
Bachelorarbeit
Youssef Benlemlih

State Management in Component Based User Interfaces

A React Case Study

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Sci-
ence
Department of Computer Science

Youssef Benlemlih

State Management in Component Based User Interfaces
A React Case Study

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.-Ing. Lars Hamann
Zweitgutachter: Prof. Dr. Stefan Sarstedt

Eingereicht am: 31. August 2022

Youssef Benlemlih

Thema der Arbeit
State Management in Component Based User Interfaces. A React Case Study

Stichworte
State Management, Software Quality Models, React, EFFORT

Kurzzusammenfassung
Heutzutage werden mehr und mehr mobile Anwendungen und Webseiten entwickelt und
genutzt. Eines der führenden Frameworks für die Erstellung von Benutzeroberflächen
ist React. Obwohl React im Jahr 2021 das meistgenutzte Web-Framework ist, herrscht
Uneinigkeit darüber, wie der Zustand der Anwendung verwaltet werden soll. Diese Arbeit
vergleicht gängige Ansätze, indem sie eine Auswahl von State-Management-Bibliotheken
untersucht. Ein Software-Evaluierungs-Framework wird verwendet, um die Qualität jeder
Bibliothek zu analysieren. Schließlich werden die Ergebnisse verglichen und allgemeine
Schlussfolgerungen über die Eignung der einzelnen Ansätze gezogen.

Youssef Benlemlih

Title of the paper
State Management in Component Based User Interfaces. A React Case Study

Keywords
State Management, Software Quality Models, React, EFFORT

Abstract
Nowadays mobile applications and websites are developed and used more than ever. One
of the leading frameworks for the creation of user interfaces is React. Although React is
the most used web framework in 2021, there is a disagreement on how to manage its
application state. This thesis compares common approaches by investigating a selection
of state management libraries. A software evaluation framework is used to analyze the
quality of each library. Finally the results are compared and general conclusions are
made about the suitability of each approach.

Contents

1. Introduction 1
1.1. Motivation and Hypotheses . 2
1.2. Research Design . 2

2. Conceptual Background 4
2.1. Introduction to React . 4
2.2. Problem Definition . 8
2.3. Problem Use Case . 10
2.4. React’s Inner Working . 13
2.5. State Management Libraries . 15

2.5.1. Global State . 15
2.5.2. Flux-Based State Management Libraries 17
2.5.3. Observable-Based State Management Libraries 21
2.5.4. Atom-Based State Management Libraries 22
2.5.5. Query-Based State Management Libraries 23

3. Software quality models 25
3.1. ISO/IEC 25010 Model . 31
3.2. DAP classification . 33

4. EFFORT 35
4.1. EFFORT Baseline Version . 35
4.2. Instantiation of EFFORT . 41

5. Discussion 44
5.1. Findings . 44

5.1.1. Software Product Quality . 45
5.1.2. Community Trustworthiness . 48
5.1.3. Product Attractiveness . 49

5.2. Suitability of the Approaches . 50
5.3. Hypotheses Verification . 51
5.4. Reflection . 51

5.4.1. Usage of Metrics . 52
5.4.2. EFFORT . 53

6. Outro 55

iv

Contents

Appendices 56

A. EFFORT Instantiation 57
A.1. Questions Definition . 57
A.2. Metrics Definition . 58

B. Results 65
B.1. Raw Metrics Results . 65
B.2. Mapped Metrics Results . 69
B.3. Aggregated Questions Results . 71
B.4. Aggregated Goals Results . 72

v

List of Figures

2.1. Example of a component created with JSX 4
2.2. Example of a component defined as function 5
2.3. Example of a component that includes two children 5
2.4. Tree representation of the created components 5
2.5. The counter after after clicking + three times. 6
2.6. Implementation of the counter using a function component 6
2.7. Example situation illustrating the challenge of shared state 8
2.8. Example situation illustrating prop drilling 9
2.9. Example situation illustrating derived state 9
2.10. The wireframe of the use case where the cart popup is open 11
2.11. API definition of the needed service. 12
2.12. The types used in the API definition of the service 12
2.13. Two nodes to compare that have a different attribute 13
2.14. Two trees to be compared, where the second one has an extra element in

the end . 14
2.15. Two trees to be compared. The usage of keys indentifies that an element

has been added . 14
2.16. Example usage of React Context. 16
2.17. The components of an application using Redux 17
2.18. Examples of an action and an action creator 18
2.19. Example of a Redux reducer used in a todos application 18
2.20. Example of an application not using Command Query Responsibility

Segregation (CQRS). Reproduced from [5] 19
2.21. Example of an application using Command Query Responsibility Segre-

gation (CQRS). Reproduced from [5] . 20
2.22. Structure of the Observer Pattern. Reproduced from [68] 21
2.23. Defining and using state by means of an atom 22
2.24. When the first component requires the data, it is queried from the server

and saved in the cache . 23
2.25. When a second component requires the data it is taken from the cache . 24
2.26. Example usage of React Query with deconstructed relevant fields 24

3.1. Quality Models. Reproduced from [74] 25
3.2. McCall Quality Model. Reproduced from [74] 26
3.3. Boehm Model. Reproduced from [74] . 27

vi

List of Figures

3.4. Dromey Model. Reproduced from [74] 28
3.5. FURPS Model. Reproduced from [74] 28
3.6. ISO/IEC 9126 Quality Model. Reproduced from [74] 29
3.7. ISO/IEC 25010 Quality Model. Reproduced from [74] 29
3.8. Comparision of quality models. Reproduced from [74] 30
3.9. Quality characteristics of ISO/IEC 25010 model. Reproduced from [19] 31
3.10. DAP classification for Quality Models: Reproduced from [63] 33

4.1. Quality model defined by EFFORT and associated quality characteristics.
Reproduced from [57] . 35

4.2. The structure of Goals, Questions and Metrics in the GQM Paradigm [58] 36
4.3. Questions in the EFFORT measurement framework pertaining to product

quality. Reproduced from [57] . 37
4.4. Questions and metrics in the EFFORT measurement framework pertaining

to sub-goal 1a. Reproduced from [57] . 38
4.5. Questions and metrics in the EFFORT measurement framework pertaining

Sub-goal 1d. Reproduced from [57] . 38
4.6. Questions in the EFFORT measurement framework pertaining to com-

munity trustworthiness. Reproduced from [57] 39
4.7. Questions in the EFFORT measurement framework pertaining to product

attractiveness. Reproduced from [57] . 40
4.8. Interpretation of mod6 as modulo and complement 40

5.1. Scores achieved by the SMLs by applying EFFORT 44
5.2. Comparison of the software product quality of the five evaluated SMLs . 45
5.3. Detailed results pertaining to the software product quality of the five

evaluated SMLs . 46
5.4. Comparison of the community trustworthiness of the five evaluated SMLs 48
5.5. Comparison of the product attractiveness of the five evaluated SMLs . . 49

vii

1. Introduction

In today’s era of technology, where the virtual world complements our daily lives, websites
and mobile applications are used and developed more than ever. Throughout the years,
software development has evolved in a fast pasted way, that developing such software
products from scratch is no longer necessary. Instead, there are multiple frameworks
available for this purpose. One of the leading frameworks used to create interactive
web applications is React [30]. According to the 2021 Developer Survey done by Stack
Overflow [42], it is the most commonly used web framework as of 2021. Its flexible
component based architecture simplifies the creation of sophisticated user interfaces.
However, it seems challenging for the developers to come to an agreement, which
approach is the most suitable for managing the application state in React. Therefore
this work aims to provide a thorough objective comparison of the available approaches.
This comparison could serve as the basis for choosing the suitable approach for each
individual use case.

1

1. Introduction

1.1. Motivation and Hypotheses

Although it seems that React is established as a successful web framework, it is commonly
used with different state management libraries. There appears to be a knowledge gap
regarding a thorough analysis of the approaches based on the key software criteria.
Therefore this works focuses on the approaches that can be used to manage state in
component based user interfaces. This objective is achieved by exploring the available
state management libraries used with React. It should be highlighted, that the intention
of the work is not the identification of the “best state management library”. Rather,
it is to gain a thorough understanding from an architectural point of view and easing
the process of choosing an adequate solution for a given use case by providing general
guidelines based on commonly known software quality characteristics. Hence, following
hypotheses are formulated:

• H1: React Context is best suited for data which is rarely changed, such as the
authenticated user or the current UI theme.

• H2: State Management Libraries are suitable for complex User Interfaces (UIs)
that don’t communicate much with a backend server.

• H3: Query approaches are better suited for UIs, that need to interact with a
backend server.

1.2. Research Design

The research conducted in this thesis comprises multiple steps. Following the introduc-
tion, which aims to give the first impression of the matter, the need for state management
libraries is explained in the second chapter. This includes taking an elaborate look
at how React functions internally, by introducing its syntax (JSX) and its primitive
building blocks (class and function components), clarifying the ways data can be stored
and shared in different parts of the UI (props and state), and explaining React’s ren-
dering algorithm, referred to as Reconciliation [33]. Following that, problems emerging
from the component based architecture are presented along with an example use case.
Afterwards, a selection of state management libraries (SMLs) is presented, including
code examples and the programming paradigms they draw upon. In the third chapter,
the term “software quality model” is defined and the existing models are introduced
with their respective advantages and challenges. After defining the requirements for

2

1. Introduction

these models, a comparison is presented and the selection of the Evaluation Framework
for Free/Open souRce projecTs (EFFORT) [57] is justified. The previously formulated
use case is implemented using each of the SMLs and used for comparing them within the
application of EFFORT. The results are elaborated and general conclusions are drawn
regarding the suitability of each library. Lastly, The work is concluded with a reflection
on the research process and an outlook for future work.

3

2. Conceptual Background

This chapter provides the reader with the needed conceptual background to understand
the nature of the problem that the state management libraries aim to solve. First,
React is briefly introduced with its syntax and the concept of a component tree. Then,
a number of problems arising from React’s architecture are presented, followed by a
selection of state management libraries. Finally, these problems are illustrated with a
use case.

2.1. Introduction to React

In React, the application is modeled as a tree of components, each representing a part
of the user interface. In the following figure 2.1, a component called HelloMessage,
that takes a name as an argument is defined. Arguments are called props (short for
properties) and can be accessed inside the component in order to create an element, in
this case an HTML div element [10]. The component implements a render method that
declaratively describes how to construct the UI. The render method is then implicitly
used when using the component in an HTML inspired syntax called JSX.

class HelloMessage extends React.Component {
render() {

return <div>Hello {this.props.name}</div>;
}

}

// renders <div>Hello React World</div>
root.render(<HelloMessage name="World" />);

Figure 2.1.: Example of a component created with JSX

4

2. Conceptual Background

JSX is a syntax extension to JavaScript, that simplifies the creation of components [22].
The usage of JSX is optional and can be omitted. For example, the render method of the
component can be defined in plain JavaScript using React.createElement(component,
props, ...children), since JSX code is compiled to corresponding function calls [22].

An alternative to the usage of classes is to use a function that receives an object and
simply returns the content that was previously in the render method. This results in
simpler and more readable code, as shown in figure 2.2.

function HelloMessage ({name}) {
return <div>Hello {name}</div>;

}

Figure 2.2.: Example of a component defined as function

Components can be nested to create the complete application tree. Figure 2.3 shows
a Parent component with two children components, ChildA and ChildB. The created
application tree is equivalent to the tree presented in the figure 2.4.

function Parent () {
return <><ChildA/><ChildB/></>;

}

Figure 2.3.: Example of a component that includes two children

Figure 2.4.: Tree representation of the created components

Up until now, only props have been presented. Props can be thought of as immutable
data within the scope of a component. Most applications though, need to have mutable

5

2. Conceptual Background

data, also referred to as state, in order to be interactive. In class components, state
can be achieved with an initialization in the constructor and the use of the setState
method for state updates.

Following, the usage of state is illustrated with the example of a simple user interface.
Figure 2.5 illustrate the result, where clicking the + button increments the count by
one and clicking - decrements it by one. The current count is reflected in real time.

Figure 2.5.: The counter after after clicking + three times.

function Counter() {
const [count, setCount] = useState(0);
return <Container>

<Button
icon={"minus"}
onClick={() => setCount(count - 1)}

/>
Current count: {count}
<Button

icon={"plus"}
onClick={() => setCount(count + 1)}

/>
</Container>

}

Figure 2.6.: Implementation of the counter using a function component

The figure 2.6 demonstrates the implementation of the counter using a function, in which
Counter is a component that accepts no props and holds a state. It uses a Container
element to apply a layout and nests in two button components and an HTML span[40].
The button receives an icon name and a callback function to be called when clicked.
The current count is embedded in the text inside the span using curly braces.

Although state is mutable, it is not to be assigned directly, but rather by using the
method setState, so that React is notified by the change and can orchestrate the
needed UI updates[43].

