPU frequencies with disabled Flash Wait State Adaption, which proves that
the cycle savings must originate from flash usage.

As already described, the STM32L476RGT6 is equipped with the ART Accelerator,
which also implements an instruction cache. Thereby, the hypothesis is formed that
those tasks have such a high number of sequential instructions that the instruction cache
is not able to reuse with the cache implementation [5, sec. 3.3.4 ART Accelerator].

Even though these instructions are loaded from flash, they are not tracked by the DAM,
but probably by the IAM. As already described in Section 4.1.2, this matching type
is not accessible with the STM32L476RGT6 MCU, because events generated by the
comparators for IAM are sent to the ETM. Unfortunately, the ETM only outputs the
trace data over the trace port of the TPIU, but the parallel trace port is not routed to
a pin of the MCU package.

To support the hypothesis, a high number of sequential loaded instructions could take
place if the task has a big footprint. To expose the task footprint size of the BEEBS tasks,
a small static analysis was performed with the source code being compiled to assembler
code. The compilation has been achieved with the arm-none-eabi-gcc toolchain, which
is also used by the RIOT compile process for the Nucleo-L476RG board [71].
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Figure 10.21: Amount of instructions per task assembler file. The tasks are sorted by the
task order of energy saving potential as seen in Figure 10.12.

Figure 10.21 shows the result of simply counting all instructions in the assembler file per
BEEBS task. It is appears, without only focusing on the named tasks, that the group of
tasks that do save the most cycles due to Flash Wait State Adaption also seem to have
the highest average number of instructions per task. But it has to be noted that the
program flow of a task has an essential impact on how the instruction are loaded and
how it can be accelerated by the flash cache.

Focusing on the named tasks, while beebs_nsichneu supports this hypothesis, the tasks
beebs_nbody and beebs_sqrt on the other hand have a low count of instructions per
assembler file.

By inspecting the C source code of both exceptional tasks, it is shown that they do have a
low code footprint and both use floating point arithmetic in the form of float and double
types. Therefore, the assumption is created that the usage of floating point arithmetic
also has a huge impact on the savable cycles and further on the MEECF.
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Figure 10.22: Amount of float and double operation instructions per task assembler file.
The tasks are sorted by the task order of energy saving potential as seen in
Figure 10.12.

Figure 10.22 is created on the same methodology as Figure 10.21, but counts the float
and double operations instead. With static code analysis, it appears that beebs_nbody,
beebs_sqrt and further tasks make use of floating point arithmetic. Many tasks using
double floating point arithmetic reside in the task group that reduces the cycle count
at lower CPU frequencies. Pallister et al. [20] also define floating point arithmetic as
having a different energy consumption to integer arithmetic.

To be certain about the assumption that floating point arithmetic might save cycles and
energy at lower CPU frequencies, a further measurement has been performed with the
benchmark of Section 10.1. But this time with a float and double variable instead of
an uint32_t variable. It is shown that this benchmark with no memory access or RAM
access also does not reduce the total cycles at lower CPU frequencies. Further, it is also
not shown that the usage of float or double variables result in a lower MEECF setting,
as seen in Figure 10.23.
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Figure 10.23: Energy consumption at different CPU frequencies in proportion to the en-
ergy consumption at 80MHz measured with the REG task of Section 10.1,
but with float and double variables. The plot is grouped by the math
operation and used variable types. The data was measured with enabled
FWSA and Fast Flash DVS Policy.

Pre-Concluding Tracing with Comparators

Concluding this subsection, counting the flash data access to indicate tasks with cycle
savings at lower CPU frequency is inaccurate due to the flash data cache. This is because
the DAM also occurs if the flash access is fulfilled by the data flash cache. In addition,
the address matching results are distorted because of the bandwidth bottleneck of the
SWO output of the TPIU. The inaccuracy due to the flash cache could be solved with
access to a flash cache miss counter, as in reference [38]. Unfortunately, nothing similar
to this has been found on the STM32L476RGT6 MCU. The bandwidth bottleneck can
be improved with the usage of the parallel trace port of the TPIU on other MCUs, as it
provides a higher bandwidth.

Furthermore, the missing flash IAM when loading instructions from flash leaves potential
cycle-saving tasks unrecognized. The inability to trace instruction flash access can be
solved by using a MCU that allows the access to ETM tracing. Even though counting
the flash instruction fetches will also encounter the limit of the flash instruction cache,
it is shown that the cache can not always accelerate the flash access.

Lastly, by analyzing the assembler files at compile time, it is shown that many tasks of
the leftmost cycle-saving task group make use of floating point arithmetic. A further
measurement clarified that the float or double usage on its own does not save cycles and
is not most energy efficiently performed at lower CPU frequencies.
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Counter High counter
points to
MEECF that
is ...

