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Abstract

The behaviours of patients with depression are usually difficult to predict because the patients
demonstrate the symptoms of a depressive episode without warning at unexpected times. The
goal of this thesis is to examine different machine learning approaches to detect such times
and predict possible depressive episodes. The work also comprises a preprocessing pipeline
for transforming and organizing the input data. The final assessment indicates current and
future application possibilities of machine learning in the depression detection context.
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Kurzzusammenfassung

Das Verhalten von Patienten mit einer Depression ist in der Regel schwer vorherzusagen, da
die Patienten die Symptome einer depressiven Episode ohne Vorwarnung zu unerwarteten
Zeiten zeigen. Das Ziel dieser Arbeit ist es, verschiedene Ansaetze des maschinellen Lernens
zu untersuchen, um solche Zeiten zu erkennen und moegliche depressive Episoden vorher-
zusagen. Die Arbeit umfasst auch eine Vorverarbeitungs-Pipeline zur Transformation und
Organisation der Eingabedaten. Die abschliessende Bewertung zeigt aktuelle und zukuenftige
Anwendungsmoeglichkeiten des maschinellen Lernens im Kontext der Depressionserkennung
auf.
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1. Introduction

1.1. Motivation

Depression is playing an increasingly important role in today’s society and is nowadays
frequently diagnosed as a disease. Around 5.3 million people in Germany suffer from depression
each year, and around 17 percent of German adults will experience a persistent depressive
disorder in their lifetime [1]. Increasingly, people complain about feelings of loneliness,
indecisiveness, and powerlessness and run with the risk of depression. Moreover, a recent
study shows that employees in Germany are taking more and more sick leave due to depression,

causing experts to call for more investment in early recognition and prevention [2].

Adesso AG is tackling this problem with the so-called "STEADY Project” to connect the digital
world with the healthcare area. Mainly, the project is a digital health portal aimed at people
suffering from depression. The portal distinguishes between three user groups "patient”,
"doctor” and "scientists". Patients are thus provided with a platform that contains both data
collection and data evaluation as essential components. A suitable form for the collection of
vital data is a fitness bracelet. Additionally, digital questionnaires are used to obtain information
about a patient’s condition concerning their mood and well-being. The recording is usually

carried out over a long period to enable as precise analysis as possible.

1.2. Problem statement

A report from 2017 estimated that the average person in Germany must wait three months
for an initial appointment [3] with a registered psychotherapist, then three more months to
get a regular appointment, which in some cases is a fatally long time. Moreover, the only way
now to diagnose a patient with depression is through meticulously conducted sessions with
psychiatrists and experts, wherein many questionnaires and tests are evaluated and assessed, a

process that is both time and resource consuming.

Since modern problems require modern solutions, a desirable approach would reduce the need
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for direct contact between patients and psychiatrists and at the same time, reaches a credible

prognosis of the depression status.

1.3. Thesis Goal and Structure

The aim of this Bachelor thesis is the analysis of personal health data from potential depressed
patients and predict their depression levels. For this purpose, a number of machine learning
models shall be examined to see which one fits the data better and compare their respective
behaviours. Based on the collected data, these models shall be able to classify patients - either
with classification or regression - on a depression scale. This would be helpful as it will solve
waiting lists bottlenecks by prioritising the process; patients with high depression rates would
have a high priority, low depression rate mean they can wait some time. Moreover, it will
alleviate the workload of the doctors, which will make them able to take in more patients and,
at the same time, provide more thoroughly attention and support.

This thesis is structured as follows: after analysing the state-of-the-art of depression prediction
methodologies based on biomedical sensor systems in this chapter, chapter 3 presents an
introduction to depression categorisation and clinical diagnoses instruments, thereupon, giving
an overview of the project STEADY as the environment wherein the following work shall
be realised. A Thorough illustration of the datasets and the preprocessing pipelines follows
in chapter 4. Chapter ?? goes through the implementation of the chosen machine learning
models and present their results and performances. Findings and evaluation of the results are
presented in Chapter 6. Finally, Chapter 7 concludes with a summary of the entire work and
overview of perspectives for future work.
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Depression is one of the most prevalent mental health problems among adults; however,
its diagnosis and tracking methods still rely mainly on assessing self-reported depressive
symptoms, methods that originated more than fifty years ago. These methods, which usually
involve filling out surveys or engaging in face-to-face interviews, provide limited accuracy
and reliability and are costly to track and scale [23].

2.1. Related work

For the past decades, significant efforts have been invested to find algorithms that detect
depression. For instance, there had been several studies on human actions to identify depression
symptoms. A research on facial actions and vocal prosody has achieved accuracy of 88% in
detecting the symptoms [24]. Clinical depression is associated with dull, monotonous and
lifeless speech with a lack of expression [31]. Reflected changes in speech quality can indicate
affective disorders including depression [32, 33]. Depressed subjects experience physiological
fluctuations that alter vocal fold and vocal tract airflow modifying speech properties [34].
Depressed speakers exhibit quantifiable changes in spectral, prosodic, articulatory and phonetic
properties [35, 36]. Studies have subjectively and objectively evaluated speech parameters as
indicators of depression, severity and treatment efficacy [37]. Jarrold et.al. conduct a research
on brain health by using data mining tools to identify clinical depression and have also achieved
a high range of accuracy from 73% to 97% [25]. However, the outcomes of these studies are not

able to detect the symptoms without interactions between the doctor and patient [26].

A study by Burns MN et. al. found that phone sensor data could detect social patterns among
depressed patients, but this was a small study with only 8 participants [27]. Other studies
have found that phone sensors were effective at detecting social and sleep behaviours among
patients with depression [28, 29], and such features correlated significantly with severity of
depressive symptoms [30].
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A linguistic analysis for detecting depression was performed by Ang Li et al. [38]. A content
analysis of depression-related Tweets was performed by Patricia A. et al [39]. A nationally
representative study among U.S. young adults was done by Brian et al using multiple social
media platforms [40]. Affective content analysis of Online Depression Communities was
done by Thin Nguyen et al. [41]. The main aim of these systems is to efficiently design the
algorithm for detection of the depression stigma. The data set is collected from websites such as
Weibo and Twitter. First the collected dataset is analysed with the help of syntax and semantics
analysis which gives the sense of depression stigma among posts posted by different age groups.
In this process the syntax is analysed for finding certain key words and relevance of those
key words is made with the help of semantic analysis which finds the general emotion of the
paragraph via understanding the emotion of the text also known as Emotion Detection Systems
or sentiment analysis. Then the posts are classified according to the depression symptoms [21].

2.2. Machine learning methods

Machine Learning is one of the tools of Artificial Intelligence [42, 43]. Artificial Intelligence is
a simulation done with the help of machines, mainly computers of human intelligence. This
simulation includes constant learning, reasoning, and adapting by self-correction. Machine
Learning gives the machines the ability to teach themselves without anyone instructing it
what to do [45]. Its algorithms learn themselves from the given data and apply the gained
knowledge to make predictions, it also has algorithms that are experts in finding the pattern
from the data. Moreover, they are very good at discovering the best combination of features
from the data [46]. In depression prediction studies, it is better to focus on the overall pattern
in the data rather than looking at individual attributes [44].

The Machine Learning models based on the way they handle the data are classified into three
major categories: Supervised Learning where the data is labeled, and the output is known
already, Unsupervised Learning where the data is unlabelled, and the output is decided later
from the inferences, and Reinforcement Learning which is based on the feedback mechanism,
the algorithm is in such a way that it interacts with the environment, finds the rewards or
errors [47]. The process of prediction or classification involves four stages: collecting data,
pre-processing it to handle the missing values and reduce the noise, select the essential features,
then implement a model suitable for the data in hand. In the following sections, a number of
prominent algorithms are discussed to give more insights about their internal functionalities
and why they are of relevance for this work.
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Random Forest

Random forest is the most widely used machine learning model that can be used for both
regression and classification. Random forest is an ensemble of several decision trees (see figure
2.1), and the prediction is made as a result of taking an average of all the predictions from the
decision trees [48].

