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Kurzzusammenfassung

Viele Forschende verfolgen das Ziel, Diabetikern eine interventionsfreie Diabetes-
Therapie zu ermöglichen. In den letzten Jahren hat die Entwicklung einer technischen
künstlichen Bauchspeicheldrüse immer mehr an Bedeutung gewonnen. Fortschritte im
Verständnis von Diabetes und eine vollständige Überwachung des Blutzuckerspiegels tra-
gen wesentlich zum Fortschritt bei. Um die Entwicklung einer künstlichen Bauchspeichel-
drüse zu unterstützen, ist es notwendig, sich mit der Entwicklung eines Algorithmus zu
beschäftigen, der die Insulinabgabe in Abhängigkeit von den Stoffwechselfaktoren eines
Patienten steuert. In dieser Arbeit wird die Entwicklung und in silico Evaluation eines
Algorithmus zur Insulinabgabe auf Basis von Deep Q-Learning vorgestellt. Zunächst
wird ein PID Controller vorgestellt und evaluiert. Darauf folgend wird untersucht, wie
sich das Skalieren des Eingabevektors auf die Time-In-Range (TIR) eines simulierten
Patienten auswirkt. Zudem wird untersucht, ob die Verwendung von Insulin-On-Board
(IOB) als Parameter für die Insulinabgabe geeignet ist. Es wird auch evaluiert, wie unter-
schiedliche Konfigurationen des Action-Spaces und der Sequenzlänge die Time-In-Range
(TIR) der simulierten Patienten verbessern. Das Skalieren des Eingabevektors führt zu
einer Veränderung der Time-In-Range (TIR) von 52.24%±15.81 zu 50.62%±12.9. Unter
Einbezug von Insulin-On-Board (IOB) zeigen die Ergebnisse eine deutliche Verbesserung
der Time-In-Range (TIR) der simulierten Patienten von 50.62%±12.9 zu 57.71%±12.12.
Die Evaluation eines größeren Action-Spaces zeigt eine Reduktion der Standardabwe-
ichung der Time-In-Range (TIR) von 57.71%± 12.12 zu 57.57%± 7.18. Darüber hinaus
wird ein Ausblick gegeben, welche weiteren auf dieser Arbeit aufbauenden Forschungsak-
tivitäten zur kontinuierlichen Entwicklung einer künstlichen Bauchspeicheldrüse geplant
sind.
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Abstract

Many researchers are pursuing the goal of enabling intervention-free diabetes therapy
for diabetics. In recent years the development of a technical artificial pancreas has
become more and more important. Advances in understanding diabetes and a complete
monitoring of the blood sugar level contribute significantly to progress. To support the
development of an artificial pancreas it is necessary to deal with the development of
an algorithm that controls the insulin delivery depending on the metabolic factors of
a patient. In this thesis the development and in silico evaluation of an insulin delivery
algorithm based on Deep Q-Learning is presented. First, a PID controller is presented and
evaluated. Subsequently, it is investigated how scaling the input vector affects the Time-
In-Range (TIR) of a simulated patient. In addition, the suitability of using Insulin-On-
Board (IOB) as a parameter for insulin delivery is investigated. It will also be evaluated
how different configurations of action space and sequence length improve the Time-In-
Range (TIR) of simulated patients. Scaling the input vector leads to a change in Time-
In-Range (TIR) from 52.24% ± 15.81 to 50.62% ± 12.9. Including Insulin-On-Board
(IOB), results show a significant improvement in Time-In-Range (TIR) of simulated
patients from 50.62%±12.9 to 57.71%±12.12. Evaluation of a larger action space shows
a reduction of the standard deviation in Time-In-Range (TIR) from 57.71% ± 12.12 to
57.57%±7.18. Furthermore, an outlook is given on which further research activities based
on this work are planned for the continuous development of an artificial pancreas.
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1 Introduction

There are currently more than 422 million people suffering from diabetes worldwide
[101]. People suffering from diabetes have to plan and carry out the therapy of their
disease attentively and meticulously throughout their lives, which for many represents an
immense burden and reduction in the general quality of life [20]. It has been known since
1983 that long-term therapy-induced stress can lead to what is known as diabetes burnout
[42, 78]. This constant stress on a person with diabetes (sometimes called diabetes
distress) also increases the risk of developing depression [83]. A notable prevalence of
depressive symptoms (up to 30%) and major depression (11-13%) has been observed
in this context [8, 2]. Suffering from treatment-induced depression may, in turn, lead
to inconsistent compliance with diabetes therapy, creating a mutually dependent cycle
[32].

Fortunately, in the field of diabetes management, a number of technical innovations
have come on the scene in recent years. Although these innovations make it easier to
regulate the disease, many manual patient actions are still necessary to regulate the
disease. To enable diabetes therapy to be as intervention-free as possible more processes
need to be automated. The idea of developing an artificial pancreas that automates
the manual patient actions has existed since the 1960s. In recent years the idea of a
software-supported artificial pancreas has become increasingly popular [25, 75, 11].

1.1 Scope

The goal of this thesis is to answer whether Deep Q-Learning is suitable to solve the
insulin delivery control problem. It will be investigated whether the differences in the
metabolism of the patients are recognized, learned and answered adequately. Also, the
question whether regular eating behavior with high-carb meals and deviations from it
will be handled with an adequate control strategy will be answered. It should also be
investigated if an approach to be developed can prevent dangerous glycaemic events.

1



1 Introduction

Out of scope of this thesis is the development of an approach which is considered as a
medical device. The results of this work are therefore not intended to be used in the
context of or as a medical device and do not claim to fulfill medical regulations.

From these preliminary thoughts, the following specific research questions can be de-
rived:

RQ 1 How does a Deep Q-Learning approach needs to be designed to meet the require-
ments of good diabetes therapy solely through basal rate adjustment despite the
different metabolic factors of individual patients?

RQ 2 To what extent can a good diabetes therapy be ensured despite deviations from
regular eating patterns?

RQ 3 How can the approach act safely within predefined boundaries and prevent severe
hypoglycemia?

RQ 4 What is the impact of using Insulin-On-Board (IOB) as a factor of the algorithm
to be developed?

RQ 5 How effectively can the approach being developed handle high-carb meals?

In order to answer these questions adequately, the current state of research in the re-
search area of insulin delivery algorithms will first be investigated and the most relevant
approaches will be compared according to defined criteria. Subsequently, in silico experi-
ments will be designed and conducted with a Deep Q-Learning algorithm to be developed
using the UVa/Padova T1D simulator. The results will then be evaluated and discussed
to answer the presented research questions. In the end result, this thesis presents an
insulin delivery algorithm based on Deep Reinforcement Learning, which will contribute
to the advancement of technologies for the development of an artificial pancreas.

1.2 Outline

This thesis is organized as follows. Chapter 2 begins by explaining the basic principles
and terminology necessary for a fundamental understanding of this thesis. Chapter 3
deals with the current state of research. Chapter 4 discusses the eligible data resources
to conduct the experiments. Chapter 5 explains the experiment setup for the experiments
to be conducted. Chapter 6 presents the experiments in detail. In Chapter 7, the results

2



1 Introduction

obtained get evaluated and placed in the context of current research in comparison.
Chapter 8 briefly summarizes the results of the work and provides an outlook on the
further research steps planned to follow on this work.

3



2 Background

In order to fully understand the content of this thesis, a few basic terms will be clarified
in this chapter. First, the disease diabetes mellitus is described in its basic characteris-
tics. Here, the consequences of inadequate therapy and the most basic aids in modern
diabetes therapy are presented. Then the essential components of an Artificial Pancreas
System, their different characteristics and the benefits of such a system for the patient
are described. Next, the concept of reinforcement learning is explained and the potential
benefits for diabetes therapy are presented. In the last section, a few needed domain
specific terms will be clarified.

2.1 Diabetes mellitus

Diabetes is a chronic metabolic disease of the pancreas which, if not treated, leads to an
acute insulin deficiency in the body. It is divided into several types, each of which can
have different triggers. However, all types have in common that the glucose content of the
blood must be kept within a target range of 70 - 180 mg/dL. In type 1 diabetes the body’s
immune system destroys the beta cells responsible for the body’s insulin production [46].
As soon as they are no longer present, it is no longer possible to produce enough insulin
to utilize the carbohydrates absorbed. This insulin deficiency must be compensated by
a constant subcutaneous supply of insulin. However, a dosage of insulin that is too high
leads to hypoglycemia (concentration below 70 mg/dL), while a dosage that is too low can
lead to hyperglycemia (concentration above 180 mg/dL). The target range between 70
mg/dL and 180 mg/dL is also called euglycemic range. However, the term is not defined
in a standardized way and may be interpreted differently depending on the study [31]. A
longterm underdose means that the glucose in the blood can no longer be released into
the body’s cells and the body must access the body’s fat reserves as a source of energy.
In the long term, this leads to poisoning of the body with ketone bodies (ketoacidosis),
which can lead to coma and, in the worst case, death. A longterm wrong dosage with long

4



2 Background

periods of glucose concentration above 180 mg/dL can additionally trigger a number of
secondary diseases. These include diabetic retinopathy, kidney damage and circulatory
disorders [26].

Since the introduction of Continuous Glucose Measurement (CGM) systems, glucose
concentration can be continuously measured from the interstitial fluid at intervals of
typically 3-5 minutes and transmitted to a receiving device (such as a smartphone). This
development not only leads to a significant improvement in the therapy parameters of
a diabetic patient [38] but also enables a much deeper understanding of the disease,
as data is now collected at small regular intervals instead of just snapshots from blood
glucose measurements, as was previously common practice. This data can be used for
research purposes with the patient’s consent. However, the glucose concentration in the
interstitial fluid differs from the blood sugar concentration. It must be assumed that the
values measured with a CGM have an estimated time difference of about 4 to 26 minutes
to the data measured from the blood which should be considered when developing an
insulin delivery algorithm [72].

Another development heralding a new era in patient diabetes management was the first
official insulin pump Promedos from Siemens launched in 1981 [5]. By delivering small
amounts of insulin per hour (the so-called basalrate) it is possible to keep the glucose
concentration in the blood constant in the patient’s fasting state and to reduce the risk
of body poisoning caused by insulin deficiency (ketoacidosis) [76]. However, it is still
necessary to manually deliver a higher amount of insulin when taking in carbohydrates
(called bolus insulin) in order to compensate for the increase in blood sugar caused by
them.

2.2 Artificial Pancreas

A so-called Artificial Pancreas (sometimes referred to as loop system) consists of several
components with different functions. Typically, these components are an insulin pump,
a continuous glucose monitoring system, the patient themselves, and a feedback control
system that calculates and delivers the insulin to be delivered based on the patient
metabolic parameters measured by the sensor component (see Fig. 2.1) [86].

A distinction is made between a Closed Loop and a Hybrid Loop system. In a closed
loop system, blood glucose is completely regulated by the delivery of insulin (at higher

5





2 Background

problems with its formulation and can have a toxic effect in a patient’s body. Therefore,
glucagon needs to be further developed for safe use in bihormonal pumps [6].

From these preliminary considerations, it has been decided that this thesis will focus on
the development and evaluation of a monohormonal insulin delivery algorithm.

The research area of Artificial Pancreas is divided into different sub-disciplines, of which
five sub-disciplines relevant to this thesis are presented below:

1. Low Glucose Suspension,

2. Logic-based Control,

3. Proportional Integral Derivative Control,

4. Model-Predictive Control,

5. Machine-Learning based approaches [86].

2.2.1 Low Glucose Suspension

Probably the simplest Artificial Pancreas algorithms imaginable are those of the Low
Glucose Suspension (LGS) category. When leaving the euglycemic range, the insulin
supply is either stopped (if the glucose concentration is too low) and restarted when the
target value is reached or the desired target range is exceeded [86].

In the Predictive Low Glucose Suspension (PLGS) algorithms, the future glucose con-
centration is predicted to initiate the shutdown of insulin delivery before hypoglycemia
occurs [35].

2.2.2 Logic-based Control

A further class of Artificial Pancreas algorithms are the so-called Logic-based Control
algorithms. The most well-known controller of this class is the fuzzy controller. A fuzzy
controller is a controller that works with fuzzy process information [86].

