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Abstract
Automatic testing tools generate potentially large SMT test cases that trigger bugs. Cur-
rent reducers are ineffective in reducing these test cases since they do not consider the
semantics of the language while reducing it. We developed a novel framework for effec-
tive and efficient program reduction customized for failure-inducing test cases in SMT-
LIB v2 format to ease testing and debugging of SMT solvers. Our framework supports
domain-specific reduction rules that should not change the semantics of the program.
Our evaluation results on SMT programs triggering bugs in SMT solvers demonstrate
SMT-Reducer’s practicality for shorter reduction time compared to the state-of-the-art
C-Reduce for C/C++.
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Kurzzusammenfassung

Automatische Testwerkzeuge erzeugen potenziell große SMT-Testfälle, die Fehler aus-
lösen. Aktuelle Reduzierer sind bei der Reduzierung dieser Testfälle unwirksam, da sie die
Semantik der Sprache nicht berücksichtigen, während sie diese reduzieren. Wir entwick-
elten ein neuartiges Framework für eine effektive und effiziente Programmreduzierung,
das speziell für fehlerinduzierende Testfälle im SMT-LIB v2-Format angepasst wurde,
um das Testen und Debuggen von SMT-Solvern zu erleichtern. Unser Rahmenwerk un-
terstützt domänenspezifische Reduzierungsregeln, die die Semantik des Programms nicht
verändern sollten. Unsere Evaluierungsergebnisse demonstrieren die Praxistauglichkeit
von SMT-Reducer. Im Vergleich zum generischen C/C++ Reduzierer, der auch SMT-
LIBv2 Programme reduzieren kann, reduziert SMT-Reduser SMT-LIB Programme deut-
lich schneller.
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1 Introduction

This chapter presents the motivation behind our work and states our primary objectives.
It also describes how the thesis is overall structured.

1.1 Motivation

Satisfiability Modulo Theory (SMT) solvers, notably Z3 [18] and CVC4 [4], represent
the core reasoning engines in numerous formal methods applications such as symbolic
execution engines [6, 11], program synthesis [30], solver-aided programming [33], and
program verification [9, 10]. However, these tools are affected by bugs like any other
piece of software, and they might lead to incorrect results, which in safety-critical domains
might cause significant damage.

To overcome this severe problem, the SMT community started undertaking great efforts
in reporting increasingly often the SMT bugs, which caused the failure of the solvers.
Often, these test cases are large and contain many elements that are insignificant for
reproducing the bug. These aspects make the debugging process much more arduous
and slower for the programmers and decreasing their focus. In fact, according to [15],
the time needed for software maintenance is significantly higher compared to the one for
other programming tasks. Hence, reducing a failure-inducing test case would be helpful
before manually investigating an issue. Reducing a failure-inducing test case refers to
the process of removing elements from the original test case that are unnecessary to
reproduce a bug, or to simplify more complex elements to ones that are shorter or easier
to understand.

The importance of reducing test cases is also stressed by the SMT solver developers
themselves. In the bug tracker of the widely-used CVC4 and Z3 solvers, we found several
cases in which the developers asked users to report minimal examples [23, 24, 21, 20,
22, 25]. For instance, in the issue [24], the developers of the Z3 team asked for input
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1 Introduction

reduction: “could you please reduce the files as well? It would help a lot the few Z3
folks.” . Then, in [24], the developers postponed a bug fix due to its test case size and
favoured the smaller ones: “without a minimalistic test case, I cannot take more seq bugs
before the already reported ones or the ones with small repros have been addressed.”

Nevertheless, reducing inputs in the SMT domain is mostly performed as manual work,
which is considered time-consuming by the users. A number of programming techniques
exist, namely Delta Debugging (DD) [36], Hierarchical Delta Debugging (HDD) [16]
and C-Reduce [27]. However, applied to our domain, they do not execute as well as
expected in terms of reduction efficiency, i.e. reduction time and size of reduced test
case. Additionally, they may be designed for other domains than SMT.

1.2 Objective

In this thesis, we present a novel framework for effective and efficient program reduc-
tion customised for failure-inducing inputs in SMT-LIB v2 format to ease testing and
debugging of SMT solvers.

Based on the framework mentioned above, a new domain-specific reducer for SMT-LIB
v2 format was designed and implemented to overcome the limits of other reducers in the
SMT domain. The tool supports domain-specific reduction rules that should not change
the semantics of the program. Moreover, it was built on the parsing infrastructure of
the state-of-the-art delta debugger ddSMT [19]. ddSMT minimises SMT benchmarks in
SMT-LIB v2 format on which a given executable shows failure-inducing behaviour. It
also supports all SMT-LIB v2 logics.

2



1 Introduction

1.3 Outline

In Chapter 1, we present the motivation and objectives of our work.

In Chapter 2, we describe the minimal context for the thesis.

In Chapter 3, we present a high-level idea for the overall approach.

In Chapter 4, we describe the implementation, architecture and leading technologies.

In Chapter 5, we present the evaluation and the experimental results.

In Chapter 6, we describe the conclusions of this work.
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2 Background

This section provides essential background information on SMT-LIB, the program re-
duction problem, respectively on the state-of-the-art program reduction frameworks and
tools with their characteristics.

2.1 SMT-LIB Format

An SMT (short for Satisfiability-Modulo-Theories) formula is a generalisation of a Boolean
instance, in which several variables are replaced by predicates from varied background
theories such, e.g., quantifier free linear integer arithmetic (QF_LIA). For instance, the
formula (c ≥ 1 ∧ e ≤ c) ∧ d ≥ e ∨ a ∨ (¬b) contains boolean variables a, b and integer
variables c, d, e. Predicates (e.g. non-Boolean variables) are evaluated, w.r.t the rules of
the specific background theory. Logical operators such as conjunctions (∧), disjunctions
(∨) and negations (¬), respectively quantifiers (∃, ∀) may also be present in an SMT for-
mula [17]. With the above, the determination of an SMT formula in certain background
theories is computed by an SMT solver.

