Hochschule fir Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

Fakultdt Technik und Informatik Faculty of Engineering and Computer Science
Department Fahrzeugtechnik und Flugzeugbau Department of Automotive and
Aeronautical Engineering

Maximilian Friedrichs-Dachale

Establishment of a Digital Interface
Between System Definition and System
Analysis Models to Optimize the Aircraft

Preliminary Sizing Process

Bachelorarbeit eingereicht im Rahmen der Bachelorprifung

im Studiengang Flugzeugbau

am Department Fahrzeugtechnik und Flugzeugbau

der Fakultat Technik und Informatik

der Hochschule fur Angewandte Wissenschaften Hamburg

Erstprifer/in: Prof. Dr. Jutta Abulawi
Zweitprifer/in : Prof. Dr.-Ing. Kay Kochan

Abgabedatum: 04.04.2022

Zusammenfassung
Maximilian Friedrichs-Dachale

Thema der Bachelorthesis
Establishment of a Digital Interface Between System Definition and System Analysis
Models to Optimize the Aircraft Preliminary Sizing Process

Stichworte
MBSE, SysML, Schnittstelle, Datenaustausch, Digitale Prozesskette, Prozess
automatisierung, Systemanalyse, Systemoptimierung, MDO, Aircraft Preliminary Sizing

Kurzzusammenfassung

Im Rahmen dieser Arbeit werden Mdglichkeiten einer digitalen Verknipfung zwischen
Systemsdefinitionsmodellen und Systemanalysemodellen im Flugzeugvorentwurf
untersucht. Eine solche digitale Schnittstelle kénnte eine digitale Prozesskette
ermdglichen, die eine automatisierte multidisziplindre Systemoptimierung erlaubt. Zu
diesem Zweck wird ein digitales Modell eines Flugzeugs mit dem SysML-basierten PTC
Integrity Modeler entworfen. Zusatzlich wird ein Berechnungsmodell in MATLAB erstellt,
mit dem das optimale Preliminary Design des Flugzeugs auf Basis einer zuvor
definierten Zielfunktion berechnet wird. In einem weiteren Schritt werden Methoden fir
einen automatisierten Parameteraustausch zwischen den beiden Modellen erforscht.
SchlieBlich wird die digitale Verbindung hergestellt und tberpruft.

Maximilian Friedrichs-Dachale

Title of the paper
Establishment of a Digital Interface Between System Definition and System Analysis
Models to Optimize the Aircraft Preliminary Sizing Process

Keywords
MBSE, SysML, Interface, Data Exchange, Digital Process Chain, Process
Automatization, System Analysis, System Optimization, MDO, Aircraft Preliminary Sizing

Abstract

In this work, possibilities of a digital link between system definition models and system
analysis models in aircraft preliminary design are investigated. Such a digital interface
could enable a digital process chain that allows automated multidisciplinary system
optimization. For this purpose, a digital model of an aircraft is designed using the
SysML-based PTC Integrity Modeler. In addition, a computational model is created in
MATLAB to calculate the optimal preliminary aircraft design based on a previously
defined objective function. In a further step, methods for an automated parameter
exchange between the two models are explored. Finally, the digital link is established
and verified.

Contents v
Contents

1 Introduction 1

1.1 Motivation 1

1.2 Objectives o L 2

1.3 Literature Review 3

1.4 Structure 3

2 Fundamentals of Model-Based Systems Engineering 4

2.1 Systems Engineeringo 4

2.1.1 Motivation for Systems Engineering 4

2.1.2 Systems Engineering Definition 5

2.1.3 The Systems Engineering Process 6

2.2 Model-Based Systems Engineering 0oL 7

2.2.1 Document-Based Systems Engineering 7

2.2.2 Model-Based Systems Engineering 7

2.3 The SysML o e 9

2.3.1 The SysML Origins 10

2.3.2 The SysML Syntax 10

2.3.3 The SysML Profile 10

2.3.4 Stereotyping 11

2.3.5 Modelling 11

2.4 SysML Diagrams e 12

241 Overview e 12

2.4.2 The Key Diagram Elements, 13

2.4.3 Requirements Lo 15

244 Blocks 16

2.4.5 Block Properties 19

2.4.6 Constraints and Parametric Modelling 22

2.4.7 Packages e 27

2.5 Summaryo 30

3 Fundamentals of Aircraft Preliminary Sizing 31

3.1 Imtroduction 31

3.2 Aircraft Design Sequence 31

3.3 Aircraft Preliminary Sizing L 0oL 37

3.3.1 Introduction and Main Idea 37

3.3.2 The Five Flight Phases 37

Contents A%
3.3.3 The Matching Chart 41
3.3.4 Calculation of the Output Parameters 42

3.4 Tterations in Aircraft Preliminary Sizing 46
3.5 Decision Making in Aircraft Preliminary Sizing 46
3.6 Optimization in Aircraft Preliminary Sizing 48
3.7 Systems Engineering in Aircraft Preliminary Sizing 50
3.8 SUMMATY 51
4 The PTC Integrity Modeler 53
4.1 Introduction L 53
4.2 The PTC Integrity Modeler 53
4.3 User Interface 53
4.4 Modelling 55
4.5 The PTC Integrity Automation Interface 55
4.6 The PTC Integrity Meta Model 56
4.7 Navigation in a Model With the Automation Interface 57
4.8 Controlling the User Interface 59
4.9 Summaryo 60
5 Establishment of the Interface 61
5.1 Introduction L e 61
5.2 OVerview 61
5.3 Modelling the System in SysML 66
5.3.1 Loading the SysML Profile 66
5.3.2 Packages 66
5.3.3 Requirements L Lo 67
5.3.4 Block Definition oo 68
5.3.5 Internal Block Structure oL 69
5.3.6 Constraints 75
5.3.7 Data Types 76
5.3.8 Stereotypes e 7
5.3.9 Parametric Diagram Lo 7

5.4 Mathematical Model of the System in MATLAB 81
5.4.1 Overview e 81

5.5 Interface Between Model Definition and Model Design 87
5.5.1 Introduction 87
5.5.2 Motivation Lo 88
5.5.3 Possible Technical Solutions 90
5.5.4 Overview of the Visual Basic Interface 94
5.5.5 Required Libraries 96
5.5.6 The Visual Basic Code 97
5.5.7 Used Functions o 102

5.6 SUMMATY o e 109

Contents VI
6 Installation and Testing of the Visual Basic Interface 111
6.1 Installation of the Visual Basic Interface 111
6.1.1 Importing the Aircraft Model Into the PTC Integrity Modeler 111

6.1.2 Adding the Executable to the PTC Integrity Modeler Toolbar . . . 111

6.2 Testing of the Visual Basic Interface 112

7 Discussion 116
8 Summary 118
9 Conclusions and Recommendations 119

List of Tables

VII

List

6.1
6.2
6.3

of Tables

Fixed input parameters for the two preliminary designs
Variable input parameters for the two preliminary designs
Most important output parameters for the two preliminary designs

List of Figures VIII

List

1.1

2.1

2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

2.17
2.18

2.19
2.20

2.21
2.22

of Figures

Design groups’ unique visions and interests (taken from [SAD12, fig. 2.15] 1

Evolution of electrical power need (gray: short- to medium-range aircraft

and black: medium- to long-range aircraft, taken from [VIN1S, fig.1]) . . . 4
V model (taken from [VDI21]) 6
Architecture as an example of a model (taken from [ALT12, fig. 3.1]) . . . 8
Stereotyping model elements in SysML (taken from [HOL13, fig. 5.5]) . . 11
Relationship of metaclasses to model elements (taken from [FRIOS, fig.

AB]) o, 12
SysML diagram taxonomy (taken from [FRIOS8, fig. 3.1]) 13
A diagram frame (taken from [FRIOS, fig. 4.8]) 14
Examples of node symbols (taken from [FRIOS, fig. 4.9]) 14
Examples of path symbols (taken from [FRIOS8, fig. 4.10]) 14
Examples of icon symbols (taken from [FRIO8, fig. 4.11]). 15
Exemplary requirement diagram to model the aircraft’s requirements

(based on [FRIOS, fig. 3.2]) 16

Block definition diagram of the aircraft domain to model the aircraft, its
external users and the physical environment (based on [FRIOS, fig. 3.3]) . 18
Block definition diagram of the aircraft block composition, modelling the

the aircraft and its components (based on [FRIOS8, fig. 3.10]) 19
Modelling of the association between the Aircraft block and the Physical
Environment block 21
Exemplary internal structure of the Aircraft block, modelled in an internal
block diagram 22
Modelling the compositions of the equation E = m-c? in a block definition
diagram e 24
Constraining the upper and lower limits of a value property in SysML . . 25
Representation of the parametric equation E = m - c¢? with SysML (based
on [ALT12, fig. 4.16]) 26
Representation of the parametric equation F = m-c? with Simulink (taken
from [ALT12, fig. 4.17]) 27
Representation of the parametric equation E = m - ¢ with SysML 27
Exemplary package structure of the Aircraft model 28

Package diagram showing how the Aircraft model is organized into pack-
ages (based on [FRIOS, fig. 3.19]), 29

List of Figures IX

3.1 Typical mission profiles for three different aircraft: (a) transport aircraft,

(b) fighter, and (c) reconnaissance (taken from [SAD12, fig. 4.2]) 32
3.2 Relationship among the four major design activities (taken from [SAD12,

fig. 22]) . . 33
3.3 Formal design reviews (taken from [SAD12, fig. 2.8]) 34
3.4 Schematic Design Sequence including preliminary sizing, conceptual de-

sign and iteration loops (taken from [SCH19, fig. 2.1]) 36
3.5 Matching chart Lo 42
3.6 Two main groups of design activities in aircraft design (taken from

[SAD12, fig. 1.2]) oo 47
3.7 Evaluation of three presumptive configuration alternatives (taken from

[SAD12, tab. 3.10]) o 48
3.8 Exemplary MDO with three variable design parameters 49
3.9 Systems engineering and aerospace engineering influence on the design

(taken from [SADI12, Fig. 2.3]) 51
4.1 PTC Integrity Modeler user interface 54
4.2 Different tabs within the browser pane 54
4.3 How Visual Basic programs interact with the PTC Integrity Modeler

(taken from [PTCI5]) 56
4.4 Accessing the description of a requirement via the PTC Integrity Modeler

Automation Interface oL 58

5.1 Problems arising with different software landscapes during system defini-

tion and system analysis Lo 62
5.2 Exchange of parameters between both models 63
5.3 Exchange of parameters between both models (more detailed) 65
5.4 Selecting the SysML profile in the PTC Integrity Modeler 66
5.5 Aircraft model package structure 67
5.6 Section from the requirement diagram (operational requirements) 68
5.7 The Aircraft Domain block definition diagram 69
5.8 The internal block diagram of the Airport block 70
5.9 Section of the internal block diagram of the Aircraft block 71
5.10 Section of the block definition diagram of the Aircraft block 72
5.11 The internal block diagram of the Engine block 73
5.12 The internal block diagram of the Fueltank block 73
5.13 The internal block diagram of the Wing block 74
5.14 The internal block diagram of the MassPrediction block 75
5.15 Modelling of the constraints within an internal block diagram 76
5.16 Used data types for the Aircraft model, modelled with a block definition

diagram oL 76
5.17 Custom stereotypes to label model items as input or output 7

5.18 Section of the parametric diagram, Constraint Property for the landing
design constraint Lo oL 7

List of Figures X

5.19

5.20

5.21
5.22
5.23
5.24

5.25
5.26
5.27

5.28

5.29
5.30

5.31

5.32
5.33

5.34

6.1
6.2
6.3
6.4
6.5

9.1

Section of the parametric diagram, Constraint Property for the matching
chart L 78
Section of the parametric diagram, value properties and constraints of the
variable parameters oL Lo 79
Output of the MATLAB program 81
Structure of the MATLAB code 82
Example of an infeasible iteration point (first iteration, coloured in red) . 87
Problem with multi-user support for parallel editing and analysis of the
modelo e 89
XMI metadata interchange L0000 90
Utilization of the database for parameter exchange 91
Parameter exchange with PTC Integrity Modeler SySim, Visual Basic and
Simulink 92
Example of a system simulation perfored with SySim and Visual Basic
(taken from [Incl9, fig. 4.19])o 92
XMI metadata interchangeo oo 93
Integration of the Phoenix Model Center with different analysis tools
(taken from [Int22]) Lo 94

Parameter transfer between system definition software (PTC Integrity
Modeler) and system analysis software (MATLAB) through a Visual Basic

030 i 2 95
Structure of the Visual Basic Program 96
Solution to save and access value parameters within the requirement de-

SCription Lo 103
After execution of the script, the calculated values are displayed at the

Modeler result pane 108
How to import the Aircraft model 111
How to add an executable to the tools ribbon 112
The executable file is pinned to the the tools ribbon 112
Matching chart of the first preliminary design 114
Matching chart of the second preliminary design 115

Status of various design features during the design process (taken from
[SADI12, fig. 1.7]) 120

Mission fuel fraction take-off

List of Symbols XI
List of Symbols
Latin Symbols
Symbol Meaning Unit
A Wing aspect ratio []
a(her) Speed of sound at the cruise attitude [m - s71]
Bey Breguet range factor during cruise [m]
Be, Breguet range factor during loiter [m)]
Cp Drag coefficient []
Cp.,o Zero-lift drag coefficient in the clean condition []
Cy, Lift coefficient []
Crcr Cruise lift coefficient []
CrLomaz,L Maximum lift coefficient during landing []
CL.maz,TO Maximum lift coefficient during take-off []
DI Design index []
e Oswald factor []
ecr Oswald Factor during cruise []
Eonas Glide ratio during the 2" segment []
Ec, Glide ratio during cruise []
Enra Glide ratio during missed approach []
foBs Objective function []
fun Function to minimize (MATLAB fmincon) []
g gravitational constant [m - 572
hcy Cruise attitude [m]
ke Auxiliary factor []
Ib Lower bound (MATLAB fmincon) []
muyro/Sw Wing loading at take-off (kg - m™3]
MOARGO Cargo mass [kg
Mey Cruise Mach number []
mp Fuel mass [kg
M Atternate Mission fuel fraction alternate []
MyyoLp Mission fuel fraction climb []
M¢sor Mission fuel fraction cruise []
Mys pES Mission fuel fraction descend []
Myy 1 Mission fuel fraction landing []
My Loiter Mission fuel fraction Loiter []
[]

Mysro

List of Symbols XII
M fuel,res Reserve fuel weight [kg]
muyr Maximum landing weight [kg]
MMTO Maximum take-off weight [kg]
MMZF Maximum zero fuel weight [kg]
mog Operational empty weight [kg]
mpax Passenger weight [kg]
mpr, Payload [kg]
NpAX Amount of passengers []
ng Amount of engines []
p (hey) Air pressure at cruise attitude [Pal)
R Design range [NM]
Ry Alternate range [N M)
SFCey Specific fuel consumption during cruise [kg-N—1.s71]
SFCr Specific fuel consumption during loiter [kg-N—1.s71]
SLFL Landing field length [m)]
STOFL Take-off field length [m]
Swet/Sw Relative wetted area []
Sw Wing reference area [m?]
tioiter Lotier time [s]
Tro/ (myro - g) Thrust to weight ratio during take-off []
Tro Take-off thrust [N]
ub Upper bound (MATLAB fmincon) []
Vor/Vind Ratio between the cruise speed and the minimum []
drag speed
Vor Cruise speed [m - s71]
Vind Minimum drag speed [m - s71]
x0 Initial point (MATLAB fmincon) []

List of Symbols

XIIT

Greek Symbols

Symbol Meaning Unit

ACp. ¢ Increments in profile drag coefficient associated with | |
trailing-edge flap deflection

ACpq Additional drag coefficient by the landing gear []

ACp s Increments in profile drag coefficient associated with [|
leading-edge flap deflection

~y Heat capacity ratio []

YOLB Steady gradient of climb during the 2"d segment []

YMA Steady gradient of climb during missed approach []

1 Engine by-pass ratio []

o Ratio of the air stream density at a chosen reference | |

station relative to sea level standard atmospheric
conditions

List of Abbreviations X1V

List of Abbreviations

Abbreviation Meaning

CDR Conceptual Design Review

CS Certification Specification

FAR Federal Aviation Regulation

ibd Internal Block Diagram

INCOSE International Council on Systems Engineering
MBSE Model-Based Systems Engineering
MDO Multidisciplinary Design Optimization
MOE Measures of Effectiveness

MIWG Model Interchange Working Group
OMG Object Management Group

par Parametric Diagram

PDR Preliminary Design Review

pkg Package Diagram

req Requirement Diagram

SE Systems Engineering

SysML System Modeling Language

TLAR Top Level Aircraft Requirements
UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

1 Introduction 1

1 Introduction

1.1 Motivation

The Wright Brothers would certainly be surprised to see the evolution that aircraft design
has undergone since they designed their Wright Flyer. Today’s passenger aircraft are ex-
tremely technically advanced, complex, and interconnected systems. Consequently, the
design process has changed dramatically. Nowadays, thousands of engineering specialists
are involved in aircraft development over decades and across continents. The engineers
belong to many different design domains, transforming the knowledge that has accu-
mulated over the last century into a finished aircraft. With so many technically highly
specialized design groups, it can be challenging to maintain a common understanding of
the final product (see fig. 1.1).

Figure 1.1: Design groups’ unique visions and interests (taken from [SAD12, fig. 2.15]

1 Introduction 2

It might then be helpful to take a step back and look at the aircraft as a whole again.
This can be done, for example, by creating a digital model of the aircraft, into which
the individual design group’s visions are then integrated. This approach is called Model-
Based Systems Engineering (MBSE).

Besides a common understanding, a digital model also offers other advantages. For
instance, the requirements for the system or certain test cases can be easily assigned
to the individual system components. This ensures that the aircraft is developed in
accordance with the stakeholder requirements. In addition, a digital model that covers
the entire system facilitates the modelling of interfaces between different design domains.
Moreover, a digital model allows easy variation possibilities. This can be useful to
customize the aircraft to the individual customer requirements, without major additional
costs.

These and other advantages have made MBSE an essential element of aircraft design.
At the same time, aircraft are largely designed with the help of mathematical models.
Calculation software, such as MATLAB, offer special optimization functions that can be
used for multidisciplinary design optimizations (MDO). They enable to find the combi-
nation of several variable parameters that leads to an optimal design. In this way, many
different aircraft designs can be computed in a short time, which can then be compared
with each other. Also, the computational models are required for the evaluation of the
requirements. This assures a continuous design improvement.

However, in an MBSE approach, the input values required for these calculation programs
are often stored inside the digital system definition model. In addition, the output
parameters of these calculations also need to be stored in the system definition model.
A manual transfer of the parameters between the two models takes a lot of time. This
can reduce the incentive to evaluate many different designs, resulting in a poorer overall
design. Furthermore, data transfer errors or inconsistencies can occur in the digital
model.

A digital interface between the system definition model and the system analysis models
could provide a solution for that. Especially during the aircraft preliminary design stage,
an automatic parameter transfer can be advantageous. That is because design changes,
iterations and the calculation of different designs are particularly common at this stage.
At the same time, MBSE plays an important role at the beginning of the design process.

1.2 Objectives

In this thesis, the digital linking of system definition software and system analysis soft-
ware will be investigated. This is carried out using the example of the aircraft preliminary
sizing process.

First, a digital model of an aircraft will be developed. For this purpose, the popular
Systems Modeling Language (SysML) will be used. The aircraft model will be mod-

1 Introduction 3

elled with the the PTC Integrity Modeler. It will contain the Top Level Requirements
(TLAR) and the mission definition required for preliminary sizing. Furthermore, the
basic architecture of the aircraft will be modelled.

Additionally, a computational model will be developed in MATLAB that can be used
for preliminary sizing of passenger aircraft. Subsequently, methods for digitally linking
the two models will be explored. The digital connection will then be constructed and
tested in practice.

The digital connection of the two models could form the basis for an end-to-end digital
development process. In particular, multidisciplinary system optimization in the aircraft
design process could be better integrated into an MBSE approach.

1.3 Literature Review

The fundamentals of MBSE and the SysML were primarily taken from [FRIO8] and
[HOL13]. The mathematical relationships for aircraft preliminary sizing are based on the
method presented in [LOF80]. The application of MBSE for aircraft preliminary sizing
was mainly obtained from [SAD12]. Information about the PTC Integrity Modeler was
taken from [PTC19a], [PTC19b] and [Inc19]. The establishment of the digital interface
was mainly performed using the methods presented in [PTC15].

1.4 Structure

This thesis is divided into a theory part, a modelling and programming part and the
practical testing of the digital interface. This is followed by a discussion of the chosen
solution approach, a summary and the conclusions and recommendations.

The theory part first covers the fundamentals of model-based systems engineering in
chapter 2. Then, the fundamentals of aircraft preliminary sizing are discussed in chap-
ter 3. In particular, the method for preliminary sizing of jet aircraft from [LOFS80] is
discussed. Chapter 4 then discusses the software used to model the system definition,
the PTC Integrity Modeler.

Chapter 5 is the main part of this thesis. First, the modelling of the aircraft model in
SysML is described. Then the calculation program for aircraft preliminary sizing, which
is programmed in MATLAB, is presented. After discussing different approaches for a
digital connection, the connection between both models is presented.

In chapter 6, the selected solution is then tested in practice. The following chapter 7
is devoted to a discussion of the selected solution. The thesis then concludes with a
summary (ch. 8) as well as conclusions and recommendations (ch. 9).

2 Fundamentals of Model-Based Systems Engineering 4

2 Fundamentals of Model-Based Systems
Engineering

2.1 Systems Engineering

2.1.1 Motivation for Systems Engineering

The past decades have led to many technological innovations. For example, electronics
has become an increasingly important part of modern systems. This also applies to
modern aircraft. Newly developed aircraft are far more computerized today than they
were 50 years ago (see fig. 2.1).

Figure 2.1: Evolution of electrical power need (gray: short- to medium-range aircraft
and black: medium- to long-range aircraft, taken from [VIN1S, fig.1])

Additionally, the interconnectivity of systems has increased. Today, most systems can
no longer be treated as stand-alone, but behave as part of a larger whole [FRIOS8, p. 3].
It often proves useful to assign a technical resource for different purposes. For instance,
a modern aircraft engine does not only generate thrust, but is also required for electric
power generation and cabin ventilation. Both the introduction of new technologies as

2 Fundamentals of Model-Based Systems Engineering 5

well as the increasing interconnectivity has led to an increase of system complexity.

Apart from new technologies, new perspectives can lead to an increase of complexity as
well. Lately, environmental concerns and resource scarcity made it necessary to consider
a product during all phases of its life cycle. This so called life-cycle engineering can lead
to additional requirements during the product design, which in turn can increase the
complexity of the design process.

Additionally, changes in the way of working have led to new challenges for engineering
design teams. Today, the design teams usually consist of people from different compa-
nies that work from different locations. All in all, the way of working is much more
interdisciplinary, which can lead to communication problems [HOL13, p.82].

Finally, even the most modern technical systems cannot compete if they are not oriented
to the stakeholders requirements. Today, products are designed to fit the requirements
of many stakeholders through minor modifications. This is made possible by effective
variant management, which also saves development time and costs.

In summary, some of the main challenges in engineering are the increase of complexity,
communication barriers and new customer requirements such as product variance and
life-cycle engineering. In particular, the increase in complexity has two key effects.
First, it is more likely that the complexity will be underestimated. That can lead to
exploding development time and costs or to a faulty design [HOL13, p.80]. Additionally,
the complicated integrated behaviour can lead to more "opaque" errors [BOE11].

Originally developed to help understand and manage complexity, the systems engineering
(SE) discipline aims at solving the problems named above. The following chapter will
explain the main principles of systems engineering.

2.1.2 Systems Engineering Definition

The International Council on Systems Engineering (INCOSE) defines systems engineer-
ing as:

‘An interdisciplinary approach and means to enable the realization of suc-
cessful systems. ~ [INCO4, p.12]

Another definition is given by [EIS08, p.5]:

‘Systems engineering is an iterative process of top-down synthesis, develop-
ment and operation of a real-world system that satisfies, in a near optimal
manner, the full range of requirements for the system.” [EIS08, p.5]

All in all, the application of systems engineering looks at a system as a whole with all
its different disciplines. Systems engineering considers the whole life cycle of a system,
as well as the needs of every stakeholder in a multidisciplinary fashion. The main goal
of systems engineering is to design, produce and manage complex systems over their life
cycles [PTC19b, p.1].

2 Fundamentals of Model-Based Systems Engineering 6

2.1.3 The Systems Engineering Process

A systems engineering approach usually follows a development cycle similar to fig. 2.2.
The so called V-model was first introduced in 1995 in software development to describe
a formal linking of tasks in interdisciplinary product development [VDI21]. The product
development usually starts with the decomposition of stakeholder requirements. Stake-
holders are individuals, teams, organizations or classes that have an interest in a system
[ISO11, p. 2]. The stakeholder requirements are then converted into system require-
ments. After that, the system architecture is defined. The definition starts at the
general system level and will be refined down to the system element level over time. At
the same time, the system requirements are refined down to the system element level.
After that, the implementation of the system elements can take place (the lower tip of
the V). The system elements are then integrated to the overall system. The system is
then validated, starting at the system element level and finishing at the whole system
level.

Figure 2.2: V model (taken from [VDI21])

Fig. 2.2 illustrates two important concepts of systems engineering, that are of particular
relevance to this thesis. One basic concept of systems engineering is that reference is
made to the requirements throughout the whole development cycle. This can lead to
an iterative approach if the requirements prove to be infeasible at a later design stage
(grey arrows in fig. 2.2). Furthermore, the development is accompanied by modelling

2 Fundamentals of Model-Based Systems Engineering 7

and analysis during the whole design period (blue outer "V" in fig 2.2).

