
BACHELOR THESIS

Bat Call Classification

in Audio Recordings with Drone Noise

Using Deep Learning

submitted on 23 May 2024

Mira Hesse

First Examiner: Prof. Dr. Tessa T. Taefi

Second Examiner: Marc Roswag

HAMBURG UNIVERSITY

OF APPLIED SCIENCES

Department of Media Technology

Finkenau 35

22081 Hamburg



Abstract

There are several approaches to bat call classification using deep learning. In this thesis, I
compared existing architectures for bat call classification and for general audio classification
on a dataset that contained acoustic drone noise in the recordings in addition to bat calls.
Two pretrained models (without further training) showed no significant difference between
data with and without drone noise. I also compared two pretrained models after transfer
learning. For the training dataset I compared different levels of resampling and an augmented
dataset to compensate for the high class imbalance between the three classes in the dataset.
The best results were obtained using the Patchout faSt Spectrogram Transformer (PaSST)
model with oversampling. The model achieved a f1-score of 94.9% on a binary classification
task. On multilabel classification it achieved a micro f1-Score of 90.6% and a macro f1-score
of 78.5%.

Zusammenfassung

Es gibt bereits einige Modelle für die Klassifikation von Fledermausrufen mithilfe von Deep
Learning. In dieser Arbeit habe ich existierende Modelle für die Klassifizierung von Fleder-
mausrufen und für die allgemeine Audioklassifikation für einen Datensatz verglichen, der
zusätzlich akustisches Drohnenrauschen enthält. Zwei vortrainierte Modelle (ohne weiteres
Training) zeigten keinen signifikanten Unterschied zwischen Daten mit und ohne Droh-
nenrauschen. Ich habe auch zwei Modelle nach „Transfer Learning“ verglichen. Für den
Trainingsdatensatz habe ich verschiedene „Resampling“ und „Augmentation“ Kombinatio-
nen verglichen, um das hohe Ungleichgewicht zwischen den drei Klassen im Datensatz
auszugleichen. Die besten Ergebnisse wurden mit dem Modell „Patchout faSt Spectrogram
Transformer“ (PaSST) und „Oversampling“ erzielt. Das Modell erreichte einen F1-Score von
94, 3% für binäre Klassifizierung. Für „Multilabel“ Klassifizierung erreichte es einen Mikro
F1-Score von 90, 6% und einen Makro F1-Score von 78, 5%.
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1. Introduction

The fight against climate change and the conservation of biodiversity can sometimes con-
tradict each other. Wind turbines can contribute to climate protection by reducing carbon
dioxide emissions, which is why the number of wind turbines is growing (Barthelmie & Pryor,
2021). At the same time operating wind turbines can cause mortality among bats, therefore
they are a threat to biodiversity (Lehnert et al., 2014). Wind turbines have to be shut off
during periods of high bat activity in the European Union, which protects bats, but reduces
the amount of energy produced by wind farms (Smallwood & Bell, 2020; Voigt et al., 2022).

Monitoring of bats in potentially dangerous regions could improve the current state of bat
protection actions. Presently used methods usually monitor bat activity with automatic
ultrasonic detectors also called bat detectors (acoustic recording devices that automatically
start recording when they detect a bat call). The bat detector is usually positioned at about
ground level or at a fixed position at the wind turbines’ nacelle resulting in zones that can
not be covered by the bat detector (Voigt et al., 2021). The project Drones4Bats1 by Hamburg
University of Applied Sciences works towards a different approach, by assessing the suitability
of Unmanned Aerial Systems (UAS’s) as a tool to improve acoustic bat monitoring at wind
farm sites. The UAS is used to carry a bat detector into the regions of interest and opens the
opportunity of covering a larger area than with other monitoring methods (Roswag et al.,
2024). UAS’s emit acoustic noise that the bat detector may mistake for bat calls (Taefi et al.,
2024). So using UAS’s could be a chance to improve bat monitoring on wind farm sites, while
at the same time introducing new challenges.

Classifying bat calls in audio recordings is a known challenge. Researchers have developed
different deep learning models to approach the task (e.g. Aodha et al., 2022; Fundel et al., 2023
and Zualkernan et al., 2021, c.f. section 2.2.3). There are also commercial tools for the task.
However, these models and tools are not optimized to classify bat calls in audio recordings that
contain drone noise. The commercial software bcadmin2 misclassifies a significant amount
of recordings with drone noise according to Taefi et al., 2024. VisionTransformers (ViTs), a
deep learning architecture, show promising results on a binary classification task (bat vs.
noise) on a small dataset that was collected as part of the Drones4Bats project (Mauson, 2022;

1https://www.haw-hamburg.de/forschung/forschungsprojekte-detail/project/project/show/drones4bats/
2https://ecoobs.de/produkte/software/bcadmin

1

https://www.haw-hamburg.de/forschung/forschungsprojekte-detail/project/project/show/drones4bats/
https://ecoobs.de/produkte/software/bcadmin


Taefi et al., 2024). Methods to classify bat calls exist, but a large dataset of bat call recordings
that also contain drone noise, could not yet be classified with any of those successfully.

This thesis works towards multilabel classifying a larger bat echolocation dataset that contains
drone noise. The research question I am working on is, which of the compared pretrained
deep learning architectures achieves the highest f1-scores (c.f. section 3.3) on a dataset
that contains bat call recordings contaminated with drone noise. I compare (1) different
deep learning architectures pretrained for either bat call or general audio classification, (2)
pretrained models as they are provided and pretrained models that I trained on the given
dataset, (3) how interpreting the results as those of a binary classifier (bat vs. noise) changes
the results, (4) how methods for handeling imbalanced datasets influence the results. (4) was
chosen after analysing the dataset distribution (c.f. section 3.1).

In the first part of my thesis I describe the state of the art in bat call classification with
deep learning, including an overview of deep learning architectures. Then I describe the
deep learning models and methods I applied before, during and after training to answer my
research question. At last I present and discuss the results of my experiments and draw a
conclusion.

2



2. State of the Art

The topic of this thesis - bat call classification using deep learning - is an audio classification
task. Section 2.1 focuses on the general concepts of deep learning and neural networks for
classification tasks. Section 2.2 then describes existing approaches in audio classification and
in bat call classification that use deep learning methods.

2.1. Neural Networks and Deep Learning

Deep learning is a type of machine learning that is part of the broader field of artificial
intelligence. Deep learning - and other machine learning techniques - work with features
that are generated from the input data. Whereas in traditional machine learning, the features
are constructed manually, in deep learning the features are learned directly from the data.
Therefore, deep learning does not require as much expert knowledge about the input data
as traditional machine learning (LeCun et al., 2015). According to Zaman et al., 2023 deep
learning mostly performs better than traditional machine learning, but requires large training
datasets and more computational resources.

Deep learning is based on neural networks. In addition to the basic fully connected neural
networks, there are several more specific neural network architectures with different strengths
and weaknesses (Tufféry, 2023). After some general information about neural networks and
deep learning, this section describes the specific model architectures relevant to this thesis -
Convolutional Neural Networks (CNNs), transformer encoders and hybrid models.

2.1.1. Fully-Connected Neural Networks

A neural network consists of layers (see figure 2.1a). There is an input layer, which contains
the input data, followed by a number of hidden layers, followed by the output layer. A neural
network is called a multilayer perceptron or a deep neural network (as opposed to a shallow
neural network) if it has at least two hidden layers. Each hidden layer is made up of neurons
that each take all outputs from the previous layer as input. A neuron outputs one value that
is fed into each neuron of the following layer. This builds a (fully-connected) neural network

3
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(c) The sigmoid activation function.

Figure 2.1.: Fully-connected neural network. Adapted from Nielsen, 2015; Tufféry, 2023.

of decision making units that rely on decisions made by previous units. The output layer is
built the same way as the hidden layers, except that the output of those neurons is the result
of the neural network. The output of a neuron is calculated using the inputs, a weight for
each input and a bias. A basic form of neuron is the perceptron. Nielsen, 2015 explains how
perceptrons are universal for computation, because they can be used to compute any logical
function. The difference between traditional logic and neural networks is the introduction of
learning algorithms that can find weights and biases, where it would be too complex a task
for humans. For perceptrons a small value change can cause a large output change. To avoid
this behaviour perceptrons can be replaced by sigmoid neurons. Figure 2.1b shows how the
output of a sigmoid neuron is calculated and figure 2.1c shows the sigmoid function. The
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sigmoid function is an activation function and is used to map the output of each neuron to a
scale from 0 to 1. There are other activation functions that could replace the sigmoid function
in the formula, but the sigmoid function is the most common activation function, because it
simplifies the computation of the derivatives needed for the backpropagation algorithm. So
a key feature of deep learning is the use of hidden layers. They are called hidden, because
the values of their parameters (weights and biases) are not directly influenced by a human,
but instead determined by the training data during the process of training. The network
described in this section is also an example for a feed forward neural network in which
information is never moved to previous layers but only from one layer forward to the next
layer (Nielsen, 2015). A neural network is the basic structure all models used in this thesis
are based on.

