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Abstract

This work describes the methodology and used data to analyze the effects of charging infrastructure on service depot of Battery
Electric Trucks (BETs), to quantify its potential flexibility and discuss pros and cons of Electric Vehicle Supply Equipment
(EVSE) with minimized charging power. The BET will be charged on their service depot during shift change, over night or other
off-duty periods. This leads to heavy load on the corresponding network infrastructure but also offers the opportunity to provide
flexibility for the energy system. Quantifying the load is done by analyzing existing BET data of uncontrolled and managed
charging operations and enriching it with scenario simulations. Real world data from heavy duty refuse collection vehicles as
well as logistic long-haul and short distance trucks is used. The analysis quantifies flexibility potentials of service depots, which
can be used to reduce the impact on infrastructure and to optimize charging costs. A short literature review is provided for
contextualization. The endeavors take place in a German city.

Acronyms

BET Battery Electric Truck
BEV Battery Electric Vehicle

CP Charging Point

DNO Distribution Network Operator

EV Electric Vehicle
EVSE Electric Vehicle Supply Equipment

MAC Media Access Control

RES Renewable Energy Source
RFID Radio-frequency Identification

SNH Stromnetz Hamburg
SoC State of Charge

V2G Vehicle to Grid

1 Introduction

In terms of transport, several ways are discussed to reduce
CO2-emissions or decarbonize completely. Gaete-Morales
et al. found that for decarbonising the road transport power
sector costs are the lowest for flexible charged Battery Elec-
tric Truck (BET) and Vehicle to Grid (V2G) compared with
e-fuels and hydrogen [4]. Transport trucks are predominantly
used commercially and achieve high mileages and higher oper-
ation times in relation with passenger vehicles. However, they
still have long down times depending on the utilisation profile
[12]. Recharging is possible along the route, at the destination

or at the depot. These charging locations have different charac-
teristics from a grid perspective. In this work, the role of depot
charging of BETs during the off-duty periods in depots regard-
ing grid impact and flexibility is considered. A literature review
in 2019 accomplished by Kluschke et al. shows that the impact
on infrastructure or the energy system of BETs are not consid-
ered by the majority of the reviewed literature [9]. Since then,
system integration and flexibility of Battery Electric Vehicle
(BEV) and BET have gained attention.

Hertlein et al. discuss the challenges posed by the increas-
ing demand for charging Electric Vehicle (EV) on the dis-
tribution grid level. They emphasize the need for flexibility
and control on the consumption side to align power demand
with supply-dependent feed-in, and present a cluster-based and
incentive-oriented energy management system to achieve the
flexibilization of grid usage necessary for integrating elec-
tric vehicles into the power grid. Nevertheless, BET were not
within the scope of their investigation. [7]

However, Ruppert et al. find that integrating distributed
flexibilities leads to a significant increase in the security of
supply and a reduction in grid congestion, with the overall
effect on generation adjustment being relatively small. Ad-
ditionally, the comparison of results between AC and DC
formulations shows significant differences in individual cases,
with the AC approach generally requiring lower adjustments
when considering grid losses and suitable generation locations.
[11]

Gonzalez Venegas et al. underscore EVs’ potential to offer
Distribution Network Operators (DNOs) a range of services
such as investment deferral, congestion management, voltage
regulation, and backup power. While the technical feasibility
of these services has been established, widespread adoption is
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hindered by the limited availability of bidirectional chargers,
reactive power control technologies, and communication pro-
tocols necessary to fully leverage EV flexibility. BETs were
not in their scope. [6]

While Hertlein et al. emphasize that flexibility is fundamen-
tally necessary for the integration of EV into the energy system
and Gonzalez Venegas et al. point out the ability of BEV to
provide system services, Will and Ocker underline the ability
of BET to provide flexibilities that the grid will need in the fu-
ture. They state that TenneT, a German Transmission System
Operator, awaits the need for flexibility for power balancing
to grow by up to 3 GW and for congestion management of up
to 9 GW in Germany by 2030. Will and Ocker find, that up to
23 GW of down-regulating flexibility potential can be provided
by trucks and buses combined. This results in revenues which
contribute to reduce operational costs for electrified heavy-duty
vehicle fleets. [13]

