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1 Introduction

The large scale introduction of renewable energies to electrical grids has already changed

energy markets decisively. Where previously large power plants dominated the market,

the uncontrollable nature of renewable energy resources has made prices much more

volatile.

This raises the question to what extent energy consumers can react to such �uctuation

via price signals. The overall impact of �exibilities on energy prices and the proliferation

of renewable energies has been described in numerous studies. Many types of energy

consumption or generation could be made more �exible which would in turn decrease

grid congestion during peak hours and lower energy prices.

However, traditionally the transition to a �exible consumption of energy was not con-

sidered pro�table for small and distributed resources. Taking into account the changes

in energy prices and the possibilities of modern technologies, this calculation must be

reassessed. This paper adds a further perspective to this topic. It describes a method-

ology and a software implementation for simulating possible savings in energy costs by

introducing storage capabilities to energy consumers, such as power-to-heat systems.

This simulation is used to optimise the scheduling of energy consumption according to

market prices and compare the potential savings of di�erent technical con�gurations, i.e.

varying the storage size and charging power. Moreover, the analysis of di�erent marketing

approaches reveals the bene�ts of leveraging short-term �exibilities for arbitrage trading.

Under the modelled assumptions, energy costs can be more than halved for very �exible

con�gurations. Even with small storage solutions the optimisation reduces costs by more

than 10 %.

By �exibly scheduling a power resource, the simulation also allows to assess a novel

approach in relation to grid stability. Control groups of renewable energies will often

deviate from their market position because of forecast errors. A �exible resource might

not conform to the traditional requirements for balancing energy, but it could still be
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1 Introduction

integrated in a private control group, react in real time with the opposite deviation and

thus minimise the imbalance of the control group. This paper describes how such an

approach could be implemented and makes an estimate for the additional energy costs

from the point of view of the �exibility operator. It is shown that the potential costs of

this approach highly depend on market conditions.

Chapter 2 gives an overview over the technical and legal background while also describing

the current state of research. Chapter 3 follows this up by outlining how the research

questions could be answered and which requirements any simulation must ful�l. Chapter

4 explains how these requirements are ful�lled by the simulation and which design de-

cisions were taken in developing the algorithm. Chapter 5 presents an analysis of various

simulations. Chapters 6 and 7 sum up the results and �ndings and show where fur-

ther research could build on the �ndings. The appendix includes further data from the

analysis and a manual for using the developed software library.
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2 Motivation and Background

A �exible energy resource can use its properties for two purposes: By responding to price

signals, which are a re�ection of supply and demand, energy costs can be signi�cantly

reduced. Likewise, the �exibility can be used to react to grid imbalances as they occur.

Both aspects make the operation of energy grids more e�cient and better tuned for high

renewable energy penetration. These aspects have been the subject of extensive research.

In order to fully understand the current possibilities and limitations of deploying �exible

energy resources, this chapter will present an overview of the current research and exam-

ine remaining questions. This will be the starting point for de�ning and developing an

appropriate simulation.

2.1 Minimising Costs

Flexible energy resources can be divided into three �elds: �exible production (e.g. bio-

gas), �exible consumption (e.g. power to heat), and a combination of these aspects (e.g.

batteries). All these models can use their �exibility to decrease costs or respectively

increase pro�ts by aligning themselves with market prices. Moreover, restricting one's

own energy consumption during times of high load could further reduce overall costs by

minimising grid charges.

From the point of view of the grid or energy market, it is unimportant and even impossible

to know whether these systems possess any kind of actual physical storage. The �exibility

is expressed in how dynamic a system can react to price and control signals. This paper

will focus exclusively on �exible consumers.

Villar, Bessa and Matos review currently discussed �exibility products and markets while

also reporting on ongoing discussions and design ideas [1]. McPherson and Tahseen

augment this research by analysing the e�ect of di�erent market regimes and electricity

system con�gurations on the pro�tability of storage assets [2]. In [3] and [4] the authors

3



2 Motivation and Background

give insight in how an aggregator can combine various energy resources and use innovative

market designs to increase the penetration of renewable generation.

Nowadays, many in�exible energy consumers are not managed with respect to �uctuating

energy prices and therefore represent a large opportunity. The use of such �exibilities

has been modelled in a range of studies. [5] and [6] demonstrate approaches to model

home units as a combined �exible energy consumer.

In the case of [7], a more technical aspect of how to e�ectively combine, e�ciently schedule

and estimate prices for a diverse set of �exibilities is given. In [8] and [9] the authors

optimise a PV operation on buildings with �exible consumers and storage options.

2.2 O�ering Auxiliary Services

Selling power from renewable energy resources is a complex business. Especially when

looking at wind and solar, which depend on weather factors, their energy production is

seldom controlled. As a consequence, such portfolios tend to be exposed to imbalance

prices.

Already in 2002, this problem was anticipated and Bathurst, Weatherill and Strbac

presented an algorithm to determine the optimal market positions for a wind portfolio

while keeping in mind the inaccuracies of the forecast. However, the imbalance price

is only published after the fact and the imbalance amount typically re�ects errors in

forecasts which are typically supplied by third parties. As a consequence, a marketer

might perceive the imbalance amount as something that mostly lies outside of its control

and is part of the cost of doing business.

Not only can imbalance costs make up a substantial part of overall marketing costs

but hardly foreseeable price peaks constitute extreme �nancial risks, such as happened

during the summer of 2019 in Germany [11]. With an increasing share of renewables in

the energy mix, such costs as well as their indirect insurance risk, will also be felt in

consumer electricity prices.

The obvious response is to create a more responsive grid infrastructure that is better

shaped to fully use the energy produced by renewable energies and also a grid that reacts

more e�ciently to imbalances. Many di�erent papers have already analysed the bene�ts

of using �exibilities in combination with renewable energy resources. Kirschen, Ma, Silva
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2 Motivation and Background

et al. discuss the overall need for �exibly scheduled consumption and generation under

various wind generation development scenarios [12]. Schultz, Sellmaier and Reinhart

design a concept to regulate demand side power consumption in reaction to renewable

energy production [8].

In other studies, the possibilities of �exibilities in a balancing market [13] and estimated

future market value of such �exibilities in spot and reserve markets [14] are analysed.

Hirth investigates this point more speci�cally and demonstrates how wind generation

works hand in hand with other �exible power generation methods [15]. These approaches

share a focus on large scale �exibilities, such as hydropower. In order to open future

�exibility markets for small participants, an open system for energy services [OS4ES]

with a registry for fast detection and allocation of �exibility o�ers has been designed in

an EU project [16].

