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Abstract

Autonomous vehicles depend on camera sensors to detect visual features, like fiducial
markers and draw conclusions from these. However, the cameras first need to be cali-
brated, often realized using calibration patterns.
This thesis introduces an automatic grid construction algorithm for a new pattern which
combines a checkerboard with a fiducial marker system. It is designed to correctly index
detected corner points, particularly under challenging situations. By implementing an
automatic corner detection method and developing a robust grid construction process
based on Kruskal’s algorithm, consistent corner point indexing and efficient runtimes
are achieved. For partial occlusion and fisheye distortions, the indexing remains consis-
tent. The algorithm allows for viewing angles up to 50° with future enhancements to it
potentially extending the viewing angles.

Kurzzusammenfassung

Autonome Fahrzeuge sind auf Kamerasensoren angewiesen, um visuelle Merkmale wie
Fiducial Marker zu erkennen und daraus Schlüsse zu ziehen. Allerdings müssen die Kam-
eras zuerst kalibriert werden, was oft mithilfe von Kalibrierungsmustern geschieht. Diese
Arbeit stellt einen automatischen Rasterkonstruktionsalgorithmus für ein neues Muster
vor, das ein Schachbrettmuster mit einem Fiducial Marker System kombiniert. Es ist
darauf ausgelegt, erkannte Eckpunkte korrekt zu indexieren, insbesondere in schwierigen
Situationen. Durch die Implementierung einer automatischen Eckpunkt-Erkennungsmethode
und die Entwicklung eines robusten Rasterkonstruktionsprozesses auf Basis von Kruskals
Algorithmus werden konsistente Eckpunkt-Indizierungen und effiziente Laufzeiten erre-
icht. Bei teilweiser Verdeckung und Fischaugenverzerrungen bleibt die Indizierung kon-
sistent. Der Algorithmus ermöglicht Betrachtungswinkel bis zu 50°, wobei zukünftige
Verbesserungen diese Winkel noch erweitern könnten.
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1 Introduction

1.1 Motivation

Modern autonomous systems like mobile robots or self driving vehicles need to success-
fully master the tasks of navigation, 3-D scene reconstruction and pose estimation[4].
As cameras are often the sensors of choice, a growth of camera sensor usage is implicitly
given. Camera pose estimation can be realized by using fiducial markers[16]. However, in
many cases, cameras first need to be correctly calibrated to effectively work with fiducial
markers as pose estimation[11].

The broadly used calibration frameworks, like OpenCV[6], rely on the full visibility of
the board for correct calibration[2]. This makes them less user-friendly and complicates
the calibration process, as no partial occlusion is allowed and the whole board has to be
in the frame.

Combining the advantages of calibration patterns like a chessboard and fiducial marker
systems like ArUco allows for calibrating a camera with partial occlusions. Further-
more, the junctions of the chessboard tiles will allow for high-precision detection down
to subpixel accuracy.[2]

Prof. Dr. Stelldinger has developed a novel calibration pattern that also combines the
chessboard pattern with a fiducial marker system. However, instead of encoding bits in
the form of small squares, it encodes bits along the chessboard edges with a single circle
for each edge. This is built on multiple De Brujin Tori to give each 3× 3 cutout of tiles
on this board a unique identification and thus a unique location on the whole board,
when decoding the edges’ bits.

This thesis develops a fast algorithm robust against partial occlusion, distortions and
different viewing angles. It is done by first detecting the corner points robustly and fast
based on Liu et al.’s[21] method for the calibration pattern, then constructing the grid
of the chessboard and finally decoding the bits encoded on every edge.

1



1 Introduction

1.2 Goal of this work

The goal of this work is to build a robust automatic grid construction algorithm for
the novel calibration pattern. Based on an already robust and adapted corner detection
introduced in reference [21], it should be able to correctly index the puzzleboard corners
for challenging conditions being: partial occlusion, rotation of the board, distorted images
and steep viewing angles.

1.3 Related Work

Recent scientific efforts have focused on developing automatic chessboard corner detec-
tion algorithms. Especially, for high-accuracy detection, convolutional neural networks
are used in recent work. Notably, Chen et al.[7] introduced a robust, automatic, and
precise corner detection method that takes advantage of a fully convolutional network
architecture. In reference [17] the neural network not only detects an initial set of corner
points, but also detects unreliable input images, discarding those, where no full calibra-
tion pattern is detected. Thus, the algorithm reaches higher precision in the overall task
of corner detection on the calibration pattern, but is not suitable for calibration with a
partly occluded calibration pattern.

Other recent work has been focused on algorithms that do not rely on machine learning,
especially when efficient runtimes are needed. Geiger et al. [12] pioneered a method for
corner detection that uses region growing, facilitating the identification and matching of
several checkerboards simultaneously within a single capture from a stereo camera con-
figuration. The work in reference [10] focuses on robustly detecting occluded chessboard
patterns, relying on the graph detection used in the already robust corner detection
method in reference [24]. A fast and robust corner point detection approach, though
not handling occlusions, has been contributed by Liu et al. [21] enhancing the Hessian
detector.
Based on the fast corner detection method provided in reference [21] this thesis’ corner
detection algorithm has been implemented.
Using fiducial marker systems for the task of camera calibration has been shown in ref-
erence [9] yielding good results for partial occlusions and narrow viewing angles. An
automatic generation and detection of highly reliable fiducial markers under occlusion
has been developed by S. Garrido-Jurado et al.[11]. However, this approach relies on the

2



1 Introduction

fiducial markers being 4-point polygons to be detected reliably. They first segment the
image, then extract contours and apply filtering for 4-vertex polygons. Finally, having a
4-vertex polygon, they can apply an image transform to robustly decode a marker, even
under steep viewing angles.

1.4 Structure of this thesis

Chapter 2: Background covers an introduction into camera calibration, calibration
patterns and fiducial markers. Finally, the puzzleboard calibration pattern and its char-
acteristics are explained.

Chapter 3: Detection of Puzzleboard Corners presents the steps taken to detect
a set of corner candidates based on related work, which are used for grid construction in
the next chapter.

Chapter 4: Grid Construction from Corner Points explains the grid construction
algorithm. First, related grid constructions are taken into consideration. Then, the data
structures and algorithms used for the grid construction are explained in detail. Next,
the process of merging two coordinate systems in the grid construction is presented, and
finally, the grid extraction from the constructed minimum spanning trees is explained.

Chapter 5: Experiments covers experiments for the task of corner detection and
edge weighting. Specifically, the factor for the Hessian matrix trace and the weighting
for edges that do not fulfill a true neighbor relationship in the puzzleboard grid are
experimentally determined.

Chapter 6: Evaluation discusses the success of the developed algorithm by testing
its ability on correct corner indexing for different viewing angles, distorted images and
partial occlusions. Finally, constraints for the usage of this algorithm are drawn from
these findings.

Chapter 7: Conclusion and Outlook gives a conclusion of this thesis and provides
an outlook for ideas of further possible improvements to the algorithm.

3



2 Background

This chapter explains the foundations of camera calibration and the according patterns
used for the task. Finally, it introduces the novel puzzleboard pattern along with its
distinctive features, for which the grid construction algorithm is later built.

2.1 Camera Calibration

For visual tasks, such as measuring objects and depth estimation (illustrated in Fig-
ure 2.1), a camera first needs to be calibrated[3].

Zhang et al.[30] have developed a state-of-the-art camera calibration method. It is used
to calibrate the intrinsic and extrinsic parameters of a camera in a pinhole model using
a calibration pattern.

The goal of camera calibration is to retrieve the correct mapping from 3-D real world
coordinates into the image 2-D coordinates, as seen in Figure 2.2.

Figure 2.1: “Examples of what you can do after calibrating your camera”[3]

4



2 Background

Figure 2.2: Pinhole Camera Model. Figure taken from reference [1]

This relationship between a 3-D point M and its 2-D image projection m is defined as:

sm = A[R t]M [30]

Where A is the intrinsics matrix, which “represent[s] a projective transformation from the
3-D camera’s coordinates into the 2-D image coordinates.”[3] The extrinsics are repre-
sented by R and t, “[. . . ] represent[ing] a rigid transformation from 3-D world coordinate
systems to the 3-D camera’s coordinate system.”[3]

For an uncalibrated camera, the intrinsic and extrinsic parameters are unknown. Essen-
tially, calibrating a camera is the process of solving for these parameters by recording a
set of 3-D real world coordinates with known 2-D image point correspondences[3].

2.1.1 Intrinsic Parameters

The intrinsics matrix, seen in Equation 2.1, holds the intrinsic parameters for calibra-
tion.

A =

α γ u0

0 β v0

0 0 1

 (2.1)

u0, v0 are the coordinates of the camera’s principal point, which essentially is the center
of the image coordinate system. α and β are the scale factors in the image u and v

axes[30]. γ describes the skew of the two image axes[30].

5



2 Background

2.1.2 Extrinsic Parameters

The extrinsic parameters consist of the rotation matrix R and the translation t[30]:

[R t] = [r1, r2, t]

They describe the rotation and translation of the real world coordinates into the camera
coordinate system[30].