Barthel et al. highlight the distinct characteristics of a small
logistics fleet, noting its significantly longer average plug-in
duration and charged energy quantity compared to other fleets,
alongside a low dispersion in charging events. Moreover, anal-
yses of idle times and shift potential offer valuable insights
across the three vehicle fleets mentioned, with particular em-
phasis on the logistics fleet’s ability to meet legal requirements,
thus enabling the exploitation of flexibility as needed. [1]

Fischer and Rudion present a method devised to assess
flexibility potential using synthetically generated EV charging
profiles, factoring in individual charging targets and flexibility
request windows. Introducing the concept of a virtual charg-
ing management system, it aims to fulfill each EV’s charging
objectives while accommodating flexibility requests, although
the imposition of this constraint on flexibility ultimately dimin-
ishes the overall flexibility potential. They focused on BEV.
[3]

Providing flexibility needs the ability to shift loads over
time and therefore needs Electric Vehicle Supply Equipment
(EVSE) that can provide multiple times the minimal necessary
charging power to fully charge the BET. From an operator per-
spective, high-power EVSE is more expensive with less to none
benefits regarding operations and costs. Borlaug et al. mention
in their conclusion that minimal charging power and flexibility
are contrary to each other and advantages and disadvantages
should be subject to further research. However, flexibility was
not the subject of the analysis. [2]

Jahic et al. show the quantification of flexibility and its ben-
efits for the grid using depot charging of electrified buses.
They precisely define the various influences on the flexibility
of buses. [8]
The study presented here builds on the described work.

2 Objectives

The aim of endeavours described here is to make suggestions
how to build electrified service depots with a minimum of grid
expansion. Therefore, the expected impact on the distribution
grid of service depots has to be analysed and possible flex-
ibilities identified. The flexibilities can be used to influence

and reduce the impact on distribution grids. With the analy-
ses made, grid operators can make suggestions or guidelines
for service depots to maximize possible electrification with
minimum grid expansion. BET fleet operators can use the flexi-
bility of the fleet to reduce charging costs. With the assumption
that Renewable Energy Source (RES) will be the least expen-
sive energy source in near future, the considered goal for fleet
operators is the optimization of RES rate of charged energy.
However, operating schedule optimization are not in scope.
Flexibility estimation is made with service schedules “as is”.

Supplemented by additional BET joining the fleet from
2024, the fleet is mapped in simulations. The simulations
predict the behaviour of growing fleets and fleets of logis-
tics companies. Making these steps reproducible for further
BET fleets is an objective as well. This work describes the
methodology to archive this objectives.

3 Methodology

The methodology to reach the objectives is separated in the
scopes Depot and System. Each scope contains empiric data,
process elements and steps, which are visualized in Figure 1.
Models of BET, grid and EVSE are abstracted and validated
based on real world data about these entities. The data basis is
described in Section 3.1 and models in Sections 3.2.1 and 3.2.2.
Operational use cases are abstracted from real world usage
of the BET. Models and use cases are combined to scenarios
which then are simulated and evaluated.

In the system scope, the grid model is combined with esti-
mated and real load scenarios. The results of the depot charging
simulations are hand over to the power flow simulation as load
time series. As part of charging simulations respective power
flow simulations the models are used to compute potential
flexibilities and their possible advantages as well as grid im-
pact and its mitigation. Eventually, the scale up is made with
the findings of the simulations applied to regions with several
logistic hubs and depots for BET.

3.1 Empiric Data Basis

The data used in the here described method describes waste
collection vehicles, small and large road sweepers as well as
trucks used in freight logistics from 7.5 tons gross vehicle
weight rating. BET core data (i.e. battery capacity, maxi-
mum charging power AC/DC) are available through the vehicle
database in Stromnetz Hamburg (SNH) back-end system “eR-
ound”. All available data during charging is gathered by the
charging infrastructure not from the BET itself. Therefore,
charging power as time series with a resolution of two minutes
is available, demand data for routes and topology as well as bat-
tery specific data is not, except State of Charge (SoC) which is
available when BET is connected to a DC charging point. In all
other cases, if a fully charged battery is recognized, SoC is cal-
culated afterwards with the energy charged during the charging
process.