The fundamental steps in a fuzzy controller include [84, 73]:

1. Input fuzzification,

7



2 Background

2. Fuzzy inference,

3. Output defuzzification.

2.2.3 Proportional Integral Derivative Control

A very common controller type in the context of Artificial Pancreas is the Proportional
Integral Derivative (PID) controller. It is a controller type from Control Theory that
works by computing the past-present-future error of an action in a control feedback prob-
lem [86]. In the context of Artificial Pancreas, insulin delivery is adjusted by assessing the
deviation from the target glucose level (the proportional component), the area under the
curve between the measured and target glucose concentrations (the integral component),
and the rate of change in the measured glucose concentration (the derivative component)
[95].

PID controllers are by far the most extensively researched control type in the context of
Artificial Pancreas [88].

2.2.4 Model Predictive Control

Another approach in the field of control engineering and the research area of Artificial
Pancreas is the so-calledModel-Predictive Control (MPC). Rather than an algorithm, it is
more of a general approach to solving control problems [13]. It is based on a discrete-time
dynamic model of the process to be controlled, which is used to predict future behavior
of a process as a function of input signals [87].

Model predictive control is also receiving much attention in the context of insulin delivery
algorithm development [31, 13].

2.3 Reinforcement Learning

A further class of control algorithms that is fundamentally important for this thesis is
Reinforcement Learning. Reinforcement Learning is a sub-discipline of Machine Learning,
which is a scientific discipline that allows computer systems to develop intelligent behavior
from empirically collected data. Its relevance to the medical field has grown rapidly in

8



2 Background

recent years and is attracting more and more attention in healthcare research [44]. Unlike
the disciplines Supervised Learning and Unsupervised Learning, the computer system
learns based on its own experience in a dynamic system. No detailed description of the
environment or labeled data is required. Reinforcement learning is especially suitable
for systems with inherent time delays. This makes reinforcement learning particularly
interesting for the use in the context of insulin delivery, since, as already described,
delays such as CGM delay and insulin pharmacodynamics have an impact on the success
of therapy [18]. Other advantages of reinforcement learning in this context are that
other data streams (such as other acquired sensor data from the patient) can be easily
added. Minimal assumptions are made about the structure of the underlying process,
which allows the algorithm to adapt to different metabolisms from different patients or
to changes in a patient’s metabolism over time. It also allows learning of regularities in
meal intake, which is important when developing an insulin delivery algorithm [37].

2.3.1 Markov Decision Process

To understand the fundamentals of reinforcement learning it is crucial to understand, that
it makes use of the formal definition of a Markov Decision Process (MDP). A Markov
Decision Process is a mathematical problem in which an agent’s benefit depends on a
sequence of decisions. A problem is considered as Markovian if it fulfills the so-called
Markov Property. In a simplified way, this means that the probability of a state transition
from state s to s′ depends only on its prior state s and not on any other previously seen
states [92].

Reinforcement learning problems are described as MDPs and operate in an environment
that is fully or only partially observable, depending on the problem. The states s of the
environment in general contain information about the problems environment.

In particular, the control problem of correct insulin delivery can be described as an infinite
Markov Decision Process in the form of a tuple of (S,A, T,R, γ). Since the metabolism
of a patient cannot be fully observed in all its parameters, the problem is considered
as partially observable. This implies that recurrent units should be used in the neural
network to be created [92].

One run of an algorithm is referred to as an episode, which, depending on the problem to
be solved, ends after a specified length (timesteps) or continues to run until a termination
criterion is met (usually the failure of the algorithm). Within an episode, the agent
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receives the state of the environment and executes an action a based on the interpretation
of the results. After executing the action, the agent receives a reward r, which can be
interpreted as an evaluation of the action. The goal of these algorithms is to maximize
cumulative rewards over time. It is important to note that the reward can be both
positive and negative to reward or penalize decisions [92].

To revisit the definition of MDP the set of states (S) is composed of relevant measured
values of the patient. Different experiments will be conducted with different amounts in
the state St, but what they all have in common is the glucose concentration G measured
at timestep t.

The set of actions (A) corresponds to the executable insulin delivery steps, while the
state transition function (T ) defines the probability of transitioning from state s to state
s′ when action a is executed while reward r is obtained.

To let the algorithm learn, the environment is first explored randomly. The randomness
(often called epsilon ε) is started at a start value, which after a certain specified function
runs against a fixed end value (close to 0). This behavior is called epsilon greedy and
causes the algorithm to try many possible actions at the beginning and learn from the
results [92]. The strategy learned over time is also called policy (π) [92].

In order to be able to evaluate whether a performed action was good or bad to achieve
the defined goal, the value must be defined. However, the action alone indicates noth-
ing about the value of the action - it also always depends on the state in which the
environment is present. This evaluation of the state-action pair is also called Q-Value
[92].

2.3.2 Q-Learning

In Q-Learning, the mapping of a state-action pair to a Q-Value takes place in the so-called
action-value-function, also called Q-function (see Eq. 2.1).

Qπ(s, a) = E

[ ∞∑
t′=t

γt
′−trt′ | st = s, at = a, π

]
. (2.1)

In Eq. 2.1, the Q-Value for a state-action pair is defined over the expected value of
the accumulated and discounted rewards when following policy π. The discount factor

10



2 Background

γ ∈ [0, 1] ensures that when the choice is less than 1, rewards far in the future are weighted
less than those immediately ahead. It is set relatively high in this context, because the
dynamics of insulin persists in the body for a relatively long period of time.

In order to be able to maximize the rewards signal over time, i.e. to calculate the optimal
Q-Value, the Bellman optimality equation is used (see Eq. 2.2).

Q∗(s, a) = Es′
[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
. (2.2)

The optimal Q-Value for the current state s is obtained here by selecting the action that
maximizes the expected reward with the optimal Q∗(s′, a′) in the next state s′. The
results get stored in a table called the Q-table [92].

In Deep Q-learning a neural network is used instead of the Q-table to approximate the
Q-Values.

2.4 Domain background

In order to understand the domain specific terms which are used in this thesis, some
domain background information will be explained in this section. For this purpose,
the concept of HbA1C and the concept of Time-In-Range are first explained and the
relevance for quality measurement in modern diabetes therapy is clarified. Furthermore,
the concepts of the Blood Glucose Risk Index, Control-Variability Grid Analysis, and the
pharmacodynamics of insulin are briefly described. The last section then presents the
most important factors of influence on a patient’s metabolic control and demonstrates
the importance of this information.

2.4.1 HbA1C

To answer the proposed research questions, it is necessary to define what constitutes a
good diabetes therapy. For this purpose, the so-called HbA1C is primarily used. The
term is composed of hemoglobin (the pigment of red blood cells) and A1C, a glucose-
binding protein chain. The percentage of bound glucose is usually determined by blood
sampling to assess the long-term effectiveness of diabetes therapy. Since red blood cells
are regularly produced in the spinal cord of the body, the HbA1C roughly reflects the

11



2 Background

metabolic state of a period of two to three months. The HbA1C is usually given as a
percentage, which in a healthy person is usually less than 6%. In untreated diabetes
mellitus, the HbA1C may be above 15%. In treated diabetes mellitus, the target HbA1C

which corresponds to a good diabetes therapy is 6-8% [57].

2.4.2 Time-In-Range

Another important metric in the evaluation of diabetes therapy is the so-called Time-In-
Range (TIR). This metric is used to evaluate both short-term and long-term metabolic
adjustment. It is usually expressed as a percentage and indicates the time period in
which the measured values are within the euglycemic range of 70-180 mg/dL [1].

The Time-Above-Range (TAR) describes the percentage of time the glucose concentration
has been above the euglycemic range, while the Time-Below-Range (TBR) describes the
percentage of time the glucose concentration has been below the euglycemic range [1].

It is possible to derive a rough HbA1C from the TIR. If a TIR of at least 50% is achieved,
the HbA1C is around 7%, which corresponds to the goal of a successful diabetes therapy
[21].

2.4.3 Blood Glucose Risk Index

The so-called Blood Glucose Risk Index (BGRI) is an index that describes the risk of a
measured glucose concentration. It was first described by Kovatchev et al. [50]. The
calculated risk index returns negative values at very low glucose concentrations while it
is correspondingly high at very high glucose concentrations. It is utilized to define the
two metrics described below.

The Low Blood Glucose Index (LBGI) and the High Blood Glucose Index (HBGI) are
glycaemic control markers which describe the average corresponding risk-function return
values over all glucose measurements x of size i. The function rl(xi) returns 0 for a
measured glucose value if the BGRI function is positive for this value or the calculated
negative value. For the function rh(xi) the same applies, except that this time only the
positive risk index values are returned. They are defined as Eq. 2.3 and Eq. 2.3 show.
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LBGI =
1

n

n∑
i=1

rl(xi) (2.3)

HBGI =
1

n

n∑
i=1

rh(xi) (2.4)

2.4.4 Control-Variability Grid Analysis

The Control-Variability Grid Analysis (CVGA) is a tool intended for quality measure-
ment of a closed-loop algorithm on a group of patients. It plots extreme variations in
glucose concentration over a given time period on a 3 × 3 risk matrix. Each patient is
located on the matrix using a data point [62]. It will be used during the evaluation of
the proposed approach.

2.4.5 Pharmacodynamics of insulin

To better understand why the development of insulin delivery algorithms is such a chal-
lenge, it is necessary to first look at the pharmacodynamics of insulin. Rapid-acting
insulins, such as those used in insulin pumps, usually reach their maximum effect after
90 minutes and often act in the body for between six and eight hours (see Fig. 2.2)
[12].

This is important to be aware of, because when calculating the amount of insulin to be
delivered, the amount of insulin that may still be effective in the body (also called insulin
on board) must be taken into account [12].

2.4.6 Factors of influence

Glucose levels can be affected by many different factors that are difficult to predict. The
most important and influential are the so-called MESS influencing factors. MESS stands
for Meals, Exercise, Stress and Sleep [24]. The ingested food has a different effect in every
body. The insulin sensitivity of a patient, for example, changes depending on the patient’s
weight or age. At a higher weight, more insulin is often needed for the same amount
of ingested carbohydrates than at a lower weight [24]. Meals remain one of the biggest
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Figure 2.2: Pharmacodynamic profiles for four different bolus magnitudes (0.1-0.4 U/kg)
of rapid-acting insulin [12].

challenges in the development of closed-loop algorithms [81]. But sports, stress and sleep
are also difficult to assess and have different effects on glucose concentration depending on
the patient [12]. One example is the so-called dawn phenomenon in which many patients
experience a rise in glucose levels in their sleep during the morning hours around 04:00
am. This reduction in insulin sensitivity is differently pronounced in patients [12].

It is therefore important to understand that diabetes is a very individual disease that also
requires an individual therapy and therefore an individual treatment in the algorithms
to be developed. These characteristics lead to the assumption that the problem of mul-
tifactorial insulin delivery can be considered as a reasonable candidate for reinforcement
learning.
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In order to understand the research area of insulin delivery algorithms, this chapter
will present relevant related approaches. In addition, in cases where the authors have
evaluated their approaches, their findings are also briefly presented here. The approaches
that are most comparable with each other are summarized in tabular form to allow
subsequent comparison of the presented approach in the research area.

The use of PID controllers is popular among various research groups in the Artificial
Pancreas research area [88, 99]. Many of these algorithms have already been evaluated
in clinical trials in patients [51, 85, 16, 23, 17, 58, 60, 59, 71].

A very well known PID controller is the controller presented by Steil et al. [89]. In this
approach, the authors evaluate the algorithm over about 30 hours in a clinical setting
with ten patients. They describe their results with a Time-In-Range (TIR) of 75%.
The approach does not use meal boluses and thus belongs to the closed-loop control
category.

Another closed-loop approach by Rossetti et al. [81] presents an algorithm based on a
PID controller. Their approach limits the Insulin-On-Board (IOB) amount with a sliding
mode reference conditioning (SMRC) procedure, which turns off the insulin delivery when
the IOB is too high [79]. The authors evaluate their algorithm in a clinical setting on 20
patients and achieve a Time-In-Range (TIR) of 78.8%. The Time-Below-Range (TBR)
is presented as 5.2%.

An approach developed by Bamgbose et al. [7] uses a system divided into two subsystems
that uses neural network-based glucose prediction to calculate the insulin to be delivered.
A proportional-integral controller is used here for the calculation of the insulin to be
delivered. The neural network was trained with data generated from a simulator called
AIDA [55]. The algorithm was evaluated on five virtual patients, however, no specific
results are presented in the paper.
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Another approach is presented by Sanz et al. [82]. The approach is based on a so-called
Disturbance Observer (DOB). The evaluation was done in two different models. In the
first model, a closed-loop deployment of the algorithm is evaluated, which means that
meal announcements are omitted as well. In the second model, meals are announced.
The evaluation was performed using the UVa/Padova T1D simulator. The results for the
closed-loop model are 80% Time-In-Range (TIR), while including meal announcements
a Time-In-Range (TIR) of 88% was achieved.