Tree 600

2

| Prediction 600 |

——

e

Average All Predictions ‘

.

Random Forest
Prediction

Figure 2.1.: Random Forest Structure [50].

The Random Forest algorithm introduces more randomness when growing trees; instead of
searching for the very best feature when splitting a node, it searches for the best feature among
a random subset of features. This behaviour results in a greater tree diversity, which trades
higher bias for a lower variance, generally yielding an overall better model. Another great
quality of Random Forest is that they can measure the importance of each feature. Scikit-Learn’,
for example, measure a feature’s importance by looking at how much the tree nodes that use
that that feature reduce impurity (or MAE) on average (across all trees in the forest). More
precisely, it is a weighted average, where each node’s weight is equal to the number of training
samples that are associated with it.

!3cikit-learn is a free software machine learning library for the Python programming language.
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Support Vector Machines

Support Vector Machines (SVM) is a versatile machine learning model that is capable of
performing linear or nonlinear classification, regression, and even outlier detection [12, p. 153].
There are two main categories for support vector machines: support vector classification (SVC)
and support vector regression (SVR). SVM is a learning system using a high dimensional feature
space. It yields prediction functions that are expanded on a subset of support vectors. SVM can
generalize complicated gray level structures with only a very few support vectors and thus
provides a new mechanism for image compression. A version of a SVM for regression has been
proposed in 1997 by Vapnik, Steven Golowich, and Alex Smola [13]. This method is called
support vector regression (SVR). The model produced by support vector classification only
depends on a subset of the training data, because the cost function for building the model does
not care about training points that lie beyond the margin. Analogously, the model produced by
SVR only depends on a subset of the training data, because the cost function for building the
model ignores any training data that is close (within a threshold £) to the model prediction [14],
such cost function is called e-insensitive cost function and the model called e-SV regression
model. For a multidimensional data with the shape (z1,¥1), -....(z1, 1) where X denotes the

Figure 2.2.: Soft margin loss setting for linear SVR with £ = 1 {22]
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space of input features and y the targets for such inputs, the SVR model goal is to find a
function f(z) that has at most € deviation from the actually obtained targets y; and at the
same time as flat as possible. This model does not regard any errors as long as they are less
than ¢ but it does not accept any deviation larger than this margin (see figure 2.2) [15].

flz)=w-z+bwithwe X,be R (2.1)

Flatness in the case of equation 2.1 means that it is required to minimize the norm ||w]||2. This

can be written as a convex optimization problem:

minimize ||w)||?

;i —(w-z;) —b<e
subject to v~ (w-2) o (2.2)
(w-z;))+b—y; <e

These constraints requires prefect separation between classified classes and does not allow
any errors, and in some cases, make the problem unsolvable. A solution to this problem was
provided by Corets and Vapnik [16] in the form of slack variables &;, £ to cope with otherwise
infeasible constraints of the optimisation problem (equation 2.2) and allow some errors. Hence,

equation 2.3 was stated by Vapnik [15].

i
minimize ||w||? + C > (& + &)
i=1
yi—(w-z)—b<e+§;
subjectto ¢ (w-z;) +b—y; <e+ & (23)
51:)5; _>.. 0

The constant C determines the trade-off between the flatness of f and the amount up to which

deviations larger than ¢ are tolerated [15].
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Convolutional Neural networks

Convolutional Neural Network (CNN) is a neural network architecture that is especially suited
for 2-dimensional data structures, e.g. images. The core concept behind CNNs is to model
the invariance of visual features to translation, rotation or even illumination. This allows
to recognise certain patterns in the data, even when images are shifted, rotated or flipped
upside down. The main building block of a CNN is the convolutional layer: neurones in the
first convolutional layer are not densely connected to each neurone in the input neurones (Like
they are for a classic Neural Network), rather, they are only connected to pixels that represent
their receptive field (see Figure 2.3). In turn, each neurone in the second convolutional layer is
connected only to neurones located within a small rectangle in the first layer. This architecture
allows the network to concentrate on low-level features in the first hidden layer, then assemble
them into higher-level features in the next hidden layer, and so on. This hierarchical structure
is common in real-world images, which is one of the reasons why CNNs work so well for

image recognition [12, p. 63].

/ 7 .
/ Convolutional
/ ° / layer 2
/ // — 7
£ x/ ,!‘ \‘ \\ / .
/ PR A / Convolutional
/ S ol / layer 1
/ A
1! A i " Input layer
7
&

Figure 2.3.: CNN layers with rectangular local receptive fields.

Unlike classic Neural Network (NN) , CNN operate over volumes, that means these networks
prefers the input to be in 3D shape. This quality allowed native interaction with visual data, as
most images data consists of three channeled coloured images.
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1D Convolutional Neural networks

The main point to be taken from CNN is that they discover patterns in visual data through
the process of simultaneously applying different filters (or convolutional kernels) on the data,
making them able to detect those patterns and features anywhere in its input. In the same
analogy, 1D convnets can be used in time sequence forecasting where 1D patches (subsequences)
are extracted form complete sequences (see figure 2.4). The same properties that make convnets
excel at computer vision also make them highly relevant for sequence processing, as time can
be treated as spatial dimension like the height or width of 2D image.

Window of
size 5
"
input
| t
npu [ features
t -
U Time

Extracted
patch

Dot product
with weights

Output
Output
vy I [ features

[ leee

Figure 2.4.: How 1D convolution works: each output tilmestep is obtained from temporal patch
in the input sequence [51, p. 225]

Such 1D convolution layers can recognise local patterns in a time sequence. Because the same
transformation is performed on every patch. a pattern learned at a certain window can be later

recognised at a preceding position. [51, p. 225]

Recurrent Neural Networks

A Recurrent Neural Network (RNN) looks very much as a classic NN, except it has connections
pointing backwards. A simple RNN would be composed of one neurone receiving inputs,
producing an output and sending that output back to itself. RNNs are a special architecture of
NN, that can effectively incorporate temporal dependencies within the input data. This can
be achieved by unrolling an NN on the temporal axis, where the network at each time step is

provided with feedback connections from previous time steps.
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Training a recurrent NN with gradient descent requires back-propagating gradients through the
entire architecture in order to calculate the partial derivatives of the loss function with respect
to each parameter of the model. As the chain rule is applied many times in back-propagation,
the gradients flowing through the network can either become very large or very small. Due to
the complex structure of RNNs, the architecture suffers from vanishing or exploding gradients
during training through SGD [52]. In practice, large gradients can be avoided by clipping the
gradient [53]. Vanishing gradients however, remain a challenge of deep architectures and
prevent the model from learning correlations between distant events.

An RNN can simultaneously take a sequence of inputs and produce a sequence of outputs (see
Figure 2.5, left network). For example, this type of network is useful for predicting time series
such as stock prices: you feed it the prices over the last N days, and it must output the prices
shifted by one day into the future (i.e., from N-1 days ago to tomorrow). Alternatively, you
could feed the network a sequence of inputs, and ignore all outputs except for the last one
(see the right network). In other words, this is a sequence-to-vector network. For example,
in STEADY use case, the network is fed with a sequence of days (7 days), and the network
outputs a depression prediction for the next day.

B e na

Figure 2.5.: Seq-to-seq (left) and Seq-to-vector (right) [12, p. 502]

Long short term memory (LSTMs)

Due to the transformations that the data goes through when traversing an RNN, certain
patterns and information are lost at each time step. After a while, the RNN’s state contains

10
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almost no trace of the first inputs. This behaviour is very problematic for modelling long
sequences, not to mention the problem of vanishing/ exploding gradients mentioned in the
previous paragraph. To tackle both problems, various types of cells with a sort of memory was
developed. One of them is the LSTM cells. They proven so successful that the basic cells are
not used much anymore [12, p. 63]. LSTM cells solves this short-term dependency problem

he—q

Figure 2.6.: LSTM cell

and make the network to remember longer dependencies. In addition to RNN structure, LSTM
has a cell state, which transfers the information through LSTM cells with a minor change of
the information. Consequently, the network’s default behaviour is to remember long-term
dependencies. LSTM cell behaviour can be summarised into three main gates, namely, Forget,
Update, Output.