BET identification is made with Radio-frequency Identifica-
tion (RFID) cards or Media Access Control (MAC)-Address

2



Depot

operational
use cases

stationary battery
model

charging infra
model scenarios charging simulation

BET charging data

fleet model

Validation with
real world data

flex quantification

RES rate
optimization

Energy System

power flow
simulation

scale up
grid impact

on different voltage
levels

load scenarios

grid model

legend

empiric data

objectives

element

process step

Fig. 1: Elements and processes of the analysis

of the vehicles socket. This data is provided by “eRound”.
From early 2023 until mid 2024, historical data of one BET
is available. Data of up to 35 BET is joining during 2024 and
2025.

3.2 Charging Simulation and Synthetic Data

Simulations are written in python code and are computed with
at least three components:

• BET Models
• EVSE Models (optional)
• Scenario Handler
• Distribution Grid Model

Each existing or fictional BET is represented by a parametrised
instance of the BET model. Optionally models of EVSE can
be added. This is necessary if the maximum charging power is
limited by the EVSE instead of the BET or less charging points
than BET are available.

The instances of both are created by the Scenario Handler
which also handles further input parameters and constraints.
The Scenario Handler - the central simulation module - then
computes time series with power consumption which are hand
over to the grid model and power flow calculation. The flexibil-
ities of the BET charging process is computed by the Scenario
Handler as well. The process is shown in simplified form in
Figure 2. Each entity in the simulation computes its state and
state changes by itself and makes the results available for other
entities. This makes sure that the simulation is highly modular
and with decentralized calculations. RES rate is evaluated with
regional and national RES production data.

3.2.1 Model of BET: The BET are represented by a model writ-
ten in python code. The model reflects the behaviour when
a BET is connected to charging infrastructure, i.e. decision
whether to charge depending on the SoC. The energy demand

:Scenario Handler

initialize

:BET

initialize

new_timestep

:Grid

return

load time series

flexibility time series

Fig. 2: Simplified representation of interaction of simulation
components

is not calculated and is given as input parameter to the model.
Discharging (Vehicle to Grid) is not in scope.

On runtime the BET model receives timestamps as input.
The model then calculates its parameter changes from last
timestamp to the given one. Simulated parameters beside others
are shown in Table 1. These are made available for schedul-
ing several BET within the scenario simulation. A set of BET
(models) represents a fleet (model).

The rolling validation on real data ensures the result quality
of the analyses.

3.2.2 Model of EVSE: The EVSE model describes the avail-
ability of charging points and power constraints through sup-
ply equipment. The model contains maximum active charging
power per EVSE and connected Charging Point (CP). It bal-
ances the power of and over occupied CPs. When a BET
model in a simulation arrives at the depot, it is assigned to an
available CP. The EVSE model then determines the power for
the particular CP. EVSE model therefore acts as intermediate
and evaluates computed active charging power and limits it if
necessary.

3



Table 1 Parameters of BET model (selection)

Name Description Type Codomain

Specifying Parameters

max. charging power maximum permissible power to charge the BET float [0, inf)
capacity Energy capacity of the battery float [0, inf)
service schedule When the BET is connected to the charging point,

energy use when not connected
list[datetime],
list[float]

<ISO timestamps>,
[0, inf)

Input Parameters

timestamp The model calculates changes of all parameters
from the previous timestamp to the new one.

datetime (inf, inf)

Simulated Parameters

SoC SoC at end of time step float [0, 1]
charging power charging power at end of time step float [0, inf)
charging Whether charging at end of time step boolean {true, false}
connected Whether connected at end of time step boolean {true, false}

3.3 Flexibility Quantification

In the context of the energy market, flexibility describes the
possibility to shift load over time. Regarding BET the main de-
pendency is the connection to the charging infrastructure. Load
shifting can only be done, when the BET is plugged in and if
time of upcoming departure is known.

The role of flexibility in this analysis is minimizing neces-
sary grid expansion for depot charging in urban and suburban
grid topologies. This leans on findings of Will and Ocker which
state that “waste collection in urban environments [. . . ] [is a]
further prime use cases for electrification” [13, p. 4] and the
possible providable flexibility reaches from 4 GW up to 23 GW.