2.1.2. Training of Neural Networks

The training process described in the following refers to supervised learning, where the
model has information about the true labels for each sample (LeCun et al., 2015). The purpose
of training a neural network is to modify the adjustable parameters (weights and biases) of
the network in a way that, after training, the output of the neural network is closer to the true
labels than it was before training (Nielsen, 2015). The training process uses backpropagation
and gradient descent and in a first step computes the loss (or cost) function. The loss function
is a multidimensional function of all the weights and biases in the network. The smaller the
loss, the more accurate the output of the neural network. The goal is to find weights and
biases for the network so that the network approximates the outputs for all inputs as closely
as possible. The backpropagation algorithm works by calculating all partial derivatives of the
loss function with respect to each weight and bias. The next step is to move in the opposite
direction of the loss functions’ gradient by a defined amount (the learning rate), which is called
gradient descent. The amount of computation needed can be reduced by using stochastic
gradient descent, where the gradient is averaged over random subsets (mini-batches) of the
training data. When all samples have been considered one epoch ends. Ideally there are as
many epochs, as it needs to reach the global minimum of the loss function (Nielsen, 2015).
The key elements of the described training process are backpropagation and gradient descent,
but there is also a number of hyperparameters (e.g. the number of epochs, the learning rate
and the loss function) that can be chosen.

Problems that may occur when hyperparameters are chosen poorly could be overfitting,
when the model does not generalize well to unseen data or underfitting, when the training
was not extensive enough (Zaman et al., 2023). In the following I name hyperparameters and
how they are chosen. Before training a neural network, the dataset is usually split into data
used for training and data used for testing, to ensure that the network can be tested on data it

5



has never seen before. The test set can also be split again into a validation set, for monitoring
performance during training and the remaining test set, for evaluating performance after
training. Typical split proportions could be around two thirds for training and one third for
testing (Sechidis et al., 2011). The total number of epochs can be either set before training or
the training is stopped when a certain condition is met, e.g the results on the validation set do
not improve any longer. The number of epochs is optimal, when the model does not overfit the
training data and reached its maximum performance. A higher number of epoch needs more
training time. Changing the loss function can influence which errors the training process
prioritizes. A widely used loss function is the cross-entropy loss function. The learning rate
determines how fast a model learns. Generally faster learning could be considered better,
but if the learning rate is to high, the loss function may skip its global minimum (Nielsen,
2015). An optimizer enables the use of an adaptive learning rate. A common optimizer (e.g.
Tufféry, 2023) is adaptive moment estimation (adam) optimizer (Kingma & Ba, 2014). Since
classification models output a value between 0 and 1 for each class, another parameter to
choose after training is the threshold. All classes with probabilities larger than the threshold
are considered true (Tufféry, 2023). Training a neural network is a complex process that
needs data, computational resources and careful setting of hyperparameters.

2.1.3. Pretraining and Transfer Learning

When a neural network is trained, the weights and biases are usually initialized randomly.
Transfer learning takes advantage of a network that has already been trained (pretrained) by
using its weights and biases for initialization. When training a pretrained model on another
dataset it is possible to either train (finetune) all layers or freeze some layers to reduce
training time (Iman et al., 2023). Tsalera et al., 2021 compared different CNNs for sound
classification trained from scratch and from pretrained models and consistently achieved
higher accuracy with the models that used transfer learning. Pretraining and transfer learning
can be interpreted as a head start to reduce the resources needed.

2.1.4. Convolutional Neural Networks

A CNN is a feedforward neural network that has been adapted to work with higher dimen-
sional data, such as two dimensional images. The neural network described in section 2.1.1
uses fully connected layers, where each neuron in a layer is connected to each neuron in
the previous and following layers. This basic neural network architecture does not respect
spatial relations of input values, which CNNs do. Every neuron in the same layer of a CNN
uses the same shared weights (a two dimensional matrix in the case of an image) and the
same shared bias, together forming the filter. Using a two dimensional weight matrix ensures

6
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Figure 2.2.: Convolutional Neural Network. Based on Park and Lee, 2020.

that every neuron in that layer would detect the same feature in any location of the input, so
patterns can be recognized even if they are shifted in location. Every layer can have several
filters and outputs a feature map for each. Figure 2.2a shows an example architecture of a
CNN. The first convolution layer has three filters, one for each of the created feature maps.
The outputs of a convolution layer are determined by moving the filter along the input as
shown in figure 2.2b at a defined step size. A convolution layer is usually followed by a
pooling layer that reduces the layer size by focusing on the most important information. An
example is max-pooling as shown in figure 2.2b (Nielsen, 2015). After the convolution and
pooling layers follows a flattening operation moving the data from two dimensional to one
dimensional space. The last layer(s) are fully-connected as described in section 2.1.1 (Zaman
et al., 2023). CNNs are specialized on finding patterns in more dimensional input data (e.g.
audio spectrograms) without processing the relationship between those patterns.

2.1.5. Transformer Encoder

The self-attention mechanism and transformers were introduced in Vaswani et al., 2017 and
have since experienced increasing popularity for natural language processing (Dosovitskiy et
al., 2020). The attention mechanism was used before the introduction of the transformer, but
the novelty of the transformer is that it is solely based on attention. The model proposed in
Vaswani et al., 2017 improves performance while reducing training time on natural language
processing tasks compared to existing sequence-based models (usually Recurrent Neural

7
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Figure 2.3.: Transformer Encoder. Adapted from Fundel et al., 2023; Vaswani et al., 2017.

Networks (RNNs)1 until then). The transformer is an encoder-decoder architecture, where
the encoder creates a low level representation of the input and the decoder translates that
representation into the output (Vaswani et al., 2017). Classification tasks can use the encoder
part of the transformer (Soyalp et al., 2021), which figure 2.3 shows the basic architecture of.
The encoder consists of 𝑁 identical layers. First, the input is split into tokens, with each token
receiving some positional encoding. This is followed by the multi-head attention, which
(compared to single-head attention) is computed several times in parallel, allowing the model
to learn different representations of the data (Vaswani et al., 2017). For every token the model
computes a query vector, a key vector and a value vector that depend on every token of the
input. Between all token pairs the model then calculates an attention weight. The output
of the multi-head attention is for each token the weighted sum of all value vectors. The
outputs are added to the input tokens and normalized. After that follows a feed forward
neural network. The output is again added to the networks input and normalized. Finally
the model outputs probabilities for each class (Fundel et al., 2023). An advantage of the
transformer architectures is its ability to handle variance in the input length and to keep
track of the global context of information (Zaman et al., 2023). The transformer encoder
can find relationships between different parts of the input data, but do not have the CNN’s
capability of finding patterns in more dimensional data.

2.1.6. Hybrid Deep Learning Models

In hybrid models different deep learning architectures are combined to take advantage of
strengths from each of the used models (Zaman et al., 2023). E.g. a CNN-transformer hybrid
would have the CNN’s capability of processing spatial information and the transformer’s
self-attention mechanism to find correlations between different parts of the input data.

1RNNs are another popular deep learning architecture, where the output of a neuron can also be influenced
by the output of the same neuron at earlier points in time. This enables the network to learn temporal
information (Nielsen, 2015).
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2.2. Audio Classification Using Deep Learning

As I am working with acoustic bat call data in my thesis, this section is about the classification
of audio data in general and the classification of acoustic bat recordings in particular - both
in the context of deep learning.

2.2.1. Audio Input Features

Before a deep learning model is used to learn on or classify an audio signal, the signal is
usually transformed from the raw signal into a different representation. This representa-
tion is called a feature2. The starting point is a digital signal quantized and sampled at
a certain samplerate (Serizel et al., 2017). The most common features are time frequency
representations like spectrograms extracted by Short-Time Fourier Transform (STFT) and
mel-spectrograms (Zaman et al., 2023). A spectrogram displays requency bands over time. In
the mel-spectrogram the frequency axis is adjusted to closer approximate human hearing.
Spectrograms and mel-spectrograms are only two of many possible audio features. There
other two dimensional features as well as one dimensional features in both time and frequency
space (Serizel et al., 2017). Zualkernan et al., 2020 compared different input features including
spectrograms and mel-spectrograms with a CNN architecture for bat call classification and
achieved the highest f1-score using mel-spectrograms.

