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Abstract
In this thesis, an autonomous vehicle control system is developed using Deep Neural
Networks, which are trained using reinforcement learning in a 3D simulation environment.
The resulting system is implemented on a remote control car and tested in a real-world
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1. Introduction

Machine learning has made enormous technological advances in the last two decades,
developing from a field of scientific investigation to an established scientific and engi-
neering tool [22, 16] that is expanding technological capabilities in applications such as
autonomous vehicles, medical diagnosis and robotics [32].

As the transport industry embraces this technology and the emerging autonomous vehicle
field matures, autonomous vehicles are becoming increasingly commonplace. Amongst
other benefits, this technology stands to improve safety, efficiency and accessibility [42,
30].

With such promising benefits available from autonomous vehicle technology, it is impor-
tant that development of this technology is supported by both industry and universities,
to ensure high standards and affordable results so that it is available in as many vehicles
as possible.

The aim of this thesis is to gather knowledge and hands on experience in the Reinforce-
ment Learning field through the implementation of Deep Reinforcement Learning for
the autonomous control of a remote control car, using affordable and accessible hard-
ware components. This thesis places some restrictions upon the resources available for
development, which are discussed in Section 3.4. The ultimate aim is that the vehicle
should be able to autonomously navigate around a scale track, the definition of which is
provided in Section 3.1.

In this thesis, Chapter 2 begins by providing an overview of relevant theoretical and prac-
tical concepts. Chapter 3 then details the system functionality, performs a stakeholder
analysis and provides concrete system requirements. Chapter 4 follows by providing an
overview of concepts involved in the development of the system, whereby desired out-
comes and implementation strategies to achieve the requirements set out in Chapter 3
are discussed. It culminates in concrete decisions about the implementation strategy.
These requirements are then used to structure the experimental setup, as well as the

1



1. Introduction

implementation and training process, which is described and documented in Chapter
5. Chapter 6 presents the results achieved by the implemented system. Following the
development of the system and the presentation of results, Chapter 7 then discusses
the achieved results and provides an analysis in regards to the requirements outlined in
Chapter 3. Suggestions for future work and systemic improvement are also made during
this chapter. This thesis then culminates in Chapter 8, where the overall project and its
development is summarised.

2



2. Foundations

This chapter presents the theoretical and practical foundations required to understand
the processes and concepts that are used and explored within this thesis.

2.1. Autonomous Vehicles

The inclusion of autonomous technology into vehicles seeks to alleviate or even replace
the requirement for human drivers [12, 38]. Autonomous vehicle control technology can
include either electronic or mechanical devices, or both. Examples of early autonomous
vehicle control systems focus on cruise control functionality such as speed, brake and
lane control [12]. Modern technology, including the sophisticated computing abilities
that are now available, is able to offer significantly more sophisticated and comprehensive
abilities [12].

2.1.1. Levels of Vehicle Autonomy

As per the Society of Automotive Engineers [20], the following levels of vehicle autonomy
are defined:

L1. Driver Assistance: The autonomous system controls one of either longitudinal
(acceleration and braking) or lateral motion (steering), but performs no form of object or
event detection [20]. L1 systems can operate adaptive cruise control or lane keeping as-
sistance, but not both simultaneously. The human driver is responsible for the operation
of the non-automated function [38].

L2. Partial Driving Automation: The autonomous system simultaneously con-
trols both longitudinal and lateral motion, but performs no form of object or event
detection [20]. L2 systems operate adaptive cruise control and lane keeping assistance

3



2. Foundations

simultaneously, however the human driver must constantly monitor the situation and
takeover vehicle control if necessary [38].

L3. Conditional Driving Automation: The autonomous system entirely performs
the dynamic driving control task within specified operational and environmental limita-
tions [20]. L3 systems allow the human driver to perform other activities such as using a
mobile phone, however they must be prepared to takeover control at the request of the
autonomous system [38].

L4. High Driving Automation: The autonomous system entirely performs the
dynamic driving control task and has fallback behaviour for avoiding collisions and other
undesirable events within operational and environmental limitations [20, 11]. L4 systems
encompass highway pilots and fully autonomous systems that operate on closed campuses
(geographically restricted areas of operation) [38]. This level of autonomy allows human
drivers to be fully occupied with another task, such as sleeping, as the autonomous
systems fallback to minimum risk conditions if and when needed [38, 11].

L5. Full Driving Automation: The autonomous system entirely performs the
dynamic driving control task and has fallback behaviour for avoiding collisions and other
undesirable events without limitation [20]. L5 systems can operate without a driver.
People present in systems with L5 control activated are considered passengers rather
than drivers [38].

2.1.2. Impacts of Autonomous Vehicle Technology

Vehicles with L2 autonomy, such as Tesla’s Autopilot [21] and General Motors’ Super
Cruise [14] are already deployed on a global scale. Motivation for the development
and rollout of this technology comes from many directions such as safety, efficiency and
accessibility [12]. However, considering the exponential growth trend in autonomous
vehicle research between 2012 and 2018 [12], both positive and negative impacts of this
burgeoning technology should be considered. Whilst obvious effects are expected for
vehicles and the systems and infrastructure with which they directly interact, flow-on
effects are also anticipated at societal and transport system levels [12].

Negative traffic conditions such as accidents, oscillations and congestion are often caused
by the random nature of human driving behaviour [12]. The traffic flow patterns that
result are inefficient and have a strong negative impact upon vehicle emissions and the
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2. Foundations

environment [12]. Research has shown that autonomous vehicles, in particular connected
autonomous vehicles, can reduce the occurrence of these negative traffic conditions in
comparison to vehicles under human control [12, 41].

Traffic oscillation (spring effect) caused by merging near highway entry and exit points
is the leading cause of highway congestion [43, 12]. Research by Zhou et al. [43] showed
that the use of autonomous vehicles could alleviate this negative effect at merge points,
resulting in improvements to congestion, safety, vehicle throughput and average merging
speed [43, 12].

Lane changing is considered to be a risky manoeuvre due to the potential for collision
with vehicles in front of and behind the manoeuvring vehicle in both its current and
destination lane [12]. An inaccurate or flawed spatial assessment when performing a
lane change can result in consequences ranging from traffic oscillation, to collisions and
potentially loss of life [12]. By automating this procedure, research indicates that a
reduction of 4-10% of all accidents caused by human error can be achieved [12].

As autonomous vehicle technology continues to become more commonplace, it will result
in positive effects upon traffic flow, the capacity of existing infrastructure, vehicular
operating cost, cost of travel and vehicular hours travelled [12]. A further propagation of
this positive effect upon infrastructure planning and design, land use (reduced required
parking spaces, increased required charging spaces), traffic safety, public health and the
environment is also expected [12]. As Faisal et al. [12] note, there will be a great deal
of pre-deployment planning, policy changes and infrastructure requirements in order to
support the successful adoption of autonomous vehicle technology [12].

2.2. Artificial Intelligence

At its inception Artificial Intelligence (AI) was conceived as a research field to investi-
gate the theorem that human learning and other intelligent behaviour could be wholly
reproduced using machines [29]. It is from these beginnings that the concepts of Ar-
tificial Intelligence, Machine Learning (ML), Neural Networks (NN) and Deep Neural
Networks (DNN) stem [29]. Early implementations of AI centered around the concept
of modelling human behaviour in machines, however this concept has been modernised
to form a more inclusive approach of solving extremely complex problems by any means,

5



2. Foundations

instead of imposing artificial limitations upon systems to restrict solutions to that of
human behaviour [8].

2.2.1. Machine Learning

Modern ML is the science of using a data driven approach to build self-improving al-
gorithms and computational systems [22]. It finds itself at the intersection of computer
science and statistics, whereby it uses repetitive training to optimise a particular per-
formance metric [22]. There are three major paradigms of ML: supervised learning,
unsupervised learning and reinforcement learning (RL).

Supervised learning focuses on function approximation, where the task is for a model to
learn an output for a particular given input [22]. In this paradigm, training data takes
the form of (x, y) pairs which are used to learn the mapping f(x) 7→ y or the probability
distribution over y given the input x [22]. Practically speaking, these (x, y) pairs are
sets of labelled training data, where the data is used as the input (x) to a model and
the label is the desired output prediction (y) from the model [25]. Supervised learning
can commonly be identified as either regression, where the output (ŷ) is continuous,
or classification, where output (ŷ) values are labels which are assigned to particular
categories [25]. These mappings can be implemented in many different forms, including
but not limited to: decision trees, regression models, NNs and kernel machines [22]. This
algorithmic diversity provides varying levels of computational complexity that can be
selected depending upon the application and its requirements [22]. Common applications
of supervised learning include classification tasks and medical diagnosis [22].

Conversely to supervised learning, unsupervised learning is used to analyse unlabeled
data from which characteristic structural patterns of the data are learnt [22]. Often
these characteristics are underlying and hidden within the data [25]. This is then used
to perform clustering, where data is clustered given the absence of labels [22]. One
huge advantage of unsupervised learning is that it removes the requirement of labori-
ously labeling data, which in itself opens opportunities for efficient use of enormous data
repositories, which would not be possible using supervised learning [22]. Unsupervised
learning is commonly used for tasks such as natural language processing and novel image
generation [25].

Reinforcement learning is considered intermediate between supervised and unsupervised
learning due to the information contained in training data [22]. RL sets out to learn

6



2. Foundations

a policy (strategy) for an agent (commonly an NN or DNN) acting within a dynamic
environment, where a variable reward is given for every action step [22]. The agent is
trained in steps to choose an action for any given input state, where the objective is
to maximise reward [22]. In contrast to both supervised and unsupervised learning, the
actions taken by the agent are directly reflected in the environment and therefore the
agent receives immediate feedback upon its actions [25].

2.2.2. Neural Networks

Computations in the human brain are performed by an enormous network of neurons,
which communicate using electric signals sent via axons, synapses and dendrites [24]. As
early as the 1940’s, these neurons have been modelled as switches that are activated by
input from other neurons [24]. This input is either amplified or dampened via weighting
by the strength of the interconnecting synapse [24]. It is upon these biological foundations
that the Artificial Neural Network (referred to in this thesis as NN) is based [24].

NNs are structures of layers of nodes, with a designated input and output layer and often
hidden layers in between (see Figure 2.1) [24]. These layers are made up of artificial
neurons (nodes), the earliest example of which was published by Frank Rosenblatt in
1958 and is known as a perceptron [37, 25]. The perceptron operates upon binary data
only [25]. It receives input data from nodes in preceding layers to which it applies a
weight. The resulting values are then summed. If this sum reaches or exceeds a particular
threshold level, the perceptron is activated and its output is turned on, otherwise it
remains un-activated and the output remains off [25].

Modern NNs commonly consist of nodes that can operate on non-binary data. In this
case, the concept remains similar to that of the perceptron, however the node’s output
is continuous as opposed to the discrete binary function of a perceptron [24]. The be-
havioural characteristics of this continuous output are referred to as the node’s activation
function.

The model of an NN node shown in Figure 2.3 depicts inputs from the previous layer
(x1...xn) and their associated weights (w1...wn). The total input to the node can be
described using Equation 2.1 and the output of the node can be expressed using Equation
2.2 [24].
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Figure 2.1.: Neural Network structure, adapted from [24]

n∑
i=1

wixi = w1x1 + w2x2 + ...+ wnxn (2.1)

a = σ

((
n∑

i=1

wixi

)
− t

)
(2.2)

In Equation 2.2 a represents the node’s output, σ represents the node’s activation function
and t represents the node’s threshold. The threshold value is of crucial importance to
the functionality of an NN, as it is one of the key parameters which is adjusted during
the training process [25]. A threshold value can also be referred to as a bias value, which
is the inverse of the threshold value (b = −t).

