
BACHELORARBEIT

Visualizing

Stage-Light Fixtures

on Standalone Virtual Reality Headsets

using the Unity Engine

vorgelegt am 07. Februar 2024

Tom Milter

Erstprüferin: Dipl. Des. M.Sc. Anke von der Heide

Zweitprüfer: Prof. Dr. Ing. Roland Greule

HOCHSCHULE FÜR ANGEWANDTE

WISSENSCHAFTEN HAMBURG

Department Medientechnik

Finkenau 35

22081 Hamburg

Zusammenfassung

Während Meta ihre Vision des ”Metaverse”versucht zu fördern und nachdem, im Zuge der
2019 COVID Pandemie plötzlich viele Menschen Erfahrung mit Events machen durften, die
hybrid und digital stattfinden mussten, stieg das Interesse an standalone Virtual Reality
Brillen, also Brillen, die keinen Computer oder Kabel brauchen, um genutzt zu werden, stark
an. Um eine virtuelle Kopie eines Konzertes oder anderer Bühne darzustellen, ist Event-Licht
Pflicht. Diese Arbeit erforscht die Hürden und Probleme, auf die bei der Erstellung virtueller
Klone von Effektscheinwerfern, die auf den Virtual Reality Brillen angezeigt werden können,
gestoßen wurde. Die Forschungsfrage ”Wie kann eine immersive Lichtvisualisierung,
die auf leistungsarmen standalone Virtual Reality Brillen läuft, erstellt werden?

Indem Prototypen entwickelt und weiterentwickelt werden, wird ein Asset entwickelt, wel-
ches GDTF Dateien lesen und 3D Modele, die Lichtkegel und deren Auftreffpunkte mitsamt
Gobo-Projektionen visualisieren kann. Diese virtuellen Scheinwerfer können dann auch mit
realen Steuerkonsolen gesteuert werden.

Da während der Entwicklung einige unerwartet große Hürden entdeckt wurden, kann die
Forschungsfrage nur zumTeil beantwortet werden und die nächsten Schritte, die zu erforschen
sind, werden herausgestellt. Dennoch wird auch dargestellt, wie das Asset in einem realen
Projekt bereits genutzt wird.

Abstract

Meta pushing their vision for the “Metaverse” and following the 2019 COVID pandemic,
where digital events were suddenly a common experience for many, the interest in standalone
virtual reality headsets - a kind of virtual reality headset where no auxiliary device is needed,
rose drastically. To display a virtual clone of a concert or other stage, stage lighting is
essential. This thesis explores the issues arising when trying to create a visualization of
real stage fixtures on these standalone virtual reality headsets. The question: “How can an
immersive light-visualizer experience, running on low-power virtual reality devices
be created?” will be evaluated.

Through prototyping, an asset is developed that can import GDTF files, and display 3D
models, beams, and gobo projections which can be controlled by real-world hardware.

Discovering some major hurdles in researching and implementing, the question can only
be answered with the next steps to further research. Nonetheless, real-world usage is also
documented.

Contents

List of Figures IV

List of Tables VI

List of Codeblocks VII

1 Introduction 1
1.1 Research Topic . 1
1.2 Motivation . 1
1.3 Goal . 2
1.4 Research Methods . 2
1.5 Structure . 3

2 Background 4
2.1 Terms and Abbreviations . 4
2.2 State of the Art Technology . 8

2.2.1 The Virtual Concert . 8
2.2.2 The Virtual Concert “Experience” . 10
2.2.3 The Stage Visualizer . 12

2.3 Scope . 13

3 Research Design 14
3.1 Literature research . 14
3.2 Protoyping . 16
3.3 Tests . 17
3.4 Asset . 18
3.5 Modules . 18

3.5.1 GDTF Import . 19
3.5.2 Light Beams . 20
3.5.3 Light Projections . 20
3.5.4 3D Models . 22
3.5.5 Art-Net Control . 23

I

4 Implementation 25
4.1 Tests . 25

4.1.1 Gathering Data . 25
4.1.2 Running the Tests . 27
4.1.3 Saving data . 28
4.1.4 Displaying Data . 30
4.1.5 Test Scenes . 31

4.2 GDTF Import . 34
4.2.1 Finding and opening the file . 34
4.2.2 Reading the XML file . 35
4.2.3 Parsing the position matrix . 37
4.2.4 Reading extra files (images and models) 37

4.3 Light Beams . 37
4.3.1 Switching to Geometry Beams . 39
4.3.2 Optimizing with Batching . 39
4.3.3 Geometry Detail: vertices, resolution... 40
4.3.4 Self written Shaders . 41

4.4 Light Projections . 44
4.4.1 Projection Shader . 46

4.5 3D Models . 48
4.5.1 Reading the information from the xml-file 49
4.5.2 Reading 3DS and GLTF files to create a Mesh 50
4.5.3 The Lightsource . 51
4.5.4 Loading Cubes . 52

4.6 Art-Net Control . 53
4.6.1 Reading of 8bit and 16 bit channels 53
4.6.2 Movement . 55
4.6.3 Dimmer . 56
4.6.4 Zoom . 56
4.6.5 Shutter + Strobo . 56
4.6.6 Wheels . 58
4.6.7 Loading a Texture2D . 58

5 Evaluation 61
5.1 Test-Results . 61

5.1.1 Light Beams . 61
5.1.2 Gobo Projections . 64
5.1.3 3D Models . 65

II

6 Conclusion 67
6.1 Evaluating the Research Design . 67
6.2 Outlook . 68
6.3 Real world usage . 68

Bibliography 70

Appendix 76

III

List of Figures

2.1 A Diagram placing a selection of Virtual Concerts in 3 Categories. 9
2.2 Marshmellow Concert inside Fortnite . 9
2.3 Ariana Grande Event inside Fortnite . 10
2.4 Madison Beer Virtual Concert . 11
2.5 Secret Sky Music Festival . 11
2.6 To heighten the interactivity even more, the Bastille Virtual “Experience”

used the webcam image of people at home to capture their movement and
place them into the virtual world (Source: XRToday, 2022). 12

3.1 Prototyping Flowchart . 16
3.2 A typical file describing a Gobo . 21
3.3 A virtual installation without projection (left) and a real installation (right) . 22

4.1 First Type of Graph, displaying the framerate in relation to time 31
4.2 Second Type of Graph, giving an Overview of the Scenes and the Test Pa-

rameter (here only “default”) . 32
4.3 The 1000 Lamp Scene with all features enabled. In the top left statistics are

displayed. (Source: Screenshot) . 33
4.4 The Concert Scene with all features enabled. In the top left statistics are

displayed. (Source: Screenshot) . 34
4.5 The Exhibition Scene with all features enabled. In the top left statistics are

displayed. (Source: Screenshot) . 35
4.6 Structure of a simple fixture . 36
4.7 Structure of a fixture with multiple emitters 38
4.8 Comparison between the Quality Settings of the VLB 41
4.9 Visualizing how the tan of 𝛼 can give us the radius (blue) when the height

(red) is known . 44
4.10 Mesh of the cylinder used for the Beam shader 45
4.11 Depth Map with transparent (not in Depth Map included) Cube marked.

(Source: Ilett, 2021) . 45
4.12 Two Points (red and green) sampled from the depth map and transformed to

local space of the cube. (Source: Ilett, 2021) 47

IV

4.13 A fixture (Robe Robin Tetra 2) defining its emitters in 3D, here colored red.
(Source: Screenshot inside Unity Engine) . 59

4.14 Cubes instead of 3D Models are used. 59
4.15 A triangle wave describing a pulse (Source: Staffel et al., 2022, p. 98) 60
4.16 A saw wave describing a “PulseSawOpen” (Source: Staffel et al., 2022, p. 100) 60
4.17 A saw wave describing a “PulseSawClose” (Source: Staffel et al., 2022, p. 99) 60

5.1 Comparing different render modes for VLB-Beams on PC 62
5.2 Comparing different render modes for VLB-Beams in VR 62
5.3 Comparing Mesh-Quality settings . 63
5.4 Comparing VLB with the self written Shader 64
5.5 Comparing Impact of Gobos against Beams 65
5.6 Four Fixtures with Gobo-Projection-Boxes made visible. Two Projecting a

Gobo, two just the light circle. 66
5.7 Comparing Impact of 3D Models and Cubes 66

6.1 After loading a fixture, the user of the XRevent Creator can input all necessary
details . 69

6.2 Three fixtures placed inside the virtual world of the XRevent Creator 69

1 Appendix: Shader Graph made to resemble the VLB Beams 95
2 Appendix: ShaderGraph made by Ilett (Ilett, 2021) 96

V

List of Tables

2.1 Reference Values for Frame-Times . 8

4.1 Fixtures used in the “1000 Lamps” Scene . 32
4.2 Fixtures used in the “Concert Scene” . 33
4.3 Comparison of VLB-Beam Mesh details . 40

VI

List of Codeblocks

4.1 Capturing a statistics-packet each Frame . 25
4.2 All columns of the CSV-File outputted by the OVR Metrics Tool 26
4.3 An example Frame-Packet outputted by the OVR Metrics Tool 27
4.4 Function addStringToCSV: Adding a Line to the CSV-files “Column1” 28
4.5 Function SceneCountdown: Running the defined Tests and putting labels at

the right points for evaluation . 28
4.6 Modified Function: Capturing a statistics-packet each Second 30
4.7 Geometrie description Example (Position Data has been cut to reduce clutter) 36
4.8 Vertex Shader . 42
4.9 Fragent Shader . 43
4.10 Main changes to the Leung’s decal shader . 48
4.11 Example Models Node from a GDTF-file . 49
4.12 Rotating and mirroring a 3DS mesh to correctly import it into Unity Engine.

The ability for multiple meshes has been omitted here to reduce complexity. 50
4.13 Scaling the 3D Object by using the bounding box 51
4.14 Descripton of a Dimmer inside the XML . 54
4.15 Descripton of Pan and Tilt inside the XML 55

1 Appendix: The self written Shader . 76
2 Appendix: Implemented [X . 78
3 Appendix: Python Code to generate the Graphs 79
4 Appendix:List of all tested GDTF files . 85

VII

1 Introduction

1.1 Research Topic

Programs to create and display a virtual stage are called light visualizers. Light visualizers
are heavily used for pre-production and pre-visualization of stages, performances, and
architectural spaces and are often expensive and proprietary, preventing access for the
general public (W. Robbins, 2014).
While somewould say VR has arrived in consumers’ homes and the first sectors of the industry
(Gilbert, 2023), light visualizers are still mostly 2D. Leon Bantin, in his thesis “Realisierung
eines Lighting Visualizers unter Verwendung der 3D-Engine Unity” already showed the
feasibility and outlined the usefulness of a VR visualizer. (Bantin, 2021)
The global pandemic, which started in 2019, forced the world to isolate. The world reacted
by making significant steps towards digitalization.
This led artists to explore more digital mediums, including virtual concerts with support for
virtual reality headsets, which have been growing in popularity in consumer households
since 2018 (XRToday, 2023,UTA, 2021a).
Game engines, which are used to display these virtual concerts, opened the possibility of not
only experiencing concerts on a computer, phone, or TV but also in virtual reality. Users now
could move around while experiencing a virtual concert.

The virtual world not only simulates the real world but also expands on it: Virtual concerts
can accommodate many more viewers than would fit into a physical space. This was only
possible before using video and live streaming. (UTA, 2021b). Additionally, floating islands,
user-controlled fireworks, and other features are only a few examples that make these concerts
unique and interactable.

1.2 Motivation

Seeing the void between real stage hardware and consumer devices, we founded a team that
creates the “XRevent Creator”, a web-based, virtual reality-compatible solution for artists to
create their own virtual concerts, stages, and exhibitions.

1

The development of a light visualizer inside Unity Engine began in 2019 when, as part of a
course at the HAW Hamburg, software to create virtual events was developed and tested.
In the time since, we made further contributions to the created software, founded the team
committed to developing the software, and rewrote almost the complete stage-fixture solution
in working on this thesis. Designing for VR has a host of challenges attached to it, not only
in game design (Moore, 2022), but also in the requirements in performance. Not every guest
of a virtual concert can have a powerful computer. Standalone virtual reality headsets, like
the Meta Quest, lower the barrier to entry but also provide much lower performance (Unity
Technologies, 2022b).

1.3 Goal

This thesis aims to answer the question “How can an immersive light-visualizer experience,
running on low-power virtual reality devices be created?”. Breaking down the question
further leads to the following hypothesis and questions:
“How can Unity Engine obtain specifications and models of stage fixtures?” “What are the
rendering limits and bottlenecks on standalone virtual reality headsets? How can these be
subverted?”

While this thesis is also a part of the documentation, it aims to explain the reasoning
behind the decision-making in developing the asset. The code and assets that are al-
lowed to be publicly available, as well as technical documentation, can be found here:
https://github.com/DarkTJ/Unity-GDTF.

1.4 Research Methods

Our main methods of research were: Examination of literature and online sources, including
open source projects, and practical experimentation by prototyping inside the Unity Engine,
supported by empiric performance measurements.

Early examination of the literature quickly revealed a gap between the features and functions
Unity Engine provides and the documentation of those features. Especially newer features
often either lacked usage and documentation for all hardware or had no documentation at all.
Using open-source projects played a vital role in analyzing the functionality and usage of
many features described in this thesis. Details and examples are described in section 3.1 on
page 14.

2

https://github.com/DarkTJ/Unity-GDTF

Experimenting inside the Unity Engine by prototyping allows for quick assurance of the
discovered, researched, and developed ideas. Because standalone headsets use a new and
different architecture one can’t rely on documentation alone (See chapter 3). Prototyping, as
described in chapter 3.2, made rapid progress possible.

1.5 Structure

The thesis is structured into 6 chapters. The following chapter explains the essential points
and basics to understand further topics. In Chapter 3, the design and greater structure of the
asset and tests are described, while Chapter 4 follows by describing the implementation of
those ideas, detailing arising problems and tested solutions. The results of the tests described
in Chapter 3 are evaluated in Chapter 5. Here the insights are first plainly described, and in
later parts interpreted in the context of each other. In chapter 6 a conclusion is formed and
future works and possibilities are described.

3

2 Background

2.1 Terms and Abbreviations

Unity Engine

Unity is a powerful and widely used game development engine that provides a comprehensive
set of tools for creating interactive experiences, ranging from video games to architectural
visualizations and simulations. It is known for its user-friendly interface and flexibility,
making it accessible to both beginners and experienced developers. It also supports almost all
modern devices that have displays. Updates with new features and improvements are released
regularly and, depending on the impact of a change, can alter how certain code executes. In
the production of a game or other software, the versions of all the software dependencies are
often “locked”, meaning that all developers work with the same, fixed version. Often chosen,
as they are created for this exact reason, are LTS-Versions, which are versions that only get
minor updates to fix bugs. The tests contained in this thesis were run on Version 2023.1.8f1.
While in development the project updated from 2022.3.4f1 LTS to 2022.3.7f1 LTS and finally
to 2023.1.8f1.

Mesh

The shape of a 3D object is described with vertices. These vertices are connected with edges to
form a mesh. While almost all Polygones are possible, Unity Engine uses primarily triangles.

Shader Language

The High-Level Shader Language (HLSL) is used to write shaders. Shaders are comprised
of code that is run on the Graphics Processing Unit (GPU) and mostly used to calculate the
image displayed to the user. (Unity Technologies, 2023a; Unity Technologies, 2019a). HLSL
can also be used to calculate non-graphics related tasks, referred to as a “Compute-Shader”
(Unity Technologies, 2021c). A detailed description of how a shader is programmed is done
in Chapter 4.3.4.

4

Shader Graph

The Shader Graph is a tool that Unity Technologies first introduced to Unity Engine in 2018
and officially implemented into the core engine technology in 2019 (Unity Technologies,
2022c. Instead of writing code to define shaders, a developer or artist can use nodes to create
a shader. The nodes are compiled to typical shader code afterward Lever, 2022.

Light inside Game Engines

To create the simplest form of a Scene one just needs a mesh, a Light, and a Shader to calculate
the Impact of the Light on the mesh. Multiple approaches to calculating light exist: Phong
Shading is a very simple algorithm and a slightly modified version is called “SimpleLit” inside
Unity Engine (Greule, 2021, p. 359; Unity Technologies, 2022e). More complex shaders use
values for roughness, bumps, metallic, and more to calculate realistic looking shader in real
time (Unity Technologies, 2022d). Also used are raytracing calculations, essentially simulating
each ray a light-source emits and bouncing it off surfaces. This technique is mostly used
for non-realtime renders and only the most powerful hardware can run real-time raytracing
calculations (Unity Technologies, 2023c; Greule, 2021, p. 361).

Deffered vs Forward Rendering

Deferred and Forward are two rendering methods Unity Engines support. They differentiate
in how each light source is calculated and how the amount of light sources influences
performance. Bantin made a clear case to use the deferred renderer (Bantin, 2021, pp. 7–8)
but his argumentation cannot be transferred to this work as his work focused on a computer-
based VR system using many of the built-in Unity lights. We chose not to use the deferred
renderer as the fake beams implemented in Chapter 3.5.2/4.3 are transparent objects and the
documentation for these assets discourages the deferred renderer (Bantin, 2021; Dasch, 2019;
Ferreira, 2019; Unity Technologies, n.d.).

Light Visualizer

A light visualizer is a piece of software that, using light simulation, shows the user a stage,
architectural structure, or other scene and calculates the influence of light on and in that
scene. Almost all light visualizers are limited to a 2D render, displayed on a normal computer
screen. Some are specifically made to pre-visualize a stage for the light artist to create his light
show beforehand, allowing input of control data from purpose-built light control consoles.
The existing solutions in the live entertainment industry are a mix of hardware and software

5

platforms that are scattered, proprietary, and expensive. The tools and production pipelines
are convoluted, difficult to use, and often impair the overall creation and production processes.
Unreal Engine, Unity Engines’ biggest competitor, added a “DMX-Plugin” in 2019 with the
reasoning: “Lately, there has been increasing interest and demand for Unreal in the context of
live events and permanent digital installations throughout the world.” [...]. This Feature sadly
has not been developed further and is still missing substantial features (Epic Games, 2022).

GDTF File Format

There are many file formats available to exchange information about lighting fixtures. Like the
existing stage visualizers, these are often proprietary to their respective software/hardware
and developers, such that fixture manufacturers are required to put in a lot of work to
support their fixtures on different platforms. The General Device Type Format (GDTF) aims
to unify. Using GDTF, it is not only possible to describe and exchange data about lighting
fixtures, but also other devices used in stage productions. The format was developed by the
industry-leading companies MA Lighting and Robe Lighting, to provide a standardized way
to communicate information about lighting fixtures and is specified with a DIN SPEC (VPLT,
11).

Virtual Reality

Milgram places Virtual Reality (VR) on one of the far ends of the “Real-Virtuality Continuum”,
opposite of the real environment (Milgram and Kishino, 1994). VR is mostly used in this
thesis in conjunction with VR headsets, wearable devices including a screen (also called
Head Mounted Displays (HMD)). The user gets a virtual world displayed in front of his
eyes and can move in the real world to also move in the virtual world. Because of this, it
is still considered “Mixed Reality” by some research as the Users still interact with the real
environment (Skarbez et al., 2021). In a commercial context “mixed reality” and “augmented
reality” are almost always used synonymously, placed more towards the real environment in
Milgrams Continuum (Milgram and Kishino, 1994). This thesis focuses on VR and uses the
Meta Quest and Quest 2 which are both mainly VR devices, subsequently called “VR headset”.
Both are standalone headsets, meaning all hardware needed to power the devices is packed
inside it. No external cable to a computer is needed, providing a large amount of freedom
and accessibility, but also limiting processing power similar to that of a modern smartphone.

6

Single-Pass versus Multipass Stereo Rendering

Because VR headsets have two screens, one for each eye, they have to render each frame
twice from two slightly different points of view (POV), called stereo rendering. The default
stereo rendering mode is called Multipass, rendering each POV independently from the
other. As they are rendering mostly the same objects the Single-Pass rendering mode was
introduced: Instead of loading all data of one object to the GPU, rendering the object for one
POV, discarding the data, only to load it again for the other POV later, the data is used to
render the object for both POVs, saving to load it multiple times (Unity Technologies, 2022j;
Ferreira, 2019). This is called Instancing, picked up upon in chapter 4.3

Tile-Based Rendering

In contrast to modern GPUs using Immediate rendering, low-power devices such as the
Oculus Quest use a tile-based GPU (Ferreira, 2019). By splitting a frame into smaller tiles, the
amount of memory and bandwidth needed can be significantly reduced. This also reduces
the power requirements (Molnar, 1994; Dasch, 2019). For developers, a host of challenges are
connected to this type of hardware, especially when creating complex graphics and shaders.
Working on this thesis revealed that a lot of literature and guides are only considering
computer-based hardware using Immediate rendering (see chapter 3.1 and chapter 5.1.1).

Art-Net & DMX

DMX512-A (DMX) is a digital control protocol used to control fixtures on stages. Sending up
to 30 packets per second containing 512 bytes over XLR Cables (on Universe). Art-Net expands
on top of DMX, using Ethernet cables and infrastructure to send up to 32768 Universes of
DMX data.

Unity Performance Analyser

The Unity Performance Analyzer is a toolbox made available by Unity Engine to analyze and
debug games made with Unity Engine. While it can collect a high amount of data when the
game is run on a computer it falls short when analyzing games running external hardware
(VR headsets for example).

7

OVR Metrics Tool

The OVR Metrics tool is an important instrument developed for virtual reality on the Quest
and Quest 2. The tool is provided by Meta/Oculus, allowing the capture of metrics directly
from the hardware, ranging from frame rates and rendering latency to more advanced metrics
like “Average Vertices Per Frame” or “Average Instructions per Fragment”. These metrics
can be used to gain insights into the connections between hardware, displayed graphics, and
code. While the data can be shown to the user as a graph inside the VR headset, it is also
possible to collect and log data in the CSV format (Meta, 2019).

Time.deltaTime

The function Time.deltaTime returns “The interval in seconds from the last frame to the
current one” (Unity Technologies, 2019b). This is the most important statistic for performance
analyses. When the intervals are smaller, the performance is better. For reference values see
Table 2.1.

deltaTime FPS Notes
33 ms 30 fps Youtube and other Online Videos, US-TV Standard

(Verttermann, 2021)
16 ms 60 fps Minimum Frame Time for VR (Meta, 2022a)

13-11 ms 75-90 fps Targeted Frame Time for VR (Meta, 2022a)
Table 2.1: Reference Values for Frame-Times

2.2 State of the Art Technology

Figure 2.1 shows a selection of virtual concerts categorized and arranged in relation to their
Accessibility/Performance (Is special hardware needed?), their Immersion/Interactibility
(Can the user influence others or the performance?), and their usage/emulation of real stage
hardware (Can real stage-hardware be used to control the experience? Keyword: Digital Twin).
Four categories are additionally shown through coloring, explored in the following sections.