SMT-LIB (shortly for Satisfiability-Modulo-Theories Library) is proposed in [26] as the
standard language for SMT solvers in order to advance their theory and practice. SMT-
LIB is also used for the set of benchmarks against which to test and compare solvers.
SMT-COMP [5] is an annual competition for SMT solvers, which aimed from the be-
ginning for the adoption of the standard SMT-LIB format by SMT solver development
teams. Due to this, most SMT solvers have accepted the SMT-LIB format.

The unique aspects of the SMT-LIB language related to the SMT solvers are: the underly-
ing logic such as first-order logic, the background theory - the theory against satisfiability
is verified-, the input formulas - the formula types accepted as input -, and the interface
- the set of functionalities implemented by the tool.
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2 Background

Since its first appearance, the language has been constantly revised to meet additional
needs. These may be setting various solver parameters, declaring new symbols and even
asserting and retracting logical expressions, as well as exploring the satisfying assignments
produced by the solver. In 2010 SMT-LIB version 2 is introduced in [7]. The authors
claim that there are major backward compatibility issues between the two versions, even
though SMT-LIB version 2 is based on the first one.

The SMT-LIB v2 syntax is similar to the syntax of the LISP programming language. A
formula using the SMT-LIB v2 syntax is shown as an example in Listing 2.1. Working
under all possible logics defined in SMT, the program first sets the information regarding
SMT-LIB version and the option of enforcing model conversion. Secondly, it declares
two variables a and b of type Real. Next, it adds the formula ( xor (>= b 0) (>= (+
(/ 5 b )) 2) (< a 0)) in the current assertion stack and searches for a model of all logics
that satisfies this formula on the assertion stack. Similarly, it proceeds for the formula
(< (+ (∗(− 6) a )) 4). When both models are computed, the solver is instructed to exit
the program.

Listing 2.1: A simple example formula in SMT-LIB v2 format

( set−i n f o : smt−l i b−ve r s i on 2 . 6 )
( set−opt ion : s o l v e r . enforce_model_conversion true )
( dec la re−fun a ( ) Real )
( dec la re−fun b ( ) Real )
( a s s e r t ( xor (>= b 0) (>= (+ (/ 5 b ) ) 2) (< a 0 ) ) )
( check−sa t )
( a s s e r t (< (+ (∗ (− 6) a ) ) 4 ) )
( check−sa t )
( e x i t )

2.2 Program Reduction

An essential step in debugging and testing is program reduction. Given a program P

that exhibits a particular property (e.g., a satisfiable SMT formula that is computed as
unsatisfiable by an SMT solver), program reduction aims to produce a smaller program
from P that maintains the same property. The reduction process continuously produces
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smaller program variants and checks them against the property. The final result is
represented by the smallest variant that preserves the property.

A major NP-complete problem in program reduction is computing the global minimality,
according to [36] and [16]. Thus, computing the minimum result is practically limited
by the program reducer’s capacity. In this scope, there are two important notions: 1-
minimality [36] and 1-tree-minimality [16]. 1-minimality is defined as follows: a program
P is 1-minimal if any variant p derived from P by removing a single element from P
no longer exhibit the property of interest. Similarly, a program P is 1-tree-minimality
if the reducer cannot further simplify any node of the tree representation of P . If a
reduction algorithm does not produce a 1-minimal variant, then it does not produce a
1-tree-minimal variant. This is due to the fact that the elements in the variant must also
be nodes in the tree.

2.3 Reduction Frameworks and Tools

The state-of-the-art program reduction frameworks and tools are Delta Debugging [36],
Hierarchical Delta Debugging [16], C-Reduce [27], ddSMT [19] and Perses [32].

2.3.1 Delta Debugging

Zeller and Hildebrandt proposed an algorithm called Delta Debugging [36] (shortly DD),
which generalises and simplifies failing test cases to minimal test cases, respectively takes
into consideration the difference between passing and failing test cases.

The algorithm is used to simplify HTML code that finally has only lines with code
responsible for failure. The interest in this work is centred around the “circumstances,”
i.e. those whose changes may cause modified program behaviour, called changeable
circumstances. In order to know the possible outcomes (success, failure, indeterminate),
the attesting function was built to test the programs. The local minimums for test cases
are introduced to have fewer needed tests. The binary search and a large number of
smaller subsets of each test case are used to improve the chance to get a failing test case
even if more subsets involve more tests. The algorithm of DD can be seen in Figure 2.1
[36].
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Figure 2.1: The general Delta Debugging algorithm

In practice, this automated test case simplification is an integral part of other automated
testings as it can be seen in next subsections [could mention other applications?].

The authors reported the results obtained with the proposed algorithm for GNU C com-
piler, Mozilla web browser and some UNIX utilities.

To minimise the failing test case and to have reduced time for making the difference
between the failing test and the passing test, the isolation of failure-inducing differences is
used instead of the simplification approach. In fact, isolation means finding the relevant
parts of the test case. In the isolated algorithm, it is proposed to isolate 1-minimal
differences between passing and failing test cases.

2.3.2 Hierarchical Delta Debugging

Misherghi and Su presented a technique called Hierarchical Delta Debugging [16] (shortly
HDD) for minimising failure-inducing programs. In comparison to DD, HDD considers
the input structure. However, this makes use of the DD in each level of a program’s
tree-structured input to obtain fewer, but syntactically valid tests. The domains of
applicability of HDD range from programming languages, HTML/XML to video codecs
and UI interactions.

For finding the parts necessary for elimination, the algorithm chooses the boundaries of
the tree from bottom to top as the points for division in order to assemble the original
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Figure 2.2: The Hierarchical Delta Debugging algorithm

structure. Before processing a tree level, the number of nodes must be computed, and
each node is assigned a tag in order to set the configuration of testing. After computing
the minimum configuration per tree level, the input is cleared through providing prim-
itives, i.e. removing all irrelevant nodes from that level. The algorithm can be seen in
Figure 2.2 [16]. The authors also present other algorithms derived from HDD satisfying
1-minimality or 1-tree-minimality better than HDD: HDD+ and HDD*.

