
Hamburg University of Applied Sciences

Faculty of Life Sciences

Implementation and assessment of Advanced Reinforcement Learning
methods for control of chemical processes

Master’s Thesis

Process Engineering Master

submitted by

Gary Simethy

Supervisors: : Prof. Dr. Margret Bauer (HAW Hamburg)
Dr. Fabian Buelow (ABB AG)

The thesis was prepared and supervised in cooperation with ABB.

Contents

1 Introduction 4

2 Literature review 4
2.1 Selection of chemical process simulation . 5
2.2 Indpensim . 9

2.2.1 Development of a realistic simulation . 9
2.2.2 Description and operation of the real process 11
2.2.3 Sensitivity analysis . 13
2.2.4 Control strategy . 13
2.2.5 Related works based on Indpensim . 14

2.3 Drawbacks of classical control strategies . 18
2.4 Reinforcement Learning . 18

2.4.1 Introduction to Reinforcement Learning . 19
2.4.2 Markov Decision Process (MDP) . 19
2.4.3 Value based algorithms . 25
2.4.4 Policy based algorithms . 26
2.4.5 Actor - Critic algorithms . 26
2.4.6 RL algorithms suitable for implementation 26
2.4.7 PPO . 29
2.4.8 TD3 . 30
2.4.9 SAC . 30
2.4.10 Robust Predictable Control (RPC) . 30

3 Environment configuration 33

4 Results 38
4.1 Training with TD3 . 38
4.2 Training with SAC . 39
4.3 Training with RPC . 43
4.4 Training with other RL algorithms . 49

5 Discussion 49

6 Conclusion 53

7 Future research 53

8 Acknowledgement 54

1

List of Figures

1 FCC flowsheet [1]. 6
2 Indpensim process diagram [2]. 8
3 (A) A schematic diagram of the four distinct regions of the Penicillin chrysogenum

fungus, with emphasis on the flow of nutrients. (B) Mechanisms of formation for
each region [1] . 9

4 Indpensim process schematic [2]. 12
5 Substrate flow profile. 14
6 PAA concentration without PI control and raman spectroscopy model. 16
7 PAA concentration with PI control and raman spectroscopy model. 17
8 Policy iteration [3] . 22
9 Classification of some state of the art RL algorithms [4]. 27
10 Off-policy vs On-policy RL. 28
11 PPO architecture. 29
12 TD3 architecture. 31
13 SAC architecture. 32
14 P&ID of closed loop system with an RL agent. 33
15 RL environment configuration. 37
16 Step function and reward calculation. 38
17 Rolling average reward over 100 episodes (TD3). 39
18 Critic loss (TD3). 40
19 Comparison of average rewards between SAC agent with 16 workers and SAC agent

with 6 workers. 40
20 Average reward for SAC agent with 16 workers. 41
21 Critic loss for SAC agent with 16 workers. 42
22 Comparison of yields between SAC agent trained with 6 workers and SAC agent

trained with 6 workers initially and then with 1 worker for additional steps. 42
23 Comparison of penicillin yields for different compressions (bits) and reward functions. 44
24 Penicillin yield for 1-bit and 10-bit RPC for different action intervals 45
25 Effect of different initial PAA concentration on the penicillin yield for 10-bit RPC . 46
26 Individual process faults and its impact on the performance of the 10-bit RPC agent

taking actions every hour. 46
27 Effect of different action intervals by 10-bit RPC agent on the process with and

without faults. 47
28 Effect of different action intervals by 10-bit RPC agent on the process with sensor

errors. 48
29 Comparison of penicillin yield and penicillin concentration profile for 10-bit RPC

agent. 50
30 Impact of 10-bit RPC agent’s actions every 1 hour and 2 hour on the process. 51

2

List of Tables

1 Benchmarked open-source process simulators [1] . 5
2 Features of model free RL algorithms. 28
3 Comparison between Indpensim simulation written in python vs MATLAB. 35
4 Lower and upper bounds for the actions and observations 36
5 Initial conditions for train and test case. 44
6 Effect of vessel dimensions on the performance of 10-bit RPC agent 48
7 Comparison of different control strategies on the Indpensim 52

3

1 Introduction

In a time characterized by progress in automation, utilizing intricate systems like Advanced Process
Control (APC) has become an essential requirement for every manufacturing operation, irrespective
of the sector. Of these systems, Model Predictive Control (MPC) is well established and has been
used as the standard to address challenging multivariate control tasks for continuous processes
in the process industry[5]. However, these controllers are model based and therefore lacks the
adaptability to changing process dynamics [6]. As the performance of the controller deteriorates,
frequent system identification is required to update the model to capture new dynamics. This is
time consuming and introduces costly disruptions to regular operations [7].

This work evaluates Reinforcement Learning (RL) as an alternative control approach capable
of manipulating multiple variables simultaneously to attain predefined control objectives while
adapting to the dynamics of the process as well as the dynamics of existing controllers such as
PI/PID.

Reinforcement Learning (RL) is regarded as a viable alternative due to its demonstrated ability
to perform effectively when encountering variations in input conditions and disturbances that can
affect the dynamics learnt by the RL agent. This has been demonstrated in applications such as self
– driving cars, robotics and games. However, unlike games and robots trial and error is very costly
and dangerous on a real chemical process. The next best option is to apply RL on a simulation of
a chemical process and then use the trained RL agent on a real process. For this work, an open
source simulation of a penicillin production process [8] is used as an environment for RL based
control. The simulation selected was validated with historical data from the real process and are
in good agreement with each other [2].

In this work, the literature review section examines existing open-source benchmarked simulators
and provides rationale for selecting the Indpensim process simulator as a candidate for RL. In the
experiments section, the configuration of the Indpensim process simulation as a RL environment is
detailed. This includes outlining the adjustments made to render it compatible for training with
RL agents.

The results section presents the outcomes of training several state-of-the-art RL algorithms on
the configured RL environment. Its primary objective is to identify the most effective RL algorithm
that can simultaneously meet the following objectives:

• Maximize the yield of penicillin

• Ensure safe operation

Furthermore, the same RL algorithm (or agent) is evaluated under varying input conditions and
vessel dimensions of the process, and simulated process faults using real process data. This is done
to assess the generalization capabilities of the selected algorithm to unseen circumstances without
the need for retraining.

Finally, the discussion section provides insights into the observed results and compares them
with alternative control strategies employed by others for the same process.

2 Literature review

In this section, various open-source process simulators that were benchmarked in a study [1] are
briefly discussed. One simulation is selected for the remainder of this study, and the criteria behind

4

Benchmark Operation Platform
TEP Continous Fortran, MATLAB, Modelica

Pensim Batch MATLAB
RAYMOND Continous MATLAB
DAMADICS Continous MATLAB
Indpensim Batch MATLAB

FCC Continous MATLAB

Table 1: Benchmarked open-source process simulators [1]

this selection are also discussed. Following that, the selected simulation is discussed in detail. This
includes topics such as how the simulation was developed and its fidelity to reality, how the process
is described and operated, critical parameters of the process determined through sensitivity analysis
[9], and the current control strategy. Additionally, related works that were focused on improving
upon existing control strategies for the selected simulator are discussed.

Since this study predominantly utilizes RL, the theory behind RL and its advantages over
classical control strategies, as well as the different classes of RL algorithms, particularly those
suitable for this study, are also discussed.

2.1 Selection of chemical process simulation

Training a reinforcement learning (RL) agent by acting directly on a real chemical plant poses
significant risks especially when exploratory actions are considered. Either, data from the plant
can be used to train the RL agent (offline RL) or a simulation can be used as an environment for
the RL agent to act on. The former is less exploratory because it learns only from experiences
(imitation learning) that had happened and cannot generate entirely new experiences. Whereas
with a simulation, it is feasible to generate a variety of experiences through random actions, enabling
greater exploration. By simulating a chemical process, potential dangers can be mitigated while
still providing a training environment for the agent that somewhat mimics the dynamics of the real
chemical process. Once trained on simulation, the RL agent can then be potentially deployed to
the real process.

To select a suitable chemical process simulation as an environment for the RL agent, the results
from a study [1] are utilized. The study analysed and reviewed open source simulations (shown
in Table 1) and datasets based on factors such as the fidelity, accessibility of actual data, user-
friendliness, challenges to be acknowledged, and potential for scientific progress. The results of that
study for each simulation is discussed below.

Among the process simulators listed in the table, a batch operated process would make a good
case to apply RL for process control. This is primarily because of the inherently dynamic behavior
from continually shifting operating conditions that occur from start-up to batch completion [10].
This operational mode is characteristic of unit operations where the processed volume is relatively
limited compared to those operating continuously, and it involves multiple objectives across process-
ing steps to achieve the desired final product. Consequently, it is difficult to capture these dynamics
and poses several hurdles to adopting a control framework, particularly regarding technical issues
outlined in [11] [12] [13].

The FCC fractionator modelled in 2022 serves as a simulation tool designed for refining op-

5

erations, featuring a fluidized bed catalytic cracker coupled with a fractionator [14]. The process
flowsheet shown in Figure 1 encompasses essential components such as reactor, fractionator, pre-
heater, regenerator, wet gas compressor, catalyst circulation lines, combustion air blower, lift air
blowers and process controllers. For accessibility, a MATLAB simulator is readily available for
implementing the FCC Fractionator model [14].

Figure 1: FCC flowsheet [1].

The Tennessee Eastman Process (TEP) stands as a widely accepted simulation model, meticu-
lously designed to replicate the intricate operations within the Eastman Chemical Company, serving
as a robust benchmark for continuous process control and monitoring applications [15]. Its inception
marked a significant milestone in the realm of modeling studies, garnering widespread acceptance
and adoption within the academic community. Over the years, the TEP model has solidified its
position as the foremost benchmark, continuously utilized for testing and validating various pro-
cess monitoring techniques. Initially introduced as a Fortran process simulator, the TEP model
has since evolved and adapted to contemporary technological landscapes, finding implementations
across multiple platforms including MATLAB/Simulink [16] and Modelica [17].

PenSim is as a simulation framework linked to the penicillin production process. It is based on an
unstructured model of penicillin fermentation originally conceptualized in 1980 [18], the framework
has been further refined and expanded upon in 2002 [19]. Notably, PenSim has emerged as the
preeminent benchmark for evaluating techniques tailored for batch processes. Its significance lies
in its ability to simulate the inherent complexities of penicillin fermentation, offering researchers a
reliable platform for testing and validating various methodologies. Of particular importance is the
availability of a standalone dataset associated with PenSim, as noted by [20] in 2015.

RAYMOND (RAYpresentative MONitoring Data), introduced by [21], emerged as a MATLAB
package designed to facilitate the generation of comprehensive monitoring data through simula-
tions. Within this package, users can readily access established benchmarks such as the Tennessee

6

Eastman Process (TEP) and the PenSim models. Additionally, RAYMOND offers the flexibility for
users to incorporate their own models, allowing for customization of sensor characteristics, process
variability, input fluctuations, control strategies, and fault scenarios. One notable advantage of
employing RAYMOND for simulating the PenSim model is its capability to introduce noise to all
variable measurements, thereby enhancing the realism of the generated data. It was further exem-
plified by leveraging RAYMOND to produce a reference dataset comprising 1,600 normal batches
and 90,400 faulty batches, segmented into subsets of varying complexity [20]. The initial subset rep-
resented the base case, drawing initial conditions from Gaussian distributions, while the subsequent
subsets introduced non-Gaussian variations and batch-to-batch variability, respectively.

DAMADICS (Development and Application of Methods for Actuator Diagnosis in Industrial
Control Systems) is a benchmark designed with a combination of a process simulator and authentic
datasets depicting electro-pneumatic actuators used in sugar production [22]. Initially created using
MATLAB/Simulink, the simulator was enhanced with real-world data obtained from the Lublin
Sugar Factory in Poland. The underlying models, meticulously validated using historical data
and grounded in principles of thermodynamics and mechatronics, are organized into four primary
functional blocks: the positioner, servomotor, valve, and bypass. This comprehensive framework
encompasses 19 distinct faults, ranging from positioner and servomotor faults to control valve and
general/external faults. DAMADICS is specifically positioned as a benchmark for evaluating fault
diagnosis techniques, necessitating a structured sequence of steps for fault detection and diagnosis,
as outlined in the original paper. This process involves preliminary assessment and subsequent
analysis of fault detectability and isolability across simulated and real data environments. Compared
to benchmarks such as TEP and PenSim, DAMADICS offers a greater depth of information due to
its integration of real-world data and a comprehensive testing methodology within the simulator.
However, its focus remains narrow, concentrating solely on a particular type of equipment within
industrial processes [1].