2.2.1 The Virtual Concert

As consumer devices were getting more powerful and game engines more efficient, access to
virtual concerts was made possible for the everyday user. Best known and setting a world

8

Figure 2.1: A Diagram placing a selection of Virtual Concerts in 3 Categories.

Figure 2.2: Marshmellow Concert inside Fortnite

9

Figure 2.3: Ariana Grande Event inside Fortnite

record for the “Largest music concert in a videogame” (GuinnessWorldRecords, 2023) are
the virtual concerts hosted inside Fortnite. These concerts balance in the middle between
interactability and accessibility, they are grouped with the Pink markers. Needing to download
software onto a computer or mobile device capable of running said software represents only
a small barrier to entry. The first concerts still showed a more classical stage (Fig.: 2.2). Later
events were more abstract experiences, with artist avatars being scaled to giant size and
visitors floating on an invisible floor (Fig.: 2.3).

2.2.2 The Virtual Concert “Experience”

Unreal Engine, the game engine Fortnite is based on, has since made big investments in
creating possibilities for large-scale, realistic concerts (XRToday, 2022). They called the events
they created “Virtual Concert Experiences” (Epic Games, 2023b). This phrasing has been
used for two kinds of Events. Blue markers are 2D Videos of digitally created, digitally
enhanced concerts, or 360° Videos (XRToday, 2022). The Madison Beer “Experience” (Fig.:
2.4) for example has been released as a simple Video, rendered from a 100% virtual stage.
Everything (even the artist herself) was created in 3D inside Unreal Engine.

10

Figure 2.4: Madison Beer Virtual Concert

Figure 2.5: Secret Sky Music Festival

11

Figure 2.6: To heighten the interactivity even more, the Bastille Virtual “Experience” used
the webcam image of people at home to capture their movement and place them

into the virtual world (Source: XRToday, 2022).

Greenmarkers list the events that had a higher barrier of entry by needing special hardware.
Using VR headsets the visitors of such events were able to interact and immerse themself in
the experience. From simple events, like the “Secret Sky Music Festival” (Fig.: 2.5), where the
artists were just projected into the virtual world as video, to multiple artists being fully 3D
Scanned and animated inside WaveXR (WaveXR, 2022; Fig. 2.6), these Events enabled other
forms of experiencing a virtual event than sitting in front of a simple screen.

2.2.3 The Stage Visualizer

Orange markers group together the classic and longest-standing visualization of stages
with new approaches. As mentioned in the Introduction these stage visualizers are used for
the pre-production and pre-visualization of stages, performances, and architectural spaces.
These visualizers include access to databases with real light fixtures as a standard feature
as they recreate real stage setups (GmbH, 2023). Additionally, the Unreal Engine can be
used to create data for screens and panels on a stage the same way a Media Server would
(deadmau5.com, 2021; Greule, 2021). To achieve this, a powerful computer is needed as well
as experience with products alike.

In the diagram there is a distinct space between the realistic and the easily accessible experi-
ences. Not much focus has been put into developing assets that enable small artists to work
with these new technologies without specialized hardware and software.

Game engines have enabled small game studios and sometimes even sole artists to create

12

popular and large-scale games that would have taken years to develop with large teams just
a decade ago (Bruce, 2022). Game engines, in contrast to the more classic light visualizers,
are widely supported, free, and easy to get started with (Noveltech, 2022). Unreal Engine
itself created an implementation for the GDTF files (GDTF, 2022; Epic Games, 2023a), but
sadly leaving the complex interpretation of the data, creation of the fixture in 3D space, and
rendering of beams and special features to the user (Unity Technologies, 2021a). Similarly,
multiple user-created assets for the Unity engine exist: (Fok, 2020; igolinin, 2021; Cho, 2018).
All of these solutions are made to use the integrated real-time light solutions of the Unity
Engine and are not suitable to be run on standalone VR headsets (see 3.5.2), thus leading to
the creation of this thesis.

2.3 Scope

While developing the asset to answer the thesis’s main question, a lot of supporting work had
to be done that is not covered in this thesis. Additionally, some groundbreaking hardware
and software limitations were discovered, using up a high percentage of development time.
Chapter 6.2 lists many overlooked features, where optimizations would easily be possible but
were skipped in favor of focusing on the following topics:

• Rendering of beam geometry: Making a light beam visible in the air using rendering
methods that are compatible and performant on standalone, android-based virtual
reality headsets.

• Gobo projections: Finding a method to render projections that is compatible and
performant, as the removal of the original lights leads to the new beam geometry not
shining onto surfaces.

13

3 Research Design

3.1 Literature research

Books and Official Documentation

The Quest 2, being released in 2020, is a relatively new device. The idea of using mobile
hardware architecture for virtual reality, freeing the user of cables and the need to own a
powerful computer, is not much older than the Quest itself (Melling, 2018). Game engines,
like Unity, are still being optimized for these new devices(arm.com, 2021). Using the most
recent version of Unity can be a viable approach to enhance performance (Unity Technologies,
2022a). On the other hand, working with “cutting-edge” products and software comes with
limited availability of relevant books and similar literature. In some cases, even the official
documentation is found lacking, thus increasing the difficulty of conducting research. Only
a handful of books have been released recently covering the newest additions: “Building
Quality Shaders for Unity” by Iett, 2022, is a great example of such a book. Being released
in 2022 it comprehensively explains and showcases additions to Unity Engine and Shader
languages, not found in most other literature. It is by far the most recent book written by a
third party on this subject. While it only covers the Shader part of Unity Engine, it holds
almost no information on working with shaders in connection to the Quest and Quest 2
headsets. Similarly to other sources, it also contains contradicting information on details
about these devices and their (rendering) performance.

An example of this are the recommendations for MSAA on Meta Quest devices: The official
documentation by Meta states: “Using MSAA on a PC-based platform comes at a lower
cost than using the technique on Meta Quest. [...] It is better to spend GPU time on higher
resolution render targets than further increase MSAA.” (Meta, 2022b), while a blog post by
Meta states almost the exact opposite: “There is extra overhead for 2x/4x MSAA, but on
mobile the computational cost is nowhere near as substantial as on PC, relatively. [...] It’s
almost always preferred to use some level of MSAA rather than keeping your resolution
(render-scale) at native.” (Ferreira, 2019).

14

Third Party Tutorials

Tutorials created by third-party authors are a reasonable source of inspiration and examples.
On one hand, there is caution to be taken as these are often biased by the background of
the author and often do not cite any literature. On the other hand, the authors’ diverse
backgrounds often lead to information that is hard to find otherwise.
Testing all findings helps relinquish uncertainties.

Open Source Projects

Open Source Projects are projects and programs where the source code can be freely
accessed by everyone. While these projects can also be an enormous source of insight,
they come with similar tradeoffs as the tutorials. Authors with diverse backgrounds create
software and prototypes and share the code they have written. With an open source model,
even projects from authors that do not write or speak a common language can benefit from
each other as the code is not localized to any language. While comments and documentation
can be a hurdle, most programmers use coding conventions (Microsoft, 2022), making anyone
able to read the code and make relatively accurate assumptions of its functionality. Two open
source projects cited in this thesis by Cho, 2018 and Fok, 2020 are almost entirely commented
and described in Japanese and Chinese respectively, only the latter having an English readme
file. Again, testing all findings helps relinquish uncertainties.

Paid Assets

In contrast to almost all commercially available programs, assets bought in the Unity Asset
Store (accessible at https://assetstore.unity.com/) are delivered as uncompiled source code
(Unity Technologies, 2023d, 1.5.a). They can be treated almost like open source projects,
having major benefits and drawbacks. On one hand, they are strictly regulated to adhere
to programming and structuring standards and must be documented in English (Unity
Technologies, 2023d, pp. 1.1.i, 2.1–2.7). Authors are driven to optimization, improvement, and
expansion by the revenue they generate with such assets, creating advanced and well-running
code. On the other hand, as the code is bought, its usage often is restricted. The “Asset Store
End User License Agreement” (Asset Store EULA) (Unity Technologies, 2023b) regulates the
usage of such assets. A fitting explanation on the Unity Engine blog states: “For example, if
you think of the Asset Store as a grocery store and the assets as carrots and zucchini, the
Asset Store EULA lets you sell a meal that you make from the carrots and zucchini. Your
recipe, your preparation, and your presentation are the substantial original work with which
vegetables are distributed. The Asset Store EULA, however, does not let you resell individual

15

Figure 3.1: Prototyping Flowchart

vegetables outside of a recipe.” (Maxine, 2023). Some assets are classified as “Restricted
assets”, further limiting their usage (Unity Technologies, 2023b, §3.2).

Example Scenes

Example scenes are included in many open source and paid assets or are available to download
with the documentation. They are often added to asset or feature releases and are created by
the authors of the respective resource. They show best practices and recommended uses of
the assets they accompany. They can be used similarly to open source projects, gathering
practices and inspiration from other people’s works.

3.2 Protoyping

A proven and reliable method of creating software is by prototyping (TenMedia, 2022).
Prototyping is especially useful when the path to the goal or the goal itself is not clearly
defined, allowing the research to be focused on arising issues and adapting to hurdles and
blockages (Joshi, 2021, p. 25). Fig. 3.1 (Preece et al., 2015, p. 52) shows the steps a prototyping
approach takes. It is important to preface that the prototyping approach was mainly applied
to “Modules” of the asset that was developed in this thesis (3.5 Modules) rather than the whole
asset. While the main goal of the asset: “Running an immersive light-visualizer experience
on low power virtual reality devices” (1.3) was not changed, the software and tests themselves
were adapted and reframed, and the thesis’ main goal was also iterated on and refined in
rounds of prototypes, as solutions were found and larger hurdles were discovered.

16

3.3 Tests

Quickly realizing that performance would be a major bottleneck in the development of this
asset, performance tests were introduced. Not only providing an answer to the main thesis
but the tests could also be used on every change to relinquish uncertainties in research
sources and code implemented.

Tests are run by collecting important performance data while the device executes the software
and automatically plays through scenes, each with a different focus. Three scenes were
created:

• 1: 1000 Lamp Scene

• 2: Concert Scene

• 3: Exhibition Scene

Scene 1 focuses on as many fixtures as possible, measuring even small impacts on per-
formance as the effect is multiplied by all the fixtures in the scene. Scene 2 emulates a
medium-sized concert setup. Here we can test our performance in a “real” setup. Scene 3
is a “high fidelity” scene. Here not the amount of lights, but the look and feel (immersion)
is important. This scene displays a small exhibition with different items interacting with light.

A conscious decision was made to not collect and record a lot of information. Memory, GPU,
and CPU data, conventionally also logged by performance recording tools (Pluberus, 2013),
could always be seen live in the OVR Metrics Tool-Tool or the Unity Performance Analyser
(see chapter 2.1). Having three defined scenes with no camera movement and perfectly
repeatable movement and animation of the lights allowed us to use the timeline (see Fig. 4.1)
to pinpoint when certain points in the scene would have vastly different performances. The
scene could be analyzed by replaying it exactly and pausing at the right moment, providing
all needed data in much higher detail than a recorded “packet” could.

Three approaches were taken in the following sequence, each learning from the previous, as
defined in 3.2:

• Collecting data every frame

• Using the OVR Metrics Tool

• Collecting data in 1-second packets

The recorded data was saved and a script was created to display the data as graphs. The
graph-generating script also went through multiple prototyping steps which are omitted
from this work to keep in scope. The script is available in appendix 3.

17

3.4 Asset

Creating an asset has a main advantage: It can be developed “standalone” but later be used
as a very distinguishable part (module) of a larger program (see 6.3 Real world usage). The
research question implies the following requirements:

• “How can an immersive light-visualizer experience, running on low-power virtual
reality devices be created?”

– Software displaying light fixtures

– Software running on low-power virtual reality devices with, at least, the recom-
mended framerate (2.1)

Further breaking down the points leads to the following requirements and questions already
named in 1.3:

• Software that can read files with fixture information.

– “How can Unity Engine get specifications and models of stage fixtures?”

• Software that simulates a light beam.

• Software that simulates light and Gobo projections.

• Software that can show a 3D Model of the fixtures.

• Software that can receive control signals for fixures.

All previous questions and requirements are to be combined with: “What are rendering
limits and bottlenecks on standalone virtual reality headsets? How can these be sub-
verted?”, leading to five more or less separated “modules”, each running through prototyping
and testing. Inspired by unit testing, the modules can be developed mostly independent of
each other, allowing faster development and more accurate testing (Khorikov, 2020, p. 150).

3.5 Modules

This Section is split into five subsections, reflecting the list from 3.4. A more detailed list,
including proposed module implementations, is added to the end of this thesis.
While this Chapter defines the goals of each module and lists the prototyping and testing
steps, each subsection is picked up upon in chapter 4, explaining the details behind each
prototyping cycle and showcasing the problems and solutions. Each of the following sections

18

starts with one of the requirements from the list above in italic, stating the goal of the
described module.

3.5.1 GDTF Import

“Software that can read files with fixture information”.

Using the DIN SPEC 15800 (Staffel et al., 2022) as a guideline on how digital twins of real-world
fixtures are defined, the asset will be “ingesting” a .gdtf file and creating a 3D representation
of said fixture. The software should display the 3D models of the fixtures, and implement
further functions e.g. shutter, focus, Gobo-projections, and strobe. The official document of
the DIN SPEC provides a well-written structure of a fixture, especially showing how functions
are related to each other. The loading of the file is split into three separate tasks:

• 1. Finding and opening the file

• 2. Reading the XML file

• 3. Reading extra files (images and models)

Point 1: Finding and opening the file.
Supplying the file is touched upon in Chapter Real world usage but disregarded here. It is
assumed the program has permanent access to the fixture files.

Point 2: Reading the XML file.
As per specification, the XML file holds all technical information of the fixture (Staffel et al.,
2022). The structure is defined in a .xsd File (XML Schema file) that is made available by the
developers of the specification. Three ways of reading the file were identified:

• Reading selected parameters when needed

• Reading selected parameters into an object

• Reading all parameters into an object

As the reading is only done when the scene is loaded the impact of this process on the app’s
performance is hard to gauge. Loading times are not in the scope of this work and while one
method could use more memory than another, the impact was regarded as miniscule and no
tests for this module were designed.

Point 3: Reading extra files (images and models). As the files are used for other modules,
reading them is picked up in the following subsections.

19

3.5.2 Light Beams

“Software that simulates a light beam”

Creating a light beam is one of the most important features of the visualizer. Almost all light
shows use haze or fog to make the beams of the fixtures visible in the air (Schiavone, 2023).
All referenced solutions (Bantin, 2021; Fok, 2020; Cho, 2018) use the build-in Unity lights,
which are very limited on standalone virtual reality headsets: Unity Engine on mobile and
other low-power devices only supports 4-8 real-time lights at once (Unity Technologies, n.d.).
Meta even recommends limiting the usage of real-time lights to 1 per scene (Meta, 2022a).
As most stages use many more lights, these assets lose their ability to be run on most of the
common standalone VR headsets or other low-power devices.

Bantin already described the switch to “geometry beams” in his thesis outlook (Bantin, 2021,
p. 61. Geometry beams are light beams not created by light calculations but by a mesh with a
shader. First, buying an asset from the asset store, later switching to a self-written Shader,
many tests were run to improve the performance of said light beams:

• Switching to geometry beams

• Optimizing with batching

• Geometry detail: vertices, resolution...

• Shader quality

• Self-written shaders

While being the most impactful (see 5.1.1) this module was also the most complex and had
the most setbacks (see 4.3).

3.5.3 Light Projections

“Software that simulates light and Gobo projections”

The projection of a circle of light is a very important feature to heighten the realism and
immersion of the experience. Additionally, sometimes even more importantly, gobo pro-
jections are used to project patterns onto objects. Fig. 3.3 shows the difference a scene
can have when it has no projections on the virtual scene, especially if no beams are visible
(no fog/haze used). Fig. 3.2 is a typical Gobo pattern: Pictures like this one are supplied
with the .gdtf files. This module had the most issues getting anything displayed. Complex

20

Figure 3.2: A typical file describing a Gobo

21

Figure 3.3: A virtual installation without projection (left) and a real installation (right)

matrix calculations and transformations including calculations based on a depth map (see
chapter 4.4) are needed to simulate the projection onto surfaces. Analog to the light beams,
premade solutions faced many problems, mainly because they were not developed for mobile
platforms, especially virtual reality. Chapter 4.4 highlights three of the explored methods of
projections and discloses their shortcomings, lastly showing the customization that had to be
done to make anything visible on the VR headset:

• Camera projections

• Projection shader in ShaderGraph

• Decal shader asset and its modifications

Unexpectedly, the projection of Gobos had little impact on performance. As only the third
method produced tangible and visible results on the VR headset the test is kept simple and
only showcases “Gobos” vs “no Gobos”.

3.5.4 3D Models

“Software that can show a 3D Model of the fixtures”

This work only looks at the technical aspect of the visibility of fixtures. Discussion, whether or
not fixtures should be seen, from a Visitors point-of-view, are out of the scope of this work.

To be able to plan a stage it can be important to display the fixtures as a 3D Model. The
model can be used to position the fixture and gauge distances and spacing. The level of
detail and complexity in the models affects both the immersion and the performance of the
visualization. An option to decide the visibility of the 3D model of each individual fixture is
given to the user, enabling fixtures far out of reach of the guests to be made invisible, while

22

fixtures close to the audience stay visible.
The initial import process for the models was challenging due to the use of an uncommon file
format, 3Ds, which is not directly supported by Unity Engine (Unity Technologies, 2022k).
Many improvement ideas were moved to the proposed module implementations to focus on
the light beams, leaving only three tests.

• PerformanceImpact between:

– Loaded (Default) Models with a self-written loader.

– Loading Cubes.

– Loading nothing.

3.5.5 Art-Net Control

“Software that can receive control signals for fixures.”

Controlling the fixtures with a protocol that is used on real stages makes the software usable
with real-world show data and controllable with real light consoles. The section and module
focus on all the functions needed to control a light fixture, from receiving the data to changing
the fixture.

While the list of functions that a gdtf device can have is very long (see Staffel et al., 2022, pp. 54–
64), the functions necessary to control most fixtures are only a small subset. Implementation
of the following functions was deemed necessary for the minimum viable prototype:

• reading of 8bit and 16 bit channels

• Movement on up to two axis

• Dimmer

• Shutter + Strobo

• Zoom

• Wheels

– Color Wheels

– Gobo Wheels

• RGB Values

23

Performance impact was tested is discussed in 4.6 but deemed negligible in comparison to
the beams and projections.

24

4 Implementation

4.1 Tests

4.1.1 Gathering Data

In the first prototype, capturing performance data inside Unity Engine was quickly made
possible with a small script. The script gathers simple data for each frame and stores it in a List.
The List PerfromanceTrackerPackets (4.1) is stored in RAM until a function is called to save it
to Disk, see 4.1.3 Saving data. This function was used extensively in early research of this
thesis, capturing huge amounts of Packets with the main information in each: Time.deltaTime .

Codeblock 4.1: Capturing a statistics-packet each Frame

1 void Update ()

2 {

3 if (! _recording) return ;

4 float time = Time . time ;

5 PerfromanceTrackerPackets . Add (new PerfromanceFramePacket ()

6 {

7 SecondsSinceStart = time - _recordingStartTime ,

8 FrameSeconds = Time . deltaTime ,

9 });

10

11 }

This performance data was never analyzed effectively and looking for more information in
the hardware itself the second Prototype was created:
As the Unity Engine can only give us little information about the state of the device itself,
especially Android (2.1), the OVR Metrics Tool (2.1) is used. Using the OVR Metrics Tool
a line of Code can be used to append a string to the csv-file to mark certain moments, for
example, the loading of a scene. This was used extensively to mark the beginning and endings
of the three scenes used for testing. The Graphs used in the later stages of this chapter as

25

well as 5 rely heavily on these strings. The .csv-File generated by the OVR Metric Tool has,
as per definition of CSV files, the heading for all columns listed:

Codeblock 4.2: All columns of the CSV-File outputted by the OVR Metrics Tool

1 Time Stamp , available_memory_MB , app_pss_MB , battery_level_percentage ,

2 battery_temperature_celcius , battery_current_now_milliamps ,

3 sensor_temperature_celcius , power_current , power_level_state ,

4 power_voltage , power_wattage , cpu_level , gpu_level , cpu_frequency_MHz ,

5 gpu_frequency_MHz , mem_frequency_MHz , minimum_vsyncs , extra_latency_mode ,

6 average_frame_rate , display_refresh_rate , average_prediction_milliseconds ,

7 screen_tear_count , early_frame_count , stale_frame_count ,

8 maximum_rotational_speed_degrees_per_second , foveation_level ,

9 eye_buffer_width , eye_buffer_height , app_gpu_time_microseconds ,

10 timewarp_gpu_time_microseconds , guardian_gpu_time_microseconds ,

11 cpu_utilization_percentage , cpu_utilization_percentage_core0 ,

12 cpu_utilization_percentage_core1 , cpu_utilization_percentage_core2 ,

13 cpu_utilization_percentage_core3 , cpu_utilization_percentage_core4 ,

14 cpu_utilization_percentage_core5 , cpu_utilization_percentage_core6 ,

15 cpu_utilization_percentage_core7 , gpu_utilization_percentage ,

16 spacewarp_motion_vector_type , spacewarped_frames_per_second , app_vss_MB ,

17 app_rss_MB , app_dalvik_pss_MB , app_private_dirty_MB , app_private_clean_MB , app_uss_MB ,

18 stale_frames_consecutive , screen_fill_rate_left_eye , screen_fill_rate_right_eye ,

19 screen_fill_rate , screen_red_intensity_left_eye ,

20 screen_red_intensity_right_eye , screen_red_intensity ,

21 screen_green_intensity_left_eye , screen_green_intensity_right_eye ,

22 screen_green_intensity , screen_blue_intensity_left_eye ,

23 screen_blue_intensity_right_eye , screen_blue_intensity ,

24 screen_color_intensity_left_eye , screen_color_intensity_right_eye ,

25 screen_color_intensity , screen_brightness , screen_dimming , screen_power_consumption ,

26 hands_input_extra_delay , eyes_input_extra_delay , avg_vertices_per_frame ,

27 avg_fill_percentage , avg_inst_per_frag , avg_inst_per_vert , avg_textures_per_frag ,

28 percent_time_shading_frags , percent_time_shading_verts , percent_time_compute ,

29 percent_vertex_fetch_stall , percent_texture_fetch_stall , percent_texture_l1_miss ,

30 percent_texture_l2_miss , percent_texture_nearest_filtered ,

31 percent_texture_linear_filtered , percent_texture_anisotropic_filtered ,

32 vrshell_average_frame_rate , vrshell_gpu_time_microseconds ,

33 vrshell_and_guardian_gpu_time_microseconds , render_scale , Column1

This amount of data is not only overwhelming but also not very useful. A lot of data is
written into the head but not collected, as an example frame shows:

26

Codeblock 4.3: An example Frame-Packet outputted by the OVR Metrics Tool

1 20006 ,1850 ,386 ,99 ,23 ,9999 ,0 ,395 ,0 ,4198 ,1658 ,2 ,4 ,1651 ,414 ,1554 ,0 ,0 ,72 ,72 ,48 ,0 ,26 ,0 ,0 ,

2 0 ,1216 ,1344 ,9959 ,1182 ,0 ,19 ,31 ,31 ,39 ,40 ,14 ,13 ,14 ,19 ,76 ,0 ,0 ,10224 ,439 ,0 ,345 ,36 ,382 ,0 ,

3 0 ,100

Easily recognizable are the large amounts of zeros at the end of the data frame, which are
completely unhelpful. Already touched upon in 3.3, a second argument against the usefulness
of this large amount of data is the replayability of the test used in this thesis and the ability
to live-monitor with the OVR Metric Tool. Combining this, simple data packets can be saved
and interesting timeframes replayed and analyzed live, leading to easier data handling and
faster testing. Using this new Insight, the third large prototyping change was made and the
self-written script was adapted to the style of the OVR Metrics recording, but only collecting
the necessary data to pinpoint situations that should be live-monitored in greater detail (see
4.6). This change also allowed the script to be used on all devices used for testing, not only
on devices compatible with the OVR Metrics Tool. Using this self-written script for both
the standalone headsets and for computer-based tests made it even more feasible for direct
comparisons.