Olivella-Rosell, Rullan, Lloret-Gallego et al. provide a comprehensive model for battery

assets, optimising for overall cost of operation, energy market and balancing market

[17]. Other authors have tackled research problems that account for a combination

of renewable generation and �exibilities. In [18] a portfolio of a dispatchable power

plant, a storage, and an intermittent energy source are optimised on the day-ahead and

balancing market. Díaz, Coto and Gómez-Aleixandre look into a similar problem but

combine multiple markets such as day-ahead, intra-day and imbalance market into a

single equivalent market. Based on this novel approach, an optimal bidding sequence for

wind energy and an energy storage option is developed [19]. In these cases, the storage

option can be controlled at will with very little constraints on how and when it can be

used.

The possibility to use �exibilities speci�cally to reduce imbalance costs has been ad-

dressed to some extent in the literature. Bathurst and Strbac develop an algorithm to

plan energy storages amid a wind portfolio, where diverse factors such as price spread,

market closure times and expected imbalance penalties are considered [20]. However, in

this model arbitrage prices were known in advance and balancing prices known at mar-

ket closure. Therefore this research cannot answer how uncertainties and forecast errors

can be incorporated into a market and scheduling strategy. In [21], freely controllable

storage options such as wind and a �ywheel are used to mitigate discrepancies between

the forecast and the production of wind power.

However, as more and more �exible energy resources enter the energy market, they might

not be able to make full use of their �exibility. Physical and technical infrastructure in
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2 Motivation and Background

small resources might not meet the necessary criteria for the balancing markets. Fur-

thermore, the �exibility might be constrained. For example, consumption could only be

delayed by some hours inside a predetermined time frame. Such resources might not

capitalise on their �exibility at all, because marketing costs would be too high in relation

to possible pro�ts.

Currently, the regulatory regime demands from every control group to always strive for

a balanced control group - even if a bene�cial deviation would be possible. A grid design

where such short-notice behaviour is implemented is often called smart balancing. [22]

describes how the German system could be restructured in this way.

Even if such changes are not implemented, small �exibilities could still provide a balan-

cing service by being integrated to a control group of renewable energies and by trying

to reduce forecast deviations. This type of combination could represent an innovative

solution in relation to the aforementioned problem of imbalance prices. The �exibility

could o�er signi�cant value in reducing imbalance costs and thereby increase its overall

revenue. In such cases, the �exible energy resource would plan its schedule so as to be

able to change its charging power in real time, either by increasing or decreasing it. This

power would in turn be used to o�set imbalances, e�ectively acting like a private form

of balancing energy.

2.3 Remaining Questions

To conclude, extensive research is carried out to determine the value, use and scheduling

of �exibilities. However, these often consider storage options that are controllable without

signi�cant time or power constraints outside of their technical con�guration. In other

cases, more constrained �exibilities, such as home appliances, are analysed but only in

their current con�guration. The available solutions are often optimised for speci�c cases

or the underlying models are not openly accessible. As such, there are many complex

algorithms for optimally scheduling and theoretically planning �exibilities but these do

not o�er an accessible way to estimate the possible energy cost reduction by introducing

�exibilities to a previously in�exible consumer.

Moreover, the economic value of integrating a �exible energy resource for balancing

purposes with a second portfolio is a pressing issue. However, doing such a calculation in

a universal way is nearly impossible, since many individual factors in�uence the outcome:
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among others the type and forecast accuracy of renewable resources, the size of the

portfolio, or the risk aversion of the operator. However, as a �rst step, the perspective of

the portfolio can be excluded to �nd the marginal costs of the �exibility for constraining

its optimisation and o�ering balancing power in the �rst place. Such a cost would need

to be lower than the bene�t for the renewable portfolio in order to increase the overall

value of the system through integration.

Based on these �ndings, this paper sets out to develop a methodology and framework for

answering two �elds of questions:

1. What are the bene�ts, in terms of energy costs, of adding �exibility to a currently

in�exible energy consumer? Any extensive answer must also touch on detailed

questions concerning the con�guration, such as: For how long should the storage

last? Or, is a certain combination of charging power to delivery obligation especially

e�cient?

2. When such a �exible consumer o�ers balancing power it necessarily foregoes price

opportunities. How large is the premium in energy prices after constraining the

optimisation in this way?

7



3 Requirements Analysis

Having formulated the central research questions, this chapter de�nes the methodology

for �nding suitable answers. With the goal of developing a software simulation, the scope

and basic design principles of the underlying code are formulated.

3.1 Research Design

An appropriate way to showcase the potential in cost reductions but also the behaviour

of a �exible energy resource is a software model. As a product of this work, di�erent

storage con�gurations and marketing scenarios could be evaluated in how they minimise

imbalance costs and which factors play important roles in making each work. However,

the goal is not a software infrastructure that could be deployed but a simulation that

is able to estimate outcomes su�ciently close to reality. As such, decisions taken in the

simulation should not be based on future data, as long as a similar behaviour would be

impossible to realise in a real world scenario.

To represent the basic building blocks of a �exible consumer, the software model would

need representations of the delivery obligation, a de�nition of the maximal charging

power and the capacity of the energy storage. Further details, such as a gradual loss of

energy over time or imperfect energy conversion e�ciencies, can be implemented.

Given these physical parameters the software should simulate marketing scenarios, which

de�ne how and when trade orders could occur at which prices and, as a result, generate an

optimal schedule for minimising costs. In order to su�ciently resemble the complexities

of energy trading the energy spot markets need to be modelled: a day-ahead market with

a unitary price auction as well as a continuous intra-day market. In these markets, the

trading of hourly products, which are the most liquid market, must be fully implemented,

while trading on the market for 15- and 30-minute products would increase the �delity

8



3 Requirements Analysis

of the simulation. Both day-ahead and intra-day market can be assumed to be large

enough so as not to be in�uenced by the behaviour of the simulation.

Price levels at the spot market and imbalance prices are already closely linked to re-

newable generation. Therefore, the simulation must be able to simulate various weather

situations and their e�ects on the optimisation goals.

Of course, many di�erent regulatory regimes exist which will necessary change the results

of any optimisation. The model should be focused on the current German regulatory

framework governing the energy markets.

3.2 Implementation Requirements

The simulation should be easily adaptable to di�erent parameters so these can be set and

varied at a later time and without changing the source code. Such parameters should be

at least:

� Capacity of the storage

� Maximum charging power

� Delivery obligation

� Any further physical parameters of the �exibility

� Day-ahead market prices

� Intra-day market prices

� The strategy how and when to block the optimisation in order to reserve capacity.

The described software simulation should be implemented in such a way that the beha-

viour and decisions inside the optimisation are reproducible, comprehensible, and saved

for later analysis in an easily readable and interpretable format. From this log, at least

the following questions must be answerable:

� What were the optimisation steps?

� How high were the energy costs for the �exibility?