IndPenSim represents a model of the Penicillium chrysogenum fermentation process [2]. In
contrast to the traditional PenSim benchmark, IndPenSim represents an industrial scale, accom-
modating volumes of up to 100,000 L compared to the typical 100 L vessels in PenSim. Moreover,
it is supplemented with real historical data and uses a structured model developed by Paul and
Thomas in 1996 [23]. This model accounts for various intricacies including growth, morphology,
metabolic production, and biomass degeneration, thereby offering a more comprehensive repre-
sentation of the fermentation process. The Indpensim process diagram is depicted in Figure 2 ,
has sensors monitoring key parameters such as dissolved oxygen, pH, temperature, foaming, and
pressure. Additionally, offline measurements encompass concentrations of penicillin, biomass, am-
monia, and phenylacetic acid, enriching the dataset with important process insights. Implemented
initially in MATLAB R2013B and subsequently updated to MATLAB R2018B [2]. Furthermore,
a standalone dataset comprising 100 batches has been generated and made available in a later
work [9], extending the simulation capabilities to include a Raman spectroscopy device. The model
affords users a multitude of options, including various control strategies, disturbances on concen-
trations, and inhibition effects. Potential process faults encompass agitation, aeration, and sensor
malfunctions. Moreover, this simulation was validated with the historical data [1]. Table 1 shows
an overview of the discussed benchmark simulators/datasets and their operation modes along with
their available platforms.

The decision to choose Indpensim over Pensim as the environment for reinforcement learning
(RL) in this study is based on Indpensim’s richer feature set and higher fidelity. While both are
batch processes, Indpensim offers a more comprehensive representation, incorporating a broader

7

Figure 2: Indpensim process diagram [2].

8

range of features and complexities. This increased fidelity allows for a more realistic simulation
environment, better reflecting real-world industrial processes and enabling a more nuanced analysis
of the RL agent’s performance.

2.2 Indpensim

This section discusses the Indpenim process, including its development, features, operation of the
process, and sensitivity analysis by Goldrick et al. [2]. The Key features modelled such as dissolved
oxygen, dissolved carbon dioxide, nitrogen, phenyl acetic acid, temperature and pH are described
here.

2.2.1 Development of a realistic simulation

The development of a realistic simulation of an industrial scale fermentation was carried by Goldrick
et al. [2] based on prior work [23] where a structured model for penicillin concentration was es-
tablished. The simulation was further developed to be used as a reliable benchmark for studies in
optimization and process control by validating the simulation against fed-batch penicillin fermenta-
tion records from ten 100,000 L vessels. Typical issues that arise from large scale fermentation such
as prolonged increase of viscosity that can affect the rate of dissolved oxygen, regulating key nu-
trients particularly when delayed offline measurements are utilized and variations between batches
as a result of deviations in input concentrations are considered in the simulation. Additionally, it
addresses common process faults such as sensor noises, foaming, agitator malfunctions and others.

The simulation accounts for various phases of the biomass which are growth, morphology,
metabolic production and degeneration [2]. To depict the internal structure of the biomass accu-
rately, component balances involving 36 parameters were conducted to characterize actively growing
regions A0, non-growing regions A1, degenerated regions A3, and autolyzed regions A4 (see Figure
3).The remainder of this section delves deeper into the modeling of key parameters and elucidates
their influence on the process.

Figure 3: (A) A schematic diagram of the four distinct regions of the Penicillin chrysogenum fungus,
with emphasis on the flow of nutrients. (B) Mechanisms of formation for each region [1]

Dissolved oxygen was identified as a key parameter as this nutrient stands as a pivotal macro-
nutrient utilized by microorganisms for growth, maintenance and metabolic production [2]. The

9

equations outlining its utilization were formulated by Bajpai et al. [18] and considered the oxygen
consumption during both the growth and maintenance phases of the biomass, alongside the produc-
tion of penicillin. Incorporated in the equations is a constant which is derived from the geometrical
parameters of the vessel and the type of stirrer employed. The significance of the vessel dimensions
and design were highlighted in determining the efficiency of dissolved oxygen utilization [2]. Main-
taining the concentration of dissolved oxygen above a critical level was crucial, as falling below this
threshold lead to a drastic decline in biomass growth and metabolic production, ultimately risking
batch failure. The investigation conducted by Vardar et al. [24] explored the determination of
these critical values and found that when air saturation fell below 30%, the specific growth rate
of penicillin experienced a sharp decrease, and dropping below 10% air saturation resulted in irre-
versible impairment of penicillin production. Similar findings were reported in [25]. This physical
phenomenon was also incorporated into the model through the utilization of a hyperbolic tangent
function.

Dissolved carbon dioxide (CO2) was also identified as a critical parameter [2]. The aggregation
of CO2 in the broth has been identified as detrimental to both cell growth and productivity [26]. The
concentration of dissolved CO2 is influenced by the volumetric mass transfer coefficient, which is
dependent on the geometrical parameters of the vessel and the impellers. Additionally, factors such
as pH and vessel pressure impact dissolved CO2 levels [27]. However, for this particular model,
the effect of pH was deemed negligible as it remained constant. Operators manually controlled
dissolved CO2 levels by monitoring the percentage of CO2 in the off-gas, thereby approximating
periods when dissolved CO2 was excessively high and implementing corrective measures. Similar
to dissolved oxygen, if the concentration of dissolved CO2 exceeded a critical threshold, the specific
growth rate of biomass was modeled as zero, employing a hyperbolic tangent function.

Nitrogen, identified as a critical parameter, played a crucial role in both growth and metabolic
production, ranking as the second most abundant nutrient in fermentation media [28]. Typically,
the primary nitrogen source for each batch was initially present in the starting media and gradually
consumed throughout the process. The simulation takes into account the nitrogen composition of
input feeds, such as the flow rates of Oil and Phenyl Acetic Acid, along with ammonia sulfate salts
added to rapidly elevate nitrogen concentration. The significance of nitrogen as a pivotal macro-
molecule for industrial penicillin production was highlighted in [29], where a decrease in biomass
growth was observed during periods of nitrogen limitation. Similar findings [2] illustrated a decline
in biomass growth rate for nitrogen concentrations below 200 mg/L. To depict this relationship, the
simulation assumed that if the nitrogen concentration remained above a critical value, the specific
growth rate remained unaffected. However, for nitrogen concentrations below this threshold, the
biomass concentration was modeled to approach zero, utilizing a hyperbolic tangent function ranging
from 0 to 1.

In certain fermentations, the addition of a precursor is necessary to ensure the metabolic pro-
duction of the required product.This is notably significant in the industrial case study [2], where
phenylacetic acid (PAA) is introduced to provide the required side chain for penicillin synthesis.
Research by Dirk et al. [30] has examined the uptake rate of PAA, revealing that it penetrates
the cell membrane via passive diffusion and is influenced by environmental factors such as pH.
However, due to limited data availability, the developed simulation simplifies the PAA uptake rate
by considering biomass growth, penicillin production, and penicillin maintenance, while ignoring
environmental conditions. Effective control of PAA flowrate poses a major challenge in penicillin
fermentations, as elevated levels of PAA within the culture can be toxic to the biomass, inhibiting
both growth and penicillin production [30]. Goldrick et al. [9] demonstrated that PAA concentra-

10

tion as a critical parameter was maintained within an optimal range of 200 to 2000 mg/L across all
ten batches by manipulating the flow rate of PAA.

Viscosity in fermentation broth is intricately linked to its rheological properties. For filamen-
tous fungi, viscosity is influenced by its morphology, which can be characterized as either pellet or
filamentous [10]. The pellet form arises from branching hyphae intertwining to form stable aggre-
gates, resulting in lower viscosity. However, nutrient limitation within pellets can pose challenges.
Conversely, the filamentous form arises from the extension of long branching hyphae, resulting in a
complex three-dimensional structure, which in turn leads to higher viscosity. The model presumed
that the concentration of the branching region, associated with the filamentous form, was the sole
determinant of viscosity. To establish a link between the growth of the A0 region depicted in Figure
3 and viscosity, the growth of this form was characterized by a ”cube root” growth relationship.
This choice was informed by prior studies discussing the growth pattern observed in fungal pellets
[31]. Additionally, a growth lag was incorporated into this relationship to better reflect the per-
ceived lag in viscosity reported for this process. This lag growth model, as demonstrated by [32],
accurately models microbial cell growth in batch cultures. Furthermore, it was observed that vis-
cosity reduced with the injection of water during the process. Similar behaviour was also observed
from batch records of the real process. Therefore, this effect was also incorporated into the model
[2].

Maintaining control over temperature is crucial in industrial-scale bioreactors, as fluctuations can
significantly impact microbial activity [33]. The dynamic expression for temperature was derived
through an energy balance analysis of all major process inputs and outputs of the bioreactor. To
develop a realistic model of heat dissipation via cooling coils, it must be correlated with the two
primary manipulated variables: coolant flow rate and inlet coolant temperature, as demonstrated
by Gulnur et al. [19].

Even minor pH fluctuations can significantly impact fermentation processes, with deviations
as small as 0.2 or 0.3 potentially disrupting a batch [28]. Consequently, pH was meticulously
controlled around an optimal set-point. pH modeling involves performing a hydrogen ion [H+]
balance, which takes into account the generation of hydrogen ions throughout growth, metabolic
production, maintenance activities, as well as acid/base additions and other process inputs. It was
examined that the pH control was exceptionally precise, with a calculated standard deviation of
0.06 from the pH profiles of the ten industrial batches studied [2]. Building upon this observation,
the simulation assumes that any pH values beyond the calculated standard deviation could be
detrimental to biomass production. To reflect this, adjustments were made to the pH inhibition
terms resulting in a much narrower pH inhibition range of 6.5 ± 0.2, aligning more closely with pH
operating constraints.

Off-gas analysis entails inspecting the exhaust gas exiting the vent of the fermenter. This non-
invasive process avoids compromising the sterility of the culture, presenting a distinct advantage
over in-situ probes that come into contact with the broth. The method involves tracking the
concentrations of CO2 and O2 in both the inlet and outlet gas streams.

2.2.2 Description and operation of the real process

The considered industrial-scale penicillin fermentation was conducted in a 100,000 L bioreactor,
employing an industrial strain of P. chrysogenum. The bioreactor configuration remained consistent
with the conventional 100,000 L bioreactor described in [33].

The bioreactor featured a tank radius (r) of 2.1 m and was equipped with three Rushton

11

Figure 4: Indpensim process schematic [2].

12

impellers, each having an internal radius (rimp) of 0.85 m, operated at a constant agitation of
100 rpm. Various sensors including temperature, pH, dissolved oxygen, foaming, and pressure
sensors were installed on the vessel. Off-line readings of nitrogen, penicillin and viscosity were
taken and collected every 24 hours, while phenylacetic acid measurements were recorded every
12 hours. Additionally, oxygen and carbon dioxide concentrations were measured through off-gas
analysis.

The feed rates of both substrate and soy bean oil were governed through sequential batch proce-
dures, adhering to a preset optimal recipe that operators manually fine-tuned according to process
dynamics. Similarly, the aeration rate and vessel back pressure were managed using sequential batch
strategies to sustain the desired dissolved oxygen concentration and mitigate operational challenges
like foaming and elevated CO2 levels. Additionally, soybean oil functioned as a supplementary
carbon source and played a role as an anti-foaming agent.

The adjustment of phenylacetic acid flow relied on offline concentration measurements, while
nitrogen levels, initially introduced in the starting medium of each batch, underwent continuous
monitoring through offline measurements. In instances of low nitrogen levels, ammonia sulfate shots
were administered for rectification.

Temperature was regulated at 298 K, and pH was maintained at 6.5 by their respective PID
controllers, with coolant through internal cooling coils and the addition of acid/base solutions
respectively. Vessel weight was monitored online using a load cell to schedule discharges, ensuring
that the bioreactor’s capacity was not exceeded and allowing for longer batches to be achieved.

2.2.3 Sensitivity analysis

A sensitivity analysis was conducted by Goldrick et al. [2] on all simulation parameters to assess
the impact of input uncertainties on the simulation outcomes. Certain parameters such as the inlet
concentrations of substrate and oil exhibited significant influence across multiple outputs. However
due to the lack of measurements, these concentrations were assumed to be constant for the remainder
of the analysis [2]. The significance of manipulated variables such as inlet coolant temperature and
sparged oxygen inlet gas concentration was demonstrated, as they exerted considerable influence
on process outputs such as temperature and dissolved oxygen levels, respectively.

Moreover, vessel dimensions were found to affect specific model outputs, with impeller radius
and vessel radius impacting dissolved oxygen concentration. The simulation demonstrated accurate
predictions for batches up to 320 hours, surpassing previous simulations validated with shorter batch
lengths (160 hours [23], 90 hours in [34] and 200 hours in [35]).

2.2.4 Control strategy

The control strategy implemented standardizes input flow rates according to a predefined optimal
profile (Figure 5). Notably, a marked rise in substrate flow occurs uniformly by hour 20, ensuring
an abundance of substrate concentration to sustain the biomass in its initial ”rapid-growth” phase.
Following this, a reduction in substrate flow facilitates the transition to the productive phase of the
batch, where substrate concentration is minimized to optimize penicillin production, aligning with
findings in [18]. Furthermore, the simulation integrates PID controllers to oversee temperature and
pH regulation.