2.2 Model-Based Systems Engineering

2.2.1 Document-Based Systems Engineering

The previous chapter has emphasized the importance of considering the system as a
whole. However, this is not always very easy. In the traditional, document based, ap-
proach the system requirements are usually spread across different documents, drawings
and spreadsheets. This makes it difficult to infer from the final system architecture and
system validation back to the original system requirements [ALT12, p. 2]. That however
results in inefficiencies and potential quality issues. The quality issues often show up
during integration and testing, or worse, after the system is delivered to the customer
[FRIOS, p.16].

Another disadvantage of document-based systems engineering is that documents rely
on the underlying written language. However, written language is inherently flexible in
interpretation, which can lead to misunderstandings [BAR16] .

A document-based approach also makes it difficult to maintain or reuse the system
requirements and design information for an evolving or variant system design [FRIOS,
p.16]. An alternative approach is model-based systems engineering (MBSE), which is
presented in the next chapter.

2.2.2 Model-Based Systems Engineering

Unlike the document-based approach, in model-based systems engineering a digital
model is the primary means of information sharing between engineers [PTC19b, p.1].
This means, that the information that was previously captured in documents is now
captured in a so called model repository, which is a collection of all model items. MBSE
is intended to facilitate systems engineering activities that have traditionally been per-
formed using the document-based approach and result in enhanced communications,
specification and design precision, system design integration and reuse of system arte-
facts [FRIO8, p.17]. One of the most widely accepted definitions for MBSE is:

‘Model-based systems engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis, verification and
validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases. ~ [INCO07, p.15]

It should be mentioned, however, that both the document-based and model-based ap-
proaches represent two extremes. In practice, there is usually a mixture of both ap-
proaches, with a move towards more model-based systems engineering. Furthermore,
some tools used for a MBSE offer the possibility to automatically create documents

2 Fundamentals of Model-Based Systems Engineering 8

from the models. These documents can then be further used to report the informa-
tion [ALT12, p. 69]. This thesis is only concerned with MBSE. Therefore, some basic
concepts of MBSE will be discussed in the next chapters.

The System Model

In model-based systems engineering, a system model serves as the basis for the entire
systems engineering process. According to [ALT12, p. 20|, a model is an abstract
description of the reality. Abstraction means discarding details and transferring the
reality to something more general or simple. The model’s level of detail is chosen, so
that the model achieves a desired result.

In addition, different abstractions of the same object of observation lead to different
views. For example, fig. 2.3 shows two different views of a house with two different levels
of abstraction. The concept of views makes it possible for different system participants
to see only the system elements and level of abstraction that are relevant to them.

Figure 2.3: Architecture as an example of a model (taken from [ALT12, fig. 3.1])

A model always includes a realisation. The realisation can be created with the help of
the information that is contained in the model. For example, a house could be built
with the help of a model similar to fig. 2.3 [ALT12, p. 21]).

In MBSE, a system model is the coherent output of all systems engineering activities.
It integrates system requirements, design, analysis and verification models to address
multiple aspects of the system in a cohesive manner, rather than a collection of individual
models [FRIO8, p.20]. The emphasis is placed on evolving and refining the model using
model-based methods and tools [FRIO8, p.17]. A primary use of the system model is
to design a system that satisfies system requirements and allocates the requirements to
the systems components [FRIO8, p. 17]. If supported by an execution environment, the
model may also be simulated. This ensures verification of the design at an early stage
(see fig. 2.2).

When modelling a system, it must be ensured that the model meets the model’s purpose.

2 Fundamentals of Model-Based Systems Engineering 9

The systems engineer must be aware of the required model breadth (which parts of a
system should be modelled) and the required model depth (the level of design hierarchy
of the system). Furthermore, a good model must be consistent and have the possibility
to integrate with other models [FRIO8, p.23].

Usually, system models are created with special modelling software (see ch. 4). Different
modelling software can be based on different modelling languages. In order to understand
a model, the modelling language on which the model is based must be understood. That
is, the syntax (notation) and the semantics (meaning) of the chosen modelling language
must be known. Otherwise the model remains incomprehensible to the user [ALT12,
p. 20]. A frequently used modelling language, the System Modeling Language (SysML)
will be presented in ch. 2.3.

Motivation for Model-Based Systems Engineering Approach

Now that the basic concepts of MBSE are introduced, the motivation for an MBSE
approach are identified. As already mentioned in in ch. 2.1, a MBSE approach considers
at a system as a whole. This leads to a shared understanding of the system across the
development team and other stakeholders. Together with the ability to integrate views
of the system from multiple perspectives, the overall communication is enhanced [FRIOS,
p.20].

When the underlying modelling language is clearly defined, there is less room for mis-
conceptions than in a written document. Therefore, a MBSE approach leads to more
complete, unambiguous and verifiable requirements [FRIO8, p.20]. Since all the system
information is stored in one model, the requirements can be easily traced to other sys-
tem elements. This improves the overall quality of the design. A MBSE approach also
improves the ongoing requirement validation and design verification (see fig. 2.2). That
can improve the design and reduce the overall development risk [FRIO8, p.20].

Another advantage of MBSE is the increase of productivity. The traceability of require-
ments enable a faster impact analysis of requirements and design changes [FRI08, p.20].
Furthermore, MBSE allows simultaneous engineering or rapid design iterations [[WA15].
Additionally, a possible reuse of models and the automated document generation can
improve the productivity. All in all, a MBSE approach can improve the design quality
while reducing costs and development time.

2.3 The SysML

The previous chapters have demonstrated the necessity of MBSE. However, there is
a wide variety of different modelling approaches [BOE11]. The choice of the modelling
approach has an influence on the success of the model. A widely used modelling language
is the Systems Modeling Language (SysML), which is is used for modelling in this thesis

2 Fundamentals of Model-Based Systems Engineering 10

(see ch. 5.3). For this, the fundamentals of the SysML are explained in the following
chapters.

2.3.1 The SysML Origins

The SysML is a general-purpose graphical system modelling language. In particular, the
language provides graphical representations with a semantic foundation for modelling
system requirements, behaviour, structure and parametric relationships, which is used
to integrate with other engineering analysis models [Grol2]. Most importantly, the
language provides a means to capture the system modelling information as part of an
MBSE approach without imposing a specific method on how this is performed [FRIOS8,
p.31].

The SysML originates from an initiative between the Object Management Group (OMG)
and the International Council on Systems Engineering (INCOSE) in 2003 and was meant
to adapt the Unified Modeling Language (UML) for systems engineering applications
[HOL13, p.83]. The UML is also a general-purpose graphical modelling language that
has its origins in software engineering. Approximately half of the UML language was
reused for the SysML [FRIO8, p.64]. Nevertheless, some concepts like the parametric
diagram or the requirement diagram are only a part of the SysML and are not contained
in the UML.

2.3.2 The SysML Syntax

Like all programming languages, the SysML is defined by a certain syntax. The SysML
syntax consists of the concrete syntax and the abstract syntax. The concrete syntax
is the uniform notation of the language. A uniform notation is the basis to prevent
misunderstandings, since all stakeholders have the same understanding of the system
[ALT12, p. 30].

The abstract syntax is called meta model and defines the item types (such as classes,
attributes and operations) that exist in the model and their properties [PTC15, p. 2].
Additionally, the meta model defines how the modelling elements relate to one another
[HOL13, p. 127]. This is achieved through metaclasses that are related to each other
using relationships such as generalizations and associations [FRIO8, p. 66].

Since the SysML is a graphical modelling language, each element of the abstract syntax
has its own graphical representation. To fully comply with the SysML, a SysML based
modelling software must implement both the concrete syntax and abstract syntax [Gro12,
p.13].

2.3.3 The SysML Profile

An UML profile is the mechanism used to customize the UML language. By adding ad-
ditional profiles to the UML, the metaclasses from existing meta models can be extended

2 Fundamentals of Model-Based Systems Engineering 11

or modified to adapt for different purposes [Grol2, p.141]. The systems engineering ex-
tensions to the UML in SysML are defined by a profile called the SysML Profile [FRIOS,
p. 67]. That means that the SysML meta model is built in the UML meta model.

2.3.4 Stereotyping

Another way to configure the UML to one’s specific needs are stereotypes. Stereotypes
are a way to extend the UML by providing elements from the meta model by additional
meaning [ALT12, p. 26]. Possible applications of this function would be, for example, the
assignment of the supplier to certain modelled parts or to differentiate between software
and hardware model elements. Fig 2.4 shows how an arbitrary model element (upper
box), which belongs to an arbitrary meta class, is assigned a stereotype (bottom box).
This way, for example, a model element "CPU" could be assigned a stereotype called
"Hardware".

Figure 2.4: Stereotyping model elements in SysML (taken from [HOL13, fig. 5.5])

2.3.5 Modelling

When modelling a system using the SysML, the concrete syntax is mapped to the ab-
stract syntax. That means that model elements become instances of the respective
metaclass defined in the meta model. The properties of the metaclass are then inherited
by the model elements.

Fig. 2.5 shows the relationship between different model items (in the middle) and the
SysML meta model. The model item Pilot is an instance of the SysML metaclass Actor.
Thus, the pilot inherits the properties defined in the metaclass Actor. The blocks Wing

2 Fundamentals of Model-Based Systems Engineering 12

and Airplane are both instances of the SysML stereotype Block. As a result, the pilot
element has different properties than the Wing and the Airplane block.

Figure 2.5: Relationship of metaclasses to model elements (taken from [FRIOS, fig. 4.5])

A SysML modeling tool that complies with the SysML specification enforces the meta
class properties, constraints, and relationships on the information entered or retrieved
from the model [FRIO8, p.68].

2.4 SysML Diagrams
2.4.1 Overview

As mentioned earlier, the SysML is a graphical modelling language. That implies, that
model items are created, modified or deleted by editing diagrams. The items displayed
on a diagram can therefore be seen as symbols representing underlying model items.
The SysML offers a total of nine different diagrams for different applications of MBSE
(see fig. 2.6) [ALT12, p. 40]. In the next chapters, however, only the diagrams that are
important for this thesis will be presented (red borders in fig. 2.6).

2 Fundamentals of Model-Based Systems Engineering 13

Figure 2.6: SysML diagram taxonomy (taken from [FRIO8, fig. 3.1])

A Requirement diagram represents text-based requirements and their relationship with
other requirements, design elements and test cases to support requirements traceabil-
ity [FRIO8, p. 30]. It is an extension by SysML and cannot be found in UML. The
requirement diagram will be explained in ch. 2.4.3.

A block definition diagram represents structural elements called blocks, and their com-
position and classification [FRIO8, p. 30]. It is a modification of the UML class diagram
and will be introduced in ch. 2.4.4.

The internal block diagram is used to model the internal structure of a block. It repre-
sents properties, interconnections and interfaces between the parts of a block [FRIOS, p.
30]. The internal block diagram is a modification of UML composite structure diagram
(see ch. 2.4.5).

The parametric diagram represents constraints on property values used to support en-
gineering analysis [FRIO8, p. 30]. It is not a part of the UML and will be explained in
ch. 2.4.6.

The package diagram can be used to model the structure of so-called packages. Packages
are comparable to file folders and are used to structure model elements. The package
diagram will be explained in ch. 2.4.7.

2.4.2 The Key Diagram Elements

Fach SysML diagram has a diagram frame consisting of a rectangle with a header. The
header contains the standard information like the diagram type and the diagram name.
It can also contain additional information like the specialized use or the type of the

2 Fundamentals of Model-Based Systems Engineering 14

model element that the diagram represents. Each diagram can also be extended by an
optional note containing additional information (see fig. 2.7).

Figure 2.7: A diagram frame (taken from [FRIOS8, fig. 4.8])

The diagram content area consists of the graphical elements that represent underlying
elements in the model. The graphical elements can be divided into three groups: node
symbols, path symbols and icon symbols (see fig. 2.8, 2.9 and 2.10). A node is a
symbol that can contain text and/or other symbols to represent the internal detail of
the represented model element [FRIO8, p. 73].

Figure 2.8: Examples of node symbols (taken from [FRIOS8, fig. 4.9])

Path symbols are lines that may have multiple additional adornments such as arrows
and text strings [FRIO8, p. 73]. They are normally used to create relationships between
model elements.

Figure 2.9: Examples of path symbols (taken from [FRIOS8, fig. 4.10])

2 Fundamentals of Model-Based Systems Engineering 15

Icons are typically used to represent low-level concepts that do not have further internal
details [FRIO8, p. 74]. If the model element represented by an icon has properties, they
are displayed in a text string floating near the object (see fig. 2.10).

Figure 2.10: Examples of icon symbols (taken from [FRIOS, fig. 4.11])

Now that the basic elements of a SysML diagram have been introduced, the next chapters
will explain the different diagram types.

2.4.3 Requirements

As stated earlier, requirements form the starting point of every new system development
or adjustment. Requirements usually consist of a description and a unique identification.
As part of an MBSE approach, requirements can either be created and edited directly in
the modelling tool or, alternatively, imported from a requirement management database.

There are different types of requirements. Functional requirements specify the behaviour
of the system or the system components [ALT12, p. 10]. They can only be satisfied by
blocks or block properties of type part [PTC19a]. Blocks and block properties of type
part are primarily used to model a system’s internal structure. They will be discussed
in more detail in the next chapter.

Performance requirements allow quantitative statements and can be satisfied only by
block properties of type value [PTC19a]. Block properties of type value are primarily
used to assign value properties to system components (see ch. 2.4.5). A physical re-
quirement specifies the physical characteristics and/or physical constraints of a system
or a system part [Inc22]. They may be derived from performance requirements. Re-
quirements can be modelled in so-called requirement diagrams, which are discussed in
the following chapter.

The Requirement Diagram (req)

As stated earlier, with MBSE the requirements are managed directly as part of the digital
model. A requirement diagram (req) is used to depict the requirements that are typically
captured in a text specification [FRIO8, p.34]. It is possible to group requirements
depending on certain criteria or to model hierarchical relationships among them. In
fig. 2.11, the requirement "REQ005" represents a rather vague top-level requirement.
The top-level requirement can contain multiple lower-level requirements to further break
down the top-level requirement (see REQ016). This can be modelled via a containment
relationship (g-.). The lower-level requirements can also be further specified in the same
way. (see fig. 2.11).

2 Fundamentals of Model-Based Systems Engineering 16

Figure 2.11: Exemplary requirement diagram to model the aircraft’s requirements (based
on [FRIO8, fig. 3.2])

Furthermore, requirements can be linked to other requirements, design elements, and
test cases using derive, satisfy, verify, refine, trace, and copy relationships [FRIOS8, p.
34]. That way, traceability of requirements throughout the overall hierarchical structure
of the system is ensured. Fig. 2.11 shows that the aircraft satisfies the requirement
REQO005. The requirement diagram can also be used to link requirements to the different
stakeholders or test cases. That way, it can be ensured that the requirements address
the stakeholders needs [FRIOS, p.7].

Some modellers represent different types of requirements differently. For example, in fig.
2.11 performance requirements are displayed in blue and requirements of no particular
type are displayed in orange.

2.4.4 Blocks

Blocks are one of the key model elements in SysML [PTC19b, p.13]. According to
[FRIOS8], a block is defined as

2 Fundamentals of Model-Based Systems Engineering 17

“a very general modeling concept in SysML that is used to model a wide

variety of entities that have structure such as systems, hardware, software,
physical objects, and abstract entities. That is, a block can represent any real
or abstract entity that can be conceptualized as a structural unit with one or
more distinguishing features.

2

A block can be further specified by assigning properties, activities, operations or ports
to it. That way the properties, behaviour and interfaces can be modelled as desired.
Blocks can be modelled in a block definitions diagram, which is presented in the next
chapter.

The Block Definition Diagram (bdd)

The block definition diagram (bdd) is used to define blocks in terms of their features
and their structural relationships with other blocks [FRIO8, p. 96]. The block definition
diagram can be used to model external systems, users and other entities that a system
may directly or indirectly interact with [FRIO8, p. 34].

Fig. 2.12 shows the top level block, the Aircraft Domain. It can be seen that the aircraft
domain is composed of the aircraft, the physical environment, the cargo and the aircraft
occupants. This is represented through the black diamond symbol (). Furthermore, it
is possible to model subclasses of different properties through the hollow triangle symbol
(). Subclasses are specializations of classes from more generalized classes [FRIOS8, p.
37]. Fig. 2.12 shows that the pilot and the passenger are both subclasses of the Aircraft
Occupant.

2 Fundamentals of Model-Based Systems Engineering 18

Figure 2.12: Block definition diagram of the aircraft domain to model the aircraft, its
external users and the physical environment (based on [FRIOS8, fig. 3.3])

The block definition diagram can also be used to model the multiplicity of certain model
elements. The multiplicity can be defined for the start or end role of a relationship.
It can represent an undetermined maximum number of external entities (*), a single
number (x) or a range (x..y) [FRIO8, p. 37]. Fig. 2.12 shows that the aircraft domain
contains 250 passengers and between one to three pilots.

A block definition diagram can also be used to decompose a system into its components.
Fig. 2.13 shows the system hierarchy of the Aircraft block. It can be seen that the
aircraft consists of two engines, at least one wing, one fuel tank and a mass prediction
block. Another block definition diagram could then represent the system hierarchy of
the engines. That way the system hierarchy can be depicted from the top-level domain
block (e.q. the aircraft domain) down to aircraft components (e.q. a single bolt of the
engine) [FRIO8, p. 37].

2 Fundamentals of Model-Based Systems Engineering 19

Figure 2.13: Block definition diagram of the aircraft block composition, modelling the
the aircraft and its components (based on [FRIOS, fig. 3.10])

2.4.5 Block Properties

Until now, blocks have been used to define the internal structure of a system. Now these
blocks are to be filled with additional information. For this the SysML model element
block property is used.

SysML classifies the block properties into three different types, which can be used for
three different applications. Block properties can be either of type value, part and ref-
erence property. The individual block property types will be explained in the following.

Part Properties

SysML part properties are the SysML equivalent to the UML part type. An UML part
is a property which is contained by a class using composition. That means that all part
properties are destroyed when the containing class instance is destroyed [uml20].

2 Fundamentals of Model-Based Systems Engineering 20

Part properties describe the decomposition hierarchy of a block and provide a critical
mechanism to define a part in the context of its whole [FRIO8, p. 95]. They are always
owned by a block. Therefore, they are properties that are intrinsic to the block but which
may have their own identity. A composition relationship () creates part properties
between the owning block and the blocks that it is composed of [HOL13, p. 94]. This
means that every time a composed relationship is modelled in a block definition diagram,
a part property is created for the parent block as well. For example, if it is modelled
in the block definition diagram that the Aidrcraft block is composed of the Engine block
(see fig. 2.13), the Aircraft block also receives the part property Engine. Consequently,
part properties allow the same block to be reused in different contexts.

Value Properties

Value properties are used to describe quantifiable physical, performance and other char-
acteristics of a block such as its weight or speed [FRIOS8, p. 95].

Unlike part properties they are typed by value types. The intent of the value type is
to provide a uniform definition of a quantity that can be shared by all value properties.
Value type definitions can be reused by typing multiple value properties with the same
value type [FRIO8, p. 113]. A value type can be based on the fundamental types (e.q.
Integer, Boolean, Real or String) or can be further characterized by adding a dimension
and/or unit.

Block properties of type value can be assigned an initial value. In addition, value proper-
ties have the particular feature that they can be related by using parametric constraints
(see ch. 2.4.6).

Reference Properties

Reference properties are referenced by a block, but not owned by it. An association
between two blocks creates a reference property in the "from block" to the block at the
other end of the association [HOL13, p. 94].

Fig. 2.14 shows an exemplary association between the Aircraft and the Physical Environ-
ment block, that was modelled in a block definition diagram. The association represents
that the Aircraft is operated in the Physical Environment. This association does not
symbolize a hierarchy as with part properties. Still, the association creates a reference
property in each block to the other block.

2 Fundamentals of Model-Based Systems Engineering 21

Figure 2.14: Modelling of the association between the Aircraft block and the Physical
Environment block

Block properties can be modelled in so-called internal block diagrams. They will be
presented in the next chapter.

The Internal Block Diagram (ibd)

Internal block diagrams (ibd) are used to describe the internal structure of a block in
terms of its value properties and how its parts are interconnected.

Fig. 2.15 shows the schematic structure within the aircraft block. It can be seen that
the aircraft block has an engine part property with a multiplicity of 2 and at least one
wing and one fuel tank. Additionally, the aircraft has two value properties: the cruise
Mach number and the cruise attitude.

2 Fundamentals of Model-Based Systems Engineering 22

Figure 2.15: Exemplary internal structure of the Aircraft block, modelled in an internal
block diagram

Even though the information content of the block definition diagram (fig. 2.13) and the
internal block diagram (see fig. 2.15) does not differ much, the internal block diagram
can be further elaborated from here. For example, the fuel flow from the tank to the
engine or a mechanical connection of the engine and the wing could be modelled.

However, the detailed modelling of the internal structure of blocks will be neglected in
this thesis. For more information on the different uses of internal block diagrams it is
referred to [FRIO8] or [HOL13].

2.4.6 Constraints and Parametric Modelling

The previous chapters have introduced ways to model a system in terms of requirements,
system structure and system properties. A fundamental part of the system design is also
the system analysis. It is beneficial to integrate the underlying mathematical models
into the SysML model. By this, it can be defined how the various system components are

2 Fundamentals of Model-Based Systems Engineering 23

related to each other through the underlying mathematical correlations. Furthermore,
it might provide a means to integrate the SysML model with analysis models [FRIOS,
p.53].

The UML, having its roots in software development, does not offer the modelling of
mathematical relationships. Therefore, the SysML has extended the UML with concepts
for parametric modelling. The fundamental SysML element for parametric modelling is
the constraint block, which is described in the following section.

The Constraint Block

Constraint blocks are similar to conventional SysML blocks, only that they define con-
straints in terms of equations and their parameters instead of systems and their compo-
nents. Just like the SysML blocks, constraint blocks can be defined in block definitions
diagrams. This enables the modelling of hierarchies between different constraint blocks.
Thus, complex constraint blocks can be modelled by reusing lower level constraint blocks
[FRIOS, p. 154].

Fig. 2.16 shows the composition of equation E = m - ¢? (the upper yellow rectangle). It
can be seen that it is composed of the equation y = 22 and a product equation in the
form out = iny - ing (the lower yellow rectangles).

2 Fundamentals of Model-Based Systems Engineering 24

Figure 2.16: Modelling the compositions of the equation £ = m -¢? in a block definition
diagram

As shown in fig. 2.16, the In SysML does not explicitly define the equations. Instead,
only the critical parameters of the equations are defined [FRIO8, p. 51]. This has the
advantage that complicated mathematical backgrounds do not have to be modelled in
detail.

The critical parameters are called constraint parameters. Fig. 2.16 shows, that the
Square constraint y = x? contains the two constraint parameters x and y. The Product
constraints the three constraint parameters out, in; and ine. Through its type, the
parameter can also be constrained to have a specific unit and dimension. For example,
all the constraint parameters in fig. 2.16 are typed "Real".

The Constraint

Each constraint block contains a constraint (see fig. 2.16). In parametric modeling,
the exact mathemathical relationship can be stored in this element in the form of an
equation.

2 Fundamentals of Model-Based Systems Engineering 25

Furthermore, constraints can be used to define the permissible conditions of design
features and the permissible range of the design and performance parameters [SAD12,
p.6]. Fig. 2.17 shows how a constraint is linked to a value property within an internal
block diagram. This allows the upper and lower limits of the value property to be
defined.

Figure 2.17: Constraining the upper and lower limits of a value property in SysML

The Constraint Property

In ch. 2.4.5, it was mentioned that part properties allow to use the same block in
different contexts. Similarly, a constraint block can also be reused in different contexts.
The equivalent concept to the part property is called a constraint property and is typed
by a constraint block [FRIO8, p. 152].

Until now, only the structural composition of the constraint blocks has been modelled.
Often, however, one would like to model how the system parameters modelled through
value properties are related to each other. For this, the parametric diagram can be used.

The Parametric Diagram (par)

A parametric diagram (par) is used to model the mathematical relationships between
various value properties through constraint properties. A constraint property is the
use of a constraint block in a specific context, just like a part property is the use of
a block in a particular context (see ch. 2.4.5). Constraint properties enable to bind
the constraint parameters of a constraint block to block properties of type value on a
parametric diagram [PTC19a].

Fig. 2.18 shows the exemplary representation of the parametric equation E = m - ¢?

in a parametric diagram. The yellow blocks with rounded corners are the constraint
properties. They resemble the different components that make up the equation £ =
m-c®. The Square constraint property establishes a relationship between z and y in the
form:

y==x

The Product constraint property establishes a relationship between in; and ing and out
in the form:

2 Fundamentals of Model-Based Systems Engineering 26

out = i1nq * ing

Figure 2.18: Representation of the parametric equation E = m - ¢ with SysML (based
on [ALT12, fig. 4.16])

As explained above, each constraint property has constraint parameters. They are shown
as small rectangles within the inside boundary of the constraint () [FRIO8, p.52]. The
specific values needed to support the evaluation of the constraints (m, ¢, Ereqiistic) are
stored inside the value properties (red blocks with square corners, see ch. 2.4.5). The
constraint parameters are connected to the corresponding value properties through bind-
ing connectors (). The binding connector symbolizes that the value of one constraint
parameter is the same as the connected constraint parameter or value property [FRIOS8,
p.52]. For example, the binding connector on the lower left corner of fig. 2.18 resembles:

The component-wise representation of a mathematical relationship, as shown in fig. 2.18,
is however not SysML-compliant. Instead, one would model the relationship between
e, m, and E,eqiistic Dy a single constraint (see fig. 2.20). However fig. 2.18 shows
the parallels to mathematical modelling with Simulink. Simulink is a commonly used
graphical programming environment based on MATLAB for modeling, simulation, and
analysis of systems. Some modellers offer the possibilities to synchronize parametric

2 Fundamentals of Model-Based Systems Engineering 27

diagrams with Simulink to avoid duplicate modelling in both tools [PTC19a] (see ch.
5.5.3).