9



3 Requirements Analysis

� How was the �exibility used? What was the �nal schedule of the �exibility and

how was it amended over the course of the simulation?

The source code in which the simulation and optimisation is written must be structured

and reusable, so that the code could be extended in the future, be transferred to a di�erent

language and also be used by a third party as is. Furthermore, di�erent marketing

strategies should be implementable using the framework provided by the code. For these

reasons the internal logic as well as the interface must be well documented.

10



4 Methodology and Implementation

Building on the basic framework and requirements of the software, this chapter presents

the design and implementation of the �nished software library, its assumptions, and

design decisions. The functionality and capabilities of the developed software optimisa-

tion is demonstrated by walking through the di�erent marketing strategies. An optim-

isation solely on the day-ahead market reveals how physical limits are respected during

the simulation. This concept is extended by re-optimising the schedule continuously

on the intra-day market. Lastly, the method for o�ering balancing power is described.

The chapter ends by demonstrating the reliability of the optimisation when scaling and

changing input parameters.

4.1 Theory and Design Decisions

The set of possible physical parameters implemented in the model represent the basic

building blocks of a �exible consumer: a maximum charging power, a storage capacity,

and a delivery obligation, but no other physical parameters can be set. The delivery

obligation is also de�ned as a constant power draw from the storage. While this repres-

ents a stark simpli�cation in many cases, a time-dependent delivery obligation can be

abstracted to a constant delivery obligation over time with the assumption of some kind

of energy storage.

To complete the con�guration in the simulation, a null state has to be set, i.e. the

amount of energy stored at the beginning and end of the simulation. Throughout the

simulations, this value is set at 50 % of the capacity.

The core of the optimisation is implemented in an abstract and strategy-agnostic way.

Figure 4.1 depicts the algorithmic logic behind one optimisation cycle. As illustrated, for

each point of time in the optimisation the algorithm expects de�nitive prices which are

used to calculate the least-costly schedule. Hence, more complex price forecasts where

11



4 Methodology and Implementation

Figure 4.1: Activity diagram for one optimisation cycle (inputs = green, internal values
= yellow, outputs = teal).

12



4 Methodology and Implementation

not only one expected value but also a certainty or a range are provided cannot be used

to their full potential.

Each part of this optimisation cycle has been extensively unit tested to verify the correct

implementation and assure that internal interfaces work as expected. All in all, the

validity of the optimisation algorithm was consolidated with 138 test cases and a test

coverage of 100 %.

The optimisation algorithm is based on optimising on discrete integer values. This choice

greatly reduced complexity. However, as a consequence, the physical parameters of the

system can only be described by integer values. Concerning the charging power, the

simulation will assign any integer value between zero and the maximum. How the system

can still be scaled variably and simulate con�gurations with any rational number is

demonstrated at the end of the chapter.

As a non-continuous optimiser, the simulation also only handles discrete time intervals.

As a design choice, the algorithm only optimises one set of prices per optimisation cycle.

An extension to this architecture to allow for example the parallel trading of hourly- and

30-minute products would need to be developed in the future.

The physical constraints of the �exible consumer are not a�ected by weather conditions.

Thus various weather conditions and their relation to optimisation results are simulated

by relying on recorded data, for example day-ahead auction prices and imbalance prices

as they occurred in Germany. Since the simulation itself is not intrinsically linked to this

data, one could supply any sequence of price data to the optimisation.

The developed software library also provides functions which build on the developed

optimisation framework and make simulating three speci�c scenarios very intuitive:

1. Day-Ahead Optimisation The day-ahead market is simulated in a 24-hour rhythm.

The energy needs are distributed over the hours so that the minimal price is reached

and energy constraints are respected.

2. Intra-Day Optimisation The process of DA-optimisation is kept as is. However,

the intra-day market can be used on top to bene�t from price di�erences. During

each hour, the algorithm checks whether a revenue can be generated by selling and

buying orders for di�erent delivery time frames on the intra-day market, energy

constraints are respected in evaluating possible trades.

13



4 Methodology and Implementation

3. Blocking Optimisation This adaptation of the second strategy adds complexity by

buying a set amount of power on the day-ahead market for selected times and

blocks these hours from changes in the intra-day optimisation. Thus, the �nancial

consequences of o�ering balancing power can be simulated.

The following sections show in depth how each of the strategies are implemented and

which further design decision in modelling the markets were taken. Whether these

strategies and their assumptions correctly model the real world cannot be as easily tested

as the internal optimisation. How these strategies could be improved upon is discussed

in chapter 6.

In addition, the appendix o�ers a more detailed look on how these strategies were imple-

mented and how new strategies can be designed while using the existing interface. The

source for the code of the complete library is available on a public repository1, where

also a complete manual for all functions can be found. All code for creating the data

shown in the following chapters is also published in a public repository2.

4.2 Day-Ahead Optimisation

The behaviour of the optimisation algorithm will be displayed over three days (1st to

3rd July 2020). This exemplary system has a storage of 20 MWh, a constant delivery

obligation of 1MW, and a maximum charging power of 4 MW. Every day is simulated

consecutively so that at midnight the charging state will be again at the starting state,

which is half of the maximum capacity or in this case 10 MWh.

In a real world scenario, no prices in the day-ahead market could be known in advance.

However, it is reasonable to assume that based on weather and subsequent market fore-

casts, the relative structure of the day-ahead prices can be closely forecasted. For this

reason, actual day-ahead auction prices are known in advance in the simulation process.

The simulation is carried out by �rst building a data frame with charging constraints

on the �exibility. To o�set the discharge, 24 MWh are spread e�ciently over the day

and according to the physical limits of the �exibility. By visualising the resulting data

(see �gure 4.2), the algorithm can show that the physical constraints of the �exibility

were respected and that a schedule which minimises costs was picked. This simulated

1Repository of library code: https://github.com/henobe/flexoptr
2Repository for simulations: https://github.com/henobe/flexoptr_simulations
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Figure 4.2: Exemplary result of the day-ahead optimisation. Physical limits for storage
state and maximum charging are always respected.

con�guration was able to lower energy costs by 22.55 %. For comparison, were it possible

to charge only once per day (by increasing the charging power and storage capacity) and

thus only charge during the cheapest hour of each day, energy costs would have reduced

by 29.1 %.

4.3 Intra-Day Optimisation

The previously described approach is now extended to intra-day markets where the ob-

jective is to further reduce overall costs. As opposed to day-ahead unitary price auction,

prices are not constant nor equal for all market agents. Where the day-ahead auction

happens once a day for all hours of the following day, the intra-day market is continuous

with a rolling trading window. Therefore, the price and auction mechanism needs to be

modelled in a di�erent way.