One limitation of the proposed simulation is its capacity to precisely forecast dissolved oxygen
and viscosity. Process measurements obtained from a single sensor may not offer a comprehensive

13

representation of the entire bioreactor, potentially introducing errors into the model, which assumes
a perfectly mixed vessel.

Figure 5: Substrate flow profile.

Structured models are frequently deemed suitable only for highly instrumented laboratory-
scale bioreactors, where stable, highly sensitive, and accurate measurements can be obtained [36].
However, this simulation effectively showcases the capability of structured models to elucidate
complex industrial processes utilizing routine and commonly recorded measurements.

2.2.5 Related works based on Indpensim

In the previous section, Sequential Batch Control (SBC) served as the control strategy to maximize
yield. Separate PID controllers were employed for temperature and pH control to ensure precision,
while online measurements for other key parameters, such as concentrations of PAA and biomass,
were lacking. Although some measurements, such as off-gas analysis, could be sampled every 12
minutes, the absence of online tools for monitoring PAA and biomass concentrations presented a
challenge. This section explores related works that address these limitations by incorporating online
analyzers and additional control loops to enhance process control.

2.2.5.1 Indpensim with simulated raman spectroscopy

The existing industrial-scale penicillin fermentation simulation was extended further by incorpo-
rating a simulated Raman spectroscopy measurement [8]. This addition serves the purpose of

14

developing, evaluating, and implementing advanced control solutions relevant to biotechnology fa-
cilities. The extended simulation allows multiple modes of operations: Operator controlled and
recipe-driven; generating large volumes of realistic fermentation data. The simulation replicates
real-world processes by incorporating delays in off-line assay measurements, manual intervention
by operators in feeding strategies, inaccurate sensor readings, and random fluctuations in growth
and production levels. Moreover, a realistic model of a Raman spectroscopy device has been inte-
grated into IndPenSim to facilitate innovative and sophisticated control strategy.

Each batch is expected to achieve a target production yield of 2000 kg of penicillin. Batches
failing to meet this specification are deemed below target, necessitating an investigation into their
subpar performance.

Control objectives include:

• Designing a control strategy to optimize annual penicillin production and mitigate batch yield
variations.

• Identifying critical process parameters (CPPs) and critical quality attributes (CQAs) that
impact penicillin production.

• Developing an improved control strategy for pH and temperature variables to minimize their
fluctuations relative to the existing PID control loops.

• Creating a control strategy to adjust one or more of the following flow rates: substrate,
nitrogen, or phenylacetic acid, to ensure these variables remain within the acceptable ranges.

• Utilize the spectra captured by the Raman spectroscopy device to create a soft-sensor that
enables real-time prediction of phenylacetic acid, biomass, or penicillin concentration.

In order to identify the critical process parameters (CPPs) and subsequent critical quality at-
tributes (CQAs), all the process data recorded underwent analysis using multivariate data analysis
(MVDA). This analysis encompassed 26 batches, with 5 of them failing to meet the required target
penicillin production yield of 2000 kg. Throughout these 26 batches, the operator controlled the
flow rates of substrate and phenylacetic acid. The notable deviations observed in these primary
control variables led to significant variations in penicillin and biomass profiles. The data from all
26 batches were utilized to construct a partial least squares (PLS) regression model, with cross-
validation employed to ascertain the optimal number of latent variables to retain. The substantial
impact of the off-line concentrations of phenylacetic acid suggests that this variable played a crucial
role in determining the final penicillin yields and therefore identified as the primary CPP.

Due to the limited frequency of off-line PAA concentration measurements and the subsequent
4-hour delay in assay results, the control of this critical process parameter (CPP) remains subopti-
mal. To address this issue, a Raman spectroscopy analyzer model was integrated into IndPenSim
to explore the feasibility of developing a soft sensor for real-time PAA concentration predictions.
To initiate the analysis, a calibration batch was conducted on IndPenSim, during which the simu-
lated process analytical technology (PAT) analyzer recorded a Raman spectrum every 12 minutes.
Simultaneously, off-line PAA concentrations were routinely measured every 12 hours and utilized to
construct the soft sensor using a partial least squares (PLS) model. The validation batch confirmed
the soft sensor’s capability to predict PAA concentration in real-time, demonstrating comparability
to off-line PAA samples.

Subsequently, in the implementation phase of the PAT framework, a proportional-integral (PI)
control loop was introduced to adjust the flow rate of PAA and maintain the PAA concentration

15

Figure 6: PAA concentration without PI control and raman spectroscopy model.

at its set-point. Initially, the raw soft sensor signal underwent filtering using a three-point moving
average to minimize high-frequency fluctuations and avoid unnecessary control actions. The PI
controller was activated after a batch time of 25 hours and manipulated the PAA flow rate to
sustain PAA concentration at the target level of 1250 mg/L. This advanced process control (APC)
solution was applied to IndPenSim over the course of a year, comprising 26 batches. Notably, no
batches failed to meet the production target of 2000 kg during this period. The average penicillin
yield per batch amounted to 3517 ± 315 kg, representing a significant 20% increase in annual
penicillin yields compared to the average of the previous five campaigns. Figure 6 and 7 shows the
PAA concentration with and without the previously mentioned APC solution.

2.2.5.2 Alternative control strategies using the PAT analyzer of Indpensim

The use of the PAT analyzer in the form of a simulated raman spectroscopy [8] to predict the
concentration of the substrate to achieve better control of the process was investigated [37]. This
approach involved generating spectra at 12-minute intervals, serving as a soft sensor. These spectra
were then utilized for online modeling of substrate concentration, subject to successful calibration
model development. Real-time application of the calibration model allowed for the prediction
of substrate concentration, subsequently filtered to reduce prediction noise using a three-point
moving average. The filtered signal served as the controlled variable in a proportional-integral (PI)
controller, which adjusted the substrate feed rate. The PI controller was activated after 100 hours,
indicating the transition from the growth phase to the stationary phase for each batch.

Following simulation validation, the performance of the proposed PI controller system was as-
sessed. Despite some noise in the prediction, the calibration model accurately tracked changes in
substrate concentration throughout the batch. The controlled variable set-point was maintained at
5.5 × 10−3 g/L. Implementation of the PI controller led to significant increases in final penicillin
yield: 35%, 20%, and 9% for three test batches.

16

Figure 7: PAA concentration with PI control and raman spectroscopy model.

Moreover, the application of the PI controller strategy for volume control demonstrated notably
tighter regulation of the bioreactor level compared to sequential batch control. This tight control
is particularly advantageous in large-scale batch fermentations, as large fluctuations resulting from
operator-controlled volume adjustments can disrupt other process variables and reduce product
concentration.

2.2.5.3 Reinforcement Learning based control

In a very recent study [38] RL was applied as a controller in the Indpensim simulation, aiming
to enhance average batch yields and reduce batch-to-batch variations amid uncertainties like fluc-
tuating initial conditions and external disturbances, mirroring the objectives of this study. The
employed RL algorithms are namely Deep Deterministic Policy Gradient (DDPG) and Soft Actor
Critic (SAC), which adopts an actor-critic architecture. More on this architecture is elaborated in
Section 2.4.5.

To mitigate numerical instabilities resulting from exploratory actions by the RL agent, the
framework integrated prior knowledge in the form of historical operation recipes, minimizing exces-
sive exploration. To determine the maximum theoretical batch yield, Non-linear Model Predictive
Control (NMPC) was implemented, basing its prediction model on the ODEs from the Indpensim
simulation. This ideal NMPC disregarded measurability constraints, encompassing online, offline,
and unmeasured states within the feedback loop.

Training results of RL agents revealed SAC outperforming DDPG, with the latter exceeding
upper bounds for PAA and viscosity. Excessive PAA concentration can inhibit biomass growth and
penicillin production [2]. SAC achieved a total yield of 4008 Kg, nearing the maximum theoretical
yield of 4042 Kg from NMPC.

Upon evaluation against batches with varying conditions and uncertainties, NMPC and SAC
yielded average outputs of 3987 kg (with a variance of 265 kg) and 3944 kg (with a variance of 272

17

kg), respectively. Online prediction times for a single control step were 3 to 6 minutes for NMPC
and 0.01 to 0.03 seconds for the RL agents.

2.3 Drawbacks of classical control strategies

For industrial process control applications model-based predictive control (MPC) and real-time
optimization (RTO) represent established technologies especially when decision-making is required
in minutes or hours time scale [39]. A significant advantage that comes from model-based control
techniques is that the constraints and objective function can be adjusted dynamically, allowing for
essential flexibility in rapidly evolving industrial operational settings. These technologies require
an accurate complex model which is used along with constraints of the process and economic
constraints to determine the most optimal and safe control action. Due to the shifting process
dynamics, periodic model re-calibration is required to avoid infeasible solutions or continuously
degrading performance from plant-model mismatch. Also, there is a substantial demand for online
computational resources and its limited capacity to integrate information regarding uncertainties
like parameter inaccuracies and fluctuations [40]. The computational cost of obtaining a converged
global solution can escalate depending on the complexity of the model and the number of constraints
involved [41] [42] [43].

With RL, a model free approach is possible where learning can take place on a simulation of
the real process, enabling the simulation-derived optimal strategy to be applied to the real process
and then trained further for fine-tuning (if required). This approach mitigates the potential adverse
effects of the learning process on the real system and significantly reduces the computational load
during online operations [40]. This approach also known as transfer learning eliminates the necessity
for numerous evaluations on the true system, which can be expensive, time-consuming and unsafe.
To manage both the unpredictable dynamics, process disturbances and plant-model mismatch, RL
is implemented in this study as an alternative to standard control methodologies.

2.4 Reinforcement Learning

Like in section 2.2.5.3, this study will also explore RL based control on the Indpensim simulation
to maximize the yield. However the RL algorithms involved, environment configuration and reward
function used will be different. This section delves into the theoretical foundations of RL and
explores various classes of RL algorithms that are compatible with this simulation.

The three main classes of Machine Learning (ML) include:

• supervised learning

• unsupervised learning

• reinforcement learning

With ML methods such as supervised learning and unsupervised learning, the performance is always
limited and cannot outperform the subject matter expert. This is known as bayes error rate [3].
This is because these methods train on the knowledge base from the subject matter expert [44].
With Reinforcement Learning, exploratory actions can generate and train on data points beyond
the knowledge base of the subject matter expert and can therefore overcome the bayes error rate.

18

2.4.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) stands as a dynamic machine learning approach inspired by the way
living organisms learn from experience. It involves an agent interacting with an environment,
making sequential decisions to achieve specific goals while aiming to maximize rewards [3]. RL
operates within the framework of a Markov Decision Process (MDP), where the agent’s actions
lead to transitions between states, with rewards serving as feedback for its decisions. Through a
balance of exploration and exploitation, RL algorithms seek to determine the most effective policy
for decision-making in diverse scenarios [3]. RL finds application across various fields, including
robotics,[45] gaming [46] and industrial control systems [10]. Taking the chemical process domain
as an example, an agent observes a range of states that describe the current process (such as
temperature, flow-rate, pressure,etc.) within an environment (chemical plant or simulation). Based
on those states the agent takes actions such as adjusting a manipulated variable/disturbance variable
or changing the set point to a controller which leads to new states. A reward (good or bad) is received
for taking that action. Using the reward as feedback, the agent iteratively refines its actions over
time with the aim of optimizing a long-term objective.

RL combines two active areas of research - optimal control in the form of dynamic programing
and trial-and-error from animal psychology [44]. In an effort to control a dynamic system, the
optimal control problem was proposed. It involved designing a controller that could effectively
reduce the loss function of a dynamic system over time [47]. During the 1950’s the contributions
from Hamilton and Jacobi was extended by Richard Bellman to address the optimal control problem.
He introduced dynamic programming as a way to optimize a sequence of actions using a functional
equation (Equation 1) derived from the information of the systems state along with a value function
[48] .

V (s) = r(s) + γ
∑

P (s′|s, a) · V (s′) (1)

The value function V (s) of a state s is the combination of the reward r(s) for that state and
the discounted sum of future rewards for visiting the next states s′. The discount factor γ serves
to incorporate uncertainty regarding future rewards.

The value function assesses the desirability of a specific state based on the actions taken accord-
ing to an optimal policy to transition to subsequent states. A higher value denotes a more favorable
state. However, dynamic programming encounters a significant drawback: as the number of states
grows, so does the computational burden. To address this challenge, approximate dynamic pro-
gramming (ADP) techniques were introduced [49]. By employing trial and error, the repercussions
or rewards associated with various actions initiated from a particular state are discerned. Actions
yielding positive outcomes are reinforced, while those yielding negative outcomes are eliminated.