There are a number of activation functions that can be used in NNs, with the most
common being the sigmoid function, tanh function and the rectified linear unit function
(often abbreviated as ReLU) [25, 24].

The most frequently used activation function, the sigmoid function, is defined in Equation
2.3 [25]. The smooth curve of the sigmoid function (see Figure 2.2) allows fine-tuning of
a node’s weights in order to achieve highly accurate nodal activation [25].

σ(z) =
1

1 + e−z
(2.3)
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Figure 2.2.: Activation functions: sigmoid, tanh and ReLU.

The tanh function extends the output range of the sigmoid function, from [0, 1] to [−1, 1],
whilst maintaining a very similar curve shape (see Figure 2.2) [25]. The tanh function is
defined in Equation 2.4 [25].

σ(z) =
ez − e−z

ez + e−z
(2.4)

Finally, the ReLU function is defined by Equation 2.5 [25]. The ReLU function has a
strikingly different shape to both the sigmoid and tanh functions (see Figure 2.2), which
is matched by very different behaviour. If the input to the ReLU function is equal to or
less than zero, it returns zero, or else it returns the input value [25].

σ(z) = max(0, z) (2.5)

Figure 2.3 provides an example of an NN node, in place with an activation function
(σ).

As previously established, nodes are grouped together into layers, the most simple of
which is a fully connected (dense) layer in which nodes receive inputs from every node
in the previous layer, as is depicted in Figure 2.1 [25].

A significantly more complex layer type is the convolutional layer, which is commonly
used for image processing applications due to its ability to perform feature extraction
via spatial pattern processing [25]. This is achieved through the use of kernels which
perform convolutions whilst windowing across discrete positions of the input array [25].
Conversely to fully connected layers, convolutional layers do not have weights for every
input, but rather each kernel contains a set of weights, which are re-used at each position
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Figure 2.3.: Neural Network node, adapted from [24]

to calculate a weighted sum [25]. As the windowing process occurs, each kernel finds the
position (or lack thereof) of specific features, causing activations. These activations are
structured into a multi-dimensional activation map as the layer’s output [25]. In order to
make use of the output of a convolutional layer, another layer type is required, the flatten
layer. Its purpose is to convert the multi-dimensional activation map that is output from
a convolutional layer into a single-dimension array. This facilitates connection to a fully
connected layer that can be used to represent a vector of classes [25].

An important subdomain of neural networks is Deep Neural Networks (DNNs), which
refers to an NN with multiple hidden layers (usually three or more) [25]. This concept will
be discussed further specifically in respect to reinforcement learning in Section 2.3.4

As a blank slate, an NN is not able to produce meaningful results, it must first be trained.
The iterative training process involves making small changes to weights and threshold
values, such that meaningful results can be achieved [24]. Various aspects of the training
process are controlled through so-called hyperparameters, which are used to optimise the
learning process [25].

Essential to training an NN is the random initialisation of nodal weights and threshold
values [25], meaning that initial results produced by the NN are not meaningful. These
weights and threshold values are then adjusted throughout the iterative training process
and the accuracy of the results produced is measured using a cost function. Two common
cost functions are mean squared error and cross-entropy cost, shown in Equations 2.6
and 2.7 respectively [25].
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C =
1

n

n∑
i=1

(yi − ŷi)
2 (2.6)

C = − 1

n

n∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] (2.7)

In both Equation 2.6 and Equation 2.7, for each given instance i, y represents the de-
sired outcome (the label) and ŷ represents the value produced by the NN (the predic-
tion) [25].

Once calculated, the result of the cost function is then used to optimise the NN, that
is, it enables the learning process during training with the goal of minimising the cost
value [25]. To do this, all weights and threshold values are adjusted proportionally to
their contribution to the cost value produced during inference. This process is known as
backpropagation [25].

In its most simple form, the optimisation process constitutes a gradient descent process,
in which each training iteration seeks to minimise the cost value, that is, it traverses a
complex multi-dimensional function to find minima, one step at a time [25]. The step
size is controlled by a hyperparameter called learning rate. A significant limitation of
gradient descent is that local minima can prevent the process from finding the true global
minimum [25]. As such, more sophisticated optimisation techniques such as stochastic
gradient descent, which operates on sub-sets of training data, can be more effective. By
using a so-called minibatch (sampled sub-set of training data), noise is introduced into the
calculation of the gradient and as such local minima can be successfully traversed [25].

Further improvements beyond that of stochastic gradient descent can be made to the
optimisation process through the introduction of a parameter called momentum. While
there are several optimisation techniques that implement the calculation and use of mo-
mentum differently, the core concept is that the speed when moving on the cost curve is
taken into account when preforming the current backpropagation step [25]. This enables
the descent process to move past local minima, increasing the probability of finding the
true global minimum [25]. A widespread method of optimisation that takes momentum
into account is the so-called Adam optimiser [25].

As introduced in Section 2.2.1, the overarching aim of machine learning is to learn the
mapping f(x) 7→ y. In a macro sense, the training process works to fit the function
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to the data, with the aim of minimising the cost function and hence maximising the
accuracy of the NN. However, during this process a phenomenon called overfitting can
occur. Overfitting describes the scenario when an NN fits too closely to the data upon
which it is being trained [25]. On a practical level, this results in increasingly higher
accuracy when inference is performed upon training data, however decreasing accuracy
when inference is performed on data that is not included in the training data set [25].

2.3. Reinforcement Learning

As outlined in Section 2.2.1, reinforcement learning (RL) is the process in which a policy
is learnt by an agent acting within a dynamic environment, where a variable reward
is given for every action step [22]. RL stands out from other fields in ML because it
addresses sequential decision making [13].

For the purpose of explicit clarity the following terms, essential to RL, are defined [25]:

• Agent: The algorithm (commonly an NN or DNN) being trained to perform a
specific task.

• Policy: The resulting function that is learnt by the agent.

• Environment: The setting in which the agent exists and from which it collects
information.

• Action: The result of the policy processing information collected from the envi-
ronment.

• Reward: The quantitative feedback provided to the algorithm after performing
an action.

• State: The resulting change in the environment after an agent performs an action
(which is clarified in Section 2.3.1 to be synonymous with observation).

In essence, the RL agent learns an intended behaviour via trial and error. This is in con-
trast to other techniques which assume definitive environmental knowledge a priori [13].
Because of this characteristic, the RL agent can be trained via direct interaction with
the environment, instead of requiring complete knowledge about and control over the
environment [13].
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The environmental interaction within the training cycle can be characterised as a discrete
time stochastic control process [13, 40] such that the agent begins in an initial state
(s0 ∈ S) and gathers an initial observation (ω0 ∈ Ω) [13]. For every time step (t), the
agent takes an action (at ∈ A) [13]. Consequently the agent receives a reward (rt ∈ R,
given (st, at)), the state advances to the next state (st+1 ∈ S) and the agent gathers a
subsequent observation (ωt+1 ∈ Ω) [13]. This process is illustrated in Figure 2.4.

Figure 2.4.: RL training cycle, adapted from [13]

2.3.1. The Markov Decision Process

RL problems can be represented mathematically using the Markov Decision Process
(MDP) [13, 40]. In order to define the MDP the Markov property must first be defined.
It states that future states depend only upon the current observation, not upon any other
historical observations [13, 40]. In order for a discrete time stochastic control process to
have the Markov property it must fulfill both Equations 2.8 [13] and 2.9 [13].

P (ωt+1 | ωt, at) = P (ωt+1 | ωt, at, ..., ω0, a0) (2.8)

P (rt | ωt, at) = P (rt | ωt, at, ..., ω0, a0) (2.9)

Equation 2.8 states that the probability of an observation ω at time t + 1, given the
current observation and action, is equal to the probability of an observation ω at time
t+ 1, given the full history of observations and actions.
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Equation 2.9 states that the probability of a reward r at time t, given the current obser-
vation ω and action a is equal to the probability of a reward r at time t, given the full
history of observations and actions.

The MDP can now be defined as the tuple (S,A, P,R, γ) [25] such that:

• State space: S,

• Action space: A,

• Transition distribution: P ,

• Reward distribution: R,

• Discount factor: γ.

Both the reward and transition are probability distributions, meaning that depending
upon the time step, the same state-action pair (s, a) may produce different results [25].

The discount factor, γ, is used to weight immediate rewards more strongly than rewards
that require future time steps in order to be obtained [25]. This reinforces behaviour
which recognises that immediate rewards are more likely to be obtained than those that
are a number of time steps away [25].

Because a system that is an MDP is fully observable, it follows that the observation is
the same as the environment (ωt = st) [13].

2.3.2. Policies and Value Functions

RL policies (π) can be either deterministic, where each action has a guaranteed resulting
state and reward, or stochastic, where each action has a varying probability of a resulting
state and reward [13]. In the search for an optimal policy (π(s, a) ∈ Π), the value function
as per Equation 2.10 [26] is used. This means that for any given policy (π), the value of
a state is the expected sum of rewards when starting from that state, whilst also taking
into account the discount factor (γ).

V π(s) = E

[ ∞∑
t=0

γtrt

]
(2.10)
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Given Equation 2.10, the optimal value function is defined in Equation 2.11 [13]. This
denotes the policy that has a value function with the greatest return.

V ∗(s) = max
π∈Π

V π(s) (2.11)

2.3.3. Learning Methods

As described in Section 2.3 and depicted in Figure 2.4, the agent learns a policy through
iterative training with environmental data [25]. This training process can occur using
a number of different structures, including online learning, offline learning, on-policy
learning and off-policy learning [13, 40].

In an online learning setting, the agent interacts with and gathers experience directly from
an environment as it is trained, which allows experience to be gathered in an exploratory
(trial and error) manner [13]. Additionally, experiences can be stored in a replay memory
for post-processing [25].

Offline learning strategies use batches of environmental data which were collected prior
to training, hence there is only limited data available to the agent [13]. Because offline
learning uses previously collected data, it does not allow for the possibility of environ-
mental interaction [13].

On-policy learning utilises a single policy, which is used to initiate actions and is then
adjusted using the reward issued as a result of that same action [13, 40].

In contrast to on-policy learning, off-policy learning utilises two policies [13]. The first,
known as the main policy, is used for environmental interaction, from which actions
are generated. The experience generated from this environmental interaction is stored
within a replay buffer, which is then used by the second policy, known as the target
policy, to calculate rewards [13]. The replay buffer contains historical experience, which,
depending upon the replay buffer size, may have been generated from numerous policy
iterations [13]. Because off-policy learning makes use of historical experience which can
come from multiple previous policy iterations, it is more sample efficient in comparison
to on-policy learning [13].
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2.3.4. Deep Q-Learning

First introduced by Mnih et al. in 2015 [31], Deep Q-learning and Deep Q-networks
(DQNs) use the Q-learning framework in combination with a DNN. Deep Q-Learning
finds its foundations in Q-learning, a technique where a table of values is filled using
one table position for every state-action pair [13]. Each value in the table represents the
quality of an action to produce an outcome (reward) given the current state. Q-learning
uses the Bellman equation of optimality (see Equation 2.12), whereby the agent pursues
a greedy strategy by considering both the immediate reward and the discounted long
term reward [26, 40].