Forget gate uses the previous cell output A;1 and input z; to output a value between 0 and 1,
varying between "completely forgetting" and "completely keep". This is achieved through the
sigmoid function in the left third of the cell.

ft =Wy -olhi1, ] + by (2.4)

Update gate decides which values to store in the cell state and then execute this update. This
operation takes place in the second third of the LSTM cell through two steps, firstly, sigmoid
activation to decide which values to update, again using the cell output h;—; and input ;.

iy = o(Wilhe—1, T4} + bi) (2.5)

11
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and simultaneously generate new vector of "candidate values" that could be added to the cell

state.

C; = tanh(We[hi—1, 1] + be) (2.6)

Then the update of the cell is executed through multiplying f; with C;_1, which translates to
"forgetting” what needs to be forgotten, then adding the new candidate values C; scaled by
the input gate i; to selectively update the state value.

C:=fi®Ci1+i®C 2.7)
Finally, the Qutput gate outputs a filtered version of the cell state through.
he = o(Wolhs—1, 4] + bo) @ tanh(Cy) (2.8)

The tanh(C;) acts as the filtration part in the equation as it outputs a value between -1 and 1,
which is then multiplied by sigmoid activation layer to produce the output. [12, p. 514-517]

12
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project

As the field of clinical behavior analysis grows, it will benefit from analyses of increasingly
complex and common clinical phenomena, especially those with significant public health
implications. One such phenomenon is clinical depression, considered to be the "common cold"

of outpatient populations. [5]

However, before a clinician can successfully treat a depression, he or she must first accurately
diagnose the patient. Yet, there are different kinds of depression, which respond to different
types of treatments. What works for one sort of depression may not work for another, or might
even prove harmful. Only by first making an accurate diagnosis can a doctor figure out what
treatments are likely to help.

The current subtyping of depression is based on the Diagnostic and Statistical Manual of Mental
Disorders, 4th ed, Text Revision (DSM-IV-TR) categorical division of bipolar and depressive
disorders [6]. Current evidence, however, supports a dimensional approach to depression, as
a continuum/spectrum of overlapping disorders, ranging from bipolar I depression to major
depressive disorder. There are several case-finding instruments for detecting depression in
primary care, ranging from 2 to 28 items in length [7]. Typically these can be recorded as
continuous measures of depression severity and also have established cut-points above which
the probability of major depression is substantially increased. Scores on these various measures
tend to be highly correlated [8], and it is not evident that any measure is superior to the others
[7, 8].

In this following section, the PHQ method is being discussed, as it is the one used in project
STEADY.

13
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3.1. Patient Health Questionnaire (PHQ)

The PHQ is a ubiquitous instrument for making criteria-based diagnoses of depressive and
other mental disorders commonly encountered in primary care. The diagnostic validity of
the PHQ has been established in 2 studies involving 3000 patients in 7 obstetrics-gynaecology
clinics [9]. At 9 items, the PQH depression scale, also called (PHQ-9), is half the length of
many other depression measures, has comparable sensitivity and specificity, and consists of
the actual 9 criterion upon which the diagnosis of DSM-IV depressive order is based [10].

Brief Patient Health Questionnaire |

This questionnaire is an important part of providing you with the best health care possible. Your
answers will help in understanding problems that you may have. |

Name Age Sex: []Female [ ] Male Today's Date
1. Over the last 2 weeks, how often have you been bothered More  Nearly
by any of the following problems? Several than haif every

Notatall days thedays day
Little interest or pleasure in doing things......................
Feeling down, depressed, orhopeless .......................
Trouble falling or staying asleep, or sleeping toomuch .........
Feeling tired or having litdle energy ..........................
Poor appetite orovereating . ..............cooi il

Feeling bad about yourself — or that you are a failure or have let
yourself or your familydown . ................

e o0 T

g. Trouble concentrating on things, such as reading the newspaper
orwatching television .......... ... ...l

0O O oOooood
0O 0O oggooo
0O 0O OoOoood
O 0O oooogd

h. Moving or speaking so slowly that other people could have
noticed? Or the opposite — being so fidgety or restless that you
have been moving around a lotmore than usual ..............

i. Thoughts that you would be better off dead or of hurting yourself
INSOMEWAY ...ttt e

O
Ol
]
O

J
U
]
O

Figure 3.1.: PHQ-9 Questionnaire.[9]

However, a briefer version of this questionnaire is used in the evening protocols (see sec-
tion 4.1.2). The so-called (PHQ-2) confines itself to only two questions, the degree of the loss of
interest, and down mood. Nevertheless, the scale is extended to 11 possible values (from 0 to
10).

The PHQ-2 has good sensitivity and specificity for detecting major depression. These proper-

14
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ties, coupled with the brief nature of the instrument, make this tool promising as a first step

for screening for adolescent depression in primary care [11].

3.2. Steady project

In this section, the details of the STEADY project are discussed and presented as the base for
the following acts and endeavors. Launched by the federal ministry for education and research,
and partnered with the Institute of applied computer science, german depression institute
(Stiftung Deutsche Depressionshilfe), and adesso SE as the central part of action for the digital
part, STEADY project aimed at establishing a digital platform that allows patients to collect
data through the course of their ongoing disorders using smartphones and biomedical sensors.
These data can then be used to help self-manage those patients and increase the efficiency of
medical care. Affective disorders are particularly suitable for this approach because of their
recurrent or chronic course, their frequency and severity, and the major deficits and bottlenecks

in medical care that exist in this area.

The platform allows these data to be shared between the patients and their treating physicians
and psychotherapists so that it could be used in the treatment process. The sharing part
happens under two norms, First and by default, all the data gets pseudonymized, and each
participating patient gets a numeric ID, so developers and scientists can see and analyze the
actual data without knowing to whom it belongs. Secondly, if the patient allowed restricted
access to his data from his physician to gain further insights.

The project aim is to inform the patient about changes in his/her symptoms (e.g., incoming
depressive episodes) more precisely than through mere self-perception. If certain patterns of
the biodata precede affective changes and point to factors that cause them, this can be used for

prophylactic interventions and the optimization of self-management.

The duration of the STEADY project was three years, combining three phases of measurements
and with slightly different types of sensor systems. In general, relevant data is collected in two
forms. First, raw sensor data that comes form smartphones and smartwatches e.g. heart rate,
skin conductivity, activity levels, location data. Secondly, morning and evening surveys or as
called "protocols"” that are filled on a daily basis. These data form the basis for the bachelor

thesis (see [4] for more information).
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4. Data Preprocessing

In this chapter, the data preprocessing procedures are illustrated. These procedures come in
essence as the data collected from the sensors - whether mobile, or smartwatch sensors - are
in a format that is not directly readable, nor usable by machine learning algorithms. Also, the
raw sensor data and their respective protocols "labels" are collected with two different file
structures, this requires an additional final step of merging the two pieces to form the classic
dataset format with a set of features and a set of corresponding labels.

4.1. Dataset Overview

The dataset is divided into two main categories; the two have different file structure and a
different method of how they are collected. In the following sections, the properties of each
category and how it is related to goal of the thesis are discussed.

4.1.1, Sensor Data

Data captured by the different sensors are written to a specific file format, called a "fluff"
file. A fluff file contains a specific number of measurements for different sensors e.g., GPS,
acceleration, or gyroscope, within a specific time window, e.g., 1 or 2 hours. This unique format
was developed by the Institute of applied computer science. These files come with its special
java Implementation for basic reading and writing operations.