2.1.3 Radial and Tangential Distortion

In reality, cameras are not just pinhole models but have a lens built in. Thereby, cameras
can also have radial and tangential lens distortion, which must be represented in the
camera model.[3]

The radial distortion (see Figure 2.3) is modeled by the radial distortion coefficients[3]:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r6)

Where x, y are the undistorted pixel locations, k1, k2 and k3 are the radial distortion
coefficients and r2 = x2 + y2.[3]

The tangential distortion (see Figure 2.4) is modeled by the tangential distortion coeffi-
cients[3]:

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)]

ydistorted = y + [p1(r2 + 2y2) + 2p2xy]

Again with x, y as the undistorted pixel locations, p1 and p2 as the tangential distortion
coefficients and r2 = x2 + y2.[3]

6



2 Background

Figure 2.3: Radial Distortion Types. Taken from reference [3]

Figure 2.4: Tangential Distortion. Taken from reference [3]

7



2 Background

2.2 Camera Calibration Patterns

In reference [30], a calibration pattern on a plane is needed to properly calibrate the
camera. Calibration patterns aim at providing easy detectable markers, often realized by
corner junctions in the conventional patterns (Figure 2.6). This section shortly outlines
the two patterns broadly used for the task of camera calibration.

Figure 2.5: (a) Checkerboard Pattern, (b) Deltille Pattern. Figure adapted from [13]

Figure 2.6: “Two types of checkerboard corners and corresponding local surface
shape”[13]. Figure adapted and taken from reference [13].

2.2.1 The Checkerboard

The checkerboard pattern as seen in Figure 2.5(a) is frequently utilized for calibration
purposes due to its simplicity in creation and the precise pattern it offers, characterized
by known dimensions and measurements [10, 24]. The pattern’s x-junctions, formed
where two black and two white squares meet, produce strong corner responses, making
it ideal for calibration tasks.

8



2 Background

2.2.2 Deltille Grid Pattern

The Deltille grid pattern (Figure 2.5(b)) introduced in reference [13] aims at providing
more accurate calibration for high resolution cameras. It offers a denser tiling and is
more robust due to its isotropic tiling, when viewed under perspective transformation[13].
Furthermore, each junction consists of three edges intersecting compared to the two edges
in the checkerboard pattern (Figure 2.6), thus supplying a greater number of constraints
for each corner point[13].

2.3 Fiducial Markers

Fiducial Markers are used in Augmented Reality systems to mark and track objects in
the real world. They contain codes that determine the information to be displayed at
the marker’s position (Figure 2.7)[22].

Figure 2.7: Fiducial Marker: “Split Marker” used to track a virtual 3d object. Figure
adapted from [22].

For mobile robotics, fiducial markers often find usage for pose estimation.[16] Garrido-
Jurado et al.[11] designed highly reliable fiducial markers, based on ARTags[8] (Fig-
ure 2.8).

Garrido-Jurado et al. also provide an algorithm to automatically detect fiducial markers
even under partial occlusion. Furthermore, a dynamic dictionary for the encoded infor-
mation in these fiducial markers is introduced. Thereby, designing dynamic and reliable
fiducial markers.
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2 Background

Figure 2.8: Different fiducial markers. Figure taken from reference [11].

In reference [9] it has been shown that fiducial markers may also be used for the task of
camera calibration.

2.4 The Puzzleboard

The calibration pattern used in this thesis is a novel board created by Prof. Dr. Stelldinger.
From now on, the board will be called “puzzleboard” and the black and white tiles will
be named “puzzle tiles”. It still offers strong corner junctions, as the white and black tiles
still exist and therefore can be detected by conventional checkerboard corner detectors.
Furthermore, the puzzle tiles’ edges either have a black or a white circle encoding a 0
or a 1, respectively. This is based on the De Brujin Sequence. Similarly to [26], the
puzzleboard represents multiple De Brujin Tori.

With the unique encoding of each 3×3 cutout, it additionally serves as a fiducial marker
system. The pattern is robust against different resolutions. Even in very low resolutions
or a dense formation, this pattern is still decodable.

Finally, as already mentioned above and shown in reference [9], a robust fiducial marker
system may also be used for automatic camera calibration. Therefore, enabling the
puzzleboard to be used as a calibration pattern by tradtionial calibration algorithms,
but also being able to be used for systems relying on fiducial markers like Augmented
Reality or Robotics.
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2.4.1 De Brujin Torus

Taken from reference [14]: “A de Brujin array(or (r, v;n,m)d-array) is an r×v d-ary array
in which every window of size n×m appears exactly once. A De Brujin Torus (DBT) is
a de Brujin array in which the last row is adjacent to the first row, and similarly the last
column is adjacent to the first column.” An example DBT is illustrated in Figure 2.9a.

For the puzzleboard, two DBTs with DBTv = (3, 167, 3, 3)2 and DBTh = (167, 3, 3, 3)2

are used for the vertical lines and horizontal lines, respectively. In many cases, more than
three rows and columns are needed for the puzzleboard, thus DBTv will be repeated on
the vertical axis, after every three rows and DBTh will be repeated on the horizontal
axis, after every three columns.

Once a 3 × 3 window of edges is known (as seen in Figure 2.9b), the position of this
window on the whole puzzleboard can be inferred. This is possible because its decoded
3× 3 window of vertical edges is unique in every DBTv and the 3× 3 window of decoded
horizontal edges is unique in every DBTh.

(a) De Brujin Torus example taken from
reference [5]. White equals 1 and black
equals 0.

(b) Decoded edges of a cutout of the puz-
zleboard. In red the vertical edges and
in blue the horizontal edges. Pink shows
the repeated pattern of the DBT in that
direction.
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2.5 Corners of Interest

A chessboard consists of inner and outer corners, as seen in Figure 2.10.

Figure 2.10: Puzzleboard with inner corners (blue) and outer corners (green)

In this thesis, the corners of relevance are the inner corners (blue corners in Figure 2.10)
of the puzzleboard.
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3 Detection of Puzzleboard Corners

In this chapter, the algorithm for detecting the initial corner point set is presented by
iterating over the different steps of the detection algorithm.

Figure 3.1: Corner Detection Pipeline. Consisting of three steps, it yields a detected
corner point set of a given input image.

For the task of retrieving corners of an input image, the steps needed can roughly be
divided in the three areas seen in Figure 3.1: Preprocessing, Hessian Corner Detection,
and Corner Refinement.

3.1 Preprocessing

This section will discuss the required preprocessing steps for the image prior to initiating
corner detection.

3.1.1 Normalization of the Input Image

By using OpenCV’s method cvtColor()[6], the input image will be translated into
a grayscale image. To further preprocess the image, it is normalized by dividing each
pixel’s value by the maximum pixel value in the whole image. Given the image as a
function f(x, y) = z with z ∈ N[0; 255]. x and y denote a pixel’s position in the image
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and z its corresponding grayscale value in between 0 and 255. Then the normalized
image is retrieved by creating the new normalized image function n(x, y):

n(x, y) =
f(x, y)

fmax
, with fmax = maxx,yf(x, y) (3.1)

After the normalization, each pixel represents a value z, with z ∈ R[0; 1.0]. 0 represents
a black pixel and 1.0 represents a white pixel. All values in between 0 and 1.0 represent
a gray-scale value.

3.1.2 Gaussian Blur

Figure 3.2: Blurring an image allows for a smooth transition between white and black
pixels, thus enabling a more precise estimation of the saddle point. Figure
adapted from reference [19]

The Gaussian filter is applied to images for smoothing or blurring, effectively reducing
noise. Importantly, this filter also establishes saddle points essential for further detailed
image analysis[21].

The creation of the saddle point is illustrated in Figure 3.2. While the retrieval of an esti-
mated inflection point in the top figure shown in Figure 3.2 might be unprecise (towards
one or the other pixel), the applied gaussian blur will enable a better approximation of
the inflection point as seen in the bottom figure of Figure 3.2.

The gaussian blur is realized by using OpenCV2’s cv2.GaussianBlur()[6] function
with a 5× 5 kernel size and standard deviation set to σ = 1. The resulting edges can be
seen in Figure 3.3b.

14



3 Detection of Puzzleboard Corners

(a) Close-up of a synthetic edge without
any blur (b) Close-up of a synthetic edge with blur

Figure 3.3: Close-ups of synthetic edges. Without gaussian blur and with gaussian blur,
respectively.

After the preprocessing step is done, the actual corner detection can take place. From
here on the preprocessed input image will be named Ip.

3.2 Hessian Corner Detector

In reference [21] an adapted version of the Hessian corner detector is introduced as a
fast and robust corner detector. In this section, the in reference [21] introduced Hessian
detection is explained, covering the second step of the pipeline shown in Figure 3.1.

3.2.1 Relevance of Hessian Matrix for Corner Detection

To begin with, the Hessian matrix holds all partial second-order derivatives of a function
with n dimensions. Consequently, the Hessian matrix can be used as a tool to detect areas
of high curvature in n-dimensional space. An image can be modeled as a two-dimensional
function, and as already seen in Figure 2.6 from section 2.2, the puzzleboard corners are
saddle points in this function. The Hessian matrix allows detecting saddle points in an
image, therefore, being a suitable tool for finding puzzleboard corner candidates.