V π(st) = E [rt+1 + γV (st+1)] (2.12)

Similarly to the state values defined in Section 2.3.2, Q-learning also defines an action
value as per Equation 2.13 [26], which states that the value of any given state is equal
to the maximum action value that can be obtained from the current state1.

Q(s, a) = r(s, a) + γmax
a′∈A

Q(s′, a′) (2.13)

Deep Q-networks address some shortcomings of Q-learning by employing two heuristic
techniques, target networks and memory replay [13].

A target network, as described in off-policy learning (see Section 2.3.3), is not updated
with every action taken by the agent. This limits the speed at which instabilities can
propagate to a model during training [13].

Memory replay uses an epsilon greedy policy to collect experience and saves it into a
replay buffer [13]. The epsilon greedy method is pivotal to DQNs, as during the early
stages of training the results of Q-approximation are ineffective due to their uniformly
distributed nature [26]. To combat this, the epsilon greedy policy selects between either
a random action or an action derived from the Q-policy with a probability of ϵ [13, 26].
This allows random behaviour during early stages of training to expedite environmental
exploration and efficient Q-policy refinement at the later stages of training [26].

1Note that Q is used to denote the value of an action, where previously V was used to denote the
value of a state.

16



2. Foundations

Once experiences have been collected using the epsilon greedy policy (see Equation 2.14),
updates then occur using so-called minibatches (sets of tuples) [13, 26, 25], which are
randomly selected from the replay buffer [13]. As described in Section 2.3.3, this helps
to diversify the number of experiences sampled and hence makes the process more effi-
cient [13, 26].

argmax
a∈A

Q(s, a) (2.14)

2.4. Digital Image Processing

An image can be represented digitally in pixel positions by discretising (quantising) light
values from a sensor [33]. A grayscale (black and white) image is represented in the form
of a two dimensional (2D) array. A colour image is most commonly represented as a
three dimensional (3D) array in either a red, green and blue (RGB) or hue saturation
value (HSV) format [33].

Digital image processing (shortened to image processing) is the process of applying image
transformations in the form of mathematical operations to the values in these arrays in
order to produce a desired effect or outcome [33]. Image processing has many purposes,
including but not limited to: image enhancement, compression, restoration and feature
extraction [33].

2.4.1. Canny Edge Detection

Canny edge detection is an image processing technique which is used to perform feature
extraction in order to find object boundaries (edges) within an image [9]. Naturally,
objects come in an infinite number of size, shape and colour combinations, which, when
captured in the form of a digital image, are discretised into a set of pixel values. When
captured in colour, images can be converted to a grayscale format whereby the colour
information is replaced by grayscale values which are used to visually represent pixels
from full black to full white, with discretised gray steps in-between.

The process of Canny edge detection on a grayscale image is split into four distinct steps.
Firstly, the image is processed using a Gaussian blur as per Equation 2.15 [39], where the
σ variable is used to control the intensity of the resulting blur. The purpose of blurring
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the image is to reduce the probability of false edge detections and the effect of noise upon
the edge detection process [39].

B(x, y) =
1

2πσ2
e−

x2+y2

2πσ2 (2.15)

Edge detection is then performed upon the blurred image. As objects within a grayscale
image will intrinsically have different intensities of gray (or may be full black or full white),
edge detection can be achieved by assessing intensity differences between neighbouring
pixels [17, 39]. This can be practically implemented by assessing gradients, using a partial
derivative [17]. Equations 2.16 and 2.17 [17] detail how this is mathematically achieved
for a given pixel g(x, y).

|gradxg(x, y)| =
∣∣∣∣ ∂∂xg(x, y)

∣∣∣∣ (2.16)

|gradyg(x, y)| =
∣∣∣∣ ∂∂yg(x, y)

∣∣∣∣ (2.17)

However, as a digital image represents a set of discrete values, the partial derivatives
previously described in Equations 2.16 and 2.17 must be approximated. The approxima-
tion for these operations to be used with discrete data is detailed in Equations 2.18 and
2.19 [17]. Using windowing, this process is repeated over the whole image [39].

∂

∂x
g(x, y) ≈ g(x+ 1, y)− g(x− 1, y)

2
(2.18)

∂

∂y
g(x, y) ≈ g(x, y + 1)− g(x, y − 1)

2
(2.19)

With the gradient values now calculated, the results are compared to a primary threshold
value, which is used to identify true edges only [17]. This process is often referred
to as non-maximum suppression [39, 9]. It iterates over the array of gradient values
on the x and y axes separately, whereby it selects values which meet or exceed the
primary threshold. Values that do not meet the primary threshold, but are connected
to values which do meet the primary threshold are also selected [17]. These values are
then compared to a secondary (lower) threshold and any point which does not meet or
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exceed the secondary threshold is discarded [17]. Values which neither meet or exceed
the primary threshold nor are connected to a point which meets or exceeds the primary
threshold are also discarded [17]. An example of this procedure is depicted in Figure
2.5, where the red curve is discarded because it has no point that meets the primary
threshold and the entirety of the green curve is selected because it contains a maxima
above the primary threshold and other connected values which exceed the secondary
threshold. Figure 2.6 provides an example of Canny edge detection applied to a grayscale
image. For comparison an example of Sobel edge detection, which does not implement
non-maximum suppression and hence produces a result with false-positive edges, is also
included in Figure 2.6.

Primary threshold

Secondary threshold

Array position

G
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en

t
va
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e

Figure 2.5.: Canny non-maximum suppression using double threshold
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Figure 2.6.: Canny edge detection example: unprocessed grayscale image (left), Sobel
edge detection without double threshold (centre) and Canny edge detection
(right). Images courtesy of Professor Dr.-Ing. Marc Hensel.

2.4.2. Binary Thresholding

Binary thresholding is an image processing technique which is used to perform feature
extraction for the purpose of segmenting images into pixels that meet a minimum thresh-
old value and those that do not [5]. In essence it is a very coarse form of quantisation,
which is performed as per Equation 2.20 [5], where t is the thresholding function, g is
the grayscale pixel upon which it is operating and τ is the threshold value [5]. For pixels
where the threshold is met, a logical true is produced (white) and for pixels where the
threshold is not met, a logical false is produced (black).

t(g) =

white if I ⩾ τ

black if I < τ
(2.20)

2.5. Networking and Communication Protocols

In the field of computer science, a network is the concept of connecting two or more com-
puters or devices via a link, either wired or wireless, which enables data to be transmitted
and received (communication) [36]. Networks use the Open Systems Interconnect (OSI)
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model as the foundation for their architecture. The OSI model was developed in 1984 by
the International Organization for Standardization (ISO) as a framework through which
inter-device compatibility could be ensured on both a hardware and software level [3].
The OSI model consists of 7 layers, which consecutively build upon each other to establish
standards for a holistic communications system [3].

Layer 1, the physical layer, creates an electrical and mechanical connection, which pro-
vides the means for a raw stream of symbols (bits) to be transmitted and received [3].

Layer 2, the data link layer, provides mechanisms for error detection and defines tele-
grams/frames within the data stream [3]. This layer is often considered to contain two
sub-layers, Medium Access Control and Logic Link Control. The former defines how the
physical medium (layer 1) should be accessed, alongside implementing collision detection
and/or avoidance, error detection, physical device addressing and multiplexing. The lat-
ter implements multiplexing of upper-layer communication protocols, which allow them
to share the physical medium (layer 1) [3].

Layer 3, the network layer, takes the role of a network controller, which regulates
message delivery in a multi-device network [3]. It combines messages and/or message
segments into packets and adds routing information to ensure packets are communicated
between the correct sender and recipient [3].

Layer 4, the transport layer, implements safeguards for message integrity between source
and destination [3]. Common implementation methods include data segmentation, tele-
gram acknowledgement and multiplexing between sources and applications [3]. In this
layer, large pieces of data are split so that they can be delivered in separate telegrams.
Implementations often include mechanisms to ensure that every piece of a message (tele-
gram) has been successfully delivered and reconstructed at the receiver [3].

Layer 5, the session layer, provides users the control functionality required to establish,
manage and terminate connections [3].

Layer 6, the presentation layer, adjusts message formatting to ensure it matches the
application’s requirements [3]. This process is somewhat akin to translation. The pre-
sentation layer includes the implementation of compression and encryption [3].

Layer 7, the application layer, communicates with the system and user applications to
determine if supporting information or resources are required in order to service user
requests [3].
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The term network or networking, when used in relation to computers, commonly refers to
communication via a cabled Ethernet connection or via a wireless WiFi connection. Eth-
ernet communications are governed by a number of standards developed and published
by the Institute of Electrical and Electronics Engineers (IEEE), including the 802.3 fam-
ily for Ethernet and the 802.11 family (which draws from the 802.3 family) for WiFi [10].
Both Ethernet and WiFi are classified as layer 1 in the OSI model.

2.5.1. Protocols and Sockets

When connected via a network, devices can communicate using a multitude of different
protocols. The most common is the Internet Protocol (IP), which is classified as layer
3 in the OSI model. The IP protocol provides mechanisms for device and message
addressing as well as message routing, that is, it provides mechanisms that support the
delivery of packets between devices [10]. Using the IP protocol, each device is assigned
an address, which allows it to be located and identified on a network [10]. Not included
in the IP protocol are mechanisms to ensure packets have arrived at the recipient, that
packets are in the correct order when they arrive at the recipient and to specify which
application running on the recipient should receive the packet [10]. These mechanisms
are implemented in the transport layer (layer 4) via protocols such as the User Datagram
Protocol (UDP) and the Transmission Control Protocol (TCP) [10]. Both UDP and TCP
extend the features implemented by IP, however they do so in very different ways.

TCP is built around reliability. A TCP connection is established using a procedure
commonly known as a handshake, after which data exchange can occur between two
TCP ports [10]. The TCP protocol also includes a checksum to ensure the integrity of
transmitted data. Additionally, it ensures that packets are correctly delivered to the
receiver in the correct order, by sending an acknowledgement from the receiver to the
sender for every packet [10]. Whilst this process ensures reliability, it also adds a great
deal of overhead to the data transmission process. Additionally, if a packet is lost during
transmission, the sender must re-transmit the lost packet while the receiver waits, which,
in the case of streaming data, can cause significant delays [10].

Unlike TCP, UDP is significantly more simple. Whilst it retains a checksum to ensure
data integrity, it does away with the features which ensure reliability, including the con-
nection handshake and packet acknowledgement [10]. Whilst this removes the guarantee
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of packets being delivered and arriving in the correct order, it provides a significant
increase in transmission speed, especially in case of streaming data [10].

2.5.2. Message Queuing Telemetry Transport

The Message Queuing Telemetry Transport protocol (MQTT) is a lightweight TCP-based
communications protocol, designed for passing messages between Internet of Things (IoT)
devices [19]. It is based upon the concept of publishers, subscribers and brokers. A
publisher is any device which produces information that is to be shared with other devices,
a subscriber is any device which consumes information which has been published and a
broker is the entity which facilitates this exchange of information [19].

MQTT is designed such that a single broker can be used for many different message
types. To ensure messages are sent to the correct subscriber(s), they are categorised into
topics [19]. In order to publish information to a topic, the publisher sends a message to
the broker which includes its unique identifier (most commonly a unique device name),
the topic to which the message should be published and the message itself [19]. Similarly,
in order to receive messages, a subscriber must register itself with the broker using its
unique identifier and the topic to which it wishes to subscribe [19]. For every message
that the broker receives, it checks the topic and then forwards it to every subscriber which
has subscribed to the same topic [19]. Due to the implementation of a broker, publishers
and subscribers can dynamically connect and disconnect from each other, unlike direct
TCP communication [19], making MQTT a very flexible communications protocol.