Codeblock 4.6 shows the modified Code for Packet Capture. Packets now only get saved once
per Second, calculating the average framerate in between. Additionally, availableMemoryInMb
saves the total available Memory the System still has available and Column1 saves a string
that can be added from other Scripts (exatly as the OVR Metrics Tool allows).

4.1.2 Running the Tests

Explaining the exact procedure for running the test is neither necessary nor in the Scope of this
thesis. Two functions inside the PerformanceTestRunner.cs are nonetheless explained as they
are relevant to the display and evaluation of the test data. The Function addStringToCSV(string) ,
available in Codeblock 4.4, adds the supplied string to the CSV file, evaluating if the string
needs to be sent to the OVR Metric Tool or the self-written PerformanceTracker.

27

Codeblock 4.4: Function addStringToCSV: Adding a Line to the CSV-files “Column1”

1 private void addStringToCSV (string s)

2 {

3 # if UNITY_ANDROID && ! UNITY_EDITOR && DEBUGGINGUSINGOVRMETRICSTOOLSDK

4 OVRMetricsToolSDK . Instance . AppendCsvDebugString (s);

5 # else

6 _performanceTracker . AddDebugLine (s);

7 # endif

8 Debug . Log (s);

9 }

The Function SceneCountdown, available in Codeblock 4.5, is responsible for running all the
defined tests. Inside its loops, each loop being run for the 3 scenes, the function uses the
addStringToCSV-Function to add “Loading”, “Start”, “End”, and “Unloading” Tags into the
recorded Data. This data is then used in 4.1.4 Displaying Data.

4.1.3 Saving data

A decision needed to be made in which format to save the recorded data: The format should
be readable by common data-evaluating software like Excel, and be interpretable by languages
such as Python. Zgeb, 2021 provides us with two possibilities. The first, Unity Serialization,
can not be read by common programs. Researching further on the second proposed method,
JSON Files, expanded our choice to two more: XML and CSV. Before even deciding on a
Method to save the data, the collection of the data was moved to the second prototyping step,
using the OVR Metrics Tool. The OVR Metrics Tool saves files in the aforementioned CSV
files. Adopting this format in the third prototyping step made it possible to reuse the script
from 4.1.4, which was originally made for the files generated by the OVR Metrics Tool.

Codeblock 4.5: Function SceneCountdown: Running the defined Tests and putting labels at
the right points for evaluation

1 IEnumerator SceneCountdown ()

2 {

3 [....]

4 if (_testMode == TestMode . RunAllTests)

5 {

6 for (var i = 0; i < _performanceSettings . Count ; i ++)

7 {

8 for (var o = 0; o < performanceTestScenes . scenes . Count ; o ++)

9 {

28

10 addStringToCSV (" Loading Scene : "

11 + performanceTestScenes . scenes [o] + " with : "

12 + performanceTestScenes . _performanceSettings [i]. vlb + " at : "

13 + Time . time . ToString (new CultureInfo ("en - US ")));

14 _currentlyRunningPerformanceSettings = i;

15 _currentlyRunningScene = o;

16 performanceTestScenes . LoadScene (o , i , SceneLoaded);

17 addStringToCSV (" Countdown Start : "

18 + Time . time . ToString (new CultureInfo ("en - US ")));

19 yield return new WaitForSeconds (TestRunTime);

20 addStringToCSV (" Countdown End : "

21 + Time . time . ToString (new CultureInfo ("en - US ")));

22 performanceTestScenes . UnloadScene ();

23 addStringToCSV (" Unloading Scene : " + performanceTestScenes . scenes [o]

24 + " with : " + performanceTestScenes . _performanceSettings [i]. vlb

25 + " at : " + Time . time . ToString (new CultureInfo ("en - US ")));

26 }

27

28 }

29 Application . Quit ();

30 [....]

31 }

32

29

Codeblock 4.6: Modified Function: Capturing a statistics-packet each Second

1 private void Update ()

2 {

3 if (_recording)

4 {

5 float time = Time . time ;

6 _frames += 1;

7 if (time > _nextFrameTime)

8 {

9 PerfromanceTrackerPackets . Add (new PerfromanceFramePacket ()

10 {

11 TimeStamp = (int) Math . Floor (time *1000) ,

12 AverageFrameRate = ((time - _frameStartTime)*1000)/ _frames ,

13 availableMemoryInMb =

14 (float) System . GC . GetTotalMemory (false) / 1000000 f ,

15 Column1 = String . Empty

16 });

17 _nextFrameTime = time + 1f;

18 _frameStartTime = time ;

19 _frames = 0;

20 }

21 }

22 }

4.1.4 Displaying Data

Creating graphs and other visual aids helps in understanding the data. The script generating
these graphs was developed using the same prototyping method as all other features of
this thesis. Python was selected as the development language as it has extensive libraries
suited for data visualization (Ginsberg, 2023). The script reads the CSV that was created and
plots 2 Graphs. CSV´s created by the self-written script as well as the OVR Metrics Tool are
compatible, although some versions lack the “Column1” addition to the header (see 2.1), a bug
that has been fixed in a later version (Hdouin, 2023). The first graphs generated a simple line,
plotting timestamps against the average framerate. For easy orientation, using the Strings in
“Colum1”, labels attached to vertical lines were introduced, marking the starts and ends of
test runs. (Added to the CSV from the “Testrunner.cs” (described in 4.1.2)). Fig. 4.1 shows the
first graph generated. This Graph, while being an excellent example, has some major flaws:
It only states the beginning of a Scene load but disregards the actual loading time. The 1000
Lamp Scene takes a long time to load, clearly visible by the huge dip in framerate at about

30

Figure 4.1: First Type of Graph, displaying the framerate in relation to time

Time Stamp 37000. In later iterations of the script, this has been addressed and all graphs
used in the evaluation are using the corrected version.

Graph 4.2 shows the relation between different Test Parameters (It only shows Test Parameters
“default”, the average fps displayed with black outline) and the relation between the different
Test Scenes (4.1.5). A bigger picture of the Impact of Parameters can be gained but also how
the change in Parameters impacts the Scenes differently. This Graph is generated from the
same data as 4.1, inheriting the same flaw: Especially in the first scene, the average is much
higher than it should be, as the loading of the scene runs at >70 fps and is also added to the
average. Two differently scaled Graphs of this kind are shown in this thesis. When the Test
was run on a Quest (1 or 2) the y-axis maximum is at 100 fps. When the tests were run on a
Computer the y-axis is scaled to a maximum of 370 fps. To prevent confusion the background
of graphs including tests run on a computer is colored orange (like in 5.1).

4.1.5 Test Scenes

Every single one of the tests is run against the same scenes. There were 3 scenes selected as
Test-Scenes, each with a different focus.

• 1000 Lamp Scene

• Concert Scene

• Exhibition Scene

31

Figure 4.2: Second Type of Graph, giving an Overview of the Scenes and the Test Parameter
(here only “default”)

1000 Lamp Scene

The “1000 Lamp Scene”, as the name implies, has about 1000 Lamps. About 600 fixtures have
been placed in a grid. The fixtures have been carefully selected from the GDTF library to
include many available functions, some being simple, non-moving Fixtures, some being large
Washlights or Bars with multiple Emitters, Gobo Wheel, and much more. Table 4.1 is an
Overview of the fixtures used and their functions, while Fig. 4.3 shows the Scene with all
features enabled.

Amount Fixture Manufacturer and Name Notes
66 Arri SkyPanel S30RP Simple Dimmer, one Channel, no

Color
37 SRobe Robin LEDBeam 150 FW RGBA Small Moving Head with LED

Emitter
35 Robin Viva CMY Large Moving Head with two Gobo

Wheels and Color wheel
22 JB-Lighting Sparx 7 Simple Washlight in Mode 1 (Single

Beam)
40 Robe Robin Tetra 2 Multi Emitter Bar

Table 4.1: Fixtures used in the “1000 Lamps” Scene

32

Figure 4.3: The 1000 Lamp Scene with all features enabled. In the top left statistics are
displayed. (Source: Screenshot)

Concert Scene

The “Concert Scene” features different fixtures used in real production, as well as video and
audio being played, (emulated) ArtnNet Input, and 3D models displaying a stage inside a
stadium. See 4.4 for an overview. Table 4.2 lists the used Fixtures. The amount of fixtures
might be low for a stage of this size, focusing on playability rather than realism. The Scene is
the main benchmark to answer this thesis question (see 5 Evaluation).

Amount Fixture Manufacturer and Name Notes
10 Robe Robin LEDBeam 150 FW RGBA Small Moving Head with LED Emitter
4 Robin Viva CMY Large Moving Head with Gobos and

Color wheel
6 Robe iSpiider Large WashLight with 19 Emitters

Table 4.2: Fixtures used in the “Concert Scene”

Exhibition

In the “Exhibition Scene” two Robe Viva CMY, one placed on the floor in view of the Camera
and one placed outside of view, are the only fixtures imported. Both fixtures are set up to
continuously rotate, projecting a gobo onto the floor and wall, and sometimes directly into the
camera. A bigger amount of geometry is placed inside the Scene as well using both opaque

33

Figure 4.4: The Concert Scene with all features enabled. In the top left statistics are
displayed. (Source: Screenshot)

and transparent shaders, showing the interaction of the fixtures with their environment. This
scene also suffers most from changes in the detail of the light beam as both fixtures are quite
close to the viewer. Fig. 4.5 is a screenshot of the scene.

4.2 GDTF Import

The .gdtf files are defined by DIN Spec. 15800, making it an exceptionally well-documented
part of the research for this thesis.

4.2.1 Finding and opening the file

Expecting to be supplied with the location of the GDTF file, the file is just a .zip archive
without the file extension (Staffel et al., 2022, p. 8). Using the “zip” library included in .Net
the file can be opened and all subsequent files read (Microsoft, 2011). In different scenarios,
the file may need to be loaded from an external Server (see 6.2).

34

Figure 4.5: The Exhibition Scene with all features enabled. In the top left statistics are
displayed. (Source: Screenshot)

4.2.2 Reading the XML file

Almost all information about the fixture is stored in the description.xml file inside the archive,
described in the DIN Spec (Staffel et al., 2022, pp. 8–53, 65–90). Three methods of reading the
XML were evaluated:

• Reading selected parameters when needed

• Reading selected parameters into an object

• Reading all Parameters into an object

The first option should not be used as we would make large read requests to hard drives
every time a small Parameter is needed. Especially because the File is inside a .zip-Archive,
parallel operations are not possible (Microsoft, 2011). As we always request more than one
parameter when loading/changing a fixture, this method is slow and inefficient. The second
option is often used for medium and large-sized .xml files when only parts of the XML are
needed. This saves on memory and processing power. The Programmer needs to define which
parameters are read and write code for each of them. Bantin uses this approach in his version
as well as Fok in his (Bantin, 2021, p.23; Fok, 2020). As the gdtf format is a well-defined and
documented specification the third option becomes a possibility: With the help of a .xsd the
Windows development tools can create a C-Sharp Object which has all possible Datapoint in
its definition (Maddock, 2022). The file it created is about 12000 Lines of Code and would be
way too time-consuming for a programmer to create. Reading an XML file into the C-Sharp
Code (into the Game engine) makes it possible to access all parts of the XML as a part of the
Object, speeding up prototyping of new functions substantially, as all data is already present
and correctly formatted. A drawback of this method is that a malformed XML will never be

35

read by this solution while the other solutions might have a chance of reading it if the mal-
formed part does not need to be accessed. No malformed XMLwas found during this research.

Having read the XML file the C-Sharp Object (now stored in RAM) can be used to create a
representation inside Unity Engine. Being able to extract basic information about the fixture
from the C-Sharp Object a decision needs to be made on which DMX-Mode to load, as, per
definition, each mode has its individual structure defined, so it is being treated as a separate
device (Staffel et al., 2022). In the test scenes, a loader script gets the dmxMode from a save file,
but user input into an interface is also possible. Scenes in Unity are based on game objects and
their relationships. The structure of the <Geometries>-Node inside the GDTF schema is very
similar, so parsing the Schema into Unity game objects is not hard. Fig. 4.6 shows a simple
structure of game objects that reflect the structure that is defined in the GDTF schema 4.7.

Figure 4.6: Structure of a
simple fixture

The main object, highlighted in light gray, is the main “par-
ent” object of the fixture. It holds a script: GDTFDevice.cs,
holding data like address, managing all attached func-
tions, and negotiating between them (see 4.6). As
there are no 3D models or other graphical representa-
tions loaded at this point the fixture is invisible in 3D
space.

Codeblock 4.7: Geometrie description Example (Position Data has been cut to reduce clutter)

1 < Geometry Model =" Base " Name =" Base " Position =[....] >

2 < Axis Model =" Yoke " Name =" Yoke " Position =[....] >

3 < Axis Model =" Head " Name =" Head " Position =[....] >

4 < Beam BeamAngle =" 42.400000 " BeamRadius =" 0.069500 " BeamType =" Wash "

5 ColorRenderingIndex =" 75 " ColorTemperature =" 8000.000000 "

6 FieldAngle =" 60.000000 " LampType =" LED " LuminousFlux =" 1796.000000 "

7 Model =" Beam " Name =" Beam " Position =[....] PowerConsumption =" 220.000000 "

8 RectangleRatio =" 1.777700 " ThrowRatio =" 1.000000 "/ >

9 </ Axis >

10 </ Axis >

11 < Geometry Model =" Pigtail " Name =" Pigtail " Position =[....]/ >

12 </ Geometry >

36

4.2.3 Parsing the position matrix

Codeblock 4.7 omits the position data. Example data of such parameter looks like this:
"{1.000000,0.000000,0.000000,-0.000043} {0.000000,1.000000,0.000000,0.000000}

{0.000000,0.000000,1.000000,-0.025000} {0,0,0,1}"

Formating it in a more readable 4x4 Matrix:

𝑃𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 =
⎡
⎢
⎢
⎢
⎣

1.000000 0.000000 0.000000 −0.000043
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 1.000000 −0.025000

0 0 0 1

⎤
⎥
⎥
⎥
⎦

These matrices are called “Spatial Transformation Matrices” or simpler TRS (Transform,
Rotate, Scale) and can describe a translation, rotation, scale, and even shear in one matrix
(BrainVoyager, n.d.). After parsing the values into a Untiy Matrix4x4 the position, rotation,
and scaling data could theoretically simply be read (Unity Technologies, 2022f), but because
Unity uses a right-handed coordinate system with y as the “up” axis, and the GDTF files are
defined with a left-handed coordinate system with z as the “up” axis, the TRS needs to be
mirrored and rotated. As the 3D files face a similar issue the exact math is described more in
chapter 4.5. The data returned after the matrix is transformed is then used to position the
parts of the fixture in the relative position to each other.

4.2.4 Reading extra files (images and models)

The .zip Archive also includes images, symbols, and 3Dmodels (Staffel et al., 2022, pp. 8–11, 29,
31). For the 3D representation (4.5) or the GoboTextures (4.4) these files need to be accessed. A
Function supplying a file was programmed using the aforementioned “.zip” library, providing
access to the needed files. Further processing of the files is touched upon in the respective
chapters.

4.3 Light Beams

The Structure shown in Fig. 4.6 includes a Beam Object, defining where in the structure a
Beam should be placed. As a second option, locating the Beam with a Geometry Reference is
available to manufacturers and makers of GDTF descriptions (Staffel et al., 2022, pp. 38–39).
It is most often used with Fixtures that have multiple light emitters, defining them once and
referencing the definition, yielding a similar structure to 4.7 without defining the numerous
details of the same Emitter multiple times (Staffel et al., 2022, pp. 34–36).

37

Figure 4.7: Structure of a fixture with multiple emitters

38

4.3.1 Switching to Geometry Beams

Switching to Geometry Beams is the first step to reduce the performance impact of the Assert.
Instead of attaching a Spot Light, as done by Bantin and Wason (Bantin, 2021; Fok, 2020), a
“fake” beam is attached to the “Beam” object. A already by Bantin mentioned and colloquially
recommended solution is the “Volumetrics Light Beams” Asset available in the Asset Store
(Bantin, 2021, p. 61). It is a paid Asset and promises “The perfect, easy and cheap way to
simulate density, depth and volume for your spotlights and flashlights, even on Mobile! It
greatly improves the lighting of your scenes by automatically and efficiently generating
truly volumetric procedural beams of light to render high-quality light shafts effects.” with a
“Super FAST and low memory footprint: doesn’t require any post-process, command buffers,
nor compute shaders: works great even on low-performance platforms such as Mobiles and
WebGL” (Tech Salad, 2023).

Adding a Volumetric Light Beam (VLB) to the Lamp Objects is quickly done and positioned
with the same function as the other Objects (see 4.2.3). The Beam description also includes
data about BeamAngle , BeamRadius and FieldAngle being used to set fitting parameters on the
VLB: Spot Angle and Light Source Radius. The maximum brightness of a beam is available
from the gdtf as LuminousFlux . The Beam inside Unity Engine has two parameters that need to
be adjusted accordingly to this value: The intensity of the beam, essentially how transparent
it is, and the Light Range Max Distance, controlling how far the beam reaches. Because a
physically accurate representation was not deemed necessary for the answer to this thesis
question, a simple calculation was set up, using one “brightness” value set on the GDTFDevice
(see 4.6.3) to set both the intensity and the Light Range Max Distance .

While the Solution looks very promising, it was quickly apparent that there was room to op-
timize. Interestingly some settings led to the expected/promised performance improvements
while others made almost no difference.

4.3.2 Optimizing with Batching

Batching is a simple solution to render many objects more efficiently. Multiple Styles of
Batching exists (Saladgamer, 2021):

GPU Instancing is the most common form of batching. Under normal conditions, a draw
call (a call to the GPU to render the attached mesh) needs to be done for every object, which
is especially taxing on the CPU, as it has to prepare this data and then transfer it to the
GPU-Memory. With GPU Instancing all Objects that use the same mesh, material, and shader
can be pulled together into one draw call, telling the GPU to render the Mesh multiple times

39

without needing to transfer the data multiple times. Controversly GPU Instancing saves on
CPU performance, as the CPU needs to spend less time transferring the data again and again
to the GPU-Memory (Unity Technologies, 2023e). This Method only works if many objects
are using the same mesh, material, and shader, as the Beams do.

SRP Batcher The Scriptable Render Pipeline Batcher (SRP Batcher) is a rather modern
function of Unity Engine introduced together with the Scriptable Render Pipelines (Lever,
2022, p. 11). It uses a different approach to reduce time spent with draw calls: It reduces
changes made to the GPU Memory. By keeping Material and their used Shaders in the
Memory (in so-called CBUFFERs) the CPU only needs to send the mesh and the properties of
each object that uses this Shader/Material and saves sending all Material data. This works
particularly well if the Scene only uses a small amount of shaders. This also means the
SRP Batcher can be, in contrast to GPU Instancing, more easily used on Complex Scenes.
Materials need to share a Shader, called Material Variants, but they can use different Textures
and Mesh (Unity Technologies, 2022g; Lever, 2022, p. 120).

Three test runs were conducted and chapter 5.1.1 dives into the lack of improvements that
were determined with the Tests.

4.3.3 Geometry Detail: vertices, resolution...

Because optimizing the draw calls had little effect on the performance on the VR Headset
the second prototype focused on the simplest and most recommended form of optimization:
Reducing the number of vertices (Ferreira, 2019). The VLB-Asset has a simple setting to
change the mesh that all beams use. Table 4.3 lists the Settings used for testing, while Fig.
4.8 shows a visual comparison between the settings.

Quality Setting No. of Sides No. of Segements Mesh Statistics
Low 6 1 50 vertices, 60 triangles
Medium 16 1 130 vertices, 160 triangles
High (Default) 24 5 386 vertices, 624 triangles
Test Cylinder 16 1 32 vertices, 32 triangles

Table 4.3: Comparison of VLB-Beam Mesh details

Performance Improvements were noticeable but not substantial, detailed in Chapter 5.1.1.

40

Figure 4.8: Comparison between the Quality Settings of the VLB

4.3.4 Self written Shaders

A further deep dive into the inner workings of the VLB Asset revealed a complex system of
shaders to make many of the included features possible (Tech Salad, 2023). Understanding
the inner workings of the shaders seemed key to tackle further performance improvements
so a decision was made to research how a shader is written.