Let f(x, y) be the image and r(x, y) the image with gaussian blur applied, then the
Hessian matrix is defined as (taken from references [15] and [21]):
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Hf(x,y) =

[
∂2r
∂x2

∂2r
∂x∂y

∂2r
∂x∂y

∂2r
∂y2

]
(3.2)

Or simplified:

H =

[
rxx rxy

rxy ryy

]
(3.3)

To calculate rxx, ryy and rxy, the discrete derivatives in x and y directions are calculated.
Furthermore, an additional Hessian matrix on diagonal derivatives is calculated to en-
hance the algorithms’ robustness. The kernels Dy, Dx, Drl and Dlr are convoluted with
Ip, yielding:

Ip ∗Dy = ry

ry ∗Dy = ryy

ry ∗Dx = rxy

Ip ∗Dx = rx

rx ∗Dx = rxx

Ip ∗Drl = rrl

rrl ∗Drl = rrl_rl

rrl ∗Dlr = rrl_lr

Ip ∗Dlr = rlr

rlr ∗Dlr = rlr_lr

(3.4)

with

Dy =

−10
1

 Dx =
[
−1 0 1

]
(3.5)

Dlr =

 0 0 1

0 0 0

−1 0 0

 Drl =

1 0 0

0 0 0

0 0 −1

 (3.6)

Where Ip is the preprocessed image. Convoluting Ip with the corresponding derivative
filters will yield derivatives in x, y, diagonal right-left (rl) and diagonal left-right (lr)
directions, respectively.
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3.2.2 Finding Corner Candidates with the Hessian Detector

As the corner junctions of black and white squares in the puzzleboard are saddle points
in Ip, the Hessian detector allows for the detection of the corners of Ip.[21]

in reference [21], the response of the corner detector used to find chessboard corners is
named S and consists of the determinant of the Hessian matrix H such that S is defined
as:

S = det(H) = rxx · ryy − r2xy [21] (3.7)

In this thesis, the equation is adapted by multiplying the trace of the Hessian matrix by
a factor k yielding more robust detection (bold part in 3.8).[27]

S = det(H) = rxx · ryy − r2xy + k · trace(H)2

= rxx · ryy − r2xy + k · (rxx + ryy)
2

(3.8)

The same as seen in Equation 3.8 is done for the diagonal derivatives. rxx is replaced by
rrl_rl, ryy is replaced by rlr_lr and rxy is replaced by rrl_lr:

Sd = det(Hd) = rlr_lr · rrl_rl − r2lr_rl + k · trace(Hd)
2

= rlr_lr · rrl_rl − r2lr_rl + k · (rlr_lr + rrl_rl)
2

(3.9)

A corner now is retrieved by solving the following constraint in the response S and Sd,
respectively:

λ1 > ε and λ2 < −ε [21] (3.10)

With λ1 and λ2 being the eigenvalues of the Hessian matrix H. Furthermore, it is shown
that S = λ1 · λ2, thus allowing to search for each pixel in S that solves for S < ε, with ε

being a threshold for the response value in S[21].

Or as it is done in this thesis, flipping the response S from minima to maxima, by
multiplying each value by −1 and thus solving for −S > ε instead of S < ε. This is done
for S and Sd.
ε is set to 0.03, taken from the reference [21] and k is set to k = 0.5 to retrieve robuster
response results, as shown in chapter 5.
Finally, S and Sd are element-wise multiplied yielding Sf The corresponding response
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Sf can be seen in Figure 3.4 on the right side. Especially high responses are visible at
corner junctions of the underlying Puzzleboard.

Figure 3.4: Response Sf of Hessian detector. The spikes show the maxima of Sf .

3.2.3 Finding Local Maxima of Sf

Around a detected corner point the response Sf is maximum. In some cases, there is no
single maximum value, but rather multiple maximum values. In such situations, a deci-
sion must be made to keep only one of these maxima. Therefore, maximum suppression
is realized[29] by utilizing the peak_local_max() function from the scikit-image[28]
library. The min_distance parameter is set to 10.

The corner candidates resulting from the maximum suppression form the initial corner
candidate set.

3.3 Corner Refinement

Finally, the last step of the pipeline seen in Figure 3.1 is covered in this section. The
process of refining the beforehand detected corner points is explained. First, the detected
corner set is further filtered by applying a corner mask. Secondly, the position of the
detected corners is refined by reaching sub-pixel accuracy. Therefore, yielding a final
corner candidate set with sub-pixel accuracy, which can be used for following operations
in grid construction seen in chapter 4.
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3.3.1 Applying a Corner Mask to Detected Points

Some of the former detected corners with the Hessian detector may not be true puzzle-
board junctions, but rather other local maxima of the Hessian response Sf (as seen in
Figure 3.5). In consequence, further filtering is needed to remove faulty corners. In this
work, due to simplicity, the only filtering used is a so-called Corner Mask.

Figure 3.5: Left: Detected corners without corner mask applied. Right: Detected corners
with corner mask applied

First, the corner mask uses a couple of kernels to check for potential corners:
−1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 −1




0 −1 0 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 0 0 −1 0




0 0 −1 0 0

0 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 −1 0 0


Each of those corner kernels are separately convoluted with Ip and yield strong responses,
if the window is on top of a puzzleboard junction. For each pixel in those convoluted
results, the strongest response is taken for that position, creating the junction response
J .
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Secondly, several kernels to filter edges are used:
−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1




0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0




0 0 −1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0




0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0



0 0 0 0 −1
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0




0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0




0 0 0 0 0

0 0 0 0 0

−1 0 0 0 1

0 0 0 0 0

0 0 0 0 0




0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0


Again, each of these responses will be compared pixel-wise, and the maximum response
will be taken into account to form the edge response E.

Then, the maximum response for each pixel will be taken along E and J . If, at a pixel’s
location, J compared to E yields a greater response, the value in the final corner mask
response C is set to 1 and else to 0. Thus leading to a binary response Cb of corners in
the image Ip.

Finally, the binary corner response Cb will be element-wise multiplied with the original
corner response Sf , thus leading to the elimination of wrong corner responses in Sf , since
they will be multiplied with 0, if Cb yields 0 at that pixels location.

3.3.2 sub-pixel Accuracy

In some cases, the detected corner, or more precisely the zero-crossing of the Hessian
matrix, may not truly lie in the center of a pixel but rather towards one or two of the
pixel’s edges. To reach sub-pixel accuracy for corner detection, the squared greyscale
centroid method is used[21].

x0 =

∑
(i,j)∈R i · I2(i, j)∑
(i,j)∈R I2(i, j)

, y0 =

∑
(i,j)∈R j · I2(i, j)∑
(i,j)∈R I2(i, j)

[21] (3.11)
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Where I(i, j) is the intensity value at corner c with the position (i, j)[21]. R is the pixel
neighborhood of the corner c, chosen as a small circular window centered on c. In this
thesis, R is chosen as the 8 pixels surrounding the corner c (a 3x 3 window). Finally,
using Equation 3.11, the sub-pixel position of a corner c is determined to be (x0, y0).

This calculation is done for every detected corner, to reach sub-pixel accuracy for all
corner candidates.

Altogether, in this chapter, the detection of the intial corner set by using the Hessian
detector with the sub-pixel method introduced in reference [21] and a corner mask filtering
has been shown. After reaching sub-pixel accuracy for the whole corner set, it can now
be used for the next step of grid reconstruction of the puzzleboard in chapter 4.
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This chapter describes the construction of the coordinate system from the prefiltered,
detected puzzleboard corners. It provides an in-depth overview of the calculation of edge
weights, the detailed process of constructing the Minimum Spanning Tree (MST), and
the subsequent grid construction. These elements are critical for understanding how the
coordinate system is systematically built from the ground up, ensuring accurate indexing
of the puzzleboard’s inner corners.

4.1 Why the Grid Construction is Needed

The construction of the calibration pattern, essentially meaning the retrieval of the rela-
tionship of a detected corner to the other detected corners (e.g. Is Corner1 with image
coordinates [x: 200, y: 150] adjacent to Corner2 with image coordinates [x:210, y:-92]? ),
is needed for several reasons.

First of all, to enable a camera calibration with the detected corner points, they have to
be indexed correctly to draw relationships between the detected points.
Trivial in the case of a top-down view without any rotation, distortion or partial oc-
clusions, the sole utilization of image coordinates of the detected corner candidates will
yield correct indexing.
However, as soon as challenging situations as the aforementioned occur, the sole retrieval
of the corners’ image coordinates no longer yields a trivial relationship.

Secondly, the puzzleboard holds encoded information on its edges. To successfully decode
the pattern, it is necessary to know where this edge lies compared to other edges, since
a 3x3 window of correctly allocated edges is needed to find the correct position on the
whole puzzleboard.
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Finally, in case of partial occlusion or more than one puzzleboard being visible in the
image, the grid construction can enable to create disjoint grids, therefore also solving the
first mentioned challenge of correct indexing in more complex scenarios.

Taking the above-mentioned criteria into consideration, a grid with a relative coordinate
system allowing for correct indexing of its nodes, is the needed structure and will be
explained in the following sections.

4.2 Chosen Approach

Liu et al.[21] simply index the detected corner points from top left to bottom right, hence
they do not provide any rotational robustness, robustness for steep viewing angles that
lead to distortions or robustness for partial occlusion. Consequently, this approach is not
considered any further in this work, as the goal is to create a robust grid construction
towards partial occlusion, distortions and rotations.