6

2. Conceptual Background

The function useState is one of the many special functions available by the React API,
so called hooks [18]. Hooks are special functions that start with use and can only be
used in function components or within other hooks. There are other hooks available for
function components and lifecycle methods for class components. These are left out of
this introductory chapter, since they have a low relevance within the scope of the work.
In the following, function components are mainly used over class components due to
their simplicity and their support by all the selected state management libraries.

7

2. Conceptual Background

2.2. Problem Definition

Before diving into the different approaches, it is important to identify what problems
SMLs try to solve in the first place. The review of the developer documentation of the
SMLs indicates that the fundamental problem lies in sharing state between multiple
components, which can be split into four problems:

• P1: Shared state. Although react offers great flexibility on the structure of the
application tree, it prescribes a top-down data flow. Meaning, parent nodes pass
data to their children. This introduces the challenge of how to share data between
nodes that are far away from one another in the tree. Figure 2.7 illustrates the
challenge of sharing state between the components C1 and D5.

Figure 2.7.: Example situation illustrating the challenge of shared state

• P2: Prop drilling: State needs to be forwarded from higher nodes to lower ones
that require it, even when intermediate nodes do not utilize it. In figure 2.8, D3

and D6 both require the state S, therefore it is imported in the closest common
ancestor node A and propagated throughout the tree. As can be seen in the figure,
the node B1, B2, C2 and C4 do not use the state, nevertheless they need to forward
it. Typically the lower nodes are presentational components [29]: They represent
concrete implementations of User Interface elements such as text inputs, buttons
and checkboxes. On the other hand, higher nodes are container components: they

8

2. Conceptual Background

Figure 2.8.: Example situation illustrating prop drilling

contain business logic and use presentational components while being agnostic
about implementation details [29]. For instance, prop drilling becomes apparent,
when a current application theme that should be passed from the root node
throughout the application tree, so that the presentational components can access
it and render accordingly.

Figure 2.9.: Example situation illustrating derived state

9

2. Conceptual Background

• P3: State interdependencies/derived state. It is usual in an application that
multiple states are dependent on others forming a state dependency tree. An
example of a state dependency tree is depicted in figure 2.9, where D2 and D3

depend on D1. An example for this could be: D1 is the user selection of an element
in a list. D2 could be a field in the selected object and D3 is some additional data
that needs to be fetched for this specific object.

• P4: Unnecessary re-renderings. When the data of a component changes, React re-
renders that component and its belonging subtree. In a nutshell, React recursively
calls render on the component and its children and update the Document Object
Model (DOM) [11] accordingly (more about this in chapter chapter 2.4). This
process can be exhaustive as it can cause performance problems when one of
the affected nodes is high in the application tree. Thereby three re-rendering
performance levels are differentiated: the first as optimal re-renderings, where
only the nodes whose state changed are re-rendered, the second as suboptimal
re-renderings, where nodes are re-rendered due to their possible change of their
derived state, and the third as redundant re-renderings, where nodes are re-
rendered even when their state has not changed.

2.3. Problem Use Case

In the following, a use case incorporating the above mentioned problems is formulated,
that is applied in later steps of this work in the evaluation of the selected approaches.

This use case is an online shop website, which is depicted in Figure 2.10. The displayed
articles are fetched from a backend server and can be added to the cart. The count of
the articles currently in the cart is shown by a badge on the cart icon. This embodies
the problem of derived state (P3). The cart state, which is also persisted on the backend
side can be viewed by clicking on the cart icon. Since adding items in the cart and
the displayed items happen in different sections of the UI, the problem of shared state
(P1) is therefore included. By adding the possibility to switch between dark and light
mode, which is a common pattern nowadays, the theme needs to be shared throughout
the application, effectively showing the prop drilling problem (P2). In order to test
whether the application efficiently handles re-renderings (P4), another state is added:
the authenticated user. By clicking on the profile icon, a popup prompts the user to log
in or out. The authenticated user is shown in the profile icon and popup. Finally, in

10

2. Conceptual Background

Figure 2.10.: The wireframe of the use case where the cart popup is open

order to add some business logic, a free shipping is offered when the total of the cart
surpasses a specific amount.

In order to implement the backend functionality, the application needs to communicate
with a backend server. Luckily, this can be easily mocked by creating a service class
in the frontend that offers the same interface. Mainly, all methods should include a
delay and be asynchronous in order to simulate an implementation using the browsers’
built-in fetch function [14]. The functionality offered by the service is described in the
figure 2.11 below and the used types are shown in figure 2.12.

11

2. Conceptual Background

Method Returns Description
getAllArticles() Promise<Article[]> Get all the articles available
getCart() Promise<Cart> Get the current cart, including the ar-

ticles, their respective count, shipping
costs and total

addArticleToCart
(articleId: string)

Promise<Cart> Add an article to the cart and return
the new cart.

removeArticleFromCart
(articleId: string)

Promise<Cart> Removes an article from the cart and
return the new cart.

logIn() Promise<Profile> Logs the user in and returns the user
details including the first name, the last
name and the user’s email address.

logOut() Promise<void> Logs the user out.

Figure 2.11.: API definition of the needed service.

Figure 2.12.: The types used in the API definition of the service

12

2. Conceptual Background

2.4. React’s Inner Working

Thanks to React’s declarative API, it is simple to create reactive user interfaces, which
renders correctly when the underlying data changes. This process of updating the DOM
elements is called Reconciliation [33]. Reconciliation is based on the concept of the
virtual DOM, where an ideal representation of the UI is kept in memory and synced with
the browser DOM. After each change of props or state, the DOM needs to be updated
to reflect the changes. To do so, React compares the previous tree with the target tree
in a process referred to as “diffing” [33]. Whilst calculating the needed operations to
transform a tree to another one has a complexity of O(n3) [33], React uses a heuristic
algorithm that achieves a lower complexity of O(n). The algorithm makes two basic
assumptions that prove to be valid in almost all practical use cases. The first assumption
is that two nodes of different types produce different trees. And the second implies, the
prop key can be used to define the identity of a node.

The process of Diffing works as follow: Starting from the root node, the render method
is called and compared with the previous content. If elements of different types are
returned, then the old tree is removed and replaced with the new one. Otherwise, the
attributes are compared and only the needed changes are made. The algorithm is then
recursively applied to the child components. For example in figure 2.13, only the prop
className needs to be modified. In other words, when a component is re-rendered, it
is not removed from the application tree and re-mounted. Rather, its render method is
called and the needed changes are calculated.

// actual
<div className="before" title="my-title" />

// target
<div className="after" title="my-title" />

Figure 2.13.: Two nodes to compare that have a different attribute

When recursing on the child components, both lists are simply iterated over and the
needed change operations are computed. For example, when adding an element to a
collection such as in figure 2.14, the comparison of the first two entry sets result in no
change needed. Then, upon arriving at the third element, it becomes apparent that the
element third need to be added.

13

2. Conceptual Background

// actual

first
second

// target

first
second
third

Figure 2.14.: Two trees to be compared, where the second one has an extra element in
the end

This implementation leads to redundant operations when elements are added in other
places than at the end. For instance, when an element is added in the beginning the so
far presented procedure will result in changing the content of the two first nodes and
adding a third one.

This issue is solved by using the unique key attribute to identify the nodes. Figure 2.15
gives an examples that improves the previous code.

// actual

<li key="2015">Duke
<li key="2016">Villanova

// target

<li key="2014">Connecticut
<li key="2015">Duke
<li key="2016">Villanova

Figure 2.15.: Two trees to be compared. The usage of keys indentifies that an element
has been added

14

2. Conceptual Background

2.5. State Management Libraries

Following, a selection of state management libraries is presented. Two factors has been
taking into consideration when choosing the libraries: the popularity of the library and
the programming paradigm it is based on. The selected libraries are React Context [3]
which falls into the global state category, Redux Toolkit [35] which follows a flux based
approach [17], MobX [31] which follows the observable pattern, Recoil [32] which is
based on the concept of atomic state, and React Query [47], a query based approach.

2.5.1. Global State

Built into React, React Context provides the possibility of sharing a piece of state in a
defined context. The usage of React Context requires the creation of a context object
and a context provider. As the name suggests, the context provider holds the actual
state that is shared with the consumers. Its usage in the component tree defines the
scope of the context by wrapping a part of the component tree. All the descendent
components of the provider have access to the shared state through the use of the hook
useContext. Figure 2.16 shows the creation and usage of a context globally. It is to
be noted, that there is usually a one-to-many relation between context providers and
consumers, although multiple providers can be used to overwrite values deeper in the
components tree [3].

When using React Context, the consumer components become functions that contain
implicit parameters that are not declared in their signatures. This means that they
behave differently depending on the context they are called from. React Context is
therefore considered as a form of dynamic scoping, where the variable binding (the
association of a variable to its actual value) happens dynamically [82]. According
to [82], “this allows for a number of well-known benefits [...], like conciseness, modularity
and adaptability”. When having a unique provider shared throughout the application
however, React Context can be interpreted as a form of global state.

15

2. Conceptual Background

// Context creation
const MyContext = createContext();

// Creating the context provider
export const MyContextProvider = ({

children,
}) => {

const [state, setState] = useState(/* initial state */);
return (

<MyContext.Provider value={{ state, setState }}>
{children}

</MyContext.Provider>
);

};

// usage in a consumer component
export const { state, setState } = useContext(MyContext)

Figure 2.16.: Example usage of React Context.

16

2. Conceptual Background

2.5.2. Flux-Based State Management Libraries

One of the popular state management libraries is Redux [34]. It has gained popularity
since it drew from Flux pattern, a pattern that has been recommended for React [16].
An application using the flux pattern is made up of three main components shown in
figure 2.17:

• The state, the single source of truth that drives the application,
• The view, a set of UI components that renders based on the current state, and
• The actions, the events that occur in the application based on user interaction,

and trigger updates in the state.

Figure 2.17.: The components of an application using Redux

This definition of the paradigm enforces a one way data flow, meaning that the application
state cannot be changed directly, but through actions, which leads to more predictability.
Actions are nothing more that a JavaScript object containing a type that typically
follows the pattern "domain/eventName" along with a payload field containing other
parameters. Figure 2.18 shows a simple action and a dynamic action creator.

When an action is dispatched, it is passed to a reducer function along with the old state
and returns the new one. Figure 2.19 shows an example of a todos application. The list
of todos that is initially empty is extended when the action with the type todos/add is

17

2. Conceptual Background

// a constant action
const addTodoAction = {

type: 'todos/add',
payload: 'Buy milk'

}

// a dynamic action creator where the payload is parameterized
const createAddTodoAction = (payload) => ({

type: 'todos/add',
payload

})

Figure 2.18.: Examples of an action and an action creator

dispatched. It is to be noted, that reducers are pure functions, meaning that the output
of the function depends strictly in the provided parameters.

function todosReducer(state = { todos: [] }, action) {
// Check to see if this reducer cares about this action
if (action.type === 'todos/add') {

// If so, add a new todo item
return {

todos: [
...state.todos,

{
name: action.payload,
checked: false,
id: getNewId()

}
}

}
return state

}

Figure 2.19.: Example of a Redux reducer used in a todos application

Since the team behind Redux strongly recommends the usage of the library Redux
Toolkit [44], it is selected in this work. Redux Toolkit provides an improved API
that addresses a few disadvantages of Redux, mainly the big amount of boilerplate
code and the difficulty of configuring a Redux store [36]. Most notably, the actions
and action creators can be generated by the library. Redux Toolkit also introduces

18

2. Conceptual Background

the concept of slices [7] which are units of state with a specific domain that can be
combined to create the root state [2]. Each slice contains the state, reducers, and
action creators. Additionally, Redux Toolkit simplifies the creation of async actions [52],
that include a loading state and a success or failure result with the provided function
createAsyncThunk [6].

Before moving to observable state management libraries, it is worth mentioning that
Redux was inspired not only by the original flux paradigm [17], but also Command
Query Responsibility Segregation (CQRS) and Event Sourcing [25]. In a nutshell, CQRS
is a pattern that encourages splitting the application models into separate models for
update and display [5]. To quote [5]:

“At its heart is the notion that you can use a different model to update information than
the model you use to read information”.

This is analogous to Redux Toolkit’s selectors and action creators. Figure 2.20 shows
an application not using CQRS and figure 2.21 one that does.

Figure 2.20.: Example of an application not using Command Query Responsibility
Segregation (CQRS). Reproduced from [5]

Event sourcing on the other hand, aims to make the changes of the application state
transparent. This is achieved by having events (or commands) for each change to the
application state [12]. In order to obtain the actual application state, the events must
be applied. The main benefits of this pattern lie in the possibility to trace the changes
of the application state and to reconstruct past states.