2.2.2. Models for Audio Classification

Bat call classification is an Environmental Sound Classification (ESC) task (Bansal & Garg,
2022) in the broader context. This section gives an overview of existing deep learning
methods in the ESC domain and in general audio classification. Zaman et al., 2023 is a survey
on audio classification using deep learning including publications until 2023. The survey
found models for ESC using various architectures. The basic architectures CNN, RNN and
transformers as well as hybrid models have been applied to ESC tasks. The hybrid deep
learning models found in the survey are combinations of CNN-RNN, CNN-transformers and
CNN-RNN-transformers. The transformer architecture (section 2.1.5) was also adapted for
audio classification tasks. The Audio Spectrogram Transformer (AST) (Gong et al., 2021) and
the The Patchout faSt Spectrogram Transformer (PaSST) (Koutini et al., 2022) are two of those
specifically for audio spectrograms. The PaSST model reduces the needed computational

2Note that the same term (feature) is used for features learned by deep learning models during training as
described in section 2.1. Both features have a similar meaning - a different representation of the raw data,
but are different from a user perspective. An input feature as described in this section is usually created
before training.
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resources for transformers in audio classification (Zaman et al., 2023). According to the survey,
more hybrid models and transformers will be used in the future of deep learning (Zaman
et al., 2023). Pretrained audio classification models could be used for bat call classification
with transfer learning.

2.2.3. Models for Bat Call Classification

There are several approaches to bat call classification using machine learning techniques,
some of which use traditional machine learning (e.g. Armitage and Ober, 2010; Roemer et al.,
2021; Ruiz et al., 2019; Zamora‐Gutierrez et al., 2016). There are also some commercial tools
(e.g. bcAdmin3, Sonobat4, Kaleidoscope Pro5). The models used in this thesis are all deep
learning models and the most recently published models also mainly use deep learning. In
the following I describe existing deep learning models for bat call classification.

There are early neural network based approaches using a basic feed forward neural network
(Parsons & Jones, 2000) or an evolutionary neural network (Mirzaei et al., 2012). They
mostly use one hidden layer which does not qualify the neural networks as deep learning
architectures.

In recent years many deep learning models for bat call classification were published. With
the increasing popularity of CNNs for audio classification in the last decade (Zaman et al.,
2023), many approaches using CNNs for bat call species classification have been developed
(Chen et al., 2020; Dierckx et al., 2022; Hu et al., 2020; Kobayashi et al., 2021; Zualkernan
et al., 2020, 2021). They all classify bat species with a varying amount of classes and slightly
different CNN architectures. Schwab et al., 2022 use a two-stage CNN architecture, first
classifying bat vs. not bat and then classifying the species. The most recent models mostly
use transformer and/or hybrid models. Bellafkir et al., 2022 use DeiT-tiny, a ViT architecture.
Alipek et al., 2023 and Vogelbacher et al., 2023 both use a combination of CNN and RNN.
Aodha et al., 2018 started with a CNN model, for detecting bat calls (without classification)
by annotating the training data with bounding boxes. In Aodha et al., 2022, the results of the
2018 paper could be improved by using a CNN-based encoder and decoder with self-attention
and adding the ability to classify the bat call species. The authors report a performance
improvement when adding self-attention, that they attribute to the attentions’ ability of
connecting information even over a longer time span. The model was trained and tested on
five different datasets, achieving a minimum accuracy of 78% on a dataset recorded in the UK
containing 17 species. The new model is called BatDetect2 (Aodha et al., 2022). Fundel et al.,
2023 also use a transformer-CNN combination calling it BioAcoustic Transformer (BAT). The

3https://ecoobs.de/produkte/software/bcadmin
4https://sonobat.com
5https://www.wildlifeacoustics.com/products/kaleidoscope
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model achieves f1-scores of up to 76% (micro) and 70% (macro) on a multilabel dataset with
18 species. The dataset was synthetically generated from a dataset where each sample only
contained one of 18 german bat species (Fundel et al., 2023). All these models classify bat
calls with different aspects as their main focus, but none of them has the additional challenge
of drone noise in the audio recordings.

2.2.4. Models for Bat Call Classification with Drone Noise

The bachelor thesis by Mauson, 2022 compares pre-trained CNNs and ViTs on a binary
classification task (bat vs. no bat) using a dataset that contains drone noise in addition to
the bat calls. The bat calls are extracted manually from spectrograms. The best results are
obtained using a ViT with an accuracy of 94.4% and a Matthews correlation coefficient of
88.8% (see also Taefi et al., 2024). To the best of my knowledge Mauson, 2022; Taefi et al.,
2024 is the only work on a deep learning model for bat call classification were the audio data
also contains drone noise and is therefore the approach closest to the one in my thesis.
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3. Methods

For this thesis I tested some of the existing architectures mentioned in section 2.2. I tested
two models (BatDetect2 and BAT) that were designed specifically for bat call classification
and I tested one model (PaSST) that was designed for audio classification tasks in general.
This chapter describes the dataset and how I modified it, the models and how I trained and
evaluated them and the used software and hardware.

3.1. Dataset

The data I used to train and test the deep learning models in this thesis was collected and
labeled as part of the Drones4Bats project mentioned in the introduction (chapter 1). The
following subsections describe the recording setup, the labeling, the dataset distribution, how
I handled class imbalances and preprocessing steps.

3.1.1. Data Collection

The data (with and without drone noise) was recorded over several months in three different
locations within Germany in 2022. The recordings were made with an automatic bat detector
(Song Meter SM4BAT FS, Wildlife Acoustics, Inc. using a sampling rate of 500 kHz) two
meters above ground level. For the recordings with drone noise there was a multicopter
(ConVecDro by Third Element Aviation GmbH) at a height of 20 meters (Roswag et al., 2024).

3.1.2. Labeling

Before labeling, the recordings were split into one second long files. The data was labeled
by an expert as either noise or as one to three groups of bat species, one of each mainly
containing calls from Pipistrellus, Myotis and Nyctaloid. I call the groups Pip, Myo and
Nyc respectively in my thesis. The species were grouped based on their call characteristics
(Roswag et al., 2024), resulting in a multilabel dataset with three possible labels and 8 different
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labeling options (labelsets). Before I used the data with the neural networks I created a csv
file with the file names and class information1.

Inspired by Aodha et al., 2022 I calculated the average of all spectrograms from files containing
drone noise (and no bat calls). I then added exemplary bat calls from each of the three
groups (from files without drone noise). Figure 3.1 shows the resulting spectrograms. The
spectograms show 100ms long of a full 1 s recording. Figure 3.1a shows that the drone noise
can potentially blend with weak calls from the Nyc group. The exemplary calls cover a
frequency range of about 20 kHz at the lower and to about 80 kHz at the upper end. The
drone noise is strongest at around 20 kHz.
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Figure 3.1.: Spectrograms of bat calls with drone noise. Each spectrogram contains an exem-
plary bat call from each of the three groups - either particularly (a) weak or (b)
strong. Additionally the spectrograms contain the average noise level over all
drone noise files (horizontal band at around 20 kHz).
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Figure 3.2.: Dataset distributions.

3.1.3. Class Distribution

The venn diagrams in figure 3.2 show a visual representation of the class label distribution in
the dataset. Pip is the most common label followed by Myo and at last Nyc with significant
differences between all three stages. The numbers also show that there is about double the
amount of data without drone noise, than there is with drone noise. The tables 3.1 show the
number of samples and the Imbalance Ratio Per Label (IRLbl) for each labelset. The higher
the IRLbl the more underrepresented that label is compared to the most common label. The
Mean Imbalance Ratio (MeanIR) is the mean of the IRLbl for all labels (Tarekegn et al., 2021).
The number of noise samples is similar to the Pip class in both datasets. The IRLbl is high for
all labelsets containing Myo or Nyc, with the dataset with drone noise having an even higher
MeanIR than the dataset without drone noise. In summary, the dataset is highly imbalanced
with Pip being overrepresented and Myo and Nyc being underrepresented.

3.1.4. Managing Class Imbalances

Class imbalance in the training dataset can have a significant impact on the performance of
an audio classification model, highlighting the importance of balancing the dataset (Abayomi-
Alli et al., 2022). Since most classifiers’ training is based on reducing a global error rate the
models tend to be biased towards majority classes, when training on an imbalanced dataset
(Charte et al., 2013). To address the class imbalance problem I used specific evaluation metrics
(c.f. section 2.2.3) and tested two different approaches to modify the dataset before training.

1each class is either 0 or 1 for every sample, so a sample containing all three species groups would be encoded
as [1 1 1] and a file with only noise and no bat calls as [0 0 0] in the format [Pip Myo Nyc].
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Table 3.1.: The number of recordings and the imbalance ratio for each label(-set) in the dataset.

(a) Dataset with drone noise

Label(-set) # Samples IRLbl

Pip 13 109 1
Myo 1444 9
Nyc 169 78
Pip/Myo 1501 9
Pip/Nyc 115 114
Myo/Nyc 3 4370
Pip/Myo/Nyc 27 486
(Drone) Noise 8737 2

Number of recordings = 25105
MeanIR = 633.38

(b) Dataset without drone noise

Label(-set) # Samples IRLbl

Pip 25 158 1
Myo 2936 9
Nyc 757 33
Pip/Myo 3515 7
Pip/Nyc 534 47
Myo/Nyc 59 426
Pip/Myo/Nyc 95 265
Noise 20 242 1

Number of recordings = 53297
MeanIR = 98.63

Bat calls

+

Noise

=

Sample in augmented dataset

Figure 3.3.: Augmented dataset.