Figure 2.19: Representation of the parametric equation £ = m - ¢? with Simulink (taken
from [ALT12, fig. 4.17])

Figure 2.20: Representation of the parametric equation E = m - ¢ with SysML

2.4.7 Packages

For larger models with many items, it becomes increasingly difficult to maintain a clear
structure. SysML models can therefore be organized in a hierarchical tree of packages,
comparable to folders in a Windows directory structure [FRIO8, p. 81]. A package is
a container for other model elements. Any model element is contained in exactly one
container. When that container is deleted or copied, the contained model element is
deleted or copied along with it [FRIO8, p. 81]. Mostly, model items of the same topic

2 Fundamentals of Model-Based Systems Engineering 28

are grouped together in one package. For example, the packages can be divided into
categories such as system structure, system requirements, system behaviour. Fig. 2.21
shows the exemplary package structure of an aircraft model.

Figure 2.21: Exemplary package structure of the Adrcraft model

The packages can be modelled in a package diagram, which will be explained in the
following chapter.

The Package Diagram (pkg)

The package diagram (pkg) can be used to create a comprehensive overview of all model
packages and to display the package hierarchy. It can also be used to create, delete or
edit packages. Fig. 2.22 shows the folder structure from fig. 2.21 displayed in a package
diagram.

2 Fundamentals of Model-Based Systems Engineering 29

Figure 2.22: Package diagram showing how the Aircraft model is organized into packages
(based on [FRIO8, fig. 3.19])

2 Fundamentals of Model-Based Systems Engineering 30

2.5 Summary

The design challenges in engineering have increased significantly over the past decades.
In particular, the increase of complexity and interconnectivity, globalization as well as
the demand for custom designs and life-cycle engineering make it necessary to consider
other design methods. One method to manage these challenges is provided by model-
based systems engineering (MBSE).

In MBSE, a digital model is created that stores the requirements, design, analyses, and
verifications at all stages of a system’s life cycle in one place. By considering the system
as a whole, a common understanding of the system is created among the development
team and other stakeholders. In addition, the digital model elements can be easily
associated with each other. This allows, for example, easy traceability of requirements
or test cases. Furthermore, the reusability of model items is simplified, enabling a simple
design customization according to the stakeholder requirements.

There are different approaches for creating the digital model. One modelling method
is the Systems Modeling Language (SysML). It is an extension of the United Modeling
Manguage (UML) used in software development. The UML is adaptable by additional
profiles and custom stereotypes to the individual needs. This adapts the so-called meta
model of the language, which defines the objects, attributes and associations of the
different modelling items.

The SysML is a general purpose graphical system modelling language. This means that
the digital model can be created and edited from within diagrams. The items displayed
on a diagram can be seen as symbols representing underlying model items. These model
items are stored in a model repository. The SysML provides nine different types of
diagrams for different applications. The requirement diagram (req) represents text-
based requirements and their relationship with other requirements, design elements or
test cases. A block definition diagram (bdd) represents one of the key elements in SysML,
the blocks, and their relationship with other design elements, requirements or test cases.
An internal block diagram (ibd) is used to model the internal structure of a block. The
parametric diagram (par) can be used to model the mathematical relationships between
different parameters specified in the model.

3 Fundamentals of Aircraft Preliminary Sizing 31

3 Fundamentals of Aircraft Preliminary
Sizing

3.1 Introduction

In the previous chapter the main principles of SE, MBSE and the SysML where intro-
duced. This knowledge is important for the system definition model. This chapter is
intended to provide the foundation for the analysis model. For this purpose, the main
principles of the preliminary sizing of civil passenger jet aircraft are presented.

First, the design sequence leading to the preliminary sizing is explained in ch. 3.2. In ch.
3.3, a preliminary design process based on [LOF80] is introduced. Afterwards, important
components of preliminary sizing such as iterations, decision making and optimization
are discussed. Finally, ch. 3.7, serves to create a linkage between aircraft preliminary
sizing and systems engineering.

3.2 Aircraft Design Sequence

Aircraft design starts with defining the aircraft’s intended purpose. The main purpose
of a passenger aircraft is to safely transport passengers and cargo at the lowest possible
operating cost. This differs, for example, from the purpose of a military aircraft or an
ultralight utility aircraft.

The aircraft’s purpose has an influence on the aircraft’s mission. The mission specifica-
tion contains assumptions about the expected operation of an aircraft. It is essential for
making statements about fuel consumption and the resulting aircraft weight. Fig. 3.1
shows the mission profiles of three different aircraft.

3 Fundamentals of Aircraft Preliminary Sizing 32

Figure 3.1: Typical mission profiles for three different aircraft: (a) transport aircraft, (b)
fighter, and (c) reconnaissance (taken from [SAD12, fig. 4.2])

Some important parameters of the mission specification are the cruise attitude h¢y, the
range R and the mission fuel fractions My, (see ch. 3.3).

Additionally, the Top Level Aircraft Requirements (TLAR) are defined. The TLAR
summarize the expected performance of the future aircraft, such as the cruise speed
Veor. Furthermore, basic requirements, such as the number of passengers npayx, the
required runway length s;ppy or the cargo mass moarco, are specified in the TLAR.
Moreover, customer requirements and certification requirements have a great influence

on the TLAR.

The mission specification and the TLAR are determined by market analyses, forecasts,
experience and strategic issues [PET20]. Together they form the listing of requirements
called performance or contract specification. The contract specification forms the start-
ing point of the aircraft design. The following requirements should at least be defined
when the aircraft design begins [SCH19, p. 1-1]:

o Payload mpp,
e Cruise performance
— Range R
— Mach Number Mq,

e Airport performance

3 Fundamentals of Aircraft Preliminary Sizing 33

Take-off field length srorz,
— Landing field length sy,

— Climb gradient for the 2" segment ¢ 1B

Climb gradient for a missed approach s

Conceptual Design

With the requirements listed above, the conceptual design can be initiated (see fig. 3.2).
The conceptual design is intended to define the basic aircraft configuration. Basic design
considerations, such as the position of the wings and the type of control surfaces, are
defined. The conceptual design usually starts with a brain storming stage. The brain
storming aims at finding many different concepts that all meet the requirements. Even-
tually, the best concept based on certain criteria is selected. This is usually performed
through a trade-off analysis (see ch. 3.5). Besides, feasibility studies are performed
to discover potential solutions for certain technical requirements. Overall, during the
conceptual design phase almost all parameters are determined based on decision-making
processes and selection techniques [SAD12, p. 38].

Figure 3.2: Relationship among the four major design activities (taken from [SAD12, fig.
2.2])

Fig. 3.3 shows the aircraft design process with design reviews taking place after each
design round. The design reviews serve to compare the current design with the require-
ments. For this purpose, various tests and evaluations are carried out [SAD12, p. 22].
In case of disapprovements, the previous design step must be performed again. This
leads to iteration loops (see fig. 3.3 & ch. 3.4).

3 Fundamentals of Aircraft Preliminary Sizing 34

Figure 3.3: Formal design reviews (taken from [SAD12, fig. 2.8])

As illustrated in fig. 3.3, the conceptual design phase is concluded with the Conceptual
Design Review (CDR). During the CDR, a formalized check of the proposed system de-
sign is provided, major problems are discussed, and corrective actions are taken [SAD12,
p. 28].

Preliminary Design

If there are no disapprovals at the CDR, the preliminary design can be initiated (see
fig. 3.2 and 3.3). In contrast to the conceptual design phase, where the aircraft is
designed in accordance with non-precise results, the aircraft preliminary design phase
tends to employ the outcomes of a calculation procedure [SAD12, p. 38]. On top of that,
the design requirements for subsystems are developed from system-level requirements.
Furthermore, performance technical measures are determined at the subsystem level

3 Fundamentals of Aircraft Preliminary Sizing 35

[SAD12, p. 29]. These are the major output values that are estimated during the
preliminary design (see ch. 3.3):

1. the aircraft maximum take-off weight: my;ro
2. the engine power or thrust: Tro
3. the wing reference area: Sy

As the name implies, the parameters defined during the preliminary design phase are
not final and will be altered later. This is due to the iterative nature of aircraft design
[SAD12, p. 38]. Fig. 3.4 shows a schematic aircraft design sequence. The associated
iteration loops are symbolized by the red and pink arrows in fig. 3.4. The iterations are
continued until all design requirements are satisfied or if the cost of one new iteration
exceeds the benefits of a the new design.

3 Fundamentals of Aircraft Preliminary Sizing 36

Figure 3.4: Schematic Design Sequence including preliminary sizing, conceptual design
and iteration loops (taken from [SCH19, fig. 2.1])

The aircraft design is further refined during the stages following the preliminary design.
The decisions made during the conceptual design and preliminary sizing stages have a
major impact on the following design process (see fig. 3.4). They will govern the aircraft

3 Fundamentals of Aircraft Preliminary Sizing 37

size, the manufacturing cost, and the complexity of calculations [SAD12, p. 93]. It
is therefore crucial to place a great emphasis on those stages. In the next chapter, a
method for the preliminary sizing of civil jet aircraft will be presented.

3.3 Aircraft Preliminary Sizing

3.3.1 Introduction and Main ldea

The approach presented in the following chapters is based on [LOF80]. The design tech-
nique is very accurate and the results are considered reliable [SAD12, p. 94]. However,
the presented sizing process is limited to civil jet-powered aircraft that are certified ac-
cording to CS-25 or FAR Part 25 only. A similar approach for propeller aircraft can be
found in [LOF80, ch. 6 & 7].

The presented preliminary sizing approach considers the aircraft in its five crucial flight
phases. They are

o take-off

o 2" segment

e cruise

e missed approach
e landing

For each of the flight phases, certain performance criteria have to be met. The
main idea is to express the criteria for each flight phase by two design variables: the
wing loading during take-off myrro/Sw and the thrust-to-weight ratio during take-off

Tro/(muTo - g)-

The five sets of relationships between the wing loading and the thrust-to weight ratio at
take-off lead to a two dimensional optimization problem. The optimization problem can
then be solved by plotting the relationships in a matching chart and selecting a feasible
design point (see ch. 3.3.3). Based on the selected value pair, a rapid estimation of other
design parameters is possible (see ch. 3.3.4). Most importantly, the maximum take-off
weight ma;70 can be estimated.

3.3.2 The Five Flight Phases
| - Landing

For the landing phase [LOF80] combines a statistical approach with Federal Air Regula-
tions and safety margins to estimate the aircraft performance during landing. Combining
[LOF80, p. 105] with [LOF80, p.111] leads to an upper limit for the design wing loading:

3 Fundamentals of Aircraft Preliminary Sizing 38

kg 1
— 0 -CpLmaz,L - SLFL, - ———F——
maL/myuTo

MMTO 4107

o = (3.1)

The following design parameters are required:
e 0: the landing-field density divided by the sea-level density. It is assumed to be o
=1[]
e CLmaz,r: the maximum lift coefficient during landing | |

o sppr: the landing field length [m]

o myrr/muyro: the estimated ratio of the maximum landing weight mjsz, and the
maximum take-off weight myrro [], see [LOF80, p.119)]

In the matching chart, eq. (3.1) will appear as a vertical line that may not be exceeded
(see ch. (3.3.3)).

Il - Take-Off

For the take-off performance, the following constraint between take-off thrust Tro /(maro - g)
and maximal wing loading at take-off myro/Sw can be derived from [LOF80, p.114]:

3

m
2.34—
Tro < kg ~mMTO

myto -9 STOFL 0 - CrLmazTOo Sw

(3.2)

The following parameters are required:

e 0: the take-off-field density divided by the sea-level density. It is again assumed
tobeo=1][]

o Cp maz,ro: the maximum lift coefficient during take-off | |
o srorr: the take-off field length [m]

Eq. (3.2) will appear as a line with positive slope that acts as a lower barrier for the
design point (see ch. (3.3.3)).

11l - Climb Rate during 2"¢ Segment

The 274 climb is that portion of the flight path, following take-off, which extends from
an altitude of 35 to 400 ft [LOF80, p.117]. The thrust-to-weight ratio must be sufficient
to maintain a certain climb gradient in event of an engine failure. The design constraint
can be obtained by transforming [LOF80, p.109] to:

3 Fundamentals of Aircraft Preliminary Sizing 39

Tro (ng) < 1))
> . + sin 3.3
myTo g ng—1 Esnas 7 (8:3)

The following values are required:

e np: the amount of engines |]

o ~: the steady gradient of climb [], as defined in [EAS07, CS 25.121]
The lift-to-drag ratio during the 2" segment Fs,qs can be approximated by [LOF80,
p.121]:

Cr,

Eonas = 3.4
2ndS CL2 ()

T A-e

Cpo+ ACp s +ACps +

with:
o C'p: approach lift coefficient, estimated according to [LOF80, p.109] to:
— Cp = 1.3 [] for a 15° flap deflection
— Cr, = 1.5 [| for a 25° flap deflection
— Cr, = 1.7 [] for a 35° flap deflection

o Cpyo: zero-lift drag coefficient for the aircraft in the clean condition, assumed to
be Cpo = 0.02 [] [LOF80, p.110)]

e« ACp,: increments in profile drag coefficient associated with trailing-edge flap
deflection, estimated according to [LOF80, p.110] to:

— ACp,y = 0.01 [| for a 15° flap deflection
— ACp,r = 0.02 [] for a 25° flap deflection
— ACp,y = 0.03 [] for a 35° flap deflection

e ACps: increments in profile drag coefficient associated with leading-edge flap
deflection |], this drag component is negligible [LOF80, p.110]

o A: the wing aspect ratio |]
e: the Oswald efficiency factor, assumed to be e = 0.7 [| [LOF80, p.110]

IV - Missed Approach

The thrust-to-weight ratio required to perform a missed approach can be calculated
similarly to eq.(3.4). If the aircraft is certified according to FAR-25, an additional drag
coefficient for the landing gear must be considered [FAA17, p. 25.121]. The landing

3 Fundamentals of Aircraft Preliminary Sizing 40

gear drag coefficient is assumed to be ACp , = 0.015 [LOF80, p.114)]. Altogether, the
following constraint applies:

T 1
o> (e) : (—|—sin’y> . ML (3.5)
myTo g ng—1 Ena myTO
with the glide ratio during missed approach, Ejsa:
C
FEya = L 2 (3.6)
Cpo+Alpy+ACps+Alpg+ — fl =

The design parameters are the same as for the 2"d segment. Only a mass conversion,
using the estimated ratio of the maximum landing and take-off weight mrr./marro, is
added (see [LOF80, p.119)]). Eq. (3.3) and (3.5) both appear as horizontal lines that
act as a lower barrier in the matching chart (see ch. (3.3.3)).

V - Cruise

By combining equations from [LOF80, p. 137] and [NIT12, p. 22], the following equation
can be formed. It states the necessary thrust-to-weight ratio Tro/ (maro - g) depending
on the cruise attitude h¢,-:

T 1
MTO * g ((0,0013,“ —0.0397) - km; —0.0248p + 0.7125) Ecy

o u: the engine by-pass ratio | |
o E¢y: the cruise glide ratio [], calculated with eq.(3.8)

The following equation states the wing loading depending on the cruise attitude [LOF80,
p. 138]:

Cr.cor - Mcy?
MMTO () — CLOr 0™ T,y (3.8)
Sw g 2

with:
o Cp o the cruise lift coefficient |], calculated with eq.(3.10)
e Mcy,: the cruise Mach number |]
o 7: heat capacity ratio |], assumed to be v = 1.4
o p(heyr) the air pressure at cruise attitude, calculated according to [NAC55, p. 724]

3 Fundamentals of Aircraft Preliminary Sizing 41

The glide ratio E¢, needed for eq.(3.7) can be estimated by [NIT12, p. 22, 23]:

A
2 kg
Ec, = g Bwer/ S1W) (3.9)
el) e Vol

The cruise lift coefficient Cf, ¢, needed for eq.(3.8) can be calculated by combining
[NIT12, p. 22, 23] and [LOF80, p. 110] to:

“A-eon
CL,CT = il . (3.10)

2+ (Vor/Vina)® - ki - (Swj/sw)

The following input parameters are needed for eq.(3.9) and (3.10):
o ke: assumed to be k. = 14.5 [NIT12, p. 23]
o A: the wing aspect ratio |]
o Swet/Sw: the relative wetted area, assumed to be Sy /Sw = 6.1 [RAY89, p. 21]

o Vir/Vina: the ratio between the cruise speed Vi, and the minimum drag speed
de

o ecy: the cruise Oswald factor [|, assumed to be ec, = 0.8 [NIT12, p. 23]

3.3.3 The Matching Chart

Fig. shows the plot resulting from the design constraints set by eq.(3.1), eq.(3.2),
eq.(3.3), eq.(3.5), eq.(3.7) and eq.(3.8) [LOF80, p. 144]. The white area shows fea-
sible value pairs. The grey area marks infeasible designs that violate at least one of the
design constraints.

3 Fundamentals of Aircraft Preliminary Sizing 42

o
a
4]

05
045 ¢

04 r
E‘ 035+
©
X 03 Landing
= Take-off
‘© 0.25 - 2nd Segemnt
= Missed Appr.
E 0.2 Cruise
7
=
e
|_

0.1

0.05

300 350 400 450 500 550 600 650
Wing Loading [Kg/m?]

Figure 3.5: Matching chart

The next step is to chose a design point within the feasible region. A common approach
is to chose the design point with the highest wing loading and lowest thrust-to-weight
ratio. The assumption is that this results in the lowest maximum take-off weight. How-
ever, in this thesis an optimization algorithm is used to find the design point. As the
optimization objective, both the maximum take-off weight and the thrust-to weight ratio
were minimized (see ch. 5.4).

3.3.4 Calculation of the Output Parameters

For the following chapters it is assumed that the optimization algorithm has found an
optimal solution within the permissible region of the matching chart. Now, that the
thrust-to-weight ratio and the wing loading is set, the design parameters that depend
on them are calculated.

Calculation of the Cruise Parameters

The pressure at cruise altitude p (hey) can be calculated by rearranging eq.(3.8) to:

3 Fundamentals of Aircraft Preliminary Sizing 43

MMTO 2.9
hor) = : 3.11
p(her) < Sw)DES Crcr - My -y (3.11)
with:
(mMTO) : the design wing loading obtained from the matching chart
Sw /) pEs

Cr.cr: the cruise lift coefficient |], calculated with eq.(3.10)

Me,: the cruise Mach number |]

~v: heat capacity ratio | |, assumed to be v = 1.4

Once the pressure p (hey) is known, the cruise attitude he, and the speed of sound at
cruise attitude a (h¢cy) can be calculated according to [NAC55]. The aircraft’s cruise
speed Vi, can then be calculated with:

Vor = a(hey) - Moy (3.12)

Calculation of the Fuel Consumption

The Breguet range factors for cruise and loiter can then be calculated via [LOFS80, p.
120]. They are required to estimate the fuel consumption during cruise:

ECT‘ 'VCT
Boy = —¢r Y. 3.13
"7 SFCer g (3.13)
EC?" : VC”/’
Bloiter = —or1¢r 3.14
Loier = G (3.14)

The specific fuel consumption during cruise and loiter are assumed to be SFC¢, =
14.2 - 107K g/N/s and SFCp = 11.3 - 107°Kg/N/s [RAY89, p.19]. The glide ratio
during cruise E¢, can be calculated with eq.(3.9).

The fuel fraction for cruise can then be calculated with [LOF80, p. 120]. The mission
fuel fraction for alternate M¢f Ajternate and loiter My roiter are calculated similarly (see

eq.(3.16) & eq.(3.17)).

R
Mypor = Bor (3.15)

Mff,Alternate =e€ Ber (316)

3 Fundamentals of Aircraft Preliminary Sizing 44

_tloiter - Vor
My Loiter =€ Bloiter (3.17)
The following input values are required:
o R: the design range [m]

e R4y;: the alternate range according to the applicable certification regulations. For
international routes, the alternate range is multiplied by the factor 1.05

o Vor: the cruise speed, calculated with eq.(3.12)
o tioiter: the loiter time [s], assumed to be tj5ite = 1800 s

The fuel consumption for other flight stages than the cruise are considered by the fol-
lowing fuel fractions (see [ROSS85, p. 12]):

e Mysro: the mission fuel fraction for take-off, assumed to be My;ro = 0.995

e My crp: the mission fuel fraction for climb, assumed to be Myrcrp = 0.980

e Mysprs: the mission fuel fraction for descend, assumed to be Myt ppgs = 0.990
e My p: the mission fuel fraction for landing, assumed to be Mys = 0.992

Once the fuel fractions for each flight stage are known, the fuel weight proportion can
be calculated according to [ROS85, p. 16]:

mp
=1— My sta Myfres
MMTO
=1— (M M “Mypor M M (3.18)
(Mysro-Myrcrs - Mygor- Mysprs - Myy.L)
Myt Loiter - Mys.crB - My Atternate - Mtf,DES)
Calculation of the Maximum Take-Off Weight
The maximum take-off weight m ;7o can be calculated with [ROS85, p. 5]
mpr,
myMTo = mE MOE (3.19)

1— —
myro MMTO

The required weight ratio between the operational empty weight mop and the maximum
take-off weight m ;o can be estimated based on previously built aircraft. The payload
weight mpy, required for eq.(3.19) is calculated with:

MpL, = NPAX - MPAX + MCARGO (3.20)

and:

3 Fundamentals of Aircraft Preliminary Sizing 45

o npax: the amount of passengers [|
o mpax: the passenger mass, assumed to be mpax = 93kg [SADI12, p. 97]

e MmcARGo: the cargo mass [kg]

Calculation of the Wing Area and Take-Off Thrust

Once the maximum take-off weight is known, the wing area Sy and the take-off thrust
for all engines Tro can be calculated via:

mmyrTo
Sw = 3.21
Y (maro/SW) pes (3-21)
Tro = muro - 9- (Tro/ (muto - 9)) pEs (3.22)

Remaining Mass Calculation

Once the maximum take-off weight m ;7o is known, the maximum landing weight ma,z,
the operational empty weight mopr and the fuel weight mpg can be calculated with:

m
mpuarr, — ML cMMTO (3.23)
mmTo
m
Mog = O - MMTO (3.24)
mmTo
m
mgp = £ ~MMTO (325)
mmprTo

m
and —2E were already required for eq.(3.1) and
MMTO MMTO

eq.(3.19). The fuel weight proportion

The weight proportions

is calculated with eq.(3.18).
MMTO

The maximum zero-fuel weight my/zr and the reserve fuel weight m fyeres can then
calculated with:

MMZF = MpL + MOE (3.26)

M fyelres = MMOT - (1 — Myt Loiter - Myg.crB - Myf Atternate - Mtf.DES) (3.27)

Last, it must be verified that the following design constraint applies:

3 Fundamentals of Aircraft Preliminary Sizing 46

mprL = mMyzr + M fuel,res (328)

If the design constraint issued by eq.(3.28) applies, the preliminary sizing is finished.
Now that a method for preliminary sizing of jet airliners has been presented, other
important aspects of aircraft preliminary sizing will be discussed in the next chapters.

3.4 Iterations in Aircraft Preliminary Sizing

As already briefly mentioned in ch. 3.2, iterations play an important role in aircraft
design. Especially the preliminary design stage is affected by many iterations, since the
parameters defined in it have an influence on all other components of the aircraft and
vice versa. Fig. 3.2 shows that the preliminary design is located between the conceptual
design and the detailed design. Both design stages may express the need to re-perform
the preliminary sizing stage.

On the one hand, design changes can occur further upstream of the design progress. For
example, requirements can be changed or the conceptual design is adapted. Changes in
the input parameters of the preliminary design stage naturally lead to different output
parameters. Since the output parameters of the preliminary design are required for the
component design, a change in the preliminary design has a major impact further down
the design process. For instance, new data for the maximum take-off weight requires a
new round of calculations and new designs for all aircraft components such as wing, tail,

and fuselage [SAD12, p. 94].

On the other hand, changes in the design further downstream can also lead to a change
in the preliminary design. For example, component developers provide feedback to the
systems engineering team and request an adjustment of the component requirements.
This is an iterative process throughout development that is often required to achieve a
balanced design solution [FRIO8, p.9]. This feedback loop also leads to the need for an
iterative design approach (see grey arrows in in fig. 2.2).

Finally, iterations also occur within the preliminary design phase, independent of the
overall design process. This is due to the fact that the first design rarely is the optimum.
By iteratively changing the variable design parameters, the design can be optimized (see
ch. 3.6).

3.5 Decision Making in Aircraft Preliminary Sizing

Even though the previous chapters mainly introduced formulas for the mathematical
calculation of design parameters, aircraft design always has a second important aspect.
Many aircraft design activites involve decision making and the logic-based selection of
different design alternatives (see fig 3.6). This chapter is intended to explain the basic
principles of decision making in aircraft preliminary sizing.

3 Fundamentals of Aircraft Preliminary Sizing 47

Figure 3.6: Two main groups of design activities in aircraft design (taken from [SAD12,
fig. 1.2])

Especially during the conceptual design, it is important to consider as many different
designs as possible. Ultimately, it is necessary to select the optimal design from a variety
of design alternatives. Investigating many different designs ensures that the best possible
design is realized.

However, some parameters that are worth comparing only arise from the preliminary
design. Examples would be the maximum take-off weight mrow or the range R. It
can therefore be beneficial to develop promising designs further into the preliminary
design stage in order to obtain meaningful comparable parameters.

Yet, there are may be difficulties in choosing the best design. For most design problems,
there is a trade-off where one attribute is improved and the other is degraded. In
addition, the criteria to select the best design and their prioritization have to be defined.
This decision-making process can be supported by a so-called trade-off analysis.