The authors reported that HDD was evaluated using several bug-triggering C programs
in GCC compiler, bug-triggering XML programs in the Mozilla web browser. The results
of this evaluation are compared with those given by the original DD algorithm and the
alternative HDD algorithms. The comparisons follow the input size (sizes or tokens), the
number of property tests and the final size on the same software program for each method
in part. As it can be seen in the results reported by authors, the HDD framework has
better results for all indicators mentioned above or similar results compared to HDD*.

2.3.3 C-Reduce

Regehr et al. presented a novel framework called C-Reduce [27] for program reduction.
For this, the generic fixpoint computation is used to invokes modular transformations for
performing reductions. The authors also show two other program reducers (Seq-Reduce
and Fast-Reduce) which are less efficient than C-Reduce. The tests under experimental
results are obtained for programs in C language. The algorithm of C-Reduce can be seen
in Figure 2.3 [27].
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Figure 2.3: The C-Reduce algorithm

By a transformation, the authors meant the iterator which traverses a test case to perform
modification of the source code. The iterator consists of 3 functions: new, transform
and advance. New is used to create a new transformation state object, transform is
used to modify a state object if possible, and finally advance is used to iterate further
to the next possible transformation. Another critical aspect of a transformation is its
type, being five types of transformations. The first kind of transformation does peephole
optimisations. The second one generates localised but non-contiguous changes. The third
operation eliminates one or more contiguous chunks of text from the input. Then, the
fourth transformation is responsible for calling external parties to improve the printing.
Finally, the fifth transformation performs several C compiler like optimisations.

The authors report that C-Reduce was tested several bug-triggering C programs, and
the results are compared with those given by Berkely delta, Seq-Reduce and Fast-Reduce
reducers. The comparisons follow the original input size, reduction time and the final size
on the same C program for each method in part. As it can be seen in the results reported
by authors, the C-Reduce framework has better results for all indicators as mentioned
earlier.
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2.3.4 ddSMT

Aina Niemetz and Armin Biere proposed a delta debugger called ddSMT [19] for program
minimisation. This delta debugger follows the authors’ previous delta debugger called
deltaSMT and makes use of the original DD algorithm (a divide-and-conquer strategy).
The tests under experimental results are obtained for programs in the SMT-LIB v2
format. The proposed tool works in sessions, where a session consists of several simplifi-
cation rules. These simplifications range from macros (command define-fun), command-
level scopes (commands push and pop) to named annotations (attribute :named). In
each round, the tree nodes are selected according to a specific property. Then, they are
exchanged by one of the substitutions using an altered version of the original DD. This
process is performed in a BSF manner. The core substitution algorithm in ddSMT can
be seen in Figure 2.4 [19].

The authors reported that ddSMT was evaluated from 2 angles. The first one concerns
the parsing infrastructure of the tool, for which the entire SMT-LIB v2 benchmark set
was used. The second angle is the delta debugger. Its testing was performed using
assembled instances and SMT-LIB v2 benchmarks as input, respectively shell scripts
and two real solvers: Boolector5 and CVC46. Additionally, the authors stated that a
direct overall performance of ddSMT compared to other reducers, including deltaSMT
specialised for the SMT-LIB v1, was not possible at that moment.

2.3.5 Perses

Chengnian Sun et al. proposed a framework called Perses [32] for software program
reduction. For this, the formal syntax is used to have steps with smaller syntactically
valid variants. The tests under experimental results are obtained for programs in C and
Java languages.

For the beginning, the proposed framework converts the grammar of the working pro-
gramming language to the normal form (called by the authors “PNF Normalization”)
building a parse tree, from which the irrelevant parts are deleted. The PNF Normalisa-
tion consists of 3 steps: preprocessing, transformation and normalisation. Preprocessing
is used to eliminate E productions and unreachable rules, the transformation is used to
transform the code into a left recursion form, and finally, the normalisation step obtains
quantified rules.
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Figure 2.4: The core substitution algorithm in ddSMT in Python-style pseudo code

After this PNF Normalization, the main reduction follows, as it can be seen in Figure ??
[32]. That works in a parse tree w.r.t the PNF grammar form. To obtain a minimised
tree that has no irrelevant nodes, the authors treat in a similar way the Kleene-Start
node and Optimal Nodes. In order to reduce Kleene-Plus Node, one constraint is added
to be sure that there will be at least one child in each node, to avoid syntax errors.
Finally, all tree nodes are reduced with one of their compatible descendants,

The authors reported that Perses was tested using 20 large C programs, and the results
are compared with those given by DD, HDD, and C-Reduce frameworks. The compar-
isons follow the number of property tests, reduction time and reduction speed on same
software program for each method in part. As it can be seen in the results reported by
authors, the Perses framework has better results for all metrics above. Regarding the
Java language, the Perses results are compared with those given by HDD and are better
for Perses as it can be seen in the reported results.

11
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Figure 2.5: The algorithm for the main reduction
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3 Approach Overview

This chapter presents an overview of the reducer with its different approaches, respec-
tively several reduction rules implemented. Moreover, it shows a motivating example for
our work.

3.1 SMT-Reducer

We propose SMT-Reducer as a program reduction framework for failure-inducing inputs
in SMT-LIB v2 format. Our conceptual insight is to exploit the semantics of the SMT-
LIB programs under reduction rather than their formal syntax (i.e. grammar) to generate
smaller, syntactically valid variants.

The framework has a number of SMT-specific reduction rules, all of which are sound, i.e.
they should not affect the semantics of the SMT formula. An example of an SMT-specific
reduction rule is reducing conjunction of a term a and the implicit constant 1 (e.g. (and
a) to the term a according to the monotone laws of Boolean algebra. A similar example
applies to the disjunction of a term a and the implicit constant 1 (e.g. (or a)). The
reduction rules alongside their type are further classified and described in 3.3.