Theoretically, the complete historical order book could be used as a data basis to replay

each trade on the intra-day market. However, such an approach without some kind of
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speculative logic concerning price developments would not resemble the optimal beha-

viour for an energy system that is not forced to trade - all energy needs are already

covered from the day-ahead optimisation.

The basis for modelling intra-market opportunities as used in the simulations of this

paper are index prices. These represent the weighted mean price of all trades for a

certain product over a period of time. The ID1 for example includes all trades that

occurred during the hour before the time of delivery.3 The simulation will thus evaluate

index prices for di�erent hour-products, once per hour.

Market prices on the intra-day market are thus represented by two index prices. For the

hour after the current one, the ID1 price is assumed. The following two hours after that

are approached via the ID3. For example: The simulation would assume it is now 13:00.

It would then think it could sell and buy energy for the ID1 price for the hour 14-15.

Likewise, it would be able to buy and sell for the ID3 for the hours 15-16 and 16-17.

This approach is certainly di�cult to translate directly to a trading strategy outside of

a simulation. Prices available at a certain point in time will not re�ect any index or

average. Being able to consistently trade at index prices is di�cult and not a given.

Moreover, one could theoretically already start trading earlier and include the ability to

trade for the hours of 17-18 or even 20-21. However, realistic market prices for several

hours in advance to delivery are di�cult to estimate via index prices. This makes the

simulation quite conservative in the prices it is able to generate, but ensures that the

overall performance of the optimisation is comparable to the behaviour of a trader who

represents the market average.

During the hourly and continuous optimisation the algorithm is never speculative and

will never sell or buy a position without doing opposite trades of the same volume.

Inside these boundaries, it is now the objective of the algorithm to generate a pro�t by

rescheduling its power. The original prices, according to which the day-ahead schedule

was designed, are no longer of importance. They should be considered sunk costs.

By analysing the results of the optimisation, this process can become clear. After the

day-ahead optimisation, 12 MWh were scheduled from 1 AM until 6 AM on July 1st.

After the intra-day optimisation this schedule looks di�erent (see �gure 4.3).

3Since the market closes half an hour before delivery, the ID1 e�ectively records the last 30 minutes of

trading.
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Figure 4.3: Changes induced by optimising the day-ahead schedule with the intra-day
logic.

Figure 4.4: Showcasing selected hours of the trade log in the intra-day optimisation.

17
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The trade log (see �gure 4.4 for a visualisation) from these hours can explain the exact

details:

1. All options for hour 1 (3 MWh) were sold and bought in hour 2. Hour 2 was cheaper

than hour 3, so an additional MW was shifted from hour 3 to 2. A further shift

was not possible, since the maximum charging power was now already scheduled

for hour 2.

2. The price for hour 2 changed and now hour 3 was cheaper, so one MW was shifted

back.

3. Even small price di�erences are used, as shown in hour 4 to 5. This illustrates that

the algorithm will perform any trade combination where a net positive revenue is

generated. A fee per trade or any other similar trading cost as can exist in actual

marketing is not taken into consideration.

Even though the amount of energy was minuscule and the energy prices were relatively

similar and stable over these hours, the buy and sell trades generated a pro�t of ¿ 23.16

and were thereby able to reduce the energy costs of these hours by roughly 7.7 %. Over

all three days, the ID optimisation generated a net pro�t of ¿ 105.76 which means that

average energy costs were 25.97 ¿/MWh. This is roughly equal to the average of the

lowest quartile of day-ahead prices (26.04 ¿/MWh) over all three days.

4.4 Preventing Optimisation

The algorithm can accept times where trades are blocked, which means that a pre-planned

schedule is incorporated into the overall optimisation schedule. For the speci�ed times

the pre-logged power is not changed. In e�ect, when the pre-scheduled power is greater

zero, the necessary energy is bought on the day-ahead market and kept stable during all

optimisation steps.

This functionality has two obvious applications:

� As described in the previous chapters being able two deviate from the schedule

will induce an imbalance, which could be used to balance the deviation of a second

system.
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Figure 4.5: Optimised schedule while binding some hours to a �xed power.

� On top of raw energy prices, the operation of an electric consumer also needs to

take into account further costs. One of such costs is a grid charge that is typically

calculated based on the how much power was drawn during certain times from the

grid. Hence, by blocking any charging during some times, such charges can be

reduced.

The �rst application is explored in more detail in this paper. By setting up some hours

at half of the installed power it would be possible to provide a positive and a negative

deviation equally. Furthermore, it could be assumed that the imbalance of any portfolio

that is to be matched, �uctuates around zero and will over time equate zero. This allows

the simulation to optimise the rest of the schedule around these constricted times.

Compared to reality, these assumptions are certainly a simpli�cation. When the sum

of the arti�cial deviations does not equal zero, rebalancing the schedule would be pos-

sible via short-term buy or sell orders on the intra-day market on top of the optimised

schedule.

By applying this logic to the previous example, we can see the amended schedule and

accompanied states. In this scenario, the power is kept at half maximum each day from

6 to 9 AM (�gure 4.5).
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This comes of course with an added cost. On the one hand, the six MW from 6-9 are

bought on the day-ahead market, regardless of the price. On the other hand, by having

these 6 MWh already planned, this constricts the �exibility for the remaining hours. In

this case, this modi�cation already had a strong impact on costs. It increased costs by

¿ 135, which would translate into a relative price increase in marketing costs of 7 %.

4.5 Scale of Parameters

The previous examples were all based on a speci�c con�guration with clearly de�ned

physical parameters. However, when analysing the di�erences between various sizes

of applications, one can generalise the output of the simulation by making the results

relative to some baseline. For example, in �gure 4.6 the con�guration of the previous

examples has been scaled by three and ten.

All costs simply increase by three and ten respectively while the relative di�erence

between simulations remains constant - this is based on the assumption that the ac-

tions of the algorithm are too small to meaningfully a�ect the market behaviour. This

property has two helpful properties:

1. By simulating and comparing a set of parameters the results can be extended a

physical system of any scale.

2. It becomes possible to simulate con�gurations where the parameters do not have

whole-number values. For example, a system with a delivery obligation of 1.3 MW,

a maximum charge of 2.4 MW and a storage capacity of 3.5 MWh could not be

directly simulated with these inputs. However, by multiplying these values by

10 and then again dividing the simulation results by ten, the correct values are

calculated.
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Figure 4.6: Changing parameter scales does not change the performance of a simulation.
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The functionality and inner logic of the optimisation algorithm has been demonstrated.

This chapter will begin to formulate answers to the original research questions. By

comparing the results of hundreds of simulations, the e�ects of changing the physical

parameters become visible. A di�erent analysis estimates the e�ects of trading better than

average at the intra-day market. Finally, simulations incorporate a theoretical balancing

energy service and link its cost to the general price structure of the blocked times. The

analysis presented here is by no means exhaustive, but a �rst step in showing which areas

are particularly interesting and surprising and which demand further investigation.

