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ABSTRACT 

Unmanned aerial vehicle (UAV) design necessitates significant effort in 
prototyping, testing, and design iterations. To reduce design time and improve 
wing performance, an automated design and optimization framework is 
proposed utilizing open-source software, including OpenVSP: VSPAERO & 
Parasite Drag Tool, XFOIL, and Python. This study presents a preliminary UAV 
wing design methodology, emphasizing weight estimation, drag analysis, stall 
prediction, and endurance optimization. The maximum takeoff weight of the 
UAV was calculated after estimating the empty weight using a linear regression 
from data from 20 existing similar UAVs. The wing and engine sizing were 
determined using the matching plot technique. A solver with low-fidelity 
models, combining the Vortex Lattice Method (VLM) and analytical 
expressions, was used to predict the drag coefficient and maximum lift 
coefficient of the designed wing. An optimization process using a genetic 
algorithm was applied to maximize endurance while satisfying requirements 
such as rate of climb, stall, and maximum speeds. The optimized wing was 
analyzed with computational fluid dynamics (CFD), and its aerodynamic 
characteristics were compared with those obtained using VLM and the suggested 
aerodynamic solver. According to the CFD results, the proposed aerodynamic 
solver estimated the drag coefficient at zero angle of attack with an error of 
17.2% compared to 63.1% using the VLM classic method. The error on the 
maximum lift coefficient estimation was limited to 5.3%. In terms of 
optimization, the framework showed an increase in the endurance ratio of up to 
2% compared to the Artificial Neural Network method coupled with XFLR5. 
The primary advantage of the suggested framework is the utilization of open-
source software, giving a cost-effective and accessible solution for small and 
medium-sized startups to design and optimize UAVs to achieve mission 
objectives. 
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1. INTRODUCTION 

The aircraft design is an iterative process. It goes 
through these three essential stages: conceptual, 
preliminary, and detailed design. The wing is a critical 
element of an aircraft, responsible for providing lift and 
supporting the weight of the plane. Hence, reducing the 
time of wing conception and optimization is vital to 
accelerate the aircraft development process. In recent 
years, numerical design process modeling has played a 
significant role in the design of UAVs. It refers to the 
utilization of mathematical models (Hoseinzadeh & 

Stephan Heyns, 2022) and computational simulations 
(Ostadhossein & Hoseinzadeh, 2024) to analyze the 
behaviors of a design process. Numerical modeling allows 
designers to assess the performance of UAVs in general 
and airfoils in particular (Hoseinzadeh et al., 2021). 
However, it is important to acknowledge that while 
numerical models are valuable, experimental tests remain 
the most reliable tool for obtaining certain information 
(Bahrami et al., 2019; Hoseinzadeh et al., 2020). The study 
of unmanned aerial vehicle (UAV) wing design and 
optimization has grown in significance in recent years. As 
a result, scientists have adopted a variety of methodologies  
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NOMENCLATURE 
ACRONYMS AND ABBREVIATIONS 
ANN Artificial Neutral Network  MAC Mean Aerodynamic Chord 
AOA Angle of Attack  MDO Multidisciplinary Optimization 

API Application Programming Interface  MOPSO Multiple Objective Particle   
Swarm Optimization 

AVL Athena Vortex Lattice  MOTSA Multiple Objective Tabu Search Algorithm 
CFD Computational Fluid Dynamics  PSO Particle Swarm Optimization 
DATCOM Data Compendium  RANS Reynolds-Averaged Navier-Stokes 

EMWET Elham Modified Weight Estimation 
Technique  UAV Unmanned Aerial Vehicle 

GA Genetic Algorithm  VLM Vortex Lattice Method 
Symbol 

(
𝐿

𝐷
)
𝑚𝑎𝑥

 maximum glide ratio  𝑎1 , 𝑎2 coefficients in the drag polynomial equation 

𝐶𝐿,𝑚𝑎𝑥

𝑐𝑙𝑚𝑎𝑥

 

ratio between the maximum lift 
coefficient of the wing and the 
maximum lift coefficient of the section 
in the DATCOM method 

 𝑐𝑙,𝑖 ideal lift coefficient 

𝐶𝐿
3
2/𝐶𝐷 endurance ratio  𝑐𝑙𝑚𝑎𝑥 airfoil maximum lift coefficient 

𝑉𝑚𝑎𝑥
∗ required maximum speed  𝑐𝑙𝛼  airfoil lift curve slope  

𝑉𝑠
∗ required stall speed  𝑚𝐸 empty weight  

𝐶𝐷 drag coefficient  𝑚𝑇𝑂 maximum take-off weight 
𝐶𝐷0 parasite drag coefficient  𝑚𝑝 Payload weight  
𝐶𝐷𝑚𝑖𝑛 minimum drag coefficient  b wing span  

𝐶𝐿,𝑚𝑖𝑛𝐷𝑟𝑎𝑔 lift coefficient value corresponding to 
the minimum drag coefficient  𝑒𝑖 internal energy per unit of mass  

𝐶𝐿,𝑉𝐿𝑀 
lift coefficient corresponding to the 
angle of attack at which lift curve slope 
ceases to be linear 

 f internal force per unit of mass  

𝐶𝐿,𝑚𝑎𝑥  wing maximum lift coefficient  m mass 
𝐶𝐿 lift coefficient  p fluid pressure 
𝐶𝐿𝑅 take-off rotation lift coefficient  q heat transfer 
𝐶𝐿𝛼 wing lift curve slope   T penalty term 
𝐶𝑓 skin friction coefficient  t time 
𝐶𝑟 root chord   V air flow velocity  
𝐶𝑡 tip chord   𝐴 aspect ratio 
𝐸𝑚𝑎𝑥 maximum endurance ratio  𝐹𝐹 Factor Form 
𝑅𝑂𝐶∗ required rate of climb  𝐿 UAV length  