19

2. Conceptual Background

Figure 2.21.: Example of an application using Command Query Responsibility Segrega-
tion (CQRS). Reproduced from [5]

20

2. Conceptual Background

2.5.3. Observable-Based State Management Libraries

MobX is a simple library based on the observer pattern [68], that hides multiple
implementation details. Using the terminology of the observer pattern, the state
of the application constitutes the “Subject” whereas the components that use the
state are the “Observers” [68]. In order to create Observables, the provided function
makeAutoObservable() needs to be called in the constructor of a class, then an instance
can be created and used anywhere needed. Each component that uses the created
state is wrapped with observer(). Consequently, each change made to the state object
implicitly causes the notification of all subscribers.

Compared to the original observer pattern depicted in figure 2.22, MobX offers a
minimalistic interface. The logic behind emitting and listening to events is hidden
behind a general interface.

Figure 2.22.: Structure of the Observer Pattern. Reproduced from [68]

MobX’s user documentation refers to this as “transparently applying functional reactive
programming”(TFRP) [31]. Transparent in TFRP refers to the fact, that connecting
the observables to the observers requires “no explicit wiring” [51]. MobX is considered
Reactive because changes in the observables emit the correct events efficiently, without
excessive events or polling [51]. The functional programming aspect comes from the
possibility to “apply transformations on input [observable] data and produce output
values”[51].

The usage of Functional Reactive Programming, according to [70], addresses many of
the software engineering principles that the classical observer pattern violates, which are
“Uniformity and abstraction”, “Encapsulation”, “Resource management”, “Side-effects”,
“Composability”, “Separation of concerns”, “Scalability” and “Semantic distance” [70].

21

2. Conceptual Background

2.5.4. Atom-Based State Management Libraries

Recoil [32] is a state management library that takes a different approach on modeling the
application state. In contrast to the previously presented approaches that are based on
a centralized application state, Recoil offers a distributed state approach by introducing
the concept of atoms [1] and selectors [39]. An atom is simply a unit of state, whereas a
selector is a special function that derives its states from one or more atoms or selectors.
This allows the creation of a complex application state tree, where a changing atom
leads to the re-evaluation of all the dependents [4].

Figure 2.23 illustrates the API provided by Recoil by using an example. In the example,
an atom called counter is defined along with a selector that returns the value of the
counter times ten. The usage in React components is straightforward, since the method
signature resembles React’s built-in useState hook [53].

// atom definition
const counter = atom({

key: 'counter', // gloabally unique identifier
default: 0, // the initial value

});

// a selector that computes the value of the counter times ten
const counterTimesTen = selector({

key: 'counterTimesTen',
get: ({get}) => get(counter) * 10

});

// usage in a React function component
const [count, setCount] = useRecoilState(counter);

Figure 2.23.: Defining and using state by means of an atom

22

2. Conceptual Background

2.5.5. Query-Based State Management Libraries

The last selected approach is the query based state management libraries represented by
the library React Query[47]. Although including this approach as an SML is questionable,
it is still taken into account, since it serves the objectives of this work nonetheless.

React Query’s purpose is to manage server state on the client [28] by solving common
problems including caching, grouping multiple requests for the same data into a single
request, detecting and updating out-of-date data in the background, managing memory
and garbage collection of server state, pagination, and lastly lazy loading data [28].
Although the library has various features to offer, caching seems to be the most relevant
one since it allows sharing state across different components. Figures 2.24 and 2.25 show
a simple caching situation where two components need to access the same information
that is stored on a server. When the first component requires the data, it is fetched
from the server, but when consecutive components require the same data, it is taken
directly from the cache.

Figure 2.24.: When the first component requires the data, it is queried from the server
and saved in the cache

The possibility of interacting with the cache also introduces practicable advantages.
For example, when the client performs a mutation that leads to a changed state, the
respective cache can be invalidated. This means, that by the next time the data is
required, it is fetched from the server. Another use-case which is relevant nowadays
is the topic of “optimistic updates” [27]. “Optimistic updates” contribute to a more
responsive user experience by displaying applied changes to the user before they are

23

2. Conceptual Background

Figure 2.25.: When a second component requires the data it is taken from the cache

accepted by the backend server. This can be easily achieved by overwriting the relevant
cache entry manually, since changes in the cache are reflected instantaneously in the
components. Figure 2.26 displays an example usage of the library in a component, where
a selection of fields is deconstructed [9].

const {
// the data that has been fetched, originally undefined
data,
// if applicable, the error thrown by fetchTodoList
error,
failureCount,
// the status of the query: one of 'loading', 'error' and 'success'
status,
// a function to manually refetch the query
refetch,
// a function to remove the query from the cache
remove,

} = useQuery(
['todos'], // query keys used for caching
fetchTodoList // the function used to fetch the data

)

Figure 2.26.: Example usage of React Query with deconstructed relevant fields

24

3. Software quality models

In order to evaluate and compare the different software solutions mentioned in the
previous chapter, it is important to determine the requirements they should fulfill i.e. an
adequate “software quality model”. The following chapter introduces software quality
models, including the definition of the term and an overview on different models available
along with their strengths and weaknesses, and a special focus is put on the ISO/IEC
25010 Model. Furthermore, requirements for software quality models are presented based
on the Definition-Assessment-Prediction classification [63] and Open Source Software
Quality Models are compared.

Figure 3.1.: Quality Models. Reproduced from [74]

ISO/IEC 9126-1 defines the term “quality model” as “the set of characteristics, and the
relationships between them that provides the basis for specifying quality requirements
and evaluation” [62] (cited in [74]). Since different quality models can result in different
evaluation results, the available quality models have to be taken into consideration before

25

3. Software quality models

adopting one. [74] have studied the different quality models (displayed in figure 3.1) and
compared their completeness regarding the characteristics that the models consider.

To give an overview, a few models are presented along with their portrayed characteristics
in [74]. The McCall Model [73], introduced in 1977, proposes many characteristics to
define software quality, grouped into three higher order groups. Product Review includes
Maintenance, Flexibility, and Testing, Product Operation contains the qualities Correct,
Reliable, Efficient, Integrity and usability, and finally Product Transition includes
Portability, Reusability and Interoperability [74]. Figure 3.2 shows a representation of
the model.

Figure 3.2.: McCall Quality Model. Reproduced from [74]

Although the McCall model considers the relation between quality characteristics and
metrics, it lacks in accuracy, since the metrics can only have a boolean value [74].
Moreover, it does not include the characteristic Functionality or the possibility to add
use case specific characteristics, which can be a drawback for the user [74].

26

3. Software quality models

The Boehm model [59] presents improvements over the McCall model by adding a few
factors [74], as can be seen in figure 3.3.

Figure 3.3.: Boehm Model. Reproduced from [74]

The Dromey model [64], which is depicted in figure 3.4 below, clusters the characteristics
into four groups: Correctness, Internal, Conceptual, and Descriptive [74]. Although
this model allows for a more dynamic evaluation to be done, its practical application is
unclear. It is therefore used as the basis for other models [74].

The FURPS model established in 1992, is a composition of the characteristics
Functionality, Usability, Reliability, Performance and Supportability (or Product
Support) [66], as displayed in figure 3.5. Although the model differentiates between
functional and non functional requirements, it is missing a few main characteristics,
such as portability [74].

The ISO/IEC 9126 model bases on the McCall and Boehm models and differentiates
between external and internal qualities [63]. Internal quality attributes, which can be
considered as a form of intrinsic quality attributes, can be evaluated without the need
of executing the software. In contrast, the external quality attributes can be assessed

27

3. Software quality models

Figure 3.4.: Dromey Model. Reproduced from [74]

Figure 3.5.: FURPS Model. Reproduced from [74]

during the execution [63]. The model introduces another group of qualities, Quality in
use, which includes the effectiveness of the product, productivity, security offered to the
applications, and satisfaction of users.

Lastly, the ISO/IEC 25010 Model is an extension of the ISO/IEC 9126 [80]. The main
improvement lies in the addition of the characteristics Security and Compatibility [55].

28

3. Software quality models

Figure 3.6.: ISO/IEC 9126 Quality Model. Reproduced from [74]

Figure 3.7.: ISO/IEC 25010 Quality Model. Reproduced from [74]

The result of the comparison made by [74] can be seen in figure 3.8, where ISO/IEC
25010 is regarded as most complete.

29

3. Software quality models

Figure 3.8.: Comparision of quality models. Reproduced from [74]

30

3. Software quality models

3.1. ISO/IEC 25010 Model

ISO/IEC 25010 is a quality model that defines which "quality characteristics will be
taken into account when evaluating the properties of a software product" [19]. This
model is used in different areas of software engineering and architecture, for example
in the architecture documentation template arc42 [49]. The quality of a system or
software product is thereby defined as the degree to which it satisfies the needs of the
stakeholders, that according to [19] are grouped in eight characteristics: Functional
Suitability, Performance Efficiency, Compatibility, Usability, Reliability, Security,
Maintainability, and Portability as portrayed in figure 3.9. Requirements are defined
across these characteristics to clarify the expectations that need to be fulfilled by the
presented software product [19].

Figure 3.9.: Quality characteristics of ISO/IEC 25010 model. Reproduced from [19]

Functional Suitability is the first characteristic of ISO/IEC 25010 and is defined as the
“degree to which a product or system provides functions that meet stated and implied
needs when used under specified conditions”[19]. This includes prominently Functional
Completeness, which refers to the extend to which the tasks/objectives of the user
are covered, Functional Correctness, meaning to which degree the system provides the
“correct results with the needed degree of precision”[19] and Functional appropriateness,
and how easy the tasks and objectives are accomplished [19].

The second characteristic is Performance Efficiency, which considers the performance of
the software product in regard to its Time Behavior, Resource Utilization, and Capacity
(maximum limits)[19].

The third characteristic is Compatibility and contains two pillars: Co-existence, the
extend to which it can function efficiently “while sharing a common environment or

31

3. Software quality models

resources with other products”[20], and Interoperability, referring to “the ability of two
or more software components to cooperate despite differences in language, interface, and
execution platform” [84].

The fourth characteristic is Usability, which focuses on the interaction between the user
and the software product and includes the sub-characteristics: Operability, Learnability,
User Error Protection, Appropriateness Recognizability, User Interface Aesthetic, and
Accessibility [20].

The fifth characteristic is Reliability, which refers to the degree to which the software
product performs “specified functions under specified conditions for a specified period
of time” [20]. This characteristic comprises the sub-characteristics Maturity (the degree
to which the needs for reliability are met under normal operation), Fault Tolerance
(to which extend the software product works correctly in the presence of software or
hardware faults), and Recoverability (to which degree the system can recover its normal
state and affected data after an interruption or a failure) and Accessibility [20].

The sixth characteristic is Security and is defined by the sub-characteristics Confiden-
tiality (the degree to which data is accessible to only authorized entities), Integrity (the
protection of data from unauthorized changes), Non-repudiation (committed actions
or events can be proved and cannot be repudiated afterwards), Accountability (where
actions can be traced back to the committing entity), and Authenticity (where “the
identity of a subject or resource can be proved to be the one claimed”) [21].

The next characteristic is Maintainability and includes different sub-characteristics
ranging from Modularity (the degree to which the product is split into components
whose changes don’t affect others) to Reusability, Testability, Modifiability (how easy it
is to modify the product without introducing bugs), and finally Analyzability (how easy
it is to assess the impact of changes as well as the ease of diagnosis) [21].

The last characteristic is Portability and refers to the ability of the product to be
transferred to another environment. It comprises Adaptability (the degree to which
the product can evolve or adapt to a changing environment), Installability (how easy
it is to be installed or removed from a specified environment), and Replaceability
(how easy it is to be replaced by another product with the same purpose in the same
environment) [21].

32

3. Software quality models

3.2. DAP classification

When it comes to practically applying the above mentioned ISO/IEC 25010 standard,
many ambiguities arise. Namely, no instructions are provided on how to measure the
defined software criteria. [63] addresses this problem by highlighting that the umbrella
term “quality model” includes models that aim to fulfill different purposes. For example,
the goal of ISO/IEC 9126 (the predecessor of ISO/IEC 25010) is to define quality,
whereas the maintainability index [61], a metric-based approach, is used to assess quality,
and finally stochastic models such a reliability growth models (RGMs) [69] can be used
to predict quality [63]. Although the specified goals are different, these models depend
on each other. Quality can’t be assessed without first being defined. Similarly, it is
inconceivable to predict quality without knowing how to measure it [63]. Figure 3.10
illustrates the relation between the three model categories: Definition, Assessment and
Prediction (DAP), as well as the positioning of ISO/IEC 9126, MI and RGM, and an
ideal model which covers all three aspects.

Figure 3.10.: DAP classification for Quality Models: Reproduced from [63]

Another critique on the existing quality models is the lack of precision that leads to
different possible interpretations [63]. Since software systems can vary largely, the
quality models should offer additionally the possibility of customization [63].