A trade-off analysis starts with defining the measures of effectiveness (MOE)). A MOE
is used to define a criteria that needs to be evaluated in a trade study (e.g. cost, weight,
maintainability). Next, the priority of the different criteria is defined through weighting
factors. After that, the different designs are compared in terms of the MOE. Depending
on how well a design performs with respect a MOE, different factors are allocated. These
factors can either be estimated or calculated based on a mathematical model. Ultimately,
the allocated factors are multiplied by the respective weighting factors and summed up.
The optimal design can then be determined by comparing the different sums (see fig.
3.7).

This approach can also be taken one step further. The trade-off analysis can also be
used to compare different configurations of the same conceptual design. This can be
useful during the preliminary design phase, when the concept is already frozen. Fig.
3.7 shows how a trade-off analysis is used to find the optimal configuration within the
configurations A, B and C. It can be seen that some design criteria are to be maximized
and others minimized. Furthermore, some design criteria are to be maximized and
others minimized. It is possible that some of the allocated factors are determined by
mathematical calculation programs.

3 Fundamentals of Aircraft Preliminary Sizing 48

Figure 3.7: Evaluation of three presumptive configuration alternatives (taken from
[SAD12, tab. 3.10])

The MOE and its weighting factors can also be formulated as a so-called objective
function. An objective function establishes a mathematical relationship between all
MOE. A possible objective function for the example shown in fig. 3.7 could be:

0.04- DIy +0.15-DI5+40.01 - DIs +0.05- DI7 4+ 0.06 - DIg + 0.02- DIg 4 0.11

- DL

Jfops = 0.09- DI; +0.04- DIy + 0.07 - DI3

The objective function fops is then calculated for all three configurations. The maxi-
mum value of fops; would provide the optimal configuration.

3.6 Optimization in Aircraft Preliminary Sizing

The trade-off analysis from the previous chapter can be carried out very easily, for ex-
ample with a spreadsheet. Nevertheless, a configuration that is close to the optimum
could only be obtained by calculating the objective function for as many different con-
figurations as possible. In addition, dependencies between the individual design criteria
cannot be easily taken into account. Computer-aided design optimization can offer a
solution to these problems [FRIO8, p. 169].

It is necessary to create a calculation model, that reflects the influence of the variable
design parameters on the objective function. In addition, the limits in which the variable
parameters vary are defined. With the help of optimization algorithms, the design

3 Fundamentals of Aircraft Preliminary Sizing 49

parameters can be varied in such a way that the objective function yields an optimal
value (see ch. 5.4). This procedure is called Multidisciplinary Design Optimization
MDO. MDO are considered as one of the most effective techniques in trade-off studies.
That is because the optimum solution of a simultaneous problem is superior to the design
found by optimizing each discipline sequentially, since it can exploit the interactions
between the disciplines. [SAD12, p.70].

Fig. 3.8 shows an example of a MDO with three variable parameters. First, the upper
and lower limits of the variable parameters are defined. Then, using a mathematical
model, various design criteria are calculated (for example the maximum take-off weight
myro). Together with weighting factors, an objective function can be defined. This
objective function can also include design criteria from sources other than the mathe-
matical model. With the aid of an optimization algorithm, the variable parameters are
then varied in such a way that the objective function produces an optimum value. This
is done in an iterative manner. The values of the variable parameters at the end of the
iterations define the optimal design.

Figure 3.8: Exemplary MDO with three variable design parameters

Historically, the maximum-take off weight m ;70 was considered as the objective design
criterion. That is because a reduced maximum-take off weight is intended to improve

3 Fundamentals of Aircraft Preliminary Sizing 50

performance and subsequently lower operating costs, primarily through reduced fuel
consumption [SAD12, p. 52].

Therefore, the preliminary sizing method presented in ch. 3.3 can be used as a mathe-
matical model for MDO (see mathematical model in fig. 3.8). Any input values of the
preliminary design can then be used as a variable parameter. The output values of the
preliminary design, such as the range R or the maximum take-off weight ma;r0o, could
then be considered in the objective function.

3.7 Systems Engineering in Aircraft Preliminary Sizing

In ch. 2, the fundamental principles of MBSE were introduced. In the previous chapters,
the fundamentals of preliminary design process for civil passenger aircraft were presented.
This chapter serves to establish a link between these two disciplines.

All challenges of system design listed in ch. 2.1.1 also apply to aircraft preliminary sizing.
That is because aircraft design projects usually consist of complex, multi-disciplinary
design problems with various constraints [SAD12, p. 37]. Besides, the design problems
in aircraft design are often technologically challenging and mission-critical [FRIO8, p. 4].

Another challenge are the numerous different stakeholders with different requirements
involved in the aircraft design. Furthermore, the development teams are widely dispersed
geographically and culturally. Many of the components of an aircraft are co-developed
and manufactured by suppliers. Finally, almost every developed aircraft is unique. That
is because different customer requirements result in many different aircraft configura-
tions.

In order to establish requirement traceability and to follow the stakeholder requirements,
it is beneficial to perform a MBSE approach from the very beginning of aircraft design.
Especially at the beginning it is important to develop a good set of requirements. This
way, a uniform basis from which all lower-level requirements can be developed can be
defined [SAD12, p. 23]. Fig. 3.9 shows the influence of SE during the different design
phases. It can be seen that the influence of SE decreases as the design becomes more
detailed, while the aerospace engineering disciplines gain in importance.

3 Fundamentals of Aircraft Preliminary Sizing 51

Figure 3.9: Systems engineering and aerospace engineering influence on the design (taken
from [SAD12, Fig. 2.3])

Fig. 3.9 also shows that systems engineering still plays a major role in the preliminary
design phase. Pursuing a MBSE approach during the preliminary design ensures that
the design fulfils the stakeholder requirements and that undesirable designs are identified
at an early stage.

MBSE enables the TLAR to be broken down to subsystem level. This permits early
distribution of development tasks among different disciplines, which helps to manage
the complexity of aircraft development. It also ensures that all the different design
domains pursue the same design goal. MBSE also allows different aircraft configurations
to be developed simultaneously at an early design stage.

3.8 Summary

The design of an aircraft starts with the determination of the TLAR and the mission
definition. After that, the aircraft concept is developed in the conceptual design phase.
The design is then further refined in the preliminary design phase. For this purpose,
the method described in [LOF80] can be used. It reduces the preliminary design to
the selection of two design parameters, that can be plotted in a matching chart. By
selecting the two design parameters in the matching chart, important parameters such
as the maximum take-off weight can be determined.

The entire design process is structured in a iterative manner and is validated by design

3 Fundamentals of Aircraft Preliminary Sizing 52

reviews after each design phase. Trade-off analyses can be used to select an optimal
design. These can be extended by computer algorithms to perform a multidisciplinary
design optimization (MDO). MBSE facilitates many of the challenges encountered in
aircraft design. It plays a particularly important role in the early stages of aircraft
development.

4 The PTC Integrity Modeler 53

4 The PTC Integrity Modeler

4.1 Introduction

As already mentioned in chapter 2.2.2, there is different software for system modelling
available. Many of the available modelling software is based on the SysML. For this
thesis, the SysML-based modeller "PTC Integrity Modeler" was used, which will be
briefly introduced in the following chapters. Detailed instructions on how to work with
the PTC Integrity Modeler can be found in [PTC19a).

4.2 The PTC Integrity Modeler

The PTC Integrity Modeler is a modelling software that has its origins in the UML-
based software development. Over time, the PTC Integrity Modeler has been extended
to include SysML constructs. That allows the PTC Integrity Modeler to be used for
SysML based MBSE. The PTC Integrity Modeler offers several additional features, such
as product line variation modelling or the automatic document generation [PTC19a].
Since the PTC Integrity Modeler runs directly on an active multi-user database, multi-
user capability with over 100 simultaneous users is possible.

4.3 User Interface

The PTC Integrity user interface can be divided into four parts: the Browser Pane
(upper left), the Diagram Pane (upper right), the Output Pane (lower left) and the
Property Pages (lower right). In addition, the Modeler Ribbon is located at the top end
of the user interface. The Modeler Ribbon is where most of the Modeler’s features can
be accessed from.

4 The PTC Integrity Modeler 54

Figure 4.1: PTC Integrity Modeler user interface

In the following chapters, all components of the user interface and their functions will
be briefly explained.

The Browser Pane

The Browser Pane provides access to the various items, diagrams and relationships
defined within a model [PTC19b, p. 9]. It is divided into several tabs to quickly access
certain SysML items (see fig. 4.2)

Figure 4.2: Different tabs within the browser pane

For example, the Packages tab can used to access all the model packages (see fig. 4.2 &
ch. 2.4.7). Similarly, the Requirements tab offers a quick overview off all the requirements
specified in the model.

The Diagram Pane

The Diagram Pane is used to display and edit the UML/SysML diagrams. As stated
earlier, the displayed items are actually symbols representing an underlying model item

4 The PTC Integrity Modeler 55

in the model database. Consequently, when one wants to display or view the internal
structure of the Aircraft block, one would have to open the corresponding internal block
diagram first. All changes in the internal block diagram are then applied to the model
repository and its underlying database.

The Property Pages

The Property Pages show the the properties of a selected model item. As already ex-
plained in ch. 2.3.5, different model items have different properties depending on their
respective meta class.

The Output Pane

Like the browser pane, the output pane is divided into several tabs. The most important
tabs and their function are the follwing:

» Contents tab: Displays the contents of a currently selected item (e.g. a package)
e Results and Results2 tab: Show the results from, for example, a model item search

o Output Tab: Provides a view of the Modeler’s output information (e.g. status
messages Or error messages)

4.4 Modelling

Now that the graphical user interface of the PTC Integrity Modeler has been introduced,
a short description on how to create digital system models using the PTC Integrity
Modeler will be provided. Since the SysML is a graphical modelling language, the
modelling is also done by the graphical representation provided by the SysML diagrams.
Depending on which model item is to be modelled, a corresponding diagram is created
first. The newly created diagram will then be displayed in the Diagram Pane. It can
then be edited via the Modeler Ribbon (see fig. 4.1). All changes are immediately stored
in the database. That way, the controlled multi-user operation is ensured.

4.5 The PTC Integrity Automation Interface

A special feature of PTC Integrity Modeler is the Automation Interface. It is essential for
the program presented in ch. 5.5, and will therefore be briefly explained in this chapter.
An automation interface is a mechanism for sharing information between applications or
to control another application [PTC15, p. 2]. The PTC Automation Interface enables
to perform the following operations from within a Visual Basic program:

¢ Read Modeler Model item structures, attributes and associations

4 The PTC Integrity Modeler 56

e Write to Modeler model properties
e Create Modeler model items and links
o Control the Modeler user interface

Fig. 4.3 displays how a Visual Basic program interacts with the PTC Integrity Modeler
via the PTC Automation Interface. The PTC Automation Interface provides certain
functions to access the model objects. These functions allow the modification of model
objects (see ch. 5.5). The Automation Interface then communicates the requests or
changes with the PTC Modeler. The Modeler in turn controls the access to the un-
derlying database (see fig. 4.3). Therefore, the user never directly interferes with the
database. This prevents data corruption or unintentional modifications. In addition,
the user only requires knowledge about the Automation Interface functionalities and not
about the structure of the database itself.

Figure 4.3: How Visual Basic programs interact with the PTC Integrity Modeler (taken
from [PTC15])

The Automation Interface is single-threaded. That means that the operations can only
be executed one after the other. In order to thesis with the PTC Automation Interface
it is important to have an understanding of the Modeler’s meta model. Therefore, the
meta model will be explained briefly in the next chapter.

4.6 The PTC Integrity Meta Model

Similar to the SysML meta model, the PTC Integrity meta model defines the item types
(such as classes, attributes and operations) that exist in the model, their properties and
how they relate to each other [PTC15, p. 2]. All Modeler objects are either of the object
type, attribute type or association type. The three different types are presented in the
following.

4 The PTC Integrity Modeler 57

Objects

The object type defines the type of a Modeler item, such as Class, an Actor or a Use
Case [PTC15, p. 3].

Attributes

Each object type has attributes that define the properties of the associated Modeler
item, such as Name, Visibility and Last Change Date [PTC15, p. 3|. The attribute
types can be read/write or read only. Furthermore, almost all meta model attributes
are stored as strings. It is therefore necessary to convert the strings to numeric values
before they can be mathematically processed.

Associations

Object associations are used to define relationships between model items. Associations
are important to access from a given object to the associated objects. For example, the
Package Item association of the Package object defines all items that are scoped to this
package [PTC15, p. 258].

4.7 Navigation in a Model With the Automation Interface

In this chapter the information provided in the previous chapters will be applied. It
will be illustrated how to navigate through a model in PTC Integrity Modeler using the
Automation Interface. As an example, it will be shown how to access and change the
description of a requirement.

When a Visual Basic application wants to use the Automation Interface, it typically
starts with the following lines of code [PTC15, p. 6].

Dim Projects As Object
Projects = CreateObject ("OMTE.Projects")

The Projects object acts as a container object for the Projects (i.e. digital models) that
can be accessed. Afterwards, the active project can be accessed via the ActiveProject
association (see code below). From there, it is possible to navigate to the project’s
Dictionary object via the Dictionary association. The Dictionary object is a container
for all dictionary items in the model [PTC15, p. 6]. From the Dictionary object, the
requirement can be accessed through a class association. According to the PTC Integrity
meta model, requirements are defined as Class objects. The requirement description can
be read out as an attribute of the Requirement object. The description can also be
changed in a similar manner (see line 15 of the code below).

4 The PTC Integrity Modeler

58

Figure 4.4: Accessing the description of a requirement via the PTC Integrity Modeler

Automation Interface

© 0w N O U se W N

e e e =
Gk W N = O

Dim Projects As Object
Dim Project, Dictionary,Requirement As ENT6Lib.CCaseProjects
Dim RequirementDescription As String

'"Access the description attribute
Projects = CreateObject ("OMTE.Projects")

Project = Projects.Item("ActiveProject")
Dictionary = Project.Item("Dictionary")
Requirement = Dictionary.Item("Class", "RequirementName")

'Read requirement description
RequirementDescription = Requirement("Description")

'Change requirement description
Requirement ("Description") = "NewDescription"

Listing 4.1: Visual Basic code to access the description of a requirement and change it

4 The PTC Integrity Modeler 59

4.8 Controlling the User Interface

As mentioned earlier, the PTC Integrity Automation Interface also provides functions
to control the Modeler’s user interface. Some of the functions used in the program
presented in ch. 5.5 will be briefly introduced in this chapter.

In order to access the Modeler from external applications, a root object of the following
form must be created first.

Dim Studio As Object
Studio = CreateObject("Studio.Editor")

Controlling the Results Pane

As already mentioned in ch. 4.3, the Results Pane is located in the lower left corner of
the user interface and displays the model items resulting from certain queries (see fig.
4.1). The Results Pane can be cleared from an external application with the following
line of code.

Studio.ClearResultsPane (1) ‘

It is also possible to add certain model items to the Results Pane. For this, the so called
Object ID of the object to be added is required. The Object ID is a string of characters
that uniquely identifies the model object.

Studio.AddToResultsPane (1, "ObjectId")

Controlling the Output Window

The Output Window provides the user with information as like status messages or error
messages (see fig. 4.1). It can be cleared with the following line of code.

Studio.ClearOutputWindow

Furthermore, it is possible to add output messages to the Qutput Window with the
following line of code.

1

Studio.DisplayOutputWindowMessage ("Message")

4 The PTC Integrity Modeler 60

4.9 Summary

PTC Integrity Modeler is a database-driven modelling tool that supports, among other
things, SysML-based MBSE. Via the Automation Interface it is possible to access model
objects from external Visual Basic programs. The navigation to specific model items
requires knowledge about the Modeler’s meta model. In addition, the Modeler itself
can be accessed via the Automation Interface. This enables,for example, to adjust the
Modeler’s user interface.

5 Establishment of the Interface 61

5 Establishment of the Interface

5.1 Introduction

Ch. 2 has introduced the principles of MBSE and the SysML. In ch. 3, a method for
preliminary sizing of civil jet airliners was presented. Furthermore, it was discussed
why MBSE is of particular importance for aircraft preliminary sizing. In the previous
chapter, a software for SysML-based MBSE was presented.

This chapter aims to create a link between the system modelling and system analysis
disciplines. Therefore, an exemplary aircraft is modelled with the SysML. The PTC
Integrity Modeler presented in ch. 5.3 is used for this. Furthermore, a MATLAB code
for the preliminary sizing of civil jet airliners is presented in ch. 5.4.

After introducing both the SysML based model definition and the MATLAB based
computational model, the advantages of digitally linking both models will be mentioned
in ch. 5.5.2. After that, different solutions for a digital interface between both models
will be discussed in ch. 5.5.3. In ch. 5.5.4, the chosen solution will be presented.

5.2 Overview

The previous chapters have demonstrated the importance of MBSE in the preliminary
sizing of aircraft. This can be done with the PTC Integrity Modeler.

At the same time, computer-aided calculation programs such as MATLAB or Simulink
are irreplaceable for aircraft design. For example, computer-aided design optimization
would not be possible without a powerful mathematics engine such as MATLAB. Conse-
quently, there are two models of the aircraft - one in SysML and one computational model
in MATLAB. However, it is not possible to transfer the parameters without further ado
(see fig. 5.1). A digital interface for the automatic parameter transfer between both
models could be a solution. This could lead to many advantages, which are described in
ch. 5.5.2.

5 Establishment of the Interface 62

Figure 5.1: Problems arising with different software landscapes during system definition
and system analysis

In order to provide a better understanding of the relationship between the models, this
chapter will provide a basic overview first. This is intended to clarify the relationships
between the two different models and the interface. In the following chapters, the two
models and the interface will be explained in more detail.

Fig. 5.2 shows a detailed view of the parameter transfer between the system definition
software (PTC Integrity Modeler) and the system analysis software (MATLAB). All of
the input parameters required for the preliminary sizing (coloured orange in fig. 5.2)
are stored in the PTC Integrity system model. They are provided to MATLAB through
a digital interface (red block in fig. 5.2)). After the calculation is performed within
MATLAB, the output values (coloured green in fig. 5.2) are provided back to the system
model via the interface.

As mentioned earlier, the preliminary sizing process described in ch. 3 leads to five
sets of relationships between the wing loading and the thrust-to weight ratio at take-off.
The five relationships are represented by the five differently coloured rectangles on the
right of fig. 5.2. As previously stated, the five relationships lead to a two dimensional
optimization problem that can be displayed in a matching chart (see fig. 5.2). If at least
one additional design parameter is left to be variable, a multidimensional design problem
arises. The optimal solution can then no longer be read from the matching chart, but
must be determined mathematically by an optimization algorithm. This is represented
by the "Further Calculation / Iteration" block below the matching chart in fig. 5.2.

5 Establishment of the Interface

63

Figure 5.2: Exchange of parameters between both models

5 Establishment of the Interface 64

The input parameters are distributed in different model items within the aircraft model.
Thus, a wide range of input possibilities is demonstrated. The following SysML model
items were used to store input parameters:

e Requirements

o Constraints

e Associations

o Block properties

Fig. 5.3 shows where exactly the input parameters are stored in the SysML model. All
design parameters representing quantities were modelled as associations (ng, npax).
The upper and lower limits of variable parameters are stored as constraints (see fig. 5.3).
This is the case for the two parameters displayed in the matching chart, Tro/ (marro - g)
and myro/Sw. In order to demonstrate that this approach can also be applied to
multidimensional optimization problems, the Mach number M and the ratio between
the cruise speed and the minimum drag speed Vi, /V;,q were left variable as well. Fig.
5.3 also illustrates that the optimal values for the four variable parameters are stored at
a block property after the optimization is finished (see bottom left output values in fig.
5.3).

To demonstrate both possibilities, the remaining input values are stored as SysML block
properties as well as directly within SysML requirements. The reason for modelling input
parameters directly in SysML requirement items will be explained in chapter 5.5.7. For
the sake of simplicity, all output parameters are stored as block properties (see fig. 5.3).
It would however also be possible to store the output parameters in other model items.

5 Establishment of the Interface 65

System Definition Interface System Analysis
pomeoeoeeon--\PTC Integrity Modeler) = (MATLAEB) _
i Requirements i
; | Yaia I I i
[Eyaraa]
| .
: | StorL I : i
I »[Landng }——
[certification | :

e > Take-off l—
| Route Type |

i | 2nd segment |
Constraints ' » 2nd segment
(e
U ~ S e
[V

| M I .
' T — " '.'-J-] Cruise I—

Associations

v
HEI I
Nz
Block Properties N Further Calf:ulatinn
! I Iteration
CL.max.L H
i | CLmaxTO - —_— H
Lo 7 e e |
Flap setting — | |
— —— her €
| Mog/Myto | = v
T g iing I
[My I m [e '
| Mm/ Myro | = e i |
EFR — 1
i | Mpy -
i] e i
| Myro [:
m, —
'Cargo | M I-‘.
R -
| Moe :
R - e
[Twr | . = :
e —— | M <
H | WL e ;
| Vo e ;
Cw HJ

Figure 5.3: Exchange of parameters between both models (more detailed)

5 Establishment of the Interface 66

5.3 Modelling the System in SysML

Now that the transfer of parameters has been defined, the modelling can begin. First
the SysML aircraft model is modelled (left part of fig. 5.2 and 5.3). The PTC Integrity
Modeler is used for modelling. For simplicity, only the model items that are either
required for preliminary sizing or are important for comprehension are modelled.

5.3.1 Loading the SysML Profile

As already mentioned in chapter 2.3.3, the UML can be extended by profiles for extended
functionalities. Since the aircraft model is modelled in SysML, the SysML profile has to
be loaded in the Modeler (see fig. 5.4).

Figure 5.4: Selecting the SysML profile in the PTC Integrity Modeler

5.3.2 Packages

As explained in ch. 2.4.7, packages are used to organize the model items. The re-
quirements (see ch. 5.3.3) are stored in the Requirements folder. All blocks and block
properties can be found in the Structure folder (see ch. 5.3.4). All constraint blocks are
stored in the Parametrics folder (see ch. 5.3.9). The data types required for the model
are stored in the Aicraft Types folder (see ch. 5.3.7). The two custom stereotypes are
stored in the Stereotype folder (see ch. 5.3.8). Fig. 5.5 shows the aircraft model package
structure.

5 Establishment of the Interface 67

Figure 5.5: Aircraft model package structure

In the following chapters the contents of the individual packages will be described.

5.3.3 Requirements

As shown in fig. 5.3, the following parameters are saved directly within the respective
requirement description:

e The landing field length sy rr,

o The take-off field length spopy,

e The alternate range R

o The steady gradient of climb during the 2" segment vor 5
e The steady gradient of climb during missed approach a4,
e The certification basis

e The route type

The PTC Integrity Modeler provides the synchronization between the Modeler and cer-
tain requirement management tools [PTC19b, p.31]. However, for this thesis it is suf-
ficient to model the requirements directly in the Aircraft model. The requirements are
divided into the following categories (see [SAD12, p.33]) via a Requirement Nesting Link
(see ch. 2.4.3):

e Airworthiness requirements
e Performance requirements
e Operational requirements

The nesting association is also used to further break down requirements (see fig. 5.6).
The parameters for each requirement (pink in fig. 5.6) are stored between two square
brackets. That way, the parameters required for the subsequent calculation can be read
correctly (see sec. 5.5.7).

5 Establishment of the Interface 68

Figure 5.6: Section from the requirement diagram (operational requirements)

5.3.4 Block Definition

The Aircraft block is modelled as a part of the Aircraft Domain block through a com-
posite association. By modelling the Aircraft Domain, additional parameters can be
included in the calculation that do not belong to the Aircraft block itself. For example,
the number of passengers npax is modelled as the Passenger cardinality (quantity) of
the association "Aircraft Domain - Passenger" (see fig. 5.7). Besides, the cargo weight
moearco is modelled as a value property of the Cargo block, which itself is associated
with the Aircraft Domain block. Furthermore, the landing field-length sy r;, and take-off
field length srorr are modelled as value properties of the Airport block, which is also
modelled as a part of the Aircraft Domain (see fig. 5.7).

As mentioned in the previous chapter, the values for sprr, and spopr are read directly
from within the requirements (see fig. 5.6). The value properties seen in fig. 5.7 are
modelled for the completeness and are not required for the calculation (see ch. 5.3.5).

5 Establishment of the Interface 69

Figure 5.7: The Aircraft Domain block definition diagram

5.3.5 Internal Block Structure
Airport Block

The airport block has two value properties, the landing field-length s;r; and the take-
off field length srorr. The numerical values are saved within requirements that are
allocated to the respective value properties (see fig. 5.8). By reading the numerical
values directly from the requirements instead of the value properties, additional manual
work is avoided (see ch. 5.5.7).

5 Establishment of the Interface 70

Figure 5.8: The internal block diagram of the Airport block

Aircraft Block

All properties of the aircraft itself were modelled as value properties of the aircraft block.
The value itself is stored within the allocated requirement for five of the parameters (see
ch. 5.3.3). For consistency, the associated value properties are created as well:

e The alternate range Raj;

o The steady gradient of climb during the 2" segment vor5
e The steady gradient of climb during missed approach vyas4,
e The certification basis
e The route type

The aircraft’s design range R serves as an input value for the calculation and is modelled
as a value property of the aircraft block. Furthermore, some of the output values are
saved as value properties of the aircraft block (see fig. 5.3):

e The cruise speed V¢,

e The cruise attitude h¢,

o The cruise lift coefficient Cr, ¢

e The glide ratio during cruise E¢.

o The thrust-to-weight ratio during take-off Tro/ (marro - g)

o The wing loading during take off my;ro/Sw

5 Establishment of the Interface 71

e The cruise Mach number M
o The ratio between the cruise speed and the minimum drag speed Vi, /Ving

In addition, the Aircraft block contains part properties, such as two engines, a wing, fuel
tanks and the MassPrediciton block. They will be explained in the following chapters.
The internal structure of the aircraft block is modelled by the internal block diagram
shown in fig. 5.9. The constraints displayed in fig. 5.9 will explained in ch. 5.3.6.