𝑅𝑒 Reynold’s number  𝑁
− 𝑝𝑜𝑝 number of chromosomes in the population 

𝑆𝑇𝑂 takeoff run distance   𝑃 engine power  
𝑆𝑟𝑒𝑓  reference area   𝑃/𝑚 power loading 
𝑆𝑤𝑒𝑡  wetted area   𝑄 interference factor 
𝑉𝑇𝑂 take-off speed   𝑅𝑂𝐶 rate of climb  
𝑉𝑐 cruise speed   𝑎, 𝑏, 𝑐 coefficients in the lift polynomial equation 
𝑉𝑚𝑎𝑥 maximum velocity   𝑒 oswald factor 
𝑉𝑠 stall speed   𝑔 gravity constant  
𝑊𝑙, m/S wing loading   𝑡/𝑐 thickness-to-chord ratio 
GREEK SYMBOLS 
𝛼𝐶𝐿,𝑚𝑎𝑥

 angle of attack corresponding to the 
maximum lift coefficient  α angle of attack 

𝛼∗ angle of attack at which lift curve slope 
ceases to be linear   μ friction coefficient 

𝛼0 zero lift angle of attack  σ air density ratio 
𝛼𝑠 stall angle   𝛻 gradient operator 
𝜂𝑝 propeller efficiency  𝜃 twist angle  
𝜌0 air density at sea level   𝜆 taper ratio 
𝜐̃ turbulent viscosity  𝜌 air density  
∆𝐶𝐿,𝑚𝑎𝑥 Mach number correction  𝜏 tensor of viscosity 
∆𝛼𝐶𝐿,𝑚𝑎𝑥

 angle of attack increment  𝜑 sweep angle  
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to improve the design of UAV wings for diverse uses. A 
commonly used approach is Computational Fluid 
Dynamics (CFD) simulations. In a study by Kapsalis et al. 
(2021), the Taguchi technique and CFD were coupled 
using the Ansys CFX software. The objective functions of 
the study were top speed, takeoff runway length, and gross 
takeoff weight; the design parameters were aspect ratio 
(𝐴), taper ratio (𝜆), and sweep angle (𝜑). 

The performance of UAV wings can be predicted 
using machine learning approaches like neural networks 
(Sun & Wang, 2019). This approach to airfoil design 
optimization has been the subject of several 
investigations. For example, (Haryanto et al., 2014) 
maximized the lift-to-drag ratio using a combination of 
Artificial Neural Networks (ANN) and Genetic Algorithm 
(GA). Du et al. (2021 presented an interactive framework 
based on a neural network to optimize airfoil shapes for 
both subsonic and transonic regimes. This framework 
takes Reynolds number, Mach number, angle of attack, 
and airfoil geometry as inputs, with target lift and 
thickness as constraints, and minimizes drag coefficient as 
the objective. Boutemedjet et al. (2019) also employed a 
combined GA-ANN approach to optimize UAV wing 
design during the preliminary stage. Their focus was 
maximizing the endurance ratio and minimizing the drag 
coefficient. They used XFLR5 for numerical simulations 
to generate the training data for the neural network. Azabi 
et al. (2019) present a multi-objective optimization 
framework (ANN-MOPSO-AVL) that couples an ANN 
trained using AVL software with a Particle Swarm 
Optimization (PSO) process. The framework is deployed 
to optimize the shape of a U-tailed UAV. Two objective 
functions were included: maximizing flight endurance and 
minimizing the UAV mass. A comparison of Pareto front 
solutions obtained using ANN-MOPSO, MOTS (Multiple 
Objective Tabu Search Algorithm), and MOPSO with a U-
tailed UAV demonstrates the potential power of ANNs 
when used to solve this type of design challenge, in terms 
of both computation time reduction and the number of 
valid solutions. 

Over the past few decades, with the advent of new 
technologies, there has been a surge in interest in 
Multidisciplinary Design Optimization (MDO). 
Benaouali and Kachel (2019) developed an MDO 
framework which integrates geometric modeling in 
Siemens NX (2024), aerodynamic meshing in ICEM CFD, 
flow solution using Ansys Fluent, structural finite element 
modeling in MSC Patran (2024), and structural sizing in 
MSC Nastran (2024) to achieve a maximum range while 
maintaining lift coefficient and structure safety. In the 
same context, Masood and Wei (2018) focused on MDO 
for the wing of subsonic aircraft. They aimed to maximize 
wing performance by considering three disciplines: 
structure (weight), aerodynamics (L/D ratio), and flight 
performances (endurance and range). XFOIL software 
(2024) was used for aerodynamic analysis, while the 
weight of the wing was estimated using a semi-empirical 
equation of HOWE. Their design study contained ten 
variables, and a GA was applied to search for the best 
configuration. Elham and Van Tooren (2014) also 
developed an optimization framework to find the Pareto 

front for a winglet with minimum drag and weight.  In this 
work, a quasi-3D aerodynamic solver was proposed and 
validated with the high-fidelity solver. For weight 
estimation, they proposed a quasi-analytical method called 
the Elham Modified Weight Estimation Technique 
(EMWET). 

Among the common challenges facing the design 
process are the time-consuming nature of design iterations 
and the high cost of simulation. Therefore, this paper 
focuses on automating the preliminary design of a mini 
electric UAV to enhance wing planform aerodynamics 
and flight performance. This work addresses the challenge 
of conceptualizing a UAV design framework, called 
OpenVSP-API, that utilizes OpenVSP (2024) (VSPAERO 
& Parasite Drag Tool) and XFOIL with a highly 
interoperable Python Application Programming Interface 
(API). This framework allows designers to perform 
calculations during the preliminary design phase with 
good fidelity in a short time. 

The remainder of the paper is organized as follows: 
Section 1 will present a concise overview of the 
methodology employed in UAV design. Section 2 
describes the study framework, Section 3 outlines the 
UAV conceptual design, Section 4 explains the proposed 
aerodynamic solver, Section 5 presents the validation of 
the framework's performance, Section 6 details the CFD 
analysis for the optimal wing, and Section 7 provides the 
conclusions. 

2. OPENVSP- API FRAMEWORK DESCRIPTION 

OpenVSP can be integrated with Python through an 
API written virtually in C++. A script carries out this 
integration. In the beginning, the Python 3.8 version was 
installed via Anaconda. Then, environments named 
‘vsppytools’ in OpenVSP 3.25.0 should be created and 
activated. It should be noted that the Python version used 
to compile OpenVSP must match. It’s known that 
OpenVSP uses VSPAERO for the aerodynamic analysis; 
this solver is based on the VLM method (Hedman, 1966). 
The viscous drag is estimated using the Parasite Drag Tool 
and XFOIL for the lift correction, as will be described in 
the next section. Figure 1 represents the framework 
environment. 