Geiger et al.[12] use an energy function for region growing of the detected corner can-
didates. Although, being able to automatically detect more than one grid in an image
and handling partial occlusion[12], the approach of searching through every possible cor-
ner candidate, minimizing the energy function, seems less efficient for larger chessboard
patterns (seen in Figure 6.2).

Essentially, the construction of the grid is a construction of a graph. Therefore, a graph
structure G is chosen in this thesis to recreate the calibration pattern with its vertices V
and edges E.
With v ∈ V := {detected corner points} and e ∈ E := {(vi, vj)|vi, vj ∈ V }

An approach to gathering the edges E would be the usage of edge detection in image
processing. Nevertheless, in cases of strong lens distortions, this will lead to biased
results[24]. Another approach used for edge detection is the Hugh Transform for parallel
lines, but as stated by Fürsattel et al.[10] this also yields faulty results for distorted
images.

Fürsattel et al.[10] use a refined corner detection with subgraph matching, which is not
chosen for this thesis, since the generation of the center line image might lead to faulty
graphs with the rounded edges of the introduced puzzleboard. Furthermore, it might not
be suited for disjoint grids that should be independently detected.
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Finally, potential edges are found by determining a Euclidean distance neighborhood of
size n, with n = 8 for each corner candidate and simply assuming edges between every
neighbor in the neighborhood and the corner candidate itself. An example for such a
neighborhood on a top-down view can be seen in Figure 4.1b.

For these neighborhood edges, a simple breadth-first search or depth-first search could be
used to build a graph structure. However, as seen in Figure 4.2, this might yield wrong
edges added to the graph structure, when viewing angles or distortions are present.

Consequently, punishment for potentially wrong edges other than Euclidean distance is
needed. Thus, a weighted graph is created, for which the edges are weighted based on
Euclidean distance and faulty node pairs.

From the initial edges a construction of a Minimum Spanning Tree (MST) using Kruskal’s
Algorithm is used in this thesis to build the graph structure, allowing to penalize and
exclude wrong edges as the one seen in Figure 4.2. The created MST will consist of nodes,
with each node being capable of calculating its relative coordinates in the coordinate
system of the MST.

The following sections will cover the used algorithms and data structures, the pre-filtering
of the neighborhood edges, and the construction of the MST.

4.3 Algorithm Used for MST Construction

To construct the MST, Kruskal’s MST Algorithm is used (see Algorithm 1).
Using Kruskal’s Algorithm has two advantages.

Firstly, it allows for disjoint MST’s to be created and therefore in the use-case scenario of
grid construction, allowing for constructing more than one grid. Hence, detecting more
than one puzzleboard in a single image.

Secondly, it can be implemented easily and efficiently, by using the union-find data
structure[20], as it is done in this work. Consequently, supporting the goal of a fast
algorithm to be employed.
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Algorithm 1 Kruskal’s Algorithm
1: Input: An undirected graph G = (V,E, γ) with edge weights c : E → R
2: Output: The edge set EF of a minimum spanning forest
3: Sort the edges by their weight: c(e1) ≤ . . . ≤ c(em)

4: EF := ∅
5: for all v ∈ V do
6: Make-Set(v) ▷ Create n single-element sets
7: end for
8: for i := 1, . . . ,m do
9: Let u and v be the endpoints of ei

10: if Find-Set(u) ̸= Find-Set(v) then
11: EF := EF ∪ {ei}
12: Union(u, v)
13: end if
14: end for
15: return EF

The algorithm seen in Algorithm 1 has been taken from the reference [20].

4.4 Data Structures

In the grid construction process, the selection of appropriate data structures is crucial.
This section details the data structures selected, outlining their implementation within
the grid construction algorithm.

4.4.1 Tree Structure

To efficiently construct and manipulate a MST, it is crucial to employ a tree data struc-
ture.

Each node in this tree data structure covers properties, used to later retrieve coordinates
of that node in the whole tree. This is essential for generating the MST and subse-
quently indexing all nodes accurately. The properties maintained in each node include
the following:
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• Predecessor: Every node holds a reference to its predecessor. In case of it being
the root node of the tree structure, it references itself.

• Compressed Predecessor: The compressed predecessor as created by the Find(v)
operation, shown in subsection 4.4.2.

• Absolute Image Position: The position of the node on the input image. Used
for direction decision, when being the first childnode appended to a node.

• Vector to Predecessor: This vector holds the distance in x and y values to its
predecessor. Note, these x and y values are the relative x and y values of the
coordinate system which is being constructed.

• Subtree: A set containing all children of a node in its subtree.

• Edge Weights: A list structure, holding every already added edge weight to this
tree, allowing for average weight operations on the tree for outlier detection.

• Rotation: The rotation that applies for every child node’s relative coordinates in
the node’s subtree. (E.g.: A child node has the relative coordinates x = 1, y = 0.
A rotation by 90° would mean, its new location is x = 0, y = 1.)

• Neighborhood: A mapping from direction vectors as of [1, 0]T for positive x,
[−1, 0]T for negative x, [0, 1]T for positive y and [0,−1]T for negative y directions to
the according neighboring node as of the tree’s relative coordinate system. Needed
for later introduced collinearity checks.

4.4.2 Union-Find Data Structure

The union-find data structure is a suitable data structure for an efficient implementation
of Kruskal’s Minimum Spanning Tree (MST) algorithm[20]. It holds a collection of dis-
joint sets that dynamically change. Each of these sets contains a so-called representative
for the set[20]. Such a data structure should offer three operations:

• Make(v): Creates a new Set with v as the only element and thus representative of
the set.

• Find(v): Finds, in all the disjoint sets, the set which holds v and returns this set’s
representative.
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• Union(u, v): Merges the disjoint sets, where u is an element of one of the sets
and v is the element of the other set. After merging, the two former sets will be
destroyed.

Since the goal is the construction of a MST, instead of sets, tree structures are used. Ad-
ditionally, using tree structures instead of sets, enables optimizations (path compression
shown below), thus further optimizing the grid construction algorithm.

Firstly, Make(v) will build one-node trees. The representative of a tree is chosen as the
root node.

Secondly, Union(u, v) will lead to either root node of the tree containing u becoming
a child node of the tree containing v or the other way around, depending on the tree
depths. As an optimization step, the shallower tree will become a subtree of the deeper
tree [23].

Finally, Find(v) will find and return the root node of a tree, for which v is one of the
nodes in that tree.
To optimize the traversal of nodes in the tree, path compression[23] is used. The imple-
mented Find-Set(v) operation can be seen in Figure A.12.

4.4.3 Priority Queue for Kruskal

Kruskal’s algorithm, used for the construction of MST, fundamentally requires the sort-
ing of edges based on their weights as seen in Algorithm 1 in line 3. Consequently, a
priority queue is employed to efficiently manage and sort all edges in ascending order
of their weight, enabling the sequential construction of the MST by retrieving and at-
tempting to add the lightest edges first. In this thesis, the implementation relies on the
PriorityQueue class from Python’s queue module1, where the edge with the small-
est weight is assigned the highest priority. This approach takes advantage of the priority
queue’s ability to efficiently manage and sort data as it changes, which helps streamline
the process of building the MST.

1https://docs.python.org/3/library/queue.html
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4.5 Edge Preparation for Kruskal’s Algorithm

This section covers the preparation of the edges later used for the construction of the
MST.

Initially, edges that connect a node to its diagonal neighbors are filtered out based on
the comparison between the node’s eigenvector orientation and that of the neighbor’s
eigenvector. This step helps in identifying and excluding edges that may connect wrong
neighbors, thus breaking the consistent coordinate system.

Secondly, edges that are still wrong after filtering but could not be filtered out by the
first step will receive a weight punishment. This penalty reduces their priority, ensuring
that they are less likely to be included in the construction of the MST, thereby enhancing
the robustness of the algorithm.

4.5.1 Filtering out Faulty Edges

True neighbors are the ones that can be reached by traversing the puzzleboard piece’s
edge between two corner points. The edges to the correct neighbors are colored in orange
in Figure 4.1b.

When simply searching for the eight closest neighbors as of Euclidean distance, diagonal
neighbors can be taken into account as well. Therefore, a filtering method for only the
true four neighbors is needed.

As seen in Figure 4.1a, the two eigenvectors of the Hessian matrix at each detected
point are the angle bisectors for the black and white squares at the specific corner point.
In Figure 4.1a, the red and blue arrows show the first and second eigenvectors at the
detected corner points, which are the angle bisectors of the black and white puzzle tiles,
respectively.

Since the Hessian matrix was initially used to identify corner points, using its features
is beneficial in this situation. Consequently, from earlier introduced Equation 3.3 the
eigenvectors e⃗1 and e⃗2 of the Hessian matrix can be retrieved as follows[27]:

e⃗1, e⃗2 =

(
rxx − ryy ±

√
(rxx − ryy) · (rxx − ryy) + 4(rxy)2

2rxy

)
(4.1)
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4 Grid Construction from Corner Points

(a) Hessian Eigenvectors on a Puzzleboard
Cutout

(b) Corner (encircled in purple) with its
edges to the eight neighbors, of which
only the orange edges are edges of true
neighbors

Figure 4.1: Eigenvectors and True Neighbors of a Corner Candidate

Whether the first or second eigenvector of a corner of interest is viewed, the true neigh-
bors’ corresponding eigenvector orientations are shifted by 90° (can be seen in Figure 4.1a.
The corner junctions horizontally and vertically adjacent have their Hessian eigenvectors
rotated by 90°).