A well-known approach by Atlas et al. [4] based on fuzzy logic consists of two control
units, the Control to Range Module (CRM) and the Control to Target Module (CTM).
The CRM is designed to maintain the glucose concentration in the patient’s body within
the range of 80-120 mg/dL, while the CTM is designed to maintain the concentration at a
specified target value. The CRM receives the current glucose concentration, predictions
of future glucose concentrations, and past and future trends in glucose concentration.
The output of the CRM is a suggested change in basal rate as well as any insulin bolus
that may be needed. These two values are then transferred to the CTM, which outputs
the final insulin dose (divided into basal and bolus) with the inclusion of the Insulin-On-
Board (IOB) and meal recognition. The authors evaluated their algorithm in a clinical
setting on seven patients and achieved a Time-In-Range (TIR) of 73%. The Time-Above-
Range (TAR) is presented as 27% while the Time-Below-Range (TBR) is 0%.

Another controller that is also based on fuzzy logic is known as the FL controller. It was
developed by Mauseth et al [67, 68]. The control algorithm requires three inputs: current
blood glucose (mg/dL), rate of change of blood glucose (mg/dL/min), and acceleration
of blood glucose (mg/dL/min/min), while the output variable is the insulin microbolus
dose for each point of time. The recommended insulin dose is then multiplied by the
personalization factor to account for inter- and intrasubject variability. The algorithm
was evaluated in a clinical setting with seven patients and achieved a Time-In-Range
(TIR) of 76% over a 24-hour period. However, the Time-In-Range interval was defined
here as 70-200 mg/dL.

Another approach is presented by Cobelli et al. [96] and is based on a model predictive
control approach. The authors evaluate the algorithm on 100 simulated patients of the
original UVa/Padova T1D simulator. They achieve a Time-In-Range (TIR) of 83.06%.

Another approach is presented by Hovorka et al. [43] and is also based on a model
predictive control algorithm. The algorithm is evaluated in a clinical setting with ten
patients over a period of 8-10 hours, with glucose concentration measured intravenously
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every 15min. The authors obtained an average glucose concentration of 6.0 mmol/L
measured (equivalent to 108 mg/dL).

Reinforcement learning is also quickly gaining popularity in the context of insulin delivery
algorithms [94].

An approach by Zhu et al. [104] describes the use of Deep Reinforcement Learning based
on Deep Q-Learning. This approach calculates a basal rate factor that is offset against
a patient’s current basal rate to keep them in the euglycemic range. In addition to this,
meal boluses are delivered which are offset with variability. The results are evaluated with
the UVa/Padova T1D simulator using ten adolescents and ten adult simulated patients.
They use Time-In-Range (TIR), Time-Above-Range (TAR), Time-Below-Range (TBR),
and Blood Glucose Risk Index (BGRI) as evaluation metrics. A Time-In-Range (TIR) of
80.94%±7.00 is obtained in the simulated patient base of ten adults and a Time-In-Range
(TIR) of 65.85%± 16.30 is obtained in the patient base of ten adolescents.

Another reinforcement learning approach is presented by Lee et al. [53]. This approach is
based on an actor-critic model. Here an approach is presented that completely omits meal
announcements and thus belongs to the closed-loop category. It was evaluated on the
UVa/Padova T1D simulator, using ten adult and ten adolescent patients. Here, Lee et
al. obtain an average glucose concentration of 124.72±7.02 mg/dL and a Time-In-Range
(TIR) of 89.56%± 4.37.

In another approach by Fox et al. [37, 36] an algorithm based on Deep Q-Learning is de-
veloped. The algorithm is evaluated on the UVa/Padova T1D simulator. Unfortunately,
however, the authors do not present concrete results with which a comparison could be
made.

Another approach is presented by Yamagata et al. [103]. Here, a so-called Model-
Based Reinforcement Learning approach is presented that combines a Model Predictive
Controller approach with reinforcement learning. The approach is evaluated with the
UVa/Padova T1D simulator utilizing three adults, three adolescents, and three children.
They evaluate their approach using Time-In-Range (TIR). Here, they report the results
of the nine patients evaluated individually. They achieve a TIR of 59.6% in child#1, a
TIR of 55.3% in child#2, and a TIR of 45.1% in child#3. The adolescents achieve a
TIR of 100.0% in adolescent#1, a TIR of n/a in adolescent#2, and a TIR of 66.1% in
adolescent#3. Adults achieve a TIR of 56.8% in adult#1, a TIR of 73.3% in adult#2,
and a TIR of 68.8% in adult#3.
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Authors Time-In-Range (%) Method Evaluation method
Sun et al. [90] 89.9± 8.7 Deep RL UVa/Padova
Lee et al. [53] 89.56± 4.37 Deep RL UVa/Padova
Sanz et al. [82] 80.0 DOB UVa/Padova
Rossetti et al. [81] 78.8 PID Clinical study
Atlas et al. [4] 73.0 Fuzzy logic Clinical study

Table 3.1: Comparable approaches.

Another approach proposed is presented by Sun et al. [90]. This approach is based on
an actor-critic approach (deep reinforcement learning). It is evaluated using the official
UVa/Padova T1D simulator, using 100 simulated patients. They evaluate the quality
of their algorithm primarily with the Time-In-Range (TIR), the Low Blood Glycaemic
Index (LBGI) and the High Blood Glycaemic Index (HBGI). For this purpose, they
simulate a period of three months. They use four different scenarios in which the TIR
has been measured. The Time-In-Range obtained in the standard scenario is presented
as 89.9%± 8.7.

Another approach, developed by Ngo et al. [70] is based on an actor-critic (deep rein-
forcement learning) approach. Unfortunately, no concrete results are shared in the paper,
so it is not suitable for comparison.

An approach presented by El-Khatib et al. [33] describes an algorithm for closed-loop
control using a bihormonal system. The authors evaluate their algorithm in a clinical
setting on six patients over a 24-hour period, achieving an average glucose concentration
of 140 mg/dL. Since this is a bihormonal system, it is not considered further in the
comparison.

In Tab. 3.1 the results of some previous approaches are presented. These were selected
based on whether evaluation results have been collected and whether they are compa-
rable to each other. These approaches can only be compared to a limited extent, since
all approaches have different experiment setups. In some cases, meal scenarios were
implemented fixed, implemented with variation, or in some cases omitted. Evaluation
parameters such as whether the UVa/Padova T1D simulator was used or if it was eval-
uated in a clinical setting also differ. The approaches listed here are most similar to the
own experiment setup and therefore provide a basis for at least a rough comparison.
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At the beginning of the research activity, a fundamental question to be answered is which
data sources should be used for the training of the algorithm. Since reinforcement learning
is a continuous agent system, the data source must be suitable for it. Suitability is
composed of the fact that it either represents the metabolic state of a patient in real terms
or has been shown to simulate it correctly. Availability also is an important consideration,
as some data sources are not freely available. In this chapter, the data sources to be
considered for the algorithm to be developed are elaborated. For this purpose, existing
data from previous studies are first described. In the following, alternative data sources
are discussed and the UVa/Padova T1D simulator is presented in detail.

4.1 OpenAPS Data Commons Dataset

In previous unpublished work, a dataset has already been obtained from the OpenAPS
Data Commons program [56]. This data is subject to HIPAA privacy standards and is
permitted to be used for the purpose of testing insulin delivery. The data includes N=82
records each containing several years of glucose concentration measurements, insulin
deliveries, exercise activities, and therapy events such as carbohydrates added, infusion
set changes etc. In a previous unpublished project, the data has already been successfully
explored and first algorithms in the context of unannounced meal detection have been
performed.

The OpenAPS dataset is in principle a suitable data source, but the algorithm requires
a large number of primarily different metabolic situations that cannot be extracted from
the dataset with sufficient diversity. In addition, implementing existing data into a rein-
forcement learning context would be of unpredictable complexity, which could potentially
compromise the progress of the project. Therefore, the OpenAPS dataset is not consid-
ered further as a data source.
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4.2 UVa/Padova T1D Simulator

In order to find a suitable alternative for the OpenAPS data, extensive research was
conducted. The following two empirically collected data sources and two metabolism
simulators widely used in numerous papers were found [100]:

1. PIMA dataset [22, 3, 40],

2. Ohio T1DM dataset [66, 91, 65, 30],

3. AIDA simulator [80, 52, 7],

4. UVa/Padova T1D Simulator [104, 90, 53].

The PIMA dataset is a dataset that originated from the National Institute of Diabetes
and Digestive and Kidney Diseases (NIDDK). It contains metabolic information from 768
patients, which allows predictions to be made as to whether a patient has diabetes or not.
Only 268 patient records are classified as diabetic, while the other 500 patient records
are classified as non-diabetic [69]. Even though there is metabolic data available from
the 268 patients, as with the OpenAPS dataset, this dataset does not represent enough
diverse metabolic situations and the data contain a too low resolution of information.
Therefore, the data is not considered suitable for the intended use.

The Ohio T1DM dataset is a dataset created as part of the Blood Glucose Level Pre-
diction (BGLP) Challenge of Ohio University. It contains continuous glucose data and
other parameters such as meal intake and stress factors over eight weeks from 12 patients
[64]. Because access to the dataset is limited to the scope of the Blood Glucose Level
Prediction (BGLP) Challenge, the dataset is dropped from consideration.

The AIDA simulator is a freeware software developed by Lehmann et al. to simulate
the metabolism of a diabetic patient. He points out that this simulator is to be used for
educational purposes only and does not simulate accurately enough for research purposes
[55]. Therefore, it is eliminated from consideration.

The UVa/Padova T1D Simulator [63] was developed by researchers of the University of
Virginia and the University of Padova and is approved by the American Food and Drug
Administration (FDA) to sufficiently simulate the metabolic system of type 1 diabetic
patients. Previously, animal testing was used for this purpose. Several variable data sets
can be generated based on different insulin levels, blood glucose levels and carbohydrate
levels.
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Since the UVa/Padova T1D simulator has official FDA approval compared to the AIDA
simulator, it was decided to use the UVa/Padova T1D simulator for further development
and the experiments to be performed.

A written request was made to use the official implementation of the UVa/Padova T1D
simulator in the latest version S2013 for the purpose of this work. Unfortunately, the re-
quest was denied, which necessitated finding another implementation for this purpose.

In the course of further research, an open-source implementation of the UVa/Padova
T1D simulator in version S2008 called Simglucose attracted attention. It is used in
several research papers to simulate the patients metabolism [53, 77, 14, 98]. Simglucose
[102] was implemented in Python and provides a reduced choice of 30 virtual patients
(including ten adults, ten adolescents and ten children) in comparison to the original
implementation. The respective patients all have individual metabolic parameters, which
have been defined in Kovatchev et al. [49]. The differentiation into different age cohorts
is based on the observed assumption that patients in different age groups exhibit certain
metabolic peculiarities, such as children having a higher insulin sensitivity than adult
patients [24]. These differences are taken into account by the simulator used.

Due to the limitation of the UVa/Padova T1D Simulator version S2008 to the simulation
of insulin metabolism, only a mono-hormonal system will be developed and evaluated.

The different measurement frequencies of individual CGM systems from the interstitial
glucose concentration are also taken into account by Simglucose. It is possible to de-
termine the CGM system used for simulations. The following systems are available for
selection:

1. Dexcom (3min.),

2. Guardian RT (5min.),

3. Navigator (1min.).

It is also possible to choose between two different insulin pump systems. The following
systems are available for this purpose:

1. Insulet,

2. Cozmo.
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The difference between the two systems are the limits of the maximum amount of insulin
to be delivered in the form of a bolus or in the form of the basal rate. This must be taken
into account when selecting the permitted actions of the algorithm, otherwise insulin may
not be delivered when the algorithm actually intends to do so.

To illustrate how a simulation is performed in the UVa/Padova T1D simulator, two
example plots generated by the simulator are briefly described.