A method to handle class imbalances is data augmentation, where the existing data is modified
to obtain artificially constructed data, to increase the number of samples in the dataset. Class-
specific data augmentation has helped with a number of problems that arise with imbalanced
datasets (Abayomi-Alli et al., 2022). For this thesis I took the data from the dataset without
drone noise - that was less imbalanced and significantly larger - and added each sample with
a drone noise sample without bat calls from the smaller dataset. Since there were more files
in the dataset without drone noise than files containing drone noise, I had to use the drone
noise files repeatedly. To keep evaluation with validation and test set unbiased I only used
drone noise files from the training set. I randomly assigned one of the drone noise files to
each of the files inside the larger dataset. This way I generated a larger dataset especially
with more samples of the underrepresented classes.

Another straightforward method to solve the imbalance problem in a dataset is resampling,
where samples of majority classes are dropped and samples of minority classes are duplicated.
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Figure 3.4.: Resampling Example on the training dataset with 40% Label Powerset Random
Undersampling (LP-RUS) and 20% Label Powerset Random Oversampling (LP-
ROS).

Label Powerset Random Undersampling (LP-RUS) and Label Powerset Random Oversampling
(LP-ROS) are resampling techniques specifically for multilabel classification and work based
on labelsets. They were proposed by Charte et al., 2013. LP-RUS deletes samples until
the dataset is reduced to the specified percentage and LP-ROS duplicates samples until the
dataset size is increased by the specified percentage. I applied2 both techniques alone and
in combination with 0 and 40% for LP-RUS and 0, 20 and 40% for LP-ROS. I applied LP-RUS
with 60% to the augmented dataset to reduce the amount of data, while still having more
distinct samples of the minority classes. I applied the same three stages of LP-ROS to the
augmented dataset (0, 20 and 40%). It is to be noted that oversampling can lead to overfitting,
while undersampling can lead to loss of useful information (Tarekegn et al., 2021). Applying
resampling heavily reduced the MeanIR from 633.38 to one digit numbers. To better compare
the results I calculated the density for each dataset. The density as a measure for imbalanced
multilabel datasets is the mean number of labels that belong to each sample divided by
the maximum number of labels (Bernardini et al., 2014). The exact label distributions with
number of samples, IRLbl per label(-set) and density can be found in appendix A.2 for each
tested combination. I refer to the dataset that originally contained drone noise as “dro” and to
the artificially created dataset as “aug” in graphics and tables. I tested different combinations
of LP-ROS and LP-RUS amounts to find a good trade-off between the negative and positive
effects on the models’ performance, but these methods are not able to increase the number of
distinct samples for less represented classes.

When splitting a dataset (e.g. into training, validation and test sets), the original class
distribution should be preserved by using stratified sampling (Sechidis et al., 2011). To achieve

2Python implementation: https://github.com/manuel-rdz/multilabel-dataset-resampling-algorithms
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this for the given multilabel dataset, I used the Python library skmultilearn (Szymański &
Kajdanowicz, 2017) and used the same subsets for each modified training set to achieve better
comparability. I used 60% of the data for training and 20% for each validation set and test
set. Assuming that the dataset reflects a real world distribution of the class labels I only
applied resampling and augmentation to the training set and not to the validation and test
set (Shorten & Khoshgoftaar, 2019).

3.1.5. Preprocessing

The data was recorded at a sampling rate of 𝑠𝑟0 = 500 kHz. However, the highest relevant
frequency of the bat calls contained in the dataset does not exceed 80 kHz (section 3.1.2 and
Roswag et al., 2024). To eliminate redundant data while reducing the amount of data by
61.6%, the recordings were downsampled to 𝑠𝑟1 = 192 kHz.

As mentioned the recordings were split into one second long files. Therefore, the last file
from each recording is usually shorter than one second. For models that require equal input
lengths I used zero padding to correct shorter file lengths.

3.2. The Models

Following the prognosis of Zaman et al., 2023 (see also section 2.2.2) I focused on hybrid
models and a transformer model. I tested three different models that were all pretrained -
BatDetect23 (Aodha et al., 2022) and BAT4 (Fundel et al., 2023) for bat call classification and
the PaSST5 model for general audio classification (Koutini et al., 2022). BatDetect2 and BAT I
tested without further training on both the dataset with drone noise and the dataset without
drone noise. Both models were trained on a larger number of output classes compared to the
dataset used in this thesis (see section 3.1). Therefore when I applied an existing model to
the dataset I matched the output classes to the classes in the dataset following the mapping
in Roswag et al., 2024. The mapping for both models can be found in appendix A.1. I also
tested BAT and PaSST with transfer learning. This section describes the three models and
how I trained and/or tested them. Table 3.2 shows an overview of all three models including
basic information about and how I used each model.

3https://github.com/macaodha/batdetect2
4https://github.com/FrankFundel/BAT
5https://github.com/kkoutini/PaSST
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Table 3.2.: Overview of the three models.

BatDetect2 BAT PaSST
(Aodha et al., 2022) (Fundel et al., 2023) (Koutini et al., 2022)

Architecture CNN-based encoder-
decoder with atten-
tion

CNN-transformer Transformer (for au-
dio spectrograms)

Task Classification & de-
tection

Classification Classification

Pretraining dataset Bats (17 species) Bats (18 species) ESC-50
Testedwithout trans-
ferlearning

Times Times

Tested with tansfer-
learning

Times Times

3.2.1. BatDetect2

BatDetect2 uses a CNN based encoder-decoder for bat call detection and classification. The
encoder extracts features from the input spectrogram and the decoder generates the predicted
location on time and frequency axis and the species label for each call. Skip connections are
used to share features between encoder and decoder. The model has a self-attention layer
between encoder and decoder that only operates along the time axis (Aodha et al., 2022).

I tested the BatDetect2 model only without further training, because the annotations of the
training dataset of that model included bounding boxes around each call in a file (Aodha
et al., 2022), which exceeded the annotations of the given dataset.

3.2.2. BAT

BAT is a CNN-transformer hybrid model designed for bat call classification. The CNN takes
sequences of spectrogram patches and extracts features from each patch. The transformer
encoder then finds correlations between the patches (Fundel et al., 2023).

Before applying transfer learning to the pretrained model, I reduced the number of output
classes to three and froze all layers except the last (classification) layer. I trained the model
for 25 epochs with a learning rate of 𝑙𝑟 = 5 ⋅ 10−4 like in Fundel et al., 2023. I resampled my
data to the samplerate the source model was trained on 𝑠𝑟 = 220.5 kHz and used a batch size
of 32, binary cross entropy loss and adam optimizer.
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3.2.3. PaSST

PaSST is based on the ViT (Dosovitskiy et al., 2020), which is an adjusted transformer
architecture for image processing, while PaSST is specialized on audio spectrograms (Koutini
et al., 2022). The PaSST architecture with focus on the adjusted positional encoding is shown
in figure 3.5. The model takes mel spectrograms as input. The positional encoding used in the
transformer encoder is adapted to include both frequency and time encoding. This adaption
enables the model to train on datasets with an input length deviating from the dataset used
for pretraining. The model then uses patchout, which reduces the amount of data by dropping
parts of the input sequence. The authors tested different forms of patchout, the model used
in this thesis uses structured patchout, where the model drops random frequency bins. There
is no overlap between patches. At this point the classification token is added. Then follows
the transformer encoder (see also section 2.1.5) including self-attention. The PaSST has a
higher performance and a higher training speed than CNNs on a large audio dataset. PaSST
is also faster than AST (Koutini et al., 2022).

Koutini et al., 2022 provides pretrained models trained on different datasets. I used the model6

pretrained on fold 4 of ESC-507, a large open source dataset for ESC. Before applying transfer
learning to the pretrained model, I reduced the number of output classes to three and froze
all layers except the last (classification) layer. I trained the model for 5 epochs with a learning
rate of 𝑙𝑟 = 5 ⋅ 10−4. Then I chose the model with the highest f1-scores after 5 epochs and
continued the training to a total of 16 epochs. I used a batch size of 8, binary cross entropy
loss and adam optimizer. The samplerate was set to 𝑠𝑟 = 192 kHz and the minimum and
maximum frequencies to 𝑓𝑚𝑖𝑛 = 10 kHz and 𝑓𝑚𝑎𝑥 = 80 kHz respectively.

3.3. Evaluation Metrics

This section introduces the evaluation metrics I used to evaluate and compare the models.
The metrics were calculated using the python library scikit-learn version 1.3.2 (Pedregosa
et al., 2012). I tested the models from two different perspectives. First I interpreted the results
from a multilabel classification view. Second I interpreted the results as those of a binary
classifier. In addition to the metrics described in the following sections I compared model
sizes and prediction times.