 

 
Fig. 1 Framework environment 
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Fig. 2 General architecture of the framework 

 

The proposed process, illustrated in Fig. 2, begins by 
collecting data through market analysis of similar UAVs. 
This data is used during take-off weight estimation. The 
design point is then determined through constraint 
analysis. Following the selection of an adequate airfoil, 
wing design parameters are obtained using a single-
objective aerodynamic optimization with a genetic 
algorithm, while respecting all constraints and 
requirements. 

3.  PRELIMINARY DESIGN 

Following the selection of the UAV configuration 
comes a critical step: the preliminary design. During this 
phase, three essential parameters were calculated: 
maximum take-off weight (mTO ), reference area (Sref ), 
and engine power (P). An outline of the preliminary 
design for the UAV is provided in the parts that follow. 

3.1 Mission Requirements 

To accomplish the surveillance mission depicted in 
Fig. 3 at an altitude of 300 m above sea level, a mini-drone 
has been designed. The UAV has a maximum speed of 100 
km/h and a stall speed of 10 m/s. The propeller is powered 
by an electric powerplant due to its low operating costs. 
Furthermore, the UAV requires maximum endurance. 
Table 1 shows the design requirements. 

 

 
Fig. 3 UAV flight mission 

 

Table 1 UAV specifications 

Maximum take-off weight 
(𝑚𝑇𝑂) ≤ 10 kg 

Payload weight (𝑚𝑝) 1.5 kg 
Stall speed 10 m/s 

Maximum speed 100 km/h 
Cruise speed 60 km/h 
Endurance 60 min 

Radius 60 km 
Rate of climb 2.5 m/s … 5 m/s 

Altitude 300 m (SL) 

Equipment Camera, battery, 
avionic, parachute 

Engine Electric motor 
 

3.2 Weight Estimation 

The following equation provides the maximum 
takeoff weight: 

The payload, which includes the necessary 
electronics for the camera and the parachute, does not 
exceed 1.5 kg. 

During an early phase of electric UAV design, it is 
necessary to point out that the structure, engine mass, 
propeller, batteries, fixed equipment, and anything else 
not deemed to be a payload were all included in the empty 
weight. It was estimated using a linear regression of data 
from 20 existing UAVs collected from the following 
sources: (Air Force Technology | Air Defence News & 
Views Updated Daily, 2024), (Gallet, n.d.), (Military 
Factory - Global Defense Reference, n.d.), and 
(GlobalSecurity, n.d.), as shown in Table 2. Figure 4 
displays the static data of 𝑚𝐸 versus the 𝑚𝑇𝑂. The 
resulting linear fit equation is: 

𝑚𝐸 = 0.848 𝑚𝑇𝑂 − 0.334 (2) 

By combining Eq. (1) and (2), the empty weight and 
the total weight were estimated to be 6.17 kg and 7.67 kg, 
respectively. 

3.3 Matching Plot Technique 

This section is very important for wing and engine 
sizing. The design point's wing loading (m/S) and power 
loading (P/m) are calculated using a matching plot 
approach. The following list of equations was used for the 
diagram construction (Sadraey, 2013): 

 

𝑚𝑇𝑂 = 𝑚𝑝 + 𝑚𝐸 (1) 
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Table 2 Similar UAV's database 

 𝑚𝑇𝑂(kg) 𝑚𝐸(kg) 𝑚𝑝(kg) 𝑏(m) 𝐿 (m) 𝑉𝑚𝑎𝑥(km
/h) Endurance (h) Altitude (m) 

Utva Vrabac 7 5.5 1.5 2.8  85 0.67 300-500 
Bayraktar Mini 

UAV 5 3.5 1.5 2 1.2 55 0.67 915 

WB Electronics      
Warmate 6.7 5.3 1.4 1.6 1.1 80 ≤ 1.17 500 

Puma LE 12.2 9.7 2.5 4.6 2.2 76 6.5 3048 
Puma 3 AE 7 5.2 1.8 2.8 1.4 83 2 3048 

Thalys SpyRanger 14 12.8 1.2 3.9  90 2.5 4500 
Dragonfish Pro 17 14.5 2.5 3.04 1.65 108 3 6000 

Dragonfish 
Standard 9 7.5 1.5 2.3 1.29 108 2 6000 

Dragonfish Lite 5.5 4.5 1 1.6 0.97 108 1.25 4000 
ALTIUS-600 12.25 9.08 3.17 2.54 1 167 4  

BlueBird SpyLite 9 7.7 1.3 2.7 1.35 120 4 1000 
BlueBird Thunder 

B 28 24.5 3.5 4 1.9 137 24 4877 

Silver Fox 13 10.8 2.2 2.4 1.45 93 10 3657 
Vector 8 7 1 2.8 1.63 85 2  

Spaitech ARDEA 10 8 2 3.2  120 2.5 2500 
Orlan-10 16.5 12.5 4 3.1 2 150 ≈ 18 ≤ 5000 

Lockheed Stalker 8 7 1 3  80 2 4572 
Skyeton Raybird-3 20 15 5 3 1.83 160  3100 

Leleka-100 6 5.1 0.9 1.98 1.13 100 ≤ 2.5 1500 
Yagua 12 10 2 2.5 2 100  4100 

 

 
Fig. 4 𝒎𝑬vs. 𝒎𝑻𝑶 of existing UAVs 

 
• Stall: 

𝑚

𝑆
=

1
2g

∙ 𝜌 𝑉𝑠2 𝐶𝐿,𝑚𝑎𝑥 (3) 

• Maximum speed: 

𝑃

𝑚
=

1
2𝜂𝑝

 𝜌0𝑉𝑚𝑎𝑥
3𝐶𝐷0  

1
𝑚
𝑆

+
2 𝐾 𝑔2

𝜂𝑝 𝜌 𝜎 𝑉𝑚𝑎𝑥

 
𝑚

𝑆
 (4) 