To write a shader one needs to either use ShaderLanguage (see 2.1) or the Shader Graph (see
2.1). Before development of the shader started the following specifications were defined:

• Inputs:

– Color of the Beam

– Length of the Beam

– Angle of the Beam

– Intensity of the Beam

– Falloff Speed

• Simple Mesh with a low amount of vertices

• Mesh deforms (Angle and Lenght)

• Color and transparency changes (Color and Intensity)

• The Intensity falls off toward the End of the Beam

41

The italic parameters are later removed (see page 44). A Shader using the Nodes of the Shader
Graph, and a shader using Shader language were created and compared. This explanation
follows the written Shader; The full Shadergraph, with annotations, is added to the end of
this document as appendix 1. To write a shader one first defines if the shader renders a
transparent or an opaque object. The shader itself is split into two parts: The vertex shader
and the pixel or fragment shader. The vertex shader is run on every verticie of a mesh, its
expected return value being the position of the verticie “on the screen” (in Screenspace). The
fragment shader uses this information to run its calculation of every pixel the object covers on
the screen, yielding the color the pixel of the screen should have (Varcholik, 2014, pp. 54–56).

Vertex Shader

Codeblock 4.8: Vertex Shader

1 v2f vert (appdata v)

2 {

3 v2f o;

4

5 UNITY_SETUP_INSTANCE_ID (v);

6 UNITY_INITIALIZE_OUTPUT (v2f , o);

7 UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO (o);

8 o. objPos = v. vertex ;

9

10 v. vertex .y += 1;

11 v. vertex .y *= _fallofflength *0.5 f;

12 v. vertex .x *= tan (radians (_Angle)) *(v. vertex .y);

13 v. vertex .z *= tan (radians (_Angle)) *(v. vertex .y);

14

15

16

17 o. vertex = UnityObjectToClipPos (v. vertex);

18

19 return o;

20 }

Using codeblock 4.8 the vertex shader is explained in the following section. In the vertex
shader, the default action is just one function: UnityObjectToClipPos . It uses the position data
of the verticie and returns the position in screenspace (4.8 line 17). The exact math is not
relevant to the performance and is out of the scope of this work. Fig. 4.10 shows the mesh
used for the beams. Because we want to deform our mesh we run the calculations on the

42

vertice position data before calculating the screen space position:

In the first step, the mesh is deformed to reflect more of a beam: Having a small point of
origin and spreading out with increasing distance. While it would have been possible to make
a more “beamlike” mesh from the beginning (shown in 4.9), the decision to use a cylinder
was inspired by the VLB Asset, as it includes the parameter “light source radius” to widen the
origin-point, useful when the emitter is a large lens or wash light (Tech Salad, 2022; Greule,
2021, pp. 151–170). In the simple shader written for testing this feature is not included; The
mesh is a cylinder nonetheless.

A conscious decision was made with the original mesh: The cylinder has a height of 2 and a
radius of 0.5. As its origin is exactly in the middle (at height 1), the first step is to move it up
1 unit, putting the center of the bottom circle of the mesh at the coordinate (0,0,0). In line
9 one unit gets added to the y-position of the vertice, using the += operator, and in line 10
the y-position gets multiplied with the _fallofflength parameter, essentially stretching the
cylinder in upwards direction, making the beam reach (or shine) further (Swiniarski, 2022).
As the cylinder is already 2 high, the _falloflength gets halved before multiplication, making
its value a 1:1 presentation of how many units the beam reaches.

The operation in lines 12 and 13 gives the beam its “beam shape”. It is split into two parts:

𝑣 .𝑣𝑒𝑟 𝑡𝑒𝑥.𝑧∗ = tan (𝑟𝑎𝑑𝑖𝑎𝑛𝑠(_𝐴𝑛𝑔𝑙𝑒)) ∗ 𝑣 .𝑣𝑒𝑟 𝑡𝑒𝑥.𝑦

With this calculation the z (and x) position of each verticie is adjusted depending on the
height by multiplying the position of the verticie (essentially the radius of the beam at the
height of the verticie) with the height of the beam (the blue part of the calculation), creating
a simple beam shape. Because the shape of a beam, when looked at from the side, can be
argued as two right-angle triangles, simple trigonmic functions can be applied. The tangent
of the angle at the bottom of the Beam equates to the ratio between the height and the radius
(see Fig. 4.9). As the height is just v.vertex.y and already used in the function and the Angle
is input by the user or a script, the red part of the equation simply moves the larger part of
the cone in and out, depending on the input on the _Angle parameter.

Fragment Shader

Codeblock 4.9: Fragent Shader

1 fixed4 frag (v2f i) : SV_Target

2 {

3 UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX (i);

43

Figure 4.9: Visualizing how the tan of 𝛼 can give us the radius (blue) when the height (red) is
known

4

5 _Color .w = (1 -(i. objPos .y/ _fallofflength))* _FalloffSpeed ;

6 return _Color ;

7 }

The Fragments shader, also called the Pixel shader, is a lot leaner than the Vertex shader. It
is run on every pixel the beam occupies and receives the position of the pixel inside the i

element. Using this data together with the _fallofflength and _Falloffspeed , the opacity,
saved in the _Color.w-value, is adjusted. Then the color is returned.

During the process of narrowing down the exact impact of different parts of the shader
code, a modification was made to the fragments shader. The only calculation done inside
the fragment shader was removed, stripping the beam of its fading with distance, improving
performance (detailed in chapter 5.1.1).

4.4 Light Projections

Generating projections onto a scene requires information on the geometry of the scene. Unity
Engine enables shaders to access information on the scene in the form of a Depth Map.

44

Figure 4.10: Mesh of the cylinder used for the Beam shader

Figure 4.11: Depth Map with transparent (not in Depth Map included) Cube marked.
(Source: Ilett, 2021)

Depth Map

A Depth Map, sometimes called a Depth Texture or Depth Buffer, is a texture generated by
the Engine including depth information about the image (Fig 4.11). It colors each pixel by
the distance of the first opaque object from the camera, black (close) to white (far) (Iett, 2022,
p. 209). This Depth Map is created before any transparent objects are rendered, leading them
to be not visible in the Depth Map. There is no clear data about the performance impact
of creating and using the depth texture. Unity’s Documentation only states: “Note that
generating the texture incurs a performance cost.” (Unity Technologies, 2020). Other Parts
of the documentation state: “Depth textures can come directly from the actual depth buffer,
or be rendered in a separate pass, depending on the rendering path used and the hardware.

45

Typically when using the Deferred Shading rendering path, the depth textures come “for
free” since they are a product of the G-buffer rendering anyway.” (Unity Technologies, 2021b).
When using URP the creation of the texture needs to be enabled manually, regardless of using
the deferred or forward renderer(Iett, 2022, p. 207).

Inspired by the steps Unity Engine takes to calculate shadows, a first prototype was developed
imitating the process: A camera, placed at the origin of the projection (the light source)
renders a Depth Map. This Depth Map is then used to determine the size of the cookie that
would be projected onto the surface: The further away something is the larger the cookie
would be. After generating the texture and the Depth Map from the point of view of the light,
some matrix multiplications can be used to render the texture onto the scene from the player’s
camera point of view (Lague, 2021, 24:20-25:33; Unity Technologies, 2019c). While working
on this thesis no tangible results could be achieved using this method. The complex matrix
multiplications never yielded the expected result, and a second method was prototyped:

4.4.1 Projection Shader

Researching into the calculations of projections a different approach to projections was
discovered: Using a mesh (a cube in this case) and the Depth Map, the intersection could be
calculated by:
First, calculating the position of each point on the depth map the cube covers (see Fig. 4.11).
This is done with a matrix multiplication called the “InverseViewProjection”, literally going
Inverse from the View Projection (the depth map) to the world space (Jeremiah, 2011; Iett,
2022, p. 38). Second, checking if the Point is inside the Cube: A second matrix multiplication
transforms the coordinates from world space to the local space of the cube. As the Cube is of
known size ((0.5,0.5,0,5) to (-0.5,-0.5,-0.5) in the example), it is easy to determine if the point
is inside the Cube (see Fig. 4.12; Ilett, 2021, 6:28). If it is not the pixel gets discarded and no
further calculations on it are made (Iett, 2022, p. 298). At this point, the shader returns all
the pixels where the cube intersects with any opaque object. In the third step we add 0.5 to
the local coordinates of the cube (to get their range between 0 and 1) and use the x and z
coordinates of the pixels (in the local space of the cube) to sample a texture, leading to the
texture being projected onto the surface from the y direction.

The ShaderGraph implementation of Ilett works great, even in VR. It is attached as attachment
2. As it is made for decals, e.g. stickers or spraypaint, some modifications had to be done to
make it work as a light projection:

• The cube needs to be expanded to at least encompass the light beam.

• The size of the projection needs to change depending on the distance from the light
source.

46

Figure 4.12: Two Points (red and green) sampled from the depth map and transformed to
local space of the cube. (Source: Ilett, 2021)

Implementing the first point led to two further discoveries: First, because of the changed size
of the Cube, almost every calculation had to be touched, making the ShaderGraph take on the
literal form of “spaghetti Code” (Abbes et al., 2011, pp. 181–190). Second, when the camera
entered the Cube itself, the projection disappeared. Especially the later point could only be
fixed by switching from the Shader Graph to writing Shader Code due to a bug in the Version
of ShaderGraph that was worked with at this point in development (still working with Unity
Version 2021.3.12f and Shadergraph version 12.0.0 (Unity Technologies, 2021d, p. 12.0.0). Ilett
based his work on a written shader by Colin Leung (Leung, 2022). While shaders made
with Shader Graph are automatically compatible with virtual reality, written shaders are
not: The Shader by Leung is either only rendered on one eye, or directly in the face of the
viewer, seemingly ignoring all depth information (the latter in Single-pass Instanced the first
in Multi-pass rendering modes (see 2.1)). Following a guide by Unity and fixing a couple
of issues related to using different helper functions (Shader include functions), the shader
was made compatible with the VR Headsets (Unity Technologies, 2021e; St-Laurent, 2004,
pp. 17, 343; Unity Technologies, 2022h). The main changes to scale the projection will be
explained using Codeblock 4.10: Line 2 calculates a Distance-Factor by using the z-value of
the cubes’ height and because the cubes’ coordinates are already corrected to be in the -0.5 to
0.5 range again after it was scaled, adding 0.5f creates a range between 0 and 1. Because the
UV coordinates (the coordinates placing the texture) react opposite to scaling (large numbers
scale the object down), the factor is the reciprocal of that 0 to 1 value. In line 10 the uv map
is then multiplied with that factor after all pixels not needed are clipped from calculations
in line 6 (as described in Fig. 4.12). Because of running from 0 to 1, the factor scales the uv
toward the 0,0 corner, resulting in the texture getting smaller toward a corner. Line 11 uses
the ScaleFactor to add the right amount back to the UV coordinates, centering the projection

47

again.

Codeblock 4.10: Main changes to the Leung’s decal shader

1 // This calculation needs to be done before the clip function , as the clip

for some unknown reason interferes with the calculation .

2 float distanceScaleFactor = 1/(decalSpaceScenePos .z +0.5 f);

3

4 // if ZWrite is Off , clip () is fast enough on mobile , because it won 't write

the DepthBuffer , so no GPU pipeline stall (confirmed by ARM staff).

5 // clips everything outside the cube && not on a surface ;

6 clip (0.5 f - abs (decalSpaceScenePos));

7

8 // Sample the decal texture

9 float2 uv = decalSpaceUV . xy * _MainTex_ST . xy + _MainTex_ST . zw ;

10 uv *= distanceScaleFactor ; // scaling it down by zoom level

11 uv += 0.5 f -(0.5 f* distanceScaleFactor); // centering it in unitys cube mesh

In the described state the shader still retains its original texture: A demo sticker included in
the shader (Leung, 2022). The loading and changing of textures is described in chapter 4.6.6
Wheels.
After the test where run and evaluated further optimization was not considered, shifting
focus to other parts of this research.
A single feature was later added, allowing color mixing of the Gobo texture to emulate colored
light shining through the Gobo, but was not considered to impact the performance, meaning
tests were run. This change is reflected in the attached script but will not be described in the
scope of this work (see appendix 1).

4.5 3D Models

The .gdtf-Files include, by definition, a 3D model of the fixture (Staffel et al., 2022). The
creators of fixtures are requested to supply 3 types of 3D Models of their fixture: “Low”,
“Default” and “High”. It is also stated that “All models of a device combined should not exceed a
maximum vertices count of 1200 for the default meshlevel of detail” (Staffel et al., 2022, 27–28,
Table 33).

None of the tested GDTF files (for the full list see attachment 4) included any other 3D model
than the “Default”. Additionally, many Fixtures did not keep to the 1200 vertices, sometimes
exceeding the count tenfold.

48

While this Module includes a lot more code than the Shaders described in the sections before
this one, the description is intentionally kept short, only diving into the specialties the GDTF
description holds. For a more detailed view of the implementation, review the source code
(https://github.com/DarkTJ/Unity-GDTF), the DIN SPEC (Staffel et al., 2022), and the main
sources for details about the 3DS file format: Autodesk Ltd., 1996; Battista, 2016; Pitts and
Bourke, 1996.

Five steps are done to get a 3D representation of the fixture from the file into the 3D space of
Unity:

• 1. Reading the information from the xml-file

• 2. Reading 3DS and GLTF files to create a Mesh

• 3. Scaling and transforming the Mesh

• 4. 3D representation of the Emitter

• 5. 3D description of the Beam

4.5.1 Reading the information from the xml-file

How the file is opened, read, and parsed is already described in 4.2 GDTF Import. Fig. 4.7
shows a simple fixture: This Module uses the Model parameter from that description to
determine which Model to load. The XML file also includes a Models node (see Codeblock
4.11), in which each of the Models the fixture uses are described in more detail. Each
Model has a Name, a Length, Width and Height, and either a primitiveType (when a primitive
geometry is used) or a File , holding a filename (Staffel et al., 2022, pp. 27–28). This filename
is subsequently used to load the right model.

Codeblock 4.11: Example Models Node from a GDTF-file

1 < Models >

2 < Model File =" yoke " Height =" 0.187000 " Length =" 0.571000 " Name =" Yoke "

PrimitiveType =" Undefined " Width =" 0.102000 "/>

3 < Model File ="" Height =" 0.020000 " Length =" 0.065000 " Name =" Beam " PrimitiveType ="

Cylinder " Width =" 0.065000 "/>

4 < Model File =" base " Height =" 0.100428 " Length =" 0.456001 " Name =" BASE "

PrimitiveType =" Undefined " Width =" 0.184000 "/>

5 < Model File =" head " Height =" 0.101394 " Length =" 0.505000 " Name =" HEAD "

PrimitiveType =" Undefined " Width =" 0.102000 "/>

6 </ Models >

49

https://github.com/DarkTJ/Unity-GDTF

4.5.2 Reading 3DS and GLTF files to create a Mesh

When work on this Asset began the GDTF Spec only allowed one file type for 3D Models:
3DS. As already stated in Research Design, the 3DS format is quite old and niche, not being
supported by Unity Engine (Unity Technologies, 2022k). Finding an archived Asset, made for
Unity 5.3.4 (released in 2016), which had the simplest form of 3DS file import, helped get the
development kickstarted. (Battista, 2016). “The 3ds file format is made up of chunks. They
describe what information is to follow and what it is made up of, its ID and the location of
the next block. IF you don’t understand a chunk you can quite simply skip it.” (Pitts and
Bourke, 1996). The loader created to read the files does exactly that: Only reads the chunks
understood and needed, even leaving out material definitions, only returning a simple mesh
and color. Because meshes inside 3DS files, analog to the Spatial Transformation Matrices
(see 4.2.3), use the left-handed coordinate system with z as the “up” axis, while Unity Engine
uses a right-handed coordinate system with y as the “up” axis, the object is mirrored and
rotated with the following code:

Codeblock 4.12: Rotating and mirroring a 3DS mesh to correctly import it into Unity Engine.
The ability for multiple meshes has been omitted here to reduce complexity.

1 Quaternion rotationQuarterion = Quaternion . Euler (270 ,0 ,180) ;

2 // Fix the vertices for the LeftHanded Coordinate System

3 for (int verti = 0; verti < verticesModel . Length ; verti ++) // Each vertice of the

mesh

4 {

5 verticesModel [verti] = rotationQuarterion * verticesModel [verti]; // gets

first rotated around the center by x =270 ° and z =180 ° (defined in line 1)

6 verticesModel [verti]. x *= -1; // and then mirrored on the x axis

7 }

8 // Flipping the normal on the triangles , to turn it " inside out " because of the

mirror

9 for (int tri = 0; tri < trianglesModel . Length ; tri ++)

10 {

11 int store ;

12 tri ++; // the first coordinate can stay as is

13 store = trianglesModel [tri];

14 trianglesModel [tri] = trianglesModel [tri + 1]; // the second gets the value

of the third

15 tri ++;

16 trianglesModel [tri] = store ; // the third gets the value of the second

17 }

The Mesh can then be returned and handled further.

50

In the newest iteration of the GDTF DIN SPEC (from Feb. 2022) a second allowed file format
was introduced: .gltf (Staffel et al., 2022, p. 28). The GLTF format is a much more known
and supported 3D file format: “Khronos promotes glTF as the JPEG of 3D. They believe that
the format is so useful that it will become as ubiquitous as the JPEG format for 2D images.
The glTF format works well for Augmented Reality (AR) and Virtual Reality (VR) because it
supports both motion and animation.” (Schechter, 2020). Already having worked with GLTF
files for the development of the XREvent Creator (see chapter 6.3), a solution for loading
these files was already in place and could quickly be adapted to return the Mesh the same
way the 3DS-loader did (Brigsted, 2022).

The returned Mesh is then used to create a game object, which is named according to the
Name-parameter, and, because the XML file has Length, Width and Height as parameters and
not scale-factors, the bounding box needs to be determined first (stored as ModelSize and by
dividing the GDTFSize with the ModelSize the scale factors are calculated (see Codeblock
4.13). Lastly, the game object is parented to its respective Object.

Codeblock 4.13: Scaling the 3D Object by using the bounding box

1 // Set scale

2 Vector3 GDTFSize = new Vector3 (modelToLoad . Length , modelToLoad . Height ,

modelToLoad . Width); // getting the length / height and width

3 Bounds ModelBounds = new Bounds () ;

4 foreach (var rend in threeDModel . GetComponentsInChildren < Renderer >())

5 {

6 ModelBounds . Encapsulate (rend . bounds); // all loaded meshes get measured into

one bound

7 }

8 Vector3 ModelSize = ModelBounds . size ;

9 threeDModel . transform . localScale = new Vector3 (GDTFSize [0] / ModelSize [0] ,

GDTFSize [1] / ModelSize [1] , GDTFSize [2] / ModelSize [2]) ; // the size - factor is

calculated and applied

10 threeDModel . transform . SetParent (parent . transform , false); // the object is

parented to its respective place in the structure of game objects , getting its

correct position .

4.5.3 The Lightsource

The Lightsource or Emitter is described inside a GDTF definition as “Beam”. Using its
description a 3D representation can be created using a special shader emulating a Lightsource,
adding realism/immersion, especially when looking directly at a light source from inside the

51

light beam (see Fig. 4.13). Sadly not all tested devices defined their emitter with a 3D model,
leaving some lights without this representation.

4.5.4 Loading Cubes

Because the performance took a big hit when all models were loaded (see 5.1.3) a quick second
prototype was built: Instead of loading the 3D Model from a file or a primitive, a cube is
spawned. This cube is then scaled and positioned using the same method and data as the real
object, leading to a surprisingly accurate representation of the fixture (see Fig. 4.14) but with
substantially fewer vertices in the scene.

52

4.6 Art-Net Control

Following the proposed attributes from chapter 3.5.5, this chapter dives into each attribute,
explaining the (stylistic) function and covering hurdles in implementing it. All functions
described here are considered support functions. As they are necessary to get anything out
of the fixtures they do not get their own section in chapter 5 Evaluation, instead their impact,
if there is any, is discussed in this chapter.

All functions that a fixture can perform are described in the XML file included in the GDTF.
The <DMXMode>-node holds all used channels, the geometry they influence, and the dmx
channel they use. Depending on what the Channel does, more information is supplied (as
detailed in the following sections) (Staffel et al., 2022, pp. 43–47, 54–64).

• reading of 8bit and 16 bit channels

• Movement on up to two axis

• Dimmer

• Shutter + Strobo

• Zoom

• Wheels

– Color Wheels

– Gobo Wheels

• RGB Values

4.6.1 Reading of 8bit and 16 bit channels

The first step to controlling a fixture is to collect the data that holds the dmx signal. A
pre-made asset is used to receive Art-Net Packets, allowing modern light-control consoles
or desktop software to “talk” to the virtual fixtures (James, 2015; Cho, 2018). These Art-Net
Packts get stored inside a DMXController inside the scene as a dmxData array. It also notifies
all fixtures in the scene of the new packet and the devices copy their respective part of the
dmxData array into the GDTFDevice. This GDTFDevice-script is attached to the main object of
each fixture, coordinating all other attributes. It holds a list of all attributes attached to the
fixture and the channel or channels on which they receive their data. Codeblock 4.14 for
example holds a Channel with Offset="9", meaning it receives its data on the Channel of
the fixture plus 9. The two Attributes, Pan and Tilt, in Codeblock 4.15 both hold two values

53

in the Offset-parameter, meaning they are 16-bit Channels. For each DmxChannel a script
is written which receives the data and does the expected action (explained in the following
sections). As new data arrives, it is distributed to each script: one channel gets sent as a byte
value between 0 and 255, and 16-bit values as an unsigned integer between 0 and 65535.

Codeblock 4.14: Descripton of a Dimmer inside the XML

1 < DMXChannel DMXBreak ="1" Geometry =" Head " Highlight =" 255/1 " InitialFunction ="

Head_Dimmer . Dimmer . Dimmer 1" Offset ="9" >

2 < LogicalChannel Attribute =" Dimmer " DMXChangeTimeLimit =" 0.000000 " Master ="

Grand " MibFade =" 0.000000 " Snap =" No " >

3 < ChannelFunction Attribute =" Dimmer " DMXFrom =" 0/1 " Default =" 0/1 " Name ="

Dimmer 1" OriginalAttribute ="" PhysicalFrom =" 0.000000 " PhysicalTo =" 1.000000 "

RealAcceleration =" 0.000000 " RealFade =" 0.000000 " >

4 < ChannelSet DMXFrom =" 0/1 " Name =" Closed " WheelSlotIndex ="0"/ >

5 < ChannelSet DMXFrom =" 1/1 " Name ="" WheelSlotIndex ="0"/ >

6 < ChannelSet DMXFrom =" 255/1 " Name =" Open " WheelSlotIndex ="0"/ >

7 </ ChannelFunction >

8 </ LogicalChannel >

9 </ DMXChannel >

54

Codeblock 4.15: Descripton of Pan and Tilt inside the XML

1

2 < DMXChannel DMXBreak ="1" Geometry =" Yoke " Highlight =" None " InitialFunction =" Yoke_Pan .