2.6. Hardware

This section introduces the hardware that will be used throughout this thesis. Key
information that is required for the understanding of consecutive chapters is provided.

2.6.1. Truggy Remote Control Car

The Truggy remote control (RC) car is widely available and affordable, making it acces-
sible for educational purposes, such as this thesis. The exact model made available for
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this thesis is a Reely Dart Brushed Electric Truggy2. The Truggy is designed in such a
manner that it can be easily modified to mount extra hardware. Professor Dr.-Ing. Marc
Hensel provided the Truggy which is used for the system development associated with
this thesis, which he has modified by removing the outer plastic casing and substituted
an acrylic plastic board onto which hardware can be mounted. This is illustrated in
Figure 2.7.

Figure 2.7.: Truggy remote control car

The Truggy RC car has an onboard battery pack that supplies a nominal voltage of
7.2 VDC [7], which is used in this thesis to power all onboard systems. The overall
dimensions of the Truggy RC car are 420mm x 290mm x 160mm [7].

2.6.2. Raspberry Pi Single Board Computer

Designed specifically for the purpose of affordability, the Raspberry Pi Single Board Com-
puter (SBC) provides a very accessible and capable platform upon which to implement
the control system. For this thesis, a Raspberry Pi 4 Model B3 with 4 Gigabytes of

2https://www.conrad.com/p/reely-dart-brushed-110-rc-model-car-electric-truggy-rwd-100-rtr-24-
ghz-1405819

3https://www.raspberrypi.com
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RAM and a Broadcom BCM2711 quad-core Cortex-A72 ARM CPU running at 1.5GHz
is used [34]. Throughout the system design and development, the available hardware
resources of the Raspberry Pi must be taken into consideration.

Figure 2.8.: Raspberry Pi 4 Model B SBC4

2.6.3. Raspberry Pi Camera

Following the Raspberry Pi ideology, the Pi Camera Module 25 is a low-cost camera
specifically designed for connection and use with Raspberry Pi SBCs. It uses a Sony
IMX219 image sensor with a resolution of 3280 × 2464 pixels, which is capable of pro-
ducing still images at a resolution of 8 Megapixels or a video stream at 1080p 30FPS,
720p 60FPS or 480p 90FPS [35].

Figure 2.9.: Pi Camera Module (model 2.1)6

4Image source: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
5https://www.raspberrypi.com/products/camera-module-v2/
6Image source: https://www.raspberrypi.com/products/camera-module-v2/

25



2. Foundations

2.6.4. PCA9685 Pulse Width Modulation Controller

The Truggy RC car comes equipped with a drive motor and steering servo which, under
normal circumstances, connect directly to a wireless control module receiver. For the
purposes of this thesis, the wireless control module is replaced with the Raspberry Pi
SBC upon which the control system is implemented. Motors and servos are controlled
using Pulse Width Modulation (PWM), which is in essence a constant square wave with
a controllable width. When connected to a motor, the wave width is used to control the
speed and direction in which it spins. When connected to a servo, the wave width is
used to control the angle to which the servo is rotated. As PWM signals are continuous,
generating them directly from the Raspberry Pi SBC would use all of the CPUs available
processing time, meaning that no other operations or calculations could be performed
while a PWM signal is being generated.

When the generation of PWM signals is required in parallel (simultaneously) to other
operations or calculations, a PWM controller can be used. The purpose of a PWM
controller, such as the PCA9685 PWM controller, pictured in Figure 2.10, is to produce
a constant PWM signal based upon a control value that can be updated as frequently or
as infrequently as the application requires. This relieves the CPU of the Raspberry Pi
from the task of constantly generating the PWM signal, as it only needs to send a single
value to the PWM controller if and when a change of PWM signal is required.

The PCA9685 PWM controller accepts control values via the I2C protocol, a serial
communications bus protocol [27].

Figure 2.10.: PCA9685 pulse width modulation controller7

7Image source: https://learn.adafruit.com/assets/50181
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This chapter determines the requirements for the development of the autonomous control
system. For this purpose, system context, stakeholders and use cases will be outlined,
from which concrete system requirements will be determined.

3.1. System Context

The system context is used to outline environmental factors that can impact system
operation and hence the development of the system. For clarity, a system boundary is
used to define the functionality that will be developed.

3.1.1. Experimental Environment

For the purposes of this thesis, the experimental environment consists of a scale model
track in an inside space, e.g., a university lecture room. The track is defined as a flat
black road-surface with white line markings.

Lighting conditions of the experimental environment are kept as stable as possible by
ensuring all available lighting fixtures are switched on during experimentation.

Background factors, such as stacked chairs and tables which may be detected by sensors,
are to be expected. The control system should not be designed to take these factors into
account and should in fact ignore them to the greatest extent possible.
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3.1.2. System Boundary

As introduced in Chapter 1, this thesis aims to implement an autonomous control system
to navigate an RC car around a scale track as defined in Section 3.1.1. In addition to
the environmental factors outlined in Section 3.1.1, there are also a number of technical
factors which directly affect the functionality of the control system. These technical and
environmental factors are considered together in Figure 3.1 which provides an overview
of the system context for the purpose of the development of the control system.

Figure 3.1.: System context

3.2. Stakeholders

Any individual or group who is deemed to have an interest in this project is considered
to be a stakeholder. Their interest may be direct and actively involved during the course
of the project or indirect and purely outcome based. Clear and efficient communication
with stakeholders is a crucial part of successful project management and to this end a
comprehensive list of stakeholders and interests has been compiled below and summarised
in Table 3.1.

User: The end user expects a well-documented and easy to use system whose function-
ality matches the documentation.

First Examiner: Professor Dr.-Ing. Marc Hensel has an interest in expanding his
knowledge base in the ML domain, specifically within the RL subdomain. Through
a well documented record of knowledge (this thesis), he expects to be able to build
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competencies and knowledge to help facilitate future industry partnerships. Additionally
he has an interest in receiving a well-documented and reusable code-base.

Second Examiner: Professor Dr. Heike Neumann has an interest in widening her ML
knowledge to include the RL subdomain.

HAW Hamburg: High quality scientific theses are published by HAW Hamburg in their
online repository (REPOSIT), making the University itself a stakeholder in the overall
outcome of this thesis.

Thesis Author: The author of this thesis has a very strong interest in building his
technical competencies in the ML domain, especially by introducing the subdomain of
RL. He also has a very strong interest in further developing his critical thinking skills and
understanding of scientific method, through the production of a high quality thesis.

Successive Authors: Successive authors that use parts of this thesis for their own work
have an interest in the quality of the project and its accompanying documentation.

Society: Greater society has an interest in the development and understanding of au-
tonomous vehicle technology that is well researched, safe and reliable.

Table 3.1.: Project stakeholders

Stakeholder Area of Interest
User Overall system functionality and accompanying documentation.
First Examiner Expanding scientifically acquired knowledge, overall system

functionality, documentation and code-base.
Second Examiner Expanding scientifically acquired knowledge.
HAW Hamburg High quality scientific work for publication.
Thesis Author Acquisition of technical competencies and production of high

quality scientific work.
Successive Authors High quality scientific work, accompanying documentation and

code-base.
Society Scientific research and development of autonomous vehicle tech-

nology.
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3.3. Use Cases

Using the system boundary established in Section 3.1.2, this section identifies and de-
scribes the use cases relevant to the development of the autonomous control system.
Figure 3.2 provides an overview of the system use cases, which are concretely defined
throughout this section.

Figure 3.2.: Use case diagram
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3.3.1. Follow Lane

The system ingests and processes camera sensor data in order to determine the steering
angle required to stay on the track. The system can be set to run at any time by the user
and will begin to produce control values once data has been ingested and processed.

Table 3.2.: Use case: follow lane

Name Follow lane
Description Camera sensor data is ingested and processed by the system to deter-

mine required steering controls.
Outcome Correct steering angle determined in order to keep vehicle on track.
Dependencies System is in a run state and sensor data is available.
Trigger Automatically occurs once per execution cycle.
Behaviour Sensor data is processed and steering control values are produced.

3.3.2. Set Steering

Processed data is used to determine the required steering angle, which is communicated
to control hardware. Control begins after sensor data has been processed.

Table 3.3.: Use case: set steering

Name Set steering
Description Steering control values are sent to control hardware.
Outcome Vehicle steering position is updated.
Dependencies Control values produced and active connection to control hardware.
Trigger Automatically occurs once per execution cycle.
Behaviour Control values are sent to hardware and hardware responds accord-

ingly.
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3.3.3. Set Throttle

The user should be able to start and stop the movement of the vehicle.

Table 3.4.: Use case: set throttle

Name Set throttle
Description Start or stop vehicle movement via throttle control values based upon

user commands.
Outcome The system responds to user start or stop commands by setting the

throttle control value accordingly.
Dependencies User is connected to the control system and the system is in a run

state.
Trigger Asynchronous execution by user.
Behaviour User triggers a start or stop command.

3.3.4. Video Stream on/off

The user can start or stop a video stream. This can occur at any time.

Table 3.5.: Use case: video stream on/off

Name Video stream on/off
Description The user can start or stop the video stream.
Outcome System responds to the command sent by the user.
Dependencies User is connected to the control system.
Trigger Asynchronous execution by user.
Behaviour User sends command and system applies command.

3.3.5. Control System run/stop

The user can start or stop the control system. This can occur at any time.
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Table 3.6.: Use case: control system run/stop

Name Control system run/stop
Description The user can start or stop the control system.
Outcome System responds to the command sent by the user.
Dependencies User is connected to the control system.
Trigger Asynchronous execution by user.
Behaviour User sends command and system applies command.

3.4. Restrictions

There are a number of restrictions placed upon the development of the system due to the
nature of the project requirements and the budgetary restrictions set in-place by HAW
Hamburg.

The control system is to be implemented such that it can run on a Raspberry Pi 4 Model
B Single Board Computer, using a Pi Camera as sensory input. The vehicle used for
development is to be a Reely Dart Brushed Electric Truggy remote control car [7].

3.5. Requirements

In this section the outcomes of the system context, stakeholder analysis and use cases
are used to establish concrete requirements for the system development.

Requirements are divided into two categories: functional requirements and non-functional
requirements. Functional requirements are used to define requirements that directly
affect system functionality and therefore the technical implementation. Non-functional
requirements place requirements upon factors that affect project execution and design,
but do not directly specify technical system functionalities. They influence project design
and architecture decisions which may or may not have a flow-on effect upon technical
implementation.
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3.5.1. Functional Requirements

F1: The user should be able to start or stop the system at any time, as long as the
system is powered on and the control system is connected.

F2: The system should receive and process camera sensor data in such a way that
steering control values are produced.

F3: The system should determine steering control values based upon the road-markings
present in the field of view of the camera.

F4: The system should react to a stop command in no more than the time or distance
that a human driver would require.

F5: The user should receive feedback about the system’s status.

3.5.2. Non-Functional Requirements

NF1: Onboard control system processing should occur using a Deep Neural Network.

NF2: The Raspberry Pi must communicate with the PWM controller via I2C bus1.

NF3: Road markings should be white on a black road-surface. The total road width
should be equal to two vehicle widths.

NF4: The system should be implemented such that it can run on a Raspberry Pi 4
Model B Single Board Computer.

NF5: The Neural Network should be trained using reinforcement learning.