The reduction algorithm of SMT-Reducer can work either in an iterative approach or in
a recursive approach. The iterative approach sequentially applies mutations on a single
state until no further mutations can be applied. In contrast, the recursive approach
generates all possible combinations of reduction applications in both quantity and order.
Recursively generating recursive states is more time consuming, as all possible combina-
tions of reductions are applied in all order combinations, as well as saving each new state
to disk and checking each state’s solver result. At the same time, this method will use
more resources for maintaining these states, both in storage and RAM. However, this
approach ensures completeness as it does account for all possible outcomes, and can be
extended to support fault-recovery and pause/resume functionality as all current states
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3 Approach Overview

Figure 3.1: The overall workflow of SMT-Reducer

are saved. However, in contrast, the iterative variant will continuously apply reductions
on the same state, thus avoiding generating all combinations of reduction and order,
while still producing a valid result in the end. This procedure will result in a more effi-
cient process in terms of time and resource usage at the expense of completeness. These
approaches are further explained in the following sections.

Figure 3.1 shows the overview workflow of SMT-Reducer for reducing a SMT-LIB v2
formula considering the property of interest. Firstly, it parses the formula into a parse
tree SF. Then SF is sent to the reduction flow, which contains several domain-specific
reduction rules. SMT-Reducer progressively applies various rules on the tree and checks
the property test. Finally, it outputs the minimized program upon termination.

It is worth note that some implementation details have been left aside in the diagrams
for simplification purposes.

3.2 Motivating Example

We illustrate SMT-Reducer with a real failure-inducing SMT-LIB v2 test case reported
to the CVC4 development team [28]. The full algorithm for each approach is detailed,
along with the approach itself. Figure 3.2a shows a 86-byte program. Working under all
possible logics defined in SMT, the program declares a variable v of type Real, and adds
the formula (and (or (= (* v v))) 0) in the current assertion stack. Finally, it searches
for a model of all logics that satisfies the current formulas on the assertion stack. As
mentioned in the issue report, the behaviour of (= (* v v) 0) represents the root cause of
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the assertion failure. Thus, we consider it the property of interest in our example. Then
SMT-Reducer outputs a minimized program that eliminates the and nesting and prints
only (= (* v v) 0).

Initially, SMT-Reducer parses this formula into the parse tree, as it can be seen in Fig-
ure 3.3a. Following this, it collects from each scope all commands and their arguments,
which act as tree nodes. In our example, these are set-logic, declare-fun, assert, respec-
tively check-sat.

After this step, the algorithm begins determining for each command whether a particular
reduction rule can be applied. The first node simplified is the and node since it is a
conjunction of a term and the implicit constant 1. Finally, or node is reduced due to being
a disjunction of a term and the implicit constant 1. In both cases, the tree containing
the nesting operator is replaced with its only child maintaining the property of interest
of the original input while the semantics remaining unchanged. Figure 3.2c shows the
final, reduced output, whereas Figure 3.3b shows the final reduced parse tree. As shown
in Figure 3.2c, the reduced program preserves the logics set, the variable declaration, and
the satisfiability check. However, it has a smaller formula on the assertion stack. The
size of the reduced program is 75 bytes.

3.3 Reduction Rules

Given a test case T in SMT-LIB v2 format that exhibits a property, our goal is to apply a
series of reduction rules to generate the smallest variant of T that preserves the property.
In our framework, these reduction rules are classified into two main categories: sound
rules and unsound rules.

A sound reduction rule applied to T is highly likely to maintain the semantics of T. For
instance, (and a) reduced to a represents a semantic equivalence of the two statements
due to the fact that the result of both is dependent to the value of a. The sound reduction
rules implemented in SMT-Reducer can be seen in Table 3.1.

Meanwhile, an unsound reduction rule applied to T is supposed to change the semantics
of T. An example for this is deleting the command (+ a b c) from a formula.
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( set−l o g i c ALL)
( dec la re−fun v ( ) Real )
( a s s e r t ( and ( or (= (∗ v v ) 0 ) ) ) )
( check−sa t )

(a) Original

( set−l o g i c ALL)
( dec la re−fun v ( ) Real )
( a s s e r t ( or (= (∗ v v ) 0 ) ) )
( check−sa t )

(b) SMT-Reducer: first success

( set−l o g i c ALL)
( dec la re−fun v ( ) Real )
( a s s e r t (= (∗ v v ) 0) )
( check−sa t )

(c) SMT-Reducer: final output

Figure 3.2: A simple example formula in SMT-LIB v2 format

(a) The original parse tree simplified for illustra-
tion purpose

(b) The reduced parse tree

Figure 3.3: The parse trees given the Example in Figure 3.2
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Our tool only performs so-called “sound” reductions, that are expected to leave the pro-
gram’s semantics unchanged. Our intuition is that each reduction step has a high proba-
bility of still exhibiting the property of interest. The intuition behind the and/or nesting
rule, respectively the operator nesting is based on the monotone laws of Boolean alge-
bra [2]. In the case of the negation simplifications, these are established from ordinary
algebra and nonmonotone laws of Boolean algebra. According to the SMT-LIB [7], the
language supports syntactic sugar for a conjunction of same-type binary functions. The
binder simplifications are motivated by the compiler like transformation for eliminating
unused variables.

3.4 Iterative Approach implemented in SMT-Reducer

Figure 3.4 presents the detailed steps of our approach performed iteratively. First, we
parse the input in our internal representation using the ddSMT Parser [19]. This parsed
input is considered the initial state, from which the set of commands is acquired. A
command is treated as a tree node.

For each command, we verify the applicability of each reduction rule described in Table
3.1. If the reduction rule can be applied on the current command, then we increment
the counter of applied reductions and reflect the changes on the formula. Otherwise, we
attempt the same reduction on the children of the command. After applying a reduction
rule, if the rule was applied at least once, we also export the variant back in SMT
representation and pass it to the SMT solver, which returns the solver result. In case
the solver result is different from the initial property, we restore the previous state,
re-initialise the set of commands and reapply the same reduce flow to all commands.

After processing all commands, we then verify whether there was at least one reduction
applied in the previous round. If this is the case, we reapply the same reduce flow to all
commands. Otherwise, our formula can no longer be reduced, and we stop the reduction
process. The final result is computed by returning the formula with the smallest size
from all the intermediate states valid w.r.t the solver result.

