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Thema der Arbeit

Kombination von Inpainting-Algorithmen und Optical flow zur Integration von Patholo-
gien in Deep Learning basierenden endoskopischen Trainingssimulatoren

Stichworte

Deep Learning, Endoskopische Trainingsimulatoren, Generative Adversarial Networks,
Diffusion Models, Bildkomposition, Optischer Fluss

Kurzzusammenfassung

Endoskopische Simulatoren für das Training von Untersuchungen des Magen-Darm-
Trakts werden üblicherweise aus Silikon hergestellt. Trotz einer qualitativ guten Nach-
bildung der Organe, bleibt das äußere Erscheinungsbild und das Trainingsgefühl weit von
einer echten Untersuchung entfernt, wobei das Szenario bei jeder Untersuchung identisch
bleibt. Aktuelle DeepLearning-Ansätze können Bilder von Trainingssimulatoren in syn-
thetische Ansichten umwandeln, bisher jedoch meist nur für die Darstellung unauffälliger
gesunder Schleimhaut. In dieser Arbeit wird das Potenzial von Generative Adversarial
Nets (GANs) und Denoising Diffusion Probabilistic Models (DDPMs) zur Integration von
Pathologien in synthetische Ansichten gesunder Schleimhaut und deren zeitkonsistente
Verschiebung in kurzen Videosequenzen mittels Optical Flow untersucht. DDPMs liefern
qualitativ hochwertige Ergebnisse beim Einzeichnen von Pathologien, haben jedoch eine
signifikant längere Inferenzzeit als GAN-basierte Modelle. Der Optical Flow ermöglicht
das Erstellen kurzer, konsistenter Videosequenzen, zeigt jedoch Limitationen bei der An-
passung der Lichtverhältnisse und Positionierung von Pathologien. Die Ergebnisse legen
nahe, für zukünftige Methodenentwicklungen Pathologien auf Einzelbildebene einzuze-
ichnen und nur die dafür verwendeten Masken mit Optical Flow zu transformieren, statt
- wie in dieser Arbeit - die Pathologie selbst. Ferner sollte die Implementierung der
Modelle in Trainingssimulatoren weiter erforscht werden.
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Abstract

Endoscopic simulators for training examinations of the gastrointestinal tract are usually
made of silicone. Despite a good quality replica of the organs, the external appearance
and training experience remains far away from a real examination, with the scenario
remaining identical for each examination. Current deep learning approaches can convert
images of training simulators into synthetic views, but so far mostly for the visualization
of inconspicuous healthy mucosa. This work investigates the potential of Generative
Adversarial Nets (GANs) and Denoising Diffusion Probabilistic Models (DDPMs) to
integrate pathologies into synthetic views of healthy mucosa and their time-consistent
displacement in short video sequences using optical flow. DDPMs provide high quality
results when drawing pathologies, but have a longer inference time than GAN-based
models. Optical flow enables the creation of short, consistent video sequences, but shows
limitations in the adjustment of lighting conditions and positioning of pathologies. The
results suggest that for future method developments, pathologies should be drawn at the
single image level and only the masks used for this should be transformed with Optical
Flow instead of the pathology itself, as done in this work. Furthermore, the integration
of the models to training simulators should be further researched.
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1 Introduction

Diseases of the gastrointestinal tract (GI-tract) lead to a considerable reduction in quality
of life, as they not only cause pain or problems with digestion, but also represent an
enormous psychological burden for those affected. In Germany alone, 2.5 million patients
are treated in hospitals with diseases of the GI-tract, the liver, bile ducts, or pancreas.
Whereby, over 60.000 patients die due to the diseases. Although the quality of medical
care is constantly improving, it is estimated that the number of affected people will
increase by 22% until 2032 [29].

Besides it is known that a good prevention and early detection is crucial regarding the
progression of the disease [10, 21]. Although the progress in technology leads to inven-
tion which supports the daily routine in hospitals, very well-trained staff is still needed.
Endoscopy is a procedure that uses a long flexible tube having a video camera at the end
to investigate the GI-tract without any surgery. Especially in the field of endoscopy there
are already algorithms that aims to detect pathologies (e.g. polyps) and thus improve
the detection rate [18, 30]. However, these algorithms are trained for one particular dis-
ease and cannot cover all the complex pathologies which can occur. Hence, the the full
diagnosis must still be made by a very well-trained doctor.

In order to prepare the medical staff for an endoscopy, there are a lot of training simulators
(Figure 1.1), which allows to train the procedure without performing it on the real patient
first.
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1 Introduction

Figure 1.1: Endoscopic training simulator setup with dummy and endoscopy tower.

With these training simulators it is possible to train the handling with the endoscope,
which is not easy at all. Also thanks to the morphological replication of a GI-tract, it
is possible to get a feeling for proportions and structure. Nevertheless, the simulators
are far away from being a perfect training simulator, since the visual appearance shows
a lack of reality, as the dummy is made out of silicone (Figure 1.2).
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1 Introduction

Figure 1.2: Example images of the inner view of a standard endoscopy simulator dummy.

This leads to two major drawbacks when training with these kind of simulators. The
first one is that the trainees experience a rapid saturation of the learning curve, since the
dummy looks always the same. After a few passes, the trainees will no longer pay atten-
tion to the environment and only focus on guiding the endoscope through the dummy.
Thereby, it is precisely this ability to operate the endoscope and observe the surroundings
at the same time that you want to train with these kind of simulators. The second big
disadvantage is that the dummy can not cover different training scenarios, e.g, different
pathologies and patients (Figure 1.3).
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1 Introduction

Figure 1.3: Examples of different pathologies that occurred during real examinations.

Although all three examples belong to the pattern of an ulcer, they may need different
treatments. In order to be able to choose the correct treatment, the ulcer must be
thoroughly examined. For this, it is necessary that the camera of the endoscope is
steered in the correct position, which can be a challenging task and needs a lot of practice.
At the same time, the medical staff must decide what the correct treatment is. Since
in some cases it is necessary that action must be taken immediately with the help of
the operating channel within the endoscope, the images cannot be evaluated after the
examination. This example makes clear why it is extremely important that the medical
staff is able to handle the endoscope perfectly while the main focus is on evaluating the
surroundings. So far, these scenarios cannot be trained with conventional dummies.

Thankfully, improvements in the area of generative neural networks show promising
approaches, which could help to overcome these shortcomings. Since a lot of work was
already done considering the transformation of a dummy into a healthy patient [61],
this work will focus on the integration of patholgies. For this, the potential of recent
methods from the area of image inpainting and image composition will be investigated.
In order to also ensure a good time consistency and thus a realistic appearance, the
optical flow within a video sequence will be used to move the inpainted area according
to the movement of the endoscope.
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2 State of the Art

Since Ian Goodfellow introduced a novel neural network architecture named Generative
Adversarial Networks (GANs) [20], generative networks become more and more popular.
With these networks, it is possible to generate high quality and realistic looking images
which belong to the data distribution of the given data set. In 2017, the architecture
was extended such that an unpaired image-to-image transformation is possible and, be-
cause of the architecture and training concept, it was named cycleGAN [69]. Due to
this work, images could now be transformed from one domain to another without loos-
ing the underlying structure and content and the need of paired training samples. For
example, a picture from a landscape in the summer could be transformed to the same
landscape but with snow in the winter without having these pairs of images. Based on
this, work was done to use these networks in the medical field. One of the first attempts
to improve the realism of a endoscopic training simulator was done by a research group
based in Heidelberg [15]. Thereby, the focus was on the temporal consistency between
the transformed images. Since the original cycleGAN only considers single images dur-
ing the transformation, a lack of temporal consistency was observed when transforming
whole video sequences. The newly introduced tempCycleGAN considers two consecu-
tive frames during the transformation, which leads to an improvement of the temporal
consistency by showing less light flickering and artefacts. As the developed tempCycle-
GAN architecture allows the extension to consider more than two consecutive frames
for one transformation, the influence of different frame set length was also investigated
[61]. Within this work, the first attempt was made to integrate virtual pathologies by
conditioning the architecture on an additional label. Although the results for the gen-
erated pathologies look good at single image level, the behaviour over a whole video
sequence show a tremendous lack of realism and temporal consistency. Further research
showed that the mentioned neural networks have a high potential to improve the medical
training simulators, but the temporal consistency remains a challenging task. Instead of
using pixel-wise constraints during the training process a new attempt tried to use the
information contained in the optical flow of consecutive frames. This motion-guided ar-
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2 State of the Art

chitecture is called Mocycle-GAN and showed promising results [8]. Within a study, the
tempCycleGAN and the Mocycle-GAN were compared to improve a endoscopic training
simulator. The results revealed that both architecture show major improvements consid-
ering both the realism and the temporal consistency compared to the standard cycleGAN
model. As the Mocycle-GAN is more lightweight than the tempcycleGAN it has a lower
inference time and thus a better real time capability for the subsequent applications.
However, the Mocycle-GAN only uses the optical flow implicitly which still can not solve
the temporal consistency issues regarding the pathologies [53].
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3 Fundamentals

3.1 Deep Learning

The terms artificial intelligence (AI), machine learning and deep learning are often used
interchangeably, but they represent different approaches and techniques. AI is the over-
arching term that aims to solve problems through intelligent behavior. Rule-based ap-
proaches, a simple form of AI, make decisions according to predefined rules. However,
these approaches are limited to simple problems. For more complex problems, machine
learning (ML) approaches are used, where algorithms are applied to data sets to identify
relevant structures and patterns. These algorithms can classify data or predict future
values, but they come up against limits if the problem is highly non-linear. Deep learn-
ing, an advanced form of machine learning, uses deep neural networks to independently
learn rules for problems within a given data set. This approach is able to learn highly
non-linear patterns whereby it can be used for complex tasks such as autonomous driv-
ing and speech recognition. A classic example where machine learning techniques reach
their limits is the description of a logical gate functions. Even if the task does not seem
extraordinarily complex at first glance, modeling this using a normal machine learning
algorithm such as linear regression is only possible to a limited extent, if at all [19].
Figure 3.1 shows the output signal of an XOR gate as a function of two input signals x1

and x2.
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3 Fundamentals

Figure 3.1: Outputs of a XOR gate depending on two inputs x1 and x2.

The visualization shows that there is no linear separation of the possible outputs that
exactly describes the behavior of the gate. The methods from the field of deep learning
are, however, able to solve this problem. Therefore, so-called non-linear activation func-
tions φ (Figure 3.2) are important components of a neural network in order to introduce
non-linearity allowing it to learn and represent complex relationships in data.