1The provided PCA9685 PWM controller can only communicate using I2C bus.
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This chapter builds upon the analysis in Chapter 3 to identify and discuss desired project
outcomes and potential implementation strategies to facilitate these. It then concludes by
presenting a chosen implementation strategy accompanied by justified reasoning there-
fore.

4.1. Desired Outcomes

The ultimate aim of this thesis is to develop and train an agent in the form of a DNN
model using Deep Reinforcement Learning that is capable of navigating an RC car around
a track, the exact requirements of which are detailed in Chapter 3. There are a number
of different approaches that could be implemented in order to achieve this. These will
be identified and discussed in Section 4.4.

Adjacent to the desired practical outcomes of this thesis, there are a number of additional
desired outcomes. From an educational perspective, as determined in the Stakeholder
Analysis of Section 3.2, it is desired that the author builds his knowledge and technical
competencies in ML, specifically within the subdomains of DNNs and RL. A key part
of this process is documentation, both in the form of this thesis and the documentation
accompanying the code-base. This allows the transfer of acquired knowledge to both
examiners and to successive authors who may choose to build upon this thesis.

4.2. Operational Parameters

The control system is developed solely for the purpose of control of an RC car, for safety
reasons the system is intended for use only under controlled conditions. The follow-
ing section details the operational parameters of the system during various operational
scenarios.
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4.2.1. Normal Operation

The system is considered to be in normal operation when all systems and sub-systems
are functioning as intended (including but not limited to hardware and software systems)
and the operator has the ability to stop and start vehicle operation at any given time.

When the system is in normal operation it should be able to navigate around a scale
model track autonomously.

4.2.2. System Failure Conditions

The system is considered to be in a failure state if any system or sub-system is not func-
tioning as intended or if the operator loses the ability to stop or start vehicle operation.
A failure state may occur as a result of a hardware (physical) or software malfunction.

Should the onboard battery deplete, the system will shutdown. This is because both the
control and drive systems are powered by the same onboard battery.

In the event of disconnection or malfunction of the camera, the system should come to a
halt. Without accurate and relevant camera data, the system will not be able to correctly
determine control values for the steering system.

4.2.3. Real Time Operation

Due to the real time nature of controlling a moving vehicle, requirements considering the
processing and control pipeline need to be carefully considered. Figure 4.1 provides an
overview of the end-to-end processing and control pipeline, from the camera sensor to
the final output from the servo controller.

In order to successfully navigate around the track, the system must ingest data, process
it and produce a control output. Whilst operational, the vehicle is constantly moving,
meaning that input data is only relevant to the control system for a short period of
time. In order to ensure that the system is processing relevant input data, the system
processing pipeline must be able to process data at a high enough rate.

Paramount to safety in terms of real time operation of a vehicle is the braking system. The
German motoring association ADAC lists the average human reaction time for braking

36



4. Concepts

Figure 4.1.: Processing and control pipeline

as 0.8 to 1.2 seconds [1]. Additionally, they calculate the distance required to come to a
full stop using the Faust formula, shown in Equation 4.1 [1].

Using Equation 4.2, where s represents speed, d represents distance and t represents time,
the "worst case" distance travelled whilst reacting can be calculated using a vehicles
initial (pre-braking) speed. By combining the results of both Equation 4.1 and Equation
4.2, the total distance travelled from the beginning of the reaction time until the vehicle
has come to a complete stop can be calculated.

dstopping(m) =
speed (km/h)

10
· speed (km/h)

10
(4.1)

d =
s

t
(4.2)

4.3. System Behaviour

To further clarify the system use cases established in Section 3.3, Figure 4.2 provides an
overview of the expected system behaviour in the form of a state machine diagram. This
diagram details the various operational states of the system as well as the conditions
which need to be met in order to transition between them.

The system initially loads into a ready state, from which it can transition to a run state
upon a user command or to a failure state if a sensor fails. From the run state, it can
transition back into the ready state upon a user command or to a failure state if a sensor
fails. Once in a failure state, the user must manually reset the system in order to run
the system again (enter the ready state).
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Figure 4.2.: State machine diagram

4.4. Implementation Strategies

In order to train an RL agent (DNN model), a very large number of repetitive episodes
are required before it becomes useful [28], especially if training purely with visual input
stimuli [2]. Performing such a large number of training episodes by hand would be both
highly repetitive and impractical, therefore some degree of automation is required. This
section discusses implementation strategies that could be used to fulfill the requirements
of this thesis and is followed by the selection of a specific implementation strategy in
Section 4.6.

There are three accessible possibilities for the automation of the episodic training that are
implementable within restrictions placed upon this thesis: virtual simulation, physical
simulation and a virtual-physical simulation combination. The Donkey Car open source
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project1 has an OpenAI Gym [6] wrapper called Donkey Gym2 which is implemented
in the Python programming language. Donkey Gym facilitates the training of an RL
agent by providing a 3D simulation environment in which an agent can interact using
an Application Programming Interface (API). Alternatively, Professor Dr.-Ing. Marc
Hensel has built and made available for the purposes of this thesis, a physical simulator
upon which an RC car can be mounted for training. Both of these training methods
have advantages and disadvantages. It is therefore of great importance that these are
carefully assessed before a final implementation strategy is chosen.

The Donkey Gym 3D simulator allows for real time training with high-resolution time-
steps that are very close to the continuous-time time-steps that the system receives once
trained and deployed. However, this comes at the expense of training using image frames
captured from a 3D simulation, not from the Pi Camera Module that the system receives
once trained and deployed. Additionally, whilst the Donkey Gym offers multiple different
training environments, none of them exactly match the track requirements of a black
road-surface with white line markings and most feature a range of background objects
and environmental features which may distract the DNN. This could result in longer
training times (more episodes required) or in a DNN which places undesired consideration
upon these factors when processing image frames to determine control values.

The physical simulator, on the other hand, trains the DNN using image frames captured
from the same Pi Camera Module that is used for deployment. This greatly minimises
the discrepancies between the data that the system receives during training and the
data it receives once trained and deployed. Additionally, the physical simulator allows
training to occur in the experimental environment, meaning the same road-surface can
be used for both training and deployment/testing. Exactly matching the road-surface for
both training and deployment/testing maximises the achievable accuracy for the DNN.
Unfortunately, the physical simulator has some significant intrinsic disadvantages, the
most prevalent of which is the speed of training. For every time-step during the training
process, the vehicle must be positioned, an image frame must be captured and the DNN
must process the image frame and determine the control system values. A reward value
must then be calculated based upon the simulator position and a control system value
determined by the DNN. Finally, based upon the control system value determined by the
DNN, the relative vehicle position must be calculated and the process begins again by
re-positioning the vehicle.

1https://www.donkeycar.com
2https://github.com/tawnkramer/gym-donkeycar
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Across the thousands of episodes, each containing thousands of time-steps, the physical
simulator is significantly slower in comparison to the real time speed of the 3D simulator.
Additionally, as is often the case applications that requires physical automation, the
results are limited by the accuracy of the hardware. To achieve the same high-resolution
time-steps as the 3D simulator, the physical simulator must use high-accuracy encoders or
stepper motors and be carefully calibrated before beginning the training process. Finally,
thousands of training episodes take many hours to complete. As such, it is assumed that
the simulator will run unsupervised for the majority of the training duration. If during
this time a failure occurs, such as a belt slipping or a connector coming lose it is possible
that the entire training time may be wasted. Although this could be considered to be
unlikely, it is still a risk which must be considered.

Finally, combining both training techniques in a virtual-physical combination could prove
beneficial by exploiting the initial training speed of the 3D simulator and the final quality
of training in the experimental environment. However, once again this implementation
option is accompanied by a significant disadvantage. By training in both the 3D simu-
lator and the experimental environment, the amount of implementation is significantly
increased. Additionally, rewards for the RL process are calculated based upon the posi-
tion of the vehicle relative to the track. In order to implement reward calculation in the
experimental environment, a significant amount of additional implementation would be
required, including a high level of image processing.

4.5. Foreseen Difficulties

Taking into consideration the operational parameters and the characteristics of the 3D
training environment and physical simulator, several areas have been identified that pose
particular difficulties to the overall project outcomes. This section will identify these
foreseen difficulties.

As previously outlined, using a 3D simulation environment enables fast and efficient
training, which results in more training episodes than could be achieved in the same
time using the physical simulator. It however also results in an agent trained for the
3D simulation environment, not the experimental environment. Whether or not the
agent’s performance in the experimental environment is equal or even comparable to
the 3D simulation environment cannot be determined until training has been completed.

40



4. Concepts

This means that there is significant risk of wasting time training agents in a simulation
environment that are not functional in the experimental environment.

A potential strategy to minimise this risk is to perform some level of image processing
to the frames captured in both the simulation and experimental environment. By per-
forming this pre-processing step, image frames could be normalised, allowing for more
uniform image compositions than could otherwise be achieved. This reduction of dis-
tracting input stimuli to the DNN reduces the negative effects of variable environmental
factors upon the DNN, however also results in an overall reduction of valuable input
stimuli.

Another difficulty of using a simulation environment for training is the transition from an
exact training environment to a non-exact experimental setup. Initial testing of the RC
car shows that the steering mechanism does not have a high degree of accuracy. These
discrepancies between the simulator and experimental equipment directly affect the per-
formance of a system trained in the 3D simulator when implemented in the experimental
setup.

Finally, the complexity of the DNN directly affects the performance of the system in two
distinct ways. Firstly, complex models with larger numbers of trainable parameters are
often more accurate in comparison to simpler models, as they can learn more abstract
interpretations of the input data. However, they come with penalties in inference speed
and the amount of training required before they become useful. Performance require-
ments must be carefully balanced when considering the DNN architecture, in respect to
the resources available on the Raspberry Pi.

4.6. Implementation Strategy Selection

Using the formal requirements set out in Section 3.5 and taking into consideration the
operational parameters and available implementation strategies outlined throughout this
chapter, an implementation strategy is now selected and the reasons justifying this choice
presented.
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4.6.1. Training Environment

The 3D Donkey Gym simulator is chosen as the training environment due to the speed
with which training episodes can be executed and for its ability to provide high-resolution
time-steps without the requirement of calibration and monitoring to ensure uniformity
of actions within episodes. In addition, the disadvantages of training in the experimental
environment further incentivise the use of the 3D simulator. Specifically, the amount
of high-level image processing required in order to implement reward calculations in the
experimental environment is beyond the scope of this thesis and outside of the amount
of implementation realistically achievable within the time restrictions placed upon this
thesis. Using the 3D Donkey Gym simulator restricts the implementation to the Python
programming language. Due to the widespread popularity of Python for ML [25] and
the availability of commonly used and well supported ML libraries such as Tensorflow3

and Keras4 for Python, the impact of this restriction is not considered to be negative.

4.6.2. Image Processing

As outlined in Section 4.5, the use of the 3D simulation environment requires image
processing in order to minimise the difference in input stimuli between the 3D simulation
environment and the experimental environment. For this purpose, Canny edge detection
is selected, which processes image frames such that only object outlines in black and
white are input to the DNN. This allows road-markings to be extracted from the camera
sensor data, whilst the rest of the unrequired and potentially distracting background
information is removed.

4.6.3. System Design

To fullfil the requirements of user control and system status feedback, a system design
based on a client server model is selected. Communication between the client and server
is to be entirely network based, using a WiFi connection, allowing Truggy to move freely.
A local control computer with a graphical user interface (GUI) for user control is to be
connected to a remote Raspberry Pi attached to the Truggy. Whilst a command line
interface would be sufficient to fulfill the requirements set out in Chapter 3, using a GUI

3https://www.tensorflow.org
4https://keras.io
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Figure 4.3.: Track zone classification diagram.

aims to provide a better user experience as key information such as the steering angle
can be visually represented and is therefore more intuitive.