6https://github.com/kkoutini/PaSST/releases/tag/v.0.0.6
7https://github.com/karolpiczak/ESC-50
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Figure 3.5.: The PaSST model. Adapted from Dosovitskiy et al., 2020; Koutini et al., 2022. For
more details on the transformer encoder see figure 2.3.

3.3.1. The Metrics

This section introduces the metrics that I used.

F1-score, Precision, Recall

The f1-score is the harmonic mean of precision and recall, where precision is the ratio of
true positive predictions to all positive predictions and recall is the ratio of true positive
predictions to all true labels. A f1-score value of 100% means that all positive labels were
recognized as positive and there were no false-positives (Owusu-Adjei et al., 2023).

ROC-Curve

The ROC-curve (Receiver Operating Characteristic Curve) measures the models’ capability to
differentiate between classes. It is calculated with the raw probability outputs from the model,
so it does not depend on a threshold (unlike all other metrics that I used). The ROC-Curve is
a plot of recall against false positive rate for all thresholds. If the area under the ROC-curve
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(AUC) is 0.5 the classifier acts like a random classifier, while an AUC of 1 would describe a
perfect classifier (Rainio et al., 2024).

Confusion Matrix

The confusion matrix shows the number of samples predicted for each pair of true label and
predicted label (Owusu-Adjei et al., 2023). The confusion matrix allows deeper insight into
what causes the results of the before described metrics, because it contains information about
true and false positives, as well as true and false negatives for each label.

3.3.2. Multilabel Evaluation

To evaluate a multilabel classifier the evaluation metrics can be either calculated for each
label separately or averaged. Macro averaging means calculating the metric for each class
separately and then taking the average. Micro averaging means to calculate the metric over
all samples and then taking the average (Tarekegn et al., 2021). The macro f1-score enabled
evaluation without a bias introduced by the datasets imbalance.

3.3.3. Binary Evaluation

Assuming a higher cost for misclassifications between bat and noise than between two bat
label groups I also evaluated the models after grouping all three labels into one bat group.

The metrics described in the last section can be applied to results of binary classifiers without
further adjustments. I summarized the results from my multilabel classifiers to a bat and a
noise class. The bat class was true, if the sample was classified as any of the three bat groups
and the noise class was true if none of three bat groups was classified.

3.4. Hardware and Software Specifications

The models were written in Visual Studio Code using Python on an Intel i7-11800H @
2.30GHz, 32 GB RAM and a NVIDIA GeForce RTX 3050 Ti Laptop GPU. I executed the scripts
from a Windows PowerShell console.

The models were trained using the Python libraries PyTorch (Paszke et al., 2019) and torchudio
(Yang et al., 2021), because the chosen models (Aodha et al., 2022; Fundel et al., 2023; Koutini
et al., 2022), were built using those libraries. I used the PyTorch Graphical Processing Unit
(GPU) Acceleration. The code and dataset can be found on the appended storage medium.
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4. Results

This chapter presents the results of my tests on the pretrained models without further
training (BatDetect2 and BAT) both on data with and without drone noise and the results
on the transferlearned models (BAT and PaSST), including the effects of resampling and
augmentation on the training dataset. The results for BatDetect2, BAT and PaSST are reported
at thresholds of 0.3, 0.5 and 0.2 respectively. The thresholds were chosen by comparing f1-
scores at different thresholds. The results for all experiments are reported on the testset.

4.1. Pretrained Models

Table 4.1 shows the results for the pretrained models without further training. The top half
of the table shows the results on the testset (with drone noise). Comparing the results on
the testset shows that of the two pretrained models BatDetect2 outperformed BAT for all
reported f1-scores and recall values and for most precision values. BAT achieved slightly
higher precision values for the Pip and Nyc classes. The results on the dataset without drone
noise (bottom half of the table) are not significantly different from the results on the dataset
with drone noise. The largest differences are the results for Myo and Nyc classes, where the
f1-scores on the dataset with drone noise are 0.022 and 0.030 higher respectively. The Pip
class achieved the highest scores among all three classes. Both models achieved higher scores
in binary classification than in multilabel classification.

Figure 4.1 shows the ROC-curves for both pretrained models on the testset, with BatDetect
achieving an AUC value of 97.3% and BAT of 91.1%.

4.2. Transferlearned Models

This section first presents the results for BAT and PaSST for all tested resampling-augmentation
combinations, followed by a more detailed evaluation of the model that achieved the highest
f1-scores.
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Table 4.1.: Results for pretrained models. The testset without drone noise had the same
dimensions as the dataset with drone noise.

Model Metric Pip Myo Nyc Micro Macro Binary Bat

Dataset with drone noise *

BatDetect2 F1-score 0.943 0.772 0.464 0.906 0.726 0.955
Precision 0.902 0.881 0.344 0.881 0.709 0.934
Recall 0.987 0.687 0.714 0.933 0.796 0.978

BAT F1-score 0.894 0.431 0.403 0.814 0.576 0.907
Precision 0.942 0.501 0.410 0.869 0.617 0.896
Recall 0.851 0.378 0.397 0.765 0.542 0.919

Dataset without drone noise **

BatDetect2 F1-score 0.946 0.751 0.434 0.900 0.710 0.954
Precision 0.903 0.765 0.295 0.857 0.654 0.921
Recall 0.992 0.737 0.822 0.947 0.850 0.989

BAT F1-score 0.894 0.389 0.356 0.800 0.546 0.901
Precision 0.932 0.422 0.285 0.834 0.547 0.867
Recall 0.858 0.360 0.475 0.769 0.564 0.938

* Results on testset (results on full set in appendix B.1).
** Reduced dataset with same dimensions as dataset with drone noise.
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Figure 4.1.: ROC-curves and AUC for pretrained models on the testset.
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4.2.1. Resampling and Augmentation

I compared different levels of LP-ROS and LP-RUS on the dataset with drone noise and on
the augmented dataset for training. Figure 4.2 shows the resulting macro f1-score for all
combinations. The plot shows the level of LP-ROS on the x-axis versus the macro f1-scores
on the y-axis for the dataset with drone noise at 0 and 40% LP-RUS and for the augmented
dataset at 60% LP-RUS. The results for BAT are shown in figure 4.2a. On the dataset with
drone noise both LP-ROS and LP-RUS increase the macro f1-score. For LP-ROS the difference
between 20% and 40% is minimal. At 0% LP-ROS the augmented dataset achieved the highest
macro f1-score. For 20 and 40% LP-ROS the augmented dataset achieved the lowest macro
f1-scores compared to the dataset with drone noise at the same oversampling level. Figure
4.2b shows the comparison results for PaSST. The highest macro F1-scores for the BAT model
are at a similar level as the lowest results for PaSST, but the general distribution of results
across different resampling levels follows a similar pattern for both models. An exception
is the augmented dataset at 0% LP-ROS, which scored lowest compared to the drone noise
dataset at the same level of oversampling for PaSST.
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Figure 4.2.: Macro f1-scores for resampling-augmentation combinations for both models.

Figure 4.3 shows the micro and macro f1-scores and the f1-score on binary classification over
the density of the training dataset. The density values for each combination are in appendix
A.2. The macro f1-scores in the plots are the same as in 4.2, but with the density instead of
LP-ROS on the x-axis. Additionally the plots show results for micro and binary f1-scores.
The values for PaSST are generally higher than those for BAT. For both models micro and
binary f1-scores remain at about the same level for all densities, but there is an increase of
macro f1-score with density.
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Figure 4.3.: Micro, macro and binary f1-scores over dataset density for both models.
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Figure 4.4.: ROC-curves and AUC for both models for resampling-augmentation combina-
tions.
The labels show: dataset, LP-ROS (%), LP-RUS (%), (AUC).

Figure 4.4 shows the ROC-curves and the AUC for all combinations. The ROC-curves and
AUC values for BAT are more widely spread then those for PaSST are generally lower. For
PaSST all AUC values are between 96.8% and 97.7% and for BAT between 90.0% and 94.3%.
For both models the lowest AUC values result from training on the drone noise dataset
without any resampling and on the augmented dataset for each level of oversampling.
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4.2.2. Multilabel and Binary Evaluation

Table 4.2.: Results after transfer learning.