In Fig. 4.1 is an exemplary daily simulation course shown, which demonstrates the use
of the algorithm on the simulated patient adult#001 in the period of 24h (01 January to
02 January). The first graph from the top represents the blood and interstitial glucose
progression over 24h, while the blood glucose concentration is represented by the blue
line and the interstitial glucose concentration measured by the CGM is represented by
the orange line. The background color shows the gradation of the individual reward
limits. The green area represents the range of 90-110 mg/dL, the light red area displays
the range of 110-140 mg/dL and the dark red area displays the range of 0-90 mg/dL and
140-401 mg/dL. The second graph from the top represents the amounts of carbohydrate
supplied to the patient in grams per minute. The peaks show that punctual events took
place here. The third graph from the top shows the amount of insulin delivered in units
per minute, while the fourth graph from the top displays the patient’s risk index in terms
of the three previously described risk functions (Hypo Risk (LBGI), Hyper Risk (HBGI),
Blood Glucose Risk Index (BGRI)). The fifth graph from the top represents the Insulin-
On-Board (IOB) amount in units per minute. This figure indicates how much cumulative
insulin is estimated to be still acting in the patient’s body (see Pharmacodynamics of
insulin in Background chapter).

In Fig. 4.2, which shows the simulation results of the experiments on several patients,
the mean values of all measured parameters over a period of 24 h can be seen. In the
first graph (from top to bottom), a dark blue line indicates the average measured glucose
concentration in the blood. The bluish shaded area indicates the standard deviation of
± 1. The green dashed line indicates the lower limit of the euglycemic range (70 mg/dL),
while the red dashed line represents the upper limit of the euglycemic range (180 mg/dL).
The second graph from the top shows the average measured interstitial fluid glucose level.
This differs from the blood glucose level because the simulator includes a manufacturer-
related measurement error. The third graph (from top to bottom) shows the average
amount of carbohydrate consumed in grams per minute. This is colored in a blue tone
and scatters around the predefined meal scenario.
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Figure 4.1: Exemplary daily course of metabolic parameters of a simulated patient.

Figure 4.2: Exemplary simulation course (mean values over several simulated patients).
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In order to answer the proposed research questions adequately, experiments will be con-
ducted. For this purpose, this chapter describes the experimental setup for performing
the experiments. At first, the implemented Deep Q-Learning algorithm is described.
Then, in the second section, the meal scenario to be used is presented. In the next sec-
tion, the parameters used in the experiments are described. After that, the evaluation
metrics used are presented. In the last section it is briefly described which extensions
had to be implemented in the Simglucose simulator and which logging tool and logged
parameters were used for the experiment observation during the training process of the
underlying neural network.

5.1 Implementation details

It is necessary to first describe a few implementation details in order to fully understand
the experiments to be conducted.

The chosen UVa/Padova T1D simulator generates a glucose measurement every three
minutes, which is called observation ot in this context. In general after the observation
ot is received, an input vector will be prepared with additional information and an action
at is executed. The measurement frequency of three minutes was chosen because most
modern commercial CGM systems output a reading at this frequency. Furthermore, this
time period is common in current Artificial Pancreas systems [48].

The agent receives a multidimensional input vector D = {G;M} = [dt+1−L, ..., dt] ∈
R1×L which consists of the continuously measured glucose concentration (G) and the
supplied meals (M). The length L defines how long the measurement sequences are
chosen to be used for the algorithm in the training procedure and simulation procedure
(see Tab. 5.1).
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The algorithm to be developed should also handle ingested meals without delivered meal
boluses so no bolus calculator was used for the experiments. Thus, the experiment results
and the proposed algorithms are considered as closed-loop approaches.

If the measured glucose concentration is outside the interval of 30 mg/dL and 350 mg/dL,
the training run is aborted and restarted.

The algorithms training process is described in its essential steps in Alg. 1.

Algorithm 1 Implementation of Deep Q-Learning.
1: Input: the target network update period Tmain, exploration before learning exp,

training period Ttarget, training episodes Etrain.
2: Initialize DQNs with random weights θ1,θ2, replay memory B
3: for step t ∈ 1, 2, ...exp do
4: Choose action randomly, observe o′, obtain r, store (o, a, r, o′) into B
5: end for
6: for step t ∈ 1, 2, ...Etrain do
7: Sample action ε-greedy from DQN, observe o′, obtain r, store (o, a, r, o′) into B
8: if t mod Ttarget then
9: Sample a mini-batch uniformly from B and calculate loss

10: Perform a gradient descent to update θ1
11: end if
12: if t mod Tmain then
13: θ2 ← θ1
14: end if
15: end for

For the underlying units of the Deep Q-Networks, Long Short-Term Memory (LSTM)
units were chosen [41]. These are able to recognize and learn even long-term correlations
from the given input data. For the optimization of the learning rate the Adam optimizer
is used [47]. Furthermore, the Deep Q-Networks get trained with batches of size b as
shown in Tab. 5.1.

5.2 Meal scenario

To answer the research question of to what extent the algorithm can compensate for a
patient’s meals with the basal rate, a meal scenario must first be created. This scenario
should represent deviations in regular eating behavior in order to adequately represent a
patient’s daily routine.
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For this purpose, a meal scenario was chosen that provides a pattern of four meals per
day with varying meal sizes:

1. 7 am (70g),

2. 10 am (30g),

3. 2 pm (110g),

4. 9 pm (90g).

Times were set with a variability of one standard deviation of 60min. and a meal size
variability with a coefficient of variation of 10% to reflect the variation in eating behavior
through a patient’s daily life [104].

5.3 Parameter

For the first experiment, the hyper-parameters shown in Tab. 5.1 were used following
the previously evaluated parameters of Zhu et al. [104]. They serve as the basis for all
experiments, but are also adapted depending on the experiment.

Parameter Value
Exploration before learning 128
Target network update period Ttarget 100
Update greedy ε 0.5 → 0.01
Replay memory size 50000
Adam learning rate 1× 10−3

Number of timesteps L 1
Training episodes Etrain 1000
Discount factor γ 0.99
Number of layers 3
Dropout between layers 0.2
Number of hidden units 64
Batch size b 64

Table 5.1: List of hyperparameters used in the conducted experiments.

The following allowed actions were defined for the experiments:

A = [0 ∗BR, 0.5 ∗BR, 1 ∗BR, 1.5 ∗BR, 2 ∗BR, 3 ∗BR, 4 ∗BR].
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The basal rate BR is defined differently for each simulated patient and is already known
to the algorithm in advance. The actions were selected up to 400% of basal rate to be
able to handle larger amounts of added food.

To avoid unexpected rejections of the actions during training and evaluation of the algo-
rithm, the Cozmo pump is selected for both procedures. This allows a maximum basal
rate delivery of 35 U/hr compared to the Insulet pump, which allows a maximum basal
rate delivery of only 30 U/hr.

For the experiments, the reward function previously evaluated by Zhu et al. (see Eq.
5.1) was used [104]. It defines the reward r at time step t section-wise, depending on the
measured glucose concentration G at the next time step t+ 1.

rt =



1, 90 ≤ Gt+1 ≤ 140

0.1, 70 ≤ Gt+1 < 90 & 140 < Gt+1 ≤ 180

− 0.4− (Gt+1 − 180)/200, 180 < Gt+1 ≤ 300

− 0.6 + (Gt+1 − 70)/100, 30 ≤ Gt+1 < 70

− 1, else.

(5.1)

The algorithm receives a positive reward when it is in the euglycemic range and negative
rewards when it is outside of this range. A hypoglycemic glucose concentration is penal-
ized more severely than a hyperglycemic glucose concentration in this function because
hypoglycemias pose a more severe threat to metabolism than hyperglycemias, and these
can only be responded to with manual meal delivery [104].

As the list of used hyperparameters (see Tab. 5.1) show, the experiments were conducted
with a training phase of 1000 episodes, since the loss of the neural network converges
against 0 at that number of episodes.

For reproducibility of results, all random-producing code components were initialized
with a random seed of 42.

5.4 Evaluation metrics

In order to evaluate the developed algorithm according to the proposed research ques-
tions, relevant evaluation metrics must first be selected.
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The following metrics were selected based on Danne et al., Battelino et al., and Maahs
et al. [29, 9, 61]:

1. Time-In-Range (TIR),

2. Time-Below-Range (TBR),

3. Time-Above-Range (TAR),

4. Low Blood Glucose Risk Index (LBGI),

5. High Blood Glucose Risk Index (HBGI),

6. Blood Glucose Risk Index (BGRI).

As previously described the HbA1C is an indicator that can only describe if the long-term
therapy needs of a patient are met. It is therefore more suitable to evaluate the long-term
effect of the proposed insulin delivery algorithm in a clinical trial setting, but not the
simulation of a diabetic patient. It cannot represent acute glycemic abnormalities such
as hypoglycemia or hyperglycemia [9].

5.5 Simglucose extensions

In the course of the project, some changes and improvements also had to be made to the
implementation of the simulator. For this purpose, the simulator’s repository was loaded
directly into the project in order to modify it according to the project’s needs.

For some experiments additional simulation parameters were needed, which were miss-
ing in the original implementation. This refers especially to the implementation of the
Insulin-On-Board (IOB) calculation.

5.6 Logging

In order to be able to observe the progress of the training of the proposed Deep Q-
Learning algorithm, the tool Weights&Biases was chosen [15]. This tool allows com-
paratively simple logging of the most relevant parameters, logs of the achieved rewards,
Time-In-Range (TIR) and the agents performed actions.
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The Time-In-Range (TIR) did not provide enough information about a run, since it
depends on the number of timesteps achieved. It can happen that a TIR of 90% is
achieved but only one hour was simulated (i.e. low timesteps are logged). For this reason,
the measured Time-In-Range (TIR) was divided by the number of achieved timesteps of
a run. Another logged metric is the Quality, which is calculated by dividing the achieved
rewards of an episode by the achieved timesteps. It provided additional information
about the success of the conducted training run.

The average score over the most recent 100 episodes was also logged to monitor and
compare the trend during the training process.
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Following the experiment setup, this chapter describes the conducted experiments in
detail and presents them in tabular and graphical form. The results of the experiments
are evaluated and summarized in tabular form after the detailed description.

For each of the experiments, two additional plots were created to show the different
glucose ranges per patient and showing the risk assessment per patient represented in
a bar chart. Since these plots only differ in their type of representation from the plots
shown, they have been moved to the appendix. The results in the presented tables were
rounded to two decimal places.

6.1 PID controller

A simple PID controller was first implemented in order to be able to compare the algo-
rithm to be developed with at least one fully matching experimental setup.

It operates according to the scheme shown in Alg. 2.

Algorithm 2 Implementation of a simple PID Controller.
1: Input: the glucose concentration Gnow provided by the simulator, the target glucose

concentration Gtarget, the tuned P , I and D factors.
2: repeat
3: Obtain glucose concentration and store it in Gnow.
4: action = P ∗ (Gnow −Gtarget) + I ∗ integratedState+D ∗ (Gnow − previousBG)
5: previousBG = Gnow
6: integratedState = integratedState+ (Gnow −Gtarget)
7: until simulation over

The implemented controller was evaluated with the experiment setup presented in the
previous chapter, using the parameters shown in Tab. 6.1.
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Parameter Value
Tuning factor P 0.0001
Tuning factor I 0.00001
Tuning factor D 0.001
Target glucose Gtarget 120

Table 6.1: List of PID parameters.

As the simulation results (see Tab. 6.2) show, the mean Time-In-Range (TIR) across all
simulated adult patients is 46.84%± 13.29, while the mean Time-Above-Range (TAR) is
15.8%± 5.50 and the mean Time-Below-Range (TBR) is 37.36%± 14.15.

Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 51.98 8.32 39.71 37.19 1.68 38.87
adult#002 68.61 13.51 17.88 2.26 1.2 4.26
adult#003 40.75 21.21 38.05 20.82 7.03 27.85
adult#004 21.62 13.51 64.86 50.09 3.55 53.63
adult#005 40.75 8.73 50.52 20.91 2.29 23.2
adult#006 40.12 23.70 36.17 61.91 5.84 67.75
adult#007 40.96 12.47 46.57 16.13 3.35 19.47
adult#008 62.58 14.76 22.66 45.03 3.51 48.55
adult#009 46.99 20.58 32.43 13.45 3.82 17.27
adult#010 54.05 21.21 24.74 8.83 2.68 11.52

Table 6.2: Simulation performance of PID controller for adult population.

The glucose curve (see Fig. 6.1) shows, that the PID controller in the preprandial
phase (in the first six hours) is in the euglycemic range with a slight tendency towards
hypoglycemia. On the basis of the glucose concentration peaks, it can be deduced that
the PID controller responds to the first meal consumed with a slightly too high amount
of insulin and then delivers too much insulin for the second and third meal, so that the
patients experience severe hypoglycemia.

The CVGA (see Fig. 6.2) shows that the risk of 70% of all simulated patients is located
in one of the D fields and of 30% in the E field. It can be deduced that the extreme
glycemic deviation is in both the hyperglycemic and hypoglycemic directions.