This property allows for a pre-filtering by calculating the angles of potentially true neigh-
bors eigenvector compared to the currently viewed corner’s eigenvector.
Every neighbor yielding a Hessian eigenvector orientation difference below 45° is being
filtered out, thus only true neighbors of a corner candidate are kept for further edge
calculations[27].

Initially, for every detected corner point cp in the image, the orientation of the Hessian
first eigenvector at this point is calculated:

Let c⃗p1 be the first eigenvector of the Hessian matrix at the detected corner point cp of
all detected corner points CP . The orientation for each of the corner points’ Hessian
eigenvectors can be calculated as follows:

ori(cp) := { arctan2(c⃗p1y, c⃗p1x) | cp ∈ CP ∧ c⃗p1 is first Hessian eigenvector of cp}
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4 Grid Construction from Corner Points

Once all the orientations have been calculated, an orientation comparison between the
first Hessian eigenvector of a corner point and its neighbors first Hessian eigenvectors
can be performed to gather the correct neighbors :

potentialNeighbor(x, y) :=

1 for | sin(ori(x)− ori(y))| > 0.707

0 for | sin(ori(x)− ori(y))| ≤ 0.707

CN := {(cpi, cpj) | (cpi, cpj ∈ CP ) ∧ (cpj ∈ NNcpi) ∧ potentialNeighbor(cpi, cpj) = 1}

With NNcpi indicating the detected corner points neighborhood of cpi.

In conclusion, this step is utilized to eliminate edges to diagonal neighbors, as seen in
Figure 4.1b colored in blue. The elimination of these edges supplements building a grid
consisting only of the edges between two true neighbors.

For the following sections, all edges E are defined as the aforementioned CN , such that:

E := CN

4.5.2 Edge Weight Calculation

The construction of a MST per definition needs weighted edges to be created. Con-
sequently, edge weights need to be calculated to enable the creation of a MST and
determine the order in which edges should be added to the MST. Lowest weight edges
will be prioritized.

The simplest approach to calculate the edges’ weights in between two corner points is
the sole usage of the Euclidean distance.
However, for certain viewing angles, this might lead to wrong neighbors edges being rated
better than the correct neighbors edges (meaning, calculated weight is lower compared
to true neighbors’ edges). The potentially misleading Euclidean distance can be seen
in Figure 4.2: The rose-colored edge diagonally spans over two different chess pieces,
rendering it a faulty edge, although having a reasonable Euclidean distance.

30



4 Grid Construction from Corner Points

Figure 4.2: The eight closest neighbors in this angle. [25]

To solve this problem, a second heuristic is used for adding more weight to an edge. The
first third and last third of the edge will be averaged in grayscale value. Additionally, an
intensity difference threshold ∆I is chosen to compare the average intensity value of the
first third of the edge compared to the last third of the edge.

The average grayscale value is chosen by sampling 15 evenly spaced points along the edge
and calculating the average grayscale value out of these sampled grayscale values, thus
µ is set dynamically for each edge:

µ = avgGrayScale((n1, n2)), with (n1, n2) ∈ E

Best results are reached by choosing ∆I = µ ∗ 0.5 with µ being the average grayscale
value for that specific edge.

If the difference threshold is exceeded in the first third compared to the last third, it can
be assumed that the edge crosses two puzzleboard pieces and thus being a faulty edge.
This applies to the rose-colored edge mentioned before (seen in Figure 4.2). Therefore,
this edge will be punished by multiplying its initial weight determined by Euclidean
distance by a factor p.

In Table 5.4.2 it can be seen, that p = 2 would be already suitable, but instead p = 3 is
chosen, as it enables an easier threshold for the outlier detection covered in the following
section.
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4 Grid Construction from Corner Points

4.6 Adding a Child Node to the MST

This section covers the actual merging of two disjoint tree structures, as described by
the Union(v, u) operation of the union find data structure.

First, an outlier detection takes place to prohibit the merging of two trees that possibly
are not actually connected puzzleboards in the image.
Next, the creation and merging process of two trees’ coordinate systems is outlined.
Finally, the retrieval of the grid from the final tree is explained.

4.6.1 Outlier Detection

Given a node a in the tree T1 and a node b in the tree T2. The union find operation
Union(a, b) would try to append a to n, and thus merge T1 and T2.

However, in the algorithm implemented in this work, n would first check if a connection
with a is allowed due to outlier constraints.

The first outlier constraint is defined as:

∀ni ∈ Na : (
w(a, b)

2.9
) < w(ni, a) < (w(a, b) · 2.9) (4.2)

with the neighborhood Na of a defined as:

Na := {n|n ∼ a}

for the node a of T1. And w((a, b)) yielding the weight for the edge (a, b).

The second outlier constraint is defined as:

(0.3 · avgEdgeWeight(T2)) < avgEdgeWeight(T1) < (2.9 · avgEdgeWeight(T2)) (4.3)

with avgEdgeWeight() returning the average edge weight of all edges in that tree struc-
ture.

If either the first or second constraint fails, the edge (a, b) will not be added, thus T1 and
T2 will not be merged. In every other case, they will be merged.
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4 Grid Construction from Corner Points

For various cases, using 0.3 and 2.9 as factors for the other trees and neighbors’ average
weight constraints (seen in Equation 4.2 and Equation 4.3), yielded best results.

Figure 4.3: Outlier detection. Left: Showing due to outlier critera detected disjoint trees
in different colors, while largest tree is colored red. Right: Just the largest
tree left.

The successful outlier detection can be seen in Figure 4.3. While some of the inner puz-
zleboard corners are detected as outliers, the algorithm wins in robustness, by excluding
corner points detected outside the puzzleboard. Notably, even some of the inner omitted
corners are true outliers, since their only possible connection runs over two tiles, thus
rendering them as a false edge for the MST.

4.6.2 Local Coordinate Systems

One of the challenges in giving the nodes in the tree relative x and y coordinates lies
in defining in which direction relatively to its predecessor, a newly added node may lie.
An example of given coordinates can be seen in Figure 4.3 of the last section. A node,
relatively to its neighbor in the tree’s coordinate system, has one of these four directions:
+x, −x, +y or −y. Consequently, for every node added to the MST, it is essential to
determine its direction relatively to its predecessor from the four possible directions (+x,
−x, +y ,−y).
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4 Grid Construction from Corner Points

Simplest Approach

The simplest approach uses the absolute image coordinates of a newly added node to
calculate x and y image coordinate distances and retrieve the direction with the highest
difference. The retrieval of the different directions can be seen in Figure A.1.

This approach works fine for the different rotation angles of the image (see Figure A.4a
and Figure A.4b), but as soon as perspective comes into play (see Figure A.4c), it loses
its coordinate consistency.

The reason for this behavior can be seen in Figure 4.4:

Figure 4.4: Flat viewing angle leads to greater x-distances in image coordinates for neigh-
bors that should lie in y-direction. Red and yellow arrows show the difference
in x-direction. Blue and green arrows show the difference in y-direction. Ro-
tating the red and yellow arrows accordingly (seen on the right side of the
figure) illustrates their greater length.

The x-differences are greater for the neighbors that should rather lie on the y-axis, thus
yielding inconsistent coordinates, when using the simple approach to determine the ap-
pending node’s position relatively to its predecessor. For this exact case, the simple algo-
rithm first provided would yield only neighbors with x-directions even for the neighbors
that lie in y-direction from a viewer’s perspective (blue and green arrows in Figure 4.4).
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Adapted Approach

In the adapted approach, the first added child of each node in the MST still gets its
direction set with the simple approach explained above. For all the following children of
a node, a new heuristic is used (see Figure A.3 and Figure A.2). This new heuristic will
check for collinearity for any newly appended node to the already appended neighbors
and rotate the added tree’s coordinate system, if needed.

If the collinearity check passes, it can be inferred that the newly added node is on the
same axis as the neighbor of the node it is appended to (see Figure A.2). This is especially
relevant when the neighbor axes cannot be gathered from absolute image coordinates (in
cases with distortion or viewing angle). The success of the adapted approach is illustrated
in Figure A.5, compared to the error-prone version seen in Figure A.4c.

The two steps for the adapted approach (collinearity check and rotation of coordinate
systems) will be viewed in detail in the following two subsections.

4.6.3 Collinearity Check of Nodes

For the approach mentioned in subsubsection 4.6.2, whenever a node gets appended to
the tree and the tree consists of at least two nodes, it will first be checked if it is on a
line (collinear) with any other neighbor of the tree’s node and the predecessor of it (see
Figure 4.5a). In case of distortions, this approach needs a tolerance for the decision on
collinearity, since a straight line on the puzzleboard might become curved by the viewing
camera’s distortion.