4.6.4. Test Setup Within the Experimental Environment

For the purpose of testing in the experimental environment, the track is divided into four
zones, as per Figure 4.3. These zones are used to measure the degree of success to which
navigation is performed during testing. If the vehicle leaves the track within the red
zone, it indicates that the system was not able to successfully navigate a straight section
of the track. If the vehicle leaves the track within the orange zone, it indicates that the
system was successfully able to navigate within a straight section of the track, but not
around a corner. If the vehicle leaves the track within the green zone, it indicates that
the system was successfully able to navigate within a straight section of the track and
around a single corner. If the vehicle leaves the track within the purple zone, it indicates
that the system was successfully able to navigate within multiple occurrences of straight
sections and cornered sections of the track.
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This chapter applies the concepts discussed in Chapter 4 to the Deep Reinforcement
Learning implementation and experimental setup. It provides technical details as well as
information about the scientific methods employed during the implementation process.
Intermediate results which are required for decision making during the implementation
process are presented, while the presentation of final results is reserved for Chapter 6.

5.1. Training

5.1.1. Simulation Environments

The Donkey Gym open source 3D simulator project [23] includes ten simulation environ-
ments, shown in Figure 5.1, each of which includes a different set of environmental factors.
Unfortunately, the majority of the simulation environments use road-surfaces which are
not suitable for image processing, due to a number of factors including glare caused by
simulated road-surfaces, low level of contrast between road-surfaces and road-markings,
ambiguous road-markings and other characteristics which cause undesired artifacts dur-
ing image processing (see Figure 5.2).

For the previously outlined reasons, the selection of tracks is significantly limited, with
only one out of the ten tracks providing an environment suitable for image processing.
As such, the "Waveshare" track is selected for training purposes (see Figure 5.3). It
features a high level of contrast between the road-surface and road-markings, making it
suitable for use with image processing for feature extraction. Unfortunately, unlike other
tracks, the "Waveshare" track does not have complex features, hence any agent (DNN
model) trained on this track is suitable for use only in this very specific track design.

1Note the system processing pipeline is configured to run at a resolution of 80 × 80 pixel to maximise
performance. This causes the pixelation visible in the figure.
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Figure 5.1.: Donkey Gym open source simulation environments [23]

Figure 5.2.: Unsuitable track simulation environment1 [23]

5.1.2. Reinforcement Learning Setup

The reinforcement learning process is implemented using online off-policy deep Q-learning
in Python with the Tensorflow and Keras libraries. This particular skew of reinforcement
learning is implemented in the form of two DNNs, a main DNN and a target DNN. The
main DNN interacts directly with the simulation environment and collects experience
which is stored in a memory replay deque, whilst the target DNN is used to calculate
future actions and hence the maximum possible future reward.

Rewards are based upon the vehicle’s lane position, labelled in the 3D simulation envi-
ronment as cross track error (CTE). The closer to the centre of the right lane, the higher
the reward. This is calculated using Equation 5.1, which is built-in to the 3D simulation
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Figure 5.3.: "Waveshare" track simulation environment [23]

environment2. A CTEmax variable is used to control the maximum allowable deviation
from the centre of the right lane, whereby exceeding this value terminates the episode.
Experimentation with different CTEmax values produces no observable difference in the
speed at which the agent (DNN model) learns or in the final training outcome. As such,
the CTEmax is configured at the default value of CTEmax = 5.

r = 1−
∣∣∣∣CTEcurrent

CTEmax

∣∣∣∣ (5.1)

Once a pre-determined amount of experience has been collected in the deque, it is used
for training the main DNN with every action (step) that it makes. Training consists of a
fit operation performed on the main DNN. Each training episode runs until the vehicle
crashes into an object or until it returns a CTE value greater than CTEmax. The latter
indicates that it has departed the track area, at which point a Boolean flag is triggered
and the episode is terminated. At the end of a training episode, the weights from the
main DNN are copied to the target DNN. Once the deque is full, old experience data is
overwritten with new experience data, similar to the concept of a circular buffer.

An overview of the RL process in its entirety is provided in Figure 5.4.

2The built-in reward equation also takes speed into account, however seeing as this is set as a constant
it is omitted from Equation 5.1.
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Figure 5.4.: Reinforcement Learning activity diagram.
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5.1.3. Comparison of Deep Neural Network Architectures

Deep Neural Network architecture varies greatly depending upon the intended use case
and desired performance characteristics. As briefly described in Section 4.5, due to
the hardware limitations of this thesis, the architecture of the DNN model needs to be
carefully balanced between performance, which directly relates to the type and number
of layers, and the time required for the network to perform inference on the Raspberry
Pi. For this reason, three DNN model architectures are compared: (i) a modified version
of Nvidia’s "DAVE-2" [4] DNN, (ii) a DNN which is provided as a part of the Donkey
Gym open source project [23] and (iii) a custom DNN architecture developed using an
iterative process as a mid-point between both of the aforementioned architectures.

The modifications made to Nvidia’s "DAVE-2" DNN are based upon design recommen-
dations from the Donkey Gym open source project [23]. The input layer is modified such
that it receives an image of dimension 80 × 80 pixel × 4. This is achieved by stacking the
same grayscale image four times. The output layer is also modified from one single node
to fifteen nodes, in order to coarsely quantise the number of steering angles which can
be selected by the DNN. In total, the modified "DAVE-2" DNN has 7,705,027 trainable
parameters, the majority of which are found in fully connected (dense) layers. Figure 5.5
provides an overview of the modified architecture.

Because the DNN provided as a part of the Donkey Gym open source project [23] is
built to include these design recommendations, no modifications are required. In total it
has 974,183 trainable parameters, which, like the modified "DAVE-2" DNN, are mostly
found in fully connected (dense) layers. An overview of the model architecture can be
observed in Figure 5.6.

The custom DNN is developed using an iterative process, whereby interest lies in finding
an architecture with a total number of trainable parameters which lies between those
of the modified "DAVE-2" DNN and the Donkey Gym open source DNN, in order to
examine the effect of DNN parameter count upon both performance and inference time.
The Donkey Gym open source DNN is used as a starting point, from which the number
of layers is increased. With each increase in layers, the resulting DNN is trained for 100
episodes and the general performance of the model during and after the training process
is compared to the previous iteration. This process is repeated until a noticeable decline
in performance is observed, at which point the process is stopped and the last DNN
model architecture before a decline in performance is selected. The result of this process
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is the DNN architecture shown in Figure 5.7, with a total number of 2,786,647 trainable
parameters.

Model summaries, which provide further information about each model architecture, can
be found in Appendix A.

Figure 5.5.: Modified "DAVE-2" DNN architecture from Mariusz et al. [4], figure adapted
from [4]

Figure 5.6.: Open source Donkey Gym DNN architecture [23], figure adapted from [4]
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Figure 5.7.: Custom DNN architecture adapted, figure from [4]

5.1.4. Controlling Variables

As introduced in Section 4.5, the purpose of image processing is to control the envi-
ronmental differences in input stimuli between the 3D simulator and the experimental
environment.

An additional variable which must be controlled is the vehicle speed. An appropriate
vehicle speed for training is experimentally determined using an iterative process. Due to
the "Waveshare" track’s dimension and shape, it is observed that using a medium to high
speed (throttle value set between 30% to 40%) for training results in the agent learning
an optimal policy of holding the steering control value almost constant, rather than
dynamically adjusting the steering control value based upon environmental observations
(camera sensor input). Due to this undesirable behaviour, it is experimentally determined
that a lower vehicle speed (throttle value set to 10%) results in the vehicle spending more
time on the straight sections of the track and hence the agent is forced to dynamically
adjust steering values based upon the input stimuli, rather than the previously observed
behaviour of holding the steering control value almost constant. Therefore the throttle
value for training in the 3D simulator is set to 10%.
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5.1.5. Image Processing and Training

As stated in Section 4.6.1, Canny edge detection is selected for image processing. The
purpose is to extract only the road-markings from the camera sensor data, hence removing
other undesired input stimuli. As outlined in Chapter 2, Canny edge detection uses two
thresholds, one of which is used to determine if a pixel represents an edge and another
which is used to discard pixels which are unlikely to represent a true edge. Using an
iterative process, appropriate values for these two thresholds for image frames captured
in the simulator are experimentally determined.

Figure 5.8 shows a comparison between an unprocessed RGB image frame and an image
frame processed with Canny edge detection. It can be observed that the majority of the
processed image frame is black. As the aim of image processing is to extract information
about the position of the road-markings, information in the processed image frame is
only contained within white pixels. By observing Figure 5.8, it can be determined that
a high reduction in input stimuli occurs when processing with Canny edge detection.

The throttle control value is set to 10%, the begin training threshold is set to a minimum
memory (deque) size of 100 and the minibatch (training batch) size is set to 64. The
reward discount (gamma), which is used to weight immediate rewards more heavily than
rewards in the future, is set to 0.99 and the epsilon decay, which controls the occurrence
of random actions at the beginning of training, is set to decay over 10,000 steps.

Figure 5.8.: Unprocessed RGB (left) and Canny edge detection processed (right) image
frames3
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Figure 5.9.: "DAVE-2" DNN training outcomes using Canny edge detection image pro-
cessing

Using these settings, the modified "DAVE-2" DNN is trained for 500 episodes using
Canny edge detection for image processing, the results of which are shown in Figure 5.9.
It plots the number of steps in each episode alongside a cumulative average calculation.

By observing the cumulative average episode steps, it can be clearly visually determined
that the value decreases as the number of episodes increases. This behaviour is the oppo-
site of the behaviour expected from a successful training process. This clearly indicates
that the training is ineffective. No optimal policy has been learnt.

Once again observing Figure 5.8, the significant reduction in information contained within
the Canny edge detection processed image frame is noted. Based upon this observation
and the intermediate results, which indicate no effective behaviour was learnt during
training, it is inferred that the unsuccessful training is due to a significant lack of input
stimuli to the DNN, caused by the Canny edge detection image processing. It is clear that
this image processing technique is not suitable for the purposes of this thesis. Another

3Note the system processing pipeline is configured to run at a resolution of 80 × 80 pixel to maximise
performance. This causes the pixelation visible in the figure.
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technique for image processing must be implemented. Due to this discovery, no further
training is performed using Canny edge detection for image processing.

As outlined in Chapter 4, the desired result of image processing is to minimise the
environmental difference between the 3D simulator and the experimental environment
by extracting desired features and removing or ignoring undesired background features
that may otherwise cause distraction. Considering the unusable results produced using
Canny edge detection are deduced to result from a lack of input stimuli, one solution
that follows is to choose an image processing technique that produces a level of input
stimuli that contains significantly more information than Canny edge detection. For this
purpose, binary thresholding for image segmentation is selected as a suitable candidate.

The training code is restructured to use binary thresholding as a means of image segmen-
tation for the purpose of feature extraction of the road-markings. The binary thresholding
threshold value is once again determined experimentally using an iterative process. Be-
cause the "Waveshare" track uses both yellow and white road-markings, the image must
be processed twice, once to extract the outer lines and again to extract the centre line,
the results of which are re-combined into a single processed image.