In [55], a comparison of Open Source Software (OSS) Quality Models, that are based
on ISO/IEC 25010 and ISO/IEC 9126, was conducted. The compared OSS Quality
Models include Open Source Maturity Model (OSMM) [65], QSOS [77], Open Business

33

3. Software quality models

Readiness Rating (Open BRR) [83], Sung et al. Model [81], QualOSS [78], OMM
[75], SQO-OSS [76, 79] and Evaluation Framework for Free/Open souRce projecTs
(EFFORT) [57].

The study [55] resulted in EFFORT being favored over the rest. One of the reasons is
that EFFORT is a second generation [67] Free/Libre and Open Source Software (FLOSS)
quality model. It was preferred above QualOSS since it included characteristics from
both Product Quality and Quality in Use [55]. Additionally, there have been practical
applications of the model within the context of Customer Relationship Management
(CRM) [56] and Enterprise Resource Planning (ERP) Systems [57]. Another reason
for selecting EFFORT, is that it comes close to the ideal model proposed in the DAP
model: The definition aspect is provided by specifying the quality characteristics in
form of goals and questions, the assessment aspect through the usage of metrics, and the
prediction aspect through the consideration of community trustworthiness and product
attractiveness, as is presented in further detail in the next chapter.

34

4. EFFORT

EFFORT, short for Evaluation Framework for Free/Open souRce projecTs, is a frame-
work which supports not only the evaluation of product quality but also community
trustworthiness and product attractiveness [57]. Additionally the framework is defined
in a generic manner and can be instantiated to analyze software systems and products
within a specific context.

4.1. EFFORT Baseline Version

As an Open Source Software Quality Model, EFFORT leverages the advantages of OSS
for generating extensive results.

Figure 4.1.: Quality model defined by EFFORT and associated quality characteristics.
Reproduced from [57]

.

35

4. EFFORT

The quality of a software product according to EFFORT is a combination of three main
quality characteristics [57], as shown in Figure 4.1.

• Quality of the product, which is evaluated on the basis of the ISO/IEC 9126
standard.

• Trustworthiness of the community of developers and contributors, which is an
indicator of “the degree of trust that a user has in a community with respect to
the support offered” [57]

• Product attractiveness, which “considers all the factors that influence the adoption
of a product by a potential user, who perceives convenience and usefulness in using
it” [57].

In order to specify the proposed characteristics and sub-characteristics, the Goal/Ques-
tion/Metric (GQM) paradigm [58] is used. The Goal/Question/Metric paradigm is
“a mechanism for defining and interpreting software measurement” that “represents a
systematic approach for tailoring and integrating goals with models of the software
processes, products and quality perspectives of interest based upon the specific needs of
the project and the organization” [58].

A critique made by [63] is that most definition models structure their quality attributes
in a hierarchy, which causes difficulty while locating elements and can lead to redundan-
cies [63]. Luckily, this issue is addressed in the GQM paradigm where questions can
contribute to more than one goal [58]. This can be seen in figure 4.2, in which the goals
Goal2 and Goaln contribute to the same question Question6.

Figure 4.2.: The structure of Goals, Questions and Metrics in the GQM Paradigm [58]

Within GQM, the goals need to be specified, which are refined into a set of quantifi-
able questions that, in turn, define the metrics used to measure the corresponding
outcomes [58]. Because of the large scope of the first goal of EFFORT, Software Product

36

4. EFFORT

Quality, its subcategories are modeled as sub-goals. Figures 4.3, 4.4, 4.5, 4.6, and 4.7
show the questions related to each goal along with their associated metrics.

Figure 4.3.: Questions in the EFFORT measurement framework pertaining to product
quality. Reproduced from [57]

As can be seen in figure 4.4 and 4.5, some goals can’t be completely defined in a
generic manner. Rather they need to be completed during the instantiation process (see
subsection 4.2).

Individual metrics can differ vastly. Whilst some may have a large continuous scale,
others may have unique enumerated possible values. Therefore, each measurement is
mapped to a discrete score ranging from 1 to 5, where 1 is interpreted as inadequate, 2
as poor, 3 as sufficient, 4 as good, and finally 5 as excellent. A higher value can also be
interpreted either positively or negatively, depending on the related question. Therefore,
a correct interpretation (positive or negative) needs to be defined. Lastly, since different
questions have different importances within a goal, each question is assigned a relative
relevance.

37

4. EFFORT

Figure 4.4.: Questions and metrics in the EFFORT measurement framework pertaining
to sub-goal 1a. Reproduced from [57]

Figure 4.5.: Questions and metrics in the EFFORT measurement framework pertaining
Sub-goal 1d. Reproduced from [57]

Consequently, the quality of each goal can be calculated as follows:

q(g) =
Σq∈Qq rq ∗ m(q)

Σq∈Qq rq

where rq is the relevance associated with the question q, Qg is the set of questions related
to the Goal g, and m(q) is the aggregation function of the metrics of the question q.
Essentially, the quality of a goal is defined by the weighted average of its questions’
scores.

38

4. EFFORT

Figure 4.6.: Questions in the EFFORT measurement framework pertaining to community
trustworthiness. Reproduced from [57]

The aggregation function of the metrics of a question q is defined as follow:

m(q) =
{Σid∈Mq i(id) ∗ v(id) + [1 − i(id)] ∗ v(id)mod6]}

|Mq|

where v(id) is the value of the metric id and i(id) is the interpretation of the metric with
respect to the question q and has the value of 0 if the metric has a negative interpretation
and 1 otherwise. Mq is the set of metrics related to a question q. Simply put, the
aggregation function is the average score obtained by its metrics, whereas if the metric
is negatively interpreted, its complement is taken.
In this work, mod6 is interpreted as the metric’s complement within the given metrics
range [1 − 5] and not the modulo, since using the modulo would simply return the same
value, as displayed in figure 4.8.

39

4. EFFORT

Figure 4.7.: Questions in the EFFORT measurement framework pertaining to product
attractiveness. Reproduced from [57]

Interpretation Modulo (n%6) Metric complement (6-n)

1 1 5
2 2 4
3 3 3
4 4 2
5 5 1

Figure 4.8.: Interpretation of mod6 as modulo and complement

Up until now, the presented goals, questions and metrics and their relevance were based
mainly on an Open Source Software point of view. As previously stated, the EFFORT
framework can be customized to suit the context of its application. In the following
chapter, the instantiation of EFFORT is presented.

40

4. EFFORT

4.2. Instantiation of EFFORT

The customization of EFFORT, i.e. its binding to a concrete use case, is achieved
through three steps [57]. First, the application domain should be analyzed in order
to gain thorough context specific knowledge and understand the specific requirements.
This has been done in chapter 2 of this work. Next, the collected information of the
previous step is used to verify the validity of the questions of the EFFORT baseline
version. In the third step, additional questions and metrics can be added to better
match the application domain [57].

Following, the second and third step of the customization of EFFORT are presented.
Although the third step can be split between integration tasks, where metrics are
added to the baseline versions and extension tasks, where goals are extended by adding
questions, these two steps are presented at once by iterating over the goals which
contributes to an improved comprehensibility as there is no need to switch back and
forth between different topics. The resulting definition of questions and metrics including
interpretation of the metrics, their mapping from a raw value to the given scale of [1 − 5],
and the questions’ relevance are to be found in the appendix A.

Upon analyzing the application context along with the baseline EFFORT goals, questions
and metrics, it could be established that the proposed questions are mostly sufficient.
The only question that has been added is “How maintainable is the application code using
the product?”(1b.6) in the goal Maintainability (1b). Moreover, only a few questions
have been removed due to their inapplicability in the given domain. Within the first
sub-Goal ‘Portability’ (1a), the question related to ‘Coexistence’ (1a.4) has been removed
due to its irrelevance. Within the question (1a.1) regarding Adaptability, the metric
‘Number of operating systems supported’ has been replaced by ‘Support for Function
and Class Components’(1a.1.2) , and ‘Adoption of React Suspense’(1a.1.3), which is an
upcoming React feature [46]. Since the libraries can be easily installed with a package
manager such as npm [26], multiple metrics of the question related to ‘Installability’
(1a.2) have been left out. Moreover, the ‘Number of configuration files’ (1a.2.6) has been
replaced by the ‘Minimum number of files added and changed for minimum functionality’.
Additionally, the ‘Availability of default options’ (1a.2.7) has been extended to include
their rationality. In order to measure ‘Replaceability’, the metric ‘Existence of other
libraries with the same functionality and a similar API’ (1a.3.1) has been introduced.

41

4. EFFORT

Within the ‘Maintainability goal’ (1b.2), ‘Changeability’ was considered irrelevant,
since libraries cannot be changed by definition. Furthermore, the question regarding
‘Technology Concentration’ is excluded due to its ambiguity. In order to measure the
‘Analyzability’, multiple metrics have been added among others ‘Availability and quality
of developer tools’. Besides, ‘Stability’ is measured by the ‘Existence and degree of
Breaking API changes’ and ‘Testability’ is assessed by the ‘Possibility to test business
logic without React’. The question ‘How maintainable is the application code using the
software product?’ (1b.6) is introduced and it consists of the metrics ‘Code duplication’,
‘Cyclomatic complexity’ [72] and ‘Cognitive complexity’[60]. Cognitive complexity is
a measurement, that attempts to “reflect the relative difficulty of understanding the
source code” [60]. While formulating these metrics, it was assumed, that a more suitable
library would result in simpler and less source code in general.

The goal ‘Reliability’ that includes questions about ‘Robustness’ and ‘Recoverability’,
is considered irrelevant in this use-case. The sub-goal ‘Functionality’ is based on the
problems presented in section. Thereby, two metrics are attributed to the question
‘Functional adequacy’, namely ‘The possibility to share state without prop drilling’
and ‘The possibility to have derived state’. The metrics of ‘Interoperability’ have been
adjusted as well. Instead of measuring the level of ‘Data importability’(1d.2.1) and ‘Data
exportability’(1d.2.2), the ‘Availability of community plugins’ is adopted as a unique
metric. In addition, the metrics ‘Lines of code’, ‘Statement count’, and ‘Function count’
are introduced in order to measure the ‘Functional accuracy’. It is worth mentioning, that
these metrics refer to the source code of the implementation of the use case formulated
in the section 2.3 while using the libraries, and not the source code of the libraries itself.
Once again, less code is interpreted as a sign of higher suitability.

Regarding the sub-goal ‘Usability’, the metric ‘Availability and quality of developer
tools’ is used to measure the degree of ‘Operability’ whereas the ‘Learnability’ is
measured by looking at the degree of ‘Usability of the documentation’. ‘Usability of the
documentation’ takes into account whether installation instructions, a project setup, a
hello world example, and advanced guides are provided.

In order to measure the ‘Efficiency’, the two questions of ‘Time behavior’ and ‘Resources
utilization’ are extended. The metrics of ‘Time behavior’ measure the loading speed of a
webpage and include the ‘First Contentful Paint’ [15], the ‘Speed Index’ [41], the ‘Largest
Contentful Paint’ [23], the ‘Time to Interactive’ [48], the ‘Total Blocking Time’ [50],

42

4. EFFORT

and the ‘Cumulative Layout Shift’ [8]. For measuring the ‘Resource utilization’, the
problem of unnecessary re-renderings (P4) presented above is used.

In order to evaluate the ‘Community trustworthiness’, multiple metrics are changed.
First, the metric ‘Number of major releases per year’ is removed, since it can be differently
interpreted. Nevertheless, a few metrics have been adjusted and others are removed
namely ‘Number of forums’, because the major forum used is Stack Overflow.

Other metrics proposed by the EFFORT baseline version have been left out due to
their inapplicability to libraries, among others ‘Availability of outsourcing services’,
‘Availability of maintenance services’, ‘Availability of information and services for TCO
estimation’, and ‘Temporal coverage of training services’. Also, since the differentiation
between administrator, user, technical, and other documentations is not applicable in
the context of libraries, metrics related to the mentioned documentations are removed.

When it comes to ‘Product attractiveness’, two factors play a role. First, the libraries are
free of cost and second, the libraries’ source code is available at GitHub. Additionally,
the number of downloads has been adjusted to weekly downloads to match the stats
available from “npm.com” [26].

43

5. Discussion

In this chapter, the results of applying EFFORT are presented. Mainly the resulting
score of each approach is analyzed and more general conclusions are drawn upon the
suitability of each approach. Afterwards, the hypotheses formulated in chapter section 1.1
are verified and a reflection on the research process is presented.

5.1. Findings

Figure 5.1.: Scores achieved by the SMLs by applying EFFORT

The results of the application of EFFORT on React Context, React Query, Redux
Toolkit, Recoil and MobX is shown in figure 5.1. A general overview on the results

44

5. Discussion

shows that the approaches display varying levels of ‘Software Product Quality’, whereby
React Context achieved the lowest score. The ‘Community trustworthiness’ has also
varying results. Finally the ‘Product attractiveness’ is high in all the approaches with
the exception of Recoil which achieved a remarkably lower score. The scores within
each goal along with the influencing factors are explained further in the following. The
detailed scores achieved by each metric can be found in the appendix B.