Figure 5.9: Section of the internal block diagram of the Aircraft block

The composition of the Aircraft block was modelled with a block definition diagram
(see fig. 5.10). The value properties defined in the Aircraft internal block diagram (fig.
5.9 are displayed within the aircraft block. Furthermore, the Engine, Wing, FuelTank
and MassPrediction blocks are connected to the Aircraft block via a composite associ-
ation. The amount of engines (ng) is saved as the Engine cardinality (quantity) of the
association "Aircraft - Engine'.

5 Establishment of the Interface

72

Figure 5.10: Section of the block definition diagram of the Aircraft block

5 Establishment of the Interface 73

Engine Block

The Engine block contains the engine by-pass-ratio p as a value property. The output
value for the take-off thrust for one engine T is stored as a value property of the
Engine block (see fig. 5.11):

Figure 5.11: The internal block diagram of the Engine block

FuelTank Block

The Fueltank block contains the value property for the fuel mass mp, that is returned
by the preliminary design as an output value (see fig. 5.2 & fig. 5.12).

Figure 5.12: The internal block diagram of the Fueltank block

5 Establishment of the Interface 74

Wing Block

The Wing block contains the value properties for the maximum lift coefficient during
landing C7, max, 1, the maximum lift coefficient during take-off C, 42,70, the flap setting
during take-off and the wing aspect ratio A as input values. They are stored as value
properties of the Wing block. Furthermore, the wing reference area Sy is stored as a
value property of the Wing block. Unlike the other value properties, the wing reference
area is an output value of the preliminary design (see fig. 5.2).

Figure 5.13: The internal block diagram of the Wing block

MassPrediction Block

The MassPredictionn block contains all mass relevant parameters of the aircraft. The
two mass ratios mog/marro and mayrr/marro serve as input values for the preliminary
design and are stored as value properties. The other value properties modelled in the
MassPrediction internal block diagram are all output values:

e The payload mpy,

e The maximum take-off weight m ;o
e The maximum landing weight masp,

e The maximum zero fuel weight my;zp

e The operational empty weight mog

5 Establishment of the Interface 75

Figure 5.14: The internal block diagram of the MassPrediction block

5.3.6 Constraints

As shown in fig. 5.3, four design parameters are left to be variable. They are modelled
as constraints that constrain the corresponding value properties (see fig. 5.15). The
upper and lower limit of the constraints are later passed to MATLAB. The MATLAB
algorithm then calculates an optimal design by changing the parameters within their
respective limit (see ch. 3.6). The optimal value is then stored in the corresponding
value properties after the optimization.

Fig. 5.15 shows the four SysML constraints containing the lower limits (Worst Accept-
able) and the upper limits (Best Possible). Unfortunately, the PTC Integrity Modeler
does not support a neutral indication of the upper and lower limit. In some cases this can
lead to confusion. For example, the lower limit of the thrust-to-weight ratio is actually
the desired optimum (see ch. 3.3.3). However, the lower limit is stored as "Worst Ac-
ceptable" (see fig. 5.15). The same applies to variable parameters where it is not possible
to define the superior limit of the upper and lower limit. This is the case for the cruise
Mach number M or the ratio between the cruise speed and the minimum drag speed
Ver /Vina. Therefore, for this thesis, the Worst Acceptable value is always considered as
the lower limit and the Best Possible value as the upper limit of a constraint.

5 Establishment of the Interface 76

Figure 5.15: Modelling of the constraints within an internal block diagram

Fig. 5.15 shows how the constraints are linked to the block properties where the optimal
value is stored later. This way it would be directly noticeable if a calculated value is
outside the predefined limits.

5.3.7 Data Types

The data types required to type the value properties of the model are stored in the
Aireraft Types package (see fig. 5.5). They are modelled with the block definition
diagram shown in fig. 5.16.

Figure 5.16: Used data types for the Aircraft model, modelled with a block definition
diagram

5 Establishment of the Interface 77

5.3.8 Stereotypes

For clarity, all parameters stored in the model are designated with either MATLA BInput
or MATLABOQutput. Thus, for each parameter it is evident whether it is required as input
value for the preliminary design or whether it originates from it. The stereotypes are
saved in the Stereotypes package (see fig. 5.17).

Figure 5.17: Custom stereotypes to label model items as input or output

5.3.9 Parametric Diagram

At this point, all the information required for the preliminary design is stored in the
system model (see fig. 5.3). This theoretically completes the modelling of the aircraft
model as far as it is relevant for the preliminary design. Therefore, the modelling of
the mathematical relationships can theoretically be initiated. Before doing so, however,
the diagram specifically intended for modelling the mathematical relationships - the
parametric diagram - should be briefly discussed (see ch. 2.4.6).

An effort was made to model the relationships between the parameters shown in fig. 5.2
in a parametric diagram. First, the design constraints resulting from the five different
flight phases were modelled as constraint properties. Fig. 5.18 shows the section of the
parametric diagram that represents the design constraint for the landing (eq. (3.1) &
red curve in fig. 3.5). The arrow directions indicate whether the parameters serve as an
input or output of the equation.

Figure 5.18: Section of the parametric diagram, Constraint Property for the landing
design constraint

5 Establishment of the Interface 78

On the left side of the five constraint properties, the input values are modelled as con-
straint parameters. The respective constraint parameters are connected to the respective
value properties via a binding connector (see ch. 2.4.6). On the right side of each of
the five constraints, a functional relationship between the thrust-to weight-ratio during
take-off Tro/ (marro - g) and the wing loading at take-off mpsr0/Sw is modelled. This
functional relationship is displayed in the matching chart (see fig. 3.5).

Next to the five constraint blocks, another constraint block resembling the matching
chart itself is modelled (see fig. 5.19). Again, all input parameters are recognizable by
the arrow direction. Among others, the functional relationship between the thrust-to-
weight ratio and the wing loading during take-off is modelled as a constraint parameter.
It is connected to the other constraint property via a binding connector.

Figure 5.19: Section of the parametric diagram, Constraint Property for the matching
chart

The value properties of the output parameters are located to the right of the Matching
Chart constraint property. They are also connected to the Matching Chart constraint
property with binding connectors. In addition, the optimized values for the four vari-
able parameters are modelled as constraint parameters (upper left corner of the Matching
Chart constraint property). Again, the constraint parameters are connected to the re-
spective value properties with a binding connector (see fig. 5.20). As for the Aircraft
internal block diagram, the value properties are connected to the corresponding con-
straints via a note link. This means that input values (upper and lower limits) are
displayed directly next to the optimized output values.

5 Establishment of the Interface 79

Figure 5.20: Section of the parametric diagram, value properties and constraints of the
variable parameters

However, there are a few discrepancies between fig. 5.3 and the parametric diagram
that cannot be avoided. The calculation model contains some input parameters, that
are stored in model items, which cannot be represented in a parametric diagram. All
parameters defined in composite associations cannot be displayed. This concerns the
amount of engines ngr and the amount of passengers n,4,. Certainly these parameters
could be additionally modelled as value properties, in order to display them in the
parametric diagram. However, the same information would then be available twice in

5 Establishment of the Interface 80

the model, which could lead to inconsistencies.

Furthermore, it could not be modelled that the lower and upper limits of the variable pa-
rameters are also included in the calculation (see fig. 5.20). Also, the iterative procedure
of the calculation could not be modelled.

It is important to emphasize that the parametric diagram was primarily created to
simplify understanding and to model the relationships between parameters directly in
the SysML model. Due to the modelling difficulties mentioned above, the SysML model
does not fully comply with the mathematical model presented in the next chapter. Also,
the computational model is not connected to the parametric diagram in any way.

5 Establishment of the Interface 81

5.4 Mathematical Model of the System in MATLAB

5.4.1 Overview

Now that the system has been modelled using the SysML (left part in fig. 5.2 & 5.2),
the next step is to analyse the system (right part in fig. 5.2 & 5.3). The analysis is
performed by a MATLAB code, which will be presented in this chapter.

The MATLAB code uses the input parameters modelled in the previous chapter (coloured
orange in fig. 5.2 & 5.3). The input parameters are required to preliminary design an
aircraft with minimum maximum take-off weight m ;o and minimum thrust-to-weight
ratio during take-off Tro/ (mayro - g). For this, the code makes use of MATLAB’s
abilities to find a minimum of a constrained non-linear multi-variable function. The
output values of the MATLAB calculation are the output values of the preliminary de-
sign method presented in chapter 3.3, that are required for the following design stages
(coloured green in fig. 5.2 & 5.3).

Additionally, the MATLAB program plots the matching chart as well as the iteration
progress. Fig. 5.21 shows the window that opens when the calculation is finished. The
upper plot shows the matching chart introduced in ch. 3.3. The large black circle shows
the design point, i.e. the optimal design at the end of the optimization.

Figure 5.21: Output of the MATLAB program

The small black dots show the design points of each iteration. The lower plot shows the
percentage reduction at each iteration of the objective function. The objective function

5 Establishment of the Interface 82

is defined as the the sum of the maximum take-off weight m;ro and the wing loading
at take-off myrro/Sw. Therefore, the optimal solution is the minimum of the objective
function.

In fact, is it not necessary to plot the matching chart, since the optimal design is calcu-
lated in the background and not determined from the matching chart. Nevertheless, the
chart is more illustrative. For instance, it shows which of the five flight phases signifi-
cantly constrains the design. In addition, the iteration progress in the matching chart
indicates whether the MDO has led to a realistic outcome.

The structure of the MATLAB program is shown in fig 5.22. The individual elements
of the code will be explained in detail in the following chapters.

Figure 5.22: Structure of the MATLAB code

1. Store Input Values and Fixed Values Inside MATLAB Struct

The first step is to save all input parameters and the fixed, predefined, values in a
MATLAB structure array (see step 1 in fig. 5.22). This is done within the lines 1 -
41 in App. B . A structure array is a data type that groups related data using data
containers called fields. Each field can contain any type of data [Mat22]. Consequently,
all parameters are stored in one array only. Thereby the transfer to and the modification
of parameters by other functions are simplified.

5 Establishment of the Interface 83

2. Setting up the Linear Inequality Constraints

In the second step the linear inequality constraints, that must be fulfilled by the optimal
solution, are set up (see step 2 in fig. 5.22). This is done within the lines 44 - 73 in
App. B . The linear inequality constraint defined in line 46 corresponds to eq.(3.1).
The constraint defined in lines 49 - 64 corresponds to eq.(3.3). Likewise, the constraint
defined in lines 66 - 87 corresponds to eq.(3.5).

3. Defining the Optimization Parameters

The next step is to define the optimization parameters (step 3 in fig. 5.22). The MAT-
LAB function fmincon() is used for the optimization. The fmincon() function requires
the linear inequality constraints in the form [Mat22]:

A-x<b (5.1)

Bringing the the equations eq.(3.1) - (3.5) in the form of eq.(5.1) leads to the following
matrices:

1 0

2.34
-1
A= |\ srorr - CLmaz,TO
0 -1

0 -1

(),
b— (Tro)3 (5.3)

myTo " g

o O) o
o O) @)

(TO

L\MMTO * g/ 4

r (mMTO> 7
Sw /) pEs
T

(TO
T = mMTO -9/ DES (5~4)
Cr

Vind/ DES
MpEgs

with:
1

my L/ mymro

(mMTO

k
) = 01072 - 0 - Clymaz,1, - SLFL - (5:5)
1 m

5 Establishment of the Interface 4

o) = Gtr) (s +om)
_—] = . ~+ sin 5.6
<mMTO‘9 3 ng —1 Esnas 7 (5.6)

T 1
(TO) :(ne)(+sm)- ML (5.7)
myTo -9/ 4 ng—1 Eyva MMTO

Eq. (5.5), eq.(5.6) and eq.(5.7) correspond to eq.(3.1), eq.(3.3) and eq. (3.5) respectively.
In summary, the system of equations defined by eq. (5.2) - (5.4) defines the matching
chart from ch. 3.3.3 without the cruise line (yellow line in fig. 3.5). The cruise constraint
is considered separately as a non-linear constraint by the CruiseConstraint() function
(see App. C). The CruiseConstraint() function converts the equations eq.(3.7) and
eq.(3.8) into the right form required by the fmincon() function. The required form for
non-linear constraints for the fmincon() function is [Mat22]:

c(x) <0

The line 82 in App. B is required to define an output function. The output function
provides outputs at each iteration step of the optimization problem (see App. F). The
outputs are required to plot the iteration progress (see fig. 5.21). Line 83 defines the
options for the MATLAB fmincon() function. The options include that the "active-set"
algorithm is used, the previously defined output function is applied and every iteration
satisfies the defined constraints. More information about the options for the fmincon()
function can be found in [Mat22].

4. Performing the Optimization

After all input arguments for the fmincon() have been defined, the optimization can be
performed (see step 4 in fig. 5.22). The optimization can be executed with the following
MATLAB command:

x = fmincon(fun,xo, A, b, Aeq, beq, Ib, ub, nonlcon, options)

The following input arguments are required:
o fun = Function to minimize (objective function)
e x¢ = Initial point
e [b = Lower bounds

o ub = Upper bounds

5 Establishment of the Interface 85

e nonlcon = Nonlinear constraints
e options = Optimization options

In the following, the input augments will be dealt with in more detail.

Function to minimize (fun)

Line 87 of App. B shows that the function to minimize fun is the Red M TOW () function
(see App. D). The function is to be explained in the following.

First, the variable parameters are read out from the = vector of the respective iteration
(line 2 - 5 in App. D). In the following step, the cruise coefficient Cr, ¢, and the glide
ratio during cruise E¢, are calculated according to eq.(3.10) and eq.(3.9) (line 9 - 10).
The air pressure at cruise attitude can then be calculated according to eq.(3.11). Once
the air pressure is known, the cruise attitude hc, and the speed of sound at cruise
attitude a (hcy,) can be calculated with the MATLAB "atmosisa()" function (line 13).
The cruise speed is then calculated according to eq.(3.12).

The lines 17 and 18 are required to convert the design range R and the alternate range
Ry from NM to m. As mentioned in ch. 3.3.4, the alternate range is multiplied by
a factor of 1.05 for international routes (line 21 - 25 in App. D). The lines 31 and 32
calculate the Breguet range factors according to eq.(3.13) and eq.(3.14). Afterwards,
the mission fuel fractions for cruise, alternate and loiter are calculated according to
eq.(3.15) - eq.(3.17). The maximum take-off weight is then calculated according to
eq.(3.18) - eq.(3.20) within the lines 37 - 44. Finally, the objective function is defined as
the sum of maximum take-off weight m ;7o and thrust-to-weight ratio during take-off

Tro/ (maro - g) (see line 44 of App. D). This value also serves as the output parameter
of the RedMTOW () function.

Remaining Inputs for the fmincon() Function

The initial point for the optimization x(is chosen as the middle point between the upper
and lower bounds (see line 87 in App. B). The upper bounds ub and the lower bounds
Ib are saved as constraints in the SysML model (see ch. 5.3.6). They are converted into
vectors in line 21 and 22 of App. B. As non-linear constraint only the CruiseConstraint()
function must be considered. As already mentioned, the optimization options are defined
in line 83 of App. B.

After the optimization has been performed the output message is displayed (line 89).
The DATA structure array is filled with the optimum values by re-executing the REDM-
TOW () function with the optimum z values (line 90). That way, the first preliminary
design parameters for the optimal design are known.

5 Establishment of the Interface 86

5. Further Calculation and Plotting

Once the optimization has been performed, the remaining output parameters can be
calculated (see step 5 in fig. 5.22). The equations presented in ch. 3.3.4 are used to
achieve this. Furthermore, the matching chart is plotted.

For this, the FurtherCalcAndPlot() function is executed (line 94 in App. B).

The FurtherCalcAndPlot() function first recalculates the take-off constraint (eq. (3.2))
and the cruise constraint (eq.(3.7) and eq.(3.8)) resulting in a point set (line 3 - 6 in
App. E). This point set is required so that the two curves can be plotted afterwards.
Moreover, the FurtherCalcAndPlot() function calculates the additional output parame-
ters as presented in ch. (3.3.4) (see lines 12 - 28 in App. E). The remaining lines of App.
E are required to plot the matching chart.

Besides, the optimization progress is plotted (lines 96 - 126 in App. B). In order to
make statements about whether an iteration step is feasible, the constrviolation value
of the output function is used. For feasible iteration steps, the constrviolation value
is close to 0. For infeasible iteration steps, the constrviolation value is much greater
than 0 [Mat22]. The constrviolation value is assigned to the second column of the
IterationOutput() matrix (see line 23 in App. F).

For both iteration progress plots, the feasible iteration steps are plotted in black and the
infeasible iteration steps are plotted in red. Fig. 5.23 shows that the first iteration point
is infeasible (coloured in red), because the cruise constraint (yellow line) is voilated. The
following iteration steps are all feasible (coloured in black).

5 Establishment of the Interface 87

Figure 5.23: Example of an infeasible iteration point (first iteration, coloured in red)

The lines 96 - 108 in App. B plot the iteration steps in the upper chart. For this, the wing
loading at take-off ma;ro/Sw and the thrust-to-weight ratio at take-off Tro/ (marro - 9)
of each iteration step are stored in the output function (see line 23 in App. F). The lower
plot shows the percentage deviation of the objective function at each iteration step from
the final value of the objective function (line 110 - 126 in App. B).

6. Read Output Values From MATLAB Struct

In the last step (step 6 in fig. 5.22), the calculated output parameters are read from
the DATA structure array and stored in the MATLAB workspace. This is necessary so
that they can be acessed from an external program later (see ch. 5.5.6). In addition,
the values are rounded to a desired scale (see lines 128 - 144 in App. B).

5.5 Interface Between Model Definition and Model Design

5.5.1 Introduction

At this point it is useful to take a step back and look at the current situation. In ch. 5.3,
the system to be analysed was modelled using the SysML in the PTC Integrity Modeler.
In chapter 5.4, a mathematical model was then developed for the preliminary design of
civil jet airliners.

5 Establishment of the Interface 88

The problem is that the input parameters required by MATLAB for the calculation are
stored in the SysML model. In addition, the output parameters from the calculation
are stored in the MATLAB workspace only. This means that there is still no connection
between the system definition landscape and the system analysis landscape (see fig.
5.1). An interface could automatically transfer the parameters between the two software
landscapes. The next chapters will discuss the motivation for such an interface and
possible technical solutions.

5.5.2 Motivation

Of course it would be possible to transfer the parameters manually from the SysML
model to the system analysis program. After the analysis, the calculated values can be
manually transferred back into the SysML model. However, this procedure has some
significant disadvantages.

First of all, the manual transfer of the values is much more vulnerable to errors than
the automatic transfer. For instance, it may happen that a calculated value is assigned
to the wrong model item or that the calculated value is transferred incorrectly. Besides,
an adjustment of the decimal separator may have to be taken into account.

In addition, the manual transfer of parameters requires significantly more time. As
already mentioned, the preliminary design stage of aircraft is subject to frequent changes
(see ch. 3.4). Therefore, especially this stage, a lot of time can be lost. Every time an
input parameter of the preliminary design changes or an output parameter turns out to
be infeasible, the calculation has to be re-performed. With manual data transfer, this
can have a negative impact on the overall development costs.

Another problem with manual data transfer is multi-user support. As mentioned in ch.
4, the PTC Integrity Modeler uses a database to enable multi-user capabilities. However
it may happen, that a design parameter is changed by another user at the same time
as the manual data transfer from the system model to the system analysis program. If
now the system calculation is performed with the old parameter, inconsistencies may
occur within the system model (see fig. 5.24). The tool users may end up competing
over various design parameters or characteristics [FRI0O8, p. 501]. One of the reasons for
MBSE, namely the consistent storage of all system information in one place, would be
lost.

5 Establishment of the Interface 89

Figure 5.24: Problem with multi-user support for parallel editing and analysis of the
model

This problem can be solved by locking the input parameters during the system analysis.
However, a locking of certain items would only be possible with automatic data trans-
fer. This is because a manual data transfer takes more time and therefore also keeps
the model elements locked. Another solution using automatic data transfer would be
to synchronize the input parameters used between the system definition program and
the system analysis program before providing the calculated values back in the system
model. If differences should arise after the system analysis, then a storage of the output
parameters in the system model can be prevented. It can be concluded that only a
complete integration of the analysis tool allows collaborative engineering to be realized
at all [FRIO8, p.489]. This is not achievable with manual data transfer.

Besides, the automatic data transfer between system definition and system analysis is of
particular importance for the preliminary design stage of aircraft, since it enables a fast
iterative design optimization (see ch. 3.4). Due to the automatic parameter transfer,
a design change can be simplified. This increases the incentive to perform more design
iteration, leading to a better final design.

The automatic data transfer also allows different configurations to be quickly designed
and compared. As mentioned in ch. 3.5, it is particularly important to explore as
many design variants as possible in the early design phases of aircraft design. The
digital interface allows a quick assessment of whether and how certain configurations are
technically feasible.

Finally, automatic parameter transfer allows the integration of additional features, such
as warnings if certain model elements have been deleted or automatic verifications when
requirements are violated.

5 Establishment of the Interface 90

5.5.3 Possible Technical Solutions

The last chapter emphasized the need for a digital and automated parameter transfer
between the SysML model in PTC Integrity Modeler and the mathematical model in
MATLAB. In this chapter different solution approaches for the interface will be discussed.

XMI Metadata Interchange

As mentioned in chapter 4, the PTC Integrity Modeler runs on a database. Since
accessing a database with respect to user rights may be difficult, it is advisable to
investigate a file-based data exchange first. PTC Integrity Modeler allows ModelerOMG
Model Interchange Working Group (MIWG) compliant XMI import [PTC19a]. The XMI
is an Object Management Group (OMG) standard for exchanging metadata information
via Extensible Markup Language (XML) [OMG15].

First, an XMI file extract would be generated within the Modeler (see fig. 5.25). This
XMI file could then be accessed through MATLAB directly or through an additional
interface program. The input parameters could then be extracted from the XMI file and
written back into the file after the MATLAB calculation. However, this approach was
not pursued further because exporting and importing files would require too much time.
In addition, the user would still have to perform the import and export manually, which
should be prevented, if possible.

Figure 5.25: XMI metadata interchange

Utilization of the Database for Parameter Exchange

If a file-based data exchange takes too long and involves manual work, the next approach
would be to access the underlying database directly. After the required input parameters
are read from the database, they could be written back into the database after the
calculation (see fig. 5.26).

5 Establishment of the Interface 91

Figure 5.26: Utilization of the database for parameter exchange

However, this approach also involves potential problems. First of all, it is difficult to
find the desired input parameters in the database. The data structure of the database
proved to be complex to understand and bears little resemblance to the model structure.
In addition, not every user who has access to a model in the Modeler automatically has
write access to the underlying database [PTC19al. This makes it difficult to return the
parameters after calculation. Furthermore, the improper entry of the calculated values
into the database would most likely corrupt the data or make it impossible to retrieve
them later in the Modeler. Therefore, only interface approaches provided by the PTC
Integrity Modeler have been investigated from this point.

PTC Integrity Modeler SySim

The Modeler SySim provides a mechanism for validating complex system behaviour de-
fined within a Modeler SysML model [Inc19]. To do so, the analysis context is modeled
in a internal block diagram. Using the SySim feature, a simulation model can be gen-
erated from the parent SysML block. This simulation can then be executed in Visual
Basic.

SySim also allows the simulation model to be executed in Simulink. Parameters could
then be transferred from Simulink to the MATLAB calculation engine. After the calcu-
lation in MATLARB, the calculated values could be transferred from MATLAB back to
Simulink and from there back to the SySim simulation (see fig. 5.27). Own tests have
confirmed this parameter transfer between SySim and MATLAB.

5 Establishment of the Interface 92

Figure 5.27: Parameter exchange with PTC Integrity Modeler SySim, Visual Basic and
Simulink

However, it proved to be impossible to pass values stored within a SysML value property
to the simulation (see fig. 5.27). All SySim simulation examples mentioned in [Inc19]
provide only possibilities to change the input values of the simulation within the Visual
Basic application itself. This can be done through the use of sliders (see fig. 5.28). The
same applies to a saving of output parameters of the simulation into value properties.
Again, there was no satisfactory result. For all examples mentioned in [Inc19], the output
values of the simulation are displayed within the Visual Basic simulation only. For this,
special visual indicators are provided by the SySim feature (see fig. 5.28). Fig. 5.28
shows an exemplary SySim simulation. The sliders on the left side change the input
values for the simulation. The indicators on the right display the simulations outputs.

Figure 5.28: Example of a system simulation perfored with SySim and Visual Basic
(taken from [Incl9, fig. 4.19])

Since no solution was found to have the SySim simulation interact with values stored

5 Establishment of the Interface 93

within the model, this solution approach was discarded.

Simulink Synchronizer

The Simulink Synchronizer allows to link SysML diagram contents with Simulink dia-
grams. For example, it is possible to automatically generate Simulink block diagrams
from parametric diagrams or internal block diagrams. Once the Simulink model is
linked to the respective SysML diagram, the synchronization can be performed rapidly
by pressing one single button in the Modeler.

Fig. 5.29 shows the synchronization of the SysML diagram contents with Simulink.
Again, the Simulink diagram could be modified to run the calculation in the MATLAB
calculation engine. Own tests confirmed the synchronization of the SysML diagram
components to the respective Simulink model. However, the parameters assigned to the
objects were not synchronized (see fig. 5.29). This approach was then discarded.