Pan . Pan 1" Offset =" 1 ,2 " >

3 < LogicalChannel Attribute =" Pan " DMXChangeTimeLimit =" 0.000000 " Master =" None "

MibFade =" 0.000000 " Snap =" No " >

4 < ChannelFunction Attribute =" Pan " DMXFrom =" 0/2 " Default =" 32768/2 " Name =" Pan 1

" OriginalAttribute ="" PhysicalFrom =" 270.000000 " PhysicalTo =" -270.000000 "

RealAcceleration =" 0.000000 " RealFade =" 2.500000 " >

5 < ChannelSet DMXFrom =" 0/2 " Name ="" WheelSlotIndex ="0"/ >

6 < ChannelSet DMXFrom =" 32768/2 " Name =" Home " WheelSlotIndex ="0"/ >

7 < ChannelSet DMXFrom =" 32769/2 " Name ="" WheelSlotIndex ="0"/ >

8 </ ChannelFunction >

9 </ LogicalChannel >

10 </ DMXChannel >

11 < DMXChannel DMXBreak ="1" Geometry =" Head " Highlight =" None " InitialFunction =" Head_Tilt

. Tilt . Tilt 1" Offset =" 3 ,4 " >

12 < LogicalChannel Attribute =" Tilt " DMXChangeTimeLimit =" 0.000000 " Master =" None "

MibFade =" 0.000000 " Snap =" No " >

13 < ChannelFunction Attribute =" Tilt " DMXFrom =" 0/2 " Default =" 32768/2 " Name =" Tilt

1" OriginalAttribute ="" PhysicalFrom =" -135.000000 " PhysicalTo =" 135.000000 "

RealAcceleration =" 0.000000 " RealFade =" 0.800000 " >

14 < ChannelSet DMXFrom =" 0/2 " Name ="" WheelSlotIndex ="0"/ >

15 < ChannelSet DMXFrom =" 32768/2 " Name =" Home " WheelSlotIndex ="0"/ >

16 < ChannelSet DMXFrom =" 32769/2 " Name ="" WheelSlotIndex ="0"/ >

17 </ ChannelFunction >

18 </ LogicalChannel >

19 </ DMXChannel >

4.6.2 Movement

Because each <Axis>-node has a ChannelFunction describing its maximum and minimum
rotation (PhysicalFrom and PhysicalTo, see Codeblock 4.15), the DMX Value can be used
to calculate the exact rotation the axis, respectively the game object, using the following
formula:

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐹 𝑟𝑜𝑚 + (𝑃ℎ𝑦𝑐𝑠𝑖𝑐𝑎𝑙𝑇 𝑜 − 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐹 𝑟𝑜𝑚) ∗ (𝐷𝑀𝑋𝑣𝑎𝑙𝑢𝑒/𝐷𝑀𝑋𝑀𝑎𝑥𝑉 𝑎𝑙𝑢𝑒)

55

4.6.3 Dimmer

The dimmer script uses the received DMX value to calculate a factor of how much of the
maximum power the lamp should output. Because the dimmer is not the only attribute
influencing the brightness of the fixture, the calculated value is sent to the GDTFDevice-script.
It waits for all attributes to send their changes and then updates the beams.

4.6.4 Zoom

Zoom influences two values: First, the angle of the beam is calculated exactly the same as
the rotation of the axis is in 4.6.2. Second, the Zoom influences the brightness of the beam,
as the light is either focused or spread out. The DIN SPEC does not define a calculation to be
used for this. After a short research into the math behind lenses and focused light the exact
calculation was declared out of scope of this work. A simple calculation was implemented,
simply calculating a factor between the default value of the zoom, the current value of the
zoom, and the PhysicalTo and PhysicalFrom values. Similar to the dimmer this factor is sent
to the GDTFDevice-script.

4.6.5 Shutter + Strobo

The strobo and shutter functions are batched as they are closely related. In real fixtures the
shutter is a mechanical solution to block the beam, when moving it in and out of the beam
quickly it can also be used as a strobo. Modern LED fixtures often use a “software shutter”
essentially just turning the emitter on and off, as LEDs do not have any afterglow or startup
time. As the shutter can influence the brightness of the beam without changing the dimmer,
it also just sends its factor to the GDTFDevice-script. The description of the shutter inside the
XML includes all the functions the shutter can do: The most simple operation “Shutter closed”
and “Shutter open” are a simple multiplication of the beam intensity with 0 and 1 respectively.
All other functions are time-dependent, meaning they need to be calculated every frame. In
Unity, the current timestamp can be received in each frame with the Time.time() function,
similar to Time.deltaTime (see chapter 2.1). This value is used in different calculations to
determine the brightness factor of the Shutter Attribute:

In the following equations, w holds the period (DutyCycle) of the function (in seconds), and x

holds the Time.time()-value (in seconds).

56

A Strobo is a simple square wave, turning off and on following a set frequency. It is
generated by making a boolean operation on a sinus function, essentially returning 1 when
the sinus is above zero and 0 when below:

𝑦 = 0 < sin (𝑥 ⋅ 𝜋
0.5 ⋅ 𝑤

)

A Pulse differentiates itself from the Strobe by fading. Three kinds of pulse patterns are
available:

Fig. 4.15 shows the first pattern: Simply called Pulse , rising and falling linearly. This triangle
wave can be implemented using the modulo operator:

𝑦 = 1
(0.5 ⋅ 𝑤)

⋅ |0.5 ⋅ 𝑤 −mod (𝑥, 𝑤)|

The second pattern, Fig. 4.16, simplifies the formula. The modulo operator generates a saw
wave on its own, just being modified by w to create the desired Duty Cycle.

𝑦 = 1
(𝑤)

⋅mod (𝑥, 𝑤)

Fig. 4.17 shows the third pattern where the pulse only fades when lowering the brightness.
As it is just the second method mirrored, the formula is simply subtracted from 1:

𝑦 = 1 − 1
(𝑤)

⋅mod (𝑥, 𝑤)

57

4.6.6 Wheels

In real fixtures colored foils and gobo patterns are installed inside wheels. They are called
wheels as they physically turn inside the fixture: A color wheel is defined with RGB values
and physical rotation values, while a gobo wheel additionally saves a gobo texture (see Fig.
3.2 for a reference). It is technically not discouraged to define a colored gobo by setting a
color value, Annex E “Wheel Slot Image Definition” defines: “Colored gobos (3) shall use an
RGB approximation. The RGB approximation shall be calculated on the basis of Pure White
is the CCT of the fixture light source and the ICC color profile embedded within the PNG.
(See ISO 15076-1:2010) The default shall be sRGB” (Staffel et al., 2022, p. 97). When receiving
a DMX value it is converted from the DMX range, 1 to 256, to a physical rotation value ,0° to
360°. The color or gobo texture at that rotation value is then either given to the GDTF-Device

or directly to the projector to be displayed. Not deemed necessary to implement in the scope
of this work is the transition between the different wheel positions. In a real fixture, the
transition takes time and can be visible as the projection/color changes from one to the next.
The current implementation instantaneously snaps the color or gobo from the previous to
the desired location.

4.6.7 Loading a Texture2D

Loading the textures seems straightforward at first.

But there is a fatal pitfall in this. Unity saves each texture loaded in the limited Random
Access Memory (RAM) of the device. Spawning 100x of the same lamp, each having two
gobo wheels with 8 textures, degrades the performance on the VR headset substantially. Here
a more complex solution needed to be implemented: The concept is simple: When loading
the same fixture multiple times, instead of loading all images for each fixture from a file, use
the one already in memory. A simple Dictionary of all the textures that have been loaded
already was created. As a key inside the Dictionary, we first used the name of the fixture
and the name of the file, later switching to just the file name as it was discovered that even
different fixtures of the same manufacturer sometimes used the same gobo, further reducing
memory usage. Additionally, a built-in function from Unity Engine was used to compress
the textures, making them more suitable to be used on the VR headset that have very limited
memory (Unity Technologies, 2022i; Williams, 2015).

58

Figure 4.13: A fixture (Robe Robin Tetra 2) defining its emitters in 3D, here colored red.
(Source: Screenshot inside Unity Engine)

Figure 4.14: Cubes instead of 3D Models are used.

59

Figure 4.15: A triangle wave describing a pulse (Source: Staffel et al., 2022, p. 98)

Figure 4.16: A saw wave describing a “PulseSawOpen” (Source: Staffel et al., 2022, p. 100)

Figure 4.17: A saw wave describing a “PulseSawClose” (Source: Staffel et al., 2022, p. 99)

60

5 Evaluation

5.1 Test-Results

The following sections first go through each module’s test results, contextualizing and
analyzing each change and the resulting performance impact, and later compare the results
to each other.

5.1.1 Light Beams

Optimizing with Batching

Fig. 5.1 shows the results instancing haswhenmeasuring on a computer: A huge improvement
in framerate can be seen, especially in the first scene, as the CPU saves magnitudes of work.
Even the simpler second scene, with a smaller amount of beams, improves by a significant
amount (around 22%), as the CPU is freed of draw calls. Only the third scene’s performance
is indifferent to the settings because of its small amount of beams. The SRP Batcher performs
worse than the “old school” GPU Instancing, as the scenes are rather simple and the beams
all use the same mesh and material, an ideal setup for GPU Instancing (Unity Technologies,
2022g).

Fig. 5.2 shows the same tests, run on the VR headset. Contrary to the expectation no
performance gain could be observed. The average framerate even drops, especially visible in
the “Concert Scene”. In subsequent research, multiple recommendations were found not to use
GPU Instancing on the VR headsets. (Saladgamer, 2021; Meta, 2022a). Searching for further
information hinted at the Tile-Based GPU architecture and its implications (Ferreira, 2019;).
All further discovered sources dive very deep into low-level memory and GPU management
which can not be covered in the scope of this work (Molnar, 1994; Arm Limited, 2021).
Because the performance of this part of the research could be substantial (as fig. 5.1 shows) it
is emphasized in chapter 6.2 Outlook.

61

Figure 5.1: Comparing different render modes for VLB-Beams on PC

Figure 5.2: Comparing different render modes for VLB-Beams in VR

62

Figure 5.3: Comparing Mesh-Quality settings

Geometry Optimizations

Fig. 5.3 shows the improvements the reduction in vertices has on the performance of the
application. Similar to the batching there is no real change in performance in the “Exhibition
scene” as there are only 2 beams. The other scenes show minimal performance improvement.

Writing a Shader

Fig. 5.4 shows not only the difference between the VLB, the self-written shader, and the
ShaderGraph Shader, but it also reveals the impact of the Fragment shader. The alternative
Versions of the Shaders have no calculations done in the Fragment shader, noticeably improv-
ing performance. As the Vertex shader runs only on the vertices and our mesh has a small
number of vertices, calculations done in the Vertex shader are not heavy on performance.
But a Beam on low settings (from table 4.3), covering 1/4th of a 1920x1080 pixel screen, has
to run through 50 vertex shader passes, but, as it is covering (1920𝑥1080)/4 = 518400 pixels,
the Fragment shader pass runs 518400 times. While opaque objects get blocked by other
opaque objects, the transparent beams never block each other, making the performance gain
especially visible in the 1000 Lamps scene as many beams are overlapping each other.
As the performance of this module rose with every prototype, the average fps of the first

63

Figure 5.4: Comparing VLB with the self written Shader

two scenes is still very low. Very obvious is the very similar performance of both scenes
when using the very lean, alternative self-written shader, even though the beam count is
very different (1004 vs. 134). Using different analytics tools, no hint could be found where
the processing power is wasted. Very time-intensive analysis with for example trace anal-
ysis (Google, 2023), and a more in-depth understanding of the hardware will be needed to
understand the issues, falling out of the scope of this thesis (see chapter 6 Conclusion).

5.1.2 Gobo Projections

While developing the first prototype, a concern quickly arose: The decal shader, made to
project small and medium-sized decals onto objects heavily uses the fragment shader pass.
When these decals only fill a small amount of screenspace, this is not an issue. Bt the Gobo
“Boxes” (Fig. 5.6) fill a large amount of screen space, so covering a large number of pixels.
This leads to many calculations that need to be done per frame.

Fig. 5.5 shows the measurements taken with the Gobos, surprisingly debunking the concern.
The Projections only have little impact on performance, ignorable in comparison with the
impact of the beams.
The only hint was found inside the modified decal shader stating: “if ZWrite is Off, clip() is fast
enough on mobile, because it won’t write the DepthBuffer, so no GPU pipeline stall(confirmed

64

Figure 5.5: Comparing Impact of Gobos against Beams

by ARM staff)” (Leung, 2022). No further sources or details could be found regarding this
very curios statement directly mentioning mobile hardware.

5.1.3 3D Models

Fig. 5.7 shows the Impact the loading and display of 3D Models has on the performance. The
tests are run with no beams or projections loaded.

These results are, in contrast to the other ones, very much expected, very clearly showing that
rendering more vertices leads to fewer frames per second. As fig. 4.14 already showed, the
fixtures, even with as few vertices as possible stay very recognizable. This module satisfies
its requirements. When using a high number of fixtures or fixtures that are fare away, one
should disable the 3D models. Fixtures that are medium to close to the viewer can be just
displayed with cubes and single fixtures or fixtures that are very close can be displayed with
their supplied 3D models.

65

Figure 5.6: Four Fixtures with Gobo-Projection-Boxes made visible. Two Projecting a Gobo,
two just the light circle.

Figure 5.7: Comparing Impact of 3D Models and Cubes

66

6 Conclusion

Two patterns are recognizable throughout the work on this thesis:

1. Very different optimization results from PC and VR headset.
While it is expected that the VR headset runs on a much lower framerate than a high power
Computer the results of optimization have a very different impact on the VR headset and the
computer. As the internal architecture of these standalone headsets is vastly different from
traditional computers for whom most tutorials and documentation are written, performance
improvements visible on the computer have very different impacts on the VR headsets.
2. Unexplained bottlenecks on the VR headsets.
As discussed in detail in chapter 5.1.1, even after removing almost all features from the
light beams, the fps would bottleneck at a certain point, well below the recommended value,
hinting at a deeper limit of the hardware, not covered in any sources.

The thesis’s main question, “How can an immersive light-visualizer experience, running on
low-power virtual reality devices be created?”, can only be answered partially: With this
thesis, a lot of the foundational work has been implemented to make data of fixtures available,
display models and structure, and control fixtures with professional hardware. Due to Unity
Engines cross-device compatability, running this asset on powerful hardware is possible and
shows the usability of the asset. To answer the question fully, further research is needed
focusing on rendering limitations and exploring the exact implications of, for example, the
Tile-based GPU architecture (Molnar, 1994).

6.1 Evaluating the Research Design

(Too) Fast Prototyping? Prototyping pushed the progress of this research. In the preceding
chapters, it was demonstrated how evaluating requirements, adapting to issues, and changing
the focus of development can push forward progress, where changes, the documentation,
and the documentation of those changes are varied and doubtful. In the later stages of
development, the progress and code that was created in the earlier cycles often was added
upon and expanded. This was often made difficult by the quick, but not “clean” Code written
in earlier prototype rounds, leading to the slowdown of progress (Martin and Coplien, 2009).

67

As additions required large changes, parts could not be reused but needed to be rewritten and
new bugs were introduced, keeping the scripts and shader running was often more work than
implementing new features or changes. Applying principles, for example, SOLID (Akritidis,
2023) would have made earlier development slower but could have sped up later research.
Nonetheless, without this shortfall, a more complete answer to the thesis question would
probably not have been found, as only this flexible method allowed each of the modules to
quickly make enough progress to even discover the bottleneck.

6.2 Outlook

While the goal of this research could not be adequately reached, the Asset still has immense
potential. In chapter 4.4 the optimization for Tile-based GPUs was already mentioned.
Getting, for example, instancing to work, could be a big step toward better framerates on the
standalone VR headsets. A deeper understanding of the limitations discovered in chapter
5.1.1 could also be able to make big performance gains possible. Additionally, many functions
and ideas are collected in appendix 2, many of which are described in Staffel et al., 2022 and
could be implemented with little effort.

Possible performance improvements with newer versions of Unity Engine and newer versions
of the used Headsets have already been announced or released: A new Headsets from Meta
(Quest 3) is already available, while the XR Headset made by Apple is to be released in Q1 of
2024 (Apple, 2024). While these headsets will certainly have more computing power than
their predecessors, optimization will also be made easier. Features like eye-tracking, enabling
foveated rendering (Meta, 2023), and potentially more comprehensive documentation.

6.3 Real world usage

As part of the “XRevent” project, a frontend for artists is created and szenes can be shared
and played together via the World Wide Web. 3D Models can be uploaded and placed, sky
and light can be changed and fixtures can be placed and configured (see Fig. 6.1 and 6.2).
Some GDTF files are supplied on the server or more can be uploaded by the artist, making
the fixture available to all users. Multiplayer with voice-chat is available making it a social
experience.

68

Figure 6.1: After loading a fixture, the user of the XRevent Creator can input all necessary
details

Figure 6.2: Three fixtures placed inside the virtual world of the XRevent Creator

69

Bibliography

Abbes, M., Khomh, F., Gueheneuc, Y. G., & Antoniol, G. (2011). An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension.

Akritidis, G. (2023, November). Solid: How to use it, why and when - c-sharp and unity
development.

Apple. (2024). Apple vision pro - apple. Retrieved January 10, 2024, from https://www.apple.
com/apple-vision-pro/

Arm Limited. (2021). Tile-based rendering. Retrieved September 20, 2023, from https : / /
developer.arm.com/documentation/102662/0100/Tile-based-GPUs

arm.com. (2021, February). Optimizing unity games for arm – arm®. Retrieved September 19,
2023, from https://www.arm.com/resources/unity

Autodesk Ltd. (1996, May). 3d studio file format (3ds), document revision 0.1. https://www.
graphicon.ru/oldgr/courses/cg2000s/files/3dsmli.html

Bantin, L. (2021, May). Realisierung eines lighting visualizers unter verwendung der 3d-engine
unity.

Battista, F. D. (2016, May). 3ds loader runtime importer | tools | unity asset store. Retrieved
February 4, 2024, from https://assetstore.unity.com/packages/tools/3ds-loader-
runtime-importer-62536

BrainVoyager. (n.d.). Spatial transformation matrices. Retrieved March 15, 2023, from https://
www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.
html

Brigsted, T. (2022, December). Github - siccity/gltfutility: Simple gltf importer for unity.
Retrieved February 4, 2024, from https://github.com/Siccity/GLTFUtility

Bruce, G. (2022, April). Us: Charting the rise of indie video games.
Cho, S. (2018, November). Github - sugi-cho/artnet.unity: Artnet library for unity(c-sharp).

based on an artnet library for c-sharp and vb.net developers. based on the acn project
codebase.

Dasch, T. (2019). Pc rendering techniques to avoid when developing for mobile vr. Retrieved
September 19, 2023, from https://developer.oculus.com/blog/pc-rendering-techniques-
to-avoid-when-developing-for-mobile-vr/

deadmau5.com. (2021). Deadmau5: Exploring music’s new digital reality | unreal engine.
Retrieved February 4, 2024, from https://deadmau5.com/exploring-musics-new-
digital-reality-unreal-engine/

70

https://www.apple.com/apple-vision-pro/
https://www.apple.com/apple-vision-pro/
https://developer.arm.com/documentation/102662/0100/Tile-based-GPUs
https://developer.arm.com/documentation/102662/0100/Tile-based-GPUs
https://www.arm.com/resources/unity
https://www.graphicon.ru/oldgr/courses/cg2000s/files/3dsmli.html
https://www.graphicon.ru/oldgr/courses/cg2000s/files/3dsmli.html
https://assetstore.unity.com/packages/tools/3ds-loader-runtime-importer-62536
https://assetstore.unity.com/packages/tools/3ds-loader-runtime-importer-62536
https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
https://github.com/Siccity/GLTFUtility
https://developer.oculus.com/blog/pc-rendering-techniques-to-avoid-when-developing-for-mobile-vr/
https://developer.oculus.com/blog/pc-rendering-techniques-to-avoid-when-developing-for-mobile-vr/
https://deadmau5.com/exploring-musics-new-digital-reality-unreal-engine/
https://deadmau5.com/exploring-musics-new-digital-reality-unreal-engine/

Epic Games. (2022). Dmx overview | unreal engine 4.27 documentation.
Epic Games. (2023a). Dmx gdtf support in unreal engine | unreal engine 5.1 documentation.

Retrieved February 4, 2024, from https://docs.unrealengine.com/5.1/en-US/dmx-gdtf-
support-in-unreal-engine/

Epic Games. (2023b). Sony music’s ’digital madison beer’ sets the virtual concert world on
fire | unreal engine - youtube. Retrieved February 4, 2024, from https://www.youtube.
com/watch?v=-4ZXuaHRx30

Ferreira, C. (2019). How to optimize your oculus quest app w/ renderdoc: Quest hardware
and software offerings. Retrieved September 19, 2023, from https://developer.oculus.
com/blog/how-to-optimize-your-oculus-quest-app-w-renderdoc-quest-hardware-
and-software-offerings/

Fok, W. (2020, August). Github - wason-fok/unity-dmx-fixture-library: Use artnet protocol to
control fixtures in unity that are parsed from the gdtf library.

GDTF. (2022, November). Gdtf wiki. https://gdtf-share.com/help/en/help/gdtf_builder/key_
dataformat.html

Gilbert, N. (2023). 74 virtual reality statistics youmust know in 2023: Adoption, usage &market
share - financesonline.com. Retrieved September 7, 2023, from https://financesonline.
com/virtual-reality-statistics/

Ginsberg, C. (2023, September). Top 5 programming languages for data analysts | classes near
me blog.