2.4.2 Markov Decision Process (MDP)

The main principle followed during the formulation of an RL problem is to define a system with
components that create a Markov Decision Process (MDP) [50]. Those components are:

• s ∈ S, where s is the current state and S is the state space (continuous or discrete)

• a ∈ A, where a is the action taken by the agent and A is the action space (continuous or
discrete)

19

• P (st+1|st, at) which represents the transition probability from a new state given the current
state and action chosen

• r : S ×A→ R, where r is the reward from taking action a and R is the reward space

• π is policy which maps state(s) s to action(s) a for a given time step

In an MDP, the agent uses the above components to learn an optimal policy. At a given state s
the agent chooses an action a from an intial policy π that takes the agent to a new state st+1,
collecting a reward along the way for that action. This sequence is repeated, and the agent reaches
new states while collecting rewards for every transition. During this process, the agent adjusts it’s
policy π to maximize the discounted future reward G represented in Equation 2 [3].

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2)

The discount factor γ ∈ [0, 1] is a parameter that controls the emphasis on immediate rewards
or future rewards. When γ = 0, the agent adopts a ’greedy’ approach, aiming to maximize the
reward obtained immediately in the next step, while a γ = 1 setting implies the agent prioritizes
all future rewards equally or the statistical expectation of the reward. π(a|s) denotes the policy
mapping of states to actions, governing the agents behaviour. The state-value, denoted as vπ(s)
and the action-value, denoted as qπ(s, a) can be computed using the bellman expectation equations
3 and 4

vπ(s) = Eπ[Gt|St = s],∀s ∈ S (3)

qπ(s, a) = Eπ[Gt|St = s,At = a],∀s, a ∈ S ×A (4)

Equation 3 represents the value function which estimates the cumulative return across all po-
tential transitions from taking actions according to policy π. The value function only takes the
current state s as input whereas if the current state s and the following action a is taken, we get
equation 4. Once the value functions are estimated for each state, the optimal value functions can
be determined by equations 5 and 6. Finally, the optimal policy is calculated using equation 7.

v∗π(s) = max
π

vπ(s), ∀s ∈ S (5)

q∗π(s, a) = max
π

qπ(s, a) = E[Rt+1 + γv∗π(St+1)|St = s,At = a], ∀s, a ∈ S ×A (6)

π∗(s) = argmaxuq
∗
π(s, a) (7)

Given a simple MDP, the value functions can be computed in a tabular format known as Q-table
and be optimized to produce a policy that maximizes future reward [51]. However, this works only
when the action and state spaces are discrete. When dealing with a continuous space for actions and
observations, discretizing the space will lead to optimizing very large Q tables which is very complex
due to the curse of dimensionality [52]. This can be solved by using function approximators such as
neural networks. The combination of RL integrated with neural networks led to the development
of Deep RL.

An MDP is identified as a Fully Observable Markov Decision Process (FOMDP) given that all
the states of the system are observable. However, in reality it is not always the case. In industrial
processes not all states or variables can be fully measured due to hardware limitations or other

20

constraints. This leads to a Partially Observable Markov Decision Process (POMDP), where the
agent at a given time step can only observe a set of possible observations rather than the full state,
unlike in a Fully Observable MDP (FOMDP). These observations typically come from available
sensors in the context of process control. To handle unmeasured states, probabilistic inference
methods like the Kalman filter can be used to approximate them using the available observations
[44]. However, finding the optimal policy for a POMDP is much more challenging than for a
FOMDP, even when all the value functions are known, as not all current states are observable [44]
[53].

To optimize behavior within a Partially Observable Markov Decision Process (POMDP), one ef-
fective approach is to employ belief states. These states, expressed as probability distributions over
possible states, represent the agent’s inferred current state based on past observations and actions.
By computing value functions for each state-action pair using these probabilities, agents can make
optimal decisions, effectively converting the POMDP into a Fully Observable MDP (FOMDP). This
strategy shares similarities with observer design in control theory, where techniques like the Kalman
filter are utilized to estimate unknown states using probabilistic or data-driven models. In rein-
forcement learning (RL), recurrent neural networks (RNNs) serve a similar purpose by estimating
belief states [44]. Previous studies have conducted comparisons between RNNs and Kalman filters,
revealing similar performances in this context [54].

In reinforcement learning (RL), three primary techniques are employed to approximate the value
and action-value functions: Dynamic Programming, Monte Carlo methods, and Temporal Difference
(TD) learning. Of these, dynamic programming stands out as the sole class of algorithms that
demands transition probabilities or a perfect model of the system. This prerequisite significantly
escalates computation costs, particularly in scenarios featuring a vast array of states, as seen in
industrial process control.

On the other hand, Monte Carlo (MC) and Temporal Difference (TD) methods do not demand
a perfect model as they approximate the dynamic programming solution. MC methods establish
the optimal policy by averaging the value function across multiple sampled trajectories of states,
actions, and rewards. Nevertheless, the variability within these trajectories leads to notable variance
in the final outcomes. Furthermore, MC methods delay the calculation of averages until the episode
has concluded.

In contrast, TD learning integrates elements from both MC and DP. Unlike MC methods, it
doesn’t wait until the end of the episode to adjust its estimates; instead, it engages in mid-trajectory
learning. However, because TD learning depends on future estimates or bootstrapping, it is prone
to high bias. The next 3 sections go into more detail about these algorithm classes.

2.4.2.1 Dynamic Programming

Dynamic programming algorithms, when equipped with a reliable model, possess the capability to
discern optimal policies. However, due to their extensive computational demands, they are often
avoided. Dynamic programming approaches complex problems by breaking them down into more
manageable components and addressing them individually. To avoid redundant computations, the
solutions are stored. Consequently, resolving problems with high dimensionality and complexity
requires substantial computational resources.

Among various DP methods, the most popular ones include value iteration and policy iteration.
Policy iteration comprises two primary steps that alternate between each other: policy evaluation
and policy improvement. In the policy evaluation step, the current policy undergoes evaluation by

21

estimating its value function through iterative solution of the Bellman optimality equation until
convergence is achieved Equation 8. Initially, the value function of all states is set to zero and
is iteratively updated by the successor states obtained from following the current policy. This
value function signifies the anticipated return starting from a specific state and continuing with the
current policy thereafter.

vk+1,π(x) = Eπ[Rt+1 + γvk,π(xk+1)] and v0(x) = 0, ∀x ∈ X (8)

Once the value function has been evaluated for the current policy, the subsequent step, known
as policy improvement, aims to enhance the policy by selecting better actions at each state. This
is achieved by prioritizing actions that maximize the anticipated return according to the estimated
value function. Consequently, the policy is adjusted to favor selecting the action with the highest
estimated value at each state. These two steps, policy evaluation and policy improvement, are
repeated iteratively until convergence is achieved. Convergence is reached when the policy no longer
changes between iterations or when changes are negligible. A critical aspect of policy iteration is its
guarantee of convergence to an optimal policy, provided there are enough iterations. Nonetheless,
convergence might be sluggish, particularly in extensive state spaces, due to the iterative alternation
between policy evaluation and improvement steps [3].

Figure 8: Policy iteration [3]

Value iteration, in contrast to policy iteration, concentrates solely on computing the optimal
value function without the need to maintain a policy explicitly. This approach iteratively determines
the optimal value functions for each state and then selects actions associated with the highest values
to identify the optimal policy Equation 9. For value iteration to be effective, it relies on having
an accurate model of the system or environment. This model enables the determination of state
transition probabilities, which, in turn, allows for identifying actions with the highest probabilities
of transitioning to states with high values. However, in scenarios where a model is unavailable, the
action-value function Equation 10 must be determined instead of directly extracting the optimal
policy.

vk+1(s) = max
a

E[Rt+1 + γvk(st+1)] (9)

22

qk+1(s, a) = E[Rt+1 + γ max
at+1

qk(st+1, at+1)] (10)

Both policy and value iteration utilize bootstrapping to enhance data efficiency and capture the
dynamics of long trajectories, leading to the discovery of the optimal value function V ∗(s) . These
iterative methods ensure that each value is updated using only the maximizing action. Consequently,
after convergence, an agent can behave optimally by consistently selecting the maximizing action
in each successive state, irrespective of the initial state. Despite their effectiveness, bootstrapping
introduces bias in the updates, which is a notable drawback of these algorithms.

In industrial scenarios, dealing with a high number of dimensions is common, posing challenges
for the application of policy and value iterations. These traditional methods update all states
simultaneously, leading to significant computational expenses. To mitigate this issue, Asynchronous
Dynamic Programming (ADP) methods selectively update frequently visited states while avoiding
updates to rarely visited ones. While this approach reduces computation time, there’s a risk of
performance loss if the agent encounters those infrequent states.

2.4.2.2 Monte Carlo methods

Monte Carlo methods, in contrast to dynamic programming, are model-free techniques that do
not rely on a system model. Without access to a model for state transitions and value function
calculation, exploration becomes essential. These methods determine optimal policies by estimating
average returns for various policies through sampling sequences of states, actions, and rewards while
exploring under a specific policy. The average returns are updated after each trajectory, making
Monte Carlo methods suitable for finite episodes with a terminal state. As samples accumulate,
the value function converges toward the optimal value function for all states in the state space.

Unlike dynamic programming, where bootstrapping introduces bias in value function estimation,
Monte Carlo methods completely avoid this issue as bootstrapping is unnecessary. The value
function is computed from updates that occur after each episode. However, these methods are
prone to high variances, especially in noisy systems.

Exploration is crucial in Monte Carlo methods due to the absence of a system model, allowing
agents to discover value functions and determine optimal policies. Typically, exploration starts from
a random state for each episode until all states are adequately explored over multiple episodes.

Policy search in Monte Carlo methods resembles policy iteration but with three key distinctions:
updates are not simultaneous across all states, value functions are updated using sampled data from
agent-environment interactions, and action-value functions are identified instead of value functions.
Action-values provide explicit information to agents about the expected returns for each action in
every state, facilitating effective policy determination.

The optimal policy entails selecting actions associated with the highest expected return in each
state. Monte Carlo (MC) methods enable agents to learn through trial and error without needing a
system model, provided the episodes are finite. However, this approach has drawbacks, particularly
with very long or continuous episodes. Furthermore, it deviates from human learning behavior, as
humans typically assimilate feedback immediately rather than at predetermined intervals.

To overcome these limitations, temporal difference (TD) methods integrate concepts from dy-
namic programming (DP) and Monte Carlo (MC) methods. Unlike MC, TD methods do not wait
until the end of the episode for updates but instead rely more on immediate feedback, akin to
human learning. By updating value estimates based on the observed reward and the estimated
value of the subsequent state, TD methods enable agents to learn from each interaction with the

23

environment. This approach facilitates more efficient learning in continuous systems and better
aligns with human learning patterns.

2.4.2.3 Temporal Difference learning

Temporal difference learning, characterized by its computational efficiency and simplicity, has be-
come the preferred class of reinforcement learning (RL) algorithms. These methods combine the
benefits of learning from experiences, similar to Monte Carlo (MC) methods, with bootstrapping,
a hallmark of dynamic programming (DP) methods. Unlike traditional approaches, TD methods
do not rely on a pre-existing model of the system but instead learn the system dynamics directly
from collected trajectories.

TD methods update their value functions immediately upon receiving new state and reward
information, without waiting for the entire episode to complete. This immediate update allows
them to be more responsive and adapt to the dynamics of the environment much quicker compared
to MC methods, which wait until the episode is terminated to make updates. The update equations
for value and action-value functions are defined in equations (11) and (12) [3].

V (st)← V (st) + α[Rt+1 + γV (st+1)− V (st)] (11)

Q(st, at)← Q(st, at) + α[Rt+1 + γQ(st+1, at+1)−Q(st, at)] (12)

α is a parameter that governs the extent to which the existing value functions are adjusted
using the TD errors. These TD errors, represented as δt, quantify the disparity between the agent’s
perceived value function Rt+1 + γV (st+1) and the previous value function V (st). With multiple
visits to each state-action pair, the estimated values gradually converge to their true values. This
is identical for the convergence of action-values. Upon achieving convergence, the optimal policy
can be derived using Equation 7.

When the agent adjusts its value functions after every action, the algorithm is referred to as
TD(0), a particular instance within the broader TD(λ) algorithm, offering a more adaptable learn-
ing methodology. Like dynamic programming, TD(0) exhibits notable bias due to bootstrapping.
However, as the algorithm advances toward TD(1), bootstrapping diminishes, gradually resembling
the Monte Carlo (MC) method. Similar to Monte Carlo methods, TD methods function without
a model, requiring the learning of action-values and exploration. Exploration is often conducted
through ϵ-greedy policies, wherein the agent randomly chooses actions with a probability of ϵ ∈ [0, 1],
gradually transitioning towards selecting the action with the highest returns as training proceeds.
Initially, ϵ begins at a high value when the agent’s knowledge is limited, gradually decreasing as
training progresses, and ultimately converging to a low value as training nears completion.