This could result from the fact that the controller only responds directly to glucose
concentrations and has no knowledge of the amount of residual insulin already in the
body that is still acting (IOB). The problems could also possibly be solved by optimizing
the only roughly tuned PID controller variables reasonably, but within the scope of
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Figure 6.1: Simulation plot of the PID controller (mean values over adult population).

Figure 6.2: CVGA plot of the PID controller.

this thesis this is not in focus, since the PID controller is only intended to serve as a
comparative alternative.
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6.2 Baseline implementation

Now that the implemented PID controller has been evaluated, a first experiment with
the Deep Q-Learning implementation will be evaluated.

For this implementation, different configurations of the size of the neural network used
were tried. In order to evaluate which configuration is the most successful, the average
score of the last 100 episodes within the training phase is considered as a first indicator of
success. The results shown in Fig. 6.3 indicate that the 64 units x 3 layer configuration
is the most successful configuration in the last episode. Therefore, this configuration will
be used as a basis for the following experiments.

Figure 6.3: Comparison of different neural network configurations.

As the simulation results (see Tab. 6.3) show, the mean Time-In-Range (TIR) across all
simulated adult patients is 52.24%± 15.81, while the mean Time-Above-Range (TAR) is
46.22%± 18.37 and the mean Time-Below-Range (TBR) is 1.54%± 4.86.

The glucose curve is shown in Fig. 6.4. The results shown in Tab. 6.3 show that the
number of hypoglycemic episodes is very low. Only the patient adult#007 is 15.38%

below the euglycemic range. Furthermore, it shows that the span of the Time-In-Range
(TIR) is very high. The worst simulated patient has a TIR of 27.44%, while the best
simulated patient experiences a TIR of 70.89%.

As shown in the CVGA (see Fig. 6.5) the variability of the glucose concentration com-
pared to the previously evaluated PID controller slightly improved for a few patients.
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Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 53.43 46.57 0.00 0.0 10.74 10.74
adult#002 65.90 34.10 0.00 0.0 7.75 7.75
adult#003 57.17 42.83 0.00 0.002 12.96 12.97
adult#004 54.26 45.74 0.00 0.04 14.34 14.34
adult#005 36.59 63.41 0.00 0.0 18.17 18.17
adult#006 56.55 43.45 0.00 0.09 13.16 13.16
adult#007 70.89 13.72 15.38 1.49 1.81 1.81
adult#008 70.06 29.94 0.00 0.0 5.40 5.40
adult#009 27.44 72.56 0.00 0.0 27.94 27.94
adult#010 30.15 69.90 0.00 0.0 25.78 25.78

Table 6.3: Simulation performance of 64 units x 3 layer configuration for adult popula-
tion.

Figure 6.4: Simulation plot (mean values over adult population) of baseline implementa-
tion.

Only 20% of all simulated patients are in one of the D fields, while another 20% are in
the Upper-C field. An additional 10% of simulated patients are in the Upper-B field.

The high span of the TIR results could result from the fact that the algorithm has only
been trained on the patient adult#001 and thus the specific metabolic parameters of
this patient have been learned. It is possible that the range behaves similarly across all
further experiments. However, perhaps a stronger generalization can be obtained. Thus,
it will be important to observe how the span behaves in the further experiments.
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Figure 6.5: CVGA plot of baseline implementation.

6.3 Apply scaling

Since it generally has many advantages to scale the input data to a range between 0 and
1, an experiment will be performed in which the input data is scaled that way. For the
process of scaling, the Scikit-learn MinMax-Scaling of the form as shown in Eq. 6.1 was
chosen.

Xstd = (X −X.min(axis = 0))/(X.max(axis = 0)−X.min(axis = 0))

Xscaled = Xstd × (max−min) +min
(6.1)

The use of this scaling is based on the assumption of robustness to very small standard
deviations of features and preservation of zero entries in sparse data [74].

As the simulation results (see Tab. 6.4) show, the mean Time-In-Range (TIR) across all
simulated adult patients is 50.62%± 12.90, while the mean Time-Above-Range (TAR) is
15.55%± 11.32 and the mean Time-Below-Range (TBR) is 33.83%± 19.76.

The glucose concentration (see Fig. 6.6) tends to mild hypoglycemia already in the
preprandial phase (first six hours). The first meal at just before 6 am causes glucose
concentration to rise on average slightly above 180 mg/dL. The second meal allows the
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Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 62.79 9.56 27.65 3.73 1.08 4.81
adult#002 64.24 4.99 30.77 4.29 0.73 5.01
adult#003 38.88 21.0 40.12 20.47 1.87 22.34
adult#004 36.8 22.66 40.54 11.11 2.12 13.23
adult#005 62.99 23.70 13.31 1.27 4.02 5.28
adult#006 39.92 10.60 49.48 18.34 1.57 19.91
adult#007 34.72 2.70 62.58 32.58 0.0 32.58
adult#008 42.41 0.0 57.59 32.49 0.18 32.67
adult#009 61.75 31.19 7.07 0.17 6.64 6.82
adult#010 61.75 29.11 9.15 0.9 6.75 7.65

Table 6.4: Performance statistics of applied scaling experiment for adult population.

glucose concentration to remain in the euglycemic range. At the last two meals, the
glucose concentration rises to a mean of about 200-250 mg/dL. The postprandial phase
of the third meal takes place in the relatively strong hypoglycemic range.

Figure 6.6: Simulation plot (mean values over adult population) of applied scaling exper-
iment.

The CVGA (see Fig. 6.7) shows that 50% of all simulated patients are located in one of
the D fields and 40% even in the E field. Another 10% of the patients are in the Upper-C
field.
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Figure 6.7: CVGA plot of applied scaling experiment.

Compared to the evaluation of the previous implementation, the ingested meals are
intercepted much better, which means that the peak glucose concentrations are not as
high as in the previous approach. However, it can also be observed that the simulated
patients tend to have severe hypoglycemia (BG < 50) in the postprandial phases. This
can also be seen in Fig. A.6, where severe hypoglycemia accounts for the majority of
hypoglycemias in most patients.

This could result from the fact that the algorithm does not yet know how much insulin is
currently acting in the body. Including the Insulin-On-Board (IOB) as part of the input
vector could improve this situation. Whether this is the case will be investigated in a
follow-up experiment.

It also might be possible that the algorithm has already recognized the regularity of
the meal scenario and already increases the insulin supply before the presumed start of a
meal. In this way, it would tolerate hypoglycemia in order to keep the subsequent glucose
peaks low. Further observation is required to determine whether this effect continues to
occur and whether it can be avoided to prevent hypoglycemias.
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6.4 Using Insulin-On-Board (IOB)

A few research papers report that using Insulin-On-Board (IOB) as a factor to be con-
sidered yields better results in general obtained TIR [81]. Therefore, the following exper-
iments will evaluate the impact of IOB as an input factor for the presented algorithm.

For this purpose, a first simple modeling of the Insulin-On-Board is used, which is bilinear
in nature. In a follow-up experiment, the IOB calculation with exponential decay is
then evaluated. Both modelings were implemented according to the implementation of
OpenAPS [97]. The variable DIA (duration of insulin activity) specifies the maximum
duration of action of the insulin to be modeled in hours, while the peak specifies the
maximum time of action of the insulin since delivery of the insulin in minutes. The
bilinear model (see Fig. 6.8) can be perceived to consist of two simple linear functions, the
first of which peaks at the assumed maximum effect of the insulin used, and the second
of which peaks at the maximum duration of action of the insulin from the maximum
effect.

Figure 6.8: Bilinear vs. exponential IOB calculation [97].

The exponential model looks more like the shape of a downward opening parabola. This
corresponds more closely to the pharmacodynamics of fast-acting commercially available
insulins and therefore promises better simulation results. The amount of acting insulin
grows faster in the exponential model and flattens out differently than in the bilinear
model. Due to the different distribution, the amount of insulin acting at peak time is
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lower in the exponential model than in the bilinear model. However, the total amount
of acting insulin is the same for both models.

6.4.1 Bilinear model

In a first experiment, modeling of the IOB based on the bilinear model is used. This
allows a comparatively simple calculation of the Insulin-On-Board (IOB) (see Fig. 6.8).

As the simulation results (see Tab. 6.5) show, the mean Time-In-Range (TIR) across all
simulated adult patients is 48.02%± 27.95, while the mean Time-Above-Range (TAR) is
48.77%± 31.79 and the mean Time-Below-Range (TBR) is 3.20%± 6.98.

Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 49.9 50.10 0.0 0.0 24.29 24.29
adult#002 82.74 17.26 0.0 0.0 4.22 4.22
adult#003 25.78 74.22 0.0 0.0 104.52 104.52
adult#004 11.23 88.77 0.0 0.0 115.74 115.74
adult#005 35.14 64.86 0.0 0.0 30.8 30.8
adult#006 70.69 18.92 10.4 0.23 4.04 4.27
adult#007 74.43 4.78 20.79 2.83 1.04 3.88
adult#008 84.2 14.97 0.83 0.15 2.83 2.98
adult#009 27.65 72.35 0.0 0.0 36.7 36.7
adult#010 18.50 81.5 0.0 0.0 69.75 69.75

Table 6.5: Performance statistics of bilinear IOB modeling experiment for adult popula-
tion.

The glucose progression is shown in Fig. 6.9. The results are noticeably worse compared
to the simulation without including IOB as a factor. Especially the meals are not an-
swered correctly and let the average glucose concentration of the simulated patients rise
far into the hyperglycemic range (up to 600 mg/dL). Furthermore, the standard devia-
tion is very high, suggesting that a good generalization of the algorithm has not been
achieved.

In the CVGA (see Fig. 6.10), it shows that 20% of all simulated patients are in one of
the D fields, while another 20% are in one of the B fields.

This progression into the hyperglycemic range could be due, in part, to the simplicity of
the bilinear modeling of IOB. Therefore, a follow-up experiment will evaluate the use of
exponential IOB modeling.
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Figure 6.9: Simulation plot (mean values over adult population) of bilinear IOB experi-
ment.

Figure 6.10: CVGA plot of bilinear IOB experiment.

6.4.2 Exponential model

Since the initial modeling of the Insulin-On-Board (IOB) did not yield an improvement in
the control strategy, a more detailed modeled variant is now evaluated. For this purpose,
the IOB is now implemented with an exponential model (see Fig. 6.8). Since this model

40



6 Experiments

appears to provide a much more accurate representation of the pharmacodynamics of
insulin, a significant improvement in simulation results is suspected.

Before conducting the experiment the exponential model of the IOB requires two pa-
rameters. One is the peak, which is the assumed time of maximum effect of insulin in
the body, and the DIA, which is the assumed maximum duration of effect of insulin in
the body. A first experiment is performed with a DIA of three hours and a peak of 75
minutes.

As the simulation results (see Tab. 6.6) show, the mean Time-In-Range (TIR) across all
simulated adult patients is 57.71%± 12.12, while the mean Time-Above-Range (TAR) is
23.02%± 14.15 and the mean Time-Below-Range (TBR) is 19.27%± 18.08.

Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 70.06 19.13 10.81 0.76 2.32 3.08
adult#002 74.43 14.97 10.60 1.09 2.01 3.1
adult#003 44.49 24.32 31.19 10.03 2.66 12.69
adult#004 44.7 22.45 32.85 6.05 2.34 8.38
adult#005 66.53 33.47 0.0 0.07 8.4 8.47
adult#006 47.82 14.35 37.84 7.34 2.25 9.59
adult#007 46.36 2.29 51.35 12.95 0.0 12.95
adult#008 72.56 9.98 17.46 4.41 1.10 5.51
adult#009 53.22 46.15 0.62 0.01 11.74 11.75
adult#010 56.96 43.04 0.0 0.05 12.32 12.37

Table 6.6: Performance statistics of exponential IOB experiment for adult population.

The glucose curve (see Fig. 6.11) shows that the simulated patients are prone to hy-
poglycemia in the preprandial phase (first six hours) but are on average within the
euglycemic range at the lower edge (80 mg/dL). The first meal results in a peak glucose
concentration just above 200 mg/dL. After the first meal, patients fall into the euglycemic
range on average. The second meal barely changes this situation. The third meal causes
patients to rise to a mean glucose concentration of slightly less than 300 mg/dL. Post-
prandially, patients experience mild hypoglycemia on average after the third meal. The
fourth meal causes the glucose concentration to rise to a mean of slightly less than 250
mg/dL.