Model Metric Pip Myo Nyc Micro Macro Binary Bat

BAT F1-score 0.907 0.450 0.327 0.838 0.561 0.896
Precision 0.981 0.941 0.178 0.956 0.733 0.991
Recall 0.843 0.296 0.327 0.745 0.512 0.817

PaSST (5 ep.) F1-score 0.934 0.731 0.530 0.894 0.732 0.943
Precision 0.934 0.857 0.407 0.906 0.733 0.955
Recall 0.935 0.637 0.762 0.883 0.778 0.930

PaSST (16 ep.) F1-score 0.941 0.756 0.658 0.906 0.785 0.949
Precision 0.937 0.803 0.562 0.908 0.768 0.957
Recall 0.945 0.714 0.794 0.904 0.818 0.941

For both BAT and PaSST the highest macro f1-scores could be achieved applying 40% LP-ROS
and no augmentation or undersampling to the dataset. The precision, recall and f1-scores for
this combination for both models are reported in table 4.2. The results for all resampling and
augmentation combinations can be found in appendix B.2. The results are reported after 5
epochs for PaSST and 25 epochs for BAT. The last rows show the results after training the
PaSST model with the highest macro f1-scores after 5 epochs with continued training up to
16 epochs.

PaSST after 16 epochs constantly outperformed BAT and PaSST after 5 epochs. PaSST after
5 epochs mostly outperformed BAT. However, BAT achieved the highest precision values,
except for Nyc class and macro precision, where PaSST after 16 epochs scored highest. The
highest recall values were all achieved by PaSST. PaSST after 16 epochs achieved an AUC
value of 98.2%. So PaSST after 16 epochs mostly achieved the highest scores with exceptions
precision.

The results for binary evaluation were generally higher than those for multilabel evaluation.
The highest f1-score after transferlearning was achieved by PaSST after 16 epochs with 94.9%.
The highest f1-score on binary evaluation of all models tested in this thesis was achieved by
BatDetect2 with 95.5% (table 4.1).

The confusion matrix in figure 4.6 for the PaSST model after 16 epochs for multilabel clas-
sification shows that 92.2% and 90.9% of noise and Pip samples respectively were classified
correctly. Mispredictions for noise mainly resulted in Pip and vice versa. 18.1% of Myo
samples were misclassified as noise. Most mispredictions for all other classes resulted in
Pip or a labelset containing one correct class but missing or adding another one. Both the
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Figure 4.5.: Binary confusion matrix for the PaSST model with the highest f1-scores.

combination Myo-Nyc and Pip-Myo-Nyc stand out in the confusion matrix, because they
were highly underrepresented in the testset. However, mispredictions followed the same
pattern for these combinations.

Figure 4.5 shows the confusion matrix for binary classification where all bat labelsets are
summarized into one bat class. The bat class was predicted correctly for 94.1% of samples.

4.3. Model Properties

Table 4.3 shows prediction times on Central Processing Unit (CPU) and GPU as well as
the model size for all three models. BAT was the smallest model in size and the fastest in
prediction time, followed by BatDetect2 and then PaSST. The prediction time for one file using
PaSST on the CPU was 0.73 s. Using the GPU reduced the prediction time to 0.129 s. On BAT
there was no significant difference in prediction times between CPU and GPU. BatDetect2
could only be evaluated on CPU with a prediction time 0.220 s faster than PaSST. There were
significant differences in model size and prediction time between all three models.
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Figure 4.6.: Multilabel confusion matrix for the PaSST model with the highest f1-scores. The
confusion matrix compares true labels to predicted labels for each labelset. Each
cell shows the relative amount of all true labels of a class that were predicted as a
label and the absolute number of calls for each combination in the matrix. P, M
and N stand for Pip, Myo and Nyc respectively.

Table 4.3.: Prediction times and model size. The prediction
time was tested on the same subset of 500 files
with eachmodel. The listed results are the average
processing time for one file.

Model Prediction time (s) Model size (MB)
CPU GPU

BatDetect2 0.510 N./A. 7.660*

BAT 0.040 0.046 0.292
PaSST 0.730 0.129 333.516
* Size of complete model package including scripts.
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5. Discussion

The highest macro f1-score of the compared models was achieved with PaSST after 16 epochs
using a training dataset with 40% LP-ROS. PaSST outperforms BAT in all f1-scores. The
BatDetect2 model could achieve the highest binary f1-score (closely followed by PaSST) even
without further training on a dataset with drone noise. Testing BatDetect2 and BAT without
further training on datasets with and without drone noise showed no significant differences
between the two datasets. In this section I discuss the comparison of the different pretrained
and transferlearnend architectures, of binary vs. multilabel classification and how resampling
and augmentation on the training dataset affect the results.

5.1. Architectures

A direct comparison of the results with those of existing models is not meaningful, as they
mostly classify between more distinct species than the three classes used in this thesis (e.g.
Bellafkir et al., 2022; Vogelbacher et al., 2023; Zualkernan et al., 2020). I compared three
different architectures - a CNN with attention (BatDetect2), a CNN-transformer (BAT) and a
transformer (PaSST). While the CNN can process spatial information and find patterns in the
two-dimensional spectrogram (Nielsen, 2015), the transformer can find relationships between
those patterns (Vaswani et al., 2017). There are many CNN based approaches to bat call
classification. The high scores on the PaSSTmodel as well as with other transformer/attention
based methods (Bellafkir et al., 2022) indicate that transformers may be at least equal to CNNs
on bat call classification tasks. A combination of attention and a CNN was used in Aodha
et al., 2022 achieving promising results. Fundel et al., 2023 uses a CNN-transformer hybrid
with lower scores than BatDetect2, but still achieving up to 91.5% on binary classification.
Apart from the architecture the models differ in a few other parameters. Another difference
are the input features. While BAT uses spectrograms, PaSST uses mel-spectrograms that are
also superior to regular spectrograms in Zualkernan et al., 2020.

Hestness et al., 2017 find that increasing model size often increases accuracy, which aligns
with the results for the models in this thesis. The f1-scores for all three models increased
with model size. The larger models required a longer prediction time per sample.
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The BatDetect2 model detects calls before classification (Aodha et al., 2022) and the BAT
model performs peak detection to identify regions of interest (Fundel et al., 2023). The PaSST
model does not use any form of detection before classification (Koutini et al., 2022) and could
still outperform both other models. However, the results for BatDetect2 were promising
even without further training, whether this was due to the detection mechanism or another
parameter of the model requires further testing. PaSST generally achieved the highest f1-
scores and recall values. Where the precision values was higher on BAT the distance to the
values achieved by PaSST was relatively small. PaSST is pretrained on a dataset for ESC,
that is not bat specific (Piczak, 2015). This shows that a pretraning dataset closer to the
downstream task is not necessarily superior to another pretraning dataset.

The f1-scores of the BAT model did not improve after transfer learning. This could be due to
a poor choice of hyperparameters or the model architecture in general. Further testing is
needed to confirm. However the results showed that using resampling methods can improve
the results when working with an imbalanced dataset.

5.2. Multilabel and Binary Evaluation

Both BatDetect2 and BAT before transfer learning performed significantly worse on Myo and
Nyc as compared to Pip. Aodha et al., 2022 reported the Myotis species as challenging and
the per-species precision-recall curves included in the paper indicate the same for Nyctalus
species. When I trained the models on the Drones4Bats dataset the models still performed
significantly better on Pip than on the other two classes. There was an increase in f1-score
with an increase in number of samples in the training dataset. This can be supported by
Aodha et al., 2022 who also report an increasing performance on species with a increasing
number of calls from that species in the training set. However, the call characteristics may
also influence the results.

Similar results for Nyc for the dataset with drone noise and the dataset without drone noise
were unexpected. This leads to the assumption that the drone noise does not have as much
of an effect as expected, even with the spectrograms in figure 3.1 showing that Nyctalus calls
are within the same spectral range as the drone noise.

The scores when interpreting the models as a binary classifier are generally higher than
when interpreting them as multilabel classifiers, because the binary evaluation accepted a
classification as correct as long as the model discriminated correctly between bat and noise. A
misclassification between the bat groups was not relevant. PaSST achieved generally higher
f1-scores than BAT, same as with multilabel classification, but the highest f1-score (with
little distance to PaSST) was achieved by BatDetect2. The model has a greater focus towards
finding calls through its ability to detect calls before classifying them (Aodha et al., 2022).
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The PaSST model has no information about locations in time or frequency of the bat calls in
the files.

5.3. Imbalance

In figure 4.2 I compared resampling-augmentation combinations for both models. The results
showed an increasing macro f1-score from no oversampling to 20% LP-ROS, but no significant
difference from 20% to 40% LP-ROS. Since oversampling only duplicates samples there is
no new information which can also introduce the negative effect of overfitting (Tarekegn
et al., 2021). So the oversampling may improve the macro f1-score, as long as the positive
effects from balancing outweigh the negative effects. For the PaSST model with the drone
noise dataset at 40% LP-RUS the macro f1-score decreased from 20% to 40% LP-ROS. Further
testing could reveal if this is a general trend for all combinations. Applying LP-RUS with 40%
achieved higher scores for 0 and 20% LP-ROS, even though the training dataset is smaller
than the one without LP-RUS. So a larger dataset can achieve lower scores compared to
a smaller dataset that is more balanced. At 40% LP-ROS the macro f1-score was higher
without undersampling, further testing is needed to see if the results could be improved with
more oversampling. The augmented dataset achieved the lowest macro f1-scores (except
for the BAT model at 0% LP-ROS). The augmented dataset was larger than the drone noise
training dataset, but it was less similar to the testset. This could be the reason for the lower
performance of the models trained on the augmented dataset. Testing on different datasets
could confirm this assumption. The plots in figure 4.3 show a correlation between density
and macro f1-scores. This aligns with the findings of Bernardini et al., 2014 who also found a
correlation between f1-score and density. The lowest density dataset mostly received the
lowest macro f1-score. From a certain point there was no longer an increasing macro f1-score
with higher density. This could be explained by the fact that oversampling simply duplicates
existing samples and does not add new distinct information to the dataset. Micro f1-score
and binary f1-score did not show large differences for different densities. This could be,
because both are mainly influenced by the Pip class, because it is overrepresented in the
testset. Increasing the density increased the f1-score for underrepresented classes, but had
little to no effect on overrepresented classes.