SARSA (State-Action-Reward-State-Action) and Q-learning are two prominent TD methods,
each featuring distinct update procedures [3]. SARSA operates as an on-policy algorithm, implying
that its behavior policy aligns with its target policy, typically the optimal policy. A behavior policy
is the policy that selects actions to interact with the environment during training. This policy
could be an ϵ-greedy approach, which involves a trade-off between exploration (choosing random
actions) and exploitation (choosing actions based on current value estimates). When both the
target and behavior policies align, the agent is considered on-policy. However, an on-policy agent,
especially during training, may quickly converge to a local optimum and neglect exploration. This
can lead to sub-optimal solutions, as exploratory policies often deviate from optimality. In contrast,
for off-policy agents like Q-learning, convergence to an optimal policy is assured as long as each

24

state-action pair is sufficiently visited and the probability of selecting the optimal action under the
behavior policy is non-zero. To encourage exploration, Q-learning agents may initially adopt an
equiprobable random policy during training to facilitate extensive exploration before transitioning
to an optimal policy.

In SARSA, which operates as an on-policy method, the action-value functions are updated using
a quintuple comprising the current state, action, reward, next state, and next action, as outlined in
Equation 12. Conversely, in off-policy methods like Q-learning, Equation 13 is utilized to update
the action-value functions, incorporating only four parameters and excluding the next action, as it
is deemed a decision variable for maximizing the action-value function.

Q(s, a)← Q(s, a) + α

[
Rt+1 + γ max

at+1

Q(st+1, at+1)−Q(s, a)

]
(13)

The exclusion of the next action is deliberate as it may differ from the action selected by the
target policy. By employing the max operation, Q-values are consistently adjusted towards the
optimal policy, ensuring that the update process integrates the optimal next action. Essentially,
TD methods amalgamate the benefits of dynamic programming and Monte Carlo methods, enabling
agents to learn solely from experiences while also leveraging recent learnings through inter-episode
updates.

A crucial distinction between RL algorithms is whether they are model-free or model-based.
Model-based algorithms require a prior model of the process as an MDP. This means the transition
probabilities P are known and is used to compute value function and policies. Conversely, model-free
methods learn policies or value functions directly from interactions with the environment to create
its own model. These interactions can be represented as trajectories or experiences in a format
(states, actions, reward, next states) similar to that of an MDP. Model free methods can further be
classified into value based algorithms and policy-based algorithms. Actor -critic algorithms are the
combination of both value based and policy based algorithms. The following sections cover these
classes of RL algorithms in more detail.

2.4.3 Value based algorithms

Approaches like Q-learning [55] [51] [56] and SARSA [57], categorized as value based methods,
rely on a state-action value function without an explicit policy function. In cases with continuous
state and action spaces, this function serves as an approximate state-action value representation.
The objective of these methods is to learn the optimal value function by iteratively approximating
solutions to the Bellman Equation 10.

Q-learning is characterized by its exploration-intensive nature, ensuring convergence to the
optimal policy irrespective of the exploration policy employed, provided each state-action pair is
encountered an infinite number of times, and the learning rate is systematically decreased [58].

Unlike the off-policy Q-learning algorithm, SARSA represents an on-policy variant of TD learn-
ing [57]. Off-policy algorithms have the capacity to learn about the value of a different policy than
the one being executed, whereas on-policy algorithms approximate either the state-value function
Vπ(s) or the action-value function Qπ(s, a), which reflects the value of the current policy π being
followed [58]. SARSA aims to estimate the optimal policy π∗ by approximating Qπ(s, a) for the
current behavior policy π across all states s and actions a.

25

2.4.4 Policy based algorithms

While value-based algorithms indirectly parameterize the policy by estimating state or action val-
ues, policy-based methods, also known as direct policy-search or actor-only algorithms, directly
store a policy and attempt to update it to approximate the optimal policy π∗ [58]. Model-free
and policy-based approaches adjust the parameters θ to increase the likelihood of trajectories τ
with higher rewards, thereby enhancing the average return Jθ given by Equation 14. The total
accumulated reward for a sampled trajectory τ is defined as Equation 15, and πθ typically rep-
resents a parameterized stochastic policy, such as a Gaussian policy. Various strategies exist for
updating the policy, including policy gradient (PG) methods and expectation-maximization-based
methods. Here, we focus on PG methods, which employ gradient ascent to maximize the objective
in Equation 14. In gradient ascent, the parameter update direction is determined by the gradient
∇θJθ, as it indicates the direction of steepest ascent of the expected return.

J(θ) = Eτ∼πθ
[r(τ) | θ] =

∫
πθ(τ) r(τ) dτ (14)

r(τ) =

T∑
t=0

r(st, at) (15)

2.4.5 Actor - Critic algorithms

Actor-critic methods merge the benefits of value based and policy based approaches [59] [60]. Sim-
ilar to policy based methods, they can generate continuous actions. However, they address the
substantial variance in the policy gradients encountered in policy based methods by incorporating
a critic. This critic’s role is to assess the effectiveness of the current policy determined by the actor
by evaluating the TD-error using Equation 12. These TD errors, represented as δt, quantify the
difference between the agent’s perceived value function Rt+1 + γV (st+1) and the previous value
function V (st).

The critic estimates and refines the value function through sampled data. Subsequently, the
value function updates the actor’s policy parameters to enhance performance. Unlike value based
approaches, actor-critic methods typically maintain the favorable convergence properties of policy
gradient methods. The policy is directly derived from the value function using Equation 7 and
is adjusted in the policy gradient direction with a small step size. This approach ensures that
changes in the value function result in only minor adjustments to the policy, reducing or eliminating
oscillatory behavior in the policy, as detailed in [61].

2.4.6 RL algorithms suitable for implementation

Figure 9 shows how different RL algorithms are classified. For this study, model-free algorithms are
utilized as we want the agent to learn the dynamics of the process from scratch. Since continous
values are used in the Indpensim simulation, algorithms such as DQN, C51 and QR-DQN are not
compatible as they work only with actions with discrete values (discrete action space). An important
differentiation between DQN and algorithms such as C51 and QR-DQN is that the latter comes
under distributional reinforcement learning methods. In DQN, the action-state value or Q-value
is calculated from the expected return whereas for distributional reinforcement learning, the entire
distributions of returns is learnt. In C51, the distribution is categorical with a fixed number of

26

Figure 9: Classification of some state of the art RL algorithms [4].

bins (51 bins) and learns to predict the probabilities under each bin, indicating the likelihood of
encountering different return values. Conversely, in QR-DQN, the distribution is shaped using
quantiles instead of discretizing the distribution like in C51.

Table 2 summarizes some key features that differentiate between the model-free algorithms.
The role of the replay buffer is to store trajectories or experiences so that they can be reused
enabling better sample efficiency. It is used with RL algorithms that are off-policy. The main
differences between off and on policy is the balance between how the policy is updated, exploration
- exploitation balance and how past experiences are used. As seen in Figure 10, an off-policy RL
agent has two policies : the target policy and the behavior policy. The role of the behavior policy
is to interact with the environment with a random policy and collect experiences. This is how
exploration is introduced. A replay buffer stores all the environment interaction as a state, action,
reward, next observation tuple. The policy that learns is the target policy. This happens by making
updates from randomly sampled experiences. By randomly sampling experiences the correlation
between the consecutive updates are reduced and allows for a diverse set of past experiences.

On-policy uses only a current policy as if the target and behavior policy were the same. It
immediately learns from the experiences and therefore does not use a replay buffer. Exploration is
carried out with the current policy. However, since the policy is updated using recent experiences,
the exploration can be limited which makes it less exploratory compared to off - policy algorithms.
Since a replay buffer is not used, to collect a large set of experiences multiple workers in parallel
are commonly used. Each worker creates a copy of the environment from which experiences can
be collected simultaneously. It also improves exploration by exploring a wider range of actions and
states therefore reducing the chances of getting stuck in a local optima.

27

RL algorithm Continuous
actions

Continuous
observations

Replay buffer Policy type

Advantage Actor Critic (A2C)/
Aysnchronous Advantage Actor
Critic (A3C)

Yes Yes No On-policy

Proximal Policy Optimization
(PPO)

Yes Yes No On-policy

Trust Region Policy Optimiza-
tion (TRPO)

Yes Yes No On-policy

Deep Deterministic Policy Gra-
dient (DDPG)

Yes Yes Yes Off-policy

Twin Delayed Deep Determinis-
tic Policy Gradient (TD3)

Yes Yes Yes Off-policy

Soft Actor Critic (SAC) Yes Yes Yes Off-policy
Deep Q-Network (DQN) No Yes Yes Off-policy
C51 No Yes Yes Off-policy
Quantile Regression DQN(QR-
DQN)

No Yes Yes Off-policy

Table 2: Features of model free RL algorithms.

Figure 10: Off-policy vs On-policy RL.

28

The environment used for this study is more focused on off-policy algorithms that can handle
continuous actions and observations firstly because it can be more exploratory than on-policy meth-
ods while being decoupled from the learned policy. This is important because bad experiences has
much less of an immediate impact on the learned policy whereas for on-policy the impact is more
immediate. This narrows down the choices of algorithms to DDPG, TD3 and SAC.Considering
that TD3 builds upon an enhanced architecture of DDPG, it renders the inclusion of DDPG unnec-
essary. For the sake of comparison, an on-policy algorithm such as PPO is also used for training.
Additionally, algorithms such as Robust Predictable Control (RPC) which is based on SAC is also
used for this study [62].

2.4.7 PPO

PPO is an on-policy actor critic RL algorithm with a main focus on avoiding large policy updates
as it easily leads to instability. This is done by limiting the amount of change made to a policy
during each training epoch. With smaller updates the convergence to on optimal solution is more
likely given longer training.

Figure 11: PPO architecture.

One of the hyper parameters used is the clipping ratio. This ensures that the ratio between
the old and the new policy lies between a certain range therefore restricting the size of the policy
updates. Figure 11 below shows a simplistic version of the PPO algorithm. The agent interacts
with environment with actions from the actor and generates experience in the format of (current
state, action, reward and next state). The critic evaluates the action be estimating the advantage.
The advantage indicates if the action led to a better state compared to the previous state. The loss
function of the critic is the TD error. The clipped surrogate loss is calculated by using importance
sampling to obtain the expectation of the ratio of sample between the old and new policy and clipped

29

based on the clipping ratio before being multiplied by the advantage. The losses are minimized
using stochastic gradient descent.

By clipping the objective function, PPO does not act greedily in selecting actions with a high
positive advantage nor quickly avoid actions that give a negative advantage.

2.4.8 TD3

TD3 is an off - policy actor critic algorithm however it does not have a behaviour policy. This is
because a beahviour policy is stochastic which mean it gives out a distribution of actions instead
of definite continous values for the actions. The prime goal of TD3 is to determine a deterministic
policy hence does not require a behaviour policy. The exploration takes place by adding noise to
the deterministic actions that come from the actor network.

Figure 12 shows the architecture of TD3. Two critic networks are used to estimate the state-
action-value function or Q-value function. The use of two critic networks tackles the overestimation
bias which is a drawback from DDPG. Target networks are used for the actor and critic networks
and are copies of the main networks. They are updated much slower and periodically using soft
updates. These kind of arrangement makes the training more stable.

For the target critic networks, future actions are used for the estimation of target Q values for
additional stability to the learning by smoothing the updates to the critic networks. Including the
future action makes the target Q-values less responsive to minor alterations in the current policy’s
actions, which decreases the variability in critic updates and enhances the algorithm’s convergence
characteristics and makes it robust to noisy environments [63].

2.4.9 SAC

SAC is an off-policy actor critic RL algorithm where the actor network is a stochastic policy unlike
TD3 which has a deterministic policy. The aim is to learn a stochastic policy which maximizes the
long term reward while simultaneously maximizing the entropy of the actions to encourage a more
exploratory behaviour.

To reduce the overestimation bias TD3 incorporated two critics however in SAC a different
approach is followed. It penalizes large deviations from the expected value ensuring that the critic
network provides accurate and reliable state-action value estimates. This approach along with the
use of target networks that undergo soft updates allow for more stable training. The actor network
is updated through stochastic gradient descent from TD error loss function evaluated by the critic.
Figure 13 depicts the architecture of SAC.

2.4.10 Robust Predictable Control (RPC)

The Robust Predictable Controller (RPC) [64] stands as an RL algorithm built on top of actor-
critic algorithms like SAC, prioritizing robustness, generalization, and computational efficiency. It
combines concepts from information bottlenecks, model-based RL, and bits-back coding to acquire
a model in the latent space and generate compressed policies.

Information bottlenecks restricts the amount of information the RL agent can rely upon, dimin-
ishing the risk of over-fitting to the training task. This prompts a shift in the agent’s behavior and
policy, as minimizing the bits inclines the agent toward states with predictable dynamics.

The algorithm emphasizes temporally extended behavior of policies by leveraging information
from one time step to predict information for the next. Given that the predictions are accurate, the

30

Figure 12: TD3 architecture.

31

Figure 13: SAC architecture.

32

agent can rely on information from these predictions instead of obtaining it from the environment.
Moreover, the agent can alter the distribution over states by opting for behaviors that traverse
states more easier to compress.