Figure 5.10 shows a comparison between an unprocessed RGB image frame and an image
frame processed using binary thresholding for image segmentation. When comparing this
to Figure 5.8, it can clearly be determined that a significantly higher amount of infor-
mation (and hence input stimuli) is present in the image frame that has been processed
using binary thresholding. Furthermore, Figure 5.11 shows a side-by-side comparison of
an image frame extracted from the 3D simulator and an image frame from the experi-
mental environment, both of which have been processed using binary thresholding. The
features extracted from both environments using this image processing technique match
very closely, hence confirming that this image processing technique provides a good level
of normalisation between the two environments.

Again, the throttle control value is set to 10%, the begin training threshold is set to a
minimum memory (deque) size of 100, the minibatch (training batch) size is set to 64,
the reward discount (gamma), is set to 0.99 and the epsilon decay, is set to decay over
10,000 steps. Using these settings, each of the three network architectures is compiled
and trained individually for 500 episodes in the 3D simulator using the revised image
processing technique of binary thresholding for image segmentation.
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Figure 5.10.: Unprocessed RGB (left) and binary thresholding for image segmentation
(right) processed image frames4

Figure 5.11.: Image segmentation using binary thresholding image processed frames cap-
tured in the 3D simulator (left) and experimental environment (right)4

5.2. Experimental Setup

5.2.1. Graphical User Interface

For the purpose of implementing the required user control, a Graphical User Interface
(GUI) is implemented (see Figure 5.12). The GUI implements the essential user control

4Note the system processing pipeline is configured to run at a resolution of 80 × 80 pixel to maximise
performance. This causes the pixelation visible in the figure.
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requirements of being able to stop and start the system and receive feedback about
the system status. It also provides some extra features, such as live RGB and image
processed video feeds. The latter allows the user to monitor, in real time, the input to
the DNN. Additional control is also implemented, which allows the user to toggle the
video feed on and off in the occurrence of wireless network congestion to maintain an
optimal system processing speed. Due to the large number of time critical operations
that need to occur, logical sections of the control GUI code are split into threads to allow
parallel execution.

Figure 5.12.: Truggy control centre GUI, waiting in "ready" state

5.2.2. Experimental Environment

The trained agent (DNN) is implemented on the Paspberry Pi which is mounted on the
Truggy RC car. As with the control GUI code, due to the large number of time critical
operations that need to occur, logical sections of the vehicle control code are split into
threads, to allow parallel execution.

The throttle control value is experimentally determined by visually comparing the speed
of the vehicle in the 3D simulator to the Truggy in the experimental environment and
matching them as closely as possible. The resulting speed is measured as 0.55 m/s.
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5.2.3. Communication for User Control

Communication between the Truggy (Raspberry Pi) and control GUI (control computer)
is established using a WiFi network connection. To ensure a low level of latency, video
data is streamed from the Truggy to the control computer using the UDP protocol (see
Section 2.5.1). Control values are communicated using an MQTT broker (see Section
2.5.1) running on the Raspberry Pi, with a unique topic for control values and steering
angle alike.
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This chapter presents the final results obtained from the implementation process, which
will then be discussed in Chapter 7. Both results from the 3D simulation environment
as well as the experimental environment are presented.

To investigate the linear relationship between the amount of training and the resulting
model performance, a Spearman rank correlation analysis is performed on the train-
ing results of each model architecture, at a significance level of α = 0.05. Correlation
analyses are used to denote the strength and direction of a relationship between two or
more quantitative variables [18, 15]. The non-parametric Spearman correlation is chosen
because the data is not normally distributed [15].

This analysis aims to provide an indication of how effective each DNN architecture is at
learning a policy to control the vehicle on a per-episode basis. The correlation analysis
results in a correlation coefficient r, with values in the range from -1 to 1 [18, 15]. A
correlation coefficient of +1 indicates a perfect positive correlation, while a correlation
coefficient of -1 suggests a perfect negative correlation [15]. Values close to +1 or -1
indicate a strong correlation [15]. Conversely, a correlation coefficient of zero indicates
that there is no linear relationship between the two variables [15].

In the case of this thesis, the higher the correlation coefficient, the stronger the corre-
lation between the amount of training and the DNN model’s performance. Hence, the
correlation analysis aims to provide a quantitative measure of how quickly the model is
able to improve performance on a per-episode basis.

Additionally, the p-value (p) is calculated, which denotes whether the relationship is sta-
tistically significant [15]. This indicates how reliable the correlation analysis is, whereby
a p-value of < 0.05 is considered significant.
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6.1. Training

Figure 6.1 shows the results obtained from training the modified "DAVE-2" model ar-
chitecture. It is observed that the number of steps per episode remains relatively stable
until shortly before the 200th episode, after which higher peaks along with a steady
increase in the cumulative average can be observed. A Spearman correlation test is per-
formed on the episode number and the number of steps per episode for all episodes after
the epsilon decay process is completed. This reveals a significant positive correlation of
r(328) = 0.619, p < 0.001. The maximum number of steps recorded in a single episode
during the training process using the modified "DAVE-2" model architecture is 900. Af-
ter training, the model is allowed to run in the 3D simulation environment using the
weights from the final training episode, achieving 3,376 control steps before crashing.

Figure 6.1.: Training outcomes for modified "DAVE-2" DNN architecture

Figure 6.2 shows the results obtained from training the Donkey Gym open source model
architecture. It is observed that the number of steps per episode remains relatively
stable until approximately the 200th episode, after which higher peaks can be observed,
however low values remain similar to the earlier episodes. A stronger positive gradient
can also be observed in the cumulative average in this area. Shortly after the 300th
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episode a dramatic increase in the number of steps per episode is observed, which is
strongly reflected in the cumulative average. A Spearman correlation test is performed
on the episode number and the number of steps per episode for all episodes after the
epsilon decay process was completed. This reveals a significant positive correlation of
r(341) = 0.755, p < 0.001. The maximum number of steps recorded in a single episode
during the training process using the Donkey Gym open source model architecture is
46,001. After training, the model is allowed to run in the 3D simulation environment
using the weights from the final training episode. This is stopped after 24 hours without
crashing, which equates to approximately 758,106 steps.

Figure 6.2.: Training outcomes for open source Donkey Gym DNN architecture

Figure 6.3 shows the results obtained from training the custom model architecture. It
is observed that the number of steps per episode remains relatively stable until shortly
before the 200th episode, after which higher peaks can be observed, in addition to a
change in gradient to the cumulative average. A Spearman correlation test is performed
on the episode number and the number of steps per episode for all episodes after the
epsilon decay process is completed. This reveals a significant positive correlation of
r(327) = 0.655, p < 0.001. The maximum number of steps recorded in a single episode
during the training process using the custom model architecture is 27,766. After training,
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the model is allowed to run in the 3D simulation environment using the weights from the
final training episode. This is stopped after 24 hours without crashing, which equates to
approximately 706,702 steps.

Figure 6.3.: Training outcomes for custom DNN architecture

6.2. Comparison of Training Results

As presented in the preceding sections of this chapter, each of the three model architec-
tures produces different results during the training process.

Based upon the maximum control steps during the training process, the Spearman cor-
relation test result and the maximum number of steps achieved in the simulation en-
vironment after training (see Table 6.1), the modified "DAVE-2" model architecture
shows the weakest performance. The custom DNN model architecture shows better per-
formance than the modified "DAVE-2" model architecture and the Donkey Gym open
source DNN model architecture outperforms both the modified "DAVE-2" and custom
model architectures. However regarding the post-training simulation run time, the Don-
key Gym open source DNN model architecture ties with the custom model architecture,
as both were stopped after running for 24 hours without crashing. Based upon its overall
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Table 6.1.: Training results

Model architec-
ture

Spearman corre-
lation

Maximum steps
during training

Maximum steps
after training

"DAVE-2" model r(328) = 0.619,
p < 0.001

900 3,376

Donkey Gym open
source model

r(341) = 0.755,
p < 0.001

46,001 758,106 (no crash
after 24 hrs)

Custom model r(327) = 0.655,
p < 0.001

27,766 706,702 (no crash
after 24 hrs)

leading performance, the Donkey Gym open source model is selected for testing in the
experimental environment.

6.3. Experimental Environment

Figure 6.3 shows the results of 100 trials using the trained Donkey Gym open source
model architecture in the experimental environment. For each trial, the Truggy RC car
was placed in the same starting position (see Figure 4.3) and the system was set to run
using a button in the GUI. The graphs in Figure 6.3 depict the absolute number of trials
that resulted in one of the three success categories (crash, straight, corner), whereby the
graph colours match the track zones shown in Figure 4.3. The crash category indicates
that the system was not able to successfully navigate a straight section of track, the
straight category indicates that the system successfully navigated a straight section of
track, but could not navigate around a corner and the corner category indicates that the
system was able to successfully navigate both a straight section of track and around a
corner1. From the 100 trials performed, 48 resulted in the vehicle leaving the track in the
red zone (crash), 31 resulted in the vehicle leaving the track in the orange zone (straight)
and 21 resulted in the vehicle leaving the track in the green zone (corner). Finally, the
braking time is measured across 10 trials (see Table 6.2), resulting in a mean reaction
time of tstopping = 0.78s. The time recorded is measured from the moment the operator
presses the stop button on the GUI to the moment the vehicle comes to a full stop.

1Note that the results do not include the purple zone shown in Figure 4.3, as no trial reached that
area of the track.
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Figure 6.4.: Test outcomes using the trained Donkey Gym open source model in the
experimental environment, plotted per success category.

Table 6.2.: Braking time

Trial number Time (s)
1 0.93
2 0.76
3 0.89
4 1.08
5 0.49
6 0.63
7 0.54
8 0.71
9 0.89
10 0.91
Mean time 0.78
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This chapter discusses the results presented in Chapter 6. It also provides insights into
the limitations of this thesis and offers suggestions for future work that may build upon
this thesis.

7.1. Summary of Results

The training results presented in Chapter 6 show that RL is a viable and effective method
for training a DNN for the purpose of autonomous vehicle control. All three network
architectures demonstrated an ability to learn using RL and navigate the vehicle au-
tonomously around the track in the simulation environment, with both the custom and
Donkey Gym open source architectures demonstrating very good control abilities after
training was completed, both of these model architectures were able to control the vehicle
in the simulator for 24 hours without crashing or leaving the track.

Conversely, the results from the experimental environment show significantly poor per-
formance, with 52% of all trials showing some level of control ability (i.e., successfully
navigating a straight section or a straight section and a corner) and no trial successfully
finishing an entire lap of the track.

7.2. Review of Requirements

This section presents the outcomes of the requirements, with each being categorised as
either fulfilled, partially fulfilled or not fulfilled. A brief justification for the categorisation
is provided for each requirement.
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Functional Requirements

F1: The user should be able to start or stop the system at any time, as long as the
system is powered on and the control system is connected. [FULFILLED]

The control GUI allows the operator to start or stop the system at any time, as long as
the system is powered on and connected to the Truggy via WiFi.

F2: The system should receive and process camera sensor data in such a way that
steering control values are produced. [FULFILLED]

The implemented system uses image frames captured from the Pi Camera Module 2 and
processes them using binary thresholding for image segmentation. The segmented images
are then processed using a DNN to produce steering control values.

F3: The system should determine steering control values based upon the road-markings
present in the field of view of the camera. [FULFILLED]

The implemented binary thresholding for image segmentation is very effective at per-
forming feature extraction of the road markings and removing distracting background
features. This indicates that the DNN is receiving only information about the position
of the road-markings, hence they are used for calculation of steering control values. This
is visualised in Figures 5.10, 5.11 and 5.12.