GmbH, S. (2023). Overview - syncronorm gmbh.
Google. (2023). Perfetto - system profiling, app tracing and trace analysis - perfetto tracing

docs. Retrieved February 5, 2024, from https://perfetto.dev/docs/
Greule, R. (2021). Licht und beleuchtung im medienbereich. In Licht und beleuchtung im

medienbereich.
GuinnessWorldRecords. (2023). World record: Largest music concert in a video game.Guinness

World Records. Retrieved June 25, 2023, from https://www.guinnessworldrecords.com/
world-records/563742-largest-music-concert-in-a-videogame

Hdouin, S. (2023, February). Update v5.3.0 : New ui, fixes for v51 and ovr metrics tool
integration - quest games optimizer by anagan79.

Iett, D. (2022). Building quality shaders for unity®. Apress Berkeley, CA.
igolinin. (2021, June). Github - igolinin/dmxtools: Set of tools to simplify working with virtual

and practical lights in unity3d. support for artnet in and usb dmx out. Retrieved
September 19, 2023, from %5Curl%7Bhttps://github.com/igolinin/DMXtools%7D

Ilett, D. (2021, September). Decals & stickers in unity shader graph and urp. Retrieved February
4, 2024, from https://www.youtube.com/watch?v=f7iO9ernEmM

James, M. (2015, May). Github - mikecodesdotnet/artnet.net: An artnet library for c-sharp
and vb.net developers. based on the acn project codebase.

71

https://docs.unrealengine.com/5.1/en-US/dmx-gdtf-support-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/dmx-gdtf-support-in-unreal-engine/
https://www.youtube.com/watch?v=-4ZXuaHRx30
https://www.youtube.com/watch?v=-4ZXuaHRx30
https://developer.oculus.com/blog/how-to-optimize-your-oculus-quest-app-w-renderdoc-quest-hardware-and-software-offerings/
https://developer.oculus.com/blog/how-to-optimize-your-oculus-quest-app-w-renderdoc-quest-hardware-and-software-offerings/
https://developer.oculus.com/blog/how-to-optimize-your-oculus-quest-app-w-renderdoc-quest-hardware-and-software-offerings/
https://gdtf-share.com/help/en/help/gdtf_builder/key_dataformat.html
https://gdtf-share.com/help/en/help/gdtf_builder/key_dataformat.html
https://financesonline.com/virtual-reality-statistics/
https://financesonline.com/virtual-reality-statistics/
https://perfetto.dev/docs/
https://www.guinnessworldrecords.com/world-records/563742-largest-music-concert-in-a-videogame
https://www.guinnessworldrecords.com/world-records/563742-largest-music-concert-in-a-videogame
%5Curl%7Bhttps://github.com/igolinin/DMXtools%7D
https://www.youtube.com/watch?v=f7iO9ernEmM

Jeremiah. (2011, July). Understanding the view matrix | 3d game engine programming. Re-
trieved February 4, 2024, from https://www.3dgep.com/understanding-the-view-
matrix/

Joshi, S. G. (2021, April). Prototyping in research - in5000 – qualitative research methods.
Khorikov, V. (2020). Unit testing principles, practices, and patterns. Manning. https://books.

google.de/books?id=rDszEAAAQBAJ
Lague, S. (2021, November). I tried creating a game using real-world geographic data. Retrieved

February 4, 2024, from https://www.youtube.com/watch?v=sLqXFF8mlEU
Leung, C. (2022, July). Github - colinleung-nilocat/unityurpunlitscreenspacedecalshader:

Unity unlit screen space decal shader for urp. Retrieved February 4, 2024, from https:
//github.com/ColinLeung-NiloCat/UnityURPUnlitScreenSpaceDecalShader

Lever, N. (2022, April). Universal renderpipeline for advanced unity creators.
Maddock, C. (2022, July). Xml schema definition tool (xsd.exe) - .net | microsoft learn.
Martin, R. C., & Coplien, J. O. (2009). Clean code: A handbook of agile software craftsmanship.

Prentice Hall.
Maxine. (2023, March). Can i use assets from the asset store in my commercial game? – unity.
Melling, J. (2018). Vr world cup 2018 first step to widespread take-up - graphics, gaming, and

vr blog - arm community blogs - arm community. Retrieved September 19, 2023, from
%5Curl%7Bhttps://community.arm.com/arm-community-blogs/b/graphics-gaming-
and-vr-blog/posts/2018-world-cup-in-vr-could-be-a-useful-first-step-towards-
widespread-takeup%7D

Meta. (2019). Monitor performance with ovr metrics tool: Unity | oculus developers.
Meta. (2022a). Best practices for rift and android | oculus developers. Retrieved September 19,

2023, from https://developer.oculus.com/documentation/unity/unity-best-practices-
intro/

Meta. (2022b). Multisample anti-aliasing analysis for meta quest | oculus developers.
Meta. (2023, January). Eye tracked foveated rendering | oculus developers. Retrieved December

10, 2023, from https://developer.oculus.com/documentation/unity/unity-eye-tracked-
foveated-rendering/

Microsoft. (2011, September). Zipfile klasse (system.io.compression) | microsoft learn.
Microsoft. (2022). .net documentation c-sharp coding conventions - c-sharp | microsoft learn.

Retrieved February 4, 2024, from https://learn.microsoft.com/en-us/dotnet/csharp/
fundamentals/coding-style/coding-conventions

Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANS-
ACTIONS on Information and Systems, 77 (12), 1321–1329.

Molnar, S. (1994). A sorting classification of parallel rendering. Retrieved September 19,
2023, from https : / /www. cs . cmu . edu / afs / cs . cmu . edu / academic / class / 15869 -
f11/www/readings/molnar94_sorting.pdf

Moore, E. (2022). Designing vr games worth playing: 6 key considerations. Retrieved July 1,
2023, from https://www.toptal.com/designers/virtual-reality/designing-vr-games

72

https://www.3dgep.com/understanding-the-view-matrix/
https://www.3dgep.com/understanding-the-view-matrix/
https://books.google.de/books?id=rDszEAAAQBAJ
https://books.google.de/books?id=rDszEAAAQBAJ
https://www.youtube.com/watch?v=sLqXFF8mlEU
https://github.com/ColinLeung-NiloCat/UnityURPUnlitScreenSpaceDecalShader
https://github.com/ColinLeung-NiloCat/UnityURPUnlitScreenSpaceDecalShader
%5Curl%7Bhttps://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/2018-world-cup-in-vr-could-be-a-useful-first-step-towards-widespread-takeup%7D
%5Curl%7Bhttps://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/2018-world-cup-in-vr-could-be-a-useful-first-step-towards-widespread-takeup%7D
%5Curl%7Bhttps://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/2018-world-cup-in-vr-could-be-a-useful-first-step-towards-widespread-takeup%7D
https://developer.oculus.com/documentation/unity/unity-best-practices-intro/
https://developer.oculus.com/documentation/unity/unity-best-practices-intro/
https://developer.oculus.com/documentation/unity/unity-eye-tracked-foveated-rendering/
https://developer.oculus.com/documentation/unity/unity-eye-tracked-foveated-rendering/
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/molnar94_sorting.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/molnar94_sorting.pdf
https://www.toptal.com/designers/virtual-reality/designing-vr-games

Noveltech. (2022, July). Game engine fees & pricing in 2020 - unity, unreal engine, gamemaker
studio, godot | noveltech.

Pitts, J., & Bourke, P. (1996, June). 3d-studio file format (.3ds) from autodesk ltd, document
revision 0.91. http://paulbourke.net/dataformats/3ds/

Pluberus. (2013, January). Msi afterburner guide - performance recording. Retrieved February
4, 2024, fromhttps://docs.google.com/document/d/15mq4aMUVxc7Vm6Iz2XyfU807o7dPdHYv9KiG35yreQI/
edit?pli=1

Preece, J., Rogers, Y., & Sharp, H. (2015). Interaction design: Beyond human-computer interaction
(4th ed.). Wiley.

Saladgamer. (2021, April). Optimization guidelines - volumetric light beam documentation.
Schechter, S. (2020, May). Gltf resources & tools | marxent. Retrieved February 4, 2024, from

https://www.marxentlabs.com/gltf-files/#:~:text=What's%20a%20glTF%20file%3F,
Microsoft%20Word%20or%20PowerPoint%20files.

Schiavone, L. (2023, December). Fog and haze basics – x-laser.
Skarbez, R., Smith, M., & Whitton, M. C. (2021). Revisiting milgram and kishino’s reality-

virtuality continuum. https://www.frontiersin.org/articles/10.3389/frvir.2021.647997.
Staffel, M., Berhorst, R., Krude, G., Müller, D., Valchář, J., Vanek, P., Powell, J., & Greenlee, R.

(2022). Dinspec15800 d and ics35.240.99;97.200.10.
St-Laurent, S. (2004). Shaders for game programmers and artists. Thomson Course Technology

PTR.
Swiniarski, S. (2022, November). C-sharp operators codecademy.
Tech Salad. (2022, May). Volumetric light beam sd - volumetric light beam documentation.
Tech Salad. (2023, December). Volumetric light beam | vfx shaders | unity asset store.
TenMedia. (2022). Software prototyping.
Unity Technologies. (n.d.). Unity - Manual: Render pipeline feature comparison. Retrieved

March 15, 2023, from https://docs.unity3d.com/Manual/render-pipelines-feature-
comparison.html

Unity Technologies. (2019a). Unity - Manual: Writing shaders overview. Retrieved March 15,
2023, from https://docs.unity3d.com/Manual/SL-ShadingLanguage.html

Unity Technologies. (2019b). Unity - scripting api: Time.deltatime. Retrieved January 2, 2024,
from https://docs.unity3d.com/ScriptReference/Time-deltaTime.html

Unity Technologies. (2019c, August). Unity - manual: Shadows. Retrieved February 4, 2024,
from https://docs.unity3d.com/550/Documentation/Manual/ShadowOverview.html

Unity Technologies. (2020). Unity - scripting api: Camera.depthtexturemode. Retrieved
September 19, 2023, from https : / / docs . unity3d . com / ScriptReference / Camera -
depthTextureMode.html

Unity Technologies. (2021a). Dmx gdtf support in unreal engine | unreal engine 5.1 documen-
tation.

Unity Technologies. (2021b). Unity - manual: Cameras and depth textures. Retrieved Septem-
ber 19, 2023, from https://docs.unity3d.com/Manual/SL-CameraDepthTexture.html

73

http://paulbourke.net/dataformats/3ds/
https://docs.google.com/document/d/15mq4aMUVxc7Vm6Iz2XyfU807o7dPdHYv9KiG35yreQI/edit?pli=1
https://docs.google.com/document/d/15mq4aMUVxc7Vm6Iz2XyfU807o7dPdHYv9KiG35yreQI/edit?pli=1
https://www.marxentlabs.com/gltf-files/#:~:text=What's%20a%20glTF%20file%3F,Microsoft%20Word%20or%20PowerPoint%20files.
https://www.marxentlabs.com/gltf-files/#:~:text=What's%20a%20glTF%20file%3F,Microsoft%20Word%20or%20PowerPoint%20files.
https://www.frontiersin.org/articles/10.3389/frvir.2021.647997
https://docs.unity3d.com/Manual/render-pipelines-feature-comparison.html
https://docs.unity3d.com/Manual/render-pipelines-feature-comparison.html
https://docs.unity3d.com/Manual/SL-ShadingLanguage.html
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html
https://docs.unity3d.com/550/Documentation/Manual/ShadowOverview.html
https://docs.unity3d.com/ScriptReference/Camera-depthTextureMode.html
https://docs.unity3d.com/ScriptReference/Camera-depthTextureMode.html
https://docs.unity3d.com/Manual/SL-CameraDepthTexture.html

Unity Technologies. (2021c). Unity - manual: Compute shaders. Retrieved February 4, 2024,
from https://docs.unity3d.com/Manual/class-ComputeShader.html

Unity Technologies. (2021d, January). Changelog | shader graph | 17.0.2. Retrieved February
4, 2024, from https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/
changelog/CHANGELOG.html

Unity Technologies. (2021e, April). Unity - manual: Single-pass instanced rendering and
custom shaders. Retrieved February 4, 2024, from https://docs.unity3d.com/2021.3/
Documentation/Manual/SinglePassInstancing.html

Unity Technologies. (2022a). Rendering and visual effects roadmap | unity. Retrieved Septem-
ber 19, 2023, from %5Curl%7Bhttps://unity.com/roadmap/unity-platform/rendering-
visual -effects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=
empowering-creative-teams&utm_content=advanced-visual-effects-ebook%7D

Unity Technologies. (2022b). Unity platform rendering visual effects. Retrieved March 15,
2023, from https://portal.productboard.com/unity/1-unity-platform-rendering-visual-
effects/tabs/3-universal-pipeline

Unity Technologies. (2022c, January). About shader graph | shader graph | 17.0.2. Retrieved
February 3, 2024, from https://docs.unity3d.com/Packages/com.unity.shadergraph@
17.0/manual/index.html

Unity Technologies. (2022d, January). Complex lit shader | universal rp | 13.1.9. Retrieved
February 5, 2024, from https : / /docs .unity3d . com/Packages / com.unity . render -
pipelines.universal@13.1/manual/shader-complex-lit.html

Unity Technologies. (2022e, January). Simple lit shader | universal rp | 13.1.9. Retrieved
February 5, 2024, from %5Curl%7Bhttps://docs.unity3d.com/Packages/com.unity.
render-pipelines.universal@13.1/manual/simple-lit-shader.html%7D

Unity Technologies. (2022f, January). Unity - scripting api: Matrix4x4. Retrieved February 4,
2024, from https://docs.unity3d.com/ScriptReference/Matrix4x4.html

Unity Technologies. (2022g, March). Unity - manual: Scriptable render pipeline batcher.
Unity Technologies. (2022h, April). Unity - manual: Built-in shader include files. Retrieved

February 4, 2024, from https://docs.unity3d.com/Manual/SL-BuiltinIncludes.html
Unity Technologies. (2022i, April). Unity - scripting api: Texture2d. Retrieved February 5,

2024, from https://docs.unity3d.com/ScriptReference/Texture2D.html
Unity Technologies. (2022j, July). Unity - manual: Stereo rendering. Retrieved February 5,

2024, from https://docs.unity3d.com/Manual/SinglePassStereoRendering.html
Unity Technologies. (2022k, August). Unity - manual: Model file formats.
Unity Technologies. (2023a). Unity - manual: Hlsl in unity. Retrieved February 4, 2024, from

https://docs.unity3d.com/Manual/SL-ShaderPrograms.html
Unity Technologies. (2023b, January). Asset store terms of service and eula.
Unity Technologies. (2023c, January). Getting started with ray tracing | high definition rp

| 14.0.10. Retrieved February 5, 2024, from https : / /docs .unity3d .com/Packages /

74

https://docs.unity3d.com/Manual/class-ComputeShader.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/changelog/CHANGELOG.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/changelog/CHANGELOG.html
https://docs.unity3d.com/2021.3/Documentation/Manual/SinglePassInstancing.html
https://docs.unity3d.com/2021.3/Documentation/Manual/SinglePassInstancing.html
%5Curl%7Bhttps://unity.com/roadmap/unity-platform/rendering-visual-effects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=empowering-creative-teams&utm_content=advanced-visual-effects-ebook%7D
%5Curl%7Bhttps://unity.com/roadmap/unity-platform/rendering-visual-effects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=empowering-creative-teams&utm_content=advanced-visual-effects-ebook%7D
%5Curl%7Bhttps://unity.com/roadmap/unity-platform/rendering-visual-effects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=empowering-creative-teams&utm_content=advanced-visual-effects-ebook%7D
https://portal.productboard.com/unity/1-unity-platform-rendering-visual-effects/tabs/3-universal-pipeline
https://portal.productboard.com/unity/1-unity-platform-rendering-visual-effects/tabs/3-universal-pipeline
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/shader-complex-lit.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/shader-complex-lit.html
%5Curl%7Bhttps://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/simple-lit-shader.html%7D
%5Curl%7Bhttps://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/simple-lit-shader.html%7D
https://docs.unity3d.com/ScriptReference/Matrix4x4.html
https://docs.unity3d.com/Manual/SL-BuiltinIncludes.html
https://docs.unity3d.com/ScriptReference/Texture2D.html
https://docs.unity3d.com/Manual/SinglePassStereoRendering.html
https://docs.unity3d.com/Manual/SL-ShaderPrograms.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Ray-Tracing-Getting-Started.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Ray-Tracing-Getting-Started.html

com.unity.render-pipelines.high-definition@14.0/manual/Ray-Tracing-Getting-
Started.html

Unity Technologies. (2023d, June). Unity asset store submission guidelines - asset store.
Unity Technologies. (2023e, July). Unity - manual: Gpu instancing.
UTA. (2021a). Forever changed:covid-19’s lasting impact onthe entertainment industry (tech.

rep.). UTA,sightX,commune. Retrieved June 12, 2023, from https://unitedtalent.app.
box.com/s/j4ijgxd8169jpgkxji8eqxnyqc7lszy2

UTA. (2021b). Virtual + reality:the future of digital& live entertainment in apost-pandemic world
(tech. rep.). UTA,sightX,commune. Retrieved June 11, 2023, from https://unitedtalent.
app.box.com/s/fcaha4xzcbvqtvcs3q9e03esmvhqaab1

Varcholik, P. (2014). Real-time 3d rendering with directx and hlsl. Addison-Wesley Professional.
Verttermann, T. (2021, June). Welche framerate für youtube? | 25p oder 30p? | motionside

pictures®.
VPLT. (11, 2023). Home | gdtf share.
W. Robbins, R. (2014). Computer graphics and digital visual effects. Retrieved May 5, 2023,

from https://scholarworks.calstate.edu/downloads/n296wz676
WaveXR. (2022, April). Past waves - wave.
Williams, S. (2015, March). How can i programmatically load a texture into an image the

same way the unity editor does? - stack overflow. Retrieved February 5, 2024, from
https://stackoverflow.com/questions/29034892/how-can-i-programmatically-load-a-
texture-into-an-image-the-same-way-the-unity-e

XRToday. (2022). Into the innerverse: Inside bastille’s first virtual concert. Retrieved June 5,
2023, from https://www.unrealengine.com/en-US/spotlights/into-the-innerverse-
inside-bastille-s-first-virtual-concert

XRToday. (2023). Virtual reality statistics to know in 2023. Retrieved June 5, 2023, from
https://www.xrtoday.com/virtual-reality/virtual-reality-statistics-to-know-in-2023/

Zgeb, B. (2021, February). Persistent data: How to save your game states and settings | unity
blog.

75

https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Ray-Tracing-Getting-Started.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Ray-Tracing-Getting-Started.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Ray-Tracing-Getting-Started.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Ray-Tracing-Getting-Started.html
https://unitedtalent.app.box.com/s/j4ijgxd8169jpgkxji8eqxnyqc7lszy2
https://unitedtalent.app.box.com/s/j4ijgxd8169jpgkxji8eqxnyqc7lszy2
https://unitedtalent.app.box.com/s/fcaha4xzcbvqtvcs3q9e03esmvhqaab1
https://unitedtalent.app.box.com/s/fcaha4xzcbvqtvcs3q9e03esmvhqaab1
https://scholarworks.calstate.edu/downloads/n296wz676
https://stackoverflow.com/questions/29034892/how-can-i-programmatically-load-a-texture-into-an-image-the-same-way-the-unity-e
https://stackoverflow.com/questions/29034892/how-can-i-programmatically-load-a-texture-into-an-image-the-same-way-the-unity-e
https://www.unrealengine.com/en-US/spotlights/into-the-innerverse-inside-bastille-s-first-virtual-concert
https://www.unrealengine.com/en-US/spotlights/into-the-innerverse-inside-bastille-s-first-virtual-concert
https://www.xrtoday.com/virtual-reality/virtual-reality-statistics-to-know-in-2023/

Appendix

Codeblock 1: Appendix: The self written Shader

1 Shader " Shader Graphs / GDTF_Beam_ShaderGraph "

2 {

3 Properties

4 {

5 [MainColor] _Color (" Color " , Color) = (1.000000 ,0.000000 ,0.000000 ,1.000000)

6 _FalloffSpeed (" FalloffSpeed " , Range (0.100000 ,3.000000)) = 0.200000

7 _Angle (" Angle " , Range (5.000000 ,75.000000)) = 5.000000

8 _fallofflength (" fallofflength " , Range (0.100000 ,100.000000)) = 1.000000

9 _intensity (" intensity " , Range (0.000000 ,200.000000)) = 1.000000

10 }

11 SubShader

12 {

13 Tags

14 {

15 " QUEUE "=" Transparent " " RenderType "=" Transparent " " DisableBatching "="

False " " RenderPipeline "=" UniversalPipeline " " UniversalMaterialType "=" Unlit "

16 }

17 Pass

18 {

19 Name " Universal Forward "

20 Tags

21 {

22 " QUEUE "=" Transparent " " RenderType "=" Transparent " " DisableBatching "="

False " " RenderPipeline "=" UniversalPipeline " " UniversalMaterialType "=" Unlit "

23 }

24 ZTest Less

25 ZWrite Off

26 Cull Off

27 Blend SrcAlpha One

28

29 CGPROGRAM

30 # pragma vertex vert

76

31 # pragma fragment frag

32

33 float4 _Color ;

34 float _fallofflength ;

35 float _Angle ;

36 float _FalloffSpeed ;

37

38 # include " UnityCG . cginc "

39

40

41 struct appdata

42 {

43 float4 vertex : POSITION ;

44

45 UNITY_VERTEX_INPUT_INSTANCE_ID

46 };

47

48 struct v2f

49 {

50 float4 vertex : SV_POSITION ;

51 float4 objPos : TEXCOORD0 ;

52

53 UNITY_VERTEX_INPUT_INSTANCE_ID

54 UNITY_VERTEX_OUTPUT_STEREO

55 };

56

57 v2f vert (appdata v)

58 {

59 v2f o;

60

61 UNITY_SETUP_INSTANCE_ID (v);

62 UNITY_INITIALIZE_OUTPUT (v2f , o);

63 UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO (o);

64 o. objPos = v. vertex ;

65

66 v. vertex .x *= tan (radians (_Angle)) *(_fallofflength *0.5 f) *(v. vertex .y

+1) ;

67 v. vertex .z *= tan (radians (_Angle)) *(_fallofflength *0.5 f) *(v. vertex .y

+1) ;

68

69 v. vertex .y += 1;

70

77

71 v. vertex .y *= _fallofflength *0.5 f;

72

73 o. vertex = UnityObjectToClipPos (v. vertex);

74

75 return o;

76 }

77

78 fixed4 frag (v2f i) : SV_Target

79 {

80 UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX (i);

81

82 _Color .w = (1 -(i. objPos .y/ _fallofflength))* _FalloffSpeed ;

83 return _Color ;

84 }

85 ENDCG

86 }

87 }

88 }

Codeblock 2: and proposed [] features]Appendix: Implemented [X] and proposed [] features

1 GDTF Import :

2 [x] Reading all parameter into one object

3 [] Paramter (not a comprehensive list off all available parameters):

4 [x] Dimmer

5 [] Emitter Details

6 [x] Axis

7 [x] Zoom

8 [x] Shutter

9 [x] Strobo

10 [x] Wheels

11 [x] Gobo Projections

12 [] Frost

13 [] Focus

14 [] Prisma

15 [x] Color Wheels

16 [x] Color Mixing

17 [x] Beams

18 [x] Volumetric Light Beams

19 [x] Simple , mesh based , Shader

20 [] Better Instancing on Tiled GPUs

21 [] Fog

78

22 [] Occlusion

23 [] Optimizing multi emitter fixtures

24 [] Dynamic Shader Loading

25 [x] 3D Models

26 [x] Reading the 3 ds and GLTF files

27 [x] Using just Cubes

28 [] culling

29 [] automatic analisies of meshes

30 [] optimisation of meshes

31 [] Materials

32 [] GPU Instancing

33 [x] Projections

34 [x] Simple Projections

35 [] Occlusion

36 [] Rotation

37 [] Multi Gobo Blending

38 [] Frustum Optimization

39 [] ? Shader Optimization ?