5.1.1. Software Product Quality

Figure 5.2.: Comparison of the software product quality of the five evaluated SMLs

Starting with the software product quality, the figure 5.2 presents the results of the
analyzed libraries where React Context exhibits the lowest score. This is unsurprising,
since React Context is a mechanism whose only purpose is to solve the problem of
prop drilling [3]. On the other hand, the first place is taken by Redux Toolkit. The
high score is due to the rich feature set of the library as well as its high degree of
‘Testability’. Since Redux Toolkit is an opinionated library that bases on Redux, it
simplifies the definition of action creators and async actions while retaining a high level
of testability. Additionally, its sub-package RTK Query covers the majority of React
Query’s functionality. The second place belongs to Recoil and is followed closely by
MobX in the third position. Both of these libraries benefit from efficient re-renderings.

45

5. Discussion

Moreover, testing in both libraries can be done easily. Although it must be mentioned
that the use of the Object-Oriented Programming (OOP) by MobX simplifies the writing
of code and the testing. In contrast, Recoil solves common OOP problems with its
atomic state structure approach, most notably when having a complex dependencies
in the application state. React Query comes second to last. Although it fulfills the
requirements of managing server state, handling client state exceeds the purpose of this
library. Implementing client side state requires using a global variable and invalidating
the cache after each change. This process is error prone and complicates the creation of
tests.

Figure 5.3.: Detailed results pertaining to the software product quality of the five
evaluated SMLs

By analyzing the results of each subgoal of ‘Software Product Quality’ displayed in
Figure 5.3, a more elaborate understanding of the differences between the libraries can
be reached.

To begin with, the libraries show different degrees of ‘Portability’. React Context’s high
degree of ‘Portability’ comes from its support for both function and class components
and its support for React Suspense by definition, since it is part of the React library.

46

5. Discussion

Next come Redux Toolkit and React Query. While React Query can be easily integrated
into an existing application with minimal additional code and file changes, Redux Toolkit
supports both class and function components (which is lacking in React Query and
Recoil) and the support for React Suspense is planned [45]. MobX occupies the last
place mainly due to its irreplaceability and lack of default options. The replaceability
was measured by the number of libraries available that offer an equivalent functionality
and a similar API. While similar libraries exist for the rest, none could be found for
MobX. Additionally, MobX lacks a set of meaningful defaults, offering the developer
more flexibility and control, yet imposing the need to write common code such as making
API calls manually.

When it comes to maintainability, Redux Toolkit takes the lead. This is directly caused
by the high degree of testability and the sophisticated developer tools provided [37].
The testability of the code can be owed to the clearly defined architecture that allows to
run tests on different layers. More importantly the use of pure functions in the reducer
and the selectors make it possible to write unit tests while retaining the possibility of
writing integration tests that include the UI layer [54]. The developer tools provided for
Redux Toolkit are highly practical. Their key features include the possibility to browse
the history of the dispatched actions along with their effects on the state, revert to a
given state and the possibility to export and import the complete state history [37].
Next come React Query and Recoil, that both include developer tools, yet with less
functionality. React Query surpasses Recoil in Stability. This is comprehensible, since
at the time of writing, Recoil is still in an experimental state [13].

Although there have been few breaking API changed introduced in React Query, they
included not only a migration guide, but a script that applies the needed changes to
the code using the library [24]. On the last place comes React Query mainly because of
the difficulty of testing it. While calculating the ‘Maintainability, other metrics were
taken into account such as ‘Code duplication’, ‘Cyclomatic complexity’ and ‘Cognitive
complexity’, which are directly linked to the source code. The libraries performed
similarly in all of these measures and no conclusions could be made in this regard.

Regarding ‘Functionality’, all the libraries fulfill the requirements of sharing the state
without prop drilling and having a derived state. Redux Toolkit receives the highest
score because of its high degree of ‘Interoperability’ stemming from the large amount
of plugins available, an area which is lacked by others. It is followed by MobX, which

47

5. Discussion

displayed a high degree of ‘Functional Adequacy’, due to the low count of lines, statement
and functions needed to implement the same functionality.

Redux Toolkit and Recoil show the highest level of usability. Thanks to their docu-
mentations that include advanced guides and are translated to multiple languages, the
libraries excel in ‘Learnability’. Their ease of ‘Operability’ comes from having high
quality developer tools.

Lastly, Efficiency was strongly influenced by ‘Effectiveness of the re-rendering of the
components’, since all the libraries achieved similar high score related the loading page
speed. That is to say that the choice of these libraries does not seem to have any
effect on the loading speed of the application whatsoever. Within the ‘Efficiency of
re-rendering’ , Recoil and MobX have shown efficient re-renderings, Redux Toolkit and
React Query suboptimal re-renderings and React Context redundant re-renderings (see
section 2.2 for a definition of the terms).

5.1.2. Community Trustworthiness

Figure 5.4.: Comparison of the community trustworthiness of the five evaluated SMLs

48

5. Discussion

The score achieved by the libraries regarding to the second goal, ‘Community Trustwor-
thiness’ are shown on figure 5.4, where a gradual distribution can be seen. React Query
has shown the highest degree of trustworthiness thanks to the availability of support and
consulting services for sponsors as well as e-learning materials. This is complemented
by the high number of its contributors and an extensive documentation. On the second
and third place come React Context and MobX with neighboring scores of 3.75 and
3.68 respectively. Redux Toolkit and Recoil, which occupy the penultimate and last
places have a relatively low number of involved developers and low degree of activity
of their communities. This can be explained in the case of MobX by the high index of
unanswered threads on Stack Overflow and in Recoil by the low number of threads per
year on Stack Overflow.

5.1.3. Product Attractiveness

Figure 5.5.: Comparison of the product attractiveness of the five evaluated SMLs

The results of the Goal ‘Product attractiveness’ depicted in the figure 5.5 reveal that
with the exception of Recoil, the libraries perform at a similar level. Looking into the
questions and metrics that lead to the score, it can be established that Recoil’s low
number of weekly downloads is the main driver. Additionally, the low amount of threads
in Stack Overflow combined with a relatively high number of unanswered questions

49

5. Discussion

contributed in the low score. Interestingly, the project has more stars and forks on
GitHub than Redux Toolkit. This may be explained by the fact that Recoil is still in an
experimental state in the time of this study and that it is maintained by the same team
behind React [32].

5.2. Suitability of the Approaches

After the in depth comparison of the state management libraries has been conducted,
the suitability of each library is to be discussed. Thereby it is important to note that
the choice of a technology will most likely involve other business related factors.

Drawing from the previous results, it has become clear that React Context is perfectly
suitable to handle global state. It is therefore a good fit for states that are used globally
and entail little logic like the application theme, the currently authenticated user or the
selected locale. Since such a global state usually requires a change in the whole UI, the
re-rendering optimization provided by other approaches are irrelevant.

React Query has shown that although it can be stretched to manage client state, it
is best suitable for applications whose state lies in a backend server and needs to be
synchronized with the client. Most notably when server state is shared in multiple
parts of the UI, the built in cache can be utilized to reduce the API calls. It is also
best suitable for improving the user experience by the ease of implementing optimistic
updates. This makes React Query a good solution for building a new user interface for
an existing backend server.

When client side state needs to be shared as well, Redux Toolkit can be an appropriate
choice. Redux Toolkit provides all the tools needed for creating a software product
of high quality, mainly a built in query client, a concise API, and a high level of
testability.

MobX is a minimalistic yet effective library that can be easily learned, thanks to its use
of the OOP paradigm. Since it supports class components, it can be a good suit for a
slow introduction in a legacy React application that does not use function components.
Moreover, thanks to its simple integration with react, it can be a good solution to solve
one of the presented problems with little changes in the application.

50

5. Discussion

Lastly, Recoil’s strength in defining atoms and explicitly building a dependency tree
to represent an application state hints to its suitability for complex applications where
performance is a requirement, such as a graphics editor.

5.3. Hypotheses Verification

After defining the suitability of the application of the libraries, the hypotheses presented
in chapter 1.1 can be verified on the basis of the performed analysis.

This study confirms the first hypothesis: “React Context is best suited for data which is
rarely changed, such as the authenticated user or the current UI theme.” As previously
stated, React Context solves the problem of prop drilling and therefore is suitable for
the above mentioned use case.

The second hypothesis: “State Management Libraries are suitable for complex User
Interfaces (UIs) that don’t communicate much with a backend server.” can only be
partially confirmed when the term State Management Libraries is interpreted as MobX,
Recoil and Redux Toolkit. As explained in the previous chapter, these libraries do
support complex client states, but there is no restriction when it comes to communicating
with a backend server since API calls can be made within all of them. Additionally Redux
Toolkit also offers the functionality to communicate with a backend server through its
built-in query client [38].

The third hypothesis: “Query approaches are better suited for UIs, that need to interact
with a backend server.” is also confirmed. As previously presented, React Query fulfills
the requirements of communicating with a backend server, by managing API calls, cache,
loading states and optimistic updates.

5.4. Reflection

Before concluding this thesis, it is important to reflect on the research process. This
includes remarks and takeaways that emerged during the practical application of the
research design. These are related to the usage of metrics and the application of the
framework EFFORT.

51

5. Discussion

5.4.1. Usage of Metrics

The use of metrics in the scope of this thesis was implicitly assumed, yet their practical
usage comes with various challenges. The first challenge lies in the interpretation of
the metrics. For example ‘The average threads per year in Stack Overflow’ can be
interpreted differently. A low value could mean a low adoption of the product or that
it has reached a stable state and its usage is clear. A better metric could analyze the
evolution of the tread count in Stack Overflow to verify the stability and maturity of the
product. A similar effect can be seen in the metric ‘The number of major releases per
year’. Other metrics were arguably less practical. These include “the Average number
of commits per committer”, whose goal is to determine the level of commitment the
maintainers have. The result could be easily diluted: A lower number could be justified
by the core maintainers actively promoting maintaining the project. An alternative
metric that would fulfill the same goal could be ‘Count of authors who have 50 commits
or more’. Yet, new metrics need to be tested in order to avoid similar problems and
edge cases.

Another challenge emerges from the fact that knowing about the usage of metrics
had a clear impact on the produced code. For instance, being aware of the metric
“code duplication”, has led to a perfect measurement of 0 in the applications of all the
libraries. A more practical indicator could be for example ‘The tendency of developers
to write repetitive code when using the library’, which could be measured by analyzing
open source projects that use the library. This leads to a broader topic concerning
the effect of metrics on the developers. Or as Goodhart’s law (named after British
economist Charles Goodhart) puts it: “When a measure becomes a target, it ceases
to be a good measure” [71]. The usage of quantitative metrics has also shown little
usefulness. Namely the application of the metric “Cognitive complexity” in the context
of the thesis experiments has proven to be incomplete for the reason that it does not
consider the knowledge of third party libraries required to understand the code. Ideally
this metric would include the degree to which the library is incorporated into the source
code. Other qualitative metrics has yielded very similar results, such as the ‘Count
of Lines of Code’, ‘Count of functions’ and ‘Count of statements’. Moreover, multiple
metrics are defined specifically for OOP languages. This may explain the limited choice
of static code analysis tools available for the used programming language (TypeScript)
in comparison to other programming languages, such as Java. It is to mention, that
although the used language does support the OOP paradigms such as class definitions,

52

5. Discussion

interfaces and inheritance, it is seldom used in that way. Generally, there seems to be a
gap between metrics proposed in scientific papers, which have a sound and mathematical
basis and the one that can be measured in practice.

All in all, the results point out that qualitative metrics play a bigger role when choosing
a software product. This introduces a level of subjectivity into the assessment process,
which is understandable since the choice of a software product is influenced by other
factors and needs to fulfill greater requirements than the technical aspects. Luckily, the
flexibility of EFFORT provided by the instantiation step allows for great customization
to match user specific use cases.

5.4.2. EFFORT

The possibility to edit and add goals, questions, and metrics within EFFORT is an
advantage over many of the other approaches. The practicability of the framework
comes from the definition of metric mappings that brings the values to the same range
of 1-5, from the possibility to define a positive or negative metric, the relevance of the
questions, and finally from having a formula to calculate the performance within goal.
Yet there have been a few ambiguities during the application. For one, the mapping
values defined as (1 = inadequate, 2 = poor, 3 = sufficient, 4 = good, and 5 = excellent)
can be misleading, since each metric can have either a positive or negative interpretation.
A scale from lowest to highest would be more clear for the user.

Moreover, the framework doesn’t explicitly allow the removal of the baseline version
questions, goals or metrics that are not applicable to the application domain. This was
deduced from the example application on ERP systems where the sub-goal “Security”
was left out [57].

Other ambivalences were experienced, such as the term “Technology concentration”
used under the maintainability goal, as well as the absence of the source of the metrics
and how to measure them, and the differentiation between question markers in the
FlOSS context and in the specific context [57]. Additionally no instructions are given on
creating the metric mappings. In the carried out experiments, the quantitative metric
mappings were created after the raw metric results were collected. Although the metrics
may be general, this results in a use case specific mapping. Plus, the mapping of the
metrics as a whole depends greatly on the selected software products to be compared.