Figure 3.2: Visualization of the activation functions ReLU, sigmoid and tangent hyper-
bolicus

In general, a deep neural network consists of many layers. The first layer among other
things specifies the shape of the input, which is expected by the neural network. This is
followed by many hidden layers and concludes with an output layer, which holds the final
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3 Fundamentals

result. The shape of the input layer is adapted to the data that is to be processed. For
example, the shape of the first layer whose input is a gray-scaled picture with a size of
64x64 pixels could be a vector x of 642 = 4096 values representing the single pixel values.
The size of the output layer depends on the tasks. In case the neural network should
classify if a given input belongs to a certain class or not, a binary output is sufficient. In
case the given input should be assigned to one class out of ten, the output should be a
vector. Figure 3.3 show an example of a neural network with three inputs, two hidden
layers and two output neurons.

Figure 3.3: Structure of a neural network

A perceptron is the simplest form of a neural network model. It consists of a single layer
of input units (neurons), each connected to an output unit through weighted connections.
It takes multiple input values, each multiplied by a corresponding weight, and sums them
up. This sum is then passed through an activation function to produce the output of the
perceptron. Since real world data can contain systematic errors or distortions the layers
can additionally have a bias term b to better fit the pattern within the data set. The
whole structure of the perceptron is shown in Figure 3.4.

9



3 Fundamentals

Figure 3.4: Structure of the perceptron

In order to optimize the weights θ of a neural network during training, a target function
J(θ) (also known as loss function) must be defined beforehand. This function calculates
the deviation between the expected outcome y and the predicted output of the neural
network ŷ. Since a neural network can process multiple inputs (batch) at the same time,
the loss term is divided by the number of outputs N in order to smoothen the error
and thus stabilize the training. The choice of the loss function must be made carefully,
as otherwise the neural network will not pursue a suitable goal and therefore cannot be
expected to perform well regarding the given problem. For example, if the neural network
should learn a regression, the mean squared error could be a suitable loss function.

J(θ) =
1

N

N−1∑
i=0

(yi − ŷi)
2 (3.1)

In case the problem is a binary classification the binary cross entropy can be used.

10



3 Fundamentals

J(θ) = − 1

N

N−1∑
i=0

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.2)

Independently of the chosen loss function, the resulting value is then used to optimize the
weights of the neural network. Although, the input is passed from the first layer to the
last layer (feed forward network), the weights are adjusted beginning at the output layer
going to the input layer. This is called backpropagation [33], which is the key principle
of a neural network. In this process, the influence of each individual weight on the error
must be determined using the partial derivative,

∆wl
kj = −α

∂J(θ)

∂wlkj
(3.3)

where J(θ) is the error determined using the loss function and wl
kj is the k-th neuron of

a layer l, which is connected to the j-th neuron of the subsequent layer. The weight wl
kj

is adjusted in the opposite direction of the gradient ∆wl
kj and is additionally weighted

with a factor α, which is referred to as the learning rate. The learning rate is also one of
the hyperparameters for the training and must also be chosen carefully. Since the main
idea of the whole optimisation process is to find a global minimum, a small learning rate
tends to get stuck in a local minima. On the other hand a large learning rate can miss
an actual global minima. There are different algorithms for the optimizer which differ
in how they update the model parameters and how they adapt the learning rate during
training. The choice of the optimizer can significantly impact the convergence speed and
the final performance of the neural network [13].

3.2 Basic architectures

Over the years, many different architectures became popular. They vary widely in com-
plexity, design, and functionality, each tailored to address specific tasks and challenges.
As already mentioned in the previous chapter, one of the fundamental architectures is
the feed forward neural network. It consist of layers with neurons where information
flows in one direction, from the input layer through hidden layers to the output layer.
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3 Fundamentals

These networks excel in tasks like regression and classification, with popular variations
such as deep neural networks (DNNs), which stack multiple hidden layers for increased
representational power.

Another architecture is the recurrent neural network (RNN), designed to handle sequen-
tial data by incorporating feedback loops (Figure 3.5) within the network, allowing it to
maintain an internal state or memory. RNNs are well-suited for tasks such as time series
prediction, language modeling, and speech recognition, thanks to their ability to capture
temporal dependencies [22, 52].

Figure 3.5: Recurrent neural network architecture diagram [2].

Especially in the field of computer vision and image processing, convolutional neural
networks (CNNs) have emerged as a cornerstone in the field of computer vision. CNNs
leverage specialized layers like convolutional layers to automatically extract hierarchical
features from input images. This done by performing a convolution to an input (Figure
3.6) with different kernels which are learned by the network. These architectures have
achieved remarkable success in image classification, object detection, and image segmen-
tation tasks, often outperforming traditional computer vision techniques [19, 36].
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Figure 3.6: 2-D convolution of an 4x3 input with a 2x2 kernel. [19]

As the field continues to evolve, novel architectures and hybrid models emerge, combin-
ing elements from different paradigms to tackle increasingly complex challenges. As an
example, an auto-encoder is a type of neural network architecture designed for unsu-
pervised learning and dimensionality reduction. It consists of an encoder network that
compresses the input data into a lower-dimensional representation z, and a decoder net-
work that reconstructs the original input from this compressed representation (Figure
3.7). By learning to reconstruct the input data accurately, auto-encoders capture mean-
ingful features and patterns, making them useful for tasks like data denoising, anomaly
detection, and feature learning [59].
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Figure 3.7: Structure of an autoencoder architecture.

Another widely used architecture is the U-Net. It is a convolutional neural network ar-
chitecture designed for semantic segmentation tasks in computer vision. Its U-shaped
architecture consists of a encoder and decoder part, which are connected via skip connec-
tions to preserve spatial information (Figure 3.8). By concatenating feature maps from
the encoder to the decoder, skip connections enable the decoder to access both low-level
and high-level features [50].
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Figure 3.8: Structure of an U-Net architecture (changed according to [14]).

U-Net is widely employed in medical image segmentation and other fields where detailed
pixel-level classification is required [27].

3.3 Transformer

In 2017, transformer networks [60] have been published and since then they have emerged
as a groundbreaking architecture in the field of deep learning, revolutionizing natural
language processing, computer vision, and various other domains. They have become the
cornerstone of many state-of-the-art models due to their ability to capture long-range
dependencies and process sequential data efficiently [24]. The so called self-attention
mechanism is the key feature of the transformer architecture, enabling the model to
weight different parts of the input sequence differently during processing. Thereby, each
element of the input sequence is called a token. This mechanism allows transformers to
consider the relationships between all tokens in a sequence simultaneously which helps to
overcome the limitations of traditional network architectures like CNNs when it comes
to capturing long-range dependencies.

In general, the first step within a transformer network is to associate each token of the
input with a high dimensional vector. This is done in a so called embedding layer. Within
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this high dimensional space, tokens with a closer relationship are located in the same area.
But the problem is that a network initially has no idea about the meaning of the single
tokens, which are represented as numbers. As an example the two phrases "A neural
network model" and "A fashion model" both contain the same word "model" but the
context is completely different. In case the transformer should generate some text based
on one of these phrases, all words within the sentence play a crucial role and therefore
must be considered carefully in order to end up with a meaningful text. So that the
network is able to learn the meaning the self-attention mechanism is used. It computes
a set of attention scores for each element in the input sequence based on its relationships
with all other elements. These scores are then used to weight the importance of each
element in the context of the entire sequence, which allows transformers to capture
contextual information effectively. In order to calculate these attention scores, three
different components are considered, namely keys (K), queries (Q) and values (V )

The queries Q are vectors with a lower dimension than the embedding layer. They a
calculated by multiplying a matrix WQ with the embeddings E⃗,

Q⃗i = WQ ⊙ E⃗i (3.4)

whereby the matrix WQ contains learnable parameter of the transformer network and
the index i corresponded to the position of a token within a sequence, i.e the query for
the first token is called Q⃗1. In the same way, further vectors called keys K are calculated
using another matrix Wk

K⃗i = WK ⊙ E⃗i (3.5)

After all queries and keys for each token are calculated, the dot product is applied between
each query and key pair. The resulting number is a measure how close the tokens are
located within the high dimensional space. Since these numbers can reach from −∞ to
+∞, the values are normalised using the softmax function, which ensures that the values
are scaled between 0 and 1.
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The third component, the values V , are vectors associated with each token in the input
sequence, similar to keys. However, unlike keys, values are not directly involved in
computing attention scores. Instead, they are used to compute the weighted sum that
forms the context vector V⃗i in the attention mechanism.

V⃗i = WV ⊙ E⃗i (3.6)

All these components are glued together, which forms the self-attention mechanism
(Equation 3.7). The factor 1√

dk
normalizes the values depending on the chosen dimen-

sionalty of the vectors and ensuring better numerical stability [60].

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.7)

To sum it up once again, queries represent the information the model is focusing on, keys
capture information about different parts of the input sequence, and values represent
the content that will be attended to based on the computed attention scores. Together,
these components allow the transformer network to effectively model relationships and
dependencies within the input sequence. One of these pairs of WQ, WK and WV are
associated with one layer which are called attention heads. Calculating multiple matrices
for the same pairs of queries, keys and values is called multi-head attention (Figure 3.9).
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Figure 3.9: Scaled Dot-Product Attention (left). Multi-Head Attention consists of several
attention layers running in parallel (right) [60].

These self-attention layers can now be used together with other common layer types,
building the final architecture of a transformer network (Figure 3.10).
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Figure 3.10: Architecture of a transformer network [60].

3.4 Generative Neural Networks

When Ian Goodfellow and his colleagues published his research on generative adversarial
networks [20] in 2014, the interest and potential in generative networks increased strongly.
His idea was to use a network architecture with two networks which compete against each
other. One network is called the generator and the other one discriminator. The task of
the generator is to produce outputs which belongs to the distribution of a given data set,
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while the discriminator should learn to distinguish between the real data and the fake
outputs produced by the generator.

The training of a Generative Adversarial Network (GAN) involves two main loss func-
tions. From the perspective of the generator, the goal is to minimize the probability
that the discriminator assigns the generated data to fake. This is commonly expressed
using the negative log likelihood of the discriminator predicting the generated samples
as real.

LG = −log(D(G(z))) (3.8)

The input z of the generator is a vector containing random noise sampled from a nor-
mal distribution. Since the task of the discriminator is to distinguish between real and
synthetic data, the corresponding loss function consists of two terms.