The flexibility is qualified with a flexibility frame and is vi-
sualized with a flexibility matrix (Equation 1 according to [8,
eq. 6]) and a graph according to Gerritsma et al. [5].

F =

 Pt0,cat0 . . . Pt,catn

...
. . .

...
Pt0+m,cat0 . . . Pt+m,catn

 (1)

with cat = td −∆tc,min − t [min]

where ∆tc,min =
∆SoC

P̄
[min]

cat describes the amount of time the flexible load could be
shifted ahead in minutes. ∆tc,min is minimum required charg-
ing time to fully charge, td is the time of next departure, t is
the time step in the simulation from initial time stamp (t0) over
the number of time steps in the simulation m, ∆SoC is the re-
maining energy to fully charge and P̄ is the mean maximum
charging power.

An example of a flexibility matrix graph is shown in Fig-
ure 3. The bars indicate at which time charging power is
demanded. Each BET is represented by a bar which stack when
occurring during the same time period. The colour indicates the
number of minutes (= category) the charging power could be

shifted to later time periods. Bars coloured red represents low
numbers of minutes and shades to blue the more minutes would
be available for shifting the load. The limitation for shifting is
the next time the BET leaves the depot. Flexibility matrix and
graph are subject to the assumption that the occurring load is
shifted unchanged. Additional flexibility can be achieved with
varying the charging power. A reduced charging power can lead
to more semi-charged BET with an overall maximum load con-
straint or few RES available. With a higher charging power, fast
charging BET can make full advantage of high RES availabil-
ity. Therefore, the amount of energy needed has to be taken into
account. This information is available in the flexibility frame.
The flexibility frame can be used to make the flexibility data
available in a structured form. It contains information about
energy demand, maximum power as well as earliest and lat-
est time to charge as shown in Table 2, where latest represents
the time where charging must be started to reach demanded
SoC until departure. Flexibility quantification is based on [5, 8]
and is accomplished by analysing real world data of an existing
BET fleet.

Table 2 Flexibility frame example

ID name energy power earliest latest
[kWh] [kW]

0 BET1 200 180 2023-01-01
16:00:00

2023-01-02
08:00:00

1 BET1 200 180 2023-01-02
16:00:00

2023-01-02
23:45:00

2 BET2 200 180 2023-01-01
16:00:00

2023-01-02
08:00:00

3 BET2 200 180 2023-01-02
16:00:00

2023-01-02
23:45:00
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Fig. 3: Example of a flexibility graph based on the flexibility
matrix (according to [5, 8])

3.4 Model of Electricity Grid and Power Flow Simulation

Grid impact is analysed considering data of the existing cor-
responding grid where the service depots are located at and
validated by IEEE standard grid models. However, the grid data
can not be published since its critical infrastructure. For pub-
lications and in terms of reproducibility standard grid models
from simbench [10] will be used. The depots are connected
on the 10 kV voltage level in urban grid topologies. With the
results of charging simulation, power flow simulations will re-
veal the impact of depot charging. As reference case, the BET
will be charged without any use of flexibility. The results of
the reference case are then the basis of optimizing the use of
flexibility.

3.5 Process

The simulation and its modules allow to build fleet models after
real world data or ramp-up scenarios. It gives the ability to sim-
ulate several use cases with the same or different fleet models,
combine it with models of charging infrastructure to scenarios
which than give detailed results and load time series. For each
BET an operation schedule can be defined as hard constraint.
The over-all maximum load can be limited and is satisfied by
shifting charging operations based on priorities of individual
BETs to make sure the most important BET are charged first
and power limits are not exceeded. The priority ψ is calculated
for each BET with Equation 2 where ψ is the charging prior-
ity as a fraction of the remaining time until departure which is
needed to charge the BET:

ψ =
∆tc,min

td − t
D : {t < td} W : {0 < ψ <∞} (2)

Both, input and output data are time series for each BET as
well as cumulated across all vehicles. Figure 4 shows a result
visualisation of an example simulation with 8 BETs. The three
shown graphs share an x-axis which represents the time. On top
is the over-all power consumption and accumulated energy de-
mand during the simulated time period. The red line indicates

Fig. 4: Visualisation of an example simulation with scheduled
charging process

the maximum available power on the grid connection point.
The example shown here includes a scheduler which makes
sure, that the available maximum power never is exceeded and
shifts charging operations if necessary.