Potential as in-
dicator

Indicator limi-
tation

COMP_DATA_RAM None None for the
stand-alone
counter

Bandwidth bot-
tleneck due to
the SWO

COMP_DATA_FLASH Lower Indicates cycle
savings due to
lowering FWS
with high flash
access

Flash access and
flash cache access
indistinguish-
able, bandwidth
bottleneck with
SWO output

Table 10.4: Findings for selecting a higher/lower MEECF with DAM and the BEEBS
tasks.

10.4.5 Tracing with Profiling Counters

This subsection evaluates the DWT profiling counters, which enable to count cycles of
different CPU activities. (see Table 4.1)

An experiment with SLEEP and EX tracing shows that the tasks of the BEEBS do not
perform any sleeping or any exception processing due to interrupts or context switches.
Profiling counter results that apply to the BEEBS tasks are visible in Figure 10.24.
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Figure 10.24: LSU, FOLD and CPI profiling counter in proportion to cycles. Measured
at a CPU frequency of 80 MHz. The tasks are sorted by the task order of
energy saving potential as seen in Figure 10.12.

Before going into detail about certain profiling counter results, the correlation to savable
cycles (see Figure 10.15) per counter type is investigated.

Counter Type Saved Cycles Frequency
Group

Linear Correlation (Pearson)

FOLD @ 80MHZ 13MHz 0.141
LSU @ 80MHZ 40 MHz 0.223
CPI @ 80MHZ 53MHz -0.345

Table 10.5: Highest linear correlation between profiling counter results of Figure 10.24
and the saved cycles of Figure 10.15.

Table 10.5 shows that the correlations between saved cycles at selected CPU frequencies
and profiling counter tracing results are low. The higher negative linear correlation of
-0.345 between the CPI counter and the saved cycles is probably caused by the higher
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10 Evaluation of Tracing and Energy Results

average normalized CPI values of the left group of tasks. The higher normalized CPI
values might be caused by the usage of floating point arithmetic.

Inspecting Source Code of Selected Tasks

To get a better understanding of what certain profiling counter readings mean in terms of
task semantics, in the following the C source code of a set of selected tasks is examined.

Fold: The FOLD counter counts on instructions that take 0 cycles. Further, the Tech-
nical Reference Manual of the Cortex M4 hints that “An IT instruction can be folded
onto a preceding 16 Bit Thumb instruction, enabling execution in zero cycles [61, sec.
3.3.1]”. An IT instruction is listed as an if-then-else state change. Therefore, with a high
proportion of the FOLD counter to all cycles, many IT instructions have been saved.
Regarding the task type, this could stand for a task that has many if-branches in loops
with a small code footprint. Many if-branches could also be part of an algorithm that
has a long decision path and a higher code footprint size.

The BEEBS tasks with the highest normalized FOLD counter of around 8% are
beebs_newlib_sqrt (low data flash, high ram, MEECF at 80MHz), beebs_cnt (low data
flash, high ram, MEECF at 80MHz) and beebs_bubblesort (low data flash, high ram,
MEECF at 80MHz). To be not tricked by the scale of the normalized FOLD counter
y-axis, in comparison to LSU or CPI the highest FOLD counter is still small.

The named three tasks have in common that they generally have a small code footprint
(see Figure 10.21). They perform simple variable assignments and calculations that are
executed dependent on short if-structures. The if-structures are further encapsulated by
for or while loops.

To analyze a task that has a very low FOLD counter, but other similar properties, the task
beebs_stringsearch1 can be viewed at. It has a low flash access, a high ram access, a low
LSU counter and a low to medium CPI counter. Investigating the source code, the task
beebs_stringsearch1 has a higher code footprint size and also many calculations inside
if-structures, which are inside loops. A difference is visible regarding the simplicity of the
if-conditions. While the tasks with a higher FOLD counter almost only check whether two
given conditions are equal, bigger or smaller, stringsearch1 often also performs increments
or more complex calculations on the conditions inside the if-statements.
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10 Evaluation of Tracing and Energy Results

CPI: In Section 10.1 a higher CPI counter is observable with operations that need many
cycles to be executed (ADD vs DIV ). The question is whether a similar image can be
drawn when analyzing this task property with more use-oriented BEEBS tasks.

Task that has a high CPI (50%), low FOLD, no LSU, very low COMP_DATA_RAM and
low COMP_DATA_FLASH counter are beebs_prime and beebs_fasta. Beebs_prime
has a very small code base and performs a prime number check that involves many
MODULO operations, which often use divide instructions. Beebs_fasta also has a very
small code base and performs many ADD, MUL and DIV operations.

A processing task that shows the opposite CPI counter height has not been traced.
This is probably because many tasks do often perform many kinds of math operations.
Furthermore, the CPI counter does not only count the mentioned expensive math opera-
tions, but all additional cycles required to perform instructions. This also includes branch
instructions (B <label>) or MOV PC instructions (see reference [61, sec. 3.3.1]).