LD = −log(D(x))− log(1−D(G(z))) (3.9)

Here x is the real data sampled from the data set and G(z) is again the output generated
by the generator. Whereby, the generator can be trained on different data like speech
signals or images. The fact that these two networks compete against each other makes the
training process highly prone to be unstable (mode collapse). That is why a lot of work
was done finding solutions to avoid this. One idea is to change the network architecture.
For example, the Patch-GAN approach uses a discriminator which returns a patch instead
of one single value which indicates if the input belongs to the real or fake distribution.
Each value in this patch indicates the probability that the corresponding area of the
input is real or fake. This is particularly used when images should be generated. Thus,
the generator gets a more detailed feedback which area of the generated images has to
be optimized. With this proposed architecture, considerable improvements regarding
undesired artifacts and noise in the generated outputs were achieved [11].
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3.5 Image-to-Image Transformation

Image-to-image transformation involves converting an input image from one domain to
another, catering to various applications. For instance, one may want to enhance a
low-resolution image to a high-resolution one without resorting to basic resizing and
interpolation techniques. In this scenario, the domains are low-resolution and high-
resolution image, where having a data set with paired examples or an actual ground truth
is highly advantageous. However, often the available data lacks such paired samples, and
at times, it is even impossible to obtain them. When the task involves transferring the
style of one image to that of another domain, the images required may not be accessible
in both styles. For example, the objective might be to alter the style of a generic image
to resemble the work of a renowned artist. Despite possibly having numerous images of
landscapes and works by a famous artist, paired examples of these may not exist.

For the task of unpaired image-to-image transformation, a powerful deep learning archi-
tecture named cycleGAN (Cycle-Consistent Generative Adversarial Network) was intro-
duced in 2017 [69]. Since the goal is to translate a given image from one domain into
another without losing semantic features, the approach makes use of a special training
procedure. Whereby, the architecture (Figure 3.11) consists of two generators and two
discriminators (one for each domain).

Figure 3.11: Architecture of the cycleGAN
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During training, an image from the domain X is translated to the domain Y with the
first generator GX−>Y such that it belongs to the distribution of the target domain.
As with the original GAN approach, a corresponding discriminator network DX or DY ,
respectively, is trained to distinguish between real and generated data.

Ladv(GX, DX, X) = Ex~pdata(x)[logDX(x)] + Ey~pdata(y)[log(1−DX(GX(y))] (3.10)

To ensure the preservation of the semantic features, the translated image will be trans-
formed back into the original domain using the second generator GY−>X . By calculating
the pixel-wise distance between original image from domain X and the reconstructed im-
age (cycle loss), the generator is forced to keep this features. Since the second generator
GY−>X needs to be also trained, the same procedure is done but with respect to domain
Y .

Lcycle(GY, GX) = Ex~pdata(x)[||GX(GY(x))− x||1] + Ey~pdata(y)[||GY(GX(y)− y)||1
(3.11)

The authors of the cycleGAN architecture observed an improved of the results when
using an additional loss function named identity loss. Therefore, the generator receives
also images from the actual target domain. Since these images already belong to the
correct distribution, the generator should not change them.

Lidentity(GX, GY) = Ey~pdata(y)[||GY(y)− y||1] + Ex~pdata(x)[||GX(x)− x||1] (3.12)

The overall loss function for the cycleGAN consists of three different terms for the gen-
erator.

L = Ladv + Lcycle + Lidentity (3.13)
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Since the publication of this architecture in 2017, a lot of research has been done in order
to improve the output quality [5, 62], allow to guide the generation process [38, 9, 70]
or modifying the architecture for further use cases [57, 31]. Whereby, one use case is
the unpaired video-to-video transformation. Although, it is quite close to the image-to-
image transformation task, it brings a lot of additional challenges with it. In particular,
the temporal consistency between the consecutive frames plays a crucial role. Inter-
estingly, two research groups already explored the potential of unpaired video-to-video
transformation for the usage in medical training simulators [16, 48]. The proposed tem-
pCycleGAN [16] approach is based on the original cycleGAN architecture but considers
two consecutive frames for one translation. By using another temporal discriminator
and additional loss functions the architecture show better temporal consistency than us-
ing the standard cycleGAN. Another idea is to use the information about the optical
flow within a video sequence. The proposed MoCycleGAN (Motion-guided CycleGAN)
[8] leverages the optical flow between two consecutive frames to restrict the generator
through an appropriate loss function (Figure 3.12).

Figure 3.12: Architecture of the MoCycleGAN [8]

Although, the MoCycleGAN shows promising results with simultaneous minimization of
the inference time compared to the tempCycleGAN, it still uses the optical flow only
implicitly. This means that the results are not always satisfactory.

3.6 Image Inpainting & Composition

Image inpainting with neural networks is a cutting-edge technique in computer vision
and image processing. The goal of inpainting is to reconstruct missing or damaged
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regions in an image seamlessly, making the alterations visually imperceptible (Figure
3.13). Deep learning models have shown remarkable success in addressing this task. The
applications of image inpainting with neural networks are diverse, ranging from restoring
old photographs and removing unwanted objects to medical image restoration and video
editing [34, 39, 40, 51].

Figure 3.13: Images with masked regions (white) and the corresponding reconstructed
images. Reconstruction is done with the help of a deep neural network [37].

In some cases the model should not simply fill the missing area such that it looks realistic,
but the filled region should contain a particular object (Figure 3.14). The approach where
an inpainting model is guided with an object is called image composition [7, 55, 64].
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Figure 3.14: Examples for the task of image composition. The small images on the left
show the original image and the masked (grey) image. The other columns
show the result of the image composition with the given reference object in
the top left or bottom left corner respectively [64].

Although, maybe the task to fill a region of interest with missing pixels sounds not too
difficult, on closer inspection, the task can be quite challenging even for the complex
architectures. The problem of image inpainting or composition, respectively, can be
decomposed into six different sub-tasks. The first one is the boundary problem, which
means that the filled pixels should have a smooth transition from foreground to back-
ground. The appearance (e.g., illumination) should also be adjusted to fit the overall
context of the image. The generation of a shadow is important in order to be close to
reality, but it is quite challenging. Regarding the inpainting of an object the size and
geometry should be adjusted according to the overall image. Furthermore, the semantic
context of an object should be obtained. And last but not least it should be possible
to copy with the unreasonable occlusion. A survey [44] from 2023 summarized existing
methods for each of the sub-tasks which are shown in Figure 3.15.
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Figure 3.15: Issues to be solved in image inpainting/composition and the corresponding
deep learning methods to solve these issue. (Changed according to [44])

Whereby the different methods investigated can be categorized into three different archi-
tectures. The first approach is to use an encoder/decoder architecture with perceptional
and reconstruction losses (marked in light blue). These methods seem to be able to solve
mainly the task of the boundary conditions and the appearance, but fail at the other
tasks. Methods that are based on GAN (marked in orange) architectures appear to be
able to learn more complex tasks and can also cover the shadow generation or geometry.
But still they are not able to cover all of the six tasks at once. Recently published meth-
ods which are using diffusion models (marked in violet) show promising results when
trying to cover all tasks [44].

3.7 Optical Flow

Non-linear registration is a crucial technique in medical image analysis that enables the
alignment of images with complex spatial deformations. Unlike linear registration, which
assumes global affine transformations (e.g. scaling, rotation, etc.), non-linear registration
accounts for local variations and distortions within the images. Non-linear registration
aims to find a transformation φ that aligns two or more images Ik=1,...n by warping
one image Ii onto another image Ij . This transformation is typically represented by
a deformation field, which describes how each point in the moving image is mapped
to the corresponding point in the fixed image. Unlike linear transformations, which
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preserve straight lines and parallelism, non-linear transformations can model complex
deformations such as bending, stretching, and twisting. Non-linear registration involves
optimizing a cost function D that measures the discrepancy between a reference image R

and a target image T under the deformation field. Often the reference image R is called
fixed image and the image T is referred to as moving image, since the transformation
φ is applied to T . Mathematically, the resulting optimization problem can be expresses
like

J [R, T ◦ φ] := D[R, T ◦ φ] + S[φ]→ min (3.14)

The term S is introduced as an additional regularization to provide particular smoothness
[63]. As cost function J , the NCC (Normalized Cross-Correlation) is commonly used since
it quantifies the similarity between two images [68]. Mathematically, the NCC between
two images R and T at a given displacement (x,y) can be expressed as:

NCC(R, T ) =

∑
x,y(R(x, y)− R̄) · (T (x, y)− T̄ )√∑

x,y(R(x, y)− R̄)2 ·
∑

x,y(T (x, y)− T̄ )2
(3.15)

Whereby, R̄ and T̄ denote the means of images R and T respectively. The NCC value
lies between -1 and 1, where a value of 1 indicates perfect similarity, 0 indicates no
correlation, and -1 indicates perfect negative correlation. Due to this, the goal in this
case is to minimize the negative of the NCC value, since most optimization algorithms are
designed for minimization. For the optimization process itself, techniques like gradient
descent are employed to find the optimal transformation parameters that minimize the
cost function. During each iteration of the optimization process, a Gaussian kernel can be
applied to the deformation field. It helps to regularize the optimization process, making
it more stable and less sensitive to noise and local variations in the images. Since the
decision of the size of the kernel is a trade-off between capturing fine details and overall
stability, it has to be chosen carefully, depending on the application.

To further improve the efficiency of the optimization, a coarse-to-fine strategy can be
employed. This strategy estimates a deformation field efficiently by first obtaining a
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coarse-level estimate, then refining it iteratively at finer resolutions. It involves repre-
senting images and deformation fields in a pyramid structure, refining the estimation
using hierarchical optimization or interpolation, which lead to a better stability and
faster convergence [42]. After the optimisation converged or reached a given number of
iterations, the final result will be the motion field u. This field now contains the infor-
mation about how to move each pixel of the moving image such that it aligns with the
fixed image (Figure 3.16).

Figure 3.16: Warping an image (moving) at time step t of a video sequence to align it
with a frame (fixed) at time step t+ 6 using the calculated vector field.
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Here, only every eighth vector of the motion field is illustrated for better clarity. It is
clearly visible by observation that the ulcus in the fixed image is moved more towards the
upper right corner compared to the moving image. This is also confirmed when looking
at the directions of the vectors and thus the warped image looks quite similar to the fixed
image. However, the warped images shows black pixels on the left, which were not there
before. This is due to the fact that there are no known pixels at the edges of the images
which could be mapped to the corresponding positions. Therefore, these pixels were set
to a default values which is typically 0.
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4 Denoising diffusion probabilistic models

Deep Diffusion Probabilistic Models (DDPMs) [25] are a recent breakthrough in genera-
tive modeling, combining principles of probabilistic modeling and deep neural networks.
Unlike traditional approaches, DDPMs explicitly model the diffusion process, which orig-
inates from stochastic processes and statistical physics. Stochastic processes describe the
evolution of random variables over time, and diffusion processes specifically model the
random movement of particles or information through a medium [56]. In the context of
DDPMs, the diffusion process is adapted to iteratively transform noise-corrupted inputs
into realistic samples by gradually reducing the level of noise. This idea draws inspiration
from physical diffusion, where particles spread out from regions of high concentration to
regions of low concentration, gradually achieving equilibrium. By modeling this diffu-
sion process, DDPMs can effectively capture complex data distributions and generate
high-quality samples [25].