• Rate of climb: 
𝑃

𝑚

= 𝑔

(

  
 𝑅𝑂𝐶

𝜂𝑝
 +  √

2 𝑔

𝜌√3𝐶𝐷0  
𝐾

𝑚

𝑆
 (

1.115

( 𝐿
𝐷

)
𝑚𝑎𝑥

𝜂𝑝

)

)

  
 

 
 (5) 

• Takeoff run: 
𝑃

𝑚

= 𝑔

𝜇 − (𝜇 + 𝐶𝐷𝐺
𝐶𝐿𝑅

) 𝑒𝑥𝑝 ( 0.6 𝜌 𝐶𝐷𝐺 𝑆𝑇𝑂  1
𝑚
𝑆

 )

1 − 𝑒𝑥𝑝 ( 0.6 𝜌 𝐶𝐷𝐺 𝑆𝑇𝑂  1
𝑚
𝑆

 )
 
𝑉𝑇𝑂
𝜂𝑝

 

(6) 
 Here: g = 9.81 m2 ∙ s−1, 𝐶𝐿,𝑚𝑎𝑥= 1.45, 𝜌 = 1.19 
kg/m3, 𝜌0 = 1.225 kg/m3, 𝜎 =  𝜌/𝜌0, 𝜂𝑝= 0.7, 𝐶𝐷0= 
0.035 

 𝐾 = 1/(𝜋 𝑒 𝐴), (𝐿/𝐷)𝑚𝑎𝑥  = 12, 𝐴 = 10. The design 
also considers a required takeoff run (𝑆𝑇𝑂) of 150 m. The 
friction coefficient (μ) is set to 0.04. 𝐶𝐷𝐺 and 𝐶𝐿𝑅 are 
calculated to be 0.18 and 1.22, respectively. It is noticed 
that the previous parameters were determined across a 
conceptual computation considering the type of mission  
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Fig. 5 Matching plot diagram 

 

and the required performances. Fig. 5 illustrates the 
matching plot technique described in this subsection. 

The design point's coordinates are thus determined to 
be 𝑚/𝑆 = 9.05 kg/m2 and 𝑃/𝑚 = 82.7 W/kg. This 
translates to a reference area of 0.847 m2, and an engine 
power of 635 W. 

3.4 Airfoil Choice 

Once the reference surface (S) is obtained, the wing 
profile required to support a mass of 7.67 kg is selected. 
We then determine the ideal lift coefficient for the profile. 

It was taken as the value that corresponds to the 
minimum drag. It was calculated using the following 
equation (Sadraey, 2013): 

𝑐𝑙,𝑖 =
2𝑚𝑔

0.855 ∙ 𝜌 ∙ 𝑉𝑐2 ∙ 𝑆
= 0.66 (7) 

The airfoil “SD7062” is widely used in RC planes 
with a low Reynolds number (Traub, 2013; Boutemedjet 
et al., 2019) because it offers a good lift-to-drag ratio and 
a gentle post stall (Anılır & Kurtuluş, 2023; Hutagalung et 
al, 2016). This airfoil, with a thickness of 14%, enables 
effective structural reinforcement. It was simulated for 
Reynolds numbers of 1.93 ∙ 105, 3.22 ∙ 105 , and 5.37 ∙
105 , which correspond to stall, cruise, and maximum 
velocity, respectively. As shown in Fig. 6, the SD7062 
airfoil exhibits a lift coefficient close to the ideal value 
identified earlier, making it a suitable choice for achieving 
the optimized wing shape. 

 

 
Fig. 6 SD7062 Airfoil: Lift and Drag Coefficients 

4. AERODYNAMIC SOLVER 

The evaluation of aerodynamic coefficients is an 
important part of aircraft design, and the choice of an 
aerodynamic solver is critical. The aim here is to work 
with an efficient solver that gives results close to CFD. 

The Vortex Lattice Method (VLM), a numerical 
approach introduced by Falkner (1943), simulates fluid 
behavior by representing it with a series of vortices. It's a 
linear solution method based on ideal flow theory. VLM 
has a good estimation of the lift curve slope, induced drag, 
and force distribution at low angles of attack, although it 
considers the flows as an incompressible and inviscid 
fluid, where the thickness effect and viscosity are 
neglected. In addition, it cannot predict the stall 
phenomenon. To address this limitation, several 
modifications were proposed for implementation in our 
house code. This new approach, described below, is able 
to predict the nonlinear effects of viscosity on both the 
stall region and parasite drag, resulting a good estimation 
design point (𝑚/𝑆, 𝑃/𝑚). 

The results were validated by referencing CFD results 
for the isolated wing presented in Fig. 7 and its 
dimensions, as provided in Table 3 (Boutemedjet et al., 
2019). 

4.1 Drag Estimation  

𝐶𝐷  calculation is an essential task during UAV 
performance evaluation. The effects of an imprecise drag 
estimate cannot be overly predictable, as either an overly 
optimistic or overly pessimistic drag estimate will result 
in a design with an inefficient allocation of fuel volume 
and engine size.  

The total aircraft drag coefficient consists of a lift-
independent component,  𝐶𝐷𝑚𝑖𝑛, and another component 

 

 
Fig. 7 Isolated wing in OpenVSP 

 
 

Table 3 Geometric dimensions of the studied wing 

Parameters Value 
𝑏 [m] 2.818 
𝐶𝑡 [m] 0.330 
𝐶𝑟 [m] 0.206 
𝑀𝐴𝐶 [m] 0.268 
𝑆𝑟𝑒𝑓  [m2] 0.755 

𝜆 0.62 
𝐴 10.51 

𝜃 [°] -2 
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dependent on the lift produced by the vorticity shed into 
the wake, 𝐶𝐷𝑖. Equation (8) (Anderson, 2016) provides the 
following expression: 

𝐶𝐷 =  𝐶𝐷𝑚𝑖𝑛 +  𝑘(𝐶𝐿 − 𝐶𝐿,𝑚𝑖𝑛 𝐷𝑟𝑎𝑔)2
 (8) 

 The minimum drag coefficient ( 𝐶𝐷,𝑚𝑖𝑛) results from 
the combined effects of parasite drag (  𝐶𝐷0 ), 
compressibility drag, and drag due to excrescences, 
imperfections, and surface roughness. 𝐶𝐿,𝑚𝑖𝑛 𝐷𝑟𝑎𝑔  is the 
lift coefficient value corresponding to the minimum drag 
coefficient  𝐶𝐷𝑚𝑖𝑛. In this study, the focus is only on the 
consideration of parasite drag, which is a combination of 
friction and form drag. 