Regarding Figure 10.22, there might also be a correlation between a higher CPI counter
and the usage of float/double operations. This originates from the observation that the
tasks beebs_dtoa to beebs_mergesort and also beebs_newlib_exp seem to have a higher
CPI counter of more than 20%, and also use many float/double assembler instructions.
The instruction set of the Floating Point Unit (FPU) on the Cortex-M4 [61, sec. 7.2.3]
shows that some instructions require more cycles than the integer ones. For example,
divide takes 14 cycles, which is minimally 2 cycles longer than an integer divide with 2
to 12 cycles.

LSU: In Section 10.1 it is shown that the LSU counter correlates with the access to
RAM and flash. This finding is strengthened with the detailed view of the beebs_prime
task. The task has a very low LSU counter, a very small footprint and further does not
use any data structures that might be loaded from RAM or flash.

A BEEBS task that shows the opposite LSU counter height is the task beebs_tarai.
It has a very high LSU counter, a very small code footprint and does not use any data
structures but a few literals. The high LSU counter is therefore caused by loading literals,
but also by the fact that the task function is recursively calling itself three times with
different inputs. The recursion demands a lot of RAM usage.
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10 Evaluation of Tracing and Energy Results

Why the FOLD, LSU or CPI counter alone can not be used to point to a
lower MEECF?

As already seen by the correlation Table 10.5, none of the profiling counters by itself is
an indicator of MEECF settings for all tasks without a huge inaccuracy. The question
is, why is this the case and in which situations is there still potential?

FOLD: Whether beebs_newlib_sqrt, beebs_cnt or beebs_bubblesort perform most energy
efficiently at the highest CPU frequency as a consequence of the high Fold counter, is
questionable. The above-mentioned difference between similar tasks that only differ in
the FOLD counter does not seem to be a sign on whether tasks can be executed more
energy efficiently at any frequency.

CPI: A high CPI counter is found with tasks that calculate the majority of the execution
time with operations that scale well with CPU frequency. Thereby, a correlation between
high CPI and high CPU frequency could be drawn. This is true for two tasks of the
rightmost group but fails with the task beebs_stp_perlin of the leftmost group. Here the
differentiation might be possible by the combination with the LSU counter.

LSU: The LSU counter increments are connected to both RAM access, that scales with
CPU frequency, and flash access, that does not always scale with frequency. Therefore,
only the knowledge of the LSU counter can also not be correlated to any MEECF.

The full potential of selecting a MEECF by counting flash data access is prevented by the
flash data cache. But the LSU counter might help in this situation. The LSU counter
only counts on additional cycles to perform load/store operations. Thereby, it should
increase less with flash data accesses that can be served by the flash data cache, than
accesses that the cache can not fulfill. This should be true, as the cache is hardware-
wise implemented as RAM [5, sec. 3.2], which takes fewer cycles to be accessed than
flash. This LSU behavior has been shown in Figure 10.1, the same number of trace
iterations with the same operations resulted in a higher LSU proportion for flash access
than for RAM access. This statement is true under the assumption that the flash cache
was bypassed. An experiment was further performed which traced the task of Figure
10.1 with enabled and disabled flash data cache, resulting in the same normalized LSU
counter height. The flash data cache was also not used with enabled flash data cache, as
the task implementation used a volatile variable.
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With this knowledge about the LSU profiling counter, the removal of load/store cycles
caused by RAM access could improve the LSU usage as a pointer to MEECFs settings
(see Section 10.4.6).

Counter High counter points
to MEECF that is
...

Potential as indica-
tor

Indicator limitation

CPI Higher Correlates to CPU-
intensive operations

Many multi-cycle in-
structions visible with
tasks that save energy
at lower CPU frequen-
cies

LSU Lower Higher with flash ac-
cess, lower with flash
cache acceleration

Counts RAM as well as
flash accesses, but only
flash accesses indicate
optimization potential

FOLD Higher Higher MEECF due to
tasks measured

Source code observa-
tion does not imply
any MEECF

Table 10.6: Profiling counter findings with BEEBS tasks for selecting a higher/lower
MEECF.

10.4.6 Counter Combinations to Improve the MEECF Selection

The profiling counter tracing results on their own do not have a high correlation to
the savable cycles when lowering the CPU frequency and can not be used for selecting a
MEECF setting without a high inaccuracy. Combinations might improve this correlation
for all tasks or improve the ability to indicate a MEECF setting.

LSU without RAM

As LSU counts both RAM and flash access, the idea is to separate the RAM cycles
from the LSU count to generate a task property that has a high correlation to savable
cycles. Equation 10.1 shows the Normalized Combination Counter (NCC) formula used
to calculate the data of Figure 10.25. The Figure is created with a Cycle(s) Per Access
(CPA) of one. This means every RAM DTAOP stands for one additional cycle needed

115



10 Evaluation of Tracing and Energy Results

to perform the access. In theory, the higher the NCC the more likely it is that cycles
can be saved when lowering the CPU frequency.