4.1 Theory

The generation of samples is done in two stages. The first stage is called the forward
process q in that the noise is applied.

q(xt|xt-1) = N (xt,
√

1− βtxt-1, βtI) (4.1)

Here, the noise is sampled from the normal distribution N . The output sample xt is
the result depending on the previous sample xt−1 noised with the mean of

√
1− βt and

variance of βt. A smaller number regarding the time step t means in this case a lower
amount of noise and a higher number of t means a high amount of noise, respectively.
The value of βt belongs to a given schedule which will be explained later.
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One possibility to noise the sample is to iteratively apply the forward process for each
time step. However, it is possible to do all time steps in one pass. In order to derive this,
a few notations are important.

αt = 1− βt (4.2)

In addition the cumulative product of all alphas will be used for better clarity.

ᾱt =

t∏
s=1

αs (4.3)

With the help of the so called reparameterization trick N (µ, σ2) = µ+ σ · ϵ the forward
process can be rewritten.

q(xt|xt-1) =
√
1− βtxt-1 +

√
βtϵ (4.4)

Whereby, ϵ is taken from a normal distribution ϵ ∼ N (0, 1) with 0 mean and a standard
deviation of 1. The previously introduced notation for αt can be used to rewrite the
formula again.

q(xt|xt-1) =
√
αtxt-1 +

√
1− αtϵ (4.5)

It turns out that it is possible to calculate xt at each time step by just using all necessary
values of αt. Even more interesting is the fact that the final noised sample xt can be
directly calculated from the initial sample x0.
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q(xt|xt-1) =
√
αtxt-1 +

√
1− αtϵ

=
√
αtαt-1xt-2 +

√
1− αtαt-1ϵ

=
√
αtαt-1αt-2xt-3 +

√
1− αtαt-1αt-2ϵ

= ...

=
√
αtαt−1...α1α0x0 +

√
1− αtαt−1...α1α0ϵ

Using the accumulated product α̂t, the expression can be further simplified.

q(xt|xt−1) =
√
ᾱtx0 +

√
1− ᾱtϵ (4.6)

With this formula it is possible to noise a sample in one pass independently of the amount
of the time steps, which makes the forward process fast and easy.

The second stage of DDPMs is the reverse diffusion process p(xt-1|xt). This time, it takes
a noised sample xt and with the help of a neural network it produces a less noised sample
xt−1.

p(xt-1|xt) = N (xt-1, µΘ(xt, t),ΣΘ(xt, t)) (4.7)

Whereby ΣΘ is the neural network to predict the variance and µΘ is a network to predict
the mean of the noise. Often the variance is fixed during the sampling procedure, which
means no network is necessary for this parameter. Therefore the task is only to predict
the mean using µΘ [25]. As already mentioned the training of a neural network pΘ is
based on the minimization of a loss function. In theory, the negative log-likelihood could
be chosen, since it would indicate if a generated sample belongs to the data distribution
of the training data or not:

L = −log(pΘ(x0)) (4.8)
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In practice, this is not possible, because pΘ(x0) depends on all the time steps before and
therefore, it is not easy to keep track of all the gradients in each step. As a solution, the
variational lower bound is used as a more nicely calculable target. The idea is that in case
a given function f(x) can not be calculated and it can be proven that there is a function
g(x) which is always smaller than f(x), this function will increase when maximizing g(x).
Here, f(x) is the negative log-likelihood and g(x) is the Kullback-Leibler divergence (KL-
divergence) [25].

−log(pΘ(x0)) ≤ −log(pΘ(x0)) +DKL(q(x1:T |x0)||pΘ((x1:T |x0)) (4.9)

The KL-divergence is a measure how close two distributions are and will not become
negative.

DKL(p||q) =
∫
x
p(x)log(

p(x)

q(x)
) dx (4.10)

Since −log(pΘ(x0)) still occurs on both sides and therefore, it is not calculable so it has
to be further reformulated.

DKL(q(x1:T |x0)||pΘ((x1:T |x0)) = log(
q(x1:T |x0)
pΘ(x1:T |x0)

) (4.11)

After that, the Baysian rule is applied to the lower term pΘ(x1:T |x0).

pΘ(x1:T |x0) =
pΘ(x0, x1:T )pΘ(x1:T )

pΘ(x0)

=
pΘ(x0, x1:T )

pΘ(x0)

=
pΘ(x0:T )

pΘ(x0)

Thus, the log-term in Equation 4.11 can be rewritten.
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log(
q(x1:T |x0)
pΘ(x1:T |x0)

) = log(
q(x1:T |x0)
pΘ(x0:T )
pΘ(x0)

) (4.12)

Now the bottom term of the denominator can be pulled up and the log rule applied
afterwards.

log(
q(x1:T |x0)
pΘ(x0:T )
pΘ(x0)

) = log(
q(x1:T |x0)
pΘ(x0:T )

) + log(pΘ(x0)) (4.13)

After reaching that point, this term is inserted in the original formula (Equation 4.9)
which is the starting point. By doing this, the term log(pΘ(x0)) cancels each other out
and the quantity, which is not calculable, vanishes. This ends up in the variational lower
bound which can be minimized during the training of the network µΘ(xt, t).

−log(pΘ(x0)) ≤ log(
q(x1:T |x0)
pΘ(x0:T )

) (4.14)

Looking at the variational lower bound it is noticeable that the upper term q(x1:T |x0) is
just the forward process and the lower can be further rewritten as the following.

pΘ(x0:T ) = p(xT )

T∏
t=1

pΘ(xt−1|xt) (4.15)

Here, p(xT ) can be computed using the neural network and pΘ(xt−1|xt) is the output of
at time step t. At this point, the authors of the original DDPM paper [25] decided to
do some more reformulation steps to arrive at a more easy calculable expression which
can be later implemented properly. For this, the current formulation for the lower bound
(Equation 4.14) is rewritten and log-rules were applied.
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log(
q(x1:T |x0)
pΘ(x0:T )

) = log(

∏T
t=1 q(xt|xt−1)

p(xT )
∏T

t=1 pΘ(xt|xt−1)
) (4.16)

= −log(p(xT )) + log(

∏T
t=1 q(xt|xt−1)∏T
t=1 pΘ(xt|xt−1)

) (4.17)

= −log(p(xT )) +
T∑
t=1

log(
q(xt|xt−1)

pΘ(xt|xt−1)
) (4.18)

At this point the authors decided to take out the first summand for t = 1, which will
make more sense in the end.

log(
q(x1:T |x0)
pΘ(x0:T )

) = −log(p(xT )) +
T∑
t=2

log(
q(xt|xt−1)

pΘ(xt|xt−1)
) + log(

q(x1|x0)
pΘ(x0|x1)

) (4.19)

Next the nominator q(xt|xt−1) is rewritten by using the Bayesian rule.

q(xt|xt−1) =
q(xt−1|xt)q(xt)

q(xt−1)
(4.20)

But there is the problem with this formulation, since q(xt|xt−1) depends on xt and xt−1

which can have a high variance because up to this point there is no information about
the initial x0. Therefore, the authors reduced the high variance by conditioning Equation
4.20 also on x0. These conditioning reduces the high variance and the output get more
certain.

q(xt|xt−1)⇒
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)
(4.21)

Replacing the new term for q(xt|xt−1) in 4.19 will lead to the following.
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log(
q(x1:T |x0)
pΘ(x0:T )

) = −log(p(xT )) +
T∑
t=2

log(
q(xt−1|xt, x0)q(xt|x0)
pΘ(xt−1|xt)q(xt−1|x0)

) + log(
q(x1|x0)
pΘ(x0|x1)

)

(4.22)

By having a closer look at the formula it is now more clear why the authors decided to
take out the first summand. If they had not done it, the formula would end up in a loop
after conditioning on x0.

q(x1|x0) =
q(x0|x1)q(x1)

q(x0)
⇒

q(x0|x1, x0) q(x1|x0)
q(x0|x0)

(4.23)

For further simplification, the sum in Formula 4.22 is split up again which will result in
following term.

log(
q(x1:T |x0)
pΘ(x0:T )

) = −log(p(xT )) +
T∑
t=2

log(
q(xt−1|xt, x0)

pΘ(xt−1|xt)q(xt−1|x0)
)

+
T∑
t=2

log(
q(xt|x0)
q(xt−1|x0)

)

+ log(
q(x1|x0)
pΘ(x0|x1)

)

When writing out the second summation, it becomes apparent that a lot of terms cancel
each other out, which can be demonstrated by choosing T = 4 as an example.

4∑
t=2

log(
q(xt|x0)
q(xt−1|x0)

) = log(

4∏
t=2

q(xt|x0)
q(xt−1|x0)

)

= log(
q(x2|x0)q(x3|x0)q(x4|x0)
q(x1|x0)q(x2|x0)q(x3|x0)
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Only the last term in the nominator and the first one in the denominator remain. With
this observation, the sum can be dramatically simplified.

T∑
t=2

log(
q(xt|x0)
q(xt−1|x0)

) = log(
q(xT )|q(x0)
q(x1)|q(x0)

) (4.24)

This outcome can be inserted in the Equation 4.24.

log(
q(x1:T |x0)
pΘ(x0:T )

) = −log(p(xT )) +
T∑
t=2

log(
q(xt−1|xt, x0)

pΘ(xt−1|xt)q(xt−1|x0)
)

+ log(
q(xT )|q(x0)
q(x1)|q(x0)

)

+ log(
q(x1|x0)
pΘ(x0|x1)

)

The last two terms can be further rewritten using the logarithmic rules.

log(
q(xT |x0)
q(x1|x0)

) + log(
q(x1|x0)
pΘ(x0|x1)

) = log(q(xT |x0))− log(q(x1|x0))

+ log(q(x1|x0))− log(pΘ(x0|x1))

Whereby, the term two and three cancel each other out. At this point, the authors
decided to also bring the first term to the front and fuse it with −log(p(xT )).

log(
q(x1:T |x0)
pΘ(x0:T )

) = −log(q(xT |x0)
p(xT )

) +
T∑
t=2

log(
q(xt−1|xt, x0)
pΘ(xt−1|xt)

)− log(pΘ(x0|x1)) (4.25)

The Equation 4.25 can be also rewritten using the KL-divergence notation which ends
up in a nice analytical expression.
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log(
q(x1:T |x0)
pΘ(x0:T )

) = DKL(q(xT |x0)||p(xT ))

+
T∑
t=2

DKL(q(xt−1|xt, x0)||pΘ(xt−1|xt))

− log(pΘ(x0|x1))

Since the first KL-divergence term does not contain any learn-able parameter, it can
be ignored in this case. Also due to the fact that q(xT |x0) will converge to a normal
distribution and p(xT ) is sampled from it, the difference will be really small anyways.

log(
q(x1:T |x0)
pΘ(x0:T )

) =
T∑
t=2

DKL(q(xt−1|xt, x0)||pΘ(xt−1|xt))− log(pΘ(x0|x1))

As already mentioned in the beginning, pΘ(xt−1|xt) can be expressed like the following.