5.1 Relation of Charging Power and Storage Capacity on

Marketing Costs

Having seen how the simulation optimises a schedule for the day-ahead and intra-day

process, it is most interesting to compare the results of simulations with varying paramet-

ers. As previously described, three key parameters will describe the physical constraints

of �exibilities: A constant power demand on the storage, an adjustable power input for

the storage and the capacity of the storage itself.

5.1.1 Con�guration

Being able to adjust three parameters, each simulation has two degrees of freedom in this

regard. For simplicity the delivery obligation is described by the variable L [W]. The

capacity C could have any size, but it is most interesting to look at the range of one hour

(or C = 1h ∗ L [Wh]), i.e. a full storage could supply the energy for one hour without

further energy input, up to twenty-four hours, that is C = 24h∗L [Wh]. This upper limit
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is connected to the logic of the simulation and structure of the market process: Only the

next 24 hours are traded on the day-ahead market.

The range of values the power input I can take is also logically limited. The system

should be able to charge the storage, therefore I > L must always apply. In the following

simulations the typical minimum input power was 1.05 ∗ L. Furthermore, being able to

fully charge the storage from an empty state describes the maximum reasonable power.

Since the simulation works in blocks of one-hour energy products, any faster charging

rate than I ≤ C
1h + L would not yield any bene�t.

This allows to cancel out the exact size of the three parameters since the results stay

the same as long as the relation between these three variables is kept. For simpli�cation,

capacity and input can therefore be described as general properties of any �exibilities:

� C is the length of time the storage could possibly ful�l the energy needs. Henceforth

simply referred to as capacity.

� I is the input or charging parameter, described either via the ratio of maximum

charging power to constant delivery obligation or as the percentage of how much

of the storage could possibly be charged over the course of one hour, considering a

constant discharge of L.

5.1.2 Results

A two week period during the summer of 2019 (1.-14. July) was selected as the time

frame for simulation data. Over this period, capacities ranging from one to 24 hours of

possible storage were optimised. For each capacity, a wide range of possible charging

power con�gurations was simulated to demonstrate the in�uence of each parameter.

By focusing on the marketing cost in relation to a baseline of no storage, the results

will be comparable even between di�erent scales of storage. This baseline will be used

throughout the following analysis and will be calculated by multiplying the energy need

per hour, as de�ned by L, with the energy price on the day-ahead market for each hour

of the simulated time span. The term cost reduction is used to describe the di�erence

between the baseline costs and the relevant optimisation (only DA or DA & ID).

According to the simulation, a con�guration with a storage that can last a full day and

be charged very fast is able to halve energy costs (slightly below 45 % for simple DA
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Figure 5.1: Simulation results for energy cost savings, only selected capacities visualised.

optimisation). This is near the theoretical day-ahead optimum of 48 % cost reduction,

which could be achieved by charging only once per day exactly at the time with the

lowest prices. By utilising the intra-day market on top the optimisation was able to

realise cost reductions of up to 60 %. Even a storage unit that can only sustain the

energy needs for four hours and has a moderately sized charging module can reduce

energy costs by roughly twenty to thirty percent. At the same time, even though the

simulation demonstrates improvements with rising power, there are clear diminishing

returns to adding more power to the system. For better overview, a selection of possible

capacities is visualised (�g. 5.1).

As de�ned in the algorithm, the amendment of the schedule on the intra-day market

will always yield better results than simple day-ahead optimisation. Nevertheless, for a

capacity that lasts 4 hours and an I that can charge about a quarter of the storage over

the course of an hour, the di�erence between day-ahead and intra-day optimisation stays

stable with roughly 10 percentage points.

In other words, the relative advantage gained by trading on the intra-day market is

greater the smaller the capacity. By working with a small capacity the simulation has

less freedom in optimising between di�erent times of day and will spread more volume

over the course of the day. As a consequence, the intra-day optimisation has more
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Figure 5.2: Maximum possible cost reduction as function of capacity.

chances to capitalise on price di�erences between hours. This explains why the intra-day

optimisation is much more impactful for con�gurations with small capacities.

To investigate the relation between capacity and cost reductions more closely, �gure 5.2

visualises the maximum possible cost reduction (at I = C/h+L) for di�erent capacities.

The bene�ts of increasing the storage size do not scale linearly but logarithmically. For

capacities of 4 or more hours the possible savings could be described by the function

f(x) = 0.16 ∗ log10(x).

By increasing the capacity the algorithm can better evade hours of high prices during the

day-ahead optimisation. Nonetheless, increasing the capacity from �ve to ten hours will

lead to a greater price reduction both in absolute and in relative terms than increasing

it from 15 to 20 hours.

Only looking at the potential savings by a large charging method does not paint the full

picture. Figure 5.3 therefore illustrates how of much of the reduction potential is realised

by smaller charging potentials.

Even at the smallest simulated charging power (I = 1.05∗L) around half of the maximum

cost reduction for that speci�c capacity is already reached. Nearly all con�guration even

reach levels of above 80 % when being able to fully charge over 5 hours. This can be

explained the structure of the day-ahead market. Single-hour price peaks on the day-

ahead market are rare and thus being able to only charge over 5 hours, as in contrast to

say 2 hours, seems to e�ect the overall optimisation result only minimally.
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Figure 5.3: In�uence of charging power on day-ahead and intra-day marketing.

The di�erence between di�erent capacities is larger when the intra-day market is used,

but this variability quickly shrinks when increasing the charging power. In general,

increasing the charging power should be a bigger priority when intra-day optimisation is

used. The plots demonstrates that this allows more freedom to react to short time price

di�erences and developments.

5.2 Sensitivity to Price Improvements

The intra-day optimisation as described in the previous chapter in based on evaluating

and trading index prices. By design, any intra-day trades are voluntary and always

bene�cial. That is why it is reasonable to assume that a trader, who could set individual

limit prices for buy and sell orders, could be able to outperform an index which is based

on the average of all trades, especially when a balanced schedule was already prepared

on the day-ahead market.

As noted previously, simulating index prices is a conservative simpli�cation. The e�ect

of improving prices can be modelled in two ways:

1. A trader could be able to secure trades that are x Euros better than the index.

Instead of selling for ¿ 20, one could sell for ¿ 22 or instead of buying for ¿ 10 on
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Figure 5.4: Sensitivity to improving market prices for various con�gurations.

would buy for ¿ 8. This approach would imply that the intra-day price volatility

is not connected to the price level. Unfortunately, changing the prices of simulated

trades ex post would not re�ect the full potential since new trades at the margin

would be possible.

2. A second approach is not to improve the trades by an absolute but a relative

margin. This incorporates also the opposing assumption: the further away prices

are from 0, the more volatile they will be.