NCCLSU−RAM =

LSURAW
5/256 − RAMRAW

8.25 · CPA

CY CLES
(10.1)

Comparing Figure 10.25 with the LSU counter plot of Figure 10.24 shows that this metric
does not result in any better differentiation between tasks that save cycles and ones that
do not.
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Figure 10.25: NCC of Equation 10.1 at a CPU Frequency of 80 MHz. The tasks are
sorted by the task order of energy saving potential as seen in Figure 10.12.

Even a threshold selection that only looks at the NCC counter below a value of 0.1 seems
to be arbitrary, as there are also tasks of the leftmost group of tasks that show a very
low LSU-RAM NCC (< 0.05).

The many high counters (> 0.2) of the rightmost task group are caused by the inability
of the RAM counter to differentiate more intensive RAM usage. Visible by Figure 10.18
is that many tasks have the same high normalized counter value of 0.03, which is caused
by the bandwidth bottleneck of the SWO output. Thereby, this approach does not fail
due to the concept but on the bottleneck, which can be improved by future work with
the selection of a MCU that provides a trace output with a higher bandwidth.

High CPI and low LSU Looking at Figure 10.24, it could be argued that the combina-
tion of a normalized CPI counter value higher than 30% and a normalized LSU counter
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being lower than 5% might indicate a higher MEECF. This only applies for two tasks
of 69 traced (beebs_prime and beebs_fasta). A lower CPI height is not recommended
being used for this combination, as it would also point to tasks of the leftmost group of
tasks (see task beebs_sqrt). To conclude, this technique is not effective as it only selects
a higher MEECF settings for two tasks.

Low CPI and low LSU If the majority of task instructions perform with a lower count
of cycles indicated by a lower CPI and LSU count, it could be argued that these tasks
are most energy efficiently performed at a higher CPU frequency.

Regarding a lower LSU, if the minority of instructions are multi-cycle load/store opera-
tions, lowering FWS should not save many cycles for task completion. A lower CPI means
that the minority of instructions need multiple cycles to complete. These instructions
should still scale well with CPU frequency, as seen in Section 10.1 by the add operation.
In theory, tasks that spend fewer cycles for load/store instructions and other multi-cycle
operations should execute more energy efficiently at a higher CPU frequency.
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Figure 10.26: LSU and CPI counters in proportion to cycles for tasks with lower counters
than 0.2. Measured at a CPU frequency of 80 MHz and The tasks are sorted
by the task order of energy saving potential as seen in Figure 10.12.

Figure 10.26 shows a threshold selection of tasks that both have a normalized CPI and
LSU counter that is lower than 20%. It is possible to mainly select tasks that per-
form most energy efficiently at the highest CPU frequency (compare with Figure 10.12).
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The only exceptional task is beebs_picojpeg, however in this particular case the energy
reduction at a lower frequency is not significant.

Regarding the detection rate for a MEECF, this method uncovers 27% of all BEEBS
tasks to scale well with CPU frequency.

Cycles Per Instruction A combination that is also presented by the ARM corporation
[55] is shown in Section 4.1.1.

Figure 10.27 shows the proportion of traced cycles to the calculated instruction count
to illustrate values that are independent on the actual trace length. A higher value
means that more cycles are needed to perform an instruction. Regarding the profiling
counters, a high cycles per instruction value is visible if both CPI and LSU make up a
high proportion of all task cycles.
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Figure 10.27: Cycles in proportion to the calculated instruction count (see Equation 4.1)
at a CPU frequency of 80 MHz. The tasks are sorted by the task order of
energy saving potential as seen in Figure 10.12.

It is clearly visible that a subgroup of the group of tasks that save cycles due to lowering
the FWS at lower CPU frequencies (leftmost tasks) have the highest cycles per instruction
values (compare with Figure 10.15). While it seems like most of the tasks that do not save
cycles at lower CPU frequencies have a value that is lower than 1,5 cycles per instructions,
some tasks also show a high value to up to 2,17 cycles per instruction.

Table 10.7 shows the linear correlation of the task property cycles per instruction of all
BEEBS tasks in comparison to the saved cycles of Figure 10.15 at selected frequencies.
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10 Evaluation of Tracing and Energy Results

Cycles Per
Instructions
Frequency
Group

Saved Cycles
Frequency
Group

Task Group-
ing

linear Correlation (Pearson)

80MHZ 13MHz ALL 0.1166
80MHZ 13MHz Task that save

cycles at lower
frequencies

0.4120

80MHZ 13MHz Task that do
not save cycles
at lower fre-
quencies

0.0928

Table 10.7: Highest correlations between the cycles per instructions task property at a
CPU frequency of 80 MHz and the saved cycles of Figure 10.15, grouped by
the task subgroups of Figure 10.12.