The agent’s architecture involves learning a policy by training an encoder to generate a repre-
sentation of the current state and a high-level policy to decode that representation into actions.
The aim is to maximize rewards while minimizing the bit count. Compression is applied to the
sequence of states through the Variational Information Bottleneck (VIB). States with intricate dy-
namics necessitate more bits, prompting the agent to favor states where its learned model accurately
predicts the subsequent state. Results show that when compared to other actor-critic algorithms
RPC learnt policies that more robust to missing observations and noises while achieving similar or
higher rewards [64].

3 Environment configuration

This section addresses the configuration of the Indpensim simulation as an environment suitable
for the RL agent to train on. The simulation in MATLAB cannot be used directly and has to be
configured according to Open AI’s gym environment format which is the environment standard for
RL [65]. Figure 14 shows a closed loop control of the Indpensim process with the RL agent taking
control actions.

Figure 14: P&ID of closed loop system with an RL agent.

A RL Environment constitutes a simulation or a model where the agent engages by executing
actions, receiving rewards or penalties, and transitioning to different states accordingly. The green

33

dashed line in Figure 14 represents the actions taken by the agent on the environment. The actions
are listed as follows:

• Manipulate the flowrate of the substrate (sugar)

• Manipulate the flowrate of Oil

• Manipulate the flowrate of water

• Manipulate the flowrate of air

• Manipulate the pressure of the vessel

• Adjust the set point to the PI controller of PAA

The environment in the form a simulation takes in these set of actions to produce observations.
For the indpensim, 35 observations are produced, however, for this environment setup, a certain
number of important observations which are critical to the process and which can be measured in
a real process are chosen which therefore makes this a POMDP. The following observations are
chosen:

• Temperature

• Dissolved O2

• O2 from outgas

• CO2 from outgas

• PAA concentration

• Viscosity

• Vessel weight

• Penicillin concentration

• pH

Observations such as the temperature, pressure, pH, O2 from outgas, CO2 from outgas and
vessel weight are sampled every 12 minutes whereas the rest of the observations were originally
sampled every 12 hours. For the RL agent to take actions every hour, it needs these observations as
feedback to learn and take the next action. This can lead to missing observations which affect the
training performance of the RL agent. Therefore, to have a consistent sampling rate, the simulated
Raman spectroscopy and simulated viscosity which has been already implemented in the simulation
and validated is activated and used.

The RL algorithms used by the agent are written in python whereas the simulation used for
Indpensim is written in MATLAB. For the architecture in Figure 14 to work, both the environment
and the agent should be compatible to be able to communicate with each other. To get the
environment and agent to work together the following options were evaluated:

• Option 1 : The environment in MATLAB can be used with the RL toolbox of MATLAB

34

Python MATLAB
ODE solver ODEint ODE45

Penicillin yield after 1 hour (Kg) 0.057 0.058
Penicillin yield after 120 hours (Kg) 1421.28 1808.47

Table 3: Comparison between Indpensim simulation written in python vs MATLAB.

• Option 2 : A python version of the MATLAB environment can be created and used with RL
python libraries

• Option 3 : Use the MATLAB engine API to run MATLAB scripts in a python environment
and use it with RL python libraries.

The RL toolbox in matlab has a wide selection of algorithms to choose from and provides
documentation and examples to create a custom environment. However, option 1 is not used here
because there are much more python libraries that offer more choices in terms of algorithms and
new ones are updated more frequently. For example, Open AI has algorithms that use RNN and
CNN based architectures which are not yet available in MATLAB. Therefore, for this study the
option 2 and 3 are better.

To decide which among option 2 and 3 are better, the evaluation criteria used was the similarity
of the simulations between the python version and the original matlab version. The python version
created in [66] includes same physical ODEs (Ordinary Diffferential Equation), constants and default
operator recipes. The only difference was the type of ODE solver used. The ODE solver used in
MATLAB is the in-built ODE45, whereas for python Scipy’s ODEint was used. This is where
differences between the environments were noticed as well as the numerical stability of the ODE
solvers.

As seen from Table 3, for a total batch length of 230 hours, the values are close to each other at
the beginning of the batch but as it approaches towards the end of the batch, the deviation between
the yields increases. Moreover, the python environment was numerically unstable after 120 hours of
batch run time. Adjusting the step size of the ODE solver can increase the batch length few hours
more than 120 but still not enough to meet the required batch length of 230 hours. Therefore, the
only option remaining is option 3 which uses a more reliable and stable simulator in MATLAB and
the RL agent in python.

The MATLAB simulation is converted to a gym format environment through the following steps:

• Set up the action and observation space: Every gym environment must have an action space
and observation space initialized. The observation space can range from negative infinity to
positive infinity, however for this configuration the ranges are possible observations obtained
from literature (Table 4. The same applies to the action space and this helps the agent to
select actions within these bounds so as to avoid unsafe or illegal actions. The spaces can
be initialized in a discrete format or continuous format. Since the simulation works with
continuous values, the spaces are initialized as continuous. Table 4 show the upper and lower
bounds for the selected actions and observations.

• Set up a reset function: As explained in section 2.2.4, out of the 230 hours of batch operation
the first seventy hours always stays the same so that the biomass remains in its ”rapid-growth”
phase. The remaining 160 hours of batch operation is controlled by the RL agent. By taking

35

Variable Minimum Maximum
Action Sugar flowrate (L/h) 0 160
Action Oil flowrate (L/h) 0 36
Action Aeration rate (L/h) 0 76
Action Water flowrate (L/h) 0 510
Action Vessel pressure (bar) 0 1.2
Action PAA concentration set point (g/L) 0 1800

Observation Vessel weight (Kg) 0 111000
Observation pH 0 14
Observation Temperature (K) 0 350
Observation CO2 outgas (%) 0 100
Observation O2 outgas (%) 0 100
Observation PAA concentration (g/L) 0 1800
Observation Dissolved oxygen (mg/L) 0 30
Observation Penicillin concentration (g/L) 0 50
Observation Viscosity (cP) 0 100

Table 4: Lower and upper bounds for the actions and observations

an action every hour the episode length for the environment is set as 160 steps. Figure 15
gives an overview of flow of actions, observations and rewards collected between the gym
environment and the RL agent. The policy of the RL agents represents a neural network that
accepts observations as input and outputs actions based on the input. The role of the policy
is to take actions that maximizes the overall reward. The episode is started by first executing
the reset function. Here the MATLAB environment executes a predetermined recipe to enable
the previously mentioned ”rapid growth” phase until 70 hours. From hour 71, the RL takes
its first action by executing the step function.

• Set up step function: Depicted in Figure 15, the step function is designed to accept actions
from the RL agent as input and returns a tuple consisting of the new observation generated by
the simulation, reward and a ’done’ flag to indicate if the episode is completed or terminated.
In the step function, the action from the policy is passed to the MATLAB simulation using
the MATLAB engine API where it executes the new action for a period of 1 hour. New
observations such as the ones mentioned in the Figure 15 are generated. These observations
correspond to the states for the next hour which is then fed back to the agent to get the new
action for the consecutive hour. This process is repeated until the ’DONE’ variable is set as
True which indicates either that the episode is completed as it has completed all 160 steps or
the episode got terminated due to other reasons such as violation of set constraints (Figure
16) in the step function or simulation crashes due to numerical instability that comes from
the policy taking extreme actions during exploration.

The reward is calculated based on the observations received from the simulations executing the
actions from the policy. The reward can be positive or negative depending whether constraints
were violated. If no violations, then a positive reward is given proportional to the penicillin
concentration. The above flowchart shows the constraints corresponding to each observation.
Violating those constraints incurs a negative reward and the ’Done’ variable can be set as

36

Figure 15: RL environment configuration.

37

True. Setting it as True terminates the episode and therefore the step function. As shown in
Figure 15, the episode is restarted again from the reset function and then the step function is
executed thereafter. Setting ’Done’ as False, allows the episode to keep continuing. If more
constraints are violated along the way, then the negative reward accumulates. This allows the
episode to run for the desired number of steps and the constraints in this case become soft
constraints. The positive reward function is the penicilin concentration scaled by a factor of
1000. Since we want to also maximize yield, the yield can also be used as a reward function.
The impact of using different reward functions is discussed in section 5.

Figure 16: Step function and reward calculation.

4 Results

In this section, the results from training the RL agents discussed in section 2, on the configured
environment in section 3 is illustrated here.

4.1 Training with TD3

The TD3 reinforcement learning agent underwent training for 50,000 steps. Analysis of the rewards
averaged over 100 episodes, as depicted in Figure 17, reveals an intriguing pattern: the agent
achieves its highest average reward approximately halfway through training, around the 25,000th

38

step. However, this peak is followed by a notable decline, after which the average reward stabilizes
at a consistent level for the remainder of the training duration.

Figure 17: Rolling average reward over 100 episodes (TD3).

The deterministic nature of TD3’s policy dictates that exploration is executed through the
introduction of noise to the deterministic actions. Despite this mechanism, the observed stagnation
in average reward suggests a tendency for the agent to become trapped in local maxima, thereby
showing limited exploration. Although hyperparameter tuning offers a potential solution to improve
exploration, it warrants attention beyond the scope of this study, which instead prioritizes the
examination of alternative algorithms.

Additionally, the critic loss depicted in Figure 18 exhibits high levels of oscillation throughout
the training process. This oscillatory behavior signifies a lack of stability in the training dynamics,
potentially hindering the agent’s learning progress.

4.2 Training with SAC

SAC learns a stochastic policy which therefore is inherently exploratory and unlike TD3 does not
need noise to be added to the actions for exploration. SAC leverages parallelization to enhance
training efficiency. By employing multiple workers simultaneously, experiences are collected and
stored in the replay buffer. This approach not only accelerates data collection but also facilitates
more efficient utilization of computational resources, ultimately leading to faster convergence and
improved training speed. Each worker maintains a dedicated copy of the environment and obtains
actions from the agent’s stochastic action distribution. Consequently, multiple experiences are
collected concurrently, contributing to a more diverse and efficient exploration of the environment.

For the initial training strategy, 16 workers were considered. Figure 20 shows the reward aver-
aged over 100 episodes of the agent and trained for 100k steps with 16 workers. Around

39

Figure 18: Critic loss (TD3).

Figure 19: Comparison of average rewards between SAC agent with 16 workers and SAC agent
with 6 workers.

40

the 50,000th step, the agent’s exploratory nature helps it avoid getting stuck in the same average
reward or trapped in local maxima. This adaptability allows the agent to keep exploring different
possibilities in the environment, preventing it from settling too quickly on a sub-optimal solution.
Extending training beyond 100,000 steps was not considered because the critic loss started to
become unstable, as shown in figure 21.

To evaluate the impact of reducing the number of workers on training performance in terms
of average reward and stability, 6 workers were considered, as the environment accepted 6 actions
at a time. Figure 19 shows the difference between the rewards averaged over 100 episodes for
16 workers and 6 workers. Note that stability was observed during training with 6 workers from
0 to 100,000 steps. Subsequently, further training was extended until 300,000 steps, after which
instability became apparent, as evident in Figure 22. This observation underscores the potential
consequences of favoring too much exploration, as it can result in instability and significantly poorer
performance.

Therefore, instead of continuing training from 300,000 steps onwards with 6 environments, the
decision was made to continue training with just 1 environment. Figure 22 highlights a significant
difference in the final yield resulting from the reduction in exploration by reducing the number of
environments. This shift also emphasizes exploitation, striking a balance between exploration and
exploitation that is crucial for the agent to converge and perform effectively.

Figure 20: Average reward for SAC agent with 16 workers.

41

Figure 21: Critic loss for SAC agent with 16 workers.

Figure 22: Comparison of yields between SAC agent trained with 6 workers and SAC agent trained
with 6 workers initially and then with 1 worker for additional steps.

42

Exploitation, in this context, meant maximizing rewards by exploiting known states rather than
continuously exploring new, unvisited states. This shift in focus allowed the agent to consolidate
its learning and refine its strategies based on previously acquired knowledge, ultimately leading to
more stable and effective training outcomes.

4.3 Training with RPC

Here the environment is trained with the agent that uses the RPC algorithm. As discussed in
section 2.4.10, this algorithm uses information bottlenecks to train compressed policies. The rate
of compression can be adjusted by selecting the number of bits. To determine the how the selection
of bits affects the training and results, experiments were performed with 15 bits, 10 bits and
1 bit. Furthermore, for each of these experiments, the impact of different reward functions are
also analyzed. The two reward functions considered here are the penicillin yield and penicillin
concentration which are related to each other by Equation 16.

Total penicillin yield = Vend × Cend +
n∑

i=1

Vi × Ci (16)

• Vend represents the vessel volume at the end of the batch.

• Cend represents the penicillin concentration at the end of the batch.

• Vi represents each vessel discharge volume.

• Ci represents the corresponding penicillin concentration of each vessel discharge.

• n represents the total number of vessel discharges.

Figure 23 shows the impact of the reward function and number of bits chosen for compression on
the total penicillin yield. It was observed that for all the cases, having the penicillin concentration
as the reward function gave a better performance. The agents were trained for a total of 50000
steps each. The 1-bit and 10-bit RPC agent achieved higher yield than the 15-bit agent irrespective
of the reward function. As a result, further experimentation was carried out only with the 1 and
15 bit RPC agents.