The CVGA (see Fig. 6.12) shows that 70% of the simulated patients are located in one
of the D fields, 20% in the E field, and another 10% in the lower-C field.
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Figure 6.11: Simulation plot (mean values over adult population) of exponential IOB
experiment.

Figure 6.12: CVGA plot of exponential IOB experiment.

The simulation results (see Tab. 6.6) show that the use of exponential modeling of the
Insulin-On-Board (IOB) achieves a significant improvement in the simulation results.
Compared with the configuration without the inclusion of Insulin-On-Board (IOB) as a
factor, the mean TIR (%) improved by 7.09. The standard deviation has decreased by
0.78. Also, compared to the configuration with bilinear modeling of Insulin-On-Board
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(IOB), the average TIR (%) has improved by 9.69. The standard deviation has decreased
by 15.83.

However, it can also be observed that the TBR is still relatively high. Especially in the
later course of the simulation, the patients experience hypoglycemia on average. In Fig.
A.10 it can be seen that the time patients experience severe hypoglycemia (BG < 50)
clearly outweighs mild hypoglycemia in patients adult#003, adult#004 and adult#007.
This could be due to an incorrectly assumed DIA of three hours. As a result, too little
IOB could be assumed in the later hours, which leads to a higher amount of insulin being
delivered than necessary and the patient reaching hypoglycemia. However, it could also
indicate that the action space is not selected in a refined enough way. Using the current
action space the algorithm must react to the taken meals starting from 200% in 100%
steps, which may be a too coarse gradation.

To investigate this assumption, a follow-up experiment with a DIA of five hours and a
peak of 75 minutes will be performed. It shall be observed whether the longer assumed
insulin action time lowers the TBR in general and especially in the later simulation
course. Another experiment will investigate whether a more refined action space can
prevent postprandial hypoglycemia.

6.4.3 Increase DIA from 3h to 5h

To evaluate whether the postprandial hypoglycemias from the previous experiment can be
avoided by using a differently chosen Duration of Insulin Activity (DIA), an experiment
with a DIA of five hours instead of the previous three hours will now be conducted.

As the simulation results (see Tab. 6.7) show, the mean Time-In-Range (TIR) across all
simulated adult patients is 40.35%± 13.04, while the mean Time-Above-Range (TAR) is
53.62%± 23.33 and the mean Time-Below-Range (TBR) is 6.03%± 16.99.

The glucose progression (see Fig. 6.13) shows that the preprandial phase (first six hours)
is optimally maintained in the euglycemic range. The first meal ingested results in a
peak glucose concentration averaging 250 mg/dL. The postprandial phase of the first
meal occurs at the upper end of the euglycemic range. The second meal also causes
the glucose concentration to rise only briefly and slightly above the euglycemic range on
average. The third meal results in a peak glucose concentration averaging 400 mg/dL.
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Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 38.46 61.54 0.0 0.0 15.57 15.57
adult#002 28.27 71.73 0.0 0.0 21.85 21.85
adult#003 49.9 50.10 0.0 0.02 23.36 23.37
adult#004 34.93 65.07 0.0 0.16 68.31 68.47
adult#005 32.64 67.36 0.0 0.0 24.14 24.14
adult#006 53.85 39.92 6.24 0.65 20.15 20.8
adult#007 45.95 0.0 54.05 15.88 0.01 15.89
adult#008 65.49 34.51 0.0 0.0 8.33 8.33
adult#009 27.44 72.56 0.0 0.0 37.28 37.28
adult#010 26.61 73.39 0.0 0.0 47.17 47.17

Table 6.7: Performance statistics of exponential IOB (DIA 5h) experiment for adult pop-
ulation.

The postprandial phase of this meal is permanently above the euglycemic range from
this point on.

Figure 6.13: Simulation plot (mean values over adult population) of exponential IOB
(DIA 5h) experiment.

The CVGA (see Fig. 6.14) shows that 20% of the simulated patients are located in one
of the C fields, while another 10% are located in the E field. Another 10% of the patients
are in the Upper-D field.
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Figure 6.14: CVGA plot of exponential IOB (DIA 5h) experiment.

As can be seen in Fig. 6.13, the algorithm does not seem to perform reasonable insulin
deliveries. Although mild and severe hypoglycemia are avoided, prolonged glucose con-
centrations above 300 mg/dL imply a high risk for patients and cannot be tolerated.
Thus, increasing the DIA from three hours to five hours did not show any improvements
in the simulation results and will not be adapted for the upcoming experiments.

The next experiment aims to evaluate whether the use of a more refined action space
yields better results in TIR and reduces the Time-Below-Range (TBR).

6.5 Using refined action space

So far, in all experiments performed, an action space of the form

A = [0 ∗BR, 0.5 ∗BR, 1 ∗BR, 1.5 ∗BR, 2 ∗BR, 3 ∗BR, 4 ∗BR]

was used.

To investigate whether the postprandial hypoglycemias of the simulated patients can
be prevented with a more refined action space and improve the overall TIR, we use an
action space that operates in steps of 25% for the following experiment. This results in
an action space of:
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A = [0 ∗ BR, 0.25 ∗ BR, 0.5 ∗ BR, 0.75 ∗ BR, 1 ∗ BR, 1.25 ∗ BR, 1.5 ∗ BR, 1.75 ∗ BR, 2 ∗
BR, 2.25 ∗BR, 2.5 ∗BR, 2.75 ∗BR, 3 ∗BR, 3.25 ∗BR, 3.5 ∗BR, 3.75 ∗BR, 4 ∗BR].

As the simulation results in Tab. 6.8 show, the mean Time-In-Range (TIR) across all
simulated adult patients is 27.09%± 1.06, while the mean Time-Above-Range (TAR) is
72.91%± 1.06 and the mean Time-Below-Range (TBR) is 0.00%± 0.00.

Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 27.03 72.97 0.0 0.0 23.14 23.14
adult#002 28.07 71.93 0.0 0.0 18.22 18.22
adult#003 26.2 73.80 0.0 0.0 33.85 33.85
adult#004 25.99 74.01 0.0 0.0 48.65 48.65
adult#005 27.03 72.97 0.0 0.0 26.67 26.67
adult#006 27.23 72.77 0.0 0.0 48.72 48.72
adult#007 27.03 72.97 0.0 0.0 32.61 32.61
adult#008 29.52 70.48 0.0 0.0 17.51 17.51
adult#009 26.82 73.18 0.0 0.0 38.39 38.39
adult#010 25.99 74.01 0.0 0.0 38.03 38.03

Table 6.8: Performance statistics of refined action space experiment for adult population.

The glucose curve (see Fig. 6.15) shows that the approach keeps the glucose concen-
tration in the euglycemic range in the preprandial phase (first six hours) like the other
approaches. The first meal causes the glucose concentration to rise to a peak of about
300 mg/dL, and it drops only very slightly postprandially. The second meal causes the
glucose concentration to rise slightly. The third meal causes the glucose concentration
to rise to an average of 500 mg/dL. Postprandially, the glucose concentration drops back
to about 300 mg/dL. The last meal then causes the glucose concentration to rise again
to an average of 400 mg/dL.

The CVGA (see Fig. 6.16) shows that none of the simulated patients is in the range
of risk zones, which indicates a very high glucose variability with a severe risk for all
simulated patients.

The simulation results (see Tab. 6.8) show that the algorithm does not respond ade-
quately to the meals taken. Also, looking at the glucose history of the patients (see Fig.
6.15), it can be seen that insulin delivery is not adequately adjusted. The results sug-
gest that the neural network used is not large enough to handle the more than doubled
number of possible actions.

46



6 Experiments

Figure 6.15: Simulation plot (mean values over adult population) of refined action space
experiment.

Figure 6.16: CVGA plot of refined action space experiment.

Therefore, in a follow-up experiment, the size of the neural network used should be
increased. In order to check whether the enlargement of the network serves as an effect
factor at all, we increase the size in a large step to 256 units x 3 layer.

47



6 Experiments

6.5.1 Increase neural network size to 256 units x 3 layer

To investigate the assumption that the increase in the size of the neural network has an
effect on the results of the refinement of the action space, in this experiment the neural
network size is increased to 256 units x 3 layer. The remaining parameters are unchanged
and selected as in the experiment Using Refined Action Space.

As the simulation results (see Tab. 6.9) show, the mean Time-In-Range (TIR) across all
simulated adult patients is 52.02%± 20.23, while the mean Time-Above-Range (TAR) is
11.93%± 14.75 and the mean Time-Below-Range (TBR) is 36.05%± 31.20.

Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 71.10 9.56 19.33 5.93 0.89 6.82
adult#002 76.92 5.82 17.26 4.02 0.65 4.67
adult#003 24.74 0.0 75.26 60.43 0.24 60.67
adult#004 37.01 6.24 56.76 25.32 0.09 25.41
adult#005 71.31 28.27 0.42 0.05 5.77 5.82
adult#006 38.88 0.0 61.12 53.84 0.01 53.85
adult#007 21.83 0.0 78.17 120.14 0.0 120.14
adult#008 51.56 0.0 48.44 38.29 0.25 38.54
adult#009 60.71 36.59 2.70 0.0 8.93 8.93
adult#010 66.11 32.85 1.04 0.08 9.03 9.12

Table 6.9: Performance statistics of refined action space experiment (256x3) for adult
population.

The simulation course (see Fig. 6.17) shows that the preprandial phase (first six hours)
tends slightly toward hypoglycemia. The peaks of glucose concentration that follow the
ingested meals are all very close around the upper limit of the euglycemic range. The
postprandial phases show that the average glucose concentration is within the euglycemic
range. The standard deviation is strikingly large, especially after the third ingested
meal.

The CVGA (see Fig. 6.18) shows that 40% of the simulated patients are in one of the D
zones, while another 10% are in the Upper-C zone and another 30% are in the Lower-C
zone. Another 10% of the patients are in the B zone, while another 10% are in the E
zone. This is an improvement to the previously evaluated configuration of 64 units x 3
layer.
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Figure 6.17: Simulation plot (mean values over adult population) of refined action space
(256x3) experiment.

Figure 6.18: CVGA plot of refined action space (256x3) experiment.

Compared to the previous experiment with 64 units x 3 layers, the simulation showed an
improvement of the average TIR by 24.93%. The standard deviation has grown by 19.17
compared to the previous experiment.
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The high standard deviation suggests that the network tends to overfit due to its size
and thus has memorized individual patients.

Possibly, a stronger generalization could be achieved if the neural network is reduced in
size again. Therefore, a follow-up experiment with a neural network size of 128 units x
3 layer will be evaluated.

6.5.2 Decrease neural network size to 128 units x 3 layer

The previous experiment has already shown a significant improvement in TIR, but also
showed a relatively high standard deviation. The purpose of this experiment is to in-
vestigate whether scaling down to a neural network with 128 units x 3 layers shows an
improvement in TIR and especially in standard deviation.

As the simulation results (see Tab. 6.10) show, the mean Time-In-Range (TIR) across
all simulated adult patients is 57.57%± 7.18, while the mean Time-Above-Range (TAR)
is 35.6%± 10.76 and the mean Time-Below-Range (TBR) is 6.8%± 6.3.

Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 62.58 35.55 1.87 0.00 6.8 6.8
adult#002 67.78 28.69 3.53 0.14 5.79 5.92
adult#003 55.93 31.60 12.47 2.75 9.62 12.37
adult#004 55.72 32.02 12.27 2.07 10.86 12.94
adult#005 59.88 40.12 0.0 0.0 12.07 12.07
adult#006 56.13 30.98 12.89 1.51 6.56 8.07
adult#007 62.16 22.25 15.59 5.29 3.27 8.56
adult#008 63.41 27.23 9.36 0.77 4.55 5.32
adult#009 45.11 54.89 0.0 0.0 16.64 16.64
adult#010 46.99 53.01 0.0 0.0 17.57 17.57

Table 6.10: Performance statistics of refined action space experiment (128x3) for adult
population.

The simulation course (see Fig. 6.19) shows that the preprandial phase (first six hours) is
maintained within the euglycemic range on average with a very low standard deviation.
The first meal is followed by a glucose concentration peak of about 275 mg/dL, while
the second meal maintains the glucose concentration within the euglycemic range. The
third meal is followed by a glucose peak of about 300-350 mg/dL, but this time the sim-
ulated patients do not experience as much postprandial hypoglycemia as in the previous
experiments.
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Figure 6.19: Simulation plot (mean values over adult population) of refined action space
(128x3) experiment.

The CVGA (see Fig. 6.20) shows that 40% of all patients are in one of the D fields.
Another 30% of patients are in the E field. The remaining 30% of patients are in the
Upper-C field.