Figure 5.29: XMI metadata interchange

Phoenix Model Center

The Phoenix Model Center is a software package developed by Phoenix Integration Inc.
that provides users with tools and methods that allow them to automate the execution
of almost any modelling and simulation tool [Int22]. The Phoenix Model Center also
provides additional features to the PTC Integrity Modeler. For example, requirements
are supplemented by a numerical property, as well as an upper and a lower margin
[PTC19a]. In addition, constraint properties can be linked directly to calculations that
are stored in the Phoenix Model Center. The Model Center in turn links the calculations
to a variety of analysis tools (see fig. 5.30). Moreover, the Phoenix Model Center
enables to check whether calculated values lie within the margins of the corresponding
requirement.

5 Establishment of the Interface 94

Output
Values

Figure 5.30: Integration of the Phoenix Model Center with different analysis tools (taken
from [Int22])

Since the Phoenix Model center was developed specifically for automatic parameter ex-
change with analysis models, it offers a solution for connecting the two models. However,
special licenses are required. To link the PTC Integrity Modeler with the Phoenix Model
center, a Phoenix Model Center 13 licence and a Analysis Server 13 license is compul-
sory [PTC19a]. Besides, there is a strong dependence on the solutions developed by
Phoenix Integration. If the parameter exchange has to be adapted to company-specific
needs, high additional costs may be charged. Therefore, the next chapters present the
development of an automated parameter exchange between the PTC Integrity Modeler
and MATLAB without the need for a Phoenix Model Center or Analysis Server license.

5.5.4 Overview of the Visual Basic Interface

In chapter 4, it was already mentioned that it is possible to access and edit model items
of the Modeler using the PTC Integrity Automation Interface. This approach is now
further pursued.

For this purpose, a Visual Basic program is created that can automatically exchange pa-
rameters between the PTC Integrity Modeler and MATLAB via the Automation Inter-
face. The Visual Basic program is required as an intermediate step because it allows the
interaction with both the PTC Integrity Modeler as well as MATLAB. This is achieved
by adding two libraries to the extend the Visual Basic functionality. The "FEnterprise
OLE Automation 1.0 Type Library" library is required for the interaction with the PTC
Integrity Modeler. The "Matlab Automation Server Type Library" is added for the in-
teraction with MATLAB . This chapter provides an explanation of the structure and
function of the Visual Basics program created to exchange parameters between system
definition software (PTC Integrity Modeler) and system analysis software (MATLAB).

The visual basic program has to perform two main tasks. First, the values stored in
the PTC Integrity system model must be transferred to MATLAB. After the calculation
in MATLAB, the newly calculated values must then be transferred back to the system
model (see fig. 5.2). In addition, the user should be informed about the status of
data exchange and calculation. On top of that, the user should be informed about
any occurring errors. Parameter exchange and system analysis should be performed as
conveniently as possible. Ideally, the system analysis is performed directly from within

5 Establishment of the Interface 95

the PTC Integrity Modeler window.

Fig. 5.31 shows the parameter transfer between system definition software (PTC In-
tegrity Modeler) and system analysis software (MATLAB). The black arrows symbolize
the parameter transfer. It can be seen that the Visual Basic program interacts with
the Modeler using the PTC Automation Interface and accesses MATLAB using the
MATLAB Automation Server.

Figure 5.31: Parameter transfer between system definition software (PTC Integrity Mod-
eler) and system analysis software (MATLAB) through a Visual Basic pro-
gram

Fig. 5.32 shows the detailed structure of the Visual Basic program that is used to
exchange the parameters (center box in fig. 5.31). The left side is connected to the
SysML model stored inside the PTC Integrity Modeler repository (see ch. 5.3). The
right side is connected to the MATLAB code introduced in ch. 5.4 (see fig. 5.22).

5 Establishment of the Interface 96

Figure 5.32: Structure of the Visual Basic Program

5.5.5 Required Libraries

In order for the visual basic interface to work, a couple precautions must be taken.
First, a working and licensed version of PTC Integrity must be installed. In addition,
a license for the PTC Integrity Automation Interface and the PTC Integriy API Access
License must be registered [PTC15, p. 1]. Furthermore, a working MATLAB version
containing the "MATLAB Optimization Toolbox" must be installed. The installation of
the "Automation Toolbox" can be verified with the following MATLAB function:

ver -—support

In order to execute MATLAB commands from Visual Basic, MATLAB must be regis-
tered as a "COM server". By default, MATLAB is automatically registered as a "COM

5 Establishment of the Interface

97

server" during installation. If that is not the case, it can be accomplished with the
following MATLAB command:

1

comserver ('register', 'User', 'current')

2 state = enableservice ('AutomationServer',true);
3 enableservice ('AutomationServer')
5.5.6 The Visual Basic Code
In this chapter the Visual Basic code will be explained. The programmed Visual Basic
code is displayed below. In the following chapters, the code is explained using the
sequence illustrated in fig. 5.32.
1 Imports System.Text.RegularExpressions
2 Module MatLabAPI
3 'l. Declare and assign properties
4 Private Declare Auto Function ShowWindow Lib "user32.dl11" (ByVal hWnd As
IntPtr, ByVal nCmdShow As Integer) As Boolean
5 Private Declare Auto Function GetConsoleWindow Lib "kernel32.d1ll" () As
IntPtr
6 Private Const SW_HIDE As Integer = 0
7
8 Dim Studio, Models, MatLab As Object
9 Dim Model, Dictionary, Requirement, BlockProperty, Comnstraint,
VariantObj, DecisionSet, VariantParameter,
10 DecisionSetVariantParameters, DecisionSetVariantParameter, .
BlockPropertyType, Block, Parts, Part As ENT6Lib.CCaseProjects
11
12 Dim Assotiation As ENT6Lib.CCaseProjects
13
14 Dim RequirementName, BlockPropertyName, ConstraintName, DecisionSetName,
VariantName, VariantParameterType, OutputMessage As String
15 Dim OutputValue
16
17 Sub Main ()
18 'Minimize Console Window
19 Dim hWndConsole As IntPtr
20 hWndConsole = GetConsoleWindow ()
21 ShowWindow (hWndConsole, SW_HIDE)
22
23 'Assign Properties
24 Studio = CreateObject("Studio.Editor")
25 Models = CreateObject ("OMTE.Projects")
26 Model = Models.Item("ActiveProject")
27 Dictionary = Model.Item("Dictionary")
28
29 Studio.ClearResultsPane (1)
30 Studio.ClearOutputWindow
31 Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" +
TimeOfDay + "]: Reading values:" + vbCrLf)
32
33 '2. Read Values from the System Model
34 '2.1. Read Values from Requirements
35 Dim climb_grad_MA As Double = ReadRequirementValue ("REQ026")
36 Dim climb_grad_CLB As Double = ReadRequirementValue ("REQ024")

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

5 Establishment of the Interface 98

Dim s_LFL As Double = ReadRequirementValue ("REQ098")

Dim s_TOFL As Double = ReadRequirementValue ("REQO87")

Dim R_Alt As Double = ReadRequirementValue ("REQO025")

Dim Certification As String = ReadRequirementValue ("REQO67")
Dim RouteType As String = ReadRequirementValue("REQ110")

'2.2. Read Values from Block Properties

Dim CL_max_L As Double = ReadBlockPropertyValue("CLMax,L")

Dim CL_max_TO As Double = ReadBlockPropertyValue("CLMax,TO")

Dim FlapSetting As Double = ReadBlockPropertyValue("FlapSetting ,TO")
Dim m_ML_DIV_m_MTO As Double = ReadBlockPropertyValue ("mML/mMTO")
Dim m_OE_DIV_m_MTO As Double = ReadBlockPropertyValue ("mOE/mMTO")
Dim BPR As Double = ReadBlockPropertyValue ("BPR")

Dim AR As Double = ReadBlockPropertyValue ("AR")

Dim m_CARGO As Double = ReadBlockPropertyValue("CargoMass")

Dim R As Double = ReadBlockPropertyValue("Range")

'2.3. Read Values from Constraints
Dim TtWR_UPPER As Double = .

ReadConstraintUpperValue ("ThrustToWeightRatio")
Dim TtWR_LOWER As Double = ...

ReadConstraintLowerValue ("ThrustToWeightRatio")
Dim WL_UPPER As Double = ReadConstraintUpperValue("WingLoading")
Dim WL_LOWER As Double = ReadConstraintLowerValue("WingLoading")
Dim M_UPPER As Double = ReadConstraintUpperValue ("CruiseMachNumber")
Dim M_LOWER As Double = ReadConstraintLowerValue("CruiseMachNumber")
Dim V_DIV_V_md_UPPER As Double = ReadConstraintUpperValue("V/V_md")
Dim V_DIV_V_md_LOWER As Double = ReadConstraintLowerValue("V/V_md")

'2.4 Read Values from Assotiations

Dim n_E As Double = ReadAssotioationValue("AircraftEngine", "StartRole")
Dim n_PAX As Double =
ReadAssotioationValue ("AircraftDomainPassenger", "StartRole")

'3. Saving values to MATLAB workspace

Dim MatLabFileLocation As String

MatLabFileLocation = My.Application.Info.DirectoryPath + "\Main.m"

Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" +
TimeOfDay + "]: Starting the MATLAB application" & vbCrLf)

MatLab = CreateObject("Matlab.Application")

SaveToMatlabWorkspace (MatLab, climb_grad_MA, "climb_grad_MA")
SaveToMatlabWorkspace (MatLab, climb_grad_CLB, "climb_grad_CLB")
SaveToMatlabWorkspace (MatLab, s_LFL, "s_LFL")
SaveToMatlabWorkspace (MatLab, s_TOFL, "s_TOFL")
SaveToMatlabWorkspace (MatLab, R_Alt, "R_Alt")
SaveToMatlabWorkspace (MatLab, Certification, "Certification")
SaveToMatlabWorkspace (MatLab, RouteType, "RouteType")

SaveToMatlabWorkspace (MatLab, CL_max_L, "CL_max_L")
SaveToMatlabWorkspace (MatLab, CL_max_TO, "CL_max_TO")
SaveToMatlabWorkspace (MatLab, FlapSetting, "FlapSetting")
SaveToMatlabWorkspace (MatLab, m_ML_DIV_m_MTO, "m_ML_DIV_m_MTO")
SaveToMatlabWorkspace (MatLab, m_OE_DIV_m_MTO, "m_OE_DIV_m_MTO")
SaveToMatlabWorkspace (MatLab, BPR, "BPR")
SaveToMatlabWorkspace (MatLab, AR, "AR")
SaveToMatlabWorkspace (MatLab, m_CARGO, "m_CARGO")
SaveToMatlabWorkspace (MatLab, R, "R")

95
96
97
98
99
100
101
102
103
104
105

107
108

109
110
111
112

113
114
115

116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131

132

133
134
135
136
137

139

140
141
142
143
144

145

5 Establishment of the Interface

99

SaveToMatlabWorkspace (MatLab, TtWR_UPPER, "TtWR_UPPER")
SaveToMatlabWorkspace (MatLab, TtWR_LOWER, "TtWR_LOWER")
SaveToMatlabWorkspace (MatLab, WL_UPPER, "WL_UPPER")
SaveToMatlabWorkspace (MatLab, WL_LOWER, "WL_LOWER")
SaveToMatlabWorkspace (MatLab, M_UPPER, "M_UPPER")
SaveToMatlabWorkspace (MatLab, M_LOWER, "M_LOWER")
SaveToMatlabWorkspace (MatLab, V_DIV_V_md_UPPER, "V_DIV_V_md_UPPER")
SaveToMatlabWorkspace(MatLab, V_DIV_V_md_LOWER, "V_DIV_V_md_LOWER")

SaveToMatlabWorkspace (MatLab, n_PAX, "n_PAX")

SaveToMatlabWorkspace (MatLab, n_E, "n_E")

Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" +
TimeOfDay + "]: Executing the MATLAB script: " &
MatLabFileLocation & vbCrLf)

'4. Execute MATLAB Code

MatLab.Execute("cd '" & My.Application.Info.DirectoryPath & "'")
Dim result As String = MatLab.Execute("run('" & MatLabFileLocation &
"l)ll)

If result.Contains("cannot execute the file") Then
MsgBox ("Error: MATLAB file could not be opened!" +
Environment.NewLine + "Please make sure that the MATLAB file
is located in the same folder as the executable file.")
Environment .Exit (0)
End If

'Make sure that the calculation is finished before further calculation
If result.Contains("Calculation has finished") Then

'5. Reading and saving the calculated values in the Model
Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" +

TimeOfDay + "]: Saving calculated values in the model:" +
vbCrLf)
ReadAndSaveOutput (MatLab, "h_Cr", "Aircraft", "CruiseAttitude")
ReadAndSaveOutput (MatLab, "V_Cr", "Aircraft", "CruiseSpeed")
ReadAndSaveOutput (MatLab, "C_L_Cr", "Aircraft", "CL_Cr")
ReadAndSaveOutput (MatLab, "E_Cr", "Aircraft", "E_Cr")
ReadAndSaveOutput (MatLab, "M", "Aircraft", "CruiseMachNumber")
ReadAndSaveOutput (MatLab, "V_DIV_V_md", "Aircraft", "V/V_md")
ReadAndSaveOutput (MatLab, "ThrustToWeightRatioDesign",
"Aircraft", "ThrustToWeightRatio")
ReadAndSaveOutput (MatLab, "WingLoadingDesign", "Aircraft",
"WingLoading")
ReadAndSaveOutput (MatLab, "m_PL", "MassPrediction", "mPL")
ReadAndSaveOutput (MatLab, "m_MTO", "MassPrediction", "mMTO")
ReadAndSaveOutput (MatLab, "m_ML", "MassPrediction", "mML")
ReadAndSaveOutput (MatLab, "m_MZF", "MassPrediction", "mMZF")
ReadAndSaveOutput (MatLab, "m_OE", "MassPrediction", "mOE")
ReadAndSaveOutput (MatLab, "m_F", "FuelTank", "mF")
ReadAndSaveOutput (MatLab, "T_TO_per_engine", "Engine",
"TakeOffThrust")
ReadAndSaveOutput (MatLab, "A_Wing", "Wing", "WingArea")

'6. Close Program

Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" +
TimeOfDay + "]: Refreshing model" & vbCrLf)

Studio.Refresh

146

147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163

5 Establishment of the Interface 100

Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" + ...
TimeOfDay + "]: Calculation finished" & vbCrLf)

End If

Do While True
Dim IsHandle As String = MatLab.Execute("ishandle(1)")
If IsHandle.Contains("0") Then
Exit Do
End If
Loop

Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" + ...

TimeOfDay + "]: Closing the MATLAB application" & vbCrLf)
MatLab.Execute ("quit")

End Sub

1. Declaring and Assigning Properties

First of all, the variables are declared and assigned (see step 1 in fig. 5.32). All
model items accessed through the PTC Integrity Automation Interface are declared
as "ENT6Lib. CCaseProjects”.

Line 4 - 6 in the Visual Basic Code are required to hide the console window while
the program is executed. This allows the application to run solely in the background.
Afterwards, the variables used in the program are declared.

Main() Sub between line 17 to line is executed as soon as the program is started. The
sub starts by hiding the console window in line 21. After that, a Studio object is created.
The Studio object is required to control the PTC Integrity Modeler user interface (see
ch. 4.8). The Visual Basic program uses the PTC Integrity Modeler user interface to
notify the user of the progress of the system analysis.

The lines 25 - 27 are required to access the Dictionary object of the active model. The
Dictionary object is a container for all dictionary items in the Model (see ch. 4.7). It
is required to read and modify the parameters for the preliminary design. After that,
the result pane and the output window of the PTC Integrity user interface are cleared
(lines 29 - 30).

2. Reading Values From the System Model

After all properties have been declared or assigned, the parameters can be read from
the SysML model (see step 2 in fig. 5.32). This happens between line 33 and 108. All
parameters can be accessed via the previously defined Dictionary object through the
PTC Automation Interface (see fig. 5.31. However, the parameters are distributed over
different model items within the model (see fig. 5.3). Therefore, different access methods

5 Establishment of the Interface 101

must be used. To keep the program clear and to ensure flexibility and reusability, a

function for accessing each model item was developed. The functions are presented in
ch. 5.5.7.

First, the requirement values are accessed via the ReadRequirementValue() function
(lines 34 - 41). After that, the values stored in value properties are accessed via the
ReadBlockProperty Value() function (lines 44 - 35). The upper and lower limits of the
constraints are accessed through the ReadConstraintUpperValue() and ReadConstraint-
LowerValue() functions (lines 56 - 64). Finally, the two parameters stored inside associ-
ations are accessed by using the ReadAssocioation Value() function (lines 66 - 58).

3. Saving Values to the MATLAB Workspace

At the beginning of the third step, all the input parameters needed for the MATLAB
calculation are cached inside the Visual Basic program as variables. In the next step,
they must be passed on to MATLAB (see fig. 5.31). This step corresponds to step 3
in fig. 5.32. To transfer the parameters to MATLAB, first the MATLAB application
has to be executed (line 75). After that, all parameters are transferred to the MATLAB
workspace by using the SaveToMatlabWorkspace() function (lines 77 - 105).

4. Executing the MATLAB Code

All parameters are now stored in the MATLAB workspace. The MATLAB script pre-
sented in ch. 5.4 can now be executed (step 4 in fig. 5.32). To achieve this, the MATLAB
folder is changed to the folder in which the MATLAB script is stored (line 111). After-
wards, the MATLAB script is executed (line 112). If the MATLAB script is not found,
an error message appears and the Visual Basic program is closed (line 115). If the calcu-
lation was successful, the return string of the MATLAB calculation contains the string
"Calculation has finished" (line 120). Then the return of the calculated parameters to
the SysML model can be initiated.

5. Reading Calculated Values and Storing Them in the System Model

The fifth step consists of reading the calculated values from MATLAB and saving them
in the SysML model (lower arrows in fig. 5.31. Both the import of the output values to
the Visual Basic program as well as the storage in the SysML model is performed one
step. The ReadAndSaveOutput() function is used for this. The ReadAndSaveOutput()
function stores all calculated parameters as value properties of the respective block (lines
125 - 140). If the value property is not found in the SysML model, it is possible to create
it using the CreateNewBlockProperty() function.

5 Establishment of the Interface 102

6. Closing the Program

After all parameters have been transferred back to the SysML model, the model is
refreshed (line 145). Theoretically, the work of the Visual Basic program is now complete.
The input parameters were read from the SysML model, transferred to MATLAB, the
calculation was performed and the calculated values were finally transferred back to
the SysML model (see fig 5.32). The only remaining step is to close the MATLAB
application. However, the MATLAB plot would then also be closed immediately. The
loop between lines 161 and 156 is used to check if the MATLAB plot is still open. As
soon as the plot is closed, the MATLAB application can also be closed (line 159).

5.5.7 Used Functions

This chapter is intended to explain the functions used in the Visual Basic Code in more
detail (see fig. 5.32).

ReadRequirementValue()

To read requirement values from the Automation Interface the ReadRequirementValue()
function was used. The function is called as follows:

Dim <RequirementValue> As Double = ReadRequirementValue ("<RequirementID>")

11

12

14

Function ReadRequirementValue (RequirementName) As String
'Get Requirement Object
Requirement = Dictionary.Item("Class", RequirementName)
'Read Requirement Value
If Requirement Is Nothing Then
MsgBox ("Error: Requirement '" & RequirementName & "' was not found!")
Environment .Exit (0)
Else

ReadRequirementValue = ...
CStr (Regex.Match(Requirement ("Description"),
"(7<\D (.*¥7) (?=\])").Value)

OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) + ...
"]:" + vbTab + "Requirement: " + vbTab + vbTab + ...
RequirementName + " = " + ReadRequirementValue + vbCrLf

Studio.DisplayOutputWindowMessage (OutputMessage)

End If
End Function

First, the requirement is accessed from the dictionary. As demonstrated earlier, require-
ments can be accessed through Class objects from the Automation Interface Dictionary
object (see line 3) [PTC15, p. 187]. Afterwards, it is checked whether the desired re-
quirement exists. If not, the application closes (line 8). If the requirement exists, the
Description attribute is accessed. In order to access the desired input parameter, the
value inside the square bracket of the requirement description is read out (line 10). This

5 Establishment of the Interface 103

is necessary because there is no separate input field to store the parameters within the
PTC Integrity Modeler. The numerical value must therefore be entered between the two
square brackets (see fig. 5.33).

Figure 5.33: Solution to save and access value parameters within the requirement de-
scription

A conventional modelling technique would be to save the value parameter inside a value
property and link the value property to the respective requirement [PTC19b]. The value
can then be read from the value property similarly to the function presented below.
However, in case the requirements change, the value within the value property would
also have to be changed manually. Therefore, it was decided to read the values directly
from the requirements to increase productivity and minimize possible errors.

ReadBlockPropertyValue()

The ReadBlockPropertyValue() function can be used to read the default value of a block
property.

Dim <BlockPropertyValue> As Double = ...
ReadBlockPropertyValue ("<BlockPropertyName>")

Just like the function presented above, first the desired block property is accessed. This
is done by accessing all objects that are typed Role and have the name of the block
property through the PTC Automation Interface Dictionary object[PTC19b, p. 272].
Again, the application is closed if the desired Role object is not found (line 6 - 8). Once
the object for the desired block property is accessed, the default value can be read out
through the "Default Value" attribute (line 10).

Function ReadBlockPropertyValue(BlockPropertyName) As Double
'Get Block Property Object
BlockProperty = Dictionary.Item("Role", BlockPropertyName)

'Read Requirement Value
If BlockProperty Is Nothing Then
MsgBox ("Error: Block property '" & BlockPropertyName & "' was not ...
found!")
Environment .Exit (0)

5 Establishment of the Interface 104

9 Else

10 ReadBlockPropertyValue = CDbl(BlockProperty("Default Value"))

11 OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) + "JI:"
+ vbTab + "Block Property: " + vbTab + vbTab +
BlockPropertyName + " = " + CStr(ReadBlockPropertyValue) + vbCrLf

12 Studio.DisplayOutputWindowMessage (OutputMessage)

13 End If

14 End Function

ReadConstraintUpperValue() and ReadConstraintLowerValue()

The constraints consist of an upper and a lower value. Both values are read separately
with the ReadConstraintUpperValue() and the ReadConstraintLowerValue() function.
The functions can be called the following way:

1 Dim <UpperValue> As Double ReadConstraintUpperValue ("<ConstraintName >")
2 Dim <LowerValue> As Double = ReadConstraintLowerValue("<ConstraintName>")

Both functions are constructed the same. First, the desired Constraint object is accessed
from the Automation Interface Dictionary object [PTC15, p. 199]. Just like before, the
application closes if the Constraint object does not exist. Depending on which of the
two functions is called, the upper value (Best Possible attribute) or lower value (Worst
Acceptable attribute) is read (line 10).

Function ReadConstraintUpperValue(ConstraintName) As Double
'Get Constraint Object
Constraint = Dictionary.Item("Constraint", ConstraintName)

'Read Constraint Upper (=BestPossible) Value
If Constraint Is Nothing Then
MsgBox ("Error: Constraint '" & ConstraintName & "' was not found!")
Environment .Exit (0)
Else
ReadConstraintUpperValue = CDbl(Constraint("Best Possible"))
OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) + "I:"
+ vbTab + "Constraint Upper Value: " + vbTab + ConstraintName +
" = " + CStr(ReadConstraintUpperValue) + vbCrLf
12 Studio.DisplayOutputWindowMessage (OutputMessage)
13 End If
14 End Function

© 0 N O UA W N

o
- O

1 Function ReadConstraintLowerValue(ConstraintName) As Double

2 'Get Constraint Object

3 Constraint = Dictionary.Item("Constraint", ConstraintName)

4

5 'Read Constraint Lower (=Worst Acceptable) Value

6 If Constraint Is Nothing Then

7 MsgBox ("Error: Constraint '" & ConstraintName & "' was not found!")
8 Environment .Exit (0)

9 Else

=
o

ReadConstraintLowerValue = CDbl(Constraint("Worst Acceptable"))

11

12
13
14

5 Establishment of the Interface

105

OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) + "J]:"
+ vbTab + "Constraint Lower Value: " + vbTab + ConstraintName +
" = " + CStr(ReadConstraintLowerValue) + vbCrLf
Studio.DisplayOutputWindowMessage (OutputMessage)
End If
End Function

ReadAssocioationValue()

The amount of engines and the amount of passengers is directly read from the association
multiplicities. For this, the ReadAssocioation Value() function was used. It can be called

the following way:

Dim <MultiplicityValue> As Double =
ReadAssocioationValue ("<AssociationName>", "<StartRole>/<EndRole>")

The association values can be accessed via the Association object from the Automation
Interface Dictionary object (line 3) [PTC15, p. 166]. If the requested Association object
does not exist, the application is closed (line 7-8). Depending on which role is requested,

the Start Multiplicity attribute or End Multiplicity attribute is read (line 11).

© 00 N O U As W N

10
11
12

13
14
15

16
17

19

Function ReadAssocioationValue(AssociationName, Type) As Double
'Get Association Object
Association = Dictionary.Item("Association", AssociationName)

'Read Requirement Value
If Association Is Nothing Then
MsgBox ("Error: Association
Environment .Exit (0)
Else
If Type = "StartRole" Then
ReadAssocioationValue = CInt(Association("Start Multiplicity UML"))
OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) +
"J:" + vbTab + "Association Multiplicity (Start): " + vbTab +
AssociationName + " = " + CStr(ReadAssocioationValue) + vbCrLf
ElseIf Type = "EndRole" Then
ReadAssotioationValue = CInt(Association("End Multiplicity UML"))
OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) +
"]1:" + vbTab + "Association Multiplicity (End): " + vbTab +
AssociationName + " = " + CStr(ReadAssocioationValue) + vbCrLf
End If
Studio.DisplayOutputWindowMessage (OutputMessage)
End If
End Function

" "o

& AssociationName & was not found!")