The VLM code implemented in the VSPAERO solver 
can accurately estimate lift and induced drag; however, it 
cannot predict viscous effects, which leads to an 
underestimation of the drag. The proposed approach for 
rectifying CD involves expressing it in terms of CL as 
follows: 

𝐶𝐷 =  𝐶𝐷0 + 𝑎1  𝐶𝐿 + 𝑎2 𝐶𝐿2 (9) 

 Where  𝐶𝐷0 represents the zero-lift drag coefficient, or 
parasite drag, it’s equal to the total drag coefficient where 
the lift coefficient is equal to zero. It is calculated by 
integrating a "Parasite Drag analysis" into the framework. 

In general, the zero-lift drag coefficient is expressed 
by the following equation (Gudmundsson, 2013): 

 𝐶𝐷0 = 𝐶𝑓 ∙ 𝐹𝐹 ∙ Q (
𝑆𝑤𝑒𝑡
𝑆𝑟𝑒𝑓

)  
(10) 

 Where: Q is the interference factor; it was taken 1. 𝑆𝑟𝑒𝑓  
is the reference area, 𝑆𝑤𝑒𝑡  represents the corresponding 
wetted area, and it is given by (Gudmundsson, 2013): 
𝑆𝑤𝑒𝑡 = 2 𝑆 ∙ 𝑘𝑏, where 𝑘𝑏 is equal to 1.07. 

 𝐶𝑓 is the skin friction coefficient for an equivalent flat 
plate. For a laminar flow, It’s determined by the (Blasius, 
1950) equation as: 

𝐶𝑓(𝑙𝑎𝑚𝑖𝑛𝑎𝑟) =
1.327

√𝑅𝑒
  (11) 

 For a turbulent flow (𝑅𝑒 < 109), an empirical 
correlation provided by (Schlichting & Kestin, 1961) has 
been selected:  

𝐶𝑓(𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡) =
0.455

log (𝑅𝑒)2.58  (12) 

 A previous study (Pritchard & Mitchell, 2016) shows 
that equation 12 fits well with the experimental data. 

𝐹𝐹 is the corresponding form factor. It signifies drag 
rectification due to thickness and pressure drag. There are 
many empirical correlation methods implemented in the 
Parasite Drag Tool, such as EDET, Hoerner (Cheeseman, 
1976), Torenbeek, DATCOM (Hoak & Carlson 1978) and 
(Covert, 1985). We chose to use Hoerner's method due to 
its excellent performance for small unmanned aerial 
vehicles operating at low subcritical Reynolds numbers. 
Also, it gives results very close to those of the CFD in the  

 
Fig. 8 Wing drag coefficient comparison 

 

case of an isolated wing. The Hoerner’s equation for ff 
wing estimation (with the maximum thickness located 
near or at 0.30 of the chord) is given by: 

𝐹𝐹 = 1 + 2(𝑡/𝑐) + 60(𝑡/𝑐)4 (13) 

The results of the VLM code combined with the 
Parasite Drag tool are validated with the CFD results of an 
isolated wing in the reference study. It’s noted that the 
flow conditions were calculated at an altitude of 300 m 
above sea level, using “US Standard Atmosphere 1976”. 
In this investigation, the air density was determined to be 
1.19 kg/m3, with a dynamic viscosity of  1.17 ∙
10−5kg/m/s and a Reynolds number per unit length of 
1.137 ∙ 106  m−1. It was calculated on the mean 
aerodynamic chord. The validation of the 𝐶𝐷 estimation 
implemented in the study code is shown in Fig. 8. 

The drag coefficient of the isolated wing represented 
in Fig. 8 shows a good approximation that fits well with 
the CFD result. 𝐶𝐷 at zero angle of attack was estimated 
to be 0.017, which is close to the value calculated by CFD 
(0.015), as compared to 0.006 calculated by the VLM 
method. This new approach results in a 17.2% error in the 
drag coefficient at a zero angle of attack, compared to the 
traditional VLM method's 63.1% error. As a result, a 
reduction of 45.9% in the absolute error of the drag 
coefficient has been achieved. The study framework's 
incorporation of viscous drag prediction explains this 
improvement. Furthermore, the study framework slightly 
overestimates the drag coefficient at the trim condition 
compared to the results from computational fluid 
dynamics (CFD). This overestimation could be beneficial 
for engine sizing purposes, as it allows for the selection of 
a slightly more powerful engine. 

4.2 Lift Coefficient Correction 

Despite having a high calculation strength for a low 
angle of attack and a fast convergence speed, VLM is 
unpredictable in stalls and post-stalls. There is a lot of 
research about the correction of the VLM method. One 
notable example is VLM-K (dos Santos & Marques, 
2018), which is a correction based on the KIRCHOFF 
flow approach to nonlinear lift. 

This paper proposes an alternative method for 
correcting VLM results. The framework implements this 
method as follows: 
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Fig. 9 Illustration graph of the method used 

 

• For a linear zone where (𝐴𝑂𝐴 ≤ 𝛼∗) (see Fig. 9 ), the 
lift coefficient is taken from the VLM result. Where 
𝛼∗ represents the angle of appearance of the flow 
separation effects in the profile. It’s taken as the angle 
when the absolute error between the airfoil lift 
coefficient and its tangent line at zero AOA exceeds 
5%.  

• For the nonlinear zone where: (𝐴𝑂𝐴 ≥ 𝛼∗), after 
getting the couple (𝐶𝐿,𝑚𝑎𝑥 ,𝛼𝐶𝐿,𝑚𝑎𝑥

), a polynomial 
interpolation is done in the following way: 

𝐶𝐿(𝛼) = 𝑎 ∙  𝛼2 + 𝑏 ∙ 𝛼 + 𝑐 (14) 

𝐶𝐿𝛼 = 2𝑎𝛼 + 𝑏 (15) 

 The boundary conditions are applied to 𝛼∗ and 𝛼𝐶𝐿,𝑚𝑎𝑥
 

: 

 Where: 𝛼 =  𝛼∗  the equation: 𝐶𝐿,𝑉𝐿𝑀 = 𝑎 ∙  𝛼∗ 
2 + 𝑏 ∙

𝛼∗ + 𝑐 is satisfied. 