Figure 6.20: CVGA plot of refined action space (128x3) experiment.
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Compared to the IOB (exponential decay, DIA 3h) experiment, the TIR decreased by an
insignificant 0.14%, while the standard deviation decreased by 4.94. The Time-Above-
Range (TAR) increased by 12.58%, while the standard deviation decreased by 3.39.
The Time-Below-Range (TBR) has decreased by 12.47%, while the standard deviation
has decreased by 11.78. It can also be seen in Fig. A.18 that the time with severe
hypoglycemia (BG < 50) was significantly reduced. However, it is also observed that
severe hyperglycemia cannot be adequately prevented.

As can be seen in the standard deviation in Tab. 6.10, the assumption that reducing
the size of the network achieves a stronger generalization appeared to be correct. The
standard deviation decreased in all measured metrics. The assumption that a more
differentiated action space can better prevent postprandial hypoglycemia has also been
confirmed by this experiment.

It is an interesting observation that the TAR increased to such an extent. A follow-up
experiment will be conducted to evaluate whether changing the sequence length improves
the TIR.

6.6 Different sequence length

So far, the algorithm has learned with batches of size 64 from contiguous sequences of
length 32. This corresponds to a sequence length of 96min. The parameter was defined
in this way because it was assumed that the long duration of action of insulin can be well
represented by this. The following experiments will investigate whether an improvement
in the average TIR can be achieved by changing this parameter. This will include looking
at how the TAR and TBR compare. The result of the last experiment performed (see
Fig. 6.10) serves as a comparison. The remaining parameters were adapted from this
experiment.

6.6.1 Decrease sequence length to 16

In this experiment, a first reduction of the sequence length is to be evaluated. For this
purpose, the length is set to 16.
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As the simulation results (see Tab. 6.11) show, the mean Time-In-Range (TIR) across
all simulated adult patients is 51.44%±14.98, while the mean Time-Above-Range (TAR)
is 11.02%± 13.77 and the mean Time-Below-Range (TBR) is 37.55%± 25.27.

Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 63.83 5.2 30.98 20.67 0.43 21.1
adult#002 67.15 0.0 32.85 14.22 0.12 14.34
adult#003 41.37 6.86 51.77 66.35 0.39 66.74
adult#004 43.45 8.32 48.23 17.75 0.37 18.12
adult#005 69.02 22.87 8.11 0.48 3.48 3.96
adult#006 42.62 0.0 57.38 57.32 0.06 57.38
adult#007 25.99 0.0 74.01 110.24 0.01 110.26
adult#008 37.42 0.0 62.58 46.5 0.38 46.88
adult#009 59.46 36.17 4.37 0.0 9.03 9.03
adult#010 64.03 30.77 5.2 0.33 7.15 7.47

Table 6.11: Performance statistics of different sequence length (16) for adult population.

The simulation course (see Fig. 6.21) shows that the ingested meal produces a lower peak
in glucose concentration than in the configuration with a sequence length of 32. However,
in the postprandial phases, the simulated patients tend to experience hypoglycemia. This
is also reflected in the high TBR.

Figure 6.21: Simulation plot (mean values over adult population) of different sequence
length (16) experiment.
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The CVGA (see Fig. 6.22) shows that 40% of patients are in one of the C fields, while
another 40% are in one of the D fields. Another 20% are in the E field.

Figure 6.22: CVGA plot of different sequence length (16) experiment.

Compared with the configuration with a sequence length of 32, more patients (+10%)
are now located in one of the less risky C fields, but patients are located at the outer
edge of the C and D fields, which correlates with the observed hypoglycemias.

The observed hypoglycemias should be critically evaluated, as the algorithm cannot
provide the necessary safety for clinical use.

In the further course, a stronger reduction of the sequence length will be evaluated.
The aim is to check whether the observed hypoglycemias can be prevented and how the
average TIR behaves as a result of this change.

6.6.2 Decrease sequence length to 8

After the previous experiment demonstrated that the reduction of the sequence length
does not lead to any improvement of the average TIR, this experiment will evaluate a
further reduction of the sequence length to length 8.

As the simulation results (see Tab. 6.12) show, the mean Time-In-Range (TIR) across
all simulated adult patients is 56.24%±14.98, while the mean Time-Above-Range (TAR)
is 29.75%± 18.01 and the mean Time-Below-Range (TBR) is 14.01%± 11.82.
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Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 66.53 18.71 14.76 1.65 2.25 3.89
adult#002 78.17 11.23 10.60 1.28 1.73 3.01
adult#003 58.42 24.74 16.84 0.96 3.79 4.75
adult#004 54.05 28.07 17.88 0.95 5.12 6.08
adult#005 67.78 32.22 0.0 0.0 8.06 8.06
adult#006 47.40 29.11 23.49 5.4 5.97 11.37
adult#007 37.21 26.2 36.59 10.03 4.85 14.88
adult#008 73.39 6.65 19.96 3.98 1.35 5.32
adult#009 37.63 62.37 0.0 0.0 21.26 21.26
adult#010 41.79 58.21 0.0 0.0 20.75 20.75

Table 6.12: Performance statistics of different sequence length experiment (8) for adult
population.

The simulation course (see Fig. 6.23) shows that the ingested meals lead to stronger
peaks in glucose concentration than in the configuration with a sequence length of 16.
It can be seen that the postprandial phases are on average within the euglycemic range.
However, some simulated patients also experience more severe hypoglycemia.

Figure 6.23: Simulation plot (mean values over adult population) of different sequence
length (8) experiment.

The CVGA (see Fig. 6.24) shows that 60% of the simulated patients are in one of the D
fields, while another 10% are in the Upper B field. Another 10% are in the E field.
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Figure 6.24: CVGA plot of different sequence length (8) experiment.

Compared to the previous experiment, 20% fewer patients lie within the range of the
CVGA. Also in this experiment, patients often lie at the right edge of the CVGA, which
correlates with the observed hypoglycemias.

Since both reductions of the sequence length did not result in significant improvements
of the measured metrics, an increase of the sequence length to 64 will be evaluated in a
follow-up experiment.

6.6.3 Increase sequence length to 64

In this experiment, an increase of the sequence length to a length of 64 will be evaluated.
It will be observed whether the postprandial hypoglycemias that occurred previously can
be avoided.

As the simulation results (see Tab. 6.13) show, the mean Time-In-Range (TIR) across
all simulated adult patients is 53.31%±11.59, while the mean Time-Above-Range (TAR)
is 42.37%± 12.26 and the mean Time-Below-Range (TBR) is 4.32%± 5.98.

The simulation course (see Fig. 6.25) shows that the ingested meals lead to relatively
strong peaks of glucose concentration. The postprandial phases show good glucose control
in the euglycemic range.
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Patient TIR (%) TAR (%) TBR (%) LBGI HBGI BGRI
adult#001 56.96 43.04 0.0 0.0 8.77 8.77
adult#002 66.74 33.26 0.0 0.0 6.42 6.42
adult#003 49.27 40.12 10.60 2.02 12.09 14.12
adult#004 50.52 37.84 11.64 2.16 13.1 15.25
adult#005 42.0 58.00 0.0 0.0 15.36 15.36
adult#006 62.16 31.81 6.03 0.05 8.16 8.21
adult#007 48.86 36.17 14.97 2.62 5.99 8.61
adult#008 72.97 27.03 0.0 0.0 5.76 5.76
adult#009 34.30 65.7 0.0 0.0 22.72 22.72
adult#010 49.27 50.73 0.0 0.0 15.55 15.55

Table 6.13: Performance statistics of different sequence length experiment (64) for adult
population.

Figure 6.25: Simulation plot (mean values over adult population) of different sequence
length (64) experiment.

The CVGA (see Fig. 6.26) shows that 30% of patients are located in the Upper-C field,
while 10% of patients are located in the Lower-D field. Another 30% are located in the
E field. Another 10% are located in the Upper-B field.

Compared with the previous experiment, hypoglycemia was successfully avoided in this
configuration (with a TBR of 4.32%±5.98). However, the risk assessment also shows that
the risk spread of the patients is relatively high. The TIR dropped by 4.99% compared
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Figure 6.26: CVGA plot of different sequence length (64) experiment.

to the configuration with a sequence length of 32, while the standard deviation shows a
slight improvement of -1.24.

However, this approach appears to provide no significant improvement compared to the
first sequence length configuration of 32.

6.7 Results

In this section, the results of all experiments performed are summarized in tabular form
(see Tab. 6.14). For this purpose, the mean TIR, TAR and TBR achieved are presented
with their respective standard deviation.

The result determined for comparison in the upcoming discussion is the evaluation result
Refined action space (128x3), since a high TIR and a low TBR with a low standard
deviation were measured here.
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Experiment Mean TIR (%) Mean TAR (%) Mean TBR (%)
PID controller 46.84± 13.29 15.8± 5.50 37.36± 14.15
Baseline implementation 52.24± 15.81 46.22± 18.37 1.54± 4.86
Applied scaling 50.62± 12.90 15.55± 11.32 33.83± 19.76
IOB (bilinear) 48.02± 27.95 48.77± 31.79 3.20± 6.98
IOB (exponential, DIA 3h) 57.71± 12.12 23.02± 14.15 19.27± 18.08
IOB (exponential, DIA 5h) 40.35± 13.04 53.62± 23.33 6.03± 16.99
Refined action space (64x3) 27.09± 1.06 72.91± 1.06 0.00± 0.00
Refined action space (256x3) 52.02± 20.23 11.93± 14.75 36.05± 31.20
Refined action space (128x3) 57.57± 7.18 35.6± 10.76 6.8± 6.3
Different sequence length (16) 51.44± 14.98 11.02± 13.77 37.55± 25.27
Different sequence length (8) 56.24± 14.98 29.75± 18.01 14.01± 11.82
Different sequence length (64) 53.31± 11.59 42.37± 12.26 4.32± 5.98

Table 6.14: Overview of all experiment results.
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In this chapter, the previously obtained evaluation results will be used to answer the
research questions stated at the beginning of this thesis. Furthermore, the results will
be put into the context of the research area and possible differences and weaknesses will
be discussed.

The goal of this thesis was to answer how a Deep Q-Learning approach needs to be
designed to meet the requirements of good diabetes therapy solely through basal rate
adjustment despite the different metabolic factors of individual patients. A Deep Q-
Learning approach was presented, with evaluation results showing that the achieved TIR
of 57.57%±7.18 is within the target range of good diabetes therapy. All experiments pre-
sented were performed with basal rate adjustment only. No meal boluses were performed
or sports sessions included. Nevertheless, it is suggested that additional meal boluses
could significantly improve the achieved TIR and thus allow for better diabetes ther-
apy. The low standard deviation of 7.18 indicates that a generalization of the algorithm
has been achieved that can handle the differences in the metabolic rates of individual
patients. Thus, a basically good generalization can be observed in the results, but the
measured TIR is below 50% in some simulated patients (45.11% in the worst case).

Also the question to what extent a good diabetes therapy can be ensured despite de-
viations from regular eating patterns was to be answered in the scope of this thesis.
Since the presented approach was trained and simulated with a meal scenario randomly
distributed around a regular pattern, the proposed algorithm is capable of dealing with
these situations within the definition of a good diabetes therapy. Nevertheless, it should
be noted that this statement can only be made to a limited extent, since the experiments
were only simulated over a period of 24 hours. Thus, the ingested meals occurred only
once initially by chance and not over several days. However, the simulated 24h still con-
tain randomly scattered meals that are reliably answered by the algorithm. It should also
be noted that no conclusion can be made about how much the deviations from the meal
scenario may be scattered, so that the algorithm still meets the goals of good diabetes
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therapy. Further research is needed in this regard. Another interesting aspect that has
been read about in other research papers is the omission of a meal. In the context of
this thesis, no experiments were conducted that could answer how the algorithm would
handle a skipped meal. Further research is needed for this as well.

Another research question asked is how the developed approach can act safely and avoid
severe hypoglycemia. The evaluation results of the presented approach indicate that
severe hypoglycemia is omitted. The obtained TBR of 6.8%± 6.3 is in a very low range.
The standard deviation is also very low, which supports this assumption. Nevertheless,
severe hypoglycemia cannot be completely avoided in individual simulated patients. It
would be conceivable to avoid these even better by an emergency deactivation of the
basal rate in the event of an excessive drop in glucose concentration. However, it has
been noted that when glucose peaks have been avoided, the risk of hypoglycemia has
increased significantly. In some experiments the algorithm adjusted the insulin delivery
to aim for preprandial hypoglycemias. This led to slightly less high peaks of glucose
concentration after meal intake, but indicates that higher glucose peaks needs to be
tolerated to avoid severe hypoglycemia. An adjustment of the reward function to stronger
penalize hypoglycemias could lead to an approvement of this behaviour. Further research
needs to be conducted in this regard.