40 [x] DMX Calculations

41 [x] ArtNet recieve

42 [] Memory allocation and GC optimization

43 [] sACN

44 [] Built - in DMX Controller

45 [] Multiplayer

46 []

Codeblock 3: Appendix: Python Code to generate the Graphs

1 import math

2 import os

3

4 import numpy as np

5 import pandas

6 import pandas as pd

7 from matplotlib import pyplot as plt

8

9

10 def Average (lst):

11 return sum (lst) / len (lst)

12

13

14 # function to add value labels

79

15 def addlabels (axis , x , y , texts , colors):

16 if type (colors) is list :

17 if type (y) is list :

18 for i in range (len (x)):

19 axis . text (i , y[i] + 4, texts [i], ha = ' center ', color = colors [i],

fontsize =15)

20 else :

21 for i in range (len (x)):

22 axis . text (i , y , texts [i], ha = ' center ', color = colors [i], fontsize =15)

23 else :

24 if type (y) is list :

25 for i in range (len (x)):

26 axis . text (i , y[i] + 4, texts [i], ha = ' center ', color = colors , fontsize

=15)

27 else :

28 for i in range (len (x)):

29 axis . text (i , y , texts [i], ha = ' center ', color = colors , fontsize =15)

30

31

32 # function to filter a string array by include and exclude .

33 # exclude is hard filter ! No item containing exclude will be in the array , even if

it contains include .

34 # (eg : include = " Loading ", exclude = " LoadingScreen " -> " LoadingScreen " will not be

in the array)

35 def filterStringArray (array , include , exclude):

36 arrayCopy = array . copy ()

37 array = []

38 for arrayItem in arrayCopy :

39 if include not in arrayItem :

40 continue

41 if exclude in arrayItem :

42 continue

43 array . append (arrayItem)

44 return array

45

46

47 # ## Main ###

48 # find all relevant files in the directory

49 files = os . listdir (os . path . dirname (os . path . realpath (__file__)))

50 files = filterStringArray (files , ". csv " , ". meta ")

51 # sort the files by their name -> the files are named after the run they belong to

52 files . sort ()

80

53 print (files)

54 # read the csv files

55 columns = [" Time Stamp " , " available_memory_MB " , " average_frame_rate " , " Column1 "]

56 dtypes = {" Time Stamp ": int , " available_memory_MB ": float , " average_frame_rate ":

float , " Column1 ": str }

57 dataFrames = []

58 for file in files :

59 dataFrames . append (pd . read_csv (file , dtype = dtypes , usecols = columns))

60

61 # set up the plot 1 (average frame rate and available memory against time stamp) we

generate a plot for each run

62 plt . rcParams [" figure . figsize "] = [14.00 , 8.00]

63 plt . rcParams [" figure . autolayout "] = True

64 textPlacements = [-4000 , -2000 , 2000 , 4000]

65 textPlacementIndex = 0

66

67 for df in dataFrames :

68 fig , ax1 = plt . subplots ()

69 color = ' tab : red '

70 ax1 . set_xlabel (' Time Stamp ')

71 ax1 . set_ylabel (' average_frame_rate ', color = color)

72 ax1 . plot (df [' Time Stamp '], df [' average_frame_rate '], color = color)

73

74 ax2 = ax1 . twinx () # instantiate a second axes that shares the same x - axis

75 color = ' tab : blue '

76 ax2 . set_ylabel (' available_memory_MB ', color = color)

77 ax2 . set_ylim ([0 , 1024])

78 ax2 . plot (df [' Time Stamp '], df [' available_memory_MB '])

79 ax2 . tick_params (axis = 'y ', labelcolor = color)

80 texts = []

81 LoadingTimes = {}

82 LoadedTimes = {}

83 UnloadingTimes = {}

84

85 # draw a vertical line when there is a string in Column1

86 for i in range (len (df [' Time Stamp '])):

87 if pandas . isnull (df [' Column1 '][i]) is False :

88 ax1 . axvline (x= df [' Time Stamp '][i], color = 'r ', linestyle = '-', linewidth

=0.3)

89

90 text : str = df [' Column1 '][i]

91

81

92 if text . __contains__ (" Loading ") is True :

93 ax1 . text (df [' Time Stamp '][i] + textPlacements [textPlacementIndex] -

2000 , 10 , df [' Column1 '][i],

94 rotation =90 ,

95 fontsize =11)

96

97 texts . append (df [' Column1 '][i])

98

99 if LoadingTimes . __contains__ (df [' Column1 '][i]) is False :

100 LoadingTimes [df [' Column1 '][i]] = df [' Time Stamp '][i]

101

102 elif text . __contains__ (" Loaded ") is True :

103 if LoadedTimes . __contains__ (df [' Column1 '][i]) is False :

104 LoadedTimes [df [' Column1 '][i]] = df [' Time Stamp '][i]

105 ax1 . text (df [' Time Stamp '][i] + textPlacements [textPlacementIndex

] + 6000 , 10 , df [' Column1 '][i],

106 rotation =90 ,

107 fontsize =11)

108

109 elif text . __contains__ (" Unloading ") is True :

110 if UnloadingTimes . __contains__ (df [' Column1 '][i]) is False :

111 UnloadingTimes [df [' Column1 '][i]] = df [' Time Stamp '][i]

112

113 """ textPlacementIndex += 1

114 if textPlacementIndex == 4:

115 textPlacementIndex = 0 """

116

117 plt . show ()

118

119 ## Create a second plot where the x - axis ist the run und the y - axis is the

average frame rate of that run

120

121 longTexts = []

122 AverageFrameRate = []

123 AverageFrameRateLong = []

124 # get the run from the texts

125 for i in range (len (texts)):

126 longTexts . append (texts [i]. split (":") [1])

127 longTexts [i] = longTexts [i][: -4] + ":" + texts [i]. split (":") [2]

128 longTexts [i] = longTexts [i][: -2]

129

130 texts [i] = texts [i]. split (":") [2]

82

131 texts [i] = texts [i][: -2]

132

133 # remove duplicates from texts

134 tempcopy = texts . copy ()

135 texts = []

136 for item in tempcopy :

137 if item not in texts :

138 texts . append (item)

139

140 # reformate the Text in the Dictionary

141 test = list (LoadingTimes . keys ())

142 for key in test :

143 newkey = key . split (":") [1]

144 newkey = newkey [: -4] + ":" + (key . split (":") [2])

145 newkey = newkey [: -2]

146 LoadingTimes [newkey] = LoadingTimes . pop (key)

147

148 test = list (LoadedTimes . keys ())

149 for key in test :

150 newkey = key . split (":") [1]

151 newkey = newkey [: -4] + ":" + key . split (":") [2]

152 newkey = newkey [: -2]

153 LoadedTimes [newkey] = LoadedTimes . pop (key)

154

155 test = list (UnloadingTimes . keys ())

156 for key in test :

157 newkey = key . split (":") [1]

158 newkey = newkey [: -4] + ":" + key . split (":") [2]

159 newkey = newkey [: -2]

160 UnloadingTimes [newkey] = UnloadingTimes . pop (key)

161

162 # Calculating the average frame rate for each run

163 for i in range (len (longTexts)):

164 currentAsString : str = longTexts [i]

165 # find the startTimestamp of the current run

166 startTimestamp = LoadedTimes [currentAsString]

167 # find the endTimestamp of the current run

168 endTimestamp = UnloadingTimes [currentAsString]

169

170 Timestamps : list = list (df [' Time Stamp '])

171 startIndex = Timestamps . index (startTimestamp)

172 endIndex = Timestamps . index (endTimestamp)

83

173 calc = []

174 for j in (df [' Time Stamp '][startIndex + 3: endIndex]) :

175 calc . append (df [' average_frame_rate '][df [' Time Stamp '] == j]. values [0])

176 calc = [x for x in calc if not math . isnan (x)] # remove nan values

177 AverageFrameRateLong . append (Average (calc))

178

179 # calculate the average of all runs for a performancesetting

180 for i in range (0 , len (longTexts) , 3) :

181 calc = [AverageFrameRateLong [i], AverageFrameRateLong [i + 1] ,

AverageFrameRateLong [i + 2]]

182 AverageFrameRate . append (Average (calc))

183

184 print (texts)

185 print (AverageFrameRate)

186 print (longTexts)

187 print (AverageFrameRateLong)

188

189 # set up the groups

190 x = np . arange (len (texts)) # the label locations

191 multiplier = 0

192

193 # on ax1 the average of all three runs is shown

194 fig , ax1 = plt . subplots (layout = ' constrained ')

195 # enable grid

196 ax1 . grid (True , which = ' both ', axis = 'y ', linestyle = ' --')

197

198 # draw the Thicker Bars behind the thinner ones

199 width = 0.35

200 offset = 0

201 rects = ax1 . bar (x + offset , AverageFrameRate , width)

202

203 color = []

204 for i in range (len (rects)):

205 rects [i]. set_color (' white ')

206 rects [i]. set_linewidth (3)

207 rects [i]. set_edgecolor (' black ')

208 c: color = ' green '

209 c2 : color = ' red '

210 if rects [i]. get_height () > 60:

211 color . append (c)

212 else :

213 color . append (c2)

84

214 AverageFrameRateRounded = []

215 for i in range (len (AverageFrameRate)):

216 AverageFrameRateRounded . append (round (AverageFrameRate [i], 2))

217 AverageFrameRateRounded [i] = " avg . ~" + str (AverageFrameRateRounded [i]) + "

fps "

218

219 addlabels (ax1 , x + 0.3 , 80 , AverageFrameRateRounded , color)

220 addlabels (ax1 , x + 0.3 , 85 , texts , " black ")

221

222 # ax1 . bar_label (rects , padding =15 , color = color , fontsize =15)

223 multiplier = -1

224 width = 0.08 # the width of the bars

225 spacing = 0.025

226 # setup each of the three bars

227 for i in range (3) :

228 tempListAvgFramerates = []

229 for j in range (len (texts)):

230 tempListAvgFramerates . append (AverageFrameRateLong [i + 3 * j])

231 offset = (width + spacing) * multiplier

232 rects = ax1 . bar (x + offset , tempListAvgFramerates , width , label = longTexts [i

]. split (":") [0])

233 ax1 . bar_label (rects , padding =7)

234 multiplier += 1

235

236 color = ' tab : red '

237 ax1 . set_ylabel (' average_frame_rate ', color = color)

238 ax1 . set_title (' Average Frame Rate ')

239 ax1 . set_xticks (x , texts)

240 ax1 . legend (loc = ' upper left ', ncols =3)

241 ax1 . set_ylim (0 , 100)

242

243 plt . show ()