While in: 𝛼 =  𝛼𝐶𝐿,𝑚𝑎𝑥
, we have: 

{
0 = 2𝑎 𝛼𝐶𝐿,𝑚𝑎𝑥

+ 𝑏

𝐶𝐿,𝑚𝑎𝑥 = 𝑎 ∙  𝛼𝐶𝐿,𝑚𝑎𝑥
2 + 𝑏 ∙ 𝛼𝐶𝐿,𝑚𝑎𝑥

+ 𝑐
 

 The final polynomial coefficients (𝑎, 𝑏, and 𝑐) 
represented in Eq. (14) are: 

{
 
 

 
 𝑎 = − 𝐶𝐿,𝑚𝑎𝑥−𝐶𝐿,𝑉𝐿𝑀

(𝛼𝐶𝐿,𝑚𝑎𝑥
−𝛼∗ )

2

𝑏 =  −2𝑎𝛼𝐶𝐿,𝑚𝑎𝑥

𝑐 = 𝐶𝐿,𝑚𝑎𝑥 − 𝑏 ∙ 𝛼𝐶𝐿,𝑚𝑎𝑥
− 𝑎 ∙  𝛼𝐶𝐿,𝑚𝑎𝑥

2

 

 To estimate (𝐶𝐿,𝑚𝑎𝑥 ,𝛼𝐶𝐿,𝑚𝑎𝑥
) based on the DATCOM 

(Hoak & Carlson, 1978) Eq. (16) and Eq. (17), Mention 
that those equations are available for both incompressible 
and compressible flow. 

𝐶𝐿,𝑚𝑎𝑥 = (
𝐶𝐿,𝑚𝑎𝑥

𝑐𝑙𝑚𝑎𝑥

) 𝒄𝒍𝒎𝒂𝒙 + ∆𝐶𝐿,𝑚𝑎𝑥 (16) 

𝛼𝐶𝐿,𝑚𝑎𝑥
=
𝐶𝐿,𝑚𝑎𝑥

𝑪𝑳𝜶
+ 𝜶𝟎 + ∆𝛼𝐶𝐿,𝑚𝑎𝑥

 (17) 

 Where: ∆𝐶𝐿𝑚𝑎𝑥  and ∆𝛼𝐶𝐿𝑚𝑎𝑥
: are the Mach number 

correction and the angle of attack increment, to obtain 
these two parameters and (𝐶𝐿,𝑚𝑎𝑥

𝑐𝑙𝑚𝑎𝑥
)   the reader should refer 

to the curves in DATCOM (Hoak & Carlson, 1978). 

 
Fig. 10 Wing lift coefficient comparison 

 

However, the use of DATCOM equations employed a 
hybrid approach.  For the zero-lift angle of attack, 𝜶𝟎, and 
lift curve slope, 𝑪𝑳𝜶, the VSPAERO solver is used. In 
contrast, the airfoil's maximum lift coefficient, 𝒄𝒍𝒎𝒂𝒙, is 
determined from XFOIL. 

The model was validated by comparing its results to those 
of the CFD of the wing. As it shows in Fig. 10, there are 
two main regions: linear and nonlinear. 

• For the linear region where the angle of attack goes 
from -2° to 8.5°, the curves present a close result with 
the same value of the curve slope (0.0889 1/°). It is 
remarkable; there is a little difference in the lift 
coefficient at zero angle between CFD and framework 
results, which is equal to 0.24 and 0.28, respectively.  

• For the nonlinear zone, it is observed that the proposed 
code models the stall and pre-stall effects. 𝐶𝐿,𝑚𝑎𝑥  for 
the suggested method was 1.41 at a stall angle of 
14.8°, whereas 1.34 was the value estimated by CFD 
at a stall angle of 15.5°. Hence, it can be observed that 
there is no greater than 5.3% absolute error between 
the proposed approach and the CFD results in 𝐶𝐿,𝑚𝑎𝑥  
estimation. 

5. COMPARATIVE ANALYSIS AND 
VALIDATION OF THE FRAMEWORK 
OPTIMIZATION 

The proposed framework was installed on a personal 
computer with an i7-8750H-2.20GHz CPU processor and 
16 GB of RAM. In order to test the validation of the code. 
The validation of the framework optimization was 
compared to the reference study. Where they seek to 

maximize endurance (𝐶𝐿
3
2

𝐶𝐷
) using a combination of an 

artificial neutral network and XFLR5 software. 

5.1 Problem Definition and Constraints 

The goal is to optimize the endurance ratio (𝐶𝐿3/2/𝐶𝐷), 
hence, the objective function to be maximized is: 

 𝑓 =  − 𝐶𝐿

3
2

𝐶𝐷
+ 𝑇, where 𝑇 represents the constraint’s 

penalty term, it can be expressed by the following 
formulation: 
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Table 4 Domain of experiment 

Design variables Lower 
Bound Upper Bound 

𝑊𝑙 [𝑘𝑔/𝑚2] 8 10 
𝜆 0.55 0.83 
𝐴 8 11 

𝜃 [◦] -5 0 
 

𝑇 = 𝑚𝑎𝑥(0,𝑉𝑠(𝑡) − 𝑉𝑠
∗)2

+ 𝑚𝑎𝑥(0,𝑅𝑂𝐶∗ − 𝑅𝑂𝐶(𝑡))2

+ 𝑚𝑎𝑥 (0,𝑉𝑚𝑎𝑥
∗

− 𝑉𝑚𝑎𝑥(𝑡))2 

(18) 

Here: 𝑅𝑂𝐶∗,𝑉𝑠∗,𝑉𝑚𝑎𝑥
∗ represent the required 

performance. To ensure a fair comparison with the 
reference study, we employed the same propeller model 
used in that study for performance evaluation. 

𝑡 =  [ 𝐴, 𝑊𝑙 , 𝜆, 𝜃]: is the design vector. 