F4: The system should react to a stop command in no more than the time or distance
that a human driver would require. [FULFILLED]

As established in Chapter 4, the German motoring association ADAC lists the average
human reaction time for braking as 0.8 to 1.2 seconds [1]. The RC car’s mean braking
time of 0.78 seconds suggests that the system outperforms a human driver, as it is able
to bring the vehicle to a complete stop before a human driver would begin to brake.

F5: The user should receive feedback about the system’s status. [FULFILLED]

The control GUI provides the user with information about the current operational status
of the system and the current steering angle. It also displays streaming video in both
the raw RGB format as well as the image processed format.
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Non-Functional Requirements

NF1: Onboard control system processing should occur using a Deep Neural Network.
[FULFILLED]

A DNN is used for the onboard processing of image frames in order to produce steering
control values.

NF2: The Raspberry Pi must communicate with the PWM controller via I2C bus.
[FULFILLED]

Communication between the Raspberry Pi and the PWM controller is implemented using
the I2C bus protocol.

NF3: Road markings should be white on a black road-surface. The total road width
should be equal to two vehicle widths. [FULFILLED]

The experimental environment was constructed using a black road-surface with white
road-markings, with an overall road width equivalent to two Truggy RC cars.

NF4: The system should be implemented such that it can run on a Raspberry Pi 4
Model B Single Board Computer. [PARTIALLY FULFILLED]

The system in the experimental environment runs on a Raspberry Pi 4 Model B. However,
the DNN inference time in the training environment is measured at an average of 0.01836
seconds, whereas inference on the Raspberry Pi takes on average 0.75378 seconds. As
the execution speed has a strong impact upon the overall performance of the system, this
requirement has been categorised as only partially fulfilled.

NF5: The Neural Network should be trained using reinforcement learning. [FUL-
FILLED]

The system was trained using reinforcement learning.

7.3. Limitations

Using the results established in Chapter 6 and the outcomes discussed in Section 7.1,
limitations in the implementation and experimental setup are now discussed.
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As addressed in Section 7.2, the execution speed of the system in the experimental
environment, specifically the DNN inference time, is substantially slower than in the
training environment. Because the system operates in a real-time environment, this
limitation directly affects the system’s ability to perform vehicle control effectively in the
experimental environment.

Due to the requirement of image processing to minimise the difference in input stimuli
between the 3D simulation environment and the experimental environment, a simula-
tion environment was selected based upon the ability to extract desirable features from
image frames, while ignoring undesirable and potentially distracting information. As
introduced in Section 5.1.1, the Donkey Gym open source simulator [23] provides ten
environments, however due to road-surface textures and unsuitable road-markings, only
one environment was suitable for training the final model that is transferred into the
experimental environment. Unfortunately this environment has a very simple design,
which resulted in a model trained for use in a very specific environment.

Additionally, as discussed in Section 5.1.4, due to the simplicity of the 3D simulation
environment, the throttle control value is set to 10% in order to prevent the DNN from
learning an optimal policy that simply holds the steering control at a constant value.
By lowering the throttle control value, the policy is forced to steer in a straight line
for straight sections of the track, rather than holding a constant steering control value
and cutting the corners of the track. A more complex 3D simulation environment that
features both left and right turns of different radii would not require the throttle control
variable to be manipulated in such a manner, in order to achieve the desired behavioural
outcome.

A further limitation is the requirement for strong image processing in order to produce
input stimuli for the DNN which are similar in both the 3D simulation environment and
the experimental environment. One of the core capabilities of a DNN is to perform feature
extraction, although this is limited by the complexity of the input stimuli (the higher
the complexity, the more features can theoretically be extracted). The aforementioned
image processing limits this complexity.

In the process of transferring the trained model from the 3D simulator to the experi-
mental environment, another limitation is the accuracy of the Truggy RC car’s steering
mechanism compared to the 3D simulator. Actions in the 3D simulator are perfectly
repeatable, whereas actions in the experimental environment do not have such high pre-
cision repeatability. The steering mechanism on the Truggy RC car has a sub-mechanism
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that prevents damage to either the steering servo or the steering rack itself. Whilst there
is obvious merit in this functionality, it prevents accurately repeatable steering control.

The most notable limitation is transferring a model trained in a perfectly repeatable
3D simulation environment into an imperfect real-world experimental environment. As
shown in Chapter 6, the training results in a highly accurate and performant vehicle
control system in the 3D simulation environment, however when implemented in the
experimental environment, the same level of accuracy and performance is not achieved.
Whilst image processing is used to normalise the input stimuli between the two environ-
ments, other variables such as steering mechanism accuracy are not controlled.

7.4. Future Work

Using the limitations set out in Section 7.3, recommendations for future work are now
offered.

The most limitations of this thesis stem from discrepancies between the 3D simulation
environment and the experimental environment. To address these limitations and allow
the system trained in the 3D simulator to be directly implemented in the experimental
environment, two approaches are conceptualised.

The first is to introduce a small level of error into the steering controls of the 3D simu-
lator to simulate the uncertainty of the real-world experimental setup. This could be as
simple as randomly adding or subtracting a percentage of the overall steering range from
the DNN generated control value, hence preventing the 3D simulator from producing
perfectly repeatable steering controls.

The second approach is to replace the steering mechanism on the Truggy RC car with
a direct-drive mechanism that provides more accurate and repeatable steering control.
With the implementation of this modification, it is expected that the increase in steering
mechanism accuracy would result in an increase in performance of the control system in
the experimental environment.

Alternatively, the limitations could be addressed by taking the model trained in the 3D
simulator and using it as a baseline to be trained further in the experimental environment.
Training the model in the environment in which it will be deployed and tested will produce
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the most performant outcomes, however will require a large amount of implementation,
especially in the image processing domain.

To address the execution speed limitation in the experimental environment, a hardware
upgrade is required. Whilst DNNs can be run on a CPU (as is the case in this thesis with
the use of the Raspberry Pi), the workload they produce is better suited for a graphics
processing unit (GPU). By deploying the system on hardware which has a dedicated
GPU, such as an NVIDIA Jetson which is designed for use with AI1, it is expected that
performance in the experimental environment will increase substantially.

Finally, due to the time constraints placed upon this thesis and the intrinsically long
periods of time required to train a model using RL, only three models were compared.
Future authors are strongly encouraged to use this thesis as a foundational framework to
allow them to commence training more quickly in the hope that they can then allocate
more time to model tuning.

1https://developer.nvidia.com/embedded/jetson-modules

68



8. Conclusion

This thesis investigated the use of reinforcement learning for the purpose of autonomous
vehicle control. A reinforcement learning agent, in the form of a Deep Neural Network,
was trained using online off-policy Deep Q-Learning. The resulting trained Deep Neural
Network was then implemented on a Raspberry Pi 4 Model B Single Board Computer,
alongside a comprehensive control and communications system that allows a user to
remotely control and monitor the system using a Graphical User Interface.

To conclude, this thesis has fulfilled all five functional requirements and four out of
five non-functional requirements, whilst one non-functional requirement was only par-
tially fulfilled. The results achieved during training demonstrate a strong potential of
reinforcement learning for use cases such as autonomous vehicle control. Three differ-
ent Deep Neural Network architectures were compared, whereby the Donkey Gym open
source model architecture showed the best performance. However, the lacklustre per-
formance of the system in the real world experimental environment reinforces that all
variables in the training and experimental environments must be carefully controlled,
such that they match as closely as possible.

The author strongly encourages future authors to take this thesis as a foundation and
build upon it by taking into consideration the presented limitations and considerations
for future work.
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A. DNN Model Summaries

A.1. Modified "DAVE-2" Model Summary

Model : " s e qu en t i a l "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
conv2d (Conv2D) (None , 40 , 40 , 24) 2424
_________________________________________________________________
conv2d_1 (Conv2D) (None , 20 , 20 , 36) 21636
_________________________________________________________________
conv2d_2 (Conv2D) (None , 10 , 10 , 48) 43248
_________________________________________________________________
conv2d_3 (Conv2D) (None , 10 , 10 , 64) 27712
_________________________________________________________________
conv2d_4 (Conv2D) (None , 10 , 10 , 64) 36928
_________________________________________________________________
f l a t t e n ( F lat ten ) (None , 6400) 0

_________________________________________________________________
dense ( Dense ) (None , 1164) 7450764
_________________________________________________________________
dense_1 ( Dense ) (None , 100) 116500
_________________________________________________________________
dense_2 ( Dense ) (None , 50) 5050
_________________________________________________________________
dense_3 ( Dense ) (None , 15) 765
=================================================================
Total params : 7 ,705 ,027
Tra inable params : 7 ,705 ,027
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A. DNN Model Summaries

Non−t r a i n ab l e params : 0
_________________________________________________________________

A.2. Open Source Donkey Gym Model Summary

Model : " s e qu en t i a l "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
conv2d (Conv2D) (None , 40 , 40 , 24) 2424
_________________________________________________________________
conv2d_1 (Conv2D) (None , 20 , 20 , 32) 19232
_________________________________________________________________
conv2d_2 (Conv2D) (None , 10 , 10 , 64) 51264
_________________________________________________________________
conv2d_3 (Conv2D) (None , 5 , 5 , 64) 36928
_________________________________________________________________
conv2d_4 (Conv2D) (None , 5 , 5 , 64) 36928
_________________________________________________________________
f l a t t e n ( F lat ten ) (None , 1600) 0

_________________________________________________________________
dense ( Dense ) (None , 512) 819712
_________________________________________________________________
dense_1 ( Dense ) (None , 15) 7695
=================================================================
Total params : 974 ,183
Tra inable params : 974 ,183
Non−t r a i n ab l e params : 0
_________________________________________________________________

A.3. Custom DNN Model Summary

Model : " s e qu en t i a l "
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A. DNN Model Summaries

_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
conv2d (Conv2D) (None , 40 , 40 , 24) 2424
_________________________________________________________________
conv2d_1 (Conv2D) (None , 20 , 20 , 48) 28848
_________________________________________________________________
conv2d_2 (Conv2D) (None , 10 , 10 , 96) 115296
_________________________________________________________________
conv2d_3 (Conv2D) (None , 5 , 5 , 96) 83040
_________________________________________________________________
conv2d_4 (Conv2D) (None , 5 , 5 , 96) 83040
_________________________________________________________________
f l a t t e n ( F lat ten ) (None , 2400) 0

_________________________________________________________________
dense ( Dense ) (None , 1024) 2458624
_________________________________________________________________
dense_1 ( Dense ) (None , 15) 15375
=================================================================
Total params : 2 ,786 ,647
Tra inable params : 2 ,786 ,647
Non−t r a i n ab l e params : 0
_________________________________________________________________
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B. Raspberry Pi Preparation Steps

1. Create an x64 image for the pi using Raspberry Pi Imager.
2. Open the IP configuration file:

sudo nano / e tc /dhcpcd . conf

3. Add the following lines to the end of the file to set a static IP address:

i n t e r f a c e wlan0
s t a t i c ip_address =10 .0 .0 .10/24
s t a t i c r ou t e r s =10 .0 .0 . 1
s t a t i c domain_name_servers =10 .0 .0 . 1

4. Save the file by pressing:

c t r l x
y
ente r

5. Install Conda:

cd Downloads
wget https : // github . com/conda−fo r g e / min i f o rge / r e l e a s e s /
l a t e s t /download/Mini forge3−Linux−aarch64 . sh
bash Mini forge3−Linux−aarch64 . sh
cd . .

6. Create a Conda environment:

conda c r