17



3 Approach Overview

Figure 3.4: Overview of the Iterative Approach implemented in SMT-Reducer
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3.5 Recursive Approach implemented in SMT-Reducer

Figure 3.5 illustrates the detailed steps of our approach performed recursively. First, we
parse the input as in the iterative version. This parsed input is considered the initial
state, which receives the initial input, respectively, the needed modifications. We verify
for the current state the applicability of each reduction rule described in Table 3.1. If
the rule can be applied, we create a new state, adding that reducer rule to its history,
and the new state to the state array. After processing all reducers, we then proceed to
apply the same process to any new states generated previously.

When a new state is created, the original formula is transmitted, the possible reductions
are applied, and then the reduced formula is exported back in SMT representation. We
pass this reduced formula to the SMT solver, which returns the solver result. In case the
solver result is different from the initial property, we eliminate this state from the state
array and continue with the following state.

As a final step, when there are no more possible reduction rules to apply, we reached a
final state. This final state is added to the collection of final states. We compute the final
result by getting the smallest size of all the final states valid w.r.t the solver result.
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3 Approach Overview

Figure 3.5: Overview of the Recursive Approach implemented in SMT-Reducer
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3 Approach Overview

Table 3.1: Reduction rules

Type Reduction Rule Example Original Example Reduced

And/or nesting one argument (and a) a
And/or nesting more arguments (and (and (or a) b) c) (and a b c)
Operator nesting (op (op <expr1> ..

<exprn>) <expr3>)
→ (op <expr1> ...
<exprn>), where op
means an operator
from (+, *, <, >, ≥
, ≤, =, 6=)

(+ (+ 1 2) 0) (+ 1 2 0)

Math simplification (* <expr1> ... <ex-
prn> 0) → 0

(* 2 0) 0

Math simplification (* <expr1> ...
<exprn> 1) →
(* <expr1> ...
<exprn>)

(* 2 1) 2

Math simplification (+ <expr1> ...
<exprn> 0) →
(+ <expr1> ...
<exprn>)

(+ 2 0) 2

Negation (not (not <expr>))
→ <expr>

(not (not (< a b))) (< a b)

Negation (not <expr>), where
<expr> contains a
symbol of compari-
son from (<, >, ≥ ,
≤, =, 6=)

(not (=> a b)) (< a b)

Negation (not <constant
boolean>)

(not false) true

Syntactic sugar (and (f a b) ... (f x
z)) → (f a b ... x
z), where f is a binary
function

(and (+ 1 2) (+ 3 4)) (+ 1 2 3 4)

Binder simplification elimination of binded
variable(s) defined in
outer scope, but not
used in scope

(let ((a Int) (b Int)) (= 5 b)) (let ((b Int)) (= 5 b))
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4 Implementation

This chapter presents the architecture of the main modules with their particularities,
respectively, the leading technologies employed in the creation of the project.

SMT-Reducer was implemented in Python 3 and from an architectural point of view, the
tool consists of five main modules described in the following sections.

4.1 Parsing

The parsing infrastructure for SMT-LIB v2 format is based on ddSMT. Additionally, we
have extended the parser to recognise newer functions introduced in the latest version of
SMT-LIB v2 [8]. A SMT-LIB v2 formula is internally represented as a scope tree. As
in SMT-LIB v2, a scope can be either local, encapsulating variable bindings and sorted
variables (defined by let, exists and forall commands), or global, as delimited by the push
and pop commands. It is worth mentioning that there is no distinction between functions
and variables or constants. Each scope node has the purpose of maintaining a nesting
level, a subset of scope nodes, and a set of functions. Respectively, the command-level
scopes contain a set of commands and a set of sorts.

The access to either currently visible sorts or functions is performed in constant time.
This complexity is due to the parsing infrastructure ability to imitate the visibility of
sorts and functions, similar to the compiler design techniques.

4.2 Commands List

Algorithm 1 presents the function crawlScopes which is responsible for acquiring the list
of commands. Taking into consideration the internal representation of an input, the
function receives as parameter a scope node called scope. Initially, the scope is the root
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4 Implementation

of tree of scopes. The function firstly generates the list of commands in the variable cmds
of the current scope node. Then, it iterates recursively through each scope child scp of
the scope node, gets its corresponding sub-commands and appends them to the list of
commands. Finally, this list is returned.

Algorithm 1: The function for getting the list of commands
Data:
scope← the scope node in the parse tree

Function crawlScope(scope):
let cmds← scope.cmds

foreach scp ∈ scope.scopes do
cmds← cmds ‖ crawlScope(scp)

end
return cmds

4.3 Reduction

As mentioned in Chapter 3, there are several reduction passes implemented in SMT-
Reducer. The order in which we attempt these passes is: and/or nesting, operator
nesting (+, *, <, >, ≥ , ≤, =, 6=), syntactic sugar simplification, negation simplification
(double negation of an expression, negation of an expression, negation of a constant
boolean), math simplification (multiplication by 0, multiplication by 1, addition with 0),
and binder simplification (let, forall, exists).

For the applicability of a particular type of reduction pass, we verify whether a specific
condition is met either by a command node or by its parent node. If that is possible,
then we apply the reduction on that command. This is performed as follows: commands
are replaced with either a more straightforward expression (e.g. (not (< a b)) → (≥ a
b) ) or even one of their descendant (e.g. (not (not (< a b))) → (< a b) ).

The pseudocode for reducing the and/or nesting is provided in Algorithm 2 in order to
illustrate this process. Firstly, the function detect with the command node and its kind
as parameters, detects whether an and/or nesting reduction can be applied to that node
by satisfying three main properties simultaneously. The first property refers to the node
having only one child. The second one is with regards to the type of child node that has
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to be a function. The last one implies that the kind of the node has to be either AND
or OR.

If the current node meets the criteria, then the function apply follows. We call this
function alongside the current node, the index of its only child and the child itself. If
the child has only one grandchild, then we substitute the child of the current node at the
given index with the great-grandchild of the node. Otherwise, the child of the current
node at the given index is replaced with the grandchild of the node.