 The problem can be expressed in the following way:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑡) =  𝑀𝑖𝑛 ( −
𝐶𝐿

3
2

𝐶𝐷
+ 𝑇)  (19) 

 Subject to:  

• 𝑅𝑂𝐶(𝑡)  ≥  5 𝑚/𝑠   

• 𝑉𝑚𝑎𝑥  (𝑡)  ≥  100 𝑘𝑚/ℎ 

• 𝑉𝑠  (𝑡)    ≤  10 𝑚/𝑠  

 The design variables in this problem are: Wing loading 
(𝑊𝑙), Aspect Ratio (𝐴), Taper Ratio (𝜆) and Twist Angle 
(𝜃), the test domain is expressed in Table 4 . 

5.2 Framework Parametrization 

The study framework consists of various 
aerodynamic inputs and parameters related to the genetic 
algorithm. The aerodynamic parameters include the Mach 
number, which is fixed at zero, and the angle of attack, 
which is selected within an interval that could capture the 
maximum endurance coefficient. The side slip angle is set 
to zero in this study and the weight of the UAV. 
Additionally, the number of tessellated curves in the 
spanwise direction (Num W) is set at 33, while the number 
of tessellated curves in the cord direction (Num U) is set 
at 30. These last two values are fixed after following the 
convergence of the lift and drag coefficients at zero 
incidence as a function of the number of panels, as in Fig. 
11 and Fig. 12. 

At first, the house code was launched for 10 
generations and a population that contained only 10 
chromosomes; then, it was launched for a population of 20 
and 30 chromosomes to allow for more exploration of the 
field research. The time simulation is proportional to the 
number of chromosomes in the population; it takes, on 
average, 46 minutes for N-pop = 10, 88 minutes for N-pop 
= 20, and 172 minutes for N-pop = 30 chromosomes. The 
first generation was generated arbitrarily according to the 
value of each variable listed in the table above. The 
percentages of selection, elitism, and crossover operations  

 
Fig. 11 𝑪𝑳 convergence vs. number of tessellations 

 

 
Fig. 12 𝑪𝑫 convergence vs. number of tessellations 

 

used in the genetics algorithm are, respectively, 30%, 
40%, and 30%. It is noticed that a limiter is used to ensure 
that the generation of arbitrary gens adheres to the lower 
and upper boundaries of the domain of experiment. 

5.3 Optimization Results  

After getting the different geometry dimensions using 
OpenVSP-API, their performances were compared to the 
geometry obtained using ANN-XFLR5 (reference study). 
XFLR5 software version 6.48 simulates each geometry. 
The 3D panel method was chosen with panel elements 
equal to 4970. 

Figure 13 presents the evolution of ( 𝐶𝐿
3
2

𝐶𝐷
)  in function 

of angle of attack. Notably, both the proposed ANN-
XFLR5 and OpenVSP-API optimization methods yield 
similar results for both planform wing size and endurance 
coefficient. It is observed that all wings exhibit a region of 
gentle variation over the maximum value of endurance 
that ensures good endurance for an important range of 
angles of attack. Furthermore, the maximum endurance 
ratio is increased from 23.91 using ANN-XFLR5 
optimization to 24.29, 24.22, and 24.36 using OpenVSP-
API with N-pop values of 10, 20, and 30 respectively. 
These graphs demonstrate that applying the research 
framework can increase endurance by up to 1.88%. The  

0 50 100 150 200 250

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

C
l

( Num U,Num V )

0 50 100 150 200 250
0,0025

0,0030

0,0035

0,0040

0,0045

0,0050

0,0055

0,0060

0,0065

Cd

( Num U,Num V )



M. Sahraoui et al. / JAFM, Vol. 17, No. 11, pp. 2299-2312, 2024.  
 

2308 

Table 5 Optimized wing shapes and their performance 

 𝑾𝒍 
[kg/m2] 𝑨 𝝀 𝜽 [deg] 𝒃 [m] 𝑪𝒕 [m] 𝑪𝒓 

[m] 𝑬𝒎𝒂𝒙 Time 
[min] 

ANN-XFL5 8.6 10.51 0.55 0 2.929 0.198 0.359 23.91 x 
OpenVSP-API 

(N-pop=10) 8.9 10.87 0.64 -0.09 2.919 0.209 0.328 24.29 46 

OpenVSP-API 
(N-pop=20) 8.9 10.84 0.78 -0.06 2.914 0.235 0.303 24.22 88 

OpenVSP-API 
(N-pop=30) 9.0 10.98 0.69 -0.20 2.921 0.217 0.315 24.36 172 

 

 
Fig. 13 Endurance ratio vs. angle of attack 

 
geometry parameters are represented in Table 5 The 
improvement in endurance ratio is explained by the 
increment in the aspect ratio from 10.51 to 10.98 using 
ANN-XFLR5 and OpenVSP-API, respectively. 
Furthermore, it has been highlighted that with a decreasing 
taper ratio among wings at low incidence angles, there is 
an increase in endurance. This is attributed to the reduction 
in induced drag associated with the decrease in the taper 
ratio. 

Figure 14 shows the pressure distribution at zero 
angle of attack on the four wing shapes obtained, 
respectively, by: a) ANN-XFLR5, b) OpenVSP-API (N-
pop = 10), c) OpenVSP-API (N-pop = 20), and d) 
OpenVSP-API (N-pop = 30). Overall, a similarity is 
observed in the distribution of pressure between wings 
obtained either by ANN-XFLR5 or by the OpenVSP-API 
framework. However, it is noticeable that there is a 
suppression area over the leading edge of the wings 
obtained by OpenVSP-API compared to ANN-XFLR5.  

6. CFD ANALYSIS 

6.1 Governing Equations 

The CFD study was performed using the commercial 
software Ansys Fluent (Ansys Fluent 2023). The coupled 
Reynolds-Averaged Navier-Stokes (RANS) equations of 
continuity, momentum, and energy, shown in Equations 
20, 21, and 22 (Katz & Plotkin, 2001), were solved 
alongside the Spalart-Allmaras turbulence model. 