The aim of this study is not only to maximize the penicillin yield but also to reduce batch-to-
batch variation by rejecting disturbances to the process. This is analyzed by training the agents (1
bit and 15 -bit) with a specific set of initial conditions and process parameters and then validating
the trained model against different conditions and process parameters which the agents have not
seen before. To demonstrate the sensitivity of the process to slightly different initial conditions,
Table 5 and Figure 24 indicates how the initial conditions change and how the performance in terms
of penicillin yield is affected.

Figure 24 shows the performance of 1-bit and 10-bit RPC for the train and test conditions.
The agents were trained to take actions every one hour (as discussed in section 3). All the agents
except the 1-bit did not violate any constraints and thus completed the required batch length of
230 hours. The 1-bit RPC for test conditions terminated the batch prematurely due to violation
of the viscosity constraint. Interestingly, when the same agent trained to take actions every 1 hour
was instead directed to take actions every 2 hours, it performed better when evaluated under test
conditions without requiring any retraining. The reasoning behind this behaviour is discussed in

43

Figure 23: Comparison of penicillin yields for different compressions (bits) and reward functions.

Train conditions Test conditions
Initial substrate feed concentration 0 (g/L) 0 (g/L)

Initial dissolved oxygen concentration 14.67 (mg/L) 14.58 (mg/L)
Initial biomass concentration 0.45 (g/L) 0.60 (g/L)

Initial vessel volume 57700.02 (L) 57332.02 (L)
Initial vessel weight 61997.46 (Kg) 61662.32 (Kg)

Initial pH 6.60 6.45
Initial temperature 297.67 (K) 297.91 (K)

Initial type a0 biomass concentration 0.15 (g/L) 0.21 (g/L)
Initial type a1 biomass concentration 0.29 (g/L) 0.39 (g/L)
Initial type a3 biomass concentration 6.77 (g/L) 1.11 (g/L)
Initial type a4 biomass concentration 4.05 (g/L) 6.65 (g/L)

Initial cell culture age 0.09 (hours) 0.12 (hours)
Initial PAA concentration 1445.62 (g/L) 1254.87 (g/L)

Table 5: Initial conditions for train and test case.

44

Figure 24: Penicillin yield for 1-bit and 10-bit RPC for different action intervals

section 5. Due to time and resource constraints, only the 10-bit RPC was trained for an additional
50000 steps which could be the reason why it performed well for both 1 hour and 2 hour action
intervals.

As discussed in section 2.2.5.1, PAA is a critical parameter to the process. So the effect of the
different initial PAA concentrations is used to evaluate the performance of the 10-bit RPC for 1
hour and 2 hour action intervals. From Figure 25 it is quite evident, the impact of PAA on the
yield and performance of the agent. Though for all PAA concentrations the yields are above target
(2000 Kg), in the case of 1 hour action intervals some batches were quite far from the mean. With
2 hour action intervals the performance is much superior with much less variability in the yields.
This indicates the importance of knowing the best interval for when an action must be taken.

In a real process, disturbances to the process in the form of sensor noises and faults can affect
the overall process. To see how RL agent behaves under such conditions, it is tested against the
following faults (which are taken from a real process [9]):

• Aeration flowrate fault

• Base flowrate fault

• Coolant flowrate fault

• Vessel back pressure fault

• Substrate flow rate fault

• All of the above faults combined

• Temperature sensor error

• pH sensor error

45

Figure 25: Effect of different initial PAA concentration on the penicillin yield for 10-bit RPC

Figure 26: Individual process faults and its impact on the performance of the 10-bit RPC agent
taking actions every hour.

46

Figure 26 shows individual faults in the process and the performance of the agent when all
faults are activated simultaneously. Despite the drop on the yield, it still meets the minimum yield
requirement. To see if taking an action every 2 hours instead of 1 hour makes a difference in dealing
with these faults, Figure 27 shows the comparison in terms of yields.

Figure 27: Effect of different action intervals by 10-bit RPC agent on the process with and without
faults.

Even with all the faults activated, the 10-bit RPC agent can complete the entire batch without
any violation of the constraints and still achieve yields much higher than the minimum requirement.
Its ability to reject sensor noises such as pH and temperature sensor noises is depicted in Figure
28. The sensor noises does not affect the performance of the agent.

The 10-bit RPC agent was trained with the nominal vessel dimensions and evaluated against
increasing and decreasing dimensions. Results from Table 6 shows the agent is able to achieve good
yields despite not being trained on the modified vessel dimensions therefore showing its adaptability
to modified process dynamics.

As discussed in section 2.2.3, the radius of the vessel and the impeller radius can affect the
rate of dissolved oxygen which therefore can alter the dynamics of the process. The 10-bit RPC is
evaluated against a decrease and increase in vessel radius by 10% as well as a decrease and increase
in impeller radius by 10%.

47

Figure 28: Effect of different action intervals by 10-bit RPC agent on the process with sensor errors.

Penicillin yield (Kg) Penicillin yield (Kg)
Nominal vessel and impeller radius 5405.59 (1 hour action) 5379.77 (2 hour action)

Vessel radius (10% increase) 5287.74 (1 hour action) 5275.61 (2 hour action)
Vessel radius (10% decrease) 5474.15 (1 hour action) 5439.87 (2 hour action)

Impeller radius (10% increase) 5467.96 (1 hour action) 5439.15 (2 hour action)
Impeller radius (10% increase) 5003.22 (1 hour action) 5138.25 (2 hour action)

Table 6: Effect of vessel dimensions on the performance of 10-bit RPC agent

48

4.4 Training with other RL algorithms

Training the environment with PPO exhibited greater instability compared to TD3. This is an
anticipated outcome with an on-policy algorithm, as it relies on the current policy for exploration.
The absence of a replay buffer means it does not recycle experiences, which is crucial in environments
with slow dynamics, like this chemical process. Consequently, a significant number of experiences
need to be reused before the algorithm can converge on an optimal policy.

PPO combined with Neuro-symbolic frameworks such as Logic Tensor Networks (LTN) [67] was
also used for training. However, the algorithm breaks down quite early during the training process
due to exploding gradients in the neural network.

5 Discussion

In this section we discuss the results from section 4 and understand the behaviour of the RL agents
training performance and its evaluation against different test cases.

Among the RL agents trained in this work for 50000 steps, agents that use RPC showed better
performance in terms of maximizing the penicillin yield compared to TD3 and SAC. Three different
versions: 1-bit, 10-bit and 15-bit RPC agents were trained with 2 types of reward functions. The
15-bit showed better performance and was trained further for another 50000 steps (10000 steps in
total) as the favourite RL agent.

The choice of reward function is critical when training the RL agent. In this work, 2 reward
functions were used - penicillin concentration and penicillin yield, both of which are related to
each other as seen in Equation 16. The performance of the RL agent was better when penicillin
concentration was used as the reward function. To understand why this is the case, the plot of the
penicillin yields and penicillin concentration must be analyzed.

From Figure 29, the profile of the penicillin yield has small dips and looks slightly noisy compared
to the penicillin concentration. These small dips are caused by the vessel discharges to avoid vessel
overflow. The vessel discharge does not affect the penicillin concentration and hence is insensitive
to these vessel discharges. In conclusion, smoother the reward function better is the training
performance.

When evaluated under various initial conditions and process faults, the 10-bit RPC agent,
trained to take actions every 1 hour, exhibited inferior performance compared to when the same
agent was configured to take actions every 2 hours. This discrepancy in performance can be elu-
cidated by analyzing Figure 30. When actions are taken every hour, the batch fails to complete
due to a violation of the viscosity constraint. Conversely, with actions taken every 2 hours under
an identical agent and process conditions, significantly higher penicillin yields are achieved without
violating any constraints.

The underlying reason for this disparity can be discerned by examining the discharge rates
depicted in Figure 30. With longer action intervals, the vessel discharge is sustained for a prolonged
duration. This allows for a larger volume available for biomass growth and extends the residence
time in the vessel. Given the slow dynamics inherent in biochemical processes, it takes time to
observe the effects of actions taken by the agent. With a longer residence time, these effects become
more pronounced, enabling the agent to make informed decisions based on observed outcomes.
Consequently, the viscosity could not be effectively controlled with actions taken every hour, as
subsequent actions were initiated before the full effects of previous actions had manifested.

49

Figure 29: Comparison of penicillin yield and penicillin concentration profile for 10-bit RPC agent.

50

Figure 30: Impact of 10-bit RPC agent’s actions every 1 hour and 2 hour on the process.

51

Avg. batch
yield (Kg)

Num. of
batches

Num. of
batches below
target

Training steps Control ac-
tion interval

Operator con-
trolled [9]

2882± 745 26 2 - Not fixed (in
hours)

Sequential
Batch Control
[9]

2912± 786 26 2 - Not fixed (in
hours)

Raman Spec-
troscopy with
PI control on
PAA [9]

3517± 315 26 0 - PAA controlled
every 12 min-
utes

Nonlinear MPC
[38]

3987± 265 30 Not specified - Every 12 min-
utes

Soft Actor
Critic (RL) [38]

3944± 272 30 Not specified 1 million Every 12 min-
utes

10-bit RPC
(This work)

4921± 337 26 0 100,000 Every 2 hours

Table 7: Comparison of different control strategies on the Indpensim

As a result, the performance of the 10-bit RPC agent acting every 2 hours under varying input
conditions achieved high penicillin yields with a small variation compared to the same agent acting
every 1 hour (see Figure 25). Furthermore, under different process faults (all acting in the same
batch) and varying vessel dimensions, none of the batch yields were below target. This shows
the generalization capabilities of the 10-bit RPC agent to take actions at different intervals, reject
disturbances, achieve high penicillin yields and operate safely (no violation of constraints) without
the need for retraining.

Finally, Table 7 compares the best RL agent from this work with other implementations. When
operated manually or with an optimal predefined recipe using Sequential Batch Control (SBC),
there were batches below target. With the help of Raman Spectroscopy for online measurements
and PI controller to control the PAA concentration which is a critical parameter, the performance
was improved as no batches were below target and the overall penicillin yield increased by 20% in
comparison to SBC. Nonlinear MPC implemented by [38] was able to increase the yield by 37%
(with respect to SBC). However, it assumed a full state feedback which means all 35 observations
were recorded and used to get the next optimal control action. Soft Actor Critic was use as a
RL controller similar to this work, but was trained with different environment configurations. For
example 9 observations was used for the SAC training in this work whereas 16 observations were
used in [38]. Moreover, training was done for 1 million steps. The SAC implementation was able
to achieve yields 36% higher than SBC. Finally, the 10-bit RPC implementation in this study was
able to achieve the highest increase of 57% in penicillin yield compared to SBC which only required
the least number of training steps and used the least number of observations (9 observations).

52

6 Conclusion

In this study, various RL agents were deployed as high-level controllers for a penicillin process
simulation, aiming to optimize penicillin yield, ensure safe operation, and generalize effectively to
unseen scenarios. Among all the trained agents, the 10-bit RPC demonstrated superior performance.

It’s adaptability and robust performance across various unseen input conditions underscore its
potential for real-world applicability. It demonstrated remarkable flexibility by effectively executing
actions even at intervals it hadn’t been explicitly trained for, showcasing its ability to generalize
learned behaviors to new situations. Despite encountering disturbances, the agent consistently
met its control objectives and attained the desired target yields, albeit with minimal impact on
performance. Notably, its ability to maintain control in the presence of errors in temperature and
pressure sensors highlights its resilience to noisy or imperfect sensor data, a critical attribute in
real-world environments where sensor accuracy may be compromised.

Moreover, the agent’s commendable response to shifted process dynamics, such as alterations
in vessel dimensions, further validates its versatility and adaptability. These observations indicate
that the agent can effectively adapt to changes in the underlying system, a crucial capability for
ensuring robust performance in dynamic industrial settings.

Remarkably, these achievements were attained with fewer training steps and observations com-
pared to other implementations cited, making the approach more practical for real-world deploy-
ment. This efficiency is particularly promising considering the challenges often associated with
collecting large amounts of training data in industrial settings. In many real processes, it may be
impractical or cost-prohibitive to measure all process variables accurately. Therefore, the agent’s
ability to achieve commendable performance with limited data inputs holds significant potential for
streamlining the deployment of AI-driven control systems in industrial applications.

7 Future research

Future research for the trained Reinforcement Learning Process Control (RPC) agent encompasses
several key directions aimed at enhancing its real-world applicability and reliability. Integration
into actual industrial processes is paramount to validate its effectiveness and behavior under real-
time conditions. Concurrently, robustness testing is crucial to evaluate the agent’s adaptability and
resilience against extreme scenarios, ensuring its reliability in practical applications.

Generalization efforts should focus on extending the agent’s capabilities to control diverse process
types, enhancing its versatility and widening its potential applications. Additionally, improving data
efficiency and exploring transfer learning techniques can expedite deployment in new environments
with limited data availability. Integration with human operators presents an opportunity to develop
collaborative control systems, leveraging the strengths of both humans and AI to enhance system
performance and safety.