Spanning a triangle between the three given points for the collinearity check is an easy
approach of checking for collinearity of three points with a certain tolerance. The area
spanned by the triangle consisting of corners A,B,C will be denoted as SABC , where
every corner has image x and image y coordinates. It is calculated as follows:

SABC = 0.5 · |Ax(By − Cy) +Bx(Cy −Ay) + Cx(Ay −By)|

In case of the calculated area of the triangle equaling to 0, it can be assumed that the
three points are collinear. Furthermore, a threshold area can be defined for offsets of the
nodes, allowing for collinearity check passes, even if one of the nodes is not exactly on a
line with the other two nodes. Since the SABC will always be calculated with absolute
pixel coordinates, this approach works fine for images of similar resolution and distance to
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the puzzleboard. Consequently, higher resolution images or images of the same resolution
but with different viewing distance to the puzzleboard yield much greater areas. This
leads to a need for an adapted tolerance value independent on distance to board and
image resolution.

To eliminate this dependency, a different approach is chosen and will be described in the
following paragraph.

Reworked Approach for Collinearity Checks As seen in Figure 4.5b, α is the
angle of interest, which will not be affected by resolution or distance to the board. It is
calculated as follows:

α = arctan2(A⃗By, A⃗Bx)− arctan2(B⃗Cy, B⃗Cx)

and as long as |sin(α)| ≤ τ , with τ being a threshold set to 0.342 (equivalent to sin(20°)),
the collinearity check will be considered successful. Consequently, a third node C, which
is collinear with nodes A and B within this tolerance, will be aligned along the same axis
that connects A to B. For instance, if A is positioned on the x-axis relative to B, and
C satisfies the collinearity check, then C will also be placed on the x-axis and appended
accordingly.

(a) Triangle Area Approach: SABC is the cho-
sen tolerance. (b) Angle Approach: α is the chosen tolerance.

Figure 4.5: Two Approaches for collinearity checks with tolerance, given the points
A,B andC

4.6.4 Rotation of Coordinate Systems

Using the previously mentioned collinearity check, it is possible to determine whether the
newly added node should be aligned on the same axis (either X or Y) as its neighboring
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nodes. This assessment helps ensure that the placement of nodes maintains the intended
coordinate relationships.
However, in certain situations, two trees in the merging process might not have consistent
coordinate systems, as one of the coordinate systems might be rotated by either 90°, 180°
or 270°. To solve this problem, the tree being added, needs to rotate its entire coordinate
system to properly align with the new parent tree’s coordinate system.

Figure 4.6: Inconsistent coordinate systems when merging. Right tree’s coordinate sys-
tem needs two rotations by 90° to become consistent with the left tree.

Figure 4.7: Consistent coordinate systems after correct number of rotations.

As illustrated in Figure 4.6, the tree on the right side operates under the assumption
that the green node to which it connects is situated in the positive x-direction. Similarly,
the tree on the left side also assumes that its connection points towards the positive
x-direction. This behavior is incorrect, as for a consistent coordinate system to be main-
tained, the two trees should assume opposite directions for their connections.

In Figure 4.7 this conflict is resolved by rotating the tree’s coordinate systems on the
right side by 180°, resolving the coordinate inconsistency.
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Once the desired orientation is achieved through 90-degree rotational steps, the node’s
rotation property will be set to reflect the total accumulated degrees (which can be either
0°, 90°, 180°, or 270°).

4.6.5 Coordinate Retrieval from a Node in the Tree

Each node in the tree has a vector pointing to its predecessor, indicating its position
relative to its predecessor. Additionally, every node holds a rotation value in degrees. As
already mentioned in subsection 4.6.4, this rotation value is calculated when one node
gets appended to another one. More precisely, the root of the appended node maintains
a rotation value for all its child nodes, eliminating the need to rotate the entire tree.
Instead, the rotation happens when the coordinates of a node in the tree are retrieved.

To rotate a vector, a rotational matrix Rα is used. With Rα defined as:[
cos α sin α

sin α cos α

]
[18]

The algorithm to retrieve the relative position of a node in a tree is implemented as seen
in Algorithm 2:

Algorithm 2 Get Vector to Root
1: function GetVectorToRoot(node)
2: current← node
3: vectorToRoot← array[0, 0]
4: while current ̸= current.predecessor do
5: if current.rotation ̸= 0 then
6: vectorToRoot← rotatePoint(vectorToRoot, current.rotation)
7: end if
8: vectorToRoot← vectorToRoot + current.vectorToPredecessor
9: current← current.predecessor

10: end while
11: return vectorToRoot
12: end function

For a tree structure as illustrated in Figure 4.8, retrieving the relative position of node c

in the entire tree would therefore look like this:

c.getV ectorToRoot() =

((([
1

0

]
+

[
0

−1

])
×R90

)
+

[
1

0

])
×R270
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=

([
1

1

]
+

[
1

0

])
×R270 =

[
2

1

]
×R270 =

[
2

−1

]
Thus, c’s vector to its root in the tree is x = 2, y = −1. Therefore, to gather the
position of c in the tree, the vector to its root has to be flipped, yielding x = −2 and
y = 1. Consequently, when the grid has been constructed, moving two positions into −x
direction from root and one position to +y direction, would locate c.

Figure 4.8: Simple tree structure with every node holding a rotation value and the vector
to their predecessor in relative coordinates.
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4.6.6 Merging Two Trees

For this section the tree being appended will be referred to as T2 and the tree to which
T2 is appended will be referred to as T1. Also, the roots of T1 and T2 are referred to
as r1 and r2, respectively. After the needed coordinate system rotations by T2 have
been calculated as seen in subsection 4.6.4, r2’s rotation property will be set to the
corresponding degrees.

As per definition of the union find data structure, Union(a, b) will lead to the represen-
tatives of a and b to be merged. In the case of the tree structure, these are the roots of
the nodes a and b. The whole merging process is exemplarily illustrated in Figure 4.9.

Initially, in Figure 4.9a, the edge chosen by Kruskal’s algorithm is seen as a dashed line.
The root of a is r1 and the root of b is r2, as seen in Figure 4.10a, implying that r1 and
r2 are actually merged.

To keep the coordinate consistency after merging, the right predecessor vector must be
chosen for #     »r2r1. Illustrated in Figure 4.9b - Figure 4.9d, this is done by:

1. Adding every vector to predecessor from a onwards to r1, yielding c⃗. In the case of
Figure 4.9, this consists of only one vector to predecessor.

2. Adding every vector to predecessor from b onwards to r2 and rotating it by the
earlier calculated needed rotations of the coordinate system, finally yielding a⃗. In
the case of Figure 4.9, this also consists of only one vector to predecessor.

3. Determining in which direction relative to a, b must lie, according to the algorithm
provided in subsubsection 4.6.2, thus yielding b⃗

Additionally, the r2 predecessor will be set to a reference of r1.

Furthermore, for every node in T2, the compressed predecessor will be eventually set
to r1’s root when the Find() operation is called. Thereby, keeping the union find tree
structure flattened and efficient.

Finally, for a’s neighborhood, b will be set with the earlier wanted direction
#»

b . The same
happens the other way around for b’s neighborhood with a and

#  »−b.
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(a) Initial selected edge (a, b) chosen by
Kruskal’s Algorithm.

(b) The vectors c⃗, b⃗ and a⃗ are the vectors
from a to r1, a to b and b to r2, respec-
tively.

(c) At first a⃗ is rotated by the determined
coordinate system rotations needed.
Next, the vectors b⃗ and a⃗ are flipped to
build the correct vector to predecessor
from r2 to r1 as these two nodes are ac-
tually merged.

(d) Vector created by adding the flipped
vectors b⃗, a⃗ and c⃗.

(e) Final merged tree, with r2 holding its
vector to predecessor to r1

Figure 4.9: Merging Process of two Disjoint Trees.
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(a) compressed predecessor references of ev-
ery node in the trees.

(b) Eventual compressed predecessor refer-
ences in the tree after successful merg-
ing.

Figure 4.10: Compressed predecessor references before and after merging

4.7 Grid Reconstruction and Edge Decoding

Once the MST has been constructed, the grid of the chessboard can be reconstructed. As
the nodes of the MST hold their relative positions, neighbors now can be easily inferred,
even if the nodes are not adjacent in the tree.

A 2-D array is constructed by taking the differences between the minimum x value
and maximum x value in the coordinate system as well as the differences between the
minimum y value and maximum y value. These are used to create the 2-D shape of the
grid. The y difference will be the number of rows, and the x difference will be the number
of columns of the 2-D grid.

Finally, every child of the tree will get its position in the tree shifted by the minimum
x and y values for its corresponding grid position. Thus, the minimum node as of y
and x coordinates, will be located at (0,0) in the grid. This is exemplary illustrated in
Figure 4.11.

Given the grid structure, horizontal and vertical edges can be decoded by checking if
the pixel’s value in the middle of two neighboring nodes is either black (grayscale value
≤ 0.5) or white (grayscale value > 0.5). For every node in the 2-D grid, its edges to its
+y and +x neighbors are decoded, yielding all horizontal edges for all the +x neighbors
and all vertical edges for the +y as seen in Figure 4.12 based on the detected grid in
Figure 4.11.
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Figure 4.11: Grid mapping, from tree to 2-D array. Position (0,0) for example, is None
in the grid, because this coordinate has not been detected.