Listing 4.1: Structure of the fluff file

public class FluffMetaData {
private final String fluffName;
public String[] dataTypes;
public int nSensors;
public long uxStartTime;
public String[] sensorSpecs;
public Object[J[] data;
....... // Remainder omitted for the sake of brevity
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4. Data Preprocessing

No official source of documentation for the .fluff file complete structure could be found, hence,
all needed information for this work has to be inferred from the FluffMetaData class. Listing
4.1 shows the bare bone of a fluff file. It contains a name for the record, this name is the MAC
address of the used device concatenated with a Unix timestamp marking the start time for that
specific window of measurements. Line 4, "sensorSpecs”, is an array that contains information
about the sensor types, names, and the units used in each measure. Lastly, "data" contains

the actual values of the measurements. For example, figure 4.1 depicts the structure of the

sensorSepecs
sg2_acc :
uniti=us tag1=SystemClock
unit2=m/s”2 tag2=X_Acceleration
unit3=m/s”2 tag3=Y_Acceleration
unitd=m/s”2 tagd=Z_Acceleration

data
sg2_acc : [874449329, 874489289, 874529337, 874569363, 874609391, 874649417]
sg2_acc : [3.696911, 3.696911, 0.4570291, -1.1916257, 0.22731815, 0.21774687]
sg2_acc: [-10.863414, -10.863414, -8.573483, -10.408779, -9.521042, -9.497113]
sg2_acc : [-0.51445687, -0.51445687, 2.2875385, -2.1990042, -0.49292147, -1.806581]

Figure 4.1.: Sensor specification

acceleration sensor. It has four components, with each has a name and a measurement unit,

and the data array contains the actual measurement values, respectively.

The first array of entries are offset values for each measurement. The actual time that corre-
sponds to each measurement is calculated through adding the respective offset to the Unix start
time of the fluff file. Note that offsets are in microseconds, and Unix start time is in seconds.
This structure is pretty much the same for each sensor, except for the GPS sensor, its values

are recorded without offsets, only Unix timestamps.

4.1.2. Daily Protocols

Every patient had to fill two protocols daily, one in the morning and a comprehensive one
at night. These protocols measure different and multiple things; in particular, it contains the
PHQ-2 result. Morning protocols are not considered for this work as they contain only encoded
entries such as patient Id and timestamp, which is also contained in the evening protocols yet
with many more decisive features.
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4. Data Preprocessing

“PHQ2 1": "6", // from 0 to 10
"PHQ2_2": "3", // from 0 to 10
"alc": "0", // from 0 to 10
"mood": "6", // from 0 to 10
"tired": "1", // from 0 to 10
"period": "false",

| "rumination": "6", // from 0 to 10
[ "socialize": "72", // from 0 to 100
"context": [

{
"name": "Einkaufen",
"context_n_d": "105",
"hours": ["12"]

}

1,

"daySleep": {
"DS_TIB": "4", // total sleep in bed
"hours": []

Figure 4.2.: A snippet of an evening protocol

The features set has been extended with key entries found in the evening protocols, so the
features set is not confined to only sensor data but expanded to comprise information such as
daily alcohol/ cigarettes consumption, mood, and tense levels.

4.2. Dataset Exploration - Processing challenges

The extended dataset comprises the daily values of sensor data, along with key information
from the evening protocols, both parts serve as the feature set, and the PHQ-2 results as the
labels. One of the most critical aspects of the dataset is that the sensor data are captured at
very high frequencies, ranging between 100 kHz-250 kHz. Assuming an average of 200 kHz
(5us), nearly 17.10° values per day - or 7.10° per hour- could be reached. Thinking logically,
no depression level will alter throughout some finite number of microseconds. Hence, sensor
data are to be compressed into one minute window, meaning one value per sensor each minute.
That allows high precision while not losing much information.

The feature set is extended even more with the standard deviation of each compressed range.
The main purpose of a standard deviation is to understand how spread out the compressed
range is, i.e., high standard deviation would mean a potential loss of precision and low standard
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4. Data Preprocessing

deviation would assure the accuracy of the compression as not much data are lost. This gives
even more insights into the compression process and helps increase the quality of the features.

Another issue is the irregularity of the time component. Expected is to have 1440 sensor
values per day, that is 24 hours multiplied by 60 minutes per hour. However, the data exhibited
many interruptions and missing values that clipped that number to 400-600 values per day.
Moreover, there are time gaps that reaches up to 10 days, that means 10 days of no data entirely.
These time gaps and interruptions were, due to empty batteries of the devices, broken devices,

or the user took of the watch.

Finally, both fluff files and evening protocols are matched with each other depending on the
timestamp of each on them. Consequently, adding the results of the PHQ-2 as labels for the
complete dataset.

4.3. Preprocessing Pipeline

In essence, there are two main pipelines. The first one is responsible for transforming sensor
data files from fluff files to a CSV file. The second one is responsible for reading and converting
evening protocols into a CSV file. Transformation processes illustration follows in the next

two sections.

4.3.1. Sensor data pipeline

Each fluff file contains all sensor measurements through a given time window. This window
varies from half an hour to full two hours. That dictated, firstly, separating the whole fluff
files list, then aggregating each sensor values into a single file per sensor to allow further
processing. Each patient had on average 2000 fluff files, these files spanned up to 10 months in
some cases. After the separating step, four to five files - depending on how many sensors to be
extracted - for each patient are generated.

Secondly, each sensor file gets compressed into a one minute window as mentioned earlier
(see section 4.2). At this step, the standard deviation of each compressed range is added as a

new feature.

Thirdly, each compressed sensor file gets merged with other compressed sensor files to form
one CSV file that contains all sensor data. It is very important to know that each measurement
in each file has its own specific timestamp, specifically, a Unix Timestamp. This merging
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. Sensor Data

Individual
Sensor Files

Compressed
compress [ Individual Sensor | o csv impute
—> Files —— —>

Imputed CSV
Files

Figure 4.3.: Sensor data processing pipeline

process builds upon those timestamps to match measurements from different sensor files.
The exact process goes as follows; the earlier timestamp of all readings is picked form all
compressed files, then all readings with equal timestamps - or almost equal with a window of
+60 seconds - are also picked and merged together forming one complete measurements line.
This loop continues until there is no more data in any of the compressed files.

Finally, an imputation with ‘'median’ strategy is performed on the CSV file to replace any
missing values, as machine learning models, particularly NNs, suffer from missing values.
Median values of the dataset are saved separately, as any future dataset that will use these
models will have to be imputed in the same way as the training data to ensure the same
behaviour {12, p. 63].
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4. Data Preprocessing

4.3.2. Evening protocols pipeline

Evening protocols are in JSON format and they are daily filled, that means no compression nor
separating is needed here. As shown in figure 4.4, only parsing the evening protocols together

with imputing missed values is required.

Files
/

. /P — |
Evening Protocols / CSV File 'mPUtEd csv / I—_J‘> Output
—t

Figure 4.4.: Evening protocols processing pipeline

4.3.3. Sensor data and Evening protocols

Sensor data and Evening protocols are merged for convenient usage by machine learning
models. Worth noting here is the time difference between the two files, as in sensor data, the
values are between 400-600 value per day, while only one value per day from the evening
protocols. That means that the values of the evening protocols had to be replicated along the
corresponding days from the sensor data. This transformation happens in this last step, as
depicted in figure 4.5.

Sensor Data

Evening Protocols | > Output

Figure 4.5.: Merging Sensor data and Evening protocols

After this step, a complete imputed dataset is ready for usage by different machine learning
algorithms.
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5. Machine Learning Approaches

Broadly speaking, supervised machine learning is the computational task of learning correla-
tions between variables in annotated data (the training set), and using this information to create
a predictive model capable of inferring annotations for new data, whose annotations are not
known (the test set) [54]. Supervised machine learning consists of methods for automatically
building a predictive function f(z) — Y that maps z (the predictor attributes of an instance),
to a prediction Y (the target variable of an instance), given a set of training instances (the
training set) represented by tuples (z;, ;) where y; is the target variable and z; is the vector
(typically containing numerical and/or categorical values) encoding the predictor attributes
(features) associated with the i-th instance [55].