Both approaches are visualised in �gure 5.4. In this case, the left plot illustrates the

e�ect of improving buy and sell prices by 1 %. (If one wanted to assume a di�erent rate

of improvement, the y-Axis could be scaled linearly.) The right plot simply plots the

number of trades per simulation and per MW of obligation. This �gure should only be

used for comparative analysis as the number of trades is linearly connected to the size of

L.

Even though both plots share the same basic structure and relationship between their

variables, the relative cost reduction as a function of capacity is much more spread

out when using the relative approach. Low capacity con�gurations bene�t more, if the

assumption that volatility is not dependent on price levels holds true. On the other
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Figure 5.5: Correlation of price sensitivity and share of intra-day pro�ts

hand, believing in the assumption that volatility is indeed price dependent, increasing

the capacity shows greater bene�ts.

Both plots also share a �attening curve on the top right, i.e. for high capacity and high

charging power con�gurations. For those con�gurations increasing the charging power

above 80 % does no longer have meaningful e�ects on the most e�cient schedule.

Extending this idea, one could assume, that the increased bene�t of greater capacity and

charging power is directly related to the share of overall cost reduction that is due to the

intra-day optimisation. Figure 5.5 tests this hypothesis and suggests that there is in fact

no correlation. Just being able to generate good pro�ts on the intra-day market does not

translate into an equally increased bonus when prices are adjusted.

5.3 E�ect of O�ering Imbalance Power

The previous chapters have explored the intricacies of minimising energy costs for �exible

consumers. However, the ability to �exibly change the power drawn from the grid could

represent additional value. The �exibility could position itself as a provider for balancing

energy in its own balancing group by deviating from its speci�c pre-planned schedule.
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Such a management would require the evaluation of various marginal cost curves. This

chapter will therefore begin to explore this use case by estimating the costs incurred by

the �exibility when it makes itself available for such a management, i.e. the price just

for o�ering the service of balancing.

5.3.1 Con�guration

The simulation can estimate the price of o�ering �exibility by planning a certain schedule

for a speci�c hour and then block further optimisation of this hour during the intra-day

process.

Evaluating all di�erent scenarios for blocking di�erent hours of a day and their price

e�ect would surpass the scope of this paper (there are more than 16 Million theoretical

combinations just in a single day). Therefore, a speci�c case is evaluated where three

di�erent, distinct blocks are reserved.

Imbalance providers are determined by a tender for consecutive four-hour blocks. The

resulting imbalance prices, also dependent on the overall grid imbalance, is only known

after the fact. However, a merit-order list describing the marginal imbalance price is

known in advance. Based on this merit-order list one could calculate a risk metric for

imbalance prices each of the 4-hour-blocks and use this metric to determine the time

frames of possible balancing by the �exibility.

The simulation is now parametrised to not only optimise a two-week time frame but

also block a 4-hour block each day for potential balancing. To increase the general

applicability of the results, not only one but three di�erent weeks were chosen for analysis.

They each had to comply with a set of criteria:

� There could be no change from or to daylight-saving time to keep the amount of

hours consistent.

� Bank holidays should be avoided, since prices at these times tend to be non-

representative.

� The three time spans should each be during di�erent times of the year which has

an e�ect on the price structure.
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� Times of national or large-scale lockdowns connected to the e�orts to curb COVID-

19 should be avoided. Energy prices during these times presented a unique struc-

ture.

� In each time frame, there should be a single block of four-hour prices with a dis-

tinctly higher level of imbalance prices.

Market prices for 2020 were evaluated which lead to the selection of these three time

frame:

1. 06.01.2020 to 19.01.2020, blocking the hours 4-8 AM.

2. 01.07.2020 to 14.07.2020, blocking 4-8 PM.

3. 14.09.2020 to 28.09.2020, blocking 12-4 PM.

A more detailed look at the di�erent imbalance prices is presented in the appendix.

At this point an important assumption is introduced. The sum of the imbalance, i.e.

the sum of deviations from the original schedule, will over the four hours equal zero.

This allows the simulation to optimise the rest of the schedule. It is also a reasonable

assumption since a managed portfolio that tends to not have a net imbalance of zero

should always adjust its forecast algorithm.

With this assumption in mind, it is also a good starting point to block half of the

maximum possible hour for the a�ected hours. This way, it is possible to react to positive

and negative imbalances equally. This setup introduces some further constraints on the

possible con�gurations:

� The capacity must be able to handle two hours on half power, which gives the

natural limit of C > 4h ∗ L− 2h ∗ I
2 In the worst case, it should handle 2 hours of

no input. For a bit of a bu�er, 3 hours is chosen.

� Charging at half power for four hours must not exceed the storage capacity 2h∗ I
2 <

C +4h ∗L which leads to I < C/h+2 ∗L. To retain some �exibility in optimising

the schedule, the maximum charging power is chosen at I ≤ 3 ∗ L.

� Limiting the charging power for four hours at half power must still allow the storage

to not be depleted over time, this leads to 20 ∗ I +4 ∗ 0.5 ∗ I > 24 ∗L which equals

I > 1.09 ∗ L. But this leaves no �exibility. Therefore the charging power is set at

I ≥ 1.5 ∗ L which allows for some optimisation to take place.
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In contrast to the previous simulations a speci�c physical con�guration is analysed and

visualised. This greatly improves the interpretability of the results. However, the results

are still generalisable to other con�gurations by transforming the physical sizes with their

respective ratios. The system chosen has a constant delivery obligation of L = 2 MW.

5.3.2 Results

By comparing the relative increase in costs in each simulation (see �g. 5.6), the di�erences

between the di�erent weeks is very apparent. In addition, the appendix includes two

further visualisations showcasing the absolute increase in prices. All in all, the increase

in costs can be described as moderate. The most �exible con�guration incur additional

costs of around two to twelve per cent. This range between the di�erent weeks is much

smaller for less �exible con�gurations.

Controlling for the amount of possible balancing power (half of the maximum installed

charging power) o�ers a detailed look at the in�uence of the di�erent parameters on costs

(see �gure 5.7). Less �exible consumers have a less pronounced cost increase, but also

o�er less power for balancing. Increasing capacity and charging power can make o�ering

balancing power relatively cheaper, while it can also do the opposite when the time of the

blocked hours is changed. These results hint at complex relations between the di�erent

simulation parameters that demand further investigation.

The stark contrast between the weeks can be explained by the underlying price structure

and the prices that were necessarily taken as a result of positioning the schedule at half

power. Figure 5.8 illustrates the median day-ahead prices of each hour for the simulated

two weeks. The �rst obvious deduction is that each week had a generally di�erent price

level. While the simulation for January was forced to buy during the most expensive

time of the day, the September simulation was able to make use of prices likely to be

included in an unconstrained optimisation. However, buying only at half power during

these hours has a negative e�ect on con�gurations with smaller charging powers.