(a) (b)

Figure 4.12: Decoded Horizontal and Vertical Edges. Black Circles are Decoded as 0 and
White Circles as 1. Undetectable Edges are Decoded as -1.
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In this chapter, the experiments carried out to determine edge weights for grid recon-
struction and hessian trace weighting for initial corner detection are presented.

5.1 Hardware used for Experiments

The experiments are run on a MacBook Pro 14" with a M1 Pro Processor, 16GB of
RAM and a 512GB SSD.

5.2 Images used for Experiments

The images used for the experiments were shot on an iPhone 11 with a resolution of 12
Megapixels (4032x3024 pixels). They have been taken at different distances and angles
to the board. The puzzleboards used in the images come in three different inner corner
densities:

• Small puzzleboard with 11 · 8 = 88 inner corners

• Medium puzzleboard with 23 · 16 = 368 inner corners

• Large puzzleboard with 72 · 52 = 3,744 inner corners

5.3 Different Factors for Trace of Hessian Matrix

The corner detector used in this thesis, multiplies the trace of the Hessian matrix with
the factor k. In this experiment, different values for k are chosen, to find out which
parameter k should be used for the most robust corner detection on different sample
data.
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5.3.1 Setup

The experiment is run with k ∈ {−2,−1, 0, 0.5, 1, 2, 3, 4}. For every run, a plot with the
found corner points as well as the number of correct detected corner points is generated
from which the best factor k for that specific image is inferred.

The dataset for this task consists of four different views (seen in Figure A.6).
The used images for this task contain four different settings. A simple top-down puzzle-
board view, a partially occluded top-down puzzleboard view, a view with the puzzleboard
and its surroundings and a view taken at a steeper angle, again mainly the puzzleboard
in view.

5.3.2 Results

Image k No. detected corners % correct corners
Top Down k = 0.5, k = 1 368 100%

Partially Occluded k = 0.5, k = 1 320 100%
Angled k = 0.5 97 100%

With Environment k = 2 379 97.01%

Table 5.1: Best Factor Candidates for Different Image Scenarios

For the top-down, angled and partially occluded views, highest numbers of correctly de-
tected corners are achieved when setting k = 0.5, as can be seen in Figure A.8, Figure A.9
and Figure A.10. Opposingly, the view with environment (Figure A.11) still has a lot of
outliers, when k = 0.5 is chosen and performs best, when k = 2 is set.

Since, most of the views perform best with k = 0.5 and the view with environment still
detects all puzzleboard corners with k = 0.5, k = 0.5 should be chosen for the Hessian
trace factor to achieve good results in all scenarios.

5.4 Edge Weight Punishment for Incorrect Edges

This experiment aims to determine the appropriate factor for penalizing incorrect edges in
edge weighting. The goal is to adjust the weights in such a way that, despite the inclusion
of these penalized edges, the algorithm still yields a correct coordinate system.
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5.4.1 Setup

For this experiment three different images have been tested for coordinate consistency
after constructing the MST with different weight punishments for edges that yield dif-
ferent gray scale values for their first third compared to their last third. When an edge
is determined to be an incorrect edge, the penalty is the multiplication of its weight
(Euclidean distance) by a factor p, chosen as p ∈ {1, 2, 3, 4}. Note, that p = 1 is the
same as no punishment for the incorrect edge, since its weight will be multiplied by 1.
The used images can be seen in Figure A.7.

5.4.2 Results

Image Reached Coordinate Consistency?
p = 1 p = 2 p = 3 p = 4

Fisheye Image No Yes Yes Yes
Angled View No Yes Yes Yes

Angled View 2 No Yes Yes Yes

Table 5.2: Different factors p for an incorrect edge’s penalty and the corresponding grid
construction algorithm’s success in reaching coordinate consistency

As seen in Table 5.4.2, as little as a punishment of doubling the edge weight is suitable
to eliminate inconsistent coordinate systems.
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6 Evaluation

In this chapter, the built grid construction algorithm is evaluated based on the goals of
this work.

Firstly, it is tested on its robustness of the viewing angle to the puzzleboard. Secondly, its
performance on a set of distorted fisheye images is evaluated. Thirdly, its performance on
partially occluded images is evaluated and finally its runtime compared to the algorithm
provided in reference [12] with an opensource C++ reimplementation is evaluated.

6.1 Performance on Viewing Angles

For the performance of the algorithm on viewing angles, a top down image is used and
synthetically tilted, using Photoshop1. The top-down image is recorded in an angle close
to 90° from the camera to the puzzleboard. It is tilted in 10° steps, yielding viewing
angles for 90°, 80°, 70°, 60°, 50°, 40°, 30° and 20° respectively.

For these viewing angles, the algorithm is executed and its coordinate consistency is
evaluated.

First, it is checked if all the coordinates are consistent and the corners are indexed
correctly, in relation to each other.

Second, if not all coordinates are consistent, it is manually counted, how many coordi-
nates do not fit into the constructed grid.

1https://www.adobe.com/products/photoshop.html
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6.1.1 Results

As seen in Table 6.1.1, the total coordinate consistency is last reached at 50°. For 40°,
however, there are only 6.82% wrongly indexed coordinates. For 30° and 20°, high rates
of wrongly indexed coordinates are reached. The detected grids with their coordinates
can be seen in Figure A.16.

Figure 6.1: Suspected Creation of Mirrored Coordinate Systems for Narrow Viewing An-
gles. (40° in This Example)

One suspected reason for losing the coordinate consistency at 40° is the choice of direction
for the first appended neighbor to a node: Using the absolute x and y image positions
for guessing a node’s direction relatively to its predecessor it is appended to, can lead to
mirroring coordinate systems being constructed. This suspected behavior is illustrated
in Figure 6.1: The left and right coordinate systems are consistent for the y-axis but
mirrored for the x-axis due to both of its north facing neighbors being falsely chosen as
x-direction neighbors. The false choice happens because the y distances compared to x
distances in image coordinates are lower for corner points in the distance.

Since the algorithm only handles rotation but not mirroring of two coordinate systems
in the merging process, this will continue as an erroneous coordinate branch of the entire
coordinate system.
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Viewing Angle No. Indexed Corners Wrong Coords
90° 88 of 88 0%
80° 88 of 88 0%
70° 88 of 88 0%
60° 88 of 88 0%
50° 88 of 88 0%
40° 88 of 88 6.82%
30° 68 of 88 52.94%
20° 12 of 88 41.67%

Table 6.1: Viewing Angle Comparison

Recalling Figure 4.4, if the north neighbor is connected first, it will align with the positive
x direction. However, when compared to the right side of the board, a similar behavior
would occur, but it would result in a negative x-direction alignment. This ultimately
leads to the creation of mirrored coordinate systems, where one system requires the
mirroring of x-values to maintain coherence with the other system.

Consequently, this algorithm is fully suitable for viewing angles between 90° and 50°. It
is expected, that this ratio can be further improved by providing a handling for mirrored
coordinate systems.

6.2 Performance for Highly Distorted Images

For this section, four highly distorted randomly picked images, taken from the deltille
detector dataset2 found on GitHub, are used to run the algorithm on. Again, it is checked
if coordinate consistency is reached and how many coordinates have been detected.

6.2.1 Results

The resulting coordinate systems are illustrated in Figure A.13. In Table 6.2.1 the number
of indexed corners and the percentage of these holding faulty coordinates is evaluated.
Resulting from Table 6.2.1, the algorithm works well for many distorted images. In image
(b) (Figure A.13b), the outlier detection leads to disjoint coordinate systems, where they
rather should be merged, eventually yielding a smaller largest tree compared to the other
images evaluated.

2https://github.com/deltille/dataset/tree/master
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Image No. Indexed Corners Wrong Coords
(a) 80 of 88 0%
(b) 29 of 88 0%
(c) 77 of 88 0%
(d) 74 of 88 0%

Table 6.2: Evaluation of Distorted Image Performance

However, as none of the detected coordinate systems is faulty in its coordinate consis-
tency, the algorithm is suitable for highly distorted images, as those taken by a fisheye
lens.

6.3 Performance on Partially Occluded Images

One of the goals was to develop an algorithm suitable for partially occluded images.
This section tests the algorithm on various partially occluded puzzleboard patterns. It
is checked if all visible corner candidates are indexed consistently.

6.3.1 Setup

The images used for this evaluation can be found in Figure A.14. For image Figure A.14
(d), extra black circles have been put on the image to further occlude parts of the board.

6.3.2 Results

The resulting coordinates can be seen in Figure A.15.

Image Percentage Correctly Indexed Visible Coordinates
(a) 100%
(b) 100%
(c) 100%
(d) 100%
(e) 100%

Table 6.3: Percentage correctly indexed coordinates of those visible
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6 Evaluation

In Table 6.3.2, it can be seen that the algorithm performs well under partial occlusion.
Even in a case where multiple areas are occluded (seen in image (d)), it is able to correctly
index all corners.

6.4 Runtime Performance compared to Geiger et al.
Algorithm

In this section, the runtime performance of the algorithm employed in this work compared
to an open source C++ implementation of the algorithm introduced in reference [12] is
evaluated.