Algorithm 2: The pseudocode of the and/or nesting reducer
Data:
kind← the kind of the tree node

node← the tree node

child← the child node

index← the child index in the tree node

Function detect(node, kind):
if
node has only one child and this child is function and kind in {AND,OR}
then

return True
end
return False

Function apply(node, index, child):
if the number of grandchildren of the child node is 1 then

node.children[index]← child.children[0].children[0]

else
node.children[index]← child.children[0]

end

4.4 Property Checking

An essential part of the program reduction problem is to check whether a partially-
reduced test case still exhibits the same property of interest as the original test case
provided as input. In this sense, a Bash script was created to perform the check operation
of the new variant against the desired SMT solver. The pseudocode of the script can be
seen in Algorithm 3. Note that this is partially configurable by the user for specifying
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which solver to be used and how, and receives as arguments the path of the new variant,
the path of the original solver output, respectively the path where the new result should
be stored for further comparison. There are two possible return results of the checking
script: 0 if the property of interest is maintained; 1, otherwise.

Algorithm 3: The pseudocode of the testing script
Data:
variant← the path of the variant

original_output← the path of the original solver output

final_output← the path where the solver output of the variant is saved

Main test(variant, original_output, final_output):
let solver_path← the path of the solver

let solver_arguments← the testing script path

let timeout_duration_arg ← the duration in seconds

timeout callSolver(solver_path variant

if the outputs are equal then
exit 0;

end
exit 1;

4.5 Reduce Flow

The reduce flow algorithm for each approach described in Chapter 3 with its main dif-
ferences can be seen in the following sections.

4.5.1 Iterative Approach

In Algorithm 4, our iterative algorithm of SMT-Reducer is described. The main method
reduce receives as parameters the parsed SMT-LIB v2 input, the path to the testing script,
as well as the path to the output. Firstly, the main method prepares the environment for
the reduce flow by calling the function crawlScope in order to obtain the list of commands
cmds. Then, the main method starts the reducer flow by calling the loop function.

The loop function receives as parameters the list of commands cmds, respectively the list
of functions funcs, each function implementing a reduction rule. We save the amount of
reductions rules applied in the current attempt in the variable cnt. We initially assume
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that there is at least one reduction rule that can be applied in order to start the first
round. Therefore, the cnt is initialized with 1. In each round, the variable cnt begins at
0. Then, for each command cmd from our list cmds, we create a backup of the current
state, which is stored in the variable backup.

Following this, we proceed with the attempts of applying each reduction rule by calling
the corresponding function fun, which always receives as parameter the current command
cmd. Each function fun computes the number of a particular reduction rule applied to
the command tree. This number is stored in the variable result. When there is at least
one application, we update the amount of reductions cnt for this round and call the
testing script to compare the original output and the new variant output.

In case the testing script returns 1, i.e. the solver produces a different output, then we
restore the state in the variable sf with the help our previous created backup state, as
well as reinitialise the list of commands cmds for the new state sf. We also stop the
current reducer attempt and restart the whole process with the new data by calling the
function loop again. In case the testing script returns 0, we continue the attempt of
applying the reduction passes on the current state. The reduce flow finishes when there
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was no reduction applied in the previous round, i.e. cnt has the value 0, and we save the
latest variant as the final output.

Algorithm 4: The reduce flow of iterative SMT-Reducer
Data:
sf_arg ← the parsed input

tester_arg ← the testing script path

outfile_arg ← the output path

Main reduce(sf_arg, tester_arg, outfile_arg):
let cmds← crawlScope(sf_arg.scopes) all commands from all scopes
loop(cmds, reducersList)

Function loop(cmds, funcs):
let cnt← 1 the amount of reductions applied in the current attempt
while cnt > 0 do

cnt← 0 foreach cmd ∈ cmds do
let backup← abackup for the current state

foreach func ∈ funcs do
let result← func(cmd)

if result > 0 then
cnt← cnt+ 1

if solver produces different result then
sf ← backup

cmds← crawlScope(sf.scopes)

loop(cmds, funcs)

break current reducer attempt

end

end

end

end

end

4.5.2 Recursive Approach

The recursive approach is modelled around reduction states. Each state represents a spe-
cific chain of reductions applied to a given input. Thus, through recursion, the algorithm,
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in general, produces all possible reductions in all possible orders. In Algorithm 5, the
reduce algorithm of recursive SMT-Reducer is described, reduced to a single state. The
main method reduce receives as parameters the parsed SMT-LIB v2 formula, the history
list, as well as the path to the output. Firstly, the main method prepares the environment
for the reduce flow by calling the function clone in order to create a backup formula for
reduction restoration, respectively by calling the function crawlScope in order to obtain
the list of commands cmds. Then, it initialises an empty list of child states which will
be later updated by applying reductions. Following this, the method starts the reducer
flow by calling the apply function for each reduction from the history list and the list of
commands. Finally, the current formula is saved in an SMT representation back to the
disk, alongside debug data, and the result of calling the solver with the current reduced
state.

Algorithm 5: The reduce flow of recursive SMT-Reducer (state-dependant)
Data:
Given any state:
formula← the input formula

history ← the ordered list of reductions to be applied

index← the identifier path in reduction graph

Main reduce(formula, history = [], index = None):
backup← clone(formula) used to restore when solver fails
cmds← crawlScope(formula.scopes) the list of commands to be processed
currentIteration← 0 used for tracking child iterations
states← [] The list of child states created
foreach reduction ∈ history do

reduction.apply(cmds)