For the problem in hand, a number of supervised machine learning models are considered and
implemented. The models are chosen depending on two criteria:

« Traceability of the model decisions.
+ Attention to the temporal dimension of the dataset.

Traceability quality roots back to the thesis’ use case being a medical application which requires
the used algorithms to be justifiable and explainable, i.e. when the model says that a given
patient is depressed with a certain value, it is important to be understood how the model
reaches its decisions. The second criterion tries to exploit the idea that there is a relationship
between depressive episodes and the changes occur to patients over time. To better illustrate
this criterion, it must be explained how data is consumed by classic NNs and most of other
machine learning algorithms.

Classic NNs architectures and machine learning algorithms do not expect the dataset to have
any order. These algorithms treat the dataset as discrete points of information. Hence they
mostly produce better models when the dataset is shuffled [56]. To this models, a depression
phase that comes to a given patient after a failed relationship or loosing a job does not mean
that there is a relation between it and the actual loss that the patient has suffered. They can
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not apprehend any relations between the data points, which in this given case, seems to be
pivotal information. A solution to this problem is presented by the models deploying recuzrent
NN architectures. These models treat the time sequence as a central feature of the data. This
behaviour comes from the inherent way of how RNN models make predictions of a new data

point (see section 2.2).

Models in the following sections are implemented and investigated on six patients of a whole
of twenty patients for the complete study. The reason for this small number stems from data
consideration, i.e. some patients have enough amounts of sensor data but not enough evening
protocols (labels), some other patients have enough amounts of evening protocols but not
enough sensor data; lastly, some patients have a minimal amount of data for both sensor
data and evening protocols. Patients belonging to those three categories have to be ignored
and consider only patients with enough data for both sensor data and evening protocols.
Consequently, since data from only six patients are available, the work for this thesis confines
itself to the evaluation of personalised models for each patient. The current amount of data
is not sufficient to consider a generalised model that can be trained on multiple patients and

predict depression levels on patients that it has not seen before.
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5.1. Classical approaches

5.1.1. Random Forest model

As the name suggests, Random Forest (RF) destroys any temporal patterns in the data, as it
interacts with the data in an inherently random way. This happens by shuffling the dataset
before feeding it to the model to be fitted. Since RF are essentially a bunch of decision trees
(called estimators) that are trained on a random subset of the dataset and then averaged to
produce a single prediction per forest, the structure of each decision tree (estimator) can be
visualised and investigated, and feature importance can be examined. Scikit-Learn offers a
very intuitive API for classic machine learning algorithms such as Random Forest. Listing 5.1
shows an example of the implementation of the RF algorithm.

Listing 5.1: Random Forest model

from sklearn.ensemble import RandomForestRegressor

rnd_reg = RandomForestRegressor(n_estimators=500,
max_leaf nodes=35, n_jobs=—1,
oob_score=True)

rnd_reg. fit (X_train, y_train_1)

This forest contains 500 separate decision trees, each with up to 35 leaf nodes. "max-leaf-nodes"
acts a regularisation for the model, as it restricts the decision tree freedom during training.
Optimising the hyper-parameter values to increase the performance is done. As a result, with
increasing the number of estimators and leaf nodes, the MAE of the models decreases, however,
this decrease comes on the cost of longer training time. A tradeoff between the former two
aspects has to be done reaching these values. "y-train-1" represents the labels of the PHQ-1
question, that means that to predict the PHQ-2 question, another model that is trained on the
PHQ-2 labels has to be used. Plots in figure 5.1 shows the values of the PHQ-1 and PHQ-2 over
the complete time window for two patients. In such cases, the models’ performance on PHQ-1
labels is very similar, almost identical, to the models’ performance on PHQ-2. For the sake of
brevity, only results from PHQ-1 models are considered.

Estimator structure

Figure 5.2 depicts a part of a single decision tree from patient ST-1814523348. Individual
decision trees can be interpreted easily by simply visualizing the tree structure (see appendix
A for the full tree).

24



5. Machine Learning Approaches

10 4 i pha_1

' MM i‘ﬁh’ T 5.[1\#1\WLf“J\I'W%L \ﬂﬁmﬂw [y |

1545 1550 1 5?5 1 5‘60 1565
Time led

(a) patient ST-1814523348

@

AL B

1540 1545 1550 1555 1560 1565
Tute les

(b) patient ST-1871742707

Figure 5.1.: PHQ-1 and PHQ-2 values

Scikit-learn uses a Regression Tree algorithm to train such decision trees. The algorithm works
by first splitting the training set into two subsets using a single feature j and a threshold ¢,
(e.g. "day-sleep” < 235.0). It chooses this value based on a search of the pair 8 = (j, t,,) that
produces the purest subsets based on their weighted size (see Scikit-learn docs for the complete
mathematical proof [19]).

Feature Importance

Random Forest can also estimate how the features are affecting the resuit of the prediction.
This estimate is very helpful in the feature engineering part of the data preprocessing step as it
provides information of which features contribute more to the model performance and which
features could be ignored or removed. Table 5.1 comprises the average of the each feature’s

importance of the patients’ models.
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day_sleep <= 235.0
mse =0.75
samples = 78615
value = 5.31

False

mood <= 3.5 day_sleep <=572.5

mse = 0.52 mse = 1.02
samples = 72162 samples = 6453
value =5.18 value =6.74

= ==
tired <= 2.5 socialize_val <=42.5 mood <= 2.5
mse = 1.14 mse =0.29 mse = 0.98
samples = 3117 samples = 69045 samples = 4066
value = 5.09 value = 6.32

value = 7.28

Figure 5.2.: Snippet of estimator 5 of patient ST-1814523348

accelerationX 0.0001 | alcohol 0.0049
accelerationX-std-dev 0.0 | cigarates 0.0100
accelerationY 0.0001 | mood 0.2225
accelerationY-std-dev 0.0 | tense 0.0796
accelerationZ 0.0 | tired 0.0634
accelerationZ-std-dev 0.0 | period 0.0019
gyroscopeX 0.0001 | rumination 0.3712
gyroscopeX-std-dev 0.0 | socialize 0.1205
gyroscopeY 0.0 | socialize-value 0.1331
gyroscopeY-std-dev 0.0 | sport-time 0.0150
gyroscopeZ 0.0 | work-time 0.0576
gyroscopeZ-std-dev 0.0 | heart-rate 0.0010
heart-rate-std-dev 0.0 | PlethysmogramGreen 0.0017
ple-std 0.0025 | AirTemperature 0.0105
AT-std 0.0016 | AirPressure 0.0051
AP-std 0.0001

Table 5.1.: Features’ importance

Clearly, the sensors information contributes very poorly to the model prediction capability
(see figure 5.3), on the other hand, features like mood, rumination, and socialize, seem to be
quite decisive towards the prediction of the depression.
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Figure 5.3.: Random Forest features’ importance

Prediction results

Table 5.2 contains the results of the Random Forest trained on the PHQ-1 labels for the six

patients. The used metric is the mean absolute error (MAE).

Patient Train-mae Test-mae cross-validation average cross-validation std-dev
S5T-1505558269 0.5592 0.5567 0.5600 0.0039
S§T-1814523348 0.1968 0.1958 0.1972 0.0023
5T-1233329802 0.4892 0.4920 0.4883 0.0059
S§T-1441993385 0.9697 0.9690 0.9614 0.0106
ST-1871742707 0.3479 0.3465 0.3466 0.0053
ST-1946093440 0.3805 0.3768 0.3817 0.0071

Table 5.2.: Random Forest results

One way to evaluate the Random Forest models is through cross-validation, this splits the

training set into 10 distinct subsets (called folds) then it trains and evaluates the model 10 times,

picking a different fold for evaluation every time and training on the other 9 folds. The result

is an array containing 10 evaluation scores. This is done to make sure there is no overfitting of
the models. Results are attached to table 5.2.
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5.1.2. Support Vector Regression model

It is well known that SVM generalization performance depends on a good setting of meta-
parameters parameters C, ¢ and the kernel parameters [17]. For this reason, a search for
the best fitting meta-parameters for each patient’s model is implemented by Scikit-learn
"GridSerachCV" utility (see listing 5.2).