The correlation table shows that the Pearson correlation value of all tasks is unexpectedly
small. This is probably caused by the high fluctuation of values in the group of tasks
that do not reduce the total cycles at lower FWS.

By comparing the cycles per instruction values with the MEECF settings of Figure
10.12, it could be argued that the CPU frequency of 26 MHz can be configured if the
calculated cycles per instruction property minimally reaches a value of 2,35. The highest
CPU frequency should be selected below a value of 2,35. This threshold technique saves
energy for 6 out of the 19 tasks that save energy at lower CPU frequencies. Due to the
highest CPU frequency selection below the threshold, 13 tasks do not save energy. This
technique selects the most energy efficient or a more energy efficient frequency setting
for 78.7% (69−13

69 ) of all processing tasks. Thereby, the profiling counter values used to
calculate the cycles per instruction have a high accuracy, as seen in Figure 10.14.

10.4.7 Cycle Tracings at Different CPU Frequencies

The prior sections focus on the task tracings at the highest CPU frequency, as this is usu-
ally the standard clock configuration of boards used by RIOT. Measuring an application
at two different CPU frequencies enables to directly sense the saved cycles, to estimate
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the savable cycles at CPU frequencies that have not been measured and to calculate the
energy consumption dependent on the calculated cycles. As tracings at different CPU
frequencies are invasive in terms of performance reduction, the constraint of measuring
the cycles at only two different CPU frequencies is created to reduce the performance
impact.

Savable Cycles The savable cycles can be estimated per task by first calculating how
many cycles can be saved per FWS (SCFWS) dependent on the two cycle measurements
(80 MHz and a second measurement). Secondly, by applying SCFWS to Equation 10.3
the number of cycles at a CPU frequency that has not been measured (CY Cnm) can be
calculated.

SCFWS = (CY C80MHz − CY Cother)/(FWS80MHz − FWSother) (10.2)

CY Cnm = CY C80MHz − (FWS80MHz − FWSnm) · SCFWS (10.3)

Figure 10.28 shows the proportion of the calculated cycles per task (CY Cnm) in propor-
tion to the measured number of cycles at 80 MHz. It is visible that the cycle estimation
produces similar results to the measured cycle proportion of Figure 10.15. Nevertheless,
the proportion of estimated cycles at 13 MHz differs from the measured cycle proportion
of Figure 10.15. This is because the cycle estimations per task of Figure 10.28 are based
on cycle measurements at the CPU frequencies of 80 and 53 MHz. The inaccuracy of
this estimation is controllable by using a second cycle measurement at a lower CPU fre-
quency, but this increases the performance impact of the system due to the lower CPU
frequency.
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Figure 10.28: Calculated number of cycles per CPU frequency in proportion to the num-
ber of cycles at 80 MHz. The calculation is based on Equation 10.3 and
uses cycle measurements at 80 and 53 MHz. The tasks are sorted by the
task order of energy saving potential as seen in Figure 10.12.

From the perspective that cycle savings at lower CPU frequencies imply energy savings
(see Section 10.4.3), measuring cycles at two different frequencies detects 25 of 69 tasks as
being more energy efficiently performed at a lower CPU frequency. Under the assumption
that the CPU frequency can be lowered to 40MHz if a task shows a cycle reduction, 17
out of 69 tasks save energy, whereas for 9 tasks the total energy is increased. Thereby,
this technique selects the most energy efficient or a more energy efficient frequency setting
for 87% of all processing tasks.

Estimated Energy Proportion With the estimated cycles at all frequencies the energy
consumption per frequency can be calculated and used to detect a MEECF setting. The
detection is possible with the following Estimated Energy Proportion (EEP), which is
based on the Equation 2.6.

EEP =
Etotal80mhz

EtotalOther
=

α80mhz · C · V 2
80mhz · CY C80mhz + Pleak80mhz(V ) · CY C80mhz

f80mhz

αother · C · V 2
other · CY Cother + PleakOther(V ) · CY Cother

fother

(10.4)
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When tracing cycles at two different CPU frequencies and under the assumption that
the switching activity α is not changing, all factors of Equation 10.4 can be measured at
runtime, apart from the static power consumption Pstat(V ) and α · C.

Extrapolated Static Power Consumption The static power consumption is actually
not dependent on the task behavior, but on the system configuration (see Section 2.1.3).
This means, for a given system configuration it can be calculated offline. Therefore,
the power consumption results at different CPU frequencies are extrapolated to a CPU
frequency of 0 MHz. This extrapolation of the static power consumption is shown in
Figure 10.29. The average power consumption per CPU frequency is derived from the
power consumption of all tasks of Figure 10.11 with the DVS Policy Fast Flash. As the
power consumption with the DVS Policy Low Voltage is only measured at a single CPU
frequency, an extrapolation for the static power consumption is not possible and will not
be considered.
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Figure 10.29: Average static power consumption per CPU frequency of all tasks of Figure
10.11 and extrapolated power consumption to a CPU frequency of 0 MHz.