53

5. Discussion

All things considered, the adoption of the framework EFFORT for the comparison has
yielded satisfying results. Its high level of customizability has allowed the comparison of
libraries, although it was previously only used to compare standalone applications.

54

6. Outro

This work has given an in depth analysis of state management libraries and provided
general conclusions about the suitability of each approach. By using the EFFORT
framework, a found comparison based on software quality characteristics could be made.
Since only a selection of libraries was analyzed, future work could include other libraries
by using the proposed instantiation of EFFORT, especially to compare state management
libraries within the same category. Related topics, which were out of the scope of this
study, could be the subject of further research projects. Among others, further research
could address ambiguities related to the interpretation of metrics by extending the
existing qualitative and quantitative metrics for open source software and providing
standard metric values in order to facilitate the creation of metric mappings.

55

Appendices

56

A. EFFORT Instantiation

A.1. Questions Definition

Table A.1 displays the questions defined during the instantiation of EFFORT along
with their relevance within their associated goals. ∗ means the question has been
added, □ means the question has not been changed, and × means the question has been
removed.

Table A.1.: Questions defined during the instantiation of EFFORT.

Id Question Relevance

1a.1 What degree of Adaptability does the product offer?□ 2
1a.2 What degree of Installability does the product offer?□ 1
1a.3 What degree of Replaceability does the product offer?□ 2
1a.4 What degree of Coexistence does the product offer?×

1b.1 What degree of Analyzability does the product offer?□ 2
1b.2 What degree of Changeability does the product offer?×

1b.3 What degree of Testability does the product offer?□ 2
1b.4 What degree of Technology concentration does the product

offer?×

1b.5 What degree of Stability does the product offer?□ 2
1b.6 How maintainable is the application code using the product?* 2
1c.1 What degree of Rebustness does the product offer?×

1c.2 What degree of Recoverability does the product offer?×

1d.1 What degree of Functional adequacy does the product offer?□ 3
1d.2 What degree of Interoperability does the product offer?□ 2
1d.3 What degree of Functional accuracy does the product offer?□ 2
1e.1 What degree of Pleasantness does the product offer?×

57

A. EFFORT Instantiation

Table A.1.: Questions defined during the instantiation of EFFORT.

Id Question Relevance

1e.2 What degree of Operability does the product offer?□ 1
1e.3 What degree of Understandability does the product offer?×

1e.4 What degree of Learnability does the product offer?□ 2
1f.1 What degree of Time behavior does the product offer?□ 2
1f.2 What degree of Resources utilization does the product offer?□ 3
2.1 How many developers does the community involve?□ 3
2.2 What degree of activity does the community have?□ 2
2.3 Are the support tools available and effective?□ 2
2.4 Are support services provided?□ 1
2.5 Is the documentation exhaustive and easily consultable?□ 3
3.1 What degree of functional adequacy does the product offer?□ 3
3.2 What degree of diffusion does the product achieve?□ 2
3.3 What level of cost-effectiveness is estimated?×

3.4 What degree of reusability and redistribution is left by the
license?□

1

A.2. Metrics Definition

Table A.2 displays the metrics defined during the instantiation of EFFORT, where ∗
means the metric has been added, ∆ means the metric has been changed, □ means the
metric has not been changed, and × means the metric has been removed. Additionally,
negatively interpreted metrics are marked with (−) and positive ones with (+).

Table A.2.: Metrics defined during the instantiation of EFFORT.

Id Metric Metric mapping

1a.1.1 Number of operating systems
supported×

1a.1.2 Support for Function and Class
Components*(+)

No=1 Yes=5

58

A. EFFORT Instantiation

Table A.2.: Metrics defined during the instantiation of EFFORT.

Id Metric Metric mapping

1a.1.3 Adoption of React Suspense*(+) Implementation available=5
Planned=3 No=1

1a.2.1 Time required for installation×

1a.2.2 Availability of the installation
manual□(+)

No=1 Yes=5

1a.2.3 Automation level and use of instal-
lation scripts×

1a.2.4 Dependence on third-party
components□(−)

0=1 1-5=2 5-10=3 10-15=4 15-20=5

1a.2.5 Nominal length of the installation
procedures×

1a.2.6 Minimum number of files added
and changed for minimum
functionality∆(−)

One file=1 Two files = 3 Three and
higher=5

1a.2.7 Availability and rationality of default
options∆(+)

No default options=1 Default op-
tions provided=3 Useful/rational de-
fault options provided=5

1a.2.8 Internationalisation of the
manual□(+)

Multiple languages supported=5 En-
glish supported=3 Only non-english
language supported=1

1a.2.9 Number of unforeseen issues□(−) Zeo issues=1 Two/Three issues=3
More issues=5

1a.2.10 Degree of knowledge of the required
operating environment□(−)

Little previous knowledge re-
quired=1 Medium knowledge
required=3 Understanding of a
paradigm required=5

1a.2.11 Efficacy of the guide□(+) Installation guide non existing=1 In-
stallation guide available=5

1a.3.1 Existence of other libraries with the
same functionality and a similar
API*(+)

No equivalent library available=1 <
3 Similar libraries available=3 3+
similar libraries available=5

59

A. EFFORT Instantiation

Table A.2.: Metrics defined during the instantiation of EFFORT.

Id Metric Metric mapping

1b.1.1 Availability and quality of developer
tools*(+)

No=1 Yes=3 Yes, with advanced de-
bugging features=5

1b.3.1 Possibility to test business logic with-
out React*(+)

No=1 Yes=5

1b.5.1 Breaking API changes*(+) Breaking API changes in major
versions=1 Breaking API changes
in major versions with migrations
guide=3 Breaking API changes in
major versions with migration guide
and codemod=4 No breaking API
changes introduced major update=5

1b.6.1 Code duplication*(−) 0=1 1-10=2 10-20=3 10-30=4
30+=5

1b.6.2 Cyclomatic complexity*(−) 0-92=1(Base 82) 92-102=2 102-
112=3 112-122=4 122+=5

1b.6.3 Cognitive complexity*(−) 1-10=1 11-20=2 21-50=4 Over 50=5
1d.1.1 Possibility to share state without

prop drilling*(+)
No=1 Yes=5

1d.1.2 Possibility to have derived state*(+) No=1 Yes, through React=3 Yes=5
1d.2.1 Level of data importability×

1d.2.2 Level of data exportability×

1d.2.3 Availability of community
plugins*(+)

No=1 Yes=5

1d.3.1 Lines of code*(−) 0-685=1 685-710=2 710-735=3 735-
760=4 760+=5

1d.3.2 Statement count*(−) 0-114=1 114-124=2 124-144=3 134-
144=4 Over 144=5

1d.3.3 Functions count*(−) 0-59=1 59-69=2 69-79=3 79-89=4
Over 89=5

// non applicable to domain
1e.2.1 Availability and quality of developer

tools*(+) (same as 1b.1.1)
No=1 Yes=3 Yes, with advanced de-
bugging features=5

60

A. EFFORT Instantiation

Table A.2.: Metrics defined during the instantiation of EFFORT.

Id Metric Metric mapping

// non applicable to domain
- Same metrics as in Question 2.5 -
1f.1.1 First Contentful Paint*(−) 0-1.8=1 1.8-3=3 Over 3=5
1f.1.2 Speed Index*(−) 0–3.4=1 3.4–5.8=3 Over 5.8=5
1f.1.3 Largest Contentful Paint*(−) 0–2.5=1 2.5–4=3 Over 4=5
1f.1.4 Time to Interactive*(−) 0–3.8=1 3.8–7.3=3 Over 7.3=5
1f.1.5 Total Blocking Time*(−) 0–200=1 200–600=3 Over 600=5
1f.1.6 Cumulative Layout Shift*(−) 0–0.1=1 0.1–0.25=3 Over 0.25=5
1f.2.1 Efficient re-renders*(+) Redundant re-renders=1 Subop-

timal re-renders=3 Optimal re-
renders=5

2.1.1 Number of committers□(+) 0-100=1 100-200=2 200-300=3 300-
400=4 Over 400=5

2.2.1 Number of major releases per year×

2.2.2 Average number of commits per
year□(+)

0=1 1-10=2 10-100=3 100-1000=4
Over 1000=5

2.2.3 Average number of commits per
committer□(+)

0-2.5=1 2.5-5=2 5-7.5=3 7.5-10=4
Over 10=5

2.2.4 Closed issues on GitHub∆(+) 0-250=1 250-500=2 500-750=3 750-
1000=4 Over 1000=5

2.2.5 Index of merged pull requests on
GitHub∆(+)

0-250=1 250-500=2 500-750=3 750-
1000=4 Over 1000=5

2.3.1 Average number of threads per year
on Stack Overflow∆(+)

0-200=1 200-400=2 400-600=3 600-
800=4 Over 800=5

2.3.2 Index of unanswered threads on
Stack Overflow∆(−)

0-5=1 5-10=2 10-15=3 15-20=4
Over 20=5

2.3.3 Number of forums×

2.3.4 Average number of threads per
forum×

2.3.5 Average number of posts per year×

2.3.6 Forum internationalisation level×

2.3.7 Number of trackers×

61

A. EFFORT Instantiation

Table A.2.: Metrics defined during the instantiation of EFFORT.

Id Metric Metric mapping

2.3.8 Usability of the documentation
(same as 2.5.6)∆(+)

Documentation provides no instruc-
tions=1 Documentation includes in-
stallation instructions=2 Documen-
tation provides project setup=3 Doc-
umentation provides hello world=4
Documentation provides advanced
examples and guides=5

2.3.9 Number of faqs in the
documentation∆(+)

No FAQ available=5 < 10 Ques-
tions=3 11+ Questions=5

2.4.1 Availability of training services□(+) No=1 Yes=5
2.4.2 Temporal coverage of training

services×

2.4.3 Availability of e-learning services×

2.4.4 Availability of phone assistance×

2.4.5 Availability of certification
services□(+)

No=1 Yes=5

2.4.6 Availability of outsourcing services×

2.4.7 Availability of maintenance services×

2.4.8 Availability of information and ser-
vices for TCO estimation×

2.4.9 Availability of consulting
services□(+)

No=1 Yes=5

2.5.1 Number of topics covered in the ad-
ministrator documentation×

2.5.2 Number of topics covered in the user
documentation×

2.5.3 Number of topics covered in the tech-
nical documentation×

2.5.4 Number of topics covered in the
other documents×

2.5.5 Number of additional documentation
files×

62

A. EFFORT Instantiation

Table A.2.: Metrics defined during the instantiation of EFFORT.

Id Metric Metric mapping

2.5.6 Usability of the documentation□(+) Documentation provides no instruc-
tions=1 Documentation includes in-
stallation instructions=2 Documen-
tation provides project setup=3 Doc-
umentation provides hello world=4
Documentation provides advanced
examples and guides=5

3.2.1 Number of weekly downloads∆(+) 0-250K=1 250K-500K=2 500K-
750K=3 750K-1M=4 Over 1M=5

3.2.2 Number of stars on GitHub∆(+) 0-50=1 50-500=2 500-5K=3 5K-
50k=4 Over 50K=5

3.2.3 Number of forks on GitHub∆(+) 0-250=1 250-500=2 500-750=3 750-
1000=4 Over 1000=5

3.2.4 Positive rating index×

3.2.5 Number of success stories×

3.2.6 Google visibility×

3.2.7 Number of official
partners/sponsors∆(+)

None=1 Many=5

3.2.8 Number of published books□(+) None=1 Many=5
3.2.9 Number of citations by domain

expert×

3.2.10 State of academic publications∆(+) No academic publications found: 1
Academic publications done by the
users of the software product: 3 Aca-
demic publications done by the au-
thors of the software product: 5

3.2.11 Sponsor availability□(+) No=1 Yes=5
3.3.1 Availability of services and informa-

tion for the estimation of the TCO×

3.3.2 Availability of an edition without li-
cense cost×

3.3.3 Cost of the minimal edition×

63

A. EFFORT Instantiation

Table A.2.: Metrics defined during the instantiation of EFFORT.