Listing 5.2: SVR grid search with cross validation

param_grid = {’epsilon’:[0,0.1,0.2,0.5,1],
"tol’:[1e—1, 1le—3,1e—5],
C’:[1, 1.5, 10, 50]
}
svr = LinearSVR(random_state=42)
regressor_st = GridSearchCV (svr, param_grid, n_jobs=—1,
cv=3, scoring='neg _mean_absolute_error’)
regressor_st. fit (X _train_st_scaled, y_train_st_1)
regressor_st.best_params
# example answer => {’C’: xx, ’epsilon ’: xx, “tol’: xxx}
best_model = regressor_st.best_estimator_
best_model. coef_
# example answer => [ —0.02477377,... ,0.19853483, —0.3067323 ]

This "param_grid" variable tells Scikit-learn to evaluate 5 x 3 x 4 = 60 combinations of
g, "tol", and C values, then train those 60 models 3 times each (cv=3). At the end, variable
"best_params_" contains the best parameters chosen based on the mean absolute error (MAE)
score. For parameters C, and € meaning, see section 2.2. "tol" parameter specifies a tolerance

for the stopping criteria in the optimisation equation in 2.3 [18, 20].

Models’ weights

The set of the learned weights w (regression coeflicients) is available under the attribute of
"coef_". These weights give more insights into how the model reaches its decisions and how
important is each feature in the depression detection. Table 5.3 contains the absolute average
of each feature’s weight in the patients’ models. Figure 5.4 depicts a bar chart of the values in
table 5.3 to better illustrate the results.
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accelerationY
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accelerationZ
accelerationZ-std-dev
gyroscopeX
gyroscopeX-std-dev
gyroscopeY
gyroscopeY-std-dev
gyroscopeZ
gyroscopeZ-std-dev
heart-rate-std-dev
ple-std

AT-std

AP-std

0.0140
0.0192
0.0078
0.0010
0.0196
0.0010
0.0099
0.0223
0.0052
0.0179
0.0046
0.0092
0.0032
0.0215
0.0526
0.1138

alcohol
cigarates
mood
tense
tired

period

rumination

socialize
socialize-value
sport-time

work-time

heart-rate
PlethysmogramGreen
AirTemperature
AirPressure

Table 5.3.: SVR models’ absolute average weights

Figure 5.4.: SVR models’ weights
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Although the average weights do not present a specific behavioural information per se, as it
does not correspond to a distinct model, it serves as a general indication of the significance
that is given by the LinearSVR algorithm to each feature in the dataset.

Prediction results

Table 5.4 contains the results of the LinearSVR model] trained on the PHQ-1 labels for the six
patients. The used metric is the mean absolute error (MAE).

Patient Train-mae Test-mae
ST-1505558269 0.9949 0.9987
S$T-1814523348 0.3795 0.3810
$T-1233329802 1.0545 1.0559
ST-1441993385 1.4546 1.4592
ST-1871742707 0.6953 0.6924
§T-1946093440 0.8008 0.8022

Table 5.4.: Linear support vector regressor results

30



5. Machine Learning Approaches

5.2. Neural Networks

5.2.1. Time series data preparation

To get started with RNNs training, the dataset has to be preprocessed to be in a format that is
compatible with such networks, and thus:

« Since each time series in the data is on a different scale (e.g. mood, tense, tired takes a
value between 0 and 10, while socialize and socialize-val takes a value form 0 to 100).
These values have to be normalized to a similar scale.

« Creating a generator that takes the current dataset and yields batches of data from recent
past, along with a target value of the PHQ-1/ PHQ-2.

Whenever time matters in the dataset, it is recommended to store it in a 3D array (samples,
time, features) with an explicit time axis. Each sample can be encoded as a sequence of vectors
(2D array) [51, p. 35]. This generator yields batches of size (time, features), where each batch
represents a day and "time" are the data points in this day with different values of the "features”.
To abide by the previous structure, data points has to be divided into equidistant samples, i.e. all

Timesteps

/K Samples
J

~
Features

Figure 5.5.: A 3D timeseries data array [51, p. 35]

batches (days) have to have the same number of data points. Since the datasets are completely
irregularly spaced .i.e. a typical day comprises between 400-600 sample, a simplification has to
be made on the dataset. This simplification makes the median of samples per day the default
value for each day in the dataset, then divide the whole length of the dataset by this number to
get the number of batches (days) for the dataset. This implementation is shown in listing 5.3.
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Listing 5.3: Evenly spacing function

def to_evenly_spaced(df):
date = df[’time’].apply(lambda x: get_readable_date(x))
df.insert (loc=1, column='date’, value=date)
median = np.trunc(df.groupby(’date’). size (). median())
df .drop ([ *date’], axis=1, inplace=True)
day = np.trunc(len(df.index) / median)
new_last_index = int(median + day)
df .drop ([ time’], axis=1, inplace=True)
df = df.iloc[:new_last_index]
return df.drop ([ ’phq 2"}, axis=1),
df .drop ([ "phq_1"], axis=1),
int (median)

Function in listing 5.3 returns a copy of the data with labels as the PHQ-1 and the another copy
with labels as PHQ-2. This makes training separate models easier and more straight-forward.
After this step, the previous generator can be used to yield batches for training, validating, and
testing. The exact formulation of the task for RNNs is as follows: given data as far back as
"look-back" timesteps and sampled every "steps” timesteps, "delay" timesteps can be predicted
(see section 2.2). Following list comprises all parameters passed to the generator:

» data normalized data.

o look-back how many timesteps back the observations should go.

» delay how many timesteps in the future the target should go.

» min-index and max-index Indices in the data array that delimit which timesteps to draw
from, this is how data is segmented into train, test, validate sets.

« shuffle whether to shuffle the data or not.
» batch-size number of samples per batch.

+ step the period, in timesteps, at which the data is sampled.
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Listing 5.4 depicts an example of the the generator usage.

Listing 5.4: Generator example of patient ST-1505558269

# for phq-1

train_gen_1 =

val_gen_1 =

test_gen_1 =

train_steps

val_steps

test_steps

generator (float_data_1,

look _b=look_back,
delay=delay ,
min_index=0,
max_index=142884,
shuffle=False ,
step=step,
batch_size=batch_size)

generator (float_data_1 ,

look_b=look_back,
delay=delay,
min_index=142885,
max_index=173124,
step=step,
batch_size=batch_size)

generator (float_data_1,

look_b=look_back,
delay=delay,
min_index=173125,
max_index=195804,
step=step,
batch_size=batch_size)

142884//batch_size
(173124 — 142884)//batch_size
(195804 — 173124)//batch_size

189
40
30

In this case (listing 5.4), the dataset length is 195804 timesteps with 756 timesteps per batch
(that is the number returned by the function "to_evenly_spaced()"). This results in 259 batches
(days) of data. This 259 is then divided into train, validation, and test data by specifying the
corresponding index. The "train_gen_1" takes from index 0 to index 142884, with each batch

(day) 756 timesteps, these are the first 189 days for training. In the same manner, "val_gen_1"
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5. Machine Learning Approaches

takes next 40 days for validation and "test_gen_1" takes the last 30 days as test data to evaluate
the model upon.

The numbers "train_steps”, "val_steps", and "test_steps" specifies the how many steps to draw
from the corresponding generators, respectively, to see the entire sets. Finally, the generators
yield a tuple (sample, targets), where samples is one batch of input data and targets is the array
of PHQ-1/PHQ-2 labels. These tuples are fed directly after to the NNs models to start training.

5.2.2. Baseline approach

Before starting with NN, it is recommended to try a simple, common-sense approach that
serves as a sanity check for the NNs’ models [51, p. 212]. The performance of the NNs is then
compared to such metric (also called naive model) to evaluate their results. This common-sense
approach predicts the depression level for a given day to be the same as the day before and
calculates the mean absolute error (MAE) of the result.