The extrapolated static power consumption PleakCalc of the Nucleo-L476RG board results
in 2.78207mW at a CPU voltage of 1.2V.

Average alphaC (α ·C) While the total load capacitance of a circuitry C is hardware
dependent, the switching activity α is task dependent (see Section 2.1.4). The factor α

is therefore expected to change for different tasks and further slightly at different CPU
frequencies with tasks that save cycles at lower frequencies. To be able to estimate the
energy consumption proportion of Equation 10.4, an average alphaC for all tasks and
CPU frequencies is assumed. Therefore, alphaC first has to be calculated offline for all
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tasks at different CPU frequencies with Equation 10.5, which is derived from Equation
2.6.

α · C =
EtotalMeasured(f)− PleakCalc · CY C(f)

f

V 2 · CY C(f)
(10.5)

Figure 10.30 shows the task and frequency dependent alphaC values for all BEEBS tasks.
Based on this data an average alphaC value between all tasks and all CPU frequencies
is calculated and results in a factor of 3.876473 · 10−10.
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Figure 10.30: Calculated α · C factor at different CPU frequencies with Equation 10.5.
The tasks are sorted by the task order of energy saving potential as seen in
Figure 10.12.

Results of Estimated Energy Proportion With the extrapolated static power con-
sumption of the STM32L476RGT6 MCU and average alphaC factor, Equation 10.4 can
be used to detect a MEECF setting per task. Figure 10.31 shows the calculated EEP

per task at different CPU frequencies. Thereby, the cycles only have been measured for
the CPU frequencies of 80 and 13 MHz.
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Figure 10.31: Estimated Energy Consumption as shown in Equation 10.4 with cycle mea-
surements of 80 and 13 MHz, grouped by CPU frequency. The tasks are
sorted by the task order of energy saving potential as seen in Figure 10.12.

Comparing Figure 10.31 with the estimated cycles per task of Figure 10.28 shows that
tasks like beebs_miniz are correctly selected as being most energy efficiently performed
at the highest CPU frequency, despite their savable cycles at lower CPU frequencies.
This behavior is probably caused by the static energy which is increased at lower CPU
frequencies.

Comparing Figure 10.31 with the measured energy proportion per task of Figure 10.12
shows that all tasks that perform most energy efficiently at the highest CPU frequency
are correctly identified by the energy estimation. Many tasks that save energy at lower
CPU frequencies are correctly identified as being most energy efficient at the lowest or
second-lowest CPU frequency. Regarding the amount of energy savings, the estimated
energy savings differ from the measured energy savings by up to 10%, as seen by task
beebs_nettle_cast128.

Assuming the estimated most energy efficient CPU frequency of Figure 10.31 will be
selected for all processing tasks. Thereby, this technique selects the most energy efficient
or a more energy efficient frequency setting for 95.6% (66 of 69 tasks) of all processing
tasks. The tasks beebs_nbody, beebs_cubic and beebs_nettle_aes only slightly increase
energy consumption by selecting the CPU frequencies of 26 MHz.
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10 Evaluation of Tracing and Energy Results

10.5 Tracing Overhead for Selected Task Properties in
Practice

Assuming we have a deployed system and want to trace certain application parts with the
task characterization model to assess task properties and increase the energy efficiency.
In this section the overhead in terms of number of tracings will be highlighted and
optimization possibilities are discussed. The task properties of cycles per instruction
and cycles saved are examined as they can be used to select MEECF settings. Further,
the flash access traced with comparators is examined as it has the potential of being
valuable for the selection of a MEECF setting.

10.5.1 Cycles Per Instruction

Assuming the cycles per instruction property is selected as it does not need to be traced
at different CPU frequencies. To obtain this task property with the calculation shown
in Section 4.1.1 and considering the limitation of the implemented task characterization
model (see Table 6.2) a total of 5 tracings have to be performed for each application
part.

As shown in Figure 10.24, the CPI and LSU counter have the biggest impact on the
instruction calculation. It could be argued that only these both counters are required,
therefore the necessary number of tracings could be reduced to 2.