Using the augmented dataset without oversampling and 60% LP-RUS as training dataset is
the only test were the results did not follow the same pattern on BAT and PaSST (figure
4.2). For BAT it achieved the highest macro f1-score of the three tests without oversampling
and on PaSST it achieved the lowest of the three. Looking at the precision and recall values
in appendix B.2 shows that this is mainly due to PaSST achieving 0% precision and recall
on Nyc class, while BAT was able to achieve 44.4% precision. The recall value is also near
0%, but the resulting f1-score is still 11.1%. All other tests for both PaSST and BAT without
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oversampling received 0% on both precision and recall. An explanation for the high precision
value could be that BAT was pretrained on bat call data with most represented species in
the training dataset Pipistrellus, Myotios and Nytaloid (Fundel et al., 2023) and therefore had
information about the Nyc class prior to first training on the drone noise dataset, while PaSST
did not (Koutini et al., 2022). So the larger number of distinct samples of the Nyc class in
the augmented dataset may have been sufficient for the BAT model to improve performance
compared to a model trained on the drone noise dataset. This would however not explain the
results for BAT with the augmented dataset and 20 and 40% LP-ROS where the precision is
reduced to under 20%.

The ROC-curve measures the model performance without the bias of a threshold and showed
a similar distribution of results for the different resampling and augmentation combinations.
I only reported micro averaged ROC-curves, so the resulting curves and values were biased
towards Pip class, but the curves can still indicate that the choice of threshold for the model
evaluation did not introduce a bias towards any of the models.
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6. Conclusion

The use UAS could improve the monitoring of bats at wind farm sites (Taefi et al., 2024). The
monitoring is important, because wind turbines can be a threat to bats (Lehnert et al., 2014).
But UAS add the challenge of acoustic drone noise in the recordings, which may reduce
the monitoring accuracy (Taefi et al., 2024). One previously used method for evaluating
acoustic bat call recordings are deep learnig models (e.g. Aodha et al., 2022; Fundel et al., 2023
and Zualkernan et al., 2021). For my thesis I worked on answering the research question,
which of the compared pretrained deep learning architectures achieves the highest f1-scores.
More specifically, I compared neural network architectures, existing pretrained models and
transferlearned models, interpreted the results as a binary classifier and a multilabel classifier
and compared methods to handle imbalanced datasets and the input features.

The overall highest f1-scores were achieved by the PaSST model after 16 epochs using the
oversampling method LP-ROS with 40% on the training dataset, with a micro f1-score of
90.6% and a macro f1-score of 78.5%. The highest binary f1-score was achieved by BatDetect2
with 95.5%.

The results of my experiments follow Taefi et al., 2024 and Mauson, 2022 in showing how the
classification of echolocation bat calls could be achieved despite the challenge of drone noise
in the audio files. Comparing models on data with and without drone noise showed that the
drone noise may not impact the results of bat call classification with deep learning as much
as expected. In my tests I used a dataset that groups bat species into three groups which is a
smaller number compared to most other existing models that distinguish between e.g. 17
species for BatDetect2 (Aodha et al., 2022). PaSST outperformed BatDetect2 in macro f1-score,
so if three classes are sufficient for a particular task the reduction in classes can improve the
model performance. It would be interesting to see whether PaSST could still outperform the
other models, when it is trained and tested on a dataset with more classes. Testing resampling
and augmentation to address the imbalance problem showed that especially oversampling
of minority classes improved the results on those classes. Of the models tested, PaSST
(Koutini et al., 2022) achieved the highest macro f1-score, while BatDetect2 (Aodha et al.,
2022) achieved the highest binary f1-score. Interpreting the results as a binary classifier over
a multilabel classifier increases the f1-score by about 5% as compared to the micro f1-score
for all models. My results could contribute to the current state of the art by demonstrating
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the potential of PaSST for bat call classification and the potential of methods to reduce class
imbalance for a bat call dataset.

The resulting models could be adapted for use in the field for classifying bat calls that are
recorded with a microphone and a UAS. The lightweight BAT model could still score 91.5%
on binary classification and may be of interest for practical applications where a lower
computational cost is of interest. The more computationally expensive model PaSST was
also able to score relatively high on per label metrics and could therefore be of interest, when
classification into the labels groups or generally a higher performance is important.

There were limitations to my work in different areas. The following gives an overview on
those limitations and provides further research suggestions. There were some limitations
regarding the dataset. In general a larger dataset can increase the performance of deep
learning models (Cayir & Navruz, 2021), which can be supported by my results on resampling.
So generally using more distinct training samples especially for minority classes could
improve the results. Due to the small amount of samples for some labelsets the testset only
contained a few samples of those labelsets. This may have introduced a bias to the results
on those labelsets (however, testing BatDetect2 and BAT before transfer learning on the full
drone noise dataset showed no significant differences. Refer to tables 4.1 and B.1). Testing and
potentially retraining the model on data that was recorded with a microphone suspended from
a drone could show how the model performs in a situation closer to a practical application.
The results on the augmented dataset did not improve the results compared to the drone
noise dataset, however data augmentation in general has shown to improve models (e.g.
Abayomi-Alli et al., 2022). So testing other augmentation methods or the same augmented
dataset, but without LP-RUS could be interesting, as well as testing more combinations of
resampling, as my test results may have produced an incomplete picture. Other limitations
were introduced through model choice. I only worked with pretrained models and only
applied transfer learning to the last layer of each model. Future research could train models
from scratch, which would require more computational resources. The number of tested
architectures could be extended. Transformers have shown to be promising on the task, but
e.g. CNN-RNN hybrids have recently been applied to bat call classification (Alipek et al., 2023;
Vogelbacher et al., 2023). I only worked with supervised methods, but unsupervised methods
could supplement a model. Both the CNN-RNN hybrid and unsupervised learning have been
applied to bat call classification e.g. in Alipek et al., 2023 showing promising results. Though
the most recent approaches to bat call classification mostly use deep learning methods,
traditional machine learning has been successfully applied to the task before. According to
Roemer et al., 2021 there is no extensive comparison of random forest and deep learning for
bat call classification. It may be worth exploring traditional machine learning architectures
on alone or in a hybrid with a deep learning model. In the training process I was only
able to test a limited number of hyperparameter configurations. One method that might be
worth exploring, because it can improve training with imbalanced datasets is a weighted loss
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function (Rengasamy et al., 2020). My training was limited to a number of epochs for each
model. At the end for some training processes the validation loss was still decreasing, so there
may be potential for further finetuning. The tested models only worked with spectrograms
(Fundel et al., 2023) and mel spectrograms (Koutini et al., 2022). There exists a large variety
of input features for neural networks computed from the raw audio waveform and it may be
worth exploring different input features, concatenated feature vectors or feature learning
(Serizel et al., 2017). The high scores for the BatDetect2 model suggest that exploring a model
and dataset annotations that include information about detection in time and frequency in
addition to classification annotations may have improved the results. Though it should be
noted that the high scores could also be caused by any other parameter (combination) in the
model.

The results of my thesis may contribute to future research on protecting biodiversity by
reducing bat mortality caused by wind turbines while maintaining green energy production.
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Appendix A.

Dataset

A.1. Species Mapping

Table A.1.: Mapping of species in pretrained models to species in Drones4Bats dataset (Aodha
et al., 2022; Fundel et al., 2023; Roswag et al., 2024).