N (xt−1;µΘ(xt, t),ΣΘ(xt, t)) = N (xt−1;µΘ(xt, t), βI)

Whereby, the variance Σ is a fixed schedule and these closed form solution also exits for
the forward process.

N (xt−1; µ̂t(xt, t), β̂I)

For the sake of simplicity, the derivation of µ̂ and β̂ is not covered here. It can be proven
that the final version of µ̂ and β̂ looks like the following [25].
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µ̂t(xt, x0) =

√
αt(1− α̂t−1)

1− α̂t
xt +

√
α̂t−1βt
1− α̂t

x0 (4.26)

β̂t =
1− α̂t−1

1− α̂t
· βt (4.27)

Since β̂ is fixed, the focus only lays on µ̂. The closed form solution for the forward process
can be expressed like the following (see Equation 4.5).

xt =
√

α̂tx0 +
√
1− α̂tϵ

Whereby, the formula can be rewritten in terms of x0.

x0 =
1

α̂t
(xt −

√
1− α̂tϵ)

This term can be inserted into the Equation 4.27, which leads to a formulation for µ̂t

that does not depend on x0 anymore.

µ̂t =

√
αt(1− α̂t−1)

1− α̂t
xt +

√
α̂t−1βt
1− α̂t

1

α̂t
(xt −

√
1− α̂tϵ)

=
1

α̂t
(xt −

βt√
1− α̂t

ϵ)

The authors [25] decided to use a simple L2-norm for the loss function and calculate the
difference between the actual mean µ̂t(xt, t) and the predicted mean µΘ(xt, t) and due
to the fact that xt is already available as input to the model and thus does not have to
be predicted. Therefore, it is sufficient to only calculate the mean squared error between
the predicted and the actual noise.
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Lt =
1

2σ2
t

||µ̂t(xt, t)− µΘ(xt, t)||2 (4.28)

=
1

2σ2
t

|| 1
α̂t

(xt −
βt√
1− α̂t

ϵ)− 1

α̂t
(xt −

βt√
1− α̂t

ϵΘ(xt, t)||2 (4.29)

=
β2
t

2σ2
tαt(1− α̂t)

||ϵ− ϵΘ(xt, t)||2||2 (4.30)

Interesting is that, better sampling quality was experienced when ignoring the scaling
factor in front. Which leads to the final version of the loss function for the neural network
[25].

Lt = ||ϵ− ϵΘ(xt, t)||2 (4.31)

Once the neural network is trained to predict the noise, it can be used to remove the
noise within the sample with the help of the reparameterization trick.

xt−1 =
1
√
αt

(xt −
βt√
1− α̂t

ϵΘ(xt, t)) +
√

βtϵ (4.32)

Commonly, the neural network is based on a basic U-Net architecture, but additionally
the time step t is embedded and integrated in the each stage of the U-Net to condition
the model on this parameter (4.1).

40



4 Denoising diffusion probabilistic models

Figure 4.1: Diffusion model based on a U-Net architecture with time step embedding.

4.2 Noise Scheduling

The way how the noise is applied to the image plays a crucial role when training a diffu-
sion model. Several methods have already been tested and the optimal noise scheduling
depends on the specific task. For example, when increasing the image size it is recom-
mended to use a more noisier schedule due to increased redundancy in pixels [6]. In order
to get a brief intuition of the noise scheduling, the linear and the cosine scheduler will
be compared. In general α̂t is sampled and calculated using a function f(t).

α̂t =
f(t)

f(0)
(4.33)

For a linear schedule the values for α̂t are simply interpolated between a given start and
end value.

f(t) =
βend − βstart

steps
· t (4.34)
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In case a cosine schedule is used, the α̂t are sampled from a cosine function.

f(t) = cos(
t
T + s

1 + s
· π
2
)2 (4.35)

The parameter s is used as a small offset to prevent βt from being too small near t = 0

[43]. Independently of the schedule, the calculation of the corresponding βt stays the
same.

βt = 1− α̂t

α̂t − 1
(4.36)

The Figure 4.2 shows the difference when noising an image with the linear and the cosine
schedule. It is clearly visible that the features and structures of the images are maintained
for longer when using the cosine schedule.

Figure 4.2: Comparison of linear and cosine noise scheduling at time steps 0, 100, 150,
300, 600 and 999.

Overall, the scheduling principle for a DDPM involves determining the schedule of dif-
fusion steps during training and inference to effectively denoise images while optimizing
performance and convergence [6].

42



4 Denoising diffusion probabilistic models

4.3 Further Improvements

There are two major modifications to the original training procedure, which lead to better
results. The first one is the principle of classifier free-guidance (CFG) and the second is
the use of the exponential moving average (EMA).

The CFG approach [26] introduces a new variable to condition the prediction. For
example, the output should belong to a certain class and should not be an arbitrary
image sampled from the data distribution. Therefore, an additional information about
this class needs to be provided to the network in order to control the generation process.
Since the model is already conditioned on the sampling step t, the easiest way is to add
the label y to the time step. For this, the label y and the time step t must have the same
dimension and since the number of classes is most likely not the number of time steps
there must be an additional embedding of y in order to add these two. Interestingly, the
authors decided to train the model only in 90% of the training steps with a conditional
class label, the other 10% the class label will be ignored. This allows that the model
learns to generate images both conditional and unconditional. Also it is observed that
the results show a better quality. In the sampling process, both results will be calculated
and linearly interpolated between these outputs afterwards [26]:

ϵt = ϵt,Θ + w · (ϵt,c − ϵt,,Θ) (4.37)

Whereby ϵt,c is the predicted noise using the class label information and ϵt,Θ is the
prediction without. The parameter w indicates a weight which influences the impact of
the class label to the output. A higher value of w will ensure that the result will belong
to the given class but it will also decrease the quality.

The second improvement is the use of EMA, which has also been used in other training
procedures in different model architectures. The goal is to smoothen the training process
regarding updating the weights. In case the training process leads to a noise update of
the weights meaning that the direction of the gradient changes a lot, EMA can smoothen
this and ensure a more robust outcome. The implementation for this strategy is quite
simple. In the beginning a copy of the model must be made. The weights of the normal
model pΘ will updated as usually using the loss and a given optimizer. The weights of
the EMA model pΘ,EMA will updated depending on the old and new weights.
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w = β · wold + (1− β) · wnew (4.38)

This is simply an interpolation between the old weights of the model and the new one
weighted with the parameter β. Usually, β is around 0.99 which means that the influence
of the new weights is very low. This avoids that big outliers during the training process
will have a large impact on the model weights.

4.4 Stable Diffusion Model

The Stable Diffusion model [49] is a text-to-image model, which was invented among
others by CompVis Group at Ludwig Maximilian University of Munich and released in
2022. The main difference compared to a normal diffusion model is that the denoising
process is applied in the latent space and not on the image itself. In order to transform
the images into a suitable latent space representation, a pretrained auto-encoder network
is used (Figure 4.3).

Figure 4.3: Architecture of the Stable Diffusion model. [49]

The goal remains the same, which is to predict the noise and therefore, the loss function
remains the same as discussed before. Finally, the whole training procedure of the Stable
Diffusion model is splitted into three stages. The first stage is the training of the encoder
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and decoder. After that, these networks were used to transform the images into latent
space in order to apply it to the U-Net model, which is trained in the second stage. Once
these two training phases were carried out, the U-Net model can be trained once again
but conditioned on an additional label.
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As already mentioned, there are a lot of architectures for the task of image inpainting
and image composition, respectively. In this work, four of them are chosen to test the
performance on this particular use case. Thereby, two of the architectures are based on
GANs and the other two uses DDPM. First, the StyleMapGAN [35] will be investigated
since it is designed to learn the feature representation in a latent space and can than be
used as an improved „copy & paste“ technique. It was chosen as it should also work when
having a low amount of data available like it is the case for images with pathologies. The
second GAN approach is the SAC-GAN [4], which has the advantage that it allows a
free form inpainting at any given location, which is not the case for the StyleMapGAN.
Additionally, the architecture is designed such that it can be conditioned on a label
and thus control the content of the inpainted area. The third architecture that will
be investigated is the standard DDPM. Since it can be trained and used for this task
without any further modification it is perfect to get a first intuition of the performance
of DDPMs for the inpainting task. This also allows to compare the results of GAN-based
methods and DPPMs. The last architecture will be a more advanced DDPM named
Anydoor [7], which is based on the Stable Diffusion architecture [49]. Whereby, this
model is not designed as an inpainting model as the other approaches. It is made for
image composition, i.e. the inpainting of a reference object into a target image. With
this, the following methods covers both the comparison of GAN-based architectures and
DDPMs as well as image inpainting and image composition.

5.1 StyleMapGAN

Recent approaches of GAN-based image generation not only focus on the generation
of high quality images, but also to be able to influence and guide the image synthesis.
Most of the techniques do this by manipulating the latent space [28, 46, 54]. Although
this works, it comes with a few drawbacks which lower the quality of the generated
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images. First the projection to a single latent vector can be very time consuming and
the manipulation highly depends on a accurate embedding of the encoder. In order
to address these problems, the StyleMapGAN [35] uses an intermediate latent space
representation instead of a single vector. This maintains higher features of the images,
which improves the results regarding local image editing and image interpolation.

The architecture of the StyleMapGAN consists of four networks F , G, E and D (Figure
5.1). The synthesis network G is trained to reconstruct real images in terms of both
pixel-level and perceptual-level. The encoder E learns to reconstruct the stylemap when
G(F ) generated an image using the a vector sampled from Gaussian distribution. As
usual, the discriminator D tries to distinguish between the real and generated images.
For the inference itself, only the encoder E and the synthesis network G are needed.

Figure 5.1: Training and inference principle of StyleMapGAN [35].