The second and third graphs show how this was accom-
plished: The second graph shows the power consumption sep-
arated per BET. The graph at the bottom indicates whether the
BET is connected to an CP, whether its charging and in which
range its SoC is. It can be seen, that - in this example - shifting
charging operations was necessary to keep power consump-
tion below the limit: BET1 to 5 start their charging operations
not immediately when connected to a CP because the available
power is already fully occupied by BET6 to 8. Instead charging
starts as soon as BET6 to 8 are disconnected from the CPs (not
fully charged) and power is available again.

These results can be used for power flow analyses, flexibility
quantification and RES optimization. The results from power
flow simulations then can be used to modify and adapt the input
data for the fleet models to differ the simulated grid impact.

This process ensures a modular, branched analysis for charg-
ing simulation, RES optimization, flexibility quantification,
scale-up scenarios and power flow simulations, which can
easily be adapted to several use cases and objectives.

A brief validation between real charging processes and the
simulation was performed with data from March 2023. Energy
demand as well as departure and arrival information was given
as input for the simulation. In both cases 47 charging operations
was executed. Figure 5 shows the cumulated charged energy
over time for the simulation and the measured operation and its
deviations. The overall charged energy of the measured charg-
ing operations is 3,280 kWh and in the simulation 3,278 kWh.
It can be seen, that during charging operations deviations oc-
cur but disappear until the end of the charging operations. The
maximum deviation per time step amounts to 120 kWh. These
are caused by the differences in the charging behaviour and the
time resolution of the simulation: In this case, the time step size
in simulation is 15 minutes. An event with start time between
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quarter-hour-steps is performed at the approaching quarter of
an hour. For charging periods with duration of several hours,
this effect has no impact. Events with a duration of less than
an hour can have relatively bigger deviation when start time is
closer to the beginning of a quarter and the end time is closer
to the end of a quarter. Since this is only an issue when simu-
lating real events with random time stamps, a solution for this
is increasing the resolution and accept the performance drop
for the validations. Figure 5 shows, that over long periods the
deviation does not cumulate.

Fig. 5: Comparison of cumulated energy charged over time and
the Deviation between both

4 Discussion

The assessing process introduced here ensures a highly modu-
lar and flexible analysis of grid impact of BET depot charging.
It emphasizes incentives to optimize charging processes and
helps to evaluate advantages of high power charging equip-
ment. It closes the gap between fleet operation with its elec-
trification challenge [1, 7], flexibility identification [11] and
its usage and benefits for the system [6]. However, only ac-
tive power is considered by now. Adding reactive power to the
simulation is planed in the future as well as V2G models. With
considering V2G, more flexibility can be reached with depot
charging.

A brief validation based on charged energy over one month
shows a good coverage of the charging simulation of real charg-
ing processes. However, further validation with measured data
is needed to minimize deviations in every time step of the
simulation.

Concerning maximum available power at the grid connec-
tion, non-BET demands (i.e. office, IT, cantine etc.) have to be
considered as well. This relies on the availability of this data.
Modules to assess RES usage of own production are not yet
addressed but should be objective of further investigations.

Although the method aims to describe most cases of depot
charging, its flexibility and grid impact of BET, it is build with
and upon data of waste collection vehicles and road sweeper.
Further work is planed to verify it with other BET use cases
like freight logistics.

5 Conclusion and Outlook

The method described here makes it possible to simulate and
analyse both, the flexibility of depot charging of BET as well
as the possible advantage for the energy system. The process
is set up and validated with real data from a logistic com-
pany and a waste disposal company. This makes it possible to
run the analysis for different fleets and charging infrastructure.
With flexibility and grid impact analysed in this way, advan-
tages and drawbacks of EVSE designed to operate at minimal
necessary power levels can be discussed in terms of both grid
integration and truck operation. Further analyses are planned
with small mid and large sweeper and higher number of electric
waste collection vehicles as well as BET for logistic purposes
to refine the process. Further research is needed to connect the
results to several distribution grid topology as well as V2G
representation.

Results of using the shown method are introduced in further
studies.
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