Id Metric Metric mapping

3.3.4 Cost of the complete edition×

3.4.1 License type□(+) Commercial usage allowed=5 Com-
mercial not usage allowed=1

64

B. Results

B.1. Raw Metrics Results

Table B.1.: Raw metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

1a.1.2 No Yes Yes No Yes
1a.1.3 Beta imple-

mentation
available

Implementation
available by
definition

Planned Implementation
available

No

1a.2.2 Yes Yes Yes Yes Yes
1a.2.4 0 0 4 0 0
1a.2.6 2 (App.js

for adding
QueryProvider
+ usage in
component)

2 (App.js for
adding Con-
textProvider
+ usage in
component)

4 (defining
Store,adding
Store-
Provider
in App.js,
defining slice,
usage in
component))

2 (App.js
for adding
RecoilRoot
+ usage in
component)

2 (store def-
inition, us-
age in com-
ponent)

1a.2.7 Useful/rational
default op-
tions pro-
vided

No default op-
tions

Useful/rational
default op-
tions pro-
vided

No default op-
tions

No default
options

1a.2.8 English sup-
ported

Multiple
languages
supported

English sup-
ported

Multiple
languages
supported

Multiple
languages
supported

65

B. Results

Table B.1.: Raw metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

1a.2.9 0 0 0 0 0
1a.2.10 Medium

knowledge
required

Medium
knowledge
required

Understanding
of a paradigm
required

Understanding
of a paradigm
required

Little
previous
knowledge
required

1a.2.11 Installation
guide avail-
able

Installation
guide avail-
able

Installation
guide avail-
able

Installation
guide avail-
able

Installation
guide avail-
able

1a.3.1 3+:SWR,
urlq, apollo,
RTK-Query

3+ (basically
all state
management
libraries)

3+:e.g.
USM,Zustand,
Flux, Reflux,
Dva

<3: jotai No equiva-
lent library
available

1b.1.1 Yes Yes Yes, with ad-
vanced debug-
ging features

Yes, with ad-
vanced debug-
ging features

Yes (in-
cludes
advanced
features but
includes
bugs and is
not updated
to support
latest ver-
sion)

1b.3.1 No No Yes Yes Yes

66

B. Results

Table B.1.: Raw metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

1b.5.1 Breaking
API changes
in major
versions with
migration
guide and
codemod

Breaking
API changes
in major
versions (new
Context API
in v16)

No breaking
API changes
introduced
major update

Breaking
API changes
in major
versions

Breaking
API
changes
in major
versions
with mi-
gration
guide and
codemod

1b.6.1 0 0 0 0 0
1b.6.2 110 103 111 114 104
1b.6.3 38 38 39 40 38
1d.1.1 Yes Yes Yes Yes Yes
1d.1.2 Yes Yes, through

React
Yes Yes Yes

1d.2.3 No No Yes No No
1d.3.1 712 748 796 734 731
1d.3.2 136 149 148 151 131
1d.3.3 73 66 72 76 66
1e.2.1 Yes Yes Yes, with ad-

vanced debug-
ging features

Yes, with ad-
vanced debug-
ging features

Yes (in-
cludes
advanced
features but
includes
bugs and is
not updated
to support
latest ver-
sion)

1f.1.1 0.3 0.3 0.2 0.3 0.3
1f.1.2 0.3 0.3 0.3 0.5 0.3

67

B. Results

Table B.1.: Raw metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

1f.1.3 0.6 0.6 0.5 0.6 0.6
1f.1.4 0.3 0.3 0.2 0.3 0.3
1f.1.5 0 0 0 0 0
1f.1.6 0.032 0.02 0.032 0.049 0.032
1f.2.1 Suboptimal

re-renders
Redundant
re-renders

Suboptimal
re-renders

Optimal
re-renders

Optimal re-
renders

2.1.1 479 340 273 227 340
2.2.1
2.2.2 547 1304.75 373.25 739.5 405.28
2.2.3 4 12 7 9 9
2.2.4 986 5537 1271 719 1814
2.2.5 1167 5756 833 893 1163
2.3.1 311 843.75 234 119.5 502.85
2.3.2 14.36 % 24.44 % 19.82 % 22.17 % 20.70 %
2.3.8 Advanced

examples
and guides
provided

Hello world
provided

Advanced
examples
and guides
provided

advanced
examples
and guides
provided

advanced
examples
and guides
provided

2.3.9 No FAQ avail-
able

No FAQ avail-
able

11+ Ques-
tions

No FAQ avail-
able

No FAQ
available

2.4.1 Yes No No No No
2.4.5 No No No No No
2.4.9 Yes, for spon-

sors
No No No No

2.5.6 Advanced
examples
and guides
provided

Hello world
provided

Advanced
examples
and guides
provided

Advanced
examples
and guides
provided

advanced
examples
and guides
provided

3.2.1 1,422,846 15,448,616 1,784,313 281,558 994,202
3.2.2 29,306.00 193,386.00 8,314.00 17,454.00 25,580.00
3.2.3 1,737.00 39,959.00 770.00 958.00 1,706.00

68

B. Results

Table B.1.: Raw metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

3.2.7 177 0 0 0 19
3.2.8 0 Many Many 0 Many
3.2.10 Academic

publications
done by the
users of the
software
product

Academic
publications
done by the
users of the
software
product

Academic
publications
done by the
users of the
software
product

No academic
publications
found

Academic
publica-
tions done
by the
users of the
software
product

3.2.11 Yes No Yes No Yes
3.4.1 MIT MIT MIT MIT MIT

B.2. Mapped Metrics Results

Table B.2.: Mapped metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

1a.1.2 1 5 5 1 5
1a.1.3 5 5 3 5 1
1a.2.2 5 5 5 5 5
1a.2.4 1 1 2 1 1
1a.2.6 3 3 5 3 3
1a.2.7 5 1 5 1 1
1a.2.8 3 5 3 5 5
1a.2.9 1 1 1 1 1
1a.2.10 3 3 5 5 1
1a.2.11 5 5 5 5 5
1a.3.1 5 5 5 3 1

69

B. Results

Table B.2.: Mapped metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

1b.1.1 3 3 5 5 3
1b.3.1 1 1 5 5 5
1b.5.1 4 1 5 1 4
1b.6.1 1 1 1 1 1
1b.6.2 3 3 3 4 3
1b.6.3 4 4 4 4 4
1d.1.1 5 5 5 5 5
1d.1.2 5 3 5 5 5
1d.2.3 1 1 5 1 1
1d.3.1 3 4 5 3 3
1d.3.2 4 5 5 5 3
1d.3.3 3 2 3 3 2
1e.2.1 3 3 5 5 3
1f.1.1 1 1 1 1 1
1f.1.2 1 1 1 1 1
1f.1.3 1 1 1 1 1
1f.1.4 1 1 1 1 1
1f.1.5 1 1 1 1 1
1f.1.6 1 1 1 1 1
1f.2.1 3 1 3 5 5
2.1.1 5 4 3 3 4
2.2.2 4 5 4 4 4
2.2.3 2 5 3 4 4
2.2.4 4 5 5 4 4
2.2.5 5 5 4 4 5
2.3.1 2 5 2 1 3
2.3.2 3 5 4 5 5
2.3.8 5 4 5 5 5
2.3.9 1 1 5 1 1
2.4.1 5 1 1 1 1
2.4.5 1 1 1 1 1

70

B. Results

Table B.2.: Mapped metrics results of the analysed State Management Libraries

Metric
Id

React Query React Con-
text

Redux
Toolkit

Recoil MobX

2.4.9 5 1 1 1 1
2.5.6 5 4 5 5 5
3.2.1 5 5 5 2 4
3.2.2 4 5 4 4 4
3.2.3 5 5 4 4 5
3.2.7 5 1 1 1 5
3.2.8 1 5 5 1 5
3.2.10 3 3 3 1 3
3.2.11 5 1 5 1 5
3.4.1 5 5 5 5 5

B.3. Aggregated Questions Results

Table B.3.: Aggregated question results of the analysed State Management Libraries

Id React Query React
Context

Redux
Toolkit

Recoil MobX

1a.1 3 5 4 3 3
1a.2 4.25 4 3.625 3.75 4.25
1a.3 5 5 5 3 1
1b.1 3 3 5 5 3
1b.3 1 1 5 5 5
1b.5 4 1 5 1 4
1b.6 3.33 3.33 3.33 3 3.33
1d.1 5 4 5 5 5
1d.2 1 1 5 1 1
1d.3 2.67 2.33 1.67 2.33 3.33
1e.2 3 3 5 5 3
1e.4 5 4 5 5 5

71

B. Results

Table B.3.: Aggregated question results of the analysed State Management Libraries

Id React Query React
Context

Redux
Toolkit

Recoil MobX

1f.1 5 5 5 5 5
1f.2 3 1 3 5 5
2.1 5 4 3 3 4
2.2 3.75 5 4 4 4.25
2.3 2.5 3 2 1 2
2.4 3 1 1 1 1
2.5 5 4 5 5 5
3.1 5 5 5 2 4
3.2 3.83 3.33 3.67 2 4.5
3.4 5 5 5 5 5

B.4. Aggregated Goals Results

Table B.4.: Aggregated results of the sub-goals of Software Product Quality

Id Goal React
Query

React
Context

Redux
Toolkit

Recoil MobX

1f Efficiency 3.8 2.6 3.8 5 5
1e Usability 4.33 3.67 5 5 4.33
1d Functionality 3.19 2.67 4.05 3.10 3.38
1b Maintainability 2.83 2.08 4.58 3.5 3.83
1a Portability 4.05 4.8 4.325 3.15 2.45

72

B. Results

Table B.5.: Aggregated results of the evaluation of the analysed State Management
Libraries.

Id Goal React
Query

React
Context

Redux
Toolkit

Recoil MobX

1 Software Prod-
uct Quality

3.64 3.16 4.35 3.95 3.80

2 Community
trustworthi-
ness

4.14 3.73 3.36 3.18 3.68

3 Product attrac-
tiveness

4.61 4.44 4.56 2.50 4.33

73

Bibliography

[1] Atoms | recoil. https://recoiljs.org/docs/basic-tutorial/atoms/. (Accessed on
08/29/2022).

[2] configurestore | redux toolkit. https://redux-toolkit.js.org/api/configureStore.
(Accessed on 08/29/2022).

[3] Context – react. https://reactjs.org/docs/context.html. (Accessed on 08/29/2022).

[4] Core concepts | recoil. https://recoiljs.org/docs/introduction/core-concepts.
(Accessed on 08/29/2022).

[5] Cqrs. https://martinfowler.com/bliki/CQRS.html. (Accessed on 08/29/2022).

[6] createasyncthunk | redux toolkit. https://redux-toolkit.js.org/api/createAsyncThu
nk. (Accessed on 08/29/2022).

[7] createslice | redux toolkit. https://redux-toolkit.js.org/api/createSlice. (Accessed
on 08/29/2022).

[8] Cumulative layout shift (cls). https://web.dev/cls/. (Accessed on 08/30/2022).

[9] Destructuring assignment - javascript | mdn. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Operators/Destructuring_assignment. (Accessed
on 08/29/2022).

[10] <div>: The content division element - html: Hypertext markup language | mdn.
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div. (Accessed
on 08/29/2022).

[11] Document object model (dom) - web apis | mdn. https://developer.mozilla.org/en
-US/docs/Web/API/Document_Object_Model. (Accessed on 08/29/2022).

74

https://recoiljs.org/docs/basic-tutorial/atoms/
https://redux-toolkit.js.org/api/configureStore
https://reactjs.org/docs/context.html
https://recoiljs.org/docs/introduction/core-concepts
https://martinfowler.com/bliki/CQRS.html
https://redux-toolkit.js.org/api/createAsyncThunk
https://redux-toolkit.js.org/api/createAsyncThunk
https://redux-toolkit.js.org/api/createSlice
https://web.dev/cls/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Bibliography

[12] Event sourcing. https://martinfowler.com/eaaDev/EventSourcing.html. (Accessed
on 08/29/2022).

[13] facebookexperimental/recoil: Recoil is an experimental state management library
for react apps. it provides several capabilities that are difficult to achieve with
react alone, while being compatible with the newest features of react. https:
//github.com/facebookexperimental/Recoil. (Accessed on 08/30/2022).

[14] Fetch api - web apis | mdn. https://developer.mozilla.org/en-US/docs/Web/API
/Fetch_API#fetch_interfaces. (Accessed on 08/29/2022).

[15] First contentful paint. https://web.dev/first-contentful-paint/. (Accessed on
08/30/2022).

[16] Flux: An application architecture for react – react blog. https://reactjs.org/blog/2
014/05/06/flux.html. (Accessed on 08/29/2022).

[17] In-depth overview | flux. https://facebook.github.io/flux/docs/in-depth-overview/.
(Accessed on 08/29/2022).

[18] Introducing hooks – react. https://reactjs.org/docs/hooks-intro.html. (Accessed
on 08/29/2022).

[19] Iso 25010. https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.
(Accessed on 08/30/2022).

[20] Iso 25010. https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?sta
rt=3. (Accessed on 08/30/2022).

[21] Iso 25010. https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?sta
rt=6. (Accessed on 08/30/2022).

[22] Jsx in depth – react. https://reactjs.org/docs/jsx-in-depth.html. (Accessed on
08/29/2022).

[23] Largest contentful paint (lcp). https://web.dev/lcp/. (Accessed on 08/30/2022).

[24] Migrating to react query 4 | tanstack query docs. https://tanstack.com/query/v4/
docs/guides/migrating-to-react-query-4. (Accessed on 08/30/2022).