Therefore, a rather self-evident, result of the analysis can be stated: Systems with greater

�exibility (high charging power, large capacity) incur greater �nancial costs when the

blocked hours are times of high prices. The di�erent price premiums not only depend on

the con�guration but are not even generalisable since they are deeply connected to each

day's price structure.
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Figure 5.6: Relative additional costs after blocking some hours from optimisation.

Figure 5.7: Additional relative costs per o�ered power.
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Figure 5.8: Median day-ahead prices in selected time windows, the coloured parts indicate
the times when balancing power was o�ered in the simulations.
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6 Discussion

The simulation and optimisation algorithm as presented in this paper incorporates the

essential requirements to make its results transferable to a real world context. Essential

questions can be answered and addressed in new ways. Nevertheless, there are some

aspects which would increase the �delity of the simulation, but at the cost of increased

complexity and adaptability.

6.1 Extensions to the Simulation

The underlying data used in the simulation must be unambiguous for each point in time.

However, more complex simulations are able to factor risk assessments and uncertainty

into the algorithm, e.g. [17] and [18]. As a �rst step, the algorithm could di�erentiate

between price forecasts, on which the optimisation would be carried out, and a di�erent

price list, which would represent the actually traded prices. The current approach has

the clear bene�t that a deterministic model produces results where every step is always

repeatable and reproducible without deep knowledge of internal states of the optimisa-

tion.

Currently, two speci�c use cases for optimising the intra-day and day-ahead market

are implemented and compared. These are of course not the only ways to optimise a

resource on the spot market. For example, one might not want to already schedule the

energy needs of a whole day on the day-ahead market but only for example 50 % of the

daily volume. Subsequently, the intra-day market could be used when the order book

is favourable. This new approach would certainly have the potential to further reduce

overall energy costs while new factors such as risk assessment and market forecasts would

need to be taken into account.

Based on the analysis of the previous chapter, any decision to prepare balancing services

should not only take a risk-analysis into account but also the expected price structure.
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Currently, the software library does not make an attempt to optimise when and how many

hours should be blocked for o�ering balancing energy. This is not possible as long as the

second half, the value for the taker of balancing energy is known. However, the developed

software framework could be used as a starting point to develop such optimisations.

All in all, the simulation only looks at raw energy costs and leaves out many other crucial

factors which impact the operating cost of an energy resource. The charging equipment

might operate at di�erent e�ciencies depending of the state of the storage. Among other

things, abruptly increasing and decreasing the charging power might lead to a higher

wear on physical components and introduce new costs. Such considerations would need

to be evaluated before any physical system is built or managed.

6.2 Extensions to the Analysis

The analyses, as presented in the previous chapter, showcase the potential of the de-

veloped software optimisation. Nevertheless, some adaptations could be made that only

change input parameters to the simulations. A factor that remains unexplored at this

stage is value of the starting state. The day-ahead optimisation is programmed to run

once a day and calculate a schedule that returns to this state after 24 hours.

Very low starting states would allow for more charging in the morning, while very high

states would allow the schedule to be shifted to the evening hours. This will inevitably

e�ect the marketing result of any simulation and will even have a stronger e�ect when

some hours are blocked from optimisation.

A di�erent scenario would be to plan two or three days in advance on the day-ahead

market, while only actually trading the next day and repeating the process every day.

As a consequence, the optimisation would not return to the starting state of the capacity

every 24-hours but be able to �exibly capitalise on low prices in morning or night hours.

The monetary e�ect of o�ering balancing services was shown to be most in�uenced by the

decision when to o�er this service. Thus, an analysis that more �exibly �ts the blocked

time frames for each day would provide further insights. As a result of that analysis,

one could more realistically compare the eventual imbalance prices to the cost of o�ering

balancing energy via the �exibility.
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7 Conclusion

Extensive research is carried out in the �eld of planning and optimising �exible energy

resources. The research proposed here does not o�er a competing model. Instead, a

specialised solution is presented to model constrained energy consumers and estimate the

bene�ts of using energy markets to decrease energy costs. The bene�ts of the underlying

open-source software library are its adaptability and ease-of-use. The underlying concepts

and assumptions are clear and present therefore a coherent programming interface. The

software library is therefore a good tool for building complex simulations.

By using this optimisation algorithm an analysis of a diverse set of �exibility con�gur-

ations was carried out. Energy cost reductions were remarkable. It was demonstrated

that even systems with small storage capacities can decrease energy costs by 10 % or

more when making use of price di�erences in day-ahead and intra-day markets. Savings

of more than 50 % are certainly feasible for very �exible con�gurations. When design-

ing �exibilities, both charging power and capacity should be scaled as both demonstrate

diminishing returns.

Simulating the bene�ts of an continuous intra-day optimisation is more complex than

only concentrating on the day-ahead market. Therefore, the analysis makes conservative

assumptions. In this scenario, making use of the intra-day market for arbitrage trades

reduces energy costs in many system con�gurations by roughly 10%.

Using �exible consumers as private providers to balance forecast errors in a shared control

group is a concept that is not yet in widespread commercial use. Since the coordination

between renewable generation and the constraints of such �exibilities is complex, this

research is only a �rst step in examining this topic. The analysis comes to the conclusion

that o�ering such balancing energy could be feasible and does not seem to increase costs

prohibitively. However, the degree of additional costs is heavily dependent on the system

con�guration and times when �exibility should be o�ered.
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7 Conclusion

While �uctuating weather situations present the most promising results, constraining the

price optimisation of the �exibility could also be more expensive than paying standard

imbalance prices. More research is needed to determine the competitiveness in an opera-

tional scenario. Still, such integrated control groups could be a further building block in

reducing the risks connected to marketing renewable energy portfolios and decrease the

need for grid-wide balancing services.
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A Further Plots and Simulation Results

The link between the logarithmic scaling of simulation results as a function of capacity

has already been shown. The �gures A.1 and A.2 extend this approach by visualising the

same data as 5.1 and 5.4, but having divided each y-axis value by the natural logarithm

of the respective capacity in hours.

The overall cost of the simulations in chapter 5 after blocking some hours is described

in �gure A.3. Figure A.4 visualises the concrete premium per hour and MW of o�ered

balancing power.

Figure A.5 illustrates the distribution of imbalance prices in the selected weeks.

42



A Further Plots and Simulation Results

Figure A.1: Simulation results for energy cost savings, scaled to logarithm of capacity.

Figure A.2: Sensitivity to improving market prices, scaled to logarithm of capacity.
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A Further Plots and Simulation Results

Figure A.3: Overall marketing costs after preparing for balancing services.