SaveToMatlabWorkspace()

Once all required input parameters are read from the Automation Interface item dictio-
nary they have to be saved in the MATLAB base workspace. This is achieved by using

5 Establishment of the Interface 106

the SaveToMatlabWorkspace() function. Before calling the function, the MATLAB ap-
plication has to be started. As already mentioned, the Matlab Automation Server Type
Library must be referenced.

Dim MatLab As Object

Studio.DisplayOutputWindowMessage ("Preliminary Sizing Tool [" + TimeOfDay + ...
"]: Starting the MATLAB application" & vbCrLf)

MatLab = CreateObject("Matlab.Application")

The SaveToMatlabWorkspace() function can then be called the following way:

SaveToMatlabWorkspace (MatLab, <Parameter>, "<ParameterName>")

The parameters can be saved to the MATLAB workspace using the . Put WorkspaceData
method (line 2) [Mat22].

Function SaveToMatlabWorkspace(MatLab, Parameter, ParameterName)
MatLab.PutWorkspaceData(ParameterName, "base", Parameter)
End Function

ReadAndSaveOutput()

The function ReadAndSaveOutput() is used to read the calculated values from the MAT-
LAB base workspace and stores them at the respective value property. The function can
be called as follows:

ReadAndSaveOutput (MatLab, "<MATLABParameterName>", "<BlockName>",
"<BlockPropertyName >")

First, the parameter is read from the MATLAB workspace. For this, the . Get Workspace-
Data method is used (line 5) [Mat22]. If the requested parameter is not found in the
workspace the function is exited (line 9). Otherwise the script will be continued.

The next step is to store the calculated parameters within the respective block prop-
erty. Therefore, the block property is accessed similarly to ch.5.5.7. It can happen that
desired block property does not exist. In this case a dialogue window is opened, asking
if the block property should be created (line 15). If it is declined, the function is exited
(line 20). If it is accepted, the new block property is created, using the Create NewBlock-
Property() function (see ch. 5.5.7).

After that, the calculated parameter is assigned to the "Default Value" attribute of the
respective block property (line 27). Furthermore, the parameter is displayed at the
results pane of the Modeler (line 29, see fig. 5.34).

5 Establishment of the Interface

107

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

Function ReadAndSaveOutput(MatLab, VarName, BlockName, BlockPropertyName)

'read value from MATLAB: saves value of MATLAB var=Varname to OutputValue
Dim OutputValue
MatLab.GetWorkSpaceData (CStr(VarName), "base", OutputValue)

If OutputValue Is Nothing Then
MsgBox ("Error: MATLAB value '" + VarName + "' was not found!")
GoTo Linel

End If

BlockProperty = Dictionary.Item("Role", BlockPropertyName)

If BlockProperty Is Nothing Then

Dim answer As Integer = MsgBox("The block property '" &
BlockPropertyName & "' was not found." + Environment.NewLine +
"Do you want to create it?", vbQuestion + vbYesNo +

vbDefaultButton2, "Error: Block property was not found!")

If answer = vbYes Then

CreateNewBlockProperty (BlockName, BlockPropertyName)
Elself answer = vbNo Then

GoTo Linel
End If

End If

'Save output value as default value of the block property
BlockProperty = Dictionary.Item("Role", BlockPropertyName)
BlockProperty("Default Value") = CStr(OutputValue)

'Add output to the Resultspane

Studio.AddToResultsPane (1, BlockProperty.Property("Id"))

OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) + "J]:" +
vbTab + " Saved calculated value '" + VarName + "' as default value
of block property '" + BlockPropertyName + "' = " +
CStr (OutputValue) + vbCrLf

Studio.DisplayOutputWindowMessage (OutputMessage)

Linel:

End Function

5 Establishment of the Interface 108

Figure 5.34: After execution of the script, the calculated values are displayed at the
Modeler result pane

CreateNewBlockProperty()

The CreateNewBlockProperty() function is required when a value calculated in MATLAB
is to be stored back in the Modeler, but the corresponding block property does not exist.
It can be called the following way (see ch. 5.5.7):

CreateNewBlockProperty ("<BlockName>", "<BlockPropertyName>") ‘

First the block is accessed under which the block property will be created. SysML blocks
can be accessed through the PTC Automation Interface via UML Class objects [PTC15,
p. 187]. If the block does not exist, the application is closed (line 7).

Once the block is accessed through the Class object, a new block property for this block
has to be created. However, the PTC Automation Interface meta model does not allow
the direct creation of block properties [PTC15]. Therefore, the following workaround
must be performed.

First, a new Part object is created for the block (line 11 - 12). As mentioned in ch.
Ch.SysMLBlockProperties, parts are the UML equivalent to SysML part properties.

In the next step the newly created Part object should be accessed via the Name attribute,
as was explained earlier. However, it is not possible to specify the name of the Part object
when creating it (see line 11 - 12). In order to access the newly created part, it is looped
through all Parts object of the Class object (line 14 - 22). If one of the parts has no
name, it must be the newly created part (line 19). It is therefore renamed to the desired
block property name (line 20).

Now, the newly created part can be accessed through the block property name (line 25).
This is necessary to assign the part as a block property. The newly created Part object

5 Establishment of the Interface 109

is assigned with the SysML block property stereotype (line 25 - 26). This turns an UML
Part object into a SysML block property (see ch. 2.3.4).

© 00 N O Ae W N

10

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26

27
28

29
30
31

Function CreateNewBlockProperty(BlockName, BlockPropertyName)

'Acess block object
Block = Dictionary.Item("Class", BlockName)
If Block Is Nothing Then

MsgBox ("Error: Block '" & BlockName & "' was not found!")
Environment .Exit (0)
End If

'Add a new part (UML equivalant for SysML block property of type Real)
BlockPropertyType = Dictionary.Item("Class", "Real")
Block.AddDirected ("Part", BlockPropertyType)

'Loop through the parts of the block object until the newly created part
is found (has no name)

Parts = Block.Items("Part")

Parts.ResetQueryItems ()

Do While Parts.Moreltems

Part = Parts.NextItem
If Part("Name") = "" Then
Part ("Name") = BlockPropertyName
End If
Loop

'Assigning the block property stereotype

BlockProperty = Dictionary.Item("Role", BlockPropertyName)

Dictionary.Item("Stereotype", "BlockProperty").Add("Model Object",
BlockProperty)

OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) + "J]:" +
vbTab + "Created new block property " + BlockName + "/" +
BlockPropertyName + vbCrLf

Studio.DisplayOutputWindowMessage (OutputMessage)

End Function

5.6 Summary

In this chapter, the SysML model in PTC Integrity, the calculation model in MATLAB
and an interface for digitally linking the two models were introduced. In order to demon-
strate many different input possibilities, the input parameters required for preliminary
sizing are distributed in different SysML objects. The input parameters are stored in
requirements, constraints, associations and block properties.

The objects can be accessed through an external Visual Basic program via the Automa-
tion Interface. Custom Visual Basic functions were developed to access the individual
objects. The parameters are then passed from the Visual Basic program to MATLAB
via the MATLAB Automation Server library. An optimization algorithm then calculates
the minimum of a previously defined objective function. This minimum corresponds to

5 Establishment of the Interface 110

an optimal design according to the defined criteria. The calculated parameters are then
fed back to the SysML model via the Visual Basic interface.

The digital interface offers many advantages. In particular, it allows time and cost sav-
ings, minimization of manual data transfer errors and collaborative engineering. In ad-
dition, the interface allows a rapid preliminary design of different configurations. Lastly,
the digital interface and can improve the overall aircraft design by minimizing the effort
for additional design iterations.

6 Installation and Testing of the Visual Basic Interface 111

6 Installation and Testing of the Visual
Basic Interface

6.1 Installation of the Visual Basic Interface

The folder for the digital interface contains the SysML Aircraft model, the MATLAB
calculation program and the Visual Basic application (see ch. MBSE). First, the SysML
Aircraft model must be imported into the PTC Integrity Modeler. Afterwards, it can
be configured that the Visual Basic application can be executed directly from the PTC
Integrity Modeler.

6.1.1 Importing the Aircraft Model Into the PTC Integrity Modeler

First, the Aircraft model must be imported into the PTC Integrity Modeler. For this,
the Open Model button located in the Home tab is pressed. In the opening pop-up
window, the Import Model option is clicked (see fig. 6.1). The Aircraft model can then
be selected and imported.

Figure 6.1: How to import the Aircraft model

6.1.2 Adding the Executable to the PTC Integrity Modeler Toolbar

It is possible to launch the executable directly from the tool bar of the Modeler ribbon
in the PTC Integrity Modeler user interface. This allows the preliminary design to be
easily performed directly from the Modeler.

6 Installation and Testing of the Visual Basic Interface 112

To do this, the Model button in the upper right-hand corner of the Modeler must be
pressed. TheCostumize Tools button opens a new window. A new tool can then be
added by pressing the button in the upper right corner () (see fig. 6.2). After that,
the executable file can be selected with the help of the Browse button.

Figure 6.2: How to add an executable to the tools ribbon

After completion, a link to the Visual Basic program appears in the tool bar (see fig.
6.3). By pressing the "Preliminary Sizing Tool" button, the preliminary sizing can be
performed quickly and easily from within the Modeler.

Figure 6.3: The executable file is pinned to the the tools ribbon

6.2 Testing of the Visual Basic Interface

In this chapter, the preliminary sizing tool in MATLAB together with the Visual Basic
interface will be tested in practice. For this purpose, the calculation is performed with
two different values for the landing field length s7rr, and the take-off field length sTorr .
The input parameters for both calculations are listed in tab. 6.1 and tab. 6.2. The
matching chart resulting from the first design is displayed in fig. 6.4.

6 Installation and Testing of the Visual Basic Interface

113

Symbol Unit First design Second design
YCLB [] 0.0024 0.0024

YMA [] 0.0024 0.0024

SLEL (m] 3000 2500
STOFL [m)] 3000 2500

R [NM] | 200 200

Route type [] domestic domestic
Certification [] FAR-PAR25 FAR-PAR25
CLmas.L (] 3.4 3.4
Cr,maz,TO [] 2.6 2.6

Flap setting TO | [°] 15 15

ML/ MMTO [] 0.88 0.88
moE/myro [] 0.446 0.446

’ [] 9.6 0.6

A [] 9 9

MCARGO [kg] 2000 2000

R [NM] | 7000 7000

nPAX [] 250 250

ng [] 2 2

Table 6.1: Fixed input parameters for the two preliminary designs

Symbol Unit Both designs

marro/Sw [] 400 < mpyrro/Sw < 1300
Tro/ (mmro-9) | [] 0.1 <Tro/(myro - g) <0.5
Vind [] 0.8< V<14

Mey [] 0.55 < M¢, <0.88

Table 6.2: Variable input parameters for the two preliminary designs

6 Installation and Testing of the Visual Basic Interface

114

Symbol Unit First design Second design | A

MMTO [kg] 143622 147163 +3541
Tro [N] 262110 268572 +6462
Sw [m?] 115,8 1424 +26,6

Table 6.3: Most important output parameters for the two preliminary designs

Figure 6.4: Matching chart of the first preliminary design

After the first preliminary design, both the landing field length and the take-off field
length are reduced by 500 m. It could be, for example, that the customer’s require-
ments have changed or that the preliminary design is to be carried out for a different
configuration of the aircraft. The resulting matching chart is shown in fig. 6.5. It can
be seen that the two curves for the take-off phase and the landing phase have shifted.
Consequently, also the the design point was shifted. As a result, all output parameters
of the preliminary sizing have changed. Some of the most important output parameters

are shown in tab. 6.3.

6 Installation and Testing of the Visual Basic Interface 115

Figure 6.5: Matching chart of the second preliminary design

7 Discussion 116

7 Discussion

The previous practical example has shown that an integration of the MATLAB analysis
tool allows a rapid estimation of the effects of certain parameter changes from within
the PTC Integrity Modeler. By eliminating the need for manual data transfer, the user
only has to press one button and a few seconds later the preliminary design is complete.

The fact that the input parameters are first provided to Visual Basic before they are
passed on to MATLAB provides a high degree of flexibility. Thus, other analysis pro-
grams could also be accessed from Visual Basic. For instance, it would be possible to
access analysis programs other than MATLAB from Visual Basic. Furthermore, it is
possible to access several different SysML models at the same. Especially in aircraft de-
sign, where many suppliers work together with different tools and models, PTC Integrity
Modeler’s compatibility with Visual Basic can be advantageous.

In addition, the Visual Basic interface is flexibly adaptable. For example, custom warn-
ings have been implemented if a model item is not found. If the requirements for the
interface change, they can be quickly and easily implemented. Another advantage of
the chosen solution is the independence from software manufacturers such as Phoeniz
Integration (see ch. 5.5.3). This enables the integration of internal analysis software
without having to wait for a solution from a different software manufacturer. Moreover,
license fees can be reduced.

The mathematical calculation is done in the background. This means that the user
does not need to have a knowledge about the mathematical relationships in aircraft
preliminary sizing. The advantage is that this creates a special viewpoint on the system
that initially the mathematical relationships. For example, a systems engineer could use
the tool to generate requirements for sub-systems, e.g. the wings, from the TLAR. An
aircraft designer would then have to ensure that the mathematical relationships of the
tool are correct. To do so, he/she needs a different viewpoint on the system than the
systems engineer, more precisely the view on the MATLAB model.

However, performing the calculation in the background can also be interpreted as a
disadvantage. For example, it is possible that the user relies too much on the auto-
matic parameter transfer. Thus, it errors during data transmission, for example due to
programming errors in the Visual Basic code, might remain undetected.

In addition, the information about the structure of the mathematical analysis model is
not stored inside the SysML model. When trying to understand the underlying calcula-
tion, one would have to first study the Visual Basic Code and then the MATLAB code in

7 Discussion 117

detail. However, a MBSE approach would also integrate the mathematical relationships
in the digital model (see ch. 2.4.6).

In ch. 5.3.9 it was attempted, to model model the mathematical relationships of the
MATLAB code in a parametric diagram. However, the parametric diagram is not linked
to the MATLAB calculation model. As a result, the parametric diagram is also no
longer up to date, should the MATLAB code change. A solution for this could be an
even better integration of the analysis models into the SysML itself, rather than only
the transfer of parameters between both models (see ch. 9).

Another disadvantage of the chosen solution is that it is difficult to perform changes in
the interface. For instance, if an input parameter is moved from a value property to
an association, the Visual Basic code of the interface would have to be modified. Then
a new executable file would have to be generated from the updated Visual Basic code.
This executable file would then have to be distributed among the aircraft designers. This
is inefficient and impractical. Yet, a solution for this is described in ch. 9.

An additional disadvantage of digital linking only becomes apparent for very compu-
tationally intensive analysis models. In ch. 5.5.2, it was mentioned that it may be
necessary to lock certain model items during the system analysis to ensure a consistent
model. For time-consuming or frequently performed system analysis, integration of the
analysis models into the system definition models could lead to inconsistencies within
the SysML model.

Finally, it has been found that the start-up of MATLAB usually takes a long time when
running the preliminary sizing tool for the first time. A solution would be to run the
MATLAB Automation Server permanently in the background.

8 Summary 118

8 Summary

Model-based systems engineering (MBSE) is gaining in significance in aircraft design.
This is mainly due to the increasing complexity, interconnectivity and the costumer’s
demand for custom designs. In MBSE, all information such as the requirements, the
design or the behaviour of a system is modelled in a digital model throughout all phases
of its life cycle. The system model thus acts as a single source of truth. At the same time,
aircraft design consists to a large extent of system analysis using special computation
software. In an MBSE approach, the input values for these calculations are distributed
within the digital model. In addition, the output values of the analyses must also be
stored in the model. This thesis focused on the digital linking of system definition
models and system analysis models in order to replace the manual parameter exchange
between both models. The aim of this thesis is to investigate whether an automated
digital parameter transfer between both models is technically feasible.

The research was carried out using the SysML-based modelling software PTC Integrity
Modeler for the system definition and MATLAB for the system analysis. A first step was
to create a model of the passenger aircraft, using the SysML. The model contains the
requirements specified in the theTLAR and the mission definition, which are needed for
preliminary sizing. Moreover, the relevant aircraft baseline architecture was modelled.
Furthermore, a MATLAB calculation model was developed, which computes the optimal
preliminary design with multiple variable input parameters. To connect the two models,
a digital interface was programmed in Visual Basic. The Visual Basic program provides
the input values to MATLAB, performs the preliminary design and feeds the calculated
values back to the SysML model.

The preliminary sizing can be performed directly within the system definition software.
This allows the impact of requirement changes on individual subsystems to be estimated
and implemented quickly and efficiently. This is particularly important for the iterative
approach of the aircraft design process. In addition,the preliminary design can be per-
formed quickly for multiple different configurations, so they can be easily investigated
and compared. The digital interface can save development time, development cost and
can improve the final design. However, the digital link also has disadvantages. For
instance, the digital interface is difficult to customize, there may be a lack of under-
standing of the underlying mathematical calculations and errors in parameter transfer
may remain unnoticed. For time-consuming calculations, there may be problems with
multi-user capability of the modelling software or inconsistencies in the model.

9 Conclusions and Recommendations 119

9 Conclusions and Recommendations

In summary, it can be concluded that the research goal of the thesis has been achieved.
The developed Visual Basic program allows an automatic transfer of the input param-
eters to the MATLAB calculation model, performs the calculation automatically and
feeds the calculated values back to the SysML model. The time required for the prelim-
inary design could be significantly reduced by the digital connection, which provides all
the advantages mentioned earlier.

However, this thesis only provides a pure parameter exchange between two models.
The MATLAB calculation model is not integrated into the SysML model beyond the
parameter exchange. This means that the structure of the calculation model is not
apparent from within the SysML Modeler.

A solution would be an even stronger integration of the computation model into the
SysML. For example, an attempt could be made to redesign the Visual Basic interface
so that constraint properties always remain automatically synchronized with a MAT-
LAB or Simulink calculation model (see [FRIO8, p. 169])). To do so, a program using
the Automation Interface would have to loop through all constraint parameters of the
respective constraint property . For each constraint parameter, it would need to auto-
matically recognize whether the constraint parameters are input or output parameters
(see arrow direction in fig. 5.18). Additionally, the associated value property would have
to be accessed via the binding connector relationship. This would have the advantage
that the interface is not fixed but flexible. If new constraint parameters were added to
the constraint property in the parametric diagram, they would automatically be avail-
able in Visual Basic program as well. Therefore, one would not have to edit the Visual
Basic interface when adding new constraint parameters.

However, this approach also has some disadvantages. First, the storage of the parame-
ters used in the analysis is limited to value properties. As a result, parameters stored
associations or constraints cannot be included in system analysis. In addition, the input
parameters could no longer be read directly from the requirements. If a requirement is
changed, the associated value property in the parametric diagram would need to be man-
ually modified. Furthermore, the parallel access to different models or the additional
access to other programs from the Visual Basic program would be difficult. Besides,
it should be reconsidered whether the programming effort for an adaptive interface is
appropriate or whether the software solutions available on the market (see ch. 5.5.3)
should be used.

Another possible enhancement would be to model the objective function within the

9 Conclusions and Recommendations 120

PTC Integrity Modeler as described in [FRIO8, ch. 7.11]. So far, the objective function
is defined within the MATLAB code only. Defining it within the model and transferring
it to MATLAB would result in more variation potential when examining different aircraft
configurations from within the Modeler.

A further developed would be to test the digital connection with other programs via the
Automation Interface (see [HOL13, p. 639]). For example, a connection to CAD software
might be possible. This way, a CAD model that is digitally linked to the SysML model
could be developed. Furthermore, a connection to a database would be imaginable, in
order to store the exchanged parameters of each calculation. This database could be
used to collect company internal data for future developments.

In addition, further work could be done to refine the existing aircraft model with ad-
ditional computational models. For example, the output parameters of the preliminary
sizing could be further processed by other analysis models. If these calculation models
were to remain interconnected deep into the design process, the ease of change in design
could be reduced later in the design process (see fig. 9.1). On the one hand, this could
reduce development costs. In addition, the design could be significantly improved, since
the more product-specific knowledge increases within the design process (see fig. 9.1).

Figure 9.1: Status of various design features during the design process (taken from
[SAD12, fig. 1.7])

Furthermore, the aircraft model could be extended to include preliminary design methods
for other types of aircraft such as propellers or hydrogen powered aircraft. This would
allow even more different aircraft configurations to be compared with each other.

Another improvement would be the development of a program that checks the SysML

9 Conclusions and Recommendations 121

model for changes in the background. Thanks to the multi-user capability of PTC
Integrity Modeler, such a program could run on a dedicated server and access the SysML
model from there. If changes are made to the input values for certain analysis tools,
the analysis can be executed immediately. This would keep all parameters stored in
the model up to date. Furthermore, the system analysis would be faster because the
MATLARB application does not have to be started and closed each time. However, this
approach would only be conceivable for minor analysis models (see fig. 5.24).

Lastly, the way in which the calculation is carried out can be developed further. So far,
the calculation has been performed in a direction dependent way. The input parameters
were passed to MATLAB, the calculation was performed and the calculated values were
fed back to the SysML model. This is due to the causal, that is direction-dependent, na-
ture of MATLAB. The direction dependence is however not determined by the SysML. If
an acausal, direction-independent, computation program is used, direction-independent
computations could be implemented. An example for an acausal calculation program is
the object-oriented language Modelica [Ass21]. An accusal calculation software can be
particularly useful for aircraft preliminary design, since it is sometimes not possible to
define which parameters are fixed and which parameters are to be calculated.

Nevertheless, this thesis provided a good basis for further investigations. In particular,
the research on the PTC Integrity Automation Interface and the developed Visual Basic
program provide a good starting point. Furthermore, the MDO methods used in MAT-
LAB can be applied to related design problems. Similarly, the Visual Basic functions
presented in ch. 5.5.7 can be easily reused for other applications.

Bibliography 122

Bibliography

[ALT09]

[ALT12]
[Ass21]

[BAR16]

[BOE11]

[BOOYS]
[CHA18]
[EAS07]
[EIS08]
[FAA17]
[FRIOS]

[Grol0]

[Grol2]

[HEI12]

[HOL13]

[INCO4]

Oliver ALT. Car Multimedia Systeme Modell-basiert testen mit SysML.
Vieweg + Teubner, 2009.

Oliver ALT. Modellbasierte Systementwicklung mit SysML. HANSER, 2012.
Modelica Association. Modelica Language. Online. Available from https:
//modelica.org/modelicalanguage.html [Acessed March 2022]. 2021.
Eric BARNHART. How a Document-Based Approach Differs from Model-
Based. Online. Available from https://vmcse.com/2016/03/20/document-
based-is-not-model-based/ [Acessed February 2022]. Mar. 2016.

John PALMER (BOEING). “Model-Based Systems Engineering without
SysML”. In: National Defense Industrial Association Systems Engineering
Conference (2011).

Grady BOOCH. The Unified Modeling Language User Guide. Ed. by 1st.
Addison Wesley, 1998.

Bassim CHABIBI. “Model Integration Approach from SysML to MATLAB
/ Simulink”. In: Journal of Digital Information Management (2018).
EASA. Certification Specifications for Large Aeroplanes CS-25. European
Aviation Safety Agency, 2007.

Howard EISNER. Essentials of Project and Systems Engineering Manage-
ment. Ed. by Third. John Wiley & Sons, 2008.

FAA. Airworthiness Standards: Transport Category Airplanes (Part 25).
Federal Aviation Administration, 2017.

Sanford FRIEDENTHAL. A Practical Guide to SysML: The Systems Mod-
eling Language. Morgan Kaufmann OMG Press, 2008.

Object Management Group. “OMG Systems Modeling Language Specifica-
tion, Version 1.2”. In: (2010). Acessed from https://www.omg.org/spec/
SysML/1.2/.

Object Management Group. What is OMG SysML. [Online]. Available from
https://www.omgsysml.org [Acessed February 2022]. 2012.

Joeri HEINEMANN. “Preliminary Sizing of FAR Part 23 and Part 25 Air-
craft”. MA thesis. Hochschule fiir Angewandte Wissenschaften Hamburg,
2012.

Jon HOLT. SysML for Systems Engineering. Ed. by 2nd. The Institution of
Engineering and Technology, 2013.

INCOSE. Systems Engineering Handbook. International Council on Systems
Engineering, 2004.

Bibliography 123

[INCO7]
[Inc19]
[Inc22]

[Int22]

[1SO11]
[TWA15]
[LOFS0]
[Mat22]
[IMOO09)
[NAC55]
[NIT12]
[OMG15]

[PET20]

[PTC15]
[PTC19a]
[PTC19D]
[RAYS9]
[ROS85]
[SAD12]

[SCH19]

INCOSE. Systems Engineering Vision 2020 (INCOSE-TP-2004-004-02).
Tech. rep. International Council on Systems Engineering, 2007.

PTC Inc. SySim Tutorial for PTC Integrity Modeler 9.2. 2019.

No Magic Incorporated. Cameo Requirements Modeler Plugin 2021z Docu-
mentation. Online. Available from https://docs.nomagic.com/ [Acessed
March 2022]. 2022.

Phoenix Integration. ModelCenter Integrate. Available from https://wuw.
phoenix - int . com/product /modelcenter - integrate/ [Acessed March
2022]. 2022.

ISO. 42010:2011(E), Systems and software engineering. 1SO/IEC/IEEE,
2011.

Curtis IWATA. Model-Based Systems Engineering in Concurrent Engineer-
ing Centers. AIAA SPACE 2015 Conference and Exposition. Aug. 2015.
Laurence K. LOFTIN. Subsonic Aircraft Fvolution and the Matching of Size
to Performance. National Aeronautics anmd Space Administration, 1980.
MathWorks. MATLAB Help Center. Online. Available from https://de.
mathworks.com/help/matlab [Acessed March 2022]. 2022.

Alan MOORE. Practical Guide to SysML. Revised. The MK/OMG Press.
Morgan Kaufmann, 2009.

NACA. Report 1235 - Standard Atmosphere. National Advisory Committee
for Aeronautics, 1955.