It was also to be evaluated what the impact of using Insulin-On-Board (IOB) as a factor
of the algorithm to be developed is. Insulin On Board (IOB) as a factor has been shown
to make a significant difference in the success of the algorithm applied. The difference in
measured TIR (%) from 50.62± 12.9 without IOB to 57.71± 12.12 with IOB represents
a substantial improvement in the control strategy. In particular, the occurrence of the
severely dangerous hypoglycemias could be significantly reduced by the inclusion of IOB
as a factor. This can be observed by the difference in TBR (%) of 33.83± 19.76 without
IOB to 19.27± 18.08 with IOB. However, it is important to ensure that the appropriate
modeling of pharmacodynamics is used. Bilinear modeling has been shown to worsen
TIR, while exponential modeling significantly improves results in the control strategy.
For correct use of IOB modeling, the DIA and peak must be known as parameters, each of
which depends on the type of insulin used. Thus, if the insulin type and its characteristics
are not known in advance, omitting Insulin-On-Board as a factor may allow for a better
control strategy.

Another question addressed was how effectively the algorithm achieves the goals of good
diabetes therapy even with the consumption of high-carb meals. The meal scenario used
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contains meals in the range of 30g to 110g carbohydrates, where 110g is considered as
a high-carb meal. The goals of good diabetes therapy are met by the measured TIR of
57.57%±7.18. However, it has been observed that when glucose peaks have been avoided,
the risk of hypoglycemia has increased noticeably. To avoid severe hypoglycemia, higher
glucose peaks must be tolerated as previously stated. The glucose concentration peaks,
however, might be better dealt with the use of meal boluses, and thus result in better
TIR and therefore better diabetes therapy could be achieved. This can also be observed
in the non-optimal risk scores in the respective CVGA plots. Only a few experiments
scored in the less risky category A or B fields, while many were at best in categories D.
This is mainly due to glucose variability that presumably could be significantly reduced
by preprandial meal boluses.

Unfortunately, comparison with other approaches appears to be very difficult due to
the often very different metrics used and experiment setups selected. For example, the
approach by Sun et al. [90] uses a much less challenging meal scenario of 07hr (50g),
12hr (60g), 18:30 (80g), 23hr (16g) with variability of only ±15 minutes. In addition,
this approach does not deliver bolus insulin only for the last meal (11pm, 16g), which
means that the approach is more likely to be considered as hybrid loop. It is likely that
the approach presented in this thesis would yield better results under the simulation
conditions of Sun et al. This would be interesting to investigate in a follow-up work. The
approach by Lee et al. [53] also uses a much less challenging meal scenario of 08am (40g),
1pm (80g) and 9pm (60g). In fact, one less meal was simulated here. Above all, the lower
variability of the related approaches may be partly responsible for the significantly better
results. Additionally, no variability in meal times was used. The approach by Sanz et al.
[82] also uses a much less challenging meal scenario of 07hr (65g), 14hr (70g), 21hr (65g).
They use a standard deviation of 60min, analogous to the presented approach in this
thesis. However, the variability in the meals is significantly lower in comparison. The
approach by Rossetti et al. [81] was studied exclusively in a clinical trial investigating
the use of only one 60g meal. A bolus was delivered for the meal, which characterizes
the approach as hybrid loop.

Another parameter that is often chosen very diversely is the length of the simulation
period in the evaluation. Sun et al. [90] simulated a period of 98 days, while Sanz et al.
[82] used a period of 30 days and Lee et al. [53], for example, only simulated a period of
24h. This further does not contribute to the comparability of the results. The approach
presented in this thesis was also evaluated with a time period of 24h. With a longer
simulation period, stronger statements could be made about the stability and potential
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Approach TIR (%) TAR (%) TBR (%)
Sun et al. [90] 89.9± 8.7 6.1± 8.2 2.5± 3.0
Lee et al. [53] 89.56± 4.37 9.49± 4.28 0.95± 1.97
Sanz et al. [82] 80.0 1.3∗ n/a
Rossetti et al. [81] 78.8 n/a 5.2
Atlas et al. [4] 73.0 27.0 0.0
Presented approach 57.57± 7.18 35.6± 10.76 6.8± 6.3
PID Controller 40.02± 8.11 20.1± 4.05 39.88± 9.73

Table 7.1: Comparison of approaches (* TAR defined as BG > 250).

applicability of the algorithm. However, this was not feasible within the scope of this
thesis due to time constraints.

Another difference is the choice of metrics for presenting the results. In the paper of Sanz
et al. [82] only a TIR and a TAR are given. The specification for the TBR is missing.
In addition, the TAR was defined differently than in other papers. It is specified as BG
> 250 mg/dL here. In the work by Rossetti et al. [81] the data on the TAR are missing.
Only the TIR and the TBR are given.

In Tab. 7.1 the simulation results are presented in comparison to the approaches pre-
sented in the third chapter and put into the context of the related work. The final result
of the proposed algorithm achieves a TIR (%) of 57.57 ± 7.18, which indicates a better
control strategy and diabetes therapy than the presented PID controller approach. The
other approaches presented achieve higher TIR results. Among other reasons, this is
due to the difficult comparability caused by the varying experimental setups as already
stated.

Unfortunately, it has not been possible to apply the algorithm to the data already avail-
able from the OpenAPS Foundation. The reasons for this are on the one hand that the
data preparation would have been too time-consuming for the scope of this work, as this
would have required completely clean data sets with a continuous glucose history and,
above all, data sets with consistently announced meals. Specifically, this would mean
that the replay memory would be filled with the collected glucose histories, including
meal information and associated insulin deliveries, which would then serve as the replay
memory for the algorithm. An implementation with the real patient data could provide
interesting insights into whether the algorithm already trained on the simulated data will
also perform well on the real data.
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The presented algorithm has been trained using only simulated data from the patient
adult#001. It would be worth investigating whether the results in TIR would improve
if the training was also performed on the other simulated patients.

Also, varying influencing factors such as sports or stress are currently not simulated by
the simulator, which means that the developed algorithm was not confronted with such
situations and could not learn from them. First hints how such a consideration could
take place and which problems can occur in this context can be found in a paper by
Tagougui et al. [93].

In the approach by Sanz et al. [82], among other features, a safety mechanism is imple-
mented that switches off the insulin supply under certain conditions. Since the algorithm
may not have learned certain situations because they did not occur in the learning pro-
cess, safety measures in the form of insulin cutoff at critically low glucose concentration
similar to this approach could be implemented if the algorithm is prepared for use in
subsequent clinical trials.

The results are a first step towards the development of an artificial pancreas. However,
since the experiments were conducted exclusively in-silico, no statement can yet be made
as to whether the system can actually achieve significant therapy improvements in real
patients. The individual metabolic processes can only be simulated by the simulator and
thus can only ever be understood as an approximation to real conditions. In order to be
able to make statements about the actual relevance of the approach, in-vivo studies are
necessary.
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8 Outlook

In this thesis an algorithm is presented that meets the requirements for good diabetes
therapy solely by adjusting the basal rate. It can also deal with the different metabolic
factors of individual patients. It has been shown that deviations from regular eating
patterns can be responded to with this algorithm. However, it was also found that the
glucose peaks cannot be prevented if the focus is on avoiding severe hypoglycemia. The
presented algorithm is able to act safely and avoid severe hypoglycemia, if postprandial
glucose peaks are tolerated. However, it has been found that the algorithm is not capable
of avoiding severe hypoglycemia in all simulated patients. For this purpose the need of
a further IOB limitation is suspected to support this goal. The use of Insulin-On-Board
(IOB) as an input factor for the algorithm has been shown to be helpful if the correct
modeling is known and specified by the type of insulin used. If this is not the case, the
therapy goals are achieved less well than without the inclusion of IOB. When high-carb
meals are taken, it has been found that glucose peaks are not preventable if postprandial
hypoglycemia is to be avoided.

Following from the results of this thesis it is planned to apply the implementation of the
algorithm, as described beforehand, to real patient data. The use of the provided patient
data from the OpenAPS Data Commons program is linked to the obligation to share the
achieved research results with the community. For this purpose, a paper summarizing
the results will be written and published.

Since an implementation of the approach presented here in an Android application ex-
ceeded the scope of this work, it is planned to implement the algorithm directly as a
preparation for planned clinical trials.

Within the scope of this work, a rudimentary hyperparameter tuning has been carried
out, which is to be optimized under further expenditure of time. Hereby it might be
possible to further improve the already achieved results.
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8 Outlook

During the conduct of the research, opportunities for improvement in the UVa/Padova
implementation Simglucose have repeatedly come to attention, leading to active collab-
oration on the code base of the simulator. This collaboration will be intensified in the
future to make research using the open-source simulator more accessible and thus provide
a lower-threshold entry into the development of insulin delivery algorithms.

Unfortunately, circumstances during the execution of the work did not allow to use
the latest approved metabolic simulator (UVa/Padova S2013). The improvement of the
metabolic models in the newer version could significantly increase the accuracy of the
presented algorithm. This will be evaluated following this work.

In order to achieve the long-term goal of an intervention-free diabetes therapy through
the development of an artificial pancreas, some further investigations have to be carried
out in the future. The approvability of algorithms based on machine learning represents
a great challenge, since such algorithms lack the traceability of decisions. It would be
interesting to investigate whether there are already existing solutions for the problem of
Explainable AI in the context of Artificial Pancreas.

It would also be very interesting to combine the algorithm with an unannounced meal
detection algorithm already developed in previous work to completely replace the an-
nouncement of meals. Thus, a completely intervention-free system would be conceiv-
able.

Furthermore, new CGM systems have come onto the market that have a significantly
better error deviation. Also systems with a higher measurement frequency (one minute
instead of three minutes) are now available on the market. It would be interesting to in-
vestigate whether the presented algorithm can improve therapy under these conditions.

Based on the work presented here, further research is planned as part of a dissertation on
the topic of Artificial Pancreas. The dissertation is to be conducted within the framework
of the non-medical PhD program of the University Medical Center Hamburg-Eppendorf
(UKE). This framework will allow the algorithm presented here to be clinically tested
through patient studies. In addition, the challenges described in the previous paragraph
will be explored in this framework.

It is also planned to deepen the research in the area of approvability as a medical device
of reinforcement learning based approaches in the context of Artificial Pancreas.
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8 Outlook

So the way to a complete artificial pancreas and thus an intervention-free diabetes therapy
still holds some stumbling blocks and interesting questions. This thesis contributes to
the development of such a system.
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A Appendix

Figure A.1: Risk stats plot of the PID controller.

Figure A.2: Zone stats plot of the PID controller.
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A Appendix

Figure A.3: Risk stats plot of baseline implementation.

Figure A.4: Zone stats plot of baseline implementation.
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A Appendix

Figure A.5: Risk stats plot of applied scaling experiment.

Figure A.6: Zone stats plot of applied scaling experiment.
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A Appendix

Figure A.7: Risk stats plot of bilinear IOB experiment.

Figure A.8: Zone stats plot of bilinear IOB experiment.
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A Appendix

Figure A.9: Risk stats plot of exponential IOB experiment.

Figure A.10: Zone stats plot of exponential IOB experiment.
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A Appendix

Figure A.11: Risk stats plot of exponential IOB (DIA 5h) experiment.

Figure A.12: Zone stats plot of exponential IOB (DIA 5h) experiment.
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A Appendix

Figure A.13: Risk stats plot of refined action space experiment.

Figure A.14: Zone stats plot of refined action space experiment.
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A Appendix

Figure A.15: Risk stats plot of refined action space (256x3) experiment.

Figure A.16: Zone stats plot of refined action space (256x3) experiment.
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A Appendix

Figure A.17: Risk stats plot of refined action space (128x3) experiment.

Figure A.18: Zone stats plot of refined action space (128x3) experiment.
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A Appendix

Figure A.19: Risk stats plot of different sequence length (16) experiment.

Figure A.20: Zone stats plot of different sequence length (16) experiment.
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A Appendix

Figure A.21: Risk stats plot of different sequence length (8) experiment.

Figure A.22: Zone stats plot of different sequence length (8) experiment.
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A Appendix

Figure A.23: Risk stats plot of different sequence length (64) experiment.

Figure A.24: Zone stats plot of different sequence length (64) experiment.
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