During the training process several loss functions are used to optimize the parameters of
the networks. The standard adversarial loss is applied to the synthesis network G and
the discriminator D. Additional D, is stabilized using the R1-regularisation [41].
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R1 = λ
n∑

i=1

|wi| (5.1)

It adds a penalty to the objective function that discourages complexity in the model by
shrinking the weights w towards zero. Whereby, the strength of the regularisation can
be controlled with the parameter λ. This helps to prevent over-fitting and improves the
generalization ability of the model, especially in high-dimensional data sets where feature
selection is crucial. The mean squared error is used for the latent reconstruction of the
encoder and the image reconstruction of E and G. Furthermore, the learned perceptual
image patch similarity (LPIPS) [66] is applied to E and G as perceptual loss. This helps
to decrease the difference between original and reconstructed images.

The influence of the size of the stylemaps were also investigated and the results are
illustrated in Figure 5.2. It turns out that when choosing a too low spatial resolution
the outputs suffer from poor reconstruction, i.e high level features get lost. This matches
with the observations of approaches using a single vector as latent representation. The
other way around if the stylemap dimension is too high, too many high level features
are preserved and the results are not harmonious. The best output were achieved at a
stylemap size of 8x8.

Figure 5.2: Influence of dimension size for style maps [35].

Once the training is done, the image editing can be performed by simply transforming two
images into the stylemap representation and blending the region of interest. Whereby, the
region can be masked on the original images as the mask is shrunk by max pooling in order
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to align it to the corresponding location in the stylemaps. After projecting the original
image and the reference image through the encoder E into the latent representation, the
edited stylemap ẅ can be calculated using the stylemaps w and w̃ together with the mask
m.

ẅ = m⊙ w̃ + (1−m)⊙ w (5.2)

The Figure 5.3 shows examples of synthesized images using aligned and unaligned trans-
plantation. It demonstrates that it is possible to copy an arbitrary number and size of
areas of a given reference image into another image using the StyleMapGAN.

Figure 5.3: Examples of transplantation mode of the StyleMapGAN [35].

Although it is possible that the transplantation can be performed even if the location
does not align, the problem that the masks need to have the same size still exists.
However, since the goal of the architecture is to simply learn the latent representation
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of the images within a data set it does not play a crucial role if images of a certain class
are underrepresented.

5.2 SAC-GAN

Based on the idea of representing images as style maps introduced with the StyleMap-
GAN, the spacial-aware attribute controllable GAN (SAC-GAN) [4] tries to improve the
results and simultaneously avoid the main drawbacks. This time it is specially devel-
oped for filling missing areas in faces. Again a basic encoder and decoder architecture
is used, but this time the shape and location of the masks can be chosen arbitrarily
and additionally the style of the filled area is controllable via spatial style maps (Figure
5.4).

Figure 5.4: SAC-GAN architecture [4].

The domain condition cx is represented as a one-hot encoded vector and expresses the
desired facial attribute, e.g. smiling, angry, etc. In contrast to the StyleMapGAN, the
spatial style maps are not the output of the encoder. The style maps were obtained by
using the latent representation of the encoder network Ge, which are then resized using
the mapper networkM followed by upsampling layers. The resulting spatial style maps
are used as additional information in decoder network Gd through applying them to the
decoder layers by weight modulation. One special feature is that a cross attention module
is used in the mapper network for enhancement of contextual consistency in feature space
to achieve long-range dependency between image feature and spatial style map [4].
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Since the architecture should be capable of filling missing pixels within a given image
the network is trained on the masked images without using the complete images as
inputs. This makes is possible not only to change an area in a complete image but also
to restore an already damaged one. To enable the model to learn this task, four loss
functions are used which are illustrated in Figure 5.5. As it is a GAN-based approach,
the typical adversarial loss is used in combination with a discriminator network D. Since
the model should learn to only change the pixels within the masked area, a pixel-wise
reconstruction loss is adopted. Because the mean squared error has a drawback of making
the reconstructed image blurry, the L1 distance between each pixel is calculated in this
case [4]. The encoder Gee and the mapper networkM are trained with a style consistency
loss to ensure that both extract the identical style maps from the reconstructed and the
ground-truth image. Between these two style maps the MSE is calculated. The identity
preserving loss should guarantee that reconstructed outputs preserve the same identity
as the original input image. It is implemented by using a pretrained face identity network
R called ArcFace [12].

Figure 5.5: Loss function of SAC-GAN [4].

The training procedure is splitted into two phases. In the first phase, the reconstruction is
done within the source domain, i.e the image together with the original attribute. Here,
the encoder Ge, the decoder Gd and the mapper network M were updated by using
the reconstruction and style preserving loss. In the second phase, the reconstruction is
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done with a different attribute (target domain). Afterwards, the adversarial and identity
preserving losses are used to optimize the networks again, this time also including the
discriminator.

In Figure 5.6, two examples generated with the SAC-GAN are shown. The model is
able to fill missing areas of arbitrary shape in images of faces and generate outputs with
certain attributes.

Figure 5.6: Examples of face image inpainting with SAC-GAN and attribute manipula-
tion [4].

As the performance of the model was only investigated on images of faces, it will be in-
teresting to see how it performs on other domains like endoscopic images. The advantage
when training a model on face is that the main structure and position of these images
are always quite similar. Therefore, this task is much more easier to learn compared to
other difficult and varying scenes.

5.3 DDPM

The special thing about DDPMs is that no further or other training process is needed
when the model should be used for an inpainting tasks. The only thing that changes is
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the inference algorithm. Here, the model is guided with the already known image area
and thus the model only denoises the unknown masked area (Figure 5.7).

Figure 5.7: DDPM inference for inpainting task [39].

Therefore, the standard U-Net model of the original DDPM [25] can be used and just
needs to be retrained on the specific data set. The original inference procedure (Algorithm
2) is later changed such that the backward process is guided with the already known area
(Algorithm 3).

Algorithm 1 DDPM training [25]
1: repeat
2: x0 ∼ q(x0)

3: t ∼ Uniform(1, ..., T )

4: ϵ ∼ N (0, I)

5: ∇Θ||ϵ− ϵΘ(
√
α̂tx0 +

√
1− α̂tϵ, t)||2

6: until converged

Algorithm 2 DDPM inference [25]

1: xt ∼ N (0, I)

2: for t = T, ..., 1 do
3: z ∼ N (0, I)ift > 1, elsez = 0

4: xt−1 =
1√
α̂t
(xt− 1−αt√

1−α̂t
ϵΘ(xt, t))+σtz

5: end for
6: return x0

Although, the results often already look promising, i.e the transitions between known and
inpainted area, the content within the area tends to look semantically not meaningful
(Figure 5.8).

Figure 5.8: Results of Repaint algorithm with different number of resampling steps [39].
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This is because the sampling of the known pixels is performed without considering the
generated parts of the image, which introduces disharmony and get worse with every
time step. One possibility to overcome this problem is to use a resampling approach [39],
meaning during the backward process, the sampling process is performed multiple times
before advancing to the next time step (Algorithm 3).

Algorithm 3 Inpainting using RePaint approach with U resamplings [39].

xT ∼ N (0, I)

for t = T to 1 do
for u = 1 to U do

ϵ ∼ N (0, I) if t > 1, else ϵ = 0

xknown
t−1 =

√
α̂tx0 + (1− α̂t)ϵ

z ∼ N (0, I)ift > 1, elsez = 0

xunknown
t−1 = 1

α̂t
(xt − βt√

1−α̂t
ϵΘ(xt, t)) + σtz

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1

if u < Uandt > 1 then
xt ∼ N (

√
1− βt−1xt−1, βt−1I)

end if
end for

end for

Due to this resampling, the model has more time to harmonize the known xknown
t and

the unknown area xunknown
t , but it also increases the inference time depending on the

number of resampling steps.

5.4 Anydoor

The overall architecture of the Anydoor model [7] involves many components (Figure
5.9). The main component for the image generation is a pretrained Stable Diffusion
model, whereby the input for the guidance differ from the original approach. The con-
ditional tokes which normally come from the CLIP [47] network are replaced by an ID
extractor. This ID extractor consists of a pretrained DINO-V2 transformer model [45] as
the backbone and additional linear layer in order to align the output to the embedding
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space of the Stable Diffusion model. Additionally, a detail extractor is used to create de-
tail maps which are then used as information for the skip connection of the U-Net model.
This detail extractor is the U-Net encoder of the ControlNet-style [65] architecture.

Figure 5.9: Anydoor pipeline [7].

For the training process, not every component of the architecture is trained. In Figure
5.9, the fixed model weights are indicated by a blue snow flake, which means that the
segmentor and the backbone (DINO-V2) of the ID extractor are not trained. In contrast
to this, the weights of the detail extractor, the linear layer of the ID extractor and
the decoder network of the Stable Diffusion model are optimized during the training
process.

In order to generate high quality outputs, Anydoor used as many a priori knowledge as
possible during the generation process (Figure 5.10). Therefore, a high frequency map
of the target object is calculated by a high-pass filter to extract the prominent features.
Furthermore, the attention maps generated by the ID extractor additionally refer to
important structures within the target image.
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Figure 5.10: Example of focus region of ID extractor and detail extractor [7].

Another interesting approach of the Anydoor model is the data preparation pipeline for
training. Since it is important that the model learns how to place an object in any
new position regardless of the conditions (geometry, lightning, etc.), it is necessary that
images of an object are available from different perspectives. Therefore, images of video
sequences are used for the training, as the point of view changes of an object changes a
lot over the time. For the training, simply two frames containing the same object but at
different times are selected (Figure 5.11). Then the object in one frame is treated as the
target (used for the detail and ID extractor) and the other used for the supervision.

Figure 5.11: Data preparation pipeline for Anydoor [7].

For the inference process, an area must be masked in which the reference object should
be inpainted and the actual reference object must be segmented. This means that two
masks are needed for the inference which differ from the other architectures which only
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required one mask. Important to know is that although the mask of the target area can
be given in any arbitrary shape, the model will convert this mask into a bounding box
covering the whole mask. This means that even though a free form mask was given in the
beginning, it is not guaranteed that the final inpainted object matches with the shape of
the given mask. But it will definitely be located within the bounding box.
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Since the generation of virtual pathologies is defined as a two-stage problem, the aim is
first to find the best method for the inpainting of a pathology in the initial frame of a video
sequence. Therefore, the four suggested models will be used and the results evaluated.
Once the best method is selected, the inpainting results are used for the optical flow part
in order to generate temporal consistent videos. The training and experiments were run
on a workstation with the following specifications.