Listing 5.5 depicts the naive model method [51, p. 213]. It takes an instance of a generator, in
this case, it is an instance of the val_gen_1, which is the validation set generator with PHQ-1
as the targets (labels), then, it loops over it for val_steps and calculates the MAE for each loop
and, finally, prints the mean value of the MAE vector.

Listing 5.5: Naive model method

def evaluate_naive_model(v_gen):
batch_maes = []

for step in range(val_steps):

samples, targets = next(v_gen)
preds = samples[:, —1, 1]
mae = np.mean(np.abs(preds — targets))

batch_maes . append (mae)
print (np.mean(batch_maes}))

Table 5.5 lists the naive model MAE scores with PHQ-1 and PHQ-2.
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5. Machine Learning Approaches

Patient PHQ-1 PHQ-2
ST-1505558269 1.3140 1.2567
S5T-1814523348 1.0044 1.0003
ST-1233329802 1.1344 0.9302
ST-1441993385 1.4569 1.6850
ST-1871742707 0.8324 0.8298
ST-1946093440 1.2485 1.1235

Table 5.5.: Naive model MAE scores

The similarity of PHQ-1 and PHQ-2 results of the naive model (see table 5.5) comes from the
fact that PHQ-1 and PHQ-2 values are almost identical in the patients’ data. This correlation
(see figure 5.1) supports the decision of considering only results of PHQ-1 question, and in the
meantime, produce accredited results and conclusions.

5.2.3. GRU Layer model

Gated recurrent unit (GRU) is considered to be a variation of the LSTM. Both are designed to
solve the vanishing gradient problem, which allowed modeling long sequences of data and is
considered now as standard for the RNNs (see section 2.2). Models in listing 5.6, 5.7 are inspired
from the models introduced by Chollet in his book "Deep learning with Python" solving similar
time series problems, and they showed excellent learning capabilities with very low losses’.
The model in listing 5.6 consists of one GRU layer as input, followed by a one neurone layer
(regression problem). RMSprop as an optimizer and mean absolute error (MAE) as the loss
function that is to be minimized.

Listing 5.6: GRU layer model

model = Sequential ()

model.add(layers .GRU(32, input_shape=(None, float_data_1.shape[—1])))

model.add(layers .Dense (1))

model.compile (optimzer=RMSprop (), loss='mae")

history = model. fit (train_gen_1,
steps_per_epoch=train_steps,
epochs =20,
validation_data=val_gen_1,

validation_steps=val_steps)

!See Francois Chollet, "Deep learning with Python” chapter 6 [51, p. 215].
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The model takes an instance of "train-gen-1" which is an instance of the training generator
(see section 5.2.1) with labels of the PHQ-1, together with validation generator "val-gen-1, and
trains the model for 20 epochs.

Table 5.6 presents the scores of the PHQ-1 models on the test-sets.

Patient Test-mae Time-per-epoch (avg) in s
ST-1505558269  0.0590 110
ST-1814523348  0.0528 130
ST-1233329802 0.1709 60
ST-1441993385 0.0609 85
ST-1871742707 0.1781 45
ST-1946093440  0.2563 50

Table 5.6.: GRU layer model results

Plots in figure 5.6 depict the training and validation losses through 20 epochs for four patients.
It is clear how the training and testing losses decrease steadily each epoch, which is a sign
for the stability of the model during training time. However, the models exhibit a certain
degree of underfitting, this is indicated by the validation loss being lower than the training loss.
Underfitting occurs when the model is too simple to learn the underlying structure of the data.
A remedy to this problem could be selecting a more powerful model, with more parameters,
or reduce the constraints on the model (e.g. reduce the regularization hyperparameters) [12,

p- 29].

On the other hand, underfitting could be alleviated by simply training for more epochs, meaning
that maybe the point where the two losses lines intersect and the validation loss increases lies
ahead a certain number of epochs. Therefore, each model is trained with additional 20 epochs.
Nevertheless, that did not solve the underfitting problem. This behaviour is clear in the case of
patients ST-1505558269 and ST-1441993385 (see subplots (a) and (c) in figure 5.6) as the losses
already reached nearly 0 MAE, yet, still the validation loss lower than the training.
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5.2.4. 1D Convolutional with GRU Layer model

As the previous model (see section 5.2.3) suffered from underfitting, a more complex model
with more parameters is needed to fit the data better. Thus, the model in listing 5.7 is realized.
It consists of the five following layers:

+ ConviD 1D convolutional layer as input layer.

MaxPooling 1D this is the equivalent of 2D pooling operation for images, it extracts 1D
patches (subsequences) from the input and outputs the maximum value. This is used
to capture strong patterns in the data and also help prevent overfitting by reducing the
length of the 1D input (down-sampling).

Conv1D 1D convolutional layer.
« GRU GRU layer with 0.2 dropout and 0.2 recurrent-dropout.

« Dense one neurone dense layer as output layer.

Listing 5.7: 1D Convolutional with GRU Layer model

model = Sequential ()
model.add(layers.ConviD(32, 5, activation="relu’,
input_shape=(None, float_data_1.shape[—1])))
model .add(layers.MaxPoolinglD (3))
model.add(layers .ConviD(32, 5, activation=’relu’))
model.add(layers .GRU(32, dropout=0.2, recurrent_dropout=0.2))
model . add (layers .Dense (1))
model . compile (optimizer=RMSprop (), loss="mae’)
history = model. fit (train_gen_1,
steps_per_epoch=train_steps ,
epochs=10,
validation_data=val_gen_1,

validation_steps=val_steps)

This model (see listing 5.7) uses RMSprop as an optimizer and mean absolute error (mae) as the
loss function. However, it runs for only 10 epochs, as it is evident that it overfits the dateset if
the epochs number increased (see figure 5.7). To address the problem of overfitting, two kinds
of dropout are added to the GRU layer. Dropout refers to a technique where input units are
randomly zeroed out. This technique helps the model resist overfitting and be more robust.
Firstly, "dropout” parameter is a float specifying the dropout rate for input units of the layer,
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secondly, "recurrent-dropout” specifies the dropout rate of the recurrent units of the network.

The 1D convent acts as a preprocessing step before the RNN; this technique combines the speed
of the convnets with the order-sensitivity of RNNs and helps in dealing with long sequences
with thousands of steps. The convnet will turn the long sequence into much shorter sequences
of higher-level features that will then be the input to the RNN part of the network.

Table 5.6 presents the scores of the PHQ-1 models on the test-sets.

Patient Test-mae Time-per-epoch (avg) in s
ST-1505558269  0.2180 70
ST-1814523348  0.0570 52
ST-1233329802  0.3772 42
5T-1441993385 0.1921 60
ST-1871742707 0.1921 33
ST-1946093440  0.3404 32

Table 5.7.: 1D Convolutional with GRU Layer model results

Plots in figure 5.7 depict the training and validation losses through 20 epochs for four patients.
Through epochs, it is noticeable that at epochs 4-5 the models start to overfit and the losses
lines begin to diverge. There are many techniques that could be used to extract the best models
(i.e. models with lowest MAE) before actually overfitting the data. One of which is the "Early
stopping” technique, and it means stop the training as soon as the validation loss reaches a

minimum [12, p. 141].
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6.1. Traceability and Explainability

Linear SVR and Random Forest models could be categorized as White-box machine learning
approaches. As with the information from the feature importance (see section 5.1.1) and the
models’ weights (see section 5.1.2), it can be explained how the models behave and how they
produce predictions and what are the influencing variables. On the other hand, NNs models
are often criticized to be non-transparent and their predictions are not traceable by humans
[57]. For example, the SVR models have 32 trainable weights. Those are the weights that
control the behaviour of the model (see equation 2.1), and they correspond to one weight per
feature. Conversely, the 1D-convnet GRU model (see section 5.2.4) and the GRU model (see
section 5.2.3) have 16.673, and 6.369 trainable weights, respectively. The 1D-convnet GRU
model parameters number corresponds to the model’s architecture consisting of the following

layers:

» ConviD 32 filters and 32 input width (features) and a kernel_size of 5. The formula is
((m x n) + 1) x k, with m as the filter’s width, n as the filter’s height, and k as the
number of fllters. This results in ((32 x 5) + 1) x 32 = 5152 parameters

+ MaxPooling1D no parameters.
+ Convi1D same 5152 parameters as previous conv1D layer.