Mihaela NITA. Contributions to Aircraft Preliminary Design and Optimiza-
tion. Dr. Hut Verlag, 2012.

OMG. XML Metadata Interchange (XMI) Specification. Object Management
Group, June 2015. URL: https://www.omg.org/spec/XMI/2.5.1.

Nicolas PETEILH. Challenging Top Level Aircraft Requirements based on
operations analysis and data-driven models, application to takeoff perfor-
mance design requirements. Online. Available from https://arc.aiaa.
org/doi/10.2514/6.2020-3171 [Acessed March 2022]. June 2020.

PTC. Automation Interface User’s Guide (Version 8.2). Document version
8.2.0. PTC Inc. 2015.

PTC. Modeler Help. Online. Available from https://support.ptc.com/
help/modeler/r9.2/en/ [Acessed March 2022]. 2019.

PTC. PTC Model-Based Systems Engineering Tutorial for Integrity Modeler
9.2. PTC Inc. 140 Kendrick Street, Needham, MA 02494 USA, 2019.
Daniel P. RAYMER. Aircraft Design: A Conceptual Approach. ATAA Edu-
cation Series, 1989.

Jan ROSKAM. Part I: Preliminary Sizing of Airplanes. Roskam Aviation
and Engineering Corporation, 1985.

Mohammad H. SADRAEY. Aircraft Design: A Systems Engineering Ap-
proach. 2012.

Dieter SCHOLZ. Aircraft Design Lecture Notes. Lecture Notes. Available
from https://www.fzt.haw-hamburg.de/pers/Scholz/HO0U/ [Acessed
February 2022]. 2019.

Bibliography 124

[uml120] uml-diagrams.org. Online. Available from: https://www.uml-diagrams .
org/ [Acessed February 2022]. 2020.

[VDI21] VDI. VDI/VDE 2206. Online. Available from: http://www.vdi.de/2206
[Acessed February 2022]. Nov. 2021.

[VIN18] Madonna VINCENZO. “Electrical Power Generation in Aircraft: Review,Challenges,
and Opportunities”. In: IEEE Transactions on Transportation Electrifica-
tion, Vol. 4, No. 3 (2018).

Bibliography 125
-
Appendix
Appendix A: ReadVariantParameterValue() Function
1 Dim <VariantParameterValue> As Double = ...
ReadVariantParameterValue ("<DecisionSetName>", "<VariantParametername>",
"<Long>/<String>")
1 Function ReadVariantParameterValue(DecisionSetName, VariantName, ...
VariantParameterType) As String
2
3 'Get Decision Set Object
4 DecisionSet = Dictionary.Item("Decision Set", DecisionSetName)
5 VariantObj = Dictionary.Item("Variant", VariantName)
6
7 'Loop trough Decision Set Variant Parameters
8 If DecisionSet Is Nothing Then
9 MsgBox ("Error: Decision Set '" & DecisionSetName & "' was not found!")
10 Environment .Exit (0)
11 Elself VariantObj Is Nothing Then
12 MsgBox ("Error: Variant '" & VariantName & "' was not found!")
13 Environment .Exit (0)
14 Else
15
16 'First save the default value for the variable
17 VariantParameter = VariantObj.Item("Parameter")
18 ReadVariantParameterValue = VariantParameter ("Default " & ...
VariantParameterType)
19
20 'If the default value is changed in the decision set, overwrite it
21 DecisionSetVariantParameters = DecisionSet.Items("Actual Variant
Parameter")
22 DecisionSetVariantParameters.ResetQueryItems ()
23
24 Do While DecisionSetVariantParameters.Moreltems
25 DecisionSetVariantParameter = DecisionSetVariantParameters.NextItem
26 VariantParameter = DecisionSetVariantParameter.Item("Formal")
27 If VariantParameter ("Variant") = VariantName Then
28 ReadVariantParameterValue = ...
DecisionSetVariantParameter (VariantParameterType & " Value")
29 End If
30 Loop
31
32 OutputMessage = "Preliminary Sizing Tool [" + CStr(TimeOfDay) + "J:" ...
+ vbTab + "Variant Parameter: " + vbTab + vbTab + VariantName + ...
" = " + CStr(ReadVariantParameterValue) + vbCrLf
33 Studio.DisplayOutputWindowMessage (OutputMessage)
34
35 End If

Bibliography 126

36
37 End Function

Appendix B: The MATLAB Code

1 % 1. INPUT VALUES ARE STORED IN THE STRUCT

2 $Requirements

3 DATA.INP.climb_grad MA = climb_grad_MA/100;

4 DATA.INP.climb_grad_CLB = climb_grad_CLB/100;

5 DATA.INP.s_LFL = s_LFL;

6 DATA.INP.s_TOFL = s_TOFL;

7 DATA.INP.R_Alt = R_Alt;

8 DATA.INP.Certification = convertCharsToStrings (Certification);
9

e e
B W N = O

16
17

18 DATA.INP.m_CARGO = m_CARGO;

19 DATA.INP.R = R;

20 %$Constraints

21 DATA.INP.1lb = [WL_LOWER, TtWR_LOWER,V_DIV_V_md_LOWER,M_LOWER];
22 DATA.INP.ub = [WL_UPPER, TtWR_UPPER,V_DIV_V_md_UPPER,M_UPPER];
23 %$Assotiations

24 DATA.INP.n_PAX = n_PAX;

25
26
27
28
29
30
31
32
33
34
35
36
37

DATA.INP.RouteType = convertCharsToStrings (RouteType);

%$Block Properties
DATA.INP.CL _max_L

= CL_max_L;

DATA.INP.CL_max_TO = CL_max_TO;
DATA.INP.FlapSetting = FlapSetting;

DATA.INP.m ML DIV _m MTO = m ML DIV m MTO;

DATA.INP.m_OE_DIV_m MTO = m_OE_DIV_m MTO;

DATA.INP.BPR = BPR;

DATA.INP.AR = AR;

DATA.INP.n_E = n_E;

$Fixed Values
DATA.INP.g = 9.81
DATA.INP.C_DO = 0

’

.02;

DATA.INP.Delta_C_D_slat = 0;

DATA.INP.e = 0.7;
DATA.INP.e_Cr = 0
DATA.INP.k_E = 14

.85;
.5;

DATA.INP.S_wet_DIV_S W = 6.1;

DATA.INP.m_PAX =
DATA.INP.SFC_Cr =

93;
14.2 » 10"-6;

DATA.INP.SFC_Loiter = 11.3 % 10"-6;

38 DATA.INP.t_loiter = 1800;
39 DATA.INP.M_ff TO = 0.995;
40 DATA.INP.M_ff CLB = 0.980;
41 DATA.INP.M_ff DES = 0.990;
42 DATA.INP.M_ff L = 0.992;

43
44
45

$2.

SETTING UP THE LINEAR

)

% 1 - Landing

INEQUALITY CONSTRAINTS

46

47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63

64

65
66
67
68

69
70
71
72

73

74
75
76

7
78
79
80
81
82
83
84
85
86
87

Bibliography

127

DATA.CONST.MaxWingLoadingl = (0.107 = DATA.INP.CL_max_L =
DATA.INP.s_LFL) / DATA.INP.m_ML_DIV_m_ MTO;

o°

3 - Climb-Rate in the second segment
if DATA.INP.FlapSetting == 15
Delta_C_D_flap = 0.01;
C_L =1.3;
else if DATA.INP.FlapSetting == 25
Delta_C_D_flap = 0.02;
C_L = 1.5;
else if DATA.INP.FlapSetting == 35
Delta_C_D_flap = 0.03;
C_L=1.7;
else
disp('Error: Flap setting is not <15>, <25> or <35>
degrees')
end
end
end
DATA.CONST.E_2nd = C_L / ((DATA.INP.C_DO + Delta_C_D_flap +
DATA.INP.Delta_C_D_slat) + (C_L"2 / (pi % DATA.INP.AR x*
DATA.INP.e)));
DATA.CONST.MinThrustToWeightRatio3 = (DATA.INP.n_E/ (DATA.INP.n_E
- 1)) = ((1/DATA.CONST.E_2nd) + sin(DATA.INP.climb_grad_CLB)) ;

%4 - Climb rate during the missed approach

if DATA.INP.Certification == 'FAR-PAR25'

DATA.CONST.Delta_C_D_gear = 0.015 ;% (for FAR Part 25
Certification)

else
DATA.CONST.Delta_C_D_gear = 0 ;

end

DATA.CONST.E_MA = C_L / ((DATA.INP.C_DO + Delta_C_D_flap +
DATA.INP.Delta_C_D_slat + DATA.CONST.Delta_C_D_gear) +
(C_L"2 / (pi = DATA.INP.AR x DATA.INP.e)));

DATA.CONST.MinThrustToWeightRatio4 =(DATA.INP.n_E/ (DATA.INP.n_E
- 1)) = ((1/DATA.CONST.E_MA) + sin (DATA.INP.climb_grad_MA));

% 3. DEFINING THE OPTIMIIZATION PARAMETERS
A= [1,0,0,0;(2.34 / (DATA.INP.s_TOFL % DATA.INP.CL max_TO)
)171/ OI O;Olill OI 0;01711 Ol 0];

b [DATA.CONST.MaxWingLoadingl, 0O,
—DATA.CONST.MinThrustToWeightRatio3,
—-DATA.CONST.MinThrustToWeightRatiod];

outputfn = @ (x,optimValues, state)outfun (x,optimValues, state);
opts = optimoptions('fmincon',"Algorithm", "active-set", 'Outputfcn',
outputfn, 'HonorBounds', true);

% 4. PERFORMING THE OPTIMIZATION
[x,0ptValue,exitflag,output] = fmincon (@ (x) RedMTOW (x,DATA), 0.5 =*
(DATA.INP.1lb +
DATA.INP.ub),A,b, [],[],DATA.INP.1lb,DATA.INP.ub, @ (x)

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107

109
110
111
112
113
114

115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

Bibliography 128

o

oe

CruiseConstraint (x,DATA),opts);
clc;
disp (extractBefore (output.message,'. "))
[OptValue, DATA] = RedMTOW (x,DATA);
disp (['MTOW = ',num2str (round (DATA.OUT.m_MTO,0)), "' kg'l)

FURTHER CALCULATION AND PLOTTING
DATA = FurtherCalcAndPlot (DATA);

%$plotting the optimization progress in the upper chart
figure (1)
hold on
for 1 = l:size(IterationOutput,1)
if IterationOutput(i,2) < 107-6
plot (IterationOutput (i,4),IterationOutput (i,5), 'k.");
hold on
else
plot (IterationOutput (i,4), IterationOutput(i,5) ,'z.");
hold on
end
end
legend('', 'Landing','', 'Take-off','', '2nd Segemnt','', 'Missed
Appr.','','Cruise', 'Design Point', 'Location', 'eastoutside')

%$plotting the optimization progress in the lower chart

p = subplot ('Position',[0.1 0.1 0.85 0.12]);
for i = l:size(IterationOutput, 1)
if IterationOutput(i,2) < 107-6
plot (IterationOutput (i,1), (IterationOutput (i, 3) - OptValue)
x 100/0OptValue, "'k.");
hold on
else
plot (IterationOutput (i,1), (IterationOutput (i,3) - OptValue)
* 100/0OptValue, "r.");
hold on
end
end
xlabel ('Iteration [-]', 'FontSize', 9);

ylabel ('\Delta [%]");

title('Iteration Progress', 'FontSize', 10);
p.TitleHorizontalAlignment='left"';

hold off

OUTPUT VALUES ARE READ FROM STRUCT

h_Cr = round(DATA.OUT.h_Cr,0);

V_Cr = round(DATA.OUT.V_Cr,2);

C_L_Cr = round(DATA.OUT.C_L_Cr,3);

E_Cr = round(DATA.OUT.E_Cr,2);

M = round (DATA.OUT.M, 3);

V_DIV_V_md = round(DATA.QOUT.V_DIV_V_md,4);

ThrustToWeightRatioDesign = round (DATA.QOUT.ThrustToWeightRatioDesign, 2);
WingLoadingDesign = round(DATA.OUT.WingLoadingDesign,2);

m_PL = round(DATA.OUT.m_PL,0);

138
139
140
141
142
143
144
145
146
147

Bibliography 129

m_MTO = round (DATA.OUT.m_MTO,0);

m_ML = round (DATA.OUT.m_ML,O0);

m_MZF = round (DATA.OUT.m_MZF,0);

m_OE = round (DATA.OUT.m_OE,0);

m_F = round(DATA.OUT.m_F,0);

T_TO_per_engine = round(DATA.OUT.T_TO_per_engine,2);
A_Wing = round(DATA.OUT.A_Wing,2);

disp('Calculation has finished')

Appendix C: The CruiseConstraint() Function

function [c,ceq] = CruiseConstraint (x,DATA)
C_L_Cr= (pi % DATA.INP.AR % DATA.INP.e_Cr) / (2 % x(3)"2 x
DATA.INP.k_E x sqrt (DATA.INP.AR / DATA.INP.S_wet_DIV_S_W));
E_Cr = (2 % DATA.INP.k_E * sqrt (DATA.INP.AR/DATA.INP.S_wet_DIV_S_W))
/o ((x(3)72) + (1 / x(3)"°2));

4
5 p_Cr = (x(1) = 2 % DATA.INP.g) / (1.4 » C_L_Cr* x(4));
6 h_Cr = atmospalt (p_Cr);
7
8 MinThrustToWeightRatio5 = 1 /(((0.0013 = DATA.INP.BPR - 0.0397) =«
(h_Cr / 1000) - 0.0248 » DATA.INP.BPR + 0.7125) % E_Cr);
9
10 c = MinThrustToWeightRatio5 - x(2);
11 ceq = [];
12 end
Appendix D: The RedMTOW() Function
1 function [OptValue,DATA] = RedMTOW (x, DATA)
2 DATA.OUT.WingLoadingDesign = x(1);
3 DATA.OUT.ThrustToWeightRatioDesign = x(2);
4 DATA.OUT.V_DIV_V_md = x(3);
5 DATA.OUT.M = x(4);
6
7
8 %Calculation of V_Cr
9 DATA.OUT.C_L_Cr= (pi = DATA.INP.AR * DATA.INP.e_Cr) / (2 «*

10

DATA.OUT.V_DIV_V_md”"2 % DATA.INP.k_E % sqrt (DATA.INP.AR /
DATA.INP.S_wet DIV_S W));

DATA.OUT.E_Cr = (2 * DATA.INP.k_E =
sqrt (DATA.INP.AR/DATA.INP.S_wet_DIV_S_W)) /
((DATA.OUT.V_DIV_V_md"*2) + (1 / DATA.OUT.V_DIV_V_md"2));

11

12
13
14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33

34

35

36
37

38

39

40

41

42
43

44
45

Bibliography

130

DATA.OUT.p_Cr = (DATA.OUT.WingLoadingDesign =+ 2 % DATA.INP.g
/ (1.4 » DATA.OUT.C_L_Cr* DATA.OUT.M"2);
DATA.OUT.h_Cr = atmospalt (DATA.OUT.p_Cr);

[null, DATA.OUT.a_h_Cr, null, null] = atmosisa (DATA.OUT.h_Cr);

DATA.OUT.V_Cr = DATA.OUT.a_h_Cr x DATA.OUT.M;

% Calculation of MTOW
DATA.INP.R = DATA.INP.R * 1852;
DATA.INP.R_Alt = DATA.INP.R_Alt * 1852;

if DATA.INP.RouteType == 'international'
DATA.INP.R_Alt = DATA.INP.R_Alt * 1.05;
else if DATA.INP.RouteType == 'domestic'
DATA.INP.R_Alt = DATA.INP.R_Alt x 1.00;
else
disp('Error: Route type not <international> or <domestic>")
end
end
DATA.OUT.B_Cr = (DATA.OUT.E_Cr % DATA.OUT.V_Cr) / (DATA.INP.g
* DATA.INP.SFC_Cr);
DATA.OUT.B_Loiter = (DATA.OUT.E_Cr x DATA.OUT.V_Cr) / (
DATA.INP.g x= DATA.INP.SFC_Loiter);
DATA.OUT.M_ff_CR = exp(- (DATA.INP.R./DATA.OUT.B_Cr));
DATA.QOUT.M_ff_Alt = exp(- (DATA.INP.R_Alt./DATA.OUT.B_Cr));
DATA.OUT.M_ff LOITER = exp(- ((DATA.INP.t_loiter =

DATA.OUT.V_Cr) /DATA.OUT.B_Loiter));

DATA.OUT.M_ff_ std = DATA.OUT.M ff CR DATA.INP.M ff TO =
DATA.INP.M_ff CLB * DATA.INP.M ff DES » DATA.INP.M ff I;
DATA.OUT.M_ff res = DATA.OUT.M_ff Alt DATA.OUT.M_ff LOITER x

DATA.INP.M ff CLB * DATA.INP.M ff DES;
DATA.OUT.M_ff = DATA.OUT.M_ff_std » DATA.OUT.M_ff_ res;

DATA.OUT.m_PL = DATA.INP.n_PAX *x DATA.INP.m_PAX +
DATA.INP.m_CARGO ;

DATA.OUT.m_F_DIV_m MTO = 1 - DATA.OUT.M_ff ;

DATA.OUT.m_MTO = DATA.OUT.m_PL / (1 - (DATA.OUT.m_F_DIV_m_MTO
— (DATA.INP.m_OE_DIV_m_MTO));

OptValue = DATA.OUT.m_MTO + DATA.OUT.ThrustToWeightRatioDesign;

end

)

)

Appendix E: The FurtherCalcAndPlot() Function

1
2
3

function DATA = FurtherCalcAndPlot (DATA)

% Curve for plotting - Take Off

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44

45
46
47
48
49
50
51

Bibliography

131

DATA.CONST.MinThrustToWeightRatio2 = (2.34 / (DATA.INP.s_TOFL =*

DATA.INP.CL_max_TO)) = DATA.OUT.WingLoadingDesign;
%5 Curve for plotting - Cruise

h = [0:100:18000]"';%m

T_CR_DIV_T_TO = (0.0013 % DATA.INP.BPR - 0.0397) * (h / 1000) -
0.0248 x DATA.INP.BPR + 0.7125;

ThrustToWeightRatio5 = 1 ./(T_CR_DIV_T_TO * DATA.OUT.E_Cr);

[null, null, p, null] = atmosisa(h);

WingLoading5 = (DATA.OUT.C_L_Cr* DATA.OUT.M"2 * 1.4 x p) / (2
*DATA.INP.q) ;

$Additional Calculation
DATA.OUT.m_ML = DATA.INP.m ML_DIV_m MTO x DATA.OUT.m_MTO;
DATA.OUT.m_OE = DATA.INP.m_OE_DIV_m_MTO % DATA.OUT.m_MTO;
DATA.OUT.m_F = DATA.OUT.m_F_DIV_m_MTO % DATA.OUT.m_MTO;

DATA.OUT.m _MZF = DATA.OUT.m_PL + DATA.OUT.m_ OE;
DATA.OUT.m_fuel_res = DATA.OUT.m_MTO = (1 - DATA.OUT.M_ff_ res);

if DATA.OUT.m_ML > DATA.OUT.m_MZF + DATA.OUT.m_fuel_res
disp('Sizing finished')

else
disp('Error: Payload must be reduced!"')

end

DATA.OUT.A_Wing = (DATA.OUT.m_MTO) / DATA.OUT.WingLoadingDesign;

DATA.OUT.T_TO = DATA.OUT.m_MTO = DATA.INP.g =*
DATA.OUT.ThrustToWeightRatioDesign;

DATA.OUT.T_TO_per_engine = DATA.OUT.T_TO / DATA.INP.n_E;

$Plot
figure (1)
p = subplot('Position',[0.1 0.4 0.85 0.5]);
ShadeAlpha = 0.2 ;
ShadeColor = 'black' ;%uint8 ([224 224 2247)
hold on

axis ([DATA.INP.1b (1) DATA.INP.ub (1) DATA.INP.1lb(2)
DATA.INP.ub (2) 1)

xlabel ('Wing Loading [kg/m"2]"', 'FontSize', 9);

ylabel ('Thrust to Weight Ratio [-]', 'FontSize', 9);

title('Matching Chart', 'FontSize', 10);

p.TitleHorizontalAlignment="'left"';

%1 - Landing Distance
ShadeArea = .

patch ([DATA.CONST.MaxWingLoadingl, DATA.CONST.MaxWingLoadingl,
DATA.CONST.MaxWingLoadingl*100,
DATA.CONST.MaxWingLoadingl%«100], [-100,100,100,-100], "black');
ShadeArea.FaceAlpha = ShadeAlpha;
ShadeArea.FaceColor = ShadeColor;
plot ([DATA.CONST.MaxWingLoadingl,
DATA.CONST.MaxWingLoadingl], [-100,100], "r—");

52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70

71
72
73
74

76
7
78
79
80
81
82
83
84
85
86
87
88
89

Bibliography

132

end

%2 — Take-Off Distance

ShadeArea = patch([0,DATA.OUT.WingLoadingDesign«*10,
DATA.OUT.WingLoadingDesign*10],
[0,DATA.CONST.MinThrustToWeightRatio2%10,0], 'black");
ShadeArea.FaceAlpha = ShadeAlpha;

ShadeArea.FaceColor = ShadeColor;

plot ([0,DATA.OUT.WingLoadingDesignx10],
[0,DATA.CONST.MinThrustToWeightRatio2x10], 'g-");

%3 — Climb rate in the second segment
ShadeArea =

patch([0,10000,10000,0], [DATA.CONST.MinThrustToWeightRatio3,
DATA.CONST.MinThrustToWeightRatio3,-100,-100], 'black");
ShadeArea.FaceAlpha = ShadeAlpha;
ShadeArea.FaceColor = ShadeColor;
plot ([0,10000], [DATA.CONST.MinThrustToWeightRatio3,
DATA.CONST.MinThrustToWeightRatio3], 'c—")

%4 — Climb rate during the missed approach
ShadeArea =

patch([0,10000,10000,0], [DATA.CONST.MinThrustToWeightRatio4,
DATA.CONST.MinThrustToWeightRatio4,-100,-100], 'black");
ShadeArea.FaceAlpha = ShadeAlpha;
ShadeArea.FaceColor = ShadeColor;
plot ([0,10000], [DATA.CONST.MinThrustToWeightRatio4,
DATA.CONST.MinThrustToWeightRatio4], "b-")

%5 - Cruise

ShadeArea = area (WingLoading5, ThrustToWeightRatio)b);
ShadeArea.FaceAlpha = ShadeAlpha;
ShadeArea.FaceColor = ShadeColor;

plot (WingLoading5, ThrustToWeightRatiob5, "v—");

%$Design Point

scatter (DATA.OUT.WingLoadingDesign,
DATA.OUT.ThrustToWeightRatioDesign, 'ko");

hold off

Appendix F: The outfun() Function

»

(=2 B V)

function stop = outfun (x,optimValues, state)

persistent Iteration constrviolation fval WingLoadingDesign

ThrustToWeightRatioDesign

stop = false;

switch state

case 'init'

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

26
27

133

Bibliography
Iteration = [];
constrviolation = [];
fval = [];
WingLoadingDesign = [];
ThrustToWeightRatioDesign = [];

case 'iter'
Iteration = [Iteration; optimValues.iteration];
constrviolation = [constrviolation;
optimValues.constrviolation];
fval = [fval; optimValues.fvall];
WingLoadingDesign = [WingLoadingDesign; x(1)];

ThrustToWeightRatioDesign = [ThrustToWeightRatioDesign;

case 'done'
assignin('base', 'IterationOutput’
[Iteration,constrviolation, fval,WingLoadingDesign,
ThrustToWeightRatioDesign]) ;
otherwise
end
end

x(2)1;

Bibliography 134

CD Contents

The attached CD includes the following contents:
o The Files folder contains:
— The Aircraft.zip file, which contains the digital SysML of model the aircraft

— The Main.m file, which contains the created MATLAB script for aircraft
preliminary sizing

— The MatLabAPI exe file. This is the compiled Visual Basic program that
performs the automatic parameter exchange between the two models

e The PDF folder contains:
— A pdf version of this work without visible hyper links
— A pdf version of this work with visible hyper links

— A pdf version of the abstract

Hochschule fir Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

Erklarung zur selbststindigen Bearbeitung einer Abschlussarbeit

GemaR der Allgemeinen Priifungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche
Erklarung abzugeben, in der der Studierende bestatigt, dass die Abschlussarbeit ,— bei einer Gruppenarbeit die
entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)] -
ohne fremde Hilfe selbstandig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden. Wért-
lich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich zu
machen.”

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Dieses Blatt, mit der folgenden Erklarung, ist nach Fertigstellung der Abschlussarbeit durch den Studierenden
auszufillen und jeweils mit Originalunterschrift als letztes Blatt in das Prifungsexemplar der Abschlussarbeit
einzubinden.

Eine unrichtig abgegebene Erklarung kann -auch nachtraglich- zur Ungultigkeit des Studienabschlusses fuhren.

Erklarung zur selbststandigen Bearbeitung der Arbeit

Hiermit versichere ich,

Friedrichs-Dachale
Name:

Maximilian
\Vorname:

dass ich die vorliegende Bachelorarbeit EI bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit — mit dem Thema:

Establishment of a Digital Interface Between System Definition and System Analysis Models to Optimize the
Aircraft Preliminary Sizing Process

ohne fremde Hilfe selbsténdig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wértlich oder dem Sinn nach aus anderen Werken enthommene Stellen sind unter
Angabe der Quellen kenntlich gemacht.

- die folgende Aussage ist bei Gruppenarbeiten auszufiillen und entféllt bei Einzelarbeiten -

Die Kennzeichnung der von mir erstellten und verantworteten Teile der -bitte auswahlen- st
erfolgt durch:

Hamburg 04.04.2022
Ort Datum Unterschrift im Original