Figure A.4: Additional costs per hour and power allow comparisons to standard imbal-
ance prices.
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A Further Plots and Simulation Results

Figure A.5: Imbalance prices for each simulated week.
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B Working with �exoptr

The goal of �exoptr is to provide a suite of functions to generalise and ease the modelling

of energy �exibilities. By de�ning base parameters, the needs of a constrained �exib-

ility are calculated, and optimised over price data. Several functions to facilitate the

optimisation of more complex market and con�guration analyses are also provided.

The only required external package to run this package is magrittr which introduces

the pipe operator and is only used for making code more readable. The r-Project has

already announced plans to make a pipe operator a native part of base R, development is

currently under way. Therefore, a future adaptation of the code which completely avoids

secondary packages is possible.

B.1 Installation

You can install �exoptr from GitHub with:

# install.packages("devtools")

devtools::install_github("henobe/flexoptr")

There are currently no plans to release the package on CRAN.

B.2 Example

Given a �exibility of with the physical parameters of a delivery obligation (constant),

a maximum charging power (variable), and a storage capacity an optimal schedule for

minimising energy costs can be calculated.
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B Working with �exoptr

library(flexoptr)

base_parameters <- c(

"starting_state" = 5,

"capacity" = 10,

"charge_rate" = 4,

"loss_rate" = 1

)

sample_constraints <- build_constraints(

cycles = 10,

state = 5,

parameters = base_parameters

)

sample_prices <- c(37, 17, 4, 4, 9, 21, 22, 47, 48, 5)

optimise_constraints(sample_constraints, sample_prices, 15)

#> [1] 0 0 4 4 2 1 0 0 0 4
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B Working with �exoptr

This approach is extended in the library and many functions are provided that facilitate

the analysis of many scenarios.

sample_prices_day <- sample.int(50, 24, replace = TRUE)

optimise_schedule(

schedule = rep(0, 24),

parameters = base_parameters,

prices = format_da_prices(sample_prices_day),

shift = 24 * base_parameters["loss_rate"]

)

#> $schedule

#> [1] 4 0 1 4 1 0 0 0 4 0 0 0 0 0 0 0 2 4 0 0 0 0 4 0

#>

#> $state

#> [1] 8 7 7 10 10 9 8 7 10 9 8 7 6 5 4 3 4 7 6 5 4 3 6 5

#>

#> $trades

#> time volume prices trading_time

#> 1 1 4 10 0

#> 2 3 1 11 0

#> 3 4 4 8 0

#> 4 5 1 12 0

#> 5 9 4 7 0

#> 6 17 2 14 0

#> 7 18 4 13 0

#> 8 23 4 6 0

B.3 Developing with �exoptr

This library is developed and tested under R version 4.0.4 (2021-02-15). The library

provides sophisticated functions for preparing data and optimising various pre-con�gured

scenarios which are all natively documented. It is also possible to use the more basic

functions and develop own scenarios.

B.3.1 Preparing Inputs for Simulations

The basis for most complex optimisations should be optimise_schedule(). Its in-

puts are however not self-explanatory because the function can be used very �exibly just

by formatting them di�erently.
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B Working with �exoptr

The logic behind the function assumes that a set of times should be optimised. For each

time, there is one price present. By analysing the format of the price data, the function

iterates over times where prices are present. As an example, the function format_-

da_prices() takes price data and formats them in a 24-step list which means that all

24-elements are traded and optimised simultaneously.

As a basic use case, one would want to compare the optimisation results of the same

con�guration of parameters but on di�erent trading strategies. The function simu-

late_marketing() is a wrapper of optimise_schedule() that iterates through a

day-ahead and intra-day marketing scenario.

At last, it is important to consider that the optimisation will only handle whole numbers

as parameter inputs. By transforming the parameters but keeping the relation between

the parameters equal, nearly any con�guration can still be simulated.

B.3.2 Underlying Optimisation Algorithm

The whole simulation can be understood as a wrapper and input preparation for two

basic functions, that comprise the optimisation logic of a constrained storage.

Description of physical constraints: The state and future needs of a storage can be

described over three variables with a speci�c value for each time interval:

� Describing how much energy the storage will need to have charged to not be empty

at the end of that time interval. In code, this value is described as cummin.

� How much energy can be possibly charged so that the storage would be full as fast

as possible. This is referred to as cummax in code.

� Apart from the storage also the charging power is constrained, as it can only take

values between zero and the maximum charging power. In contrast to the previous

to variables it is described as dirmax.

The initially described sample_constraints are in fact a data.frame where one

column describes each variable:

sample_constraints

#> cummin cummax dirmax

#> 1 0 7 4

#> 2 0 7 4
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B Working with �exoptr

#> 3 0 8 4

#> 4 0 9 4

#> 5 0 10 4

#> 6 1 11 4

#> 7 2 12 4

#> 8 3 13 4

#> 9 4 14 4

#> 10 5 15 4

Optimisation inside constraints: Beginning from a starting state and having calculated

these three variables for the described points in time, a charge can be planned. The code

�rst uses the constraints to make a selection of times where a change in schedule must

and could happen:

� The �rst time (from a chronological point of view) that the cummin value is greater

than one. Then, only that or preceding time intervals are a charge priority.

� Similarly, at value zero cummax describes that the charge cannot be increased at

that point in time, or else the storage would charged beyond capacity at that or a

later time.

� Finally, the remaining charging power dirmax must be greater than zero.

The optimisation itself is now a simply process of selecting the time with the lowest price

out of the available prices and then adapting the constraints to re�ect the change in

schedule.

In the example of the sample_constraints, a selection would be made so that in the

times 1-6 the minimal price would be searched. In the example at the outset the time 3

would then be chosen. As a consequence, the constraints are automatically adapted:

flexoptr:::adapt_constraints(sample_constraints, 3)

#> cummin cummax dirmax

#> 1 0 7 4

#> 2 0 7 4

#> 3 0 7 3

#> 4 0 8 4

#> 5 0 9 4

#> 6 0 10 4

#> 7 1 11 4

#> 8 2 12 4

#> 9 3 13 4

#> 10 4 14 4
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B Working with �exoptr

As a charge in time 3 happened, the values for cummin, cummax, and dirmax were all

adjusted to re�ect the new schedule. This process is repeated as often as units of charge

are to be optimised. This approach (found in optimise_constraints()) thus takes

into account the physical constraints when optimising for minimal prices.

Out of these building blocks, complex simulations are constructed by building constraints,

optimising inside these constraints and then repeating these steps for consecutive time

intervals (which is exactly what the function optimise_schedule() does).

B.4 Manual

The complete and detailled documentation can be accessed via the usual ?-operator

when the library has been installed. An automatically generated manual is appended

to the print-out version of this document. This manual is also available on the online

repository.
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