end
save current formula to disk and call solver with current state

The reduction detection part of the approach is detailed in Algorithm 6. The main func-
tion, reduce, will iterate through each command in cmds, and each reducer in reducers,
and apply reduceNode with the node, reducer, as well as the current path (index ) to the
current command. After all command + node combinations have been analysed, and new
states generated, the reduce function will then iterate through all child states and call
reduce on them, as well, thus continuing the recursion. The reduceNode function, receiv-
ing a node, reducer as well as reducer arguments (args) and the path to the command,
will handle detection of reduction applicability for the given node, and, if successful, will
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generate a new state. It will iterate through each child of the current node, update the
current path in newPath and determine the correct detect and passArgs to use in the
detection process. The latter part is required as some reduction rules only rely on a single
node for detection, whereas others will require both a node and its parent to correctly
detect if a reduction is possible at this stage. If such a detect and passArgs combination is
possible, a new State is created, using the originalFormula generated in the Algorithm 6,
a history containing all current reductions, and adding a new Reduction with the current
reducer, and an updated path for output. In the end, regardless of reduction detection,
the algorithm will recurse through the command’s children and attempt reductions for
each child node, thus ensuring completeness.
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Algorithm 6: The reduction detection in the recursive approach
Data:
Given any state:
formula← the input formula

history ← the ordered list of reductions to be applied

index← the identifier path in reduction graph

Function reduce():
foreach index, node ∈ cmds do

foreach reducer ∈ reducers do
reduceNode((index, node), reducer, [index])

end

end
foreach state ∈ states do

state.reduce() recurse through states

end

Function reduceNode(input, reducer, path):
node← input[1]

(reducer, args) = reducer

foreach index, child ∈ node.children do
newPath← path ‖ [index]
let detect← function to be applied for detection, either detect, or
detectParent

let passArgs← parameters to be applied for detect

if passArgs 6= None then
states.append(

new State(originalFormula, history ‖
[new Reduction(newPath, reducer(...passArgs))], index ‖
currentIteration)

)

currentIteration← currentIteration+ 1

end
reduceNode((index, child), reducer, newPath)

end
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4.6 Main Technologies

4.6.1 Python

Python [3] is a high-level, interpreted and general-purpose dynamic programming lan-
guage that focuses on code readability. It was chosen as the language for our project
due to the following reasons: excellent portability, multiple programming paradigms
that usually involve imperative and object-oriented functional programming, respectively
comprehensive and large standard library that has automatic memory management and
dynamic features.

4.6.2 Bash

Bash [1], which comes from the acronym for the ’Bourne-Again SHell’, is a Unix shell and
command language. It was preferred due to its widely availability on various operating
systems and ease of being called from the central system developed in Python in order
to perform the oracle check operation.
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We want to determine how well our highly-customised framework for SMT-LIB v2 format
performs concerning the reduction time and size of reduced test cases compared to C-
Reduce, which is a widely used reducer designed initially for C/C++, but which is also
effective in reducing programs or formulas written in many other languages. We are
also interested in comparing the two different approaches of SMT-Reducer against each
other.

5.1 Benchmark Collection

We considered multiple test cases triggering incorrect-result bugs and solver-crash bugs.
According to our observation, wrong-result bugs tend to be easier to reduce, while others
(e.g. an assertion failure) are more difficult.

Therefore, we considered real large test cases in SMT-LIB v2 format generated by the
SMT solver testing tools YingYang and OpFuzz [35, 34]. These triggered bugs which were
reported on the official repositories of the two mainstream SMT solvers (Z3 and CVC4).
We have selected 16 recent bug reports and asked the authors of the aforementioned tools
for the unreduced test case. The selected bug reports cover both incorrect result and
solver crash. Additionally, the selected bug reports can be reproduced w.r.t. at least one
official version of the corresponding solver. We chose real-world test cases rather than
artificial ones, since the tool we propose will also be used for this purpose.

5.2 Tools for Comparison

We run the iterative SMT-Reducer, as well as the recursive SMT-Reducer in comparison
with C-Reduce in one-thread mode, respectively in two-thread mode. Over the state-
of-the-art reducers, only C-Reduce is used in our evaluation since the SMT community
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prefers using it to reduce SMT formulas due to its ability to apply a couple of general-
purpose reduction rules (e.g. constant deletion).

We run the C-Reduce tool in two separate instances: once running on one thread, and
once running on two threads. It is known that the default behaviour of the tool is to use
as many threads as it can. However, as this may vary depending on the machine used,
and cannot be consistent, and easily reproducible, we have opted to select two use cases,
to determine its efficiency and viability. The first case, using one single thread, has been
selected as a direct comparison with the SMT-Reducer, whereas the second case, using
two threads, has been selected as the most accessible multi-threaded implementation.
The goal is to observe the behaviour and efficiency differences between single-threaded
and multi-threaded executions, with a direct comparison to SMT-Reducer being possible,
and ensuring maximum reproducibility.

The minimum inputs to each reducer are the bug-triggering test case and the script
mentioned in Chapter 4 that verifies whether a variant is successful, i.e. it maintains
the property to be tested for. Additionally, SMT-Reducer requires the output path as
parameter and C-Reduce requires a "thread" parameter to specify the number of thread
cores on which the reduction should be performed.

All experiments were conducted on a machine with 12 GB of RAM, based on an Intel
Core i7-4600U processor, running Ubuntu Linux 18.40 in 64-bit mode.

5.3 Criteria for Evaluation

We evaluated reduction efficiency in connection with reduction time and reduction size.
In this section, we further quantify reduction efficiency in the following two different
metrics. A reducer is considered more reduction efficient as other if the two metrics are
significantly smaller.

Reduction Size This metric gives the size of the original test case and that of the
minimised test by a reducer.
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Reduction Time The metric aims to measure the performance time a program reducer
needs to reduce a test case. This is conditional on the number of property tests executed
and the time each property test takes.

Our choice of metrics —the reduction size and the reduction time— is determined by our
observation that these are the main metrics that the SMT users are interested in when
reporting solver bugs.

5.4 Reduction Failure

In the case of non-deterministic behaviour of a specific reducer under evaluation, we do
not gain much insight into how well this performs. Therefore, the entire test case is omit-
ted in our comparison. We observed that resource-exhaustion conditions such as timeouts
and memory limits exceeded are the most common sources of non-determinism.

Other possibilities of reduction failure are that the original and reduced test cases trigger
different bugs, or the reduction size of the final result remains the same as the original
one.

5.5 Results

Table 5.1 shows the results of reduction efficiency in terms of time performance in seconds
and size reduction in kilobytes for each deterministic test case, as well as the original size
of a test case. Due to a significant variance in test case results, the mean and median
values for each metric are also reported in Table 5.1.