 
Fig. 14 Pressure distribution over wings 

 

Continuity equation: 
∂𝜌
∂𝑡

+ ∇ ∙ (𝜌𝑉⃗ ) = 0 (20) 

Momentum equation: 

∂(𝜌𝑉⃗ )
∂t

+ ∇ ∙ (𝜌𝑉⃗  𝑉⃗⃗⃗ ) = −∇𝑝 + 𝜌𝑓 + ∇ ∙ τ (21) 

Energy equation: 

𝜌
𝐷

𝐷𝑡
(𝑒𝑖 +

1
2
𝑉2) = 𝛻 ∙ (𝑝𝑉⃗ ) −  𝛻 ∙ 𝑞 + 𝜌𝑓 ∙  𝑉⃗⃗⃗  (22) 

 The general equation of the Spalart-Allmaras 
turbulence model represented in Equation 24 (Singh et al., 
2021): 
𝐷(𝜐̃ )
𝐷𝑡

 = production + diffusion - dissipation (24) 

Where 𝜐̃ represents the turbulent viscosity. 

6.2 Computational Domain and Grid Generation 

The computational domain for the simulations is 
depicted in Fig. 15. An unstructured mesh, consisting of 
2.7 ∙ 106 nodes and 7.3 ∙ 106  elements, was generated as 
shown in Fig. 15. This number of nodes was found by an 
investigation of the dependency between the number of 
nodes and the results. Furthermore, 15 inflation layers are 
created, the first of which is positioned 1.8 ∙ 10−5 m from 
the wall and provides a value for the non-dimensional wall 
distance (y+) remained below 1. 
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Fig. 15 Calculation domain and grid generation for CFD 

Table 6 Boundary condition 

Zone Type Boundary condition 

Inlet Velocity 
inlet 

Magnitude velocity =17 m/s 
Inlet pressure = 97851 Pa 

Temperature =286.2 k 

Outlet Pressure 
outlet 

Outlet pressure = 97851 Pa 
Temperature =286.2 k 

Symmetry Symmetry 

Wing Wall Stationary wall, Condition 
of no-slip 

6.3 Boundary Conditions 

Figure 15 illustrates the boundary conditions. a 
velocity of 17 m/s at the inlet, which corresponds to a 
Reynolds number of 3.0 ∙ 105  based on the MAC). 
Ambient pressure at the outlet, and a symmetry condition 
applied to one-half of the wing to reduce computational 
time. Additionally, all wing surfaces were assigned as 
walls with zero velocity. Table 6 provides the detailed 
boundary conditions specified for each zone. 

6.4 Solver Setup 

Ansys Fluent was used to simulate the wing produced 
by an optimization process utilizing the internal research 
house code, with a population of 30 chromosomes ranging 
from -2 to 16° angles of attack. In the present study, the 
flow is incompressible. Therefore, a pressure-based solver 
has been chosen. Additionally, a coupled solver has been 
selected to resolve the momentum and pressure equations 
simultaneously. Table 7 summarizes the solver parameters 
and solution methods. 

Figure 16 displays the aerodynamic properties of the 
optimized wing, generated with the OpenVSP-API for a 
population of 30 chromosomes. The XFLR5 (3D panel) 
and OpenVSP (VLM) yield maximum 𝐿/𝐷 values of 29.6 
and 56, respectively, while OpenVSP-API achieves a 
value of 20.2, which is relatively close to the CFD (21.1) 
value. The non-modeling of the viscous effect in 
OpenVSP and XFLR5 leads to the prediction of low drag 
levels by both the VLM and 3D panel methods. Both 
OpenVSP-API and CFD have the capability to calculate 
𝐶𝐿,𝑚𝑎𝑥  values of 1.381 and 1.415, respectively, at an angle 
of attack of 13.8° and 13°. It is observed that the absolute 
error in estimating 𝐶𝐿,𝑚𝑎𝑥  reduces to 2.4% in this 
scenario.  

Table 7 solver setup and solution methods 

solver Pressure based 
Pressure-Velocity coupling Coupled 

Formulation Implicit 
Discretization method 2nd order upwind 

Turbulence model Spalart-Allmaras 
Gradient Least squares cell based 

Residual: continuity, 
velocity, nut 10−5

Initialization Hybrid 

Figure 17 shows the streamlines and static pressure 
distribution over the wing. This may be quite helpful for 
locating the flight control surfaces and determining the 
region of separation. Additionally, by understanding the 
pressure distribution throughout the wing, the weak points 
in the structure that require reinforcement can be identified 
relative to others, which will aid in structural optimization 
later on. 

Figure 18 shows the line speed of the magnitude 
velocity over the root profile. It is observed that the more 
the angle of attack increases, the separation of the flow 
begins with the trailing edge and will create what is called 
the Laminar Separation Bubble (LSB) and enlarges and 
shifts towards the leading edge. 

7. CONCLUSION

A novel framework for aerodynamic preliminary 
sizing of mini-UAVs has been developed, prioritizing the 
maximization of flight endurance which a critical factor 
for achieving mission objectives in surveillance 
applications. This framework leverages a calibrated 
aerodynamic solver that utilizes the Vortex Lattice 
Method (VLM) to estimate linear lift, induced drag, and 
incorporates a semi-empirical parasite drag model based 
on friction coefficient and form factor. Additionally, an 
estimation of maximum lift coefficient and stall angle is 
introduced through the adaptation of the DATCOM 
method. The framework employs Python scripts to call 
VSPAERO for VLM computation, the Parasite Drag tool 
for estimating 𝐶𝐷0, XFOIL, and the DATCOM method for
stall prediction. 
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Fig. 16 Aerodynamic performances of the ideal wing 

 

 
Fig. 17 Pressure distribution over the optimal wing 

 

 
Fig. 18 Line speed of the magnitude velocity over the root profile 
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The results generated by the adopted aerodynamic solver 
are compared to those from a reference study, exhibiting 
promising agreement and behavior. Such a solver reduces 
the gap for both drag and lift, referred to CFD results. 

To test the constructed tool, a wing design was carried 
out to meet a set of desired requirements. The process 
involved weight estimation, profile selection, design point 
determination, and GA aerodynamic optimization. The 
obtained results indicate that the elaborated framework 
provides promising solutions for wing dimensions and 
performances. In comparison to the reference study 
(ANN-XFLR5), our automated process allows for 
simulations at various angles of attack and flight 
conditions, eliminating the need for big data. 

The utilization of this framework offers a systematic, 
fast, and efficient tool for designing, analyzing, and 
optimizing UAV wings.  
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