The profiling counters are designed to be able to generate overflows simultaneously and
the packet encoding of an ECP can hold multiple profiling counter flags in one packet
(see Figure 4.1). The feedback mechanism does not deserialize the trace packets and
can not distinguish the packet flags of an ECP. Therefore, the separate tracings of the
profiling counters are necessary to trace the individual profiling counter information (see
Table 6.2). As the CPI and LSU counter are added for the cycles per instruction metric,
the hypothesis is formed that a simultaneous overflow generation might be possible for
this special case. This would reduce the necessary number of tracings to a single one.
Analyzing this optimization has not been the scope of this thesis, but future work has to
investigate whether this optimization offers the necessary information content.
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10.5.2 Cycles Saved

Assuming it has been decided to use the cycle saving metric of Section 10.4.7 alone, as
this resulted in the most confident tracing results. Even though tracing the 32 Bit cycle
counter does not require the timer counter feed mechanism, the cycles saving metric is
invasive as it requires to trace the application parts at different CPU frequencies. When
using the two highest CPU frequencies this impact is considered to be small, but it
requires to trace the same part of a program twice.

To reduce the negative impact of tracing cycles at lower CPU frequencies in situations
when the embedded device performs important application load, it could be argued to
perform an initial tracing of multiple different application parts and frequencies. This is
shown by Rottleuthner et al. [10] with their PU-assessment.

10.5.3 Flash Access

The benefit of counting the flash access to detect tasks that save cycles at lower CPU
frequency is limited (see Section 10.4.4). Many DTAOP packets are lost due to the high
packet generation of the comparators in combination with the bandwidth bottleneck of
the SWO connection. Furthermore, the comparators track both the flash access that
results in an actual load from flash memory and the flash access that can be served by
the flash data cache. Nevertheless, the ability to detect cycle saving tasks via flash access
counting can be improved. MCUs that support the parallel trace port of the TPIU can
solve the bandwidth bottleneck and additionally enable the access to instruction access
tracing with an ETM. A mechanism that counts the flash cache misses or gives insight
on the flash access pattern can improve the differentiation of actual flash loads and flash
cache acceleration. Furthermore, some MCUs might not have a flash cache.

Still, as shown in Section 6.3.1, to fully trace the flash access a total of 8 traces per
flash access type (data, instruction) are needed for the 1 MByte of flash size on the
STM32L476RGT6 MCU. However, the amount of memory space that has to be observed
can be adjusted to the application firmware footprint size. The firmware size is known
statically and can therefore potentially lower the 8 required traces. Furthermore, on
MCUs with similar flash size, the number of comparators and the observable range per
comparator is possibly bigger.
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11.1 Achievements

This thesis proves that debug components of the Cortex-M4 CPU can be instrumented
to obtain task specific properties at runtime without the need to use dedicated hardware
debug components. The obtained task properties are useful for indicating whether tasks
save energy by lowering the CPU frequency and whether tasks already execute at the
most energy efficient CPU frequency.

The instrumented debug and trace components of the Cortex-M4 processor are avail-
able on three more Cortex-M processors [3]. Consequently, the trace components are
potentially usable on 49.23% of all RIOT boards. The designed feedback mechanism
of counting trace packets with a timer counter produces a very low hardware overhead
of only two resistors and three cables. Furthermore, timers with a counter width of 32
Bit that can be driven by one external clock source are available on most RIOT boards
[58].

Selecting the processing tasks of the BEEBS is a reasonable choice to evaluate the traced
task properties with. The benchmark suite offers 69 different tasks, of which 19 tasks
reduce energy consumption at lower CPU frequencies and 50 tasks perform most energy
efficient at the highest CPU frequency.

The task characterization model detects whether tasks have a high flash access, a low
RAM access or utilize peripherals like the SPI unit without the need to inspect or manip-
ulate the source code. By tracing the profiling counters, it is possible to detect whether
the CPU is sleeping, is performing exception processing or is executing load/store instruc-
tions. Furthermore, it is possible to detect how many instructions have been performed
in a certain amount of cycles.
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11 Conclusion and Outlook

Using this kind of information about tasks together with DVFS energy can be saved by
lowering the CPU frequency and voltage. When a task sleeps most of its execution cycles
or a high SPI peripheral access is traced, the lowest CPU frequency shows the lowest
energy consumption. Other traced task properties do not show this simple correlation.

It has been discovered that some tasks save cycles at lower CPU frequencies due to
lowering the FWS. Cycle saving tasks are highly correlated with tasks that also save
energy when lowering the CPU frequency while increasing the execution time less than
the factor of the CPU frequency reduction.

A shown threshold technique that uses the calculated cycles per instruction property
selects the most energy efficient or a more energy efficient frequency setting for 78.7%
of all processing tasks. Thereby, it is traceable without changing the CPU frequency.
Tracing the cycles of a task at minimally two different CPU frequencies allows to select the
most energy efficient or a more energy efficient frequency setting for 87% of all processing
tasks. The required tracing at multiple CPU frequencies comes with the inconvenience of
invasively changing the system performance. With additional information of the offline
measured device static power consumption and alphaC factor, the traced cycles can be
used to estimate energy consumption. This selects a more energy efficient setting for
95.6% of all processing tasks.