[25] Motivation | redux. https://redux.js.org/understanding/thinking-in-redux/motivat
ion. (Accessed on 08/29/2022).

75

https://martinfowler.com/eaaDev/EventSourcing.html
https://github.com/facebookexperimental/Recoil
https://github.com/facebookexperimental/Recoil
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API#fetch_interfaces
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API#fetch_interfaces
https://web.dev/first-contentful-paint/
https://reactjs.org/blog/2014/05/06/flux.html
https://reactjs.org/blog/2014/05/06/flux.html
https://facebook.github.io/flux/docs/in-depth-overview/
https://reactjs.org/docs/hooks-intro.html
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=3
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=3
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=6
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=6
https://reactjs.org/docs/jsx-in-depth.html
https://web.dev/lcp/
https://tanstack.com/query/v4/docs/guides/migrating-to-react-query-4
https://tanstack.com/query/v4/docs/guides/migrating-to-react-query-4
https://redux.js.org/understanding/thinking-in-redux/motivation
https://redux.js.org/understanding/thinking-in-redux/motivation

Bibliography

[26] npm. https://www.npmjs.com/. (Accessed on 08/30/2022).

[27] Optimistic updates | tanstack query docs. https://tanstack.com/query/v4/docs/g
uides/optimistic-updates. (Accessed on 08/29/2022).

[28] Overview | tanstack query docs. https://tanstack.com/query/v4/docs/overview.
(Accessed on 08/29/2022).

[29] Presentational and container components | by dan abramov | medium. https:
//medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0.
(Accessed on 08/29/2022).

[30] React – a javascript library for building user interfaces. https://reactjs.org/.
(Accessed on 08/29/2022).

[31] Readme · mobx. https://mobx.js.org/README.html. (Accessed on 08/29/2022).

[32] Recoil. https://recoiljs.org/. (Accessed on 08/29/2022).

[33] Reconciliation – react. https://reactjs.org/docs/reconciliation.html. (Accessed on
08/29/2022).

[34] Redux - a predictable state container for javascript apps. | redux. https://redux.js
.org/. (Accessed on 08/29/2022).

[35] Redux toolkit | redux toolkit. https://redux-toolkit.js.org/. (Accessed on
08/29/2022).

[36] Redux toolkit: Overview | redux. https://redux.js.org/redux-toolkit/overview.
(Accessed on 08/29/2022).

[37] reduxjs/redux-devtools: Devtools for redux with hot reloading, action replay, and
customizable ui. https://github.com/reduxjs/redux-devtools. (Accessed on
08/30/2022).

[38] Rtk query overview | redux toolkit. https://redux-toolkit.js.org/rtk-query/overview.
(Accessed on 08/30/2022).

[39] Selectors | recoil. https://recoiljs.org/docs/basic-tutorial/selectors. (Accessed on
08/29/2022).

76

https://www.npmjs.com/
https://tanstack.com/query/v4/docs/guides/optimistic-updates
https://tanstack.com/query/v4/docs/guides/optimistic-updates
https://tanstack.com/query/v4/docs/overview
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://reactjs.org/
https://mobx.js.org/README.html
https://recoiljs.org/
https://reactjs.org/docs/reconciliation.html
https://redux.js.org/
https://redux.js.org/
https://redux-toolkit.js.org/
https://redux.js.org/redux-toolkit/overview
https://github.com/reduxjs/redux-devtools
https://redux-toolkit.js.org/rtk-query/overview
https://recoiljs.org/docs/basic-tutorial/selectors

Bibliography

[40] : The content span element - html: Hypertext markup language | mdn.
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span. (Accessed
on 08/29/2022).

[41] Speed index. https://web.dev/speed-index/. (Accessed on 08/30/2022).

[42] Stack overflow developer survey 2021. https://insights.stackoverflow.com/survey/2
021#most-popular-technologies-webframe. (Accessed on 04/22/2022).

[43] State and lifecycle – react. https://reactjs.org/docs/state-and-lifecycle.html.
(Accessed on 08/29/2022).

[44] Style guide | redux. https://redux.js.org/style-guide/. (Accessed on 08/29/2022).

[45] Support for suspense in rtk query · issue #1574 · reduxjs/redux-toolkit. https:
//github.com/reduxjs/redux-toolkit/issues/1574. (Accessed on 08/30/2022).

[46] Suspense for data fetching (experimental) – react. https://17.reactjs.org/docs/conc
urrent-mode-suspense.html. (Accessed on 08/31/2022).

[47] Tanstack query | react query, solid query, svelte query, vue query. https://tanstack
.com/query/v4/. (Accessed on 08/29/2022).

[48] Time to interactive. https://web.dev/interactive/. (Accessed on 08/30/2022).

[49] Tip 10-4: Use the quality tree as checklist! | arc42 documentation. https://docs.a
rc42.org/tips/10-4/. (Accessed on 08/30/2022).

[50] Total blocking time (tbt). https://web.dev/tbt/. (Accessed on 08/30/2022).

[51] Transparent functional reactive programming | mobx quick start guide. https:
//subscription.packtpub.com/book/web-development/9781789344837/9/ch09lvl
1sec51/transparent-functional-reactive-programming. (Accessed on 08/29/2022).

[52] Usage guide | redux toolkit. https://redux-toolkit.js.org/usage/usage-guide#async
hronous-logic-and-data-fetching. (Accessed on 08/29/2022).

[53] Using the state hook – react. https://reactjs.org/docs/hooks-state.html#gatsby-f
ocus-wrapper. (Accessed on 08/29/2022).

[54] Writing tests | redux. https://redux.js.org/usage/writing-tests. (Accessed on
08/30/2022).

77

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span
https://web.dev/speed-index/
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-webframe
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-webframe
https://reactjs.org/docs/state-and-lifecycle.html
https://redux.js.org/style-guide/
https://github.com/reduxjs/redux-toolkit/issues/1574
https://github.com/reduxjs/redux-toolkit/issues/1574
https://17.reactjs.org/docs/concurrent-mode-suspense.html
https://17.reactjs.org/docs/concurrent-mode-suspense.html
https://tanstack.com/query/v4/
https://tanstack.com/query/v4/
https://web.dev/interactive/
https://docs.arc42.org/tips/10-4/
https://docs.arc42.org/tips/10-4/
https://web.dev/tbt/
https://subscription.packtpub.com/book/web-development/9781789344837/9/ch09lvl1sec51/transparent-functional-reactive-programming
https://subscription.packtpub.com/book/web-development/9781789344837/9/ch09lvl1sec51/transparent-functional-reactive-programming
https://subscription.packtpub.com/book/web-development/9781789344837/9/ch09lvl1sec51/transparent-functional-reactive-programming
https://redux-toolkit.js.org/usage/usage-guide#asynchronous-logic-and-data-fetching
https://redux-toolkit.js.org/usage/usage-guide#asynchronous-logic-and-data-fetching
https://reactjs.org/docs/hooks-state.html#gatsby-focus-wrapper
https://reactjs.org/docs/hooks-state.html#gatsby-focus-wrapper
https://redux.js.org/usage/writing-tests

Bibliography

[55] A. Adewumi, S. Misra, and N. Omoregbe. Evaluating open source software quality
models against iso 25010. In 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intelligence and Computing, pages
872–877. IEEE, 2015.

[56] L. Aversano and M. Tortorella. Applying effort for evaluating crm open source
systems. In PROFES, 2011.

[57] L. Aversano and M. Tortorella. Quality evaluation of floss projects: Application to
erp systems. Information and Software Technology, 55(7):1260–1276, 2013.

[58] V. R. Basili. Software modeling and measurement: the goal/question/metric
paradigm. Technical report, 1992.

[59] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software
quality. In in ICSE ’76: Proceedings of the 2nd International Conference on
Software engineering, pages 592–605, 1976.

[60] G. A. Campbell and S. SonarSource. Cognitive complexity. SonarSource: Geneva,
Switzerland, 2020.

[61] D. Coleman, B. Lowther, and P. Oman. The application of software maintainability
models in industrial software systems. Journal of Systems and Software, 29(1):3–16,
1995.

[62] I. E. Commission. Software Engineering-Product Quality, volume 9126. ISO/IEC,
2001.

[63] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner. Software quality
models: Purposes, usage scenarios and requirements. In 2009 ICSE workshop on
software quality, pages 9–14. IEEE, 2009.

[64] R. G. Dromey. A model for software product quality. IEEE Transactions on
software engineering, 21(2):146–162, 1995.

[65] F. Duijnhouwer and C. Widdows. Open source maturity model. cap gemini expert
letter (august 2003), 2008.

[66] R. B. Grady. Practical software metrics for project management and process
improvement. Prentice-Hall, Inc., 1992.

78

Bibliography

[67] K. Haaland and A.-K. Groven. Free/libre open source quality models-a comparison
between two approaches. 2010.

[68] J. Hunt. Gang of four design patterns. In Scala design patterns, pages 135–136.
Springer, 2013.

[69] M. R. Lyu et al. Handbook of software reliability engineering, volume 222. IEEE
computer society press Los Alamitos, 1996.

[70] I. Maier, T. Rompf, and M. Odersky. Deprecating the observer pattern. Technical
report, 2010.

[71] C. Mattson, R. L. Bushardt, and A. R. Artino Jr. When a measure becomes a
target, it ceases to be a good measure, 2021.

[72] T. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, 1976.

[73] J. McCall, P. Richards, and G. Walters. Factors in software quality, volumes i, ii,
and iii, us rome air development center reports ntis ad/a-049 014. Technical report,
NTIS AD/A-049 015 and NTIS AD/A-049 016, US Department of Commerce,
1977.

[74] J. P. Miguel, D. Mauricio, and G. Rodríguez. A review of software quality models
for the evaluation of software products. arXiv preprint arXiv:1412.2977, 2014.

[75] E. Petrinja, R. Nambakam, and A. Sillitti. Introducing the opensource maturity
model. In 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development, pages 37–41. IEEE, 2009.

[76] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos. The sqo-oss quality
model: measurement based open source software evaluation. In IFIP international
conference on open source systems, pages 237–248. Springer, 2008.

[77] R. Semeteys, O. Pilot, L. Baudrillard, G. Le Bouder, and W. Pinkhardt. Method
for qualification and selection of open source software (qsos) version 1.6. Technical
report, Technical report, Atos Origin, 2006.

[78] M. Soto and M. Ciolkowski. The qualoss open source assessment model measuring
the performance of open source communities. In 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, pages 498–501. IEEE, 2009.

79

Bibliography

[79] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P. J. Adams, I. Samoladas,
and I. Stamelos. Evaluating the quality of open source software. Electronic Notes
in Theoretical Computer Science, 233:5–28, 2009.

[80] I. O. F. STANDARDIZATION. Iso/iec 25010: Systems and software engineering-
systems and software quality requirements and evaluation (square), 2011.

[81] W. J. Sung, J. H. Kim, and S. Y. Rhew. A quality model for open source software
selection. In Sixth International Conference on Advanced Language Processing and
Web Information Technology (ALPIT 2007), pages 515–519. IEEE, 2007.

[82] É. Tanter. Beyond static and dynamic scope. ACM Sigplan Notices, 44(12):3–14,
2009.

[83] A. Wasserman, M. Pal, and C. Chan. The business readiness rating model: an
evaluation framework for open source. In Proceedings of the EFOSS Workshop,
Como, Italy, 2006.

[84] P. Wegner. Interoperability. ACM Computing Surveys (CSUR), 28(1):285–287,
1996.

80

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 31. August 2022 Youssef Benlemlih

	1 Introduction
	1.1 Motivation and Hypotheses
	1.2 Research Design

	2 Conceptual Background
	2.1 Introduction to React
	2.2 Problem Definition
	2.3 Problem Use Case
	2.4 React's Inner Working
	2.5 State Management Libraries
	2.5.1 Global State
	2.5.2 Flux-Based State Management Libraries
	2.5.3 Observable-Based State Management Libraries
	2.5.4 Atom-Based State Management Libraries
	2.5.5 Query-Based State Management Libraries

	3 Software quality models
	3.1 ISO/IEC 25010 Model
	3.2 DAP classification

	4 EFFORT
	4.1 EFFORT Baseline Version
	4.2 Instantiation of EFFORT

	5 Discussion
	5.1 Findings
	5.1.1 Software Product Quality
	5.1.2 Community Trustworthiness
	5.1.3 Product Attractiveness

	5.2 Suitability of the Approaches
	5.3 Hypotheses Verification
	5.4 Reflection
	5.4.1 Usage of Metrics
	5.4.2 EFFORT

	6 Outro
	Appendices
	A EFFORT Instantiation
	A.1 Questions Definition
	A.2 Metrics Definition

	B Results
	B.1 Raw Metrics Results
	B.2 Mapped Metrics Results
	B.3 Aggregated Questions Results
	B.4 Aggregated Goals Results