For the first test case and last test case, it can be seen that both approaches of SMT-
Reducer produced the smallest output with a 7.14% difference compared to the original.
However, the iterative approach had a significantly lower performance time than the
recursive approach.

If we now turn to the second test case, it can be observed that the first three reduc-
ers could not produce smaller output. Interestingly, a 0.1-kilobyte increase in the final
outcomes of SMT-Reducer was recorded due to the way our tool printed the outcomes.
Only C-Reduce in 2-thread mode succeeded in reducing 5.71% of the formula.
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The third case, as well as the fifth case, are also compelling. All reducers led to a
reduction of the original formula. The most surprising aspect of the third case lies in the
small output sizes produced (46.66−60.95% shorter than the initial size) by C-Reduce.
We speculate that this might be due to C-Reduce ability to perform unsound reductions
such as removing one or more contiguous lines of text.

Considering the fourth case, it is interesting to point out that both executions of the
C-Reduce tool have exited with no reductions applied, while SMT-Reducer succeeded in
reliably reducing the input.

Another aspect worth mentioning is the time required by C-Reduce using either one
thread or two threads in all results except the fourth test case. It would be reasonably
assumed that running the software on two threads would produce more efficient bench-
marks. However, as proven by the results obtained, this is not always the case. We
assume that C-Reduce using two threads to run more complex reduction attempts in
parallel. This is opposed to running the same reductions as evidenced in the one thread
model, in parallel. Thus, the result is more complex, requiring higher performance time.
This is also supported by the output size difference between the two threading options.

The reduced test cases by SMT-Reducer had a significant number of nested logical oper-
ators: and, or, +, and *, as well as negation operators. For instance, in the first test case,
we have the following formula: (= YhGyveT (+ (+ (* (− 196.77897150533624) shifted1v)
(* (− 358.379758638266) shifted2x2)) 838.3217702720069)). This formula is reduced
to (= YhGyveT (+ (* (− 196.77897150533624) shifted1v) (* (− 358.379758638266)
shifted2x2) 838.3217702720069))). Another example from the same test case would be
the formula (not (= (+ (+ ?v17 (* 63 ?x2)) (* (− 57) ?x3)) 72)) reduced to (distinct (+
(+ ?v17 (* 63 ?x2)) (* (− 57) ?x3)) 72). These reductions are semantically-equivalent
from a mathematical point of view. Therefore, the specific rules for these operators were
the most effective.

One argument for the outputs reduced by C-Reduce is given by the way the initial
program was printed. In the third test case, which had the smallest outputs generated by
C-Reduced, each command was printed per one line. This format might have facilitated
the application of the general passes implemented in C-Reduce. For instance, the deletion
of an entire line might have preserved the original bug and thus eliminated information
irrelevant to the bug.
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The significant time efficiency difference between all examples of SMT-Reducer and C-
Reduce can be explained by the target and complexity of each tool. The latter tool has
been designed for C/C++, resulting in an extensive collection of possible reduction rules
to be applied. It first attempts to analyse the code as C/C++, then proceeds to attempt
general reduction rules, and finally attempts domain-specific rules. Thus, the process
of C-Reduce reducing SMT-LIB v2 samples would undergo a long, and complex process
involving a large assortment of redundant/inapplicable rules that cannot be avoided,
whereas SMT-Reducer is tailored specifically for this task. Thus, SMT-Reducer achieves
a far better time efficiency.

Table 5.1: Reduction size in kilobytes and reduction time in seconds

Iterative
SMT-Reducer

Recursive
SMT-Reducer

1-thread
C-Reduce

2-thread
C-Reduce

Id Initial size Size Time Size Time Size Time Size Time

1 7.0 6.5 0.52 6.5 8.0 7.0 4526.12 6.8 6215.20
2 10.4 10.5 1.47 10.5 9.43 10.4 1326.34 9.8 1100.34
3 10.5 9.7 300.11 9.7 450 5.6 10000.7 4.1 38047.09
4 10.5 9.5 0.5 9.5 1.44 10.5 0.12 10.5 0.16
5 10.5 9.7 303.40 9.7 4050.34 10.4 16372.9 10.3 23531.41

Mean 9.78 9.18 121.2 9.18 903.84 8.78 6445.23 8.3 13778.84
Median 10.5 9.7 1.47 9.7 9.43 10.4 4526.12 9.3 6215.20
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6 Conclusions

In this thesis, we presented SMT-Reducer, a novel, practical program reduction frame-
work customised for the SMT domain. We also proposed two different approaches for
this framework and a series of domain-specific reduction rules that should not change
the semantics of the program.

We evaluated the reducer on a select number of real-world large test cases which trigger
bugs in terms of reduction time and size of the reduced program. Our empirical eval-
uation confirms that SMT-Reduce, using the iterative approach, can reduce a test case
faster compared to C-Reduce. At the same time, C-Reduce tends to produce a smaller
output size compared to each approach of our tool, with a more substantial time cost
attached. If an SMT test case contains several domain-specific passes as ours, then us-
ing either approach of SMT-Reducer is recommended. However, one limitation of our
implementation is that it performs only sound reduction rules.

A possible strategy of enhancing the reduction efficiency for SMT formulas would be to
fuse both SMT-Reducer and C-Reduce. Precisely, we could use SMT-Reducer to apply
domain-specific reductions quickly, and then run C-Reduce to apply unsound reduction
rules. Similarly, Le et al. introduced in the EMI testing project [12, 13, 14, 31] a higher-
order reducer, which combines C-Reduce and Berkeley Delta [29].

Our future work includes designing and implementing more sound reduction rules, as
well as unsound reduction rules as described in Chapter 3, in order to decrease the
reduction size further. Moreover, we intend to exploit multiple cores in order to improve
the reduction time. Driven by the intuition that the reduction rules used to generate
variants do not need to be embedded in the framework, we also plan to design and
implement a domain-specific language such that the one has the option of writing its
own reduction rules in the SMT domain for a particular test case.
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