The base for the evaluation are the BEEBS tasks, where one task uses up to 35% less
energy with 30% longer execution time by reducing the CPU frequency. On the other
hand, if the frequency setting is misconfigured the consequence is an increase in execution
time at a factor of 6 and an increased energy consumption of up to 30%. These energy
values do not incorporate the energy overhead due to changing the frequency/voltage
setting or the energy overhead of tracing task properties with the implemented task
characterization model. Tracing the profiling counters, which are used to calculate the
cycles per instruction property, increases the power consumption of BEEBS tasks by
6.32% to 8.01% dependent on the task activity and configured profiling counter. But it
has to be noted that tracing does not always need to be active.

11.2 Problems

Some tasks save cycles due to FWS reduction at lower CPU frequencies. This cycle
reduction implies energy savings. Therefore, a correlation with the flash access has been
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examined. The flash data access can be traced by comparators that generate packets
when matching an accessed flash memory address. Unfortunately, many generated pack-
ets are lost due to the high packet generation of the comparators in combination with
the bandwidth bottleneck of the TPIU output connection. Furthermore, the compara-
tors track both the flash access that results in an actual load from flash memory and the
flash access that can be served by the flash data cache. This lack of access differentia-
tion results in tasks that show a high flash access but do not save cycles at lower CPU
frequencies. The bandwidth bottleneck is a problem of the slow SWO connection which
is the only available connection on the MCU package of the STM32L476RGT6. MCUs
that support the parallel trace port with a higher bandwidth should be able to reduce
this bottleneck. The lack of differentiation for flash access is only a problem for MCUs
that implement a flash cache. Additional information on cache misses or the flash access
pattern can improve this differentiation for MCUs with flash caches.

Some tasks also save many cycles at lower CPU frequencies when the instruction flash
cache can not accelerate the flash instruction load. Again, due to the available SWO
connection on the used STM32L476RGT6, this type of memory access has not been able
to trace. MCUs that support the parallel trace port and the optional ETM module
should also be able to trace instruction flash loads.

The LSU profiling counter increases if additional cycles are needed for load/store in-
structions. Therefore, it tracks flash data access that takes multiple cycles to perform.
The approach to use the LSU profiling counter to indicate cycle savings at lower CPU
frequencies fails. The counter also counts cycles for RAM access, but RAM access does
not correlate to cycle reduction with lower FWS. The removal of RAM cycles from the
measured LSU counter with the RAM comparator counter was not possible with high
accuracy. The low accuracy is again caused by the bandwidth bottleneck of the SWO.
The accuracy will be improved with a higher bandwidth trace port.

11.3 Future Work

Many problems deal with the high generation of packets when using comparators in
combination with the bandwidth bottleneck of the available SWO connection on the
used STM32L476RGT6 MCU. Another board with a MCU that enables tracing over the
higher-bandwidth parallel trace port should be examined. Consequently, tracing the flash
data access for selecting tasks that save cycles at lower CPU frequencies and the approach
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to remove the RAM cycles from the LSU counter should be re-evaluated. Therefore, it
would make sense to investigate a MCU that also implements the ETM module. This
also enables to trace instruction access with the comparators and potentially provides
trace filtering features. A reasonable starting point might be to use the SLSTK3402A
board, which provides access to the parallel trace port and the ETM module [54].

While this thesis is focused on tracing tasks at a granularity of 1s, further research
should examine the impact on the measurements with tracings at a finer granularity.
Furthermore, the benchmarked tasks have been measured separately on a single thread.
Future work has to examine at which accuracy task properties can be attributed to tasks
or threads in dynamic scenarios with multiple threads, multiple tasks and different task
lengths.

Lastly, there may even be more potential in the data that is shown, which has not been
discovered yet. A future approach could be to evaluate the data with a machine learning
approach or other techniques that search for additional correlation between traced data,
saved cycles and measured energy consumption.
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Glossary

Flash Wait State Adaption A feature that adapts the amount of FWS when scaling the
CPU frequency or voltage. The adaption is limited to constrains and should be
performed correctly to preserve the working of the flash memory. Lowering the
CPU frequency usually lowers the FWS.

RIOT “The friendly Operating System for the Internet of Things. Riot is a free, open
source operating system developed by a grassroots community gathering companies,
academia and hobbyists, distributed all around the world. [72]”.

Task Characterization The process to trace a set of task properties for a given task with
a task characterization model.

Task Characterization Model A component that dispenses task properties for a given
task by tracing the task. It uses resources like for example cortex-M trace features
to trace task properties. The resources are made accessible with a timer counter
feedback mechanism. Software defines the start- and endpoint of a trace. The aim
of the model is to capture task properties that indicate the performance utilization
of the traced task.

Trace Method The type of trace feature that is used to measure a task property. The
two types are profiling counter tracing and tracing via address matching with com-
parators.
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