• AMD Ryzen 7 5800X @3.6 MHz

• NVIDIA GeForce RTX 3090 24GB

• 64GB RAM @3600 MHz

• Ubuntu 22.04.3 LTS

For the training procedure, 63 videos (204866 frames) of real patients are available.
Whereby, 61 videos (202780 frames) belong to healthy patients and the other two videos
contain ulcera. Although in both cases the diagnosis is an ulcer, their visual appearance
differ a lot. Hence, these videos were splitted into three groups (Figure 6.1). The first
group contains only healthy looking patients. Group two holds a superficial ulcer (1098
frames) and the third group shows a deeper ulcer (988 frames).

Figure 6.1: Examples images of the different training classes. From left to right: healthy
patient, superficial ulcer, and deeper ulcer.
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The training of the StyleMapGAN follows the standard procedure as described in the
original paper [35]. All hyperparameters were maintained as suggested and during the
inference, the transplantation mode is used for local editing. The SAC-GAN is trained
twice with two different approaches. The first attempt only uses random generated
circles as masks whereby, the missing area is selected randomly all over the image. For
the second attempt, the pathologies in the real images of the data set are segmented
and the corresponding masks are used to select the missing pixel values. Since there are
no such segmentation masks available for the healthy patients, synthetic masks (Figure
6.2) are generated using another generative neural network. For this, the ProGAN [32]
model is trained with the real segmentation masks. This technique was already used for
inpainting of polyps and showed promising results [17].

Figure 6.2: Generated masks for training process. Left: real masks; middle: masks gen-
erated with circles and random noise; right: masks generated with ProGAN.

For the training process itself, all the hyperparameters are maintained. However, the
identity preserving loss is not taken into account since the face identity recognizer of the
original work is not applicable to our scenario.
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As previously noted, the original model is employed in relation to the DDPM approach.
It is retrained on the given data set and the inference procedure is adapted according to
the algorithm presented in chapter 5.3. During the training, the model is conditioned in
90% of the training steps and the rest is trained unconditioned, as suggested in [26]. For
the inference step, the EMA model is used as final model.

Since the architecture of the Anydoor model is complex, it requires a lot of memory
and time for the training. The authors recommended to use a NVIDIA A100, which
has about 80 gigabyte of memory. Retraining is therefore not suitable with the available
hardware setup and therefore only the pretrained model is used to explore the potential of
the approach. For model inference, the gap between the different image resolution must
be closed. Currently, the available models for transforming the dummy into synthetic
patients output images of the size 128x128 pixels. Since the Anydoor model expects
inputs images to have a size of 512x512 pixels, the transformed images must be resized
before they can be used. One method to do this is to use cubic interpolation, which is
simple but the quality of the resized images can be decreased. Another approach is to
use neural networks which are trained for the super resolution task. Such models can
upscale the input image whereby, the quality of the images is preserved (Figure 6.3).

Figure 6.3: Transformed dummy images resized from 128x128 to 512x512 pixels (original
left) by cubic interpolation (middle) and Real-ECRGAN (right)

The optical flow between two consecutive frames is calculated by using a variational
non-linear intensity-based registration approach [63]. Whereby, the algorithm is run a
maximum of 800 iterations with an early stopping delta of 1e-5. The registrations is done
using the coarse-to-fine approach with three levels. The intermediate results of the vector
field will be smoothen by using a Gaussian kernel with σx = σy = 5 pixel. Additionally,
the the pretrained deep learning network RAFT [58] is used as an alternative.
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6 Experiments

For the video generation process the following procedure is implemented in order to
ensure the temporal consistency of the inpainted pathology. First, a pathology is chosen
and inpainted in the initial frame (I0,inpainted) of a video sequence (V ). Second, the
optical flow field (f) is calculated using the method (F ) mentioned above. After that,
the corresponding segmentation mask (M) and cropped pathology (P ) is warped and
inserted in the subsequent frame Ii+1 using the Hadamard product ⊙.

Algorithm 4 Procedure of video generation with pathology
Require: I0,inpainted, V , M , P , F
1: V [0]← I0,inpainted ▷ Assign inpainted frame as initial frame
2: for i=0 ;i<len(V)-1; i++ do ▷ Loop through all frames
3: fi→ii+1 ← F (Vi, V ii+1)
4: M ← warp M with fi→ii+1 ▷ Get new mask
5: P ← warp P with fi→ii+1 ▷ Get updated pathology
6: V [i+ 1]←M ⊙ P + (1−M)⊙ V [i+ 1] ▷ Copy pathology into frame
7: end for
8: return V ▷ V is the video sequence with inpainted pathology
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7 Results

7.1 StyleMapGAN

Once again, the StyleMapGAN simply learns to encode the images into a latent space
and than replace the masked region with the desired features. Therefore, it is to be
expected that the inpainted pathologies have a good quality although the data set does
only contain very few training examples. The assumption is underpinned by our findings
(Figure 7.1 and 7.2).
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Figure 7.1: Results of StyleMapGAN for superficial ulcer. The same reference pathology
(right column) inpainted in four different images (middle column). The first
column contains the final inpainted images.

The inpainted region looks quite close to the reference pathology. However, it is clearly
visible that not only the masked region but also parts of the surrounding area are changes
during the inpainting process.
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Figure 7.2: Results of StyleMapGAN for deeper ulcer. The same reference pathology
(right column) inpainted in four different images (middle column). The first
column contains the final inpainted images.

Furthermore, the observation of the authors [35] that the quality of the results highly
depends on the structural similarity between the target and reference image can be
confirmed. The greater this difference is the more of the surrounding area is changed
and therefore the quality is very poor. This can be clearly seen in Figure 7.2 in the first
three rows. In contrast the structural similarity between the target and reference image
in the last row is higher and the inpainted result looks more reasonable.
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7.2 SAC-GAN

The results of the first attempt (using random areas masked with circles) are shown in
Figure 7.3. It is clearly visible that the model fails to fill the missing area properly.
The transitions are not smooth and thus the shape of the original mask is still visible.
Furthermore, the inpainted areas do not show the expected pathologies. It seems that the
model arbitrarily inpaint areas of the mucosa corresponding to the particular patient.
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Figure 7.3: Results of SAC-GAN with circle masks (left) and randomly generated masks
(right). From top to bottom: original image, original image with mask,
healthy, superficial ulcer, deeper ulcer)

The model is therefore not able to fill the masked areas in a meaningful way when training
only with randomly generated masks. But it seems that the model learned to only fill
the masked area without changing the adjacent pixels. The results of the second attempt
(using segmentation masks of the pathologies) are illustrated in Figure 7.4.
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Figure 7.4: Results of SAC-GAN with segmentation masks. From top to bottom: original
image, masked original image, inpainted healthy patient, superficial ulcer,
deeper ulcer.
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Interestingly, the updated model appears to be capable of filling defect areas with healthy
mucosa, which can be seen in the third row of Figure 7.4. However, the results of the
other two cases still do not show the desired pathologies. The inpainted areas for the
superficial ulcer again look like the mucosa of the patient. In this respect, the areas of
the deeper ulcer show some matching colors with the actual ulcer but the main features
were not visible. As the results for the healthy patient look promising and the inpainting
of the pathologies still do not work, it leads to the conclusion that the model is not able
to learn to transfer a pathology into an area surrounded by a different mucosa.

7.3 DDPM

By use of DDPMs, the filled region looks realistic and the transitions to the known area is
smooth and consistent (Figure 7.5). Also only pixels within the masked area were changes
and no other pixel in the surrounding area like observed with the StyleMapGAN. As a
result, it is even hard to find the inpainted areas. However, the filled regions do not show
the expected pathologies. Since the inpainted areas for the ulcer do not distinguish from
the healthy inpainted pixels it seems that the DDPM has the same problem as observed
with the SAC-GAN.
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Figure 7.5: Results with DDPM as inpainting algorithm (original images (top), masked
images (middle), inpainted images (bottom, from left to right: healthy, su-
perficial ulcer, deep ulcer).

7.4 Anydoor

Even though Anydoor is applied without any retraining and the original model has been
trained on entirely different data, a remarkable performance is achieved. Figure 7.6 shows
some examples of inpainted pathologies. For the sake of clarity, only the original masked
image, the reference image and the output of the Anydoor model are shown. The chosen
reference area is represented with a red line in the reference image.
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Figure 7.6: Results with Anydoor algorithm (From left to right: Original masked image,
reference area (red line), inpainted image).

The features of the reference areas are well presented and the transitions to the known
areas are smooth and consistent. The quality is also good in cases where the shape
of the masked region and the reference pathology differ a lot. It also seems that the
model is robust against the different backgrounds (mucosa) and thus is able to transfer
a pathology to a completely new background. With this, it perform significantly better
than all the other models discussed before. Nevertheless, there are cases in which the
model does not deliver satisfactory results (Figure 7.7).

70



7 Results

Figure 7.7: Failure cases of Anydoor (From left to right: Original masked image, reference
area (red line), inpainted image).

In cases where the mucosa of the target and reference image differ and the reference
region also contains parts of it, the transitions from the pathology to the background are
not that smooth anymore (see Figure 7.7 top row). For pathologies that are not only
flat, but also stick out into the lumen (e.g. polyps), the quality of the inpainted region
is decreased. Although the main features are retained, the spatial representation is poor
(see Figure 7.7 middle and bottom row).

7.5 Video generation pipeline

Since the Anydoor model shows the best results, it will be used for the further video
generation. In order to generate the videos according to the procedure (Algorithm 4)
explained in chapter 6, some work needs to be done to make the different models com-
patible. First of all a dummy frame will be transformed into the patient domain using
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the MoCycleGAN. Afterwards the Real-ESRGAN will be used to increase the image res-
olution from 128x128 to 512x512 pixels. The high resolution image will then be used
as target input for the Anydoor model in which a given reference pathology will be in-
painted. Since the specified target mask and the actual shape of the inpainted pathology
can differ, the SAM architecture is used to extract the final mask of the inpainted pathol-
ogy. Subsequently the mask and the pathology is warped using the calculated optical
flow between two consecutive frames whereas the warped pathology is inserted into the
new frame. The whole pipeline is illustrated in Figure 7.8. Since the use of the RAFT
model as an alternative to calculate the optical flow did not yield good results, it will not
be considered and only the variational registration (VARREG) [63] approach is used.

Figure 7.8: Process of the video generation.
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Although only the Anydoor model was used for the inpainting process the inference
times and number of model parameters of all models discussed are given in Table 7.1 for
a better evaluation.