« GRU 32 neurone (units) and 32 input weights. The formula is 3(n? + mn + 2n) with m
as input dimension and n as output dimension. This results in 3(32% + 322 + 64) = 6336

« Dense 32 wights as the previous layer output and one bias term resulting in 33 weights.

These parameters adds up to 5152 + 5152 + 6336 + 33 = 16.673. Adding only parameters
from the last two layers results in 6.369 weights for the GRU layer model. These weights acts as
knobs that control the behaviour of an NN and its performance. While NNs models produce far
better results -in terms of the MAE scores- than Random Forest and Support Vector machines
(see table 6.3), this comes at the price of the models being untraceable and unexplainable.
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6.2. Relations between features and depression prediction

Investigating the results of sections 5.1.1 and 5.1.2 shows how the models’ predictions are
affected by certain features in the dataset. Features like rumination, mood, tired, and tense
have a direct influence on the model predictions, while features like acceleration and gyroscope
hardly affect the model behavior. It can be safely said that the sensor data does not play a
valuable role in the depression detection context. However, this conclusion does not exclusively
mean the unusefulness of sensor data per se. Instead, it should point to the issues surrounding
the sensor data acquisition process. In such a process, the sensor data may be distorted or have
a substantial tolerance. Also, many sensors need to be checked and calibrated regularly, and
there is no way to make sure that this happens. Conversely, the process for acquiring other
features like alcohol and cigarette consumption or mood and tense levels is very clear and

unambiguous and thus provide more reliable information.

Figure 6.1 shows a clear polarized relation between depression levels and mood or tense values,
and colour maps in figure 6.2 shows the relation between depression prediction levels and
rumination and tired values. With tired value decreasing and rumination value increasing,
depression levels reache nearly maximum values. Note that colour bars in figure 6.2 have
different ranges due to pandas’ drawing the colour index depending on the values present in
the predictions vector. So for subplot (a), the predictions vector does not include any values
exceeding the 8 range. Therefore, the index is capped at that value.

Such information about the correlation between different features and their influence on the
depression levels could prove helpful in the hands of the treating psychiatrists as it would draw
their attention to clear points that directly affect the patient’s depression levels. For instance,
patients seem to have low depression levels when their tired levels are high, and rumination
values are low (see figure 6.2), which could suggest that doing a daily exercise or practicing a
sport would help them prevent ruminating and curb depression levels.

6.3. Mean Absolute Error scores

Mean Absolute Error (MAE) is an indication of the average deviation of the predicted values
from the corresponding observed values and can present information on long term performance
of the models; the lower MAE the better is the long term model prediction [59]. The scores in
table 6.1 are evaluated on the test-sets on their respective patients. Test-sets are the last 30 days

!pandas is a software library written for the Python programming language for data manipulation and analysis.
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of the of patients records in the case of the NNs models, as the dataset is grouped into days
for the NNs, and 25% of the records for the Random Forest and the SVR models, as the data
is regarded as discrete entries. GRU models clearly outperform other models (see figure 6.3),
with MAE scores reaches down to nearly 0.05 loss in the case of patients ST-..269 and ST-..348,
directly after come the 1D-convnet-GRU models with slightly higher error scores. NN-baseline
approach (left-most column in table 6.1) produces error scores that are an order of magnitude
higher than their NN counterparts, which supports the credibility and the robustness of the NN
models. In the third place comes the Random Forest models with higher error scores, ending
with the SVR as the model with the highest error scores across all patients.

Patient RF-mae SVR-mae GRU-mae 1D-CN-GRU-mae NN-baseline
ST-1505558269  0.5592 0.9987 0.0590 0.2180 1.3140
ST-1814523348 0.1968 0.3810 0.0528 0.0570 1.0044
S$T-1233329802  0.4892 1.0559 0.1709 0.3772 1.1344
ST-1441993385  0.9697 1.4592 0.0609 0.1921 1.4569
ST-1871742707  0.3479 0.6924 0.1781 0.1921 0.8324
S$T-1946093440 0.3805 0.8022 0.2563 0.3404 1.2485

Table 6.1.: MEA of all models
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6.4. Neural Networks Training Time

Random Forest and linear SVR models training time varies linearly with the size of the dataset
reaching a maximum of 3 minutes. On the other hand, NN models take longer times reaching
up to 43 minutes in the case of the GRU layer model for patient ST-..348. Table 6.2 contains
average training time per epoch for NN models. Although the 1D-convnet-GRU model has a
more complex architecture than the GRU layer, it takes nearly half the time for training. This
is due to the 1D convolutional part that downsamples the input before feeding it to the GRU
layer, enabling the network to consume large inputs efficiently. However, lower training time
comes with higher error scores (see figure 6.3). Such trade-offs are inevitable and have to be
considered thoroughly before opting for a decision.

Patient GRU 1D-convnet-GRU
ST-1505558269 110 70
ST-1814523348 130 52
ST-1233329802 60 42
ST-1441993385 85 60
ST-1871742707 45 33
ST-1946093440 50 32

Table 6.2.: NNs average training time per epoch in s
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7. Conclusion

In this thesis, several prominent machine learning methods are investigated for depression
prediction on the basis of patients own data. That means each patient has a dedicated model
for the prediction of his/her depressive episodes over time. Depressed individuals who wait
for three months to get an appointment with psychiatrists, not only suffer from constant
psychological damage but also bear multiple risks such as losing a job or a partner or suicide
in some cases. To those individuals, a predictive model with well-being metrics capabilities
has paramount importance.

7.1. Achievements and Overall Discussion

The empirical findings are presented thoroughly in chapter 6. In this section some observational
notes are synthesized to address the thesis’s objectives.

Machine Learning (ML) is a very suitable technique for depression detection applications.
Depending on the data structure and acquisition process, multiple approaches could be adopted.
The latter assertion is underpinned with literary research conducted in the form of state of
the art chapter (see chapter 2). However, to be able to apply ML approaches, the input data
has to be in proper shape and structure. Therefore, chapter 4 presents a complete pipeline
for merging sensor data and evening protocols and transforming them into a ready-to-use
dataset. The objective of this thesis was to analyze the personal health data of a number of
patients and develop an ML model that can predict their respective depression levels. For that
objective, four ML approaches are implemented and evaluated, with two RNNs models being
the front-runners with error scores reaching down to 0.05 MAE. Due to the thesis’s use-case
being medical application, Random Forest and linear SVR models are considered for their
nature being White-box models that can be explained and interpreted. Moreover, information
about specific features directly influencing depression levels is discovered, giving the treating
psychiatrists specific points form which they can approach the patient’s depression treatment
process and providing them with valuable patient’s historical data.
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7. Conclusion

7.2. Future Work

Based on the results made in this thesis, further work in the following directions could be of
interest. Regarding data quality, a more consolidated analysis of the data acquisition process
could be useful to improve data quality and integrity. Moreover, the work of David C Mohr
[60] provides promising approaches to detect correlations between depressive symptoms
and mobile sensor data. Since the data preprocessing contributed to an essential part of the
success in depression prediction, it is worthwhile to repeat the experiments by permuting
the preprocessing methods and their parameters (e.g., try out different variance thresholds or
other missing value imputation techniques). Regarding machine learning approaches, several
different models and architectures could be exploited. The work of Yasin and Emre [61]
provides approaches to employ LSTM networks and mobile sensors to predict stress levels. The
work on GRU layers in sections 5.2.3, 5.2.4 could be extended to try different hyperparameter
optimization techniques to push the network performance further, and try other GRU based

architectures.
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