Species Drones4Bats
dataset

equivalent
(Roswag et al.,

2024)

BAT (Fundel
et al., 2023)

BatDetect2
(Aodha et al.,

2022)

Barbastellus barbastellus Myo Times

Eptesicus serotinus Nyc Times Times

Eptesicus nilssonii Nyc Times

Miniopterus schreibersii N/A Times

Myotis alcathoe Myo Times

Myotis bechsteinii Myo Times

Myotis brandtii Myo Times Times

Myotis daubentonii Myo Times Times

Myotis dasycneme Myo Times

Myotis emarginatus Myo Times

Myotis myotis Myo Times

Myotis mystacinus Myo Times Times

Myotis nattereri Myo Times Times

Nyctalus leisleri Nyc Times Times

Nyctalus noctula Nyc Times Times

Continued on next page
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Species Drones4Bats
dataset

equivalent

BAT BatDetect2

Pipistrellus kuhlii Pip Times

Pipistrellus nathusii Pip Times Times

Pipistrellus pipistrellus Pip Times Times

Pipistrellus pygmaeus Pip Times

Plecotus auritus Myo Times

Plecotus austriacus Myo Times

Rhinolophus ferrumequinum N/A Times Times

Rhinolophus hipposideros N/A Times Times

Vespertilio murinus Pip Times

Aodha et al., 2022 also had a class called bat, I classified it as noise in multilabel classification
and as bat in binary classification.

A.2. Class Distributions

Table A.2.: Class distributions on different training set configurations and the validation set.

(a) Drone noise dataset distribution LP-RUS 0%

Label(-set) LPROS 0 LPROS 20 LPROS 40
# IRLbl # IRLbl # IRLbl

Pip 7867 1.00 7867 1.00 7867 1.00
Myo 868 9.06 1470 5.35 2073 3.79
Nyc 103 76.38 705 11.16 1308 6.01
Pip/Myo 899 8.75 1501 5.24 2104 3.74
Pip/Nyc 67 117.42 669 11.76 1272 6.18
Myo/Nyc 0 / 0 / 0 /
Pip/Myo/Nyc 18 437.06 620 12.69 1223 6.43
(Drone) Noise 5241 1.50 5241 1.50 5241 1.50

MeanIR 93.02 6.96 4.10
Density 0.24 0.30 0.34
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(b) Drone noise dataset distribution LP-RUS 40%.

Label(-set) LPROS 0 LPROS 20 LPROS 40
# IRLbl # IRLbl # IRLbl

Pip 4855 1.00 4855 1.00 4855 1.00
Myo 868 5.59 1229 3.95 1292 3.76
Nyc 103 47.14 464 10.46 967 5.02
Pip/Myo 899 5.40 1260 3.85 1292 3.76
Pip/Nyc 67 72.46 428 11.34 931 5.21
Myo/Nyc 0 / 0 / 0 /
Pip/Myo/Nyc 18 269.72 379 12.81 882 5.50
(Drone) Noise 2229 2.18 2229 2.18 2229 2.18

MeanIR 57.64 6.51 3.78
Density 0.29 0.34 0.38

(c) Augmented dataset distribution LP-RUS 60%.

Label(-set) LPROS 0 LPROS 20 LPROS 40
# IRLbl # IRLbl # IRLbl

Pip 7966 1.00 7966 1.00 7966 1.00
Myo 2936 2.71 2936 2.68 2936 2.68
Nyc 757 10.52 1883 4.18 2816 2.79
Pip/Myo 3515 2.27 3515 2.24 3515 2.24
Pip/Nyc 534 14.92 1660 4.74 2816 2.79
Myo/Nyc 59 135.02 1185 6.64 2366 3.33
Pip/Myo/Nyc 95 83.85 1221 6.44 2401 3.28
(Drone) Noise 6662 1.20 6662 1.18 6662 1.18

MeanIR 31.44 3.64 2.41
Density 0.30 0.36 0.41

(d) Validationset distribition (the testset distribution is almost the same).

Label(-set) #

Pip 2622
Myo 288
Nyc 34
Pip/Myo 301
Pip/Nyc 23
Myo/Nyc 1
Pip/Myo/Nyc 5
(Drone) Noise 1747
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Appendix B.

Results

B.1. Results Pretrained Models on Full Dataset

Table B.1.: Results for pretrained models with the full dataset with drone noise.

Model Metric Pip Myo Nyc Micro Macro Binary Bat

BatDetect2 F1-score 0.946 0.789 0.515 0.921 0.750 0.958
Precision 0.908 0.900 0.380 0.888 0.729 0.934
Recall 0.987 0.703 0.799 0.937 0.830 0.982

BAT F1-score 0.908 0.453 0.438 0.831 0.600 0.916
Precision 0.947 0.541 0.461 0.884 0.650 0.903
Recall 0.872 0.390 0.417 0.784 0.560 0.929

The results in table B.1 only slightly differ from those on the testset (table 4.1).

B.2. Results on All Resampling Combinations
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Table B.2.: Results for BAT for all resampling-augmentation combinations.

Set/LP-RUS/LP-
ROS

Metric Pip Myo Nyc Micro Macro Binary Bat

dro/0/0 F1-score 0.902 0.0 0.0 0.804 0.301 0.860
Precision 0.984 0.0 0.0 0.984 0.328 0.995
Recall 0.832 0.0 0.0 0.680 0.277 0.758

dro/0/20 F1-score 0.903 0.430 0.252 0.834 0.528 0.889
Precision 0.984 0.954 0.292 0.970 0.743 0.993
Recall 0.835 0.277 0.222 0.732 0.445 0.805

dro/0/40 F1-score 0.907 0.450 0.327 0.838 0.561 0.896
Precision 0.981 0.941 0.178 0.956 0.733 0.991
Recall 0.843 0.296 0.327 0.745 0.512 0.817

dro/40/0 F1-score 0.912 0.191 0.0 0.826 0.368 0.884
Precision 0.982 0.865 0.0 0.978 0.616 0.991
Recall 0.852 0.108 0.0 0.714 0.320 0.798

dro/40/20 F1-score 0.917 0.440 0.280 0.849 0.546 0.905
Precision 0.977 0.940 0.341 0.965 0.753 0.988
Recall 0.864 0.287 0.238 0.758 0.463 0.835

dro/40/40 F1-score 0.903 0.462 0.276 0.831 0.547 0.888
Precision 0.984 0.929 0.212 0.948 0.739 0.985
Recall 0.834 0.308 0.397 0.739 0.513 0.809

aug/60/0 F1-score 0.839 0.385 0.111 0.768 0.445 0.822
Precision 0.991 0.688 0.444 0.960 0.708 0.996
Recall 0.727 0.267 0.063 0.639 0.352 0.700

aug/60/20 F1-score 0.853 0.316 0.212 0.770 0.460 0.834
Precision 0.991 0.771 0.175 0.945 0.646 0.994
Recall 0.749 0.198 0.212 0.650 0.406 0.719

aug/60/40 F1-score 0.863 0.276 0.174 0.764 0.438 0.844
Precision 0.989 0.703 0.114 0.906 0.602 0.986
Recall 0.766 0.171 0.365 0.661 0.434 0.737
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Table B.3.: Results for PaSST for all resampling-augmentation combinations after 5 epochs.
For results after more epochs refer to section 4.2.2.

Set/LP-RUS/LP-
ROS

Metric Pip Myo Nyc Micro Macro Binary Bat

dro/0/0 F1-score 0.932 0.614 0.0 0.883 0.515 0.938
Precision 0.922 0.919 0.0 0.921 0.614 0.952
Recall 0.943 0.461 0.0 0.847 0.468 0.925

dro/0/20 F1-score 0.934 0.680 0.528 0.891 0.714 0.945
Precision 0.922 0.930 0.409 0.891 0.753 0.952
Recall 0.948 0.536 0.746 0.876 0.743 0.938

dro/0/40 F1-score 0.934 0.731 0.530 0.894 0.732 0.943
Precision 0.934 0.857 0.407 0.906 0.733 0.955
Recall 0.935 0.637 0.762 0.883 0.778 0.930

dro/40/0 F1-score 0.927 0.713 0.0 0.887 0.547 0.942
Precision 0.897 0.787 0.0 0.882 0.561 0.931
Recall 0.960 0.652 0.0 0.892 0.537 0.953

dro/40/20 F1-score 0.933 0.685 0.568 0.891 0.728 0.942
Precision 0.919 0.879 0.494 0.904 0.764 0.944
Recall 0.947 0.561 0.667 0.879 0.725 0.939

dro/40/40 F1-score 0.927 0.730 0.370 0.874 0.676 0.936
Precision 0.926 0.766 0.236 0.860 0.643 0.945
Recall 0.927 0.697 0.857 0.888 0.827 0.928

aug/60/0 F1-score 0.940 0.443 0.0 0.874 0.461 0.930
Precision 0.932 0.945 0.0 0.932 0.626 0.955
Recall 0.948 0.443 0.0 0.823 0.412 0.906

aug/60/20 F1-score 0.928 0.564 0.427 0.876 0.640 0.929
Precision 0.899 0.938 0.463 0.895 0.767 0.924
Recall 0.958 0.403 0.397 0.857 0.586 0.933

aug/60/40 F1-score 0.934 0.537 0.428 0.873 0.633 0.934
Precision 0.925 0.915 0.323 0.902 0.721 0.948
Recall 0.944 0.380 0.635 0.846 0.653 0.921
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