6.4.1 Setup

Notably, these runtime results have to be handled with care, since this is not the original
implementation supplied by Geiger et al.[12]. The differences in implementation details
could potentially influence the performance metrics and the generalizability of the test
outcomes. An implementation of the algorithm employed in reference [12] found on
github3, is used in this thesis to execute runtime tests.

The before mentioned C++ implementation prints debug information on runtime for
finding the corners and finding the boards from these given corners. This debug infor-
mation is used as the measurement for that algorithm.

For the algorithm in this work (written in python), python’s time.time()4 call is used
before the grid construction commences, and after the grid construction is done. The
difference of end time to start time is calculated and used as the runtime measurement.

Both algorithms are compared on the simple top-down views with different numbers of
inner corners, as described in chapter 5.
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6 Evaluation

Figure 6.2: Runtime Comparison

Inner Corners Visible Runtime Geiger et al. This Algorithm
88 3.275 ms 32.423 ms
368 32.638 ms 142.322 ms
3204 4123.496 ms 1419.17 ms
3744 6435.432 ms 1654.045 ms

Table 6.4: Runtime Comparison

6.4.2 Results

Seen in Table 6.4.2 the runtime of the “libcbdetect” open source implementation is faster
for patterns with fewer corners.

However, it can be seen in Figure 6.2, that the runtime grows much faster for the open
source implementation compared to the algorithm in this thesis, when the number of
corners grows.
Note that the algorithm in this work could even further benefit from a conversion into
C++ code.

All in all, it is shown that the algorithm in this work is a fast implementation, even for
patterns with many corner candidates compared to the open source implementation of
Geiger et al.[12] Algorithm5.

3https://github.com/ftdlyc/libcbdetect
4https://docs.python.org/3/library/time.html
5https://github.com/ftdlyc/libcbdetect
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7 Conclusion

In this thesis, a robust automatic grid construction from the puzzleboard calibration
pattern has been developed. The initial corner detection is an adapted version of the
Hessian detector introduced by Liu et al.[21]. Next, a grid construction from the detected
set of corner points was developed, with evaluated robustness against distortion, different
viewing angles and partial occlusion.

The corner detection employed in reference [21] has been adapted by adding the Hessian
trace multiplied by the factor k to its response. The most suitable factor has been
chosen to be k = 0.5, by running the corner algorithm for a hand-picked set of images
and comparing the number of correctly detected puzzleboard corners versus corners not
part of a calibration pattern.

For the grid construction algorithm based on kruskal’s minimum spanning tree algorithm,
a simple penalizing system for faulty edges between two corner candidates has been
developed. It is based on dynamically choosing a threshold for the first third and last
third of an edge candidate. This is done by sampling 15 evenly spaced points on the edge
and comparing the first 5 and last 5 based on their average greyscale value compared to
the average of the 15 sampled points.

Experiments on runtime performance comparison have shown the runtime of the grid
construction yielding better results for higher numbers of detected corner candidates com-
pared to the open source C++ implementation of Geiger et al. algorithm on github1.

Finally, it has been evaluated that the developed algorithm is suitable for a variety of
cases. Viewing angles up to 50°, distorted fisheye images as found in the deltille dataset2,
and partially occluded images are suitable candidates for this algorithm to work on.
Notably, it is assumed that an additional mirroring of coordinate systems to the already

1https://github.com/ftdlyc/libcbdetect
2https://github.com/deltille/dataset/tree/master
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7 Conclusion

used rotation in the process of merging two disjointed trees will allow the algorithm to
work for even steeper angles.

7.1 Outlook

The algorithm developed in this thesis is already suitable for a lot of challenging scenarios
and yields robust results. Still, there are areas for further improvements. This section
will provide ideas for improvements to the algorithm.

7.1.1 Runtime

As already seen in chapter 6, the algorithm yields good results for the task of grid con-
struction. Nevertheless, the programming language of choice for this thesis was python.
It was ideal for plotting purposes and object-oriented programming for an easier read-
ability. However, this code has not been fully optimized. Translating this algorithm
into a language like Rust, Go, C or C++ will most likely be beneficial for even lower
runtimes.

7.1.2 Viewing Angle Robustness

In chapter 6, it has been shown that the minimum viewing angle for a correct grid con-
struction lies at 50 degrees. This could be further improved by adapting the algorithm’s
merging process and adding mirroring to the coordinate systems instead of only using
rotation.

7.1.3 Outlier Detection

The algorithm developed in this thesis uses a simple outlier detection. For some cases, this
still leads to faulty behavior and wrongly merged trees. In cases of overlapping calibration
patterns or calibration patterns in proximity, the sole usage of average weights will not
lead to disjoint trees.
Consequently, improving the outlier detection by taking more than average edge weights
into account could enable for even robuster results in constructing the grid.
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7 Conclusion

7.1.4 Edge Penalties

The penalty system for faulty edges is straightforward in this thesis. Even though yield-
ing good results with the determined constraints for many cases, it still leads to faulty
behavior in some cases. It has to be further analyzed to truly find the best case con-
straints for every situation. Additionally, further improvements could be tested: For
the task of edge decoding, only +x and +y neighbors are relevant. Therefore, a system
penalizing all other edges, which do not lie in +x or +y direction, to ultimately force
the creation of the minimum spanning tree, with mainly +x and +y edges, could be
tested.

7.1.5 Recovering the Position on the Puzzleboard

In chapter 4, the horizontal as well as vertical edges have been decoded. Taking any 3×3

window of vertical and horizontal edges could be used to gather the exact position of it on
the whole puzzleboard pattern. An example approach for it would be the convolution of
the vertical edges with the vertical DBT and the convolution of the horizontal edges with
the horizontal DBT. The position yielding the highest response from these convolutions
could be used to infer the position on the puzzleboard[25].
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Figure A.1: Flowchart showing the simple approach, to determine the direction of a newly
added node appended_node to node.
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Figure A.2: Flowchart of get_wanted_direction method.
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Figure A.3: Flowchart of adapted add_child() method
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(a) Consistent coordinates throughout sim-
ple synthetic image without rotation or
perspective

(b) Consistent coordinates throughout sim-
ple synthetic image with rotation but
without perspective

(c) Puzzleboard with perspective. Inconsistencies and errors with simple approach of coordinates.

Figure A.4: Coordinate allocation with simple approach
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Figure A.5: Adapted Merging Process. Puzzleboard with perspective no longer contains
inconsistencies or errors in coordinates.

(a) Top-Down view of medium-sized puzzle-
board (b) View with environment

(c) View with partial occlusion (d) Angled view

Figure A.6: The four different images used for the trace multiplication
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(a) (b) (c)

Figure A.7: The three different images used for the edge weighting.
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(a) k = -2; 333 Corners Detected (b) k = -1; 372 Corners Detected

(c) k = 0; 369 Corners Detected (d) k = 0.5; 368 Corners Detected

(e) k = 1; 368 Corners Detected (f) k = 2; 367 Corners Detected

(g) k = 3; 365 Corners Detected (h) k = 4; 363 Corners Detected

Figure A.8: Top-Down View: Plots of detected corners for different trace multiplication
values k
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(a) k = -2, 80 Corners Detected (b) k = -1, 93 Corners Detected

(c) k = 0, 110 Corners Detected (d) k = 0.5; 97 Corners Detected

(e) k = 1; 78 Corners Detected (f) k = 2; 61 Corners Detected

(g) k = 3; 58 Corners Detected (h) k = 4; 53 Corners Detected

Figure A.9: Plots of detected corners for different trace multiplication values k
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(a) k = -2; 306 Corners Detected (b) k = -1; 351 Corners Detected

(c) k = 0; 322 Corners Detected (d) k = 0.5; 320 Corners Detected

(e) k = 1; 320 Corners Detected (f) k = 2; 314 Corners Detected

(g) k = 3; 307 Corners Detected (h) k = 4; 298 Corners Detected

Figure A.10: Plots of detected corners for different trace multiplication values k
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(a) k = -2; 901 Corners Detected (b) k = -1; 946 Corners Detected

(c) k = 0; 406 Corners Detected (d) k = 0.5; 385 Corners Detected

(e) k = 1; 383 Corners Detected (f) k = 2; 379 Corners Detected

(g) k = 3; 374 Corners Detected (h) k = 4; 371 Corners Detected

Figure A.11: Plots of detected corners for different trace multiplication values k
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Figure A.12: Path compression algorithm for find operation in union find data structure.
(Taken from [23])

71



A Appendix

(a)

(b)
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(c)

(d)

Figure A.13: Evaluation Results for Fisheye Images. Left: All Detected Trees. Right:
Largest Tree
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(a) (b) (c)

(d) (e)

Figure A.14: Partially Occluded Boards Used for Evaluation
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(a) (b) (c)

(d) (e)

Figure A.15: Results of Partially Occluded Board Evaluation
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(a) 80 Degrees Viewing Angle

(b) 70 Degrees Viewing Angle

(c) 60 Degrees Viewing Angle

(d) 50 Degrees Viewing Angle
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(e) 40 Degrees Viewing Angle. 6 inconsistent Coordinates in the second last Column from the
left

(f) 30 Degrees Viewing Angle

(g) 20 Degrees Viewing Angle. Only a few corners have been indexed.

Figure A.16: Different Viewing Angles and the Corresponding Indexed Corners
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