Codeblock 4: Appendix:List of all tested GDTF files

1 ADJ@Mega_TriPar_Profile_Plus@24122021 . gdtf

2 ADJ@Quad_Phase@24122021 . gdtf

3 American_DJ@32_HEX_Panel_IP@1 .6.6 _out_for_real_world_testing_ -

_updated_Virtual_Dim_Zone1 . gdtf

4 American_DJ@Jolt_300@v1 .0. gdtf

5 American_DJ@Mega_TRI_Bar@v1 .0.0. gdtf

6 ANDRE_GELEIA_LUZ@PAR_LED_RGBW_3W@PAR_LED_3W_RGBW_8_CANAIS_DMX_rev . gdtf

85

7 ARRI@L5C@DMX_v3 .5 _13_Jan_2021 . gdtf

8 ARRI@Orbiter@DMX_v4 .5 _29_Dec_Reduced_Channel_Modes . gdtf

9 ARRI@Orbiter@DMX_v4 .5 _29_Dec_Standard_and_ECC . gdtf

10 ARRI@SkyPanel_S120C@DMX_v4 .4 _13_Jan_2021 . gdtf

11 ARRI@SkyPanel_S30RP@DMX_v4 .4 _13_Jan_2021 . gdtf

12 Astera_LED_Technology@AX3@V1 .2. gdtf

13 Astera_LED_Technology@AX5@V1 .2. gdtf

14 Astera_LED_Technology@AX5_TriplePAR@Astera_LED_Technology_AX5_TriplePAR . gdtf

15 Astera_LED_Technology@Helios@V1 .2. gdtf

16 Astera_LED_Technology@Titan@V1 .2. gdtf

17 Ayrton@Arcaline_2_3G_1M@V1 .21 _UUID_changed . gdtf

18 Ayrton@CosmoPix_R@V2 .3 _FonctionName . gdtf

19 Ayrton@Ghibli@V2 .12 _ - _Soft_V2XX_ - _BladeCorrection . gdtf

20 Ayrton@MagicBlade_FX@V2 .11 _ - _3DReplaced . gdtf

21 Ayrton@MagicBlade_R@V2 .3 _FonctionName . gdtf

22 Basic_LED_PAR@Basic_LED_PAR@Basic_LED_PAR . gdtf

23 Basic_Moving_Head@Basic_Moving_Head@Basic_Moving_Head . gdtf

24 BlenderDMX@LED_PAR_64_RGBW@v0 .3. gdtf

25 BlenderDMX@Moving_Beam@v0 .3. gdtf

26 Blue_Show@Wash_RGBW_Zoom_19x15w@test25ch . gdtf

27 B_Sound@Led_Blinder_2x100@2 .150. gdtf

28 Cameo@PIXBAR_650_CPRO@v0 .3 _fixed_30Ch_Strobe_ - _removed_physics . gdtf

29 Cameo@Q - Spot_15_W@1 .0 _Release . gdtf

30 Cameo@ZENIT_W600@Original_Body_withDmx_Modes_and_defusor . gdtf

31 Cameo@ZENIT_W600@Original_Body_with_full_Dmx_Modesv1 .10. gdtf

32 Cameo@ZENIT_Z120_G2@Beta_v .2.0. gdtf

33 Cameo@ZENIT_Z120_G2_ - _Outrigged@Beta_v .2.0. gdtf

34 Chauvet_DJ@EVE - F50Z@Chauvet_DJ_EVE - F50Z . gdtf

35 Chauvet_Professional@Maverick_Silens_2_Profile@Betav .1.8. gdtf

36 Chauvet_Professional@Ovation_CYC_1_FC@Feb .

_2021_based_on_Quick_Reference_Guide_Rev .4. gdtf

37 China@32x18_RGBWAUV_18ch@0002 . gdtf

38 China_LED_RGBW_7CH@LED_PAR_RGBW@0001 . gdtf

39 Chroma - Q@Studio_Force_II_12@Version_1 .4. gdtf

40 CKC_Lighting@Aurora_Profile_V8@Aurora_Profile_V8_Standard . gdtf

41 CLAYPAKY@ArollaProfileHP@ClayPaky_Official_File_Fw_Ver_1 .8. gdtf

42 CLAYPAKY@Arolla_Profile_HP@V1 .0. gdtf

43 CLAYPAKY@Arolla_Profile_MP@ClayPaky_Official_File_Fw_Ver_1 .3. gdtf

44 CLAYPAKY@Midi - B@V1_1 . gdtf

45 CLAYPAKY@Midi - B@V1_4 .0. gdtf

46 CLAYPAKY@MIni - B@ClayPaky_Official_File_Fw_Ver_2 .6. gdtf

47 CLAYPAKY@MiniXtylos@ClayPaky_Official_File . gdtf

86

48 CLAYPAKY@Mini_Xtylos_HPE@ClayPaky_Official_File . gdtf

49 CLAYPAKY@SharpyPlusAqua@ClayPaky_Official_File_Fw_Ver_1 .4. gdtf

50 CLAYPAKY@Sharpy_Plus@ClayPaky_Official_File_Fw_Ver_2 .5. gdtf

51 CLAYPAKY@XTYLOS@v1 .1. gdtf

52 CLAYPAKY@XtylosAqua@ClayPaky_Official_File_Fw_Ver_1 .4. gdtf

53 Clay_Paky@Sharpy_Plus@V .1.1 _by_StefanoBigoloni .

com_Standard_no_ch15_gobo_2_rotation_fine_it_is_in_progress . gdtf

54 CLF_Lighting@Aorun@v1 .5. gdtf

55 CLF_Lighting@LEDBar_Pro@v1 .0. gdtf

56 CLF_Lighting@Odin@v1 .3. gdtf

57 Contest@Thunder_80@Ver . _1 .0. gdtf

58 DTS_Lighting@Chrome_1_Bracket@REVISION_1 . gdtf

59 DTS_Lighting@Fos_100_Solo_FC@final . gdtf

60 Ehrgeiz@Cobalt_Spot_Plus_5R@1 .27. gdtf

61 ELATION@Cuepix_Blinder_WW2@Cuepix_Blinder_WW2_Rev .1. gdtf

62 ELATION@FUZE_PAR_Z120_IP@Beta_v .1.4. gdtf

63 ELATION@KL_Fresnel_8_FC@1 .1

_Out_for_real_world_testing_added_CMY_and_CMY_Extended . gdtf

64 ELATION@Smarty_Hybrid@1 .3.2. _out_for_real_world_testing_ - _updated_highlight . gdtf

65 Elation_Professional@DARTZ_360@v1 .5. gdtf

66 Elation_Professional@Proteus_Maximus@V1 . gdtf

67 Erik_Nelson_Entertainment@Diamond_Pro_Venue_460@V1 .1. gdtf

68 Erik_Nelson_Entertainment@Diamond_Pro_Venue_600@V2 .1. gdtf

69 Eurolite@LED_Bar_RGB_252_10@24122021 . gdtf

70 Eurolite@LED_PIX -144 @0008 . gdtf

71 Eurolite@THA -100 F@Release_1 .0. gdtf

72 Expolite@Tour - Cyc_540_RGBW@1 .3.0 _finished_29Ch_Mode_ - _out_for_real_life_testing .

gdtf

73 Expolite@Tour - LED_50_XCR_invisible_beam@1 .5.4 _tested_in_real_life . gdtf

74 Expolite@Tour - LED_Pro_28_CM_plus_W_Zoom_MKII@2 .2. _out_for_real_world_testing_ -

_fixed_Channel_Sets . gdtf

75 Expolite@TourLED_Power_4CM - W@1 .5 _Release . gdtf

76 Expolite@Tour_Blinder_400@Final . gdtf

77 FINEART@FINE_1000L_BSWF@20210830 . gdtf

78 FINEART@FINE_1400ZL_PERF@20220118 . gdtf

79 FINEART@FINE_1800_PERF@20210826 . gdtf

80 FINEART@FINE_360ZL_BEAM@20210312 . gdtf

81 Flash_Butrym@BSW_LED_200@0 .0.0.11. gdtf

82 FOS_Technologies@Scorpio_BSW@2021 -12 -23. gdtf

83 FUSION_by_GLP@FUSION_Stick_FS20@Beta_v .1.3. gdtf

84 Futurelight@DMH -80 @V2 .8. gdtf

85 GDTF_Template_test@Axis_Test@axis . gdtf

87

86 Generic@12_Light@v1 .0. gdtf

87 Generic@4 - lite_Blinder@1 .2.3. _out_for_real_world_testing_ - _added_an_new_image .

gdtf

88 Generic@4_Cell_Blinder@4CellBlinderRev0 .1. gdtf

89 Generic@PAR_64_MFL_ (CP62) @1 .1.2. _out_for_real_world_testing_ - _added_emitter . gdtf

90 Generic@PAR_64_NSP_ (CP61) @1 .1.2. _out_for_real_world_testing_ - added_emitter . gdtf

91 Generic@PAR_64_VNSP_ (CP60) @1 .1.2. _Out_for_real_world_testing_ - _eded_emitter . gdtf

92 GLP@JDC -1 @FINISHED . gdtf

93 GLP@JDC -1 @Release_Candidate . gdtf

94 i. Shine@3218_RGB@VER3 . gdtf

95 ICON_Germany@2_Fach_Blinder_COB_2x100W_WW@V2 .0. gdtf

96 JB - Lighting@JBLED_A7@1 .7.0 _updated_3D_Geometry_ -

_todo_check_shutter_in_gMA3_and_real_life . gdtf

97 JB - Lighting@P12_Profile_HC@V_1 .17. gdtf

98 JB - Lighting@P12_Profile_HP@V_1 .18. gdtf

99 JB - Lighting@P12_Profile_WW@V_1 .15. gdtf

100 JB - Lighting@P12_Spot_HC@V_1 .16. gdtf

101 JB - Lighting@P12_Spot_HP@V_1 .17. gdtf

102 JB - Lighting@P12_Spot_WW@V_1 .16 - Kopie . gdtf

103 JB - Lighting@P12_Spot_WW@V_1 .16. gdtf

104 JB - Lighting@P12_Wash_HC@V_1 .15. gdtf

105 JB - Lighting@P12_Wash_HP@V_1 .15. gdtf

106 JB - Lighting@P12_Wash_WW@V_1 .15. gdtf

107 JB - Lighting@P18_MK2_Profile_HC@V_1 .06. gdtf

108 JB - Lighting@P18_MK2_Profile_HP@V_1 .07. gdtf

109 JB - Lighting@P18_MK2_Profile_WW@V_1 .06. gdtf

110 JB - Lighting@P18_MK2_Wash_HC@V_1 .06. gdtf

111 JB - Lighting@P18_MK2_Wash_HP@V_1 .06. gdtf

112 JB - Lighting@P18_MK2_Wash_WW@V_1 .06. gdtf

113 JB - Lighting@P18_Profile_HC@V_1 .04. gdtf

114 JB - Lighting@P18_Profile_HP@V_1 .05. gdtf

115 JB - Lighting@P18_Profile_WW@V_1 .04. gdtf

116 JB - Lighting@P18_Wash_HC@V_1 .04. gdtf

117 JB - Lighting@P18_Wash_HP@V_1 .04. gdtf

118 JB - Lighting@P18_Wash_WW@V_1 .04. gdtf

119 JB - Lighting@P7@V_1 .19. gdtf

120 JB - Lighting@P9_Beamspot_HP@V_1 .05. gdtf

121 JB - Lighting@Sparx18@V_1 .37. gdtf

122 JB - Lighting@Sparx18@V_1 .38. gdtf

123 JB - Lighting@Sparx30@V_1 .02. gdtf

124 JB - Lighting@Sparx_7@0 .9 _added_Mode_2_3 . gdtf

125 JB - Lighting@Varyscan_P3@Beta_v .1.13. gdtf

88

126 LightGO@LED_UMBRELLA_145@1 .05. gdtf

127 LightGO@LED_UMBRELLA_145@2 .013. gdtf

128 Lightmaxx@Multi_Color_Spot_LED_RGBA@VER .2. gdtf

129 Litecraft@AT10_Plus@v1 .3. gdtf

130 Luxibel@B_Narrow@1 .2 _Release . gdtf

131 Marslite@4_x_Mini_LED_Moving_Head_RGBW_Bar@V .1.1 _by_StefanoBigoloni .

com_Multi_mode . gdtf

132 Marslite@LED_BAR_12_PIX_RGB@V .1.1 _Full_Mode_36_CH_Single_Pixel_RGB . gdtf

133 Martin@Mac_Aura_XB@Updated_to_GDTF_1 .1. gdtf

134 Martin_Professional@ERA_300_Profile@20210326 . gdtf

135 Martin_Professional@ERA_600_Performance@20210513 . gdtf

136 Martin_Professional@ERA_600_Profile@20210513 . gdtf

137 Martin_Professional@ERA_800_Performance@20210513 . gdtf

138 Martin_Professional@ERA_800_Profile@20210513 . gdtf

139 Martin_Professional@Mac_2k_profile_II@Roughly_working . gdtf

140 Martin_Professional@MAC_Aura_PXL@20211212 . gdtf

141 Martin_Professional@MAC_Ultra_Performance@20211214 . gdtf

142 Martin_Professional@MAC_Ultra_Wash@20211213 . gdtf

143 Martin_Professional@MAC_Viper_Performance@Rev_1 .5. gdtf

144 Martin_Professional@P3_Global@20210406 . gdtf

145 Martin_Professional@P3_Motion@20210406 . gdtf

146 Martin_Professional@RUSH_PAR_4_UV@Rev .0. gdtf

147 Martin_Professional@VC - Grid_15_16x16@20210126 . gdtf

148 Martin_Professional@VC - Grid_25_8x8@20210125 . gdtf

149 Martin_Professional@VC - Grid_30_8x8@20210123 . gdtf

150 Martin_Professional@VC - Grid_60_4x4@20210122 . gdtf

151 Martin_Professional@VC - Grid_60_8x8@20210122 . gdtf

152 Martin_Professional@VC - Strip_15_16x1@20210126 . gdtf

153 Martin_Professional@VC - Strip_15_32x1@20210126 . gdtf

154 Martin_Professional@VC - Strip_25_16x1@20210125 . gdtf

155 Martin_Professional@VC - Strip_25_8x1@20210125 . gdtf

156 Martin_Professional@VC - Strip_30_16x1@20210123 . gdtf

157 Martin_Professional@VC - Strip_30_8x1@20210123 . gdtf

158 Martin_Professional@VC - Strip_60_4x1@20210122 . gdtf

159 Martin_Professional@VC - Strip_60_8x1@20210122 . gdtf

160 Martin_Professional@VDO_Atomic_Bold@20211206NoMeas . gdtf

161 Martin_Professional@VDO_Atomic_Dot_CLD@20211209 . gdtf

162 Martin_Professional@VDO_Atomic_Dot_WRM@20211209 . gdtf

163 Martin_Professional@VDO_Dotron@20210407 . gdtf

164 Martin_Professional@VDO_Fatron_20_1000mm@20210127 . gdtf

165 Martin_Professional@VDO_Fatron_20_320mm@20201222 . gdtf

166 Martin_Professional@VDO_Sceptron_10_1000mm@20201223 . gdtf

89

167 Martin_Professional@VDO_Sceptron_10_320mm@20201223 . gdtf

168 Martin_Professional@VDO_Sceptron_20_1000mm@20201223 . gdtf

169 Martin_Professional@VDO_Sceptron_20_320mm@20201223 . gdtf

170 Martin_Professional@VDO_Sceptron_40_1000mm@20201223 . gdtf

171 Martin_Professional@VDO_Sceptron_40_320mm@20201223 . gdtf

172 Niethammer@HPZ115D@HPZ115D_V1 .3. gdtf

173 OXO_Light@Pixyline_18_fcw@1 .8.7 _out_for_real_world_testing_ - _finished_36Ch_Mode .

gdtf

174 PRG@Icon_Stage@Ext_Mode_Only . gdtf

175 Prizma_Lighting@PPL - P60@PPL - P60 -1. gdtf

176 Prolights@ArcPod15Q@Rev_1 .4. gdtf

177 Prolights@ArcPod27Q@Rev_0 .8. gdtf

178 Prolights@ArcPod48Q@Rev_1 .6. gdtf

179 Prolights@ArcPod96Q@Rev_1 .31. gdtf

180 Prolights@Aria700Profile@Rev_1 .22 _ - _gobo_image_updated . gdtf

181 Prolights@AstraBeam260IP@Rev_0 .20 _ -

_Real_fade_values_added_fix_focus_channel_sets . gdtf

182 Prolights@AstraWash19PIX@Rev_0 .65. gdtf

183 Prolights@DisplayCobTRWDFC_60@Rev_1 .02. gdtf

184 Prolights@DisplayCobWW_30@Rev_0 .4. gdtf

185 Prolights@EclCTPlusXY26@Rev_0 .1. gdtf

186 Prolights@EclCyclorama050@Rev_1 .9_ - _emitters_CIE_xyY_updated . gdtf

187 Prolights@EclCyclorama100@Rev_1 .8_ - _emitters_CIE_xyY_updated . gdtf

188 Prolights@EclDisplayDAT2700Profile@Rev_1 .2. gdtf

189 Prolights@EclDisplayDAT2700Wash15 -30 @Rev_0 .2. gdtf

190 Prolights@EclDisplayDAT2700Wash25 -50 @Rev_0 .1. gdtf

191 Prolights@EclDisplayDAT3000Profile@Rev_1 .2. gdtf

192 Prolights@EclDisplayDAT3000Wash15 -30 @Rev_0 .1. gdtf

193 Prolights@EclDisplayDAT3000Wash25 -50 @Rev_0 .2. gdtf

194 Prolights@EclDisplayDAT4000Profile@Rev_1 .2. gdtf

195 Prolights@EclDisplayDAT4000Wash15 -30 @Rev_0 .2. gdtf

196 Prolights@EclDisplayDAT4000Wash25 -50 @Rev_0 .1. gdtf

197 Prolights@EclDisplayDAT5600Profile@Rev_1 .2. gdtf

198 Prolights@EclDisplayDAT5600Wash15 -30 @Rev_0 .1. gdtf

199 Prolights@EclDisplayDAT5600Wash25 -50 @Rev_0 .1. gdtf

200 Prolights@EclDisplayDATFCProfile@Rev_1 .4. gdtf

201 Prolights@EclDisplayDATFCWash15 -30 @Rev_0 .2. gdtf

202 Prolights@EclDisplayDATFCWash25 -50 @Rev_0 .2. gdtf

203 Prolights@EclDisplayUN2700Profile@Rev_1 .5. gdtf

204 Prolights@EclDisplayUN2700Wash15 -30 @Rev_0 .2. gdtf

205 Prolights@EclDisplayUN2700Wash25 -50 @Rev_0 .2. gdtf

206 Prolights@EclDisplayUN3000Profile@Rev_1 .5. gdtf

90

207 Prolights@EclDisplayUN3000Wash15 -30 @Rev_0 .3. gdtf

208 Prolights@EclDisplayUN3000Wash25 -50 @Rev_0 .2. gdtf

209 Prolights@EclDisplayUN4000Profile@Rev_1 .4. gdtf

210 Prolights@EclDisplayUN4000Wash15 -30 @Rev_0 .2. gdtf

211 Prolights@EclDisplayUN4000Wash25 -50 @Rev_0 .2. gdtf

212 Prolights@EclDisplayUN5600Profile@Rev_1 .3. gdtf

213 Prolights@EclDisplayUN5600Wash15 -30 @Rev_0 .2. gdtf

214 Prolights@EclDisplayUN5600Wash25 -50 @Rev_0 .2. gdtf

215 Prolights@EclDisplayUNFCProfile@Rev_1 .2_ - _Shutter_default_value_changed . gdtf

216 Prolights@EclDisplayUNFCWash15 -30 @Rev_0 .2. gdtf

217 Prolights@EclDisplayUNFCWash25 -50 @Rev_0 .2. gdtf

218 Prolights@EclFresnel2KDY@Rev_1 .1_ -

_physical_description_added_default_values_fixed . gdtf

219 Prolights@EclFresnel2KTU@Rev_1 .2_ -

_physical_description_added_default_values_fixed . gdtf

220 Prolights@EclFresnel2KTW@Rev_1 .93 _ - _emitters_CIE_xyY_updated_physical_desc .

_added_default_value_fix_CTC_ch_fix . gdtf

221 Prolights@EclFresnelDY@Rev_1 .1_ - _physical_description_added_default_values_fixed

. gdtf

222 Prolights@EclFresnelJDY@Rev_1 .1_ -

_physical_description_added_default_values_fixed . gdtf

223 Prolights@EclFresnelJTU@Rev_1 .1_ -

_physical_description_added_default_values_fixed . gdtf

224 Prolights@EclFresnelJTW@Rev_1 .1. gdtf

225 Prolights@EclFresnelTU@Rev_1 .1_ - _physical_description_added_default_values_fixed

. gdtf

226 Prolights@ECLFresnelTW@Rev_1 .5 _CIE_emitters_fixed . gdtf

227 Prolights@EclFS_19@Rev_1 .2_ - _All_Modes_ - _CTC_channels_fixed . gdtf

228 Prolights@EclFS_26@Rev_1 .2_ - _All_Modes_ - _CTC_channels_fixed . gdtf

229 Prolights@EclFS_36@Rev_1 .2_ - _All_Modes_ - _CTC_channels_fixed . gdtf

230 Prolights@EclFS_50@Rev_1 .2_ - _All_Modes_ - _CTC_channels_fixed . gdtf

231 Prolights@EclGalleryProfileFC@Rev_0 .4. gdtf

232 Prolights@EclMiniFRFC@Rev_1 .2_ - _all_modes . gdtf

233 Prolights@EclPanelTWC@Rev_1 .47 _ - _FW_1 .5_ - _2 .5. gdtf

234 Prolights@EclPanelTWC@Rev_1 .49 _ - _FW_3 .0. gdtf

235 Prolights@EclParDY_24@Rev_1 .1_ - _physical_description_added_default_values_fixed .

gdtf

236 Prolights@EclParFC_24@Rev_1 .3_ -

_physical_values_added_default_values_fixed_CTC_channels_fix . gdtf

237 Prolights@EclParTU_24@Rev_1 .1_ - _physical_description_added_default_values_fixed .

gdtf

238 Prolights@EclProfileCTPlusRGB19@Rev_1 .2_ - _physical_values_added_ - _def .

91

_values_fixed . gdtf

239 Prolights@EclProfileCTPlusRGB26@Rev_1 .3_ - _physical_values_added_ -

_default_values_fixed . gdtf

240 Prolights@EclProfileCTPlusRGB36@Rev_1 .2_ - __physical_values_added_ - _def .

_values_fixed . gdtf

241 Prolights@EclProfileCTPlusRGB50@Rev_1 .3_ - __shutter_default_values_fixed . gdtf

242 Prolights@EclProfileFWDY_19@Rev_1 .3_ -

_RDM_personality_ID_added_physical_description_added_default_value_fixed . gdtf

243 Prolights@EclProfileFWDY_26@Rev_1 .3_ -

_RDM_personality_ID_added_physical_description_added_default_value_fixed . gdtf

244 Prolights@EclProfileFWDY_36@Rev_1 .2_ -

_RDM_personality_ID_added_physical_description_added_default_value_fixed . gdtf

245 Prolights@EclProfileFWDY_50@Rev_1 .3_ - _RDM_personality_ID_added . gdtf

246 Prolights@EclProfileFWTU_19@Rev_1 .1_ -

_RDM_personality_ID_added_physical_description_added_default_value_fixed . gdtf

247 Prolights@EclProfileFWTU_26@Rev_1 .2_ -

_RDM_personality_ID_added_physical_description_added_default_value_fixed . gdtf

248 Prolights@EclProfileFWTU_36@Rev_1 .2_ -

_RDM_personality_ID_added_physical_description_added_default_value_fixed . gdtf

249 Prolights@EclProfileFWTU_50@Rev_1 .2_ -

_RDM_personality_ID_added_physical_description_added_default_value_fixed . gdtf

250 Prolights@EclProfileFWVW_19@Rev_1 .0. gdtf

251 Prolights@EclProfileFWVW_26@Rev_0 .2. gdtf

252 Prolights@EclProfileFWVW_36@Rev_1 .1_ - _Emitters_updated . gdtf

253 Prolights@EclProfileFWVW_50@Rev_1 .0. gdtf

254 Prolights@Lumipix15IP@Rev_1 .0. gdtf

255 Prolights@MiniEclWDDY_19@Rev_0 .2. gdtf

256 Prolights@MiniEclWDDY_26@Rev_0 .2. gdtf

257 Prolights@MiniEclWDDY_36@Rev_0 .2. gdtf

258 Prolights@MiniEclWDDY_50@Rev_0 .2. gdtf

259 Prolights@MiniEclWDTU_19@Rev_0 .1. gdtf

260 Prolights@MiniEclWDTU_26@Rev_0 .1. gdtf

261 Prolights@MiniEclWDTU_36@Rev_0 .1. gdtf

262 Prolights@MiniEclWDTU_50@Rev_0 .1. gdtf

263 Prolights@PixieWash@Rev_0 .6_ - _Shutter_default_value_fixed . gdtf

264 Prolights@Polar3000@Rev_0 .4. gdtf

265 Prolights@RA2000ProfileHB@Rev_1 .38 _ - _real_fade_value_added . gdtf

266 Prolights@StudioCobDY_15@Rev_0 .1. gdtf

267 Prolights@StudioCobDY_30@Rev_0 .1. gdtf

268 Prolights@StudioCobDY_60@Rev_0 .2. gdtf

269 Prolights@StudioCobFC -30 @Rev_1 .1_ - _Pigtail_added_Phisycal_values_added . gdtf

270 Prolights@StudioCobPlusDY2_19@Rev_1 .2. gdtf

92

271 Prolights@StudioCobPlusDY2_37@Rev_1 .3. gdtf

272 Prolights@StudioCobPlusDY2_54@Rev_1 .3. gdtf

273 Prolights@StudioCobPlusTW_20@Rev_1 .0. gdtf

274 Prolights@StudioCobPlusTW_36@Rev_1 .0. gdtf

275 Prolights@StudioCobPlusTW_53@Rev_1 .0. gdtf

276 Prolights@StudioCobTU_15@Rev_0 .1. gdtf

277 Prolights@StudioCobTU_30@Rev_0 .1. gdtf

278 Prolights@StudioCobTU_60@Rev_0 .1. gdtf

279 Prolights@Sunrise2IP@Rev_1 .1_ - _Firmware_v . _1 .1. gdtf

280 Prolights@TabledC@Rev_1 .02. gdtf

281 Pro_light@London_HAZE_1500_Pro@Finale_ - _Ch_fog_as_a_dimmer_attribute . gdtf

282 Robe_Lighting@pixelPATT@13072021 . gdtf

283 Robe_Lighting@Robin_300X_LEDWash@adjusts_channel_sets . gdtf

284 Robe_Lighting@Robin_300_LEDWash@adjusts_channel_sets . gdtf

285 Robe_Lighting@Robin_600X_LEDWash@adjusts_channel_sets . gdtf

286 Robe_Lighting@Robin_800X_LEDWash@adjusts_channel_sets . gdtf

287 Robe_Lighting@Robin_iPointe@11062021 . gdtf

288 Robe_Lighting@Robin_iSpiider@2023 -04 -06

__Pattern_geometry_improvement__Flower_dimmer_revision . gdtf

289 Robe_Lighting@Robin_LEDBeam_150_FW_RGBA@adjusts_acceleration_and_channel_sets .

gdtf

290 Robe_Lighting@Robin_LEDBeam_150_FW_RGBW@adjusts_acceleration_and_channel_sets .

gdtf

291 Robe_Lighting@Robin_LEDBeam_150_RGBA@adjusts_acceleration_and_channel_sets . gdtf

292 Robe_Lighting@Robin_LEDBeam_150_RGBW@adjusts_acceleration_and_channel_sets . gdtf

293 Robe_Lighting@ROBIN_LEDBeam_350_FW@13072021 . gdtf

294 Robe_Lighting@Robin_MegaPointe@13072021 . gdtf

295 Robe_Lighting@Robin_Pointe@04062021 . gdtf

296 Robe_Lighting@Robin_Tetra1@04062021 . gdtf

297 Robe_Lighting@Robin_Tetra2@04062021 . gdtf

298 Robe_Lighting@Robin_Viva_CMY@2022 -11 -24 __SVG_thumbnail_added . gdtf

299 Roxx@Show_Daylight_Medium@TW_A_29062021 . gdtf

300 Roxx@Show_Daylight_Narrow@TW_A_29062021 . gdtf

301 Roxx@Show_Daylight_Wide@TW_A_29062021 . gdtf

302 Roxx@Show_FC_Medium@TW_A_29062021 . gdtf

303 Roxx@Show_FC_Narrow@TW_A_29062021 . gdtf

304 Roxx@Show_FC_Wide@TW_A_29062021 . gdtf

305 Roxx@Show_Tungsten_Medium@TW_A_29062021 . gdtf

306 Roxx@Show_Tungsten_Narrow@TW_A_29062021 . gdtf

307 Roxx@Show_Tungsten_Wide@TW_A_29062021 . gdtf

308 Roxx@Show_TWplus_Medium@TW_A_25062021 . gdtf

309 Roxx@Show_TWplus_Narrow@TW_A_25062021 . gdtf

93

310 Roxx@Show_TWplus_Wide@TW_A_29062021 . gdtf

311 Selecon@Pacific_23 -50 @1 .2. _Out_for_real_world_testing_ - _added_Picture . gdtf

312 set@Ladder_Lights@SteveG . gdtf

313 set@LightCage@SteveGiovanazzi . gdtf

314 set@Scaffold@SteveG . gdtf

315 SGM_Light@G -1 _Beam@Betav .1.3. gdtf

316 SGM_Light@Q -2 @Release_1 .3. gdtf

317 SGM_Light@Q -7 @Release_1 .0. gdtf

318 SGM_Light@Q -8 @Rev_D . gdtf

319 SHEHDS@LEDSpot90W_GDTF@0 .0.1.4. gdtf

320 SHEHDS@LED_FLAT_PAR_18x18W_RGBWAUV@v1 .2. gdtf

321 Silver_Star@Neptune_FX_Wash@v1 .1. gdtf

322 Starway@Megakolor@V1 .0. gdtf

323 Template@Basic_LED_PAR@v0 .1. gdtf

324 Terbly@ELV -G4 - RGBW@Edited_by_Luke_Chikkala . gdtf

325 Terbly@GLW1940@Offical . gdtf

326 Terbly@GLW760@Offical . gdtf

327 Terbly@GLZ100@Offical . gdtf

328 Terbly@GLZ100X@Offical . gdtf

329 Terbly@GLZ300_IP@Offical . gdtf

330 Terbly@SL1200P@Offical . gdtf

331 Terbly@U300@Offical . gdtf

332 TipTop@RGBWAUV_18x18@VER .2. gdtf

333 Varytec@EasyMove_150@24122021 . gdtf

334 WEINAS@BSW360@BSW_360 . gdtf

335 Yuexin_Lighting@YX - MH60@initial_commit . gdtf

94

Figure 1: Appendix: Shader Graph made to resemble the VLB Beams

95

Figure 2: Appendix: ShaderGraph made by Ilett (Ilett, 2021)

96

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit mit dem Titel

Visualizing Stage-Light Fixtures on Standalone Virtual Reality Headsets using the
Unity Engine

selbstständig und nur mit den angegebenen Hilfsmitteln verfasst habe. Alle Passagen, die ich
wörtlich aus der Literatur oder aus anderen Quellen wie z. B. Internetseiten übernommen
habe, habe ich deutlich als Zitat mit Angabe der Quelle kenntlich gemacht.

Hamburg, 07. Februar 2024

	List of Figures
	List of Tables
	List of Codeblocks
	Introduction
	Research Topic
	Motivation
	Goal
	Research Methods
	Structure

	Background
	Terms and Abbreviations
	State of the Art Technology
	The Virtual Concert
	The Virtual Concert "Experience"
	The Stage Visualizer

	Scope

	Research Design
	Literature research
	Protoyping
	Tests
	Asset
	Modules
	GDTF Import
	Light Beams
	Light Projections
	3D Models
	Art-Net Control

	Implementation
	Tests
	Gathering Data
	Running the Tests
	Saving data
	Displaying Data
	Test Scenes

	GDTF Import
	Finding and opening the file
	Reading the XML file
	Parsing the position matrix
	Reading extra files (images and models)

	Light Beams
	Switching to Geometry Beams
	Optimizing with Batching
	Geometry Detail: vertices, resolution...
	Self written Shaders

	Light Projections
	Projection Shader

	3D Models
	Reading the information from the xml-file
	Reading 3DS and GLTF files to create a Mesh
	The Lightsource
	Loading Cubes

	Art-Net Control
	Reading of 8bit and 16 bit channels
	Movement
	Dimmer
	Zoom
	Shutter + Strobo
	Wheels
	Loading a Texture2D

	Evaluation
	Test-Results
	Light Beams
	Gobo Projections
	3D Models

	Conclusion
	Evaluating the Research Design
	Outlook
	Real world usage

	Bibliography
	Appendix