Table 7.1: Inference times and model parameters.
Model Inference time (ms) Model parameters Input image size

Inpainting
StyleMapGAN 345.16 97M 256x256

SAC-GAN 6.04 57M 128x128
DDPM 8140 23M 64x64
Anydoor 7273 245M 512x512

Optical flow
VARREG 548 N/A N/A

RAFT 29 5M N/A
Dummy transformation

tempCycleGAN 6.67 8M 128x128
MoCycleGAN 2.12 8M 128x128

Others
Real-ESRGAN 50.3 17M 512x512

SAM 30.5 641M N/A

It is clear to see that GAN´s are significantly faster than DDPMs regarding the inpaint-
ing tasks. However, the Anydoor model is faster than the standard DDPM, although it
has nearly 10 times more model parameters and works on a 8 times higher image res-
olution. This clearly shows the impact of an optimal noise schedule and gives hope for
future speed ups. Also interesting is the comparison of the inference time between the
VARREG approach and the RAFT model. The RAFT model is nearly 19 times faster.
Unfortunately, initial tests have shown that the model is not able to calculate the opti-
cal flow when using the available pretrained models. As the authors have already said,
the model needs a proper retraining to adapt it to the specific use case [58]. If it then
achieves the desired results, then this approach will be very interesting in the future in
terms of real-time capability. For the image-to-image transformation itself both models
show low inference times. Nevertheless, the MoCycleGAN model is 3 times faster. The
Real-ESRGAN has a measured inference time of 50.3 ms which is quite slow. Since it is
only needed to bridge the gab between the output resolution of the MoCycleGAN (and
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tempCycleGAN respectively) and the input resolution of the Anydoor model, another
possibility should be looked at. Ideally, the result of the image-to-image transformation
should correspond directly to the requirements of the Anydoor model.

Adding up all the relevant inference times for the video generation, it results in a total
time of 600.42ms for one frame.

Ttotal = TMoCycleGAN + TReal−ESRGAN + TV arreg = 600.42ms (7.1)

Due to the fact that the pathology is inpainted only in the first frame, the inference time
of the Anydoor and SAM model only applies there. For the first frame the total inference
time amount to

Ttotal,first = Ttotal + TAnydoor + TSAM = 8770.92ms (7.2)

Both times are significantly to high in order to use this pipeline in a real-time system.
In this case the total inference time should be less than 40 ms in order to achieve a frame
rate of 25 frames per second. Despite this the inference time of the Anydoor model is by
far the slowest.
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8 Discussion

8.1 Quality of inpainted pathologies

Two of the four model architectures showed visiually convincing results. SAC-GAN failed
with respect to the inpainting task. The DDPM managed to create smooth boundary
transitions but was not able to inpaint the desired pathologies. In contrast, StyleMap-
GAN was able to inpaint the targets but due to the changes in the surrounding area and
the restriction in the positioning of the pathogies it does not seem to be the right ap-
proach to this task. The Anydoor architecture produced the best results and the target
area can be chosen independently from the reference. Another advantage is the fact that
the model performs well without retraining, even though pathologies are not included
in the training data, suggesting a good model robustness as well as potential for further
improvement. Although it fits exactly the needs regarding the inpainting tasks the archi-
tecture has two drawbacks. First of all the model has by far the most model parameters
in comparison to the other approaches, which leads to a no lightweight implementation
and longer training times in the future. The other and more important disadvantage is
that the inference time is enormously outside of real-time capability. In order to be able
to use these model in a deep-learning based training simulator, inference time must be
extremely reduced. Fortunately, this problem is already tackled by current research [1, 3]
and it is important to incorporate these findings in the future.

8.2 Inpainting artifacts

In some cases, artifacts were observed in the inpainted area. Although, it does not happen
with every pathology for some constellations of reference pathology and masks artifacts
like a human eye appeared within the inpainting area (Figure 8.1).
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Figure 8.1: Artifact of an eye within the pathology after inpainting.

This behaviour can be explained by the fact that the Anydoor model was trained on data
containing images of human faces and since the model was still not trained on medical
images yet these artefacts are quite understandable. Therefore, it is reasonable to assume
that this problem can be mediated or overcome by domain-specific fine-tuning in future
research.

While experimenting with different masks for the same pathology it became clear that
the quality of the inpainted pathology depends on the chosen mask. When looking at
the mentioned failure cases of the Anydoor model as illustrated in Figure 7.7 (top row),
it is visible that the transition between healthy mucosa and the pathology does not look
realistic. This is because the masked area of the reference pathology also includes some
pixels which belongs to the patients mucosa and the model tries to also include this into
the target area. This is an undesirable behaviour since the quality of the inpainting should
not be lowered in cases were the segmentation of the pathology is not that accurate.
Fortunately, using objects which the model already knows from the training process do
not show these artifacts (8.2).

Figure 8.2: Result of inpainting an object which was already included in the training
data.
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Although the segmentation mask of the duck (red line around the duck) not accurate
and the area contains a lot of pixel from the background, the inpainting result does not
show any artifacts. This observation leads to the assumption that these types of artifacts
can also be avoided when fine-tuning the model on the given pathologies.

8.3 Temporal consistency

Due to the way how the video frames were preprocessed, all frames contain black pixel
values in each corner. It turns out that this leads to problem when calculating the
optical flow field since at these points there is a hard transition and thus the algorithm is
struggling to maintain the temporal consistency when the pathology reaches one of the
corners (Figure 8.3).

Figure 8.3: Issue when warping pathology into corner of image.

In cases were a pathology should move out of the image in one of the corners the pathology
is not able to fade out of the scene. It will be stuck in the corner and shows unnatural
behavior which decreases the temporal consistency. In the future a solution must be
found. One way to solve this would be to find another preprocessing which avoids black
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corners. Alternatively, the black corners could be removed when calculating the optical
flow by a suitable padding of the pixels nearby. Furthermore, it was observed that
prominent features such like strong light reflections which were added during the image-
to-image transformation lead to unnatural movements of the pathology. Since they are
easy to register, they will have a large impact on the resulting motion field and as the
movement of these reflections do not fit with the expected behaviour of the pathology the
temporal consistency will be poor. An attempt was therefore also made to calculate the
motion field on the original dummy frames, but since the dummy frames show only very
few features the optical flow can not be calculated well and especially strong movements
will not be registered.

A further problem is that the optical flow does not consider the structural components
of the video sequence. This leads to implausible movements and light conditions of the
pathology when the scene changes a lot. Also the appearance of the pathology do not
adapt its visual appearance (shadow, illumination, etc.) to the current scene which will
result in a bad temporal consistency. The Figure 8.4 shows the starting frame of a
video sequence with an inpainted area (left) and the same pathology only a few more
frames further on (right). It can be observed that the size and position of the pathology
has been adapted to the progression of the videos due to the optical flow, but not the
illumination.

Figure 8.4: No adaption of the inpainted pathology to the background.
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The last two problems strengthen the idea that the temporal consistency should ideally
be ensured also by the inpainting network. Further work could focus on this and expand
the architecture of the Anydoor model such that it can consider also previous frames
during the inpainting process. But even if the inpainting shows temporal consistency
also in complex scenes there is still the question when and were the pathologies should
be inpainted. Until now the videos start already with a pathology, but it is hard to
slowly fade it into visibility area. Application of fiducial markings to the physical training
dummy would serve as a reasonable approach to this problem.

Figure 8.5: Endoscopic training dummy with inlay parts (yellow) for pathologies.

These markings in the model above can be exchanged quickly but also suffer from poor
realism (Figure 8.6). Such models combined with the approach discussed here could lead
to a significantly improved training experience.
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Figure 8.6: Inner view of the pathology inlays.

Although such inlays would help to overcome the difficulties to find suitable positions
for the pathologies they would lead to a limited number of training scenarios, since the
positions are fixed within the dummy.
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9 Outlook

In following work, mainly three challenges could be tackled in order to improve the results.
Since the whole idea only makes sense if it can be used in practice, it must be real-time
capable. Therefore, it is necessary to decrease the inference time by optimisation of the
backward process of the diffusion model. However, the measured time is far away from
real-time one first step could be to experiment with the already optimizable parameters
like sampling steps and scheduler. Furthermore, it would be interesting how the model
performs on other hardware intended especially for running deep learning models.

This leads to the second challenge which is the implementation of the pipeline on a
devices that can be used in the hospitals and training facilities. The hardware needs
be able to run the model, capture the images coming from the endoscope and feed the
transformed image back into the clinical setup simultaneously. Since the models used
only for image-to-image transformation is already real-time capable the pipeline could
be implemented without the integration of pathologies for first experiments.

The third major challenge is to improve the temporal consistency of the pathology even
in complex video scenes. As this also includes the adjustment of the inpainted area to
the changing illumination and structural components, it is necessary that the temporal
consistency is covered by the inpainting model itself. Only moving the initial inpainted
pixels using the optical flow does not allow any suitable adaption to the changing back-
ground. Fortunately, some progress has already been made in this area on which further
work could base on [23, 67].
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10 Conclusion

It is important that the practitioner is able to achieve both the safe handling of the
endoscope and precise observation of the unknown environment simultaneously. Oth-
erwise suspicious pathologies or disease pattern, will not be recognized which can have
serious consequences for the patient. Simultaneity of these tasks cannot be trained with
conventional silicone simulators until now. A first study verified that the discussed ar-
chitectures for image-to-image transformation improving the realism of the endoscopic
training simulator, but the integration of pathologies does not show promising results
yet. The current approach tries to do the image-to-image transformation and generate
the pathology using one model. This has multiple drawbacks like not having control over
the positioning and movement of the pathology which leads to a poor temporal consis-
tency. In this work, the problem of integrating pathologies is defined as two sub-tasks,
whereby the first one is the general inpainting of a pathology within an image and the
second task is to ensure the temporal consistency. It turns out that there are many
approaches for the general inpainting problem, but the ones based on diffusion models
perform significantly better than the GAN based architectures.

The described video generation pipeline allows to inpaint a given reference pathology into
a frame and also is able to maintain the temporal consistency in simple scenarios using
the optical flow between the consecutive video frames. In more difficult scenarios, i.e
large changes in illumination and the structures within a video sequence, the optical flow
approach is not sufficient to maintain a natural movement of the pathology as a result
if which the quality of the generated videos is very poor. The discussed artifacts which
occurs in some cases decreases the visual appearance of the pathologies, but as discussed
these could be avoided by fine-tuning of the model with the medical image data.

Although it improves the quality of the generated videos regarding the realism it leads
to a drastically increased inference time. Therefore, the pipeline is not real-time capable
yet and needs further optimisation. As the hardware is constantly improving and current
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research deals with making the architectures faster, the inference time could be decreased
which makes the pipeline still promising.

Even though the open challenges are not easy to solve, the implemented approach shows
a high potential to integrate pathologies into Deep Learning-based endoscopic training
simulators and thus allows to cover various training scenarios in the future.
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