53

8 Acknowledgement

I would like to express my sincere gratitude to Dr. Fabian Buelow and Prof. Dr. Margret Bauer
for providing me with the invaluable opportunity to conduct my thesis at ABB. Their support and
encouragement throughout this journey have been instrumental in shaping my research experience
and professional growth.

I am also grateful to the entire team at ABB for their collaboration, encouragement, and valuable
input throughout this endeavor. Their contributions have enriched my learning experience and
enhanced the quality of my research.

Lastly, I would like to extend my heartfelt appreciation to my family and friends for their
unwavering support, encouragement, and understanding throughout this journey. Their love, en-
couragement, and belief in my abilities have been a constant source of motivation and strength.

54

References

[1] Afrânio Melo, Mauŕıcio M Câmara, Nayher Clavijo, and José Carlos Pinto. Open benchmarks
for assessment of process monitoring and fault diagnosis techniques: A review and critical
analysis. Computers & Chemical Engineering, 165:107964, 2022.

[2] Stephen Goldrick, Andrei Ştefan, David Lovett, Gary Montague, and Barry Lennox. The
development of an industrial-scale fed-batch fermentation simulation. Journal of biotechnology,
193:70–82, 2015.

[3] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. 9(5):1054–1054.

[4] Spinning up in deep rl. https://spinningup.openai.com/en/latest/spinningup/rl_

intro2.html, 2018.

[5] Mark L. Darby and Michael Nikolaou. MPC: Current practice and challenges. Control Engi-
neering Practice, 20(4):328–342, April 2012.

[6] Steven Spielberg P, Aditya Tulsyan, Nathan Lawrence, Philip Loewen, and Bhushan Gopaluni.
Towards self-driving processes: A deep reinforcement learning approach to control. AIChE
Journal, 65, 06 2019.

[7] Kalpesh Patel. Safe, fast and explainable online reinforcement learning for continuous process
control. pages 54–60, 08 2022.

[8] Stephen Goldrick, Carlos Duran-Villalobos, Karolis Jankauskas, David Lovett, Suzanne Farid,
and Barry Lennox. Modern day monitoring and control challenges outlined on an industrial-
scale benchmark fermentation process. Computers & Chemical Engineering, 130, 05 2019.

[9] Stephen Goldrick, Carlos A Duran-Villalobos, Karolis Jankauskas, David Lovett, Suzanne S
Farid, and Barry Lennox. Modern day monitoring and control challenges outlined on
an industrial-scale benchmark fermentation process. Computers & Chemical Engineering,
130:106471, 2019.

[10] Ruan de Rezende Faria, Bruno Didier Olivier Capron, Argimiro Resende Secchi, and
Mauŕıcio B. de Souza. Where Reinforcement Learning Meets Process Control: Review and
Guidelines. 10(11):2311.

[11] Dominique Bonvin. Optimal operation of batch reactors—a personal view. Journal of process
control, 8(5-6):355–368, 1998.

[12] Dominique Bonvin, Bala Srinivasan, and David Ruppen. Dynamic optimization in the batch
chemical industry. Chemical Process Control-VI, 2001.

[13] A Arpornwichanop, P Kittisupakorn, and IM Mujtaba. On-line dynamic optimization and
control strategy for improving the performance of batch reactors. Chemical Engineering and
Processing: Process Intensification, 44(1):101–114, 2005.

[14] Omar Santander, Vidyashankar Kuppuraj, Christopher A Harrison, and Michael Baldea. An
open source fluid catalytic cracker-fractionator model to support the development and bench-
marking of process control, machine learning and operation strategies. Computers & Chemical
Engineering, 164:107900, 2022.

55

[15] James J Downs and Ernest F Vogel. A plant-wide industrial process control problem. Com-
puters & chemical engineering, 17(3):245–255, 1993.

[16] Andreas Bathelt, N Lawrence Ricker, and Mohieddine Jelali. Revision of the tennessee eastman
process model. IFAC-PapersOnLine, 48(8):309–314, 2015.

[17] Carla Martin-Villalba, Alfonso Urquia, and Guodong Shao. Implementations of the tennessee
eastman process in modelica. IFAC-PapersOnLine, 51(2):619–624, 2018.

[18] RK Bajpai and M Reuss. A mechanistic model for penicillin production. Journal of Chemical
Technology and Biotechnology, 30(1):332–344, 1980.

[19] Gülnur Birol, Cenk Ündey, and Ali Cinar. A modular simulation package for fed-batch fer-
mentation: penicillin production. Computers & chemical engineering, 26(11):1553–1565, 2002.

[20] Jan Van Impe and Geert Gins. An extensive reference dataset for fault detection and iden-
tification in batch processes. Chemometrics and Intelligent Laboratory Systems, 148:20–31,
2015.

[21] Geert Gins, Jef Vanlaer, Pieter Van den Kerkhof, and Jan FM Van Impe. The raymond
simulation package—generating raypresentative monitoring data to design advanced process
monitoring and control algorithms. Computers & chemical engineering, 69:108–118, 2014.

[22] Micha l Bartyś, Ron Patton, Micha l Syfert, Salvador de las Heras, and Joseba Quevedo. Intro-
duction to the damadics actuator fdi benchmark study. Control engineering practice, 14(6):577–
596, 2006.

[23] GC Paul and CR Thomas. A structured model for hyphal differentiation and penicillin produc-
tion using penicillium chrysogenum. Biotechnology and bioengineering, 51(5):558–572, 1996.

[24] Fazilet Vardar and MD Lilly. Effect of cycling dissolved oxygen concentrations on product for-
mation in penicillin fermentations. European journal of applied microbiology and biotechnology,
14:203–211, 1982.

[25] GN Rolinson. Respiration of penicillium chrysogenum in penicillin fermentations. Microbiology,
6(3-4):336–343, 1952.

[26] Ryon Frick and Beth Junker. Indirect methods for characterization of carbon dioxide levels in
fermentation broth. Journal of bioscience and bioengineering, 87(3):344–351, 1999.

[27] Patrick N Royce. Effect of changes in the ph and carbon dioxide evolution rate on the measured
respiratory quotient of fermentations. Biotechnology and bioengineering, 40(10):1129–1138,
1992.

[28] Celeste M Todaro and Henry C Vogel. Fermentation and biochemical engineering handbook.
William Andrew, 2014.

[29] Mhairi McIntyre, David R Berry, and Brian McNeil. Response of penicillium chrysogenum to
oxygen starvation in glucose-and nitrogen-limited chemostat cultures. Enzyme and Microbial
Technology, 25(3-5):447–454, 1999.

56

[30] Dirk J Hillenga, H Versantvoort, S Van der Molen, A Driessen, and Wil N Konings. Penicillium
chrysogenum takes up the penicillin g precursor phenylacetic acid by passive diffusion. Applied
and environmental microbiology, 61(7):2589–2595, 1995.

[31] B Metz and NWF Kossen. The growth of molds in the form of pellets–a literature review.
Biotechnology and bioengineering, 19(6):781–799, 1977.

[32] Jianqiang Lin, Sang-Mok Lee, Ho-Joon Lee, and Yoon-Mo Koo. Modeling of typical microbial
cell growth in batch culture. Biotechnology and Bioprocess Engineering, 5:382–385, 2000.

[33] L Shuler Michael and Fikret Kargi. Bioprocess engineering: basic concepts, 2002.

[34] RD Megee III, S Kinoshita, AG Fredrickson, and HM Tsuchiya. Differentiation and product
formation in molds. Biotechnology and Bioengineering, 12(5):771–801, 1970.

[35] Volker Tiller, Juliane Meyerhoff, Ditmar Sziele, Karl Schügerl, and Karl-Heinz Bellgardt. Seg-
regated mathematical model for the fed-batch cultivation of a high-producing strain of peni-
cillium chrysogenum. Journal of biotechnology, 34(2):119–131, 1994.

[36] José C Menezes, Sebastião S Alves, João M Lemos, and Sebastião Feyo de Azevedo. Math-
ematical modelling of industrial pilot-plant penicillin-g fed-batch fermentations. Journal of
Chemical Technology & Biotechnology: International Research in Process, Environmental AND
Clean Technology, 61(2):123–138, 1994.

[37] Stephen Goldrick, Ewan Mercer, Gary Montague, David Lovett, and Barry Lennox. Control
of an industrial scale bioreactor using a pat analyser. IFAC Proceedings Volumes, 47(3):6222–
6227, 2014.

[38] Haoran Li, Tong Qiu, and Fengqi You. Ai-based optimal control of fed-batch biopharmaceutical
process leveraging deep reinforcement learning. Chemical Engineering Science, 292:119990,
2024.

[39] Maciej Lawryńczuk, Piotr M Marusak, and Piotr Tatjewski. Cooperation of model predictive
control with steady-state economic optimisation. Control and Cybernetics, 37(1):133–158, 2008.

[40] Haeun Yoo, Boeun Kim, Jong Woo Kim, and Jay H. Lee. Reinforcement learning based
optimal control of batch processes using monte-carlo deep deterministic policy gradient with
phase segmentation. Computers & Chemical Engineering, 144:107133, 2021.

[41] Sigurd Skogestad. Control structure design for complete chemical plants. Computers & Chem-
ical Engineering, 28(1-2):219–234, 2004.

[42] Ton Backx, Okko Bosgra, and Wolfgang Marquardt. Integration of model predictive control
and optimization of processes: Enabling technology for market driven process operation. IFAC
Proceedings Volumes, 33(10):249–260, 2000.

[43] Veronica Adetola and Martin Guay. Integration of real-time optimization and model predictive
control. Journal of Process Control, 20(2):125–133, 2010.

[44] Rui Nian, Jinfeng Liu, and Biao Huang. A Review on Reinforcement Learning: Introduc-
tion and Applications in Industrial Process Control. Computers & Chemical Engineering,
139:106886, April 2020.

57

[45] Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. Mutual Alignment Transfer Learning.
pages 281–290. PMLR.

[46] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[47] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive control: theory,
computation, and design, volume 2. Nob Hill Publishing Madison, WI, 2017.

[48] Richard Bellman. Dynamic programming and stochastic control processes. Information and
control, 1(3):228–239, 1958.

[49] Martijn RK Mes and Arturo Pérez Rivera. Approximate dynamic programming by practical
examples. Springer, 2017.

[50] Markov Decision Processes: Discrete Stochastic Dynamic Programming | Wiley.

[51] Christopher JCH Watkins and Peter Dayan. \cal q-learning. Machine learning, 8(3-4):279–292,
1992.

[52] Oguzhan Dogru, Nathan Wieczorek, Kirubakaran Velswamy, Fadi Ibrahim, and Biao Huang.
Online reinforcement learning for a continuous space system with experimental validation.
Journal of Process Control, 104:86–100, 2021.

[53] Andrew Y Ng. Shaping and policy search in reinforcement learning. University of California,
Berkeley, 2003.

[54] S Kumar Chenna, Yogesh Kr Jain, Himanshu Kapoor, Raju S Bapi, Narri Yadaiah, Atul Negi,
V Seshagiri Rao, and Bulusu Lakshmana Deekshatulu. State estimation and tracking problems:
A comparison between kalman filter and recurrent neural networks. In Neural Information
Processing: 11th International Conference, ICONIP 2004, Calcutta, India, November 22-25,
2004. Proceedings 11, pages 275–281. Springer, 2004.

[55] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[56] Steven J Bradtke, B Erik Ydstie, and Andrew G Barto. Adaptive linear quadratic control using
policy iteration. In Proceedings of 1994 American Control Conference-ACC’94, volume 3, pages
3475–3479. IEEE, 1994.

[57] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems,
volume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

[58] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning, and
optimization, 12(3):729, 2012.

[59] Ian H Witten. An adaptive optimal controller for discrete-time markov environments. Infor-
mation and control, 34(4):286–295, 1977.

[60] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. In Neurocomputing: foundations of research,
pages 535–549. 1988.

58

[61] Leemon Baird and Andrew Moore. Gradient descent for general reinforcement learning. Ad-
vances in neural information processing systems, 11, 1998.

[62] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Robust predictable control. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 27813–27825. Curran
Associates, Inc., 2021.

[63] Wenjiao Zai, Junjie Wang, and Guohui Li. A drone scheduling method for emergency power
material transportation based on deep reinforcement learning optimized pso algorithm. Sus-
tainability, 15(17):13127, 2023.

[64] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Robust predictable control. Ad-
vances in Neural Information Processing Systems, 34:27813–27825, 2021.

[65] Gymnasium documentation. https://gymnasium.farama.org/.

[66] Mohan Zhang, Xiaozhou Wang, Benjamin Decardi-Nelson, Bo Song, An Zhang, Jinfeng Liu,
Sile Tao, Jiayi Cheng, Xiaohong Liu, DengDeng Yu, et al. Smpl: Simulated industrial manufac-
turing and process control learning environments. Advances in Neural Information Processing
Systems, 35:26631–26644, 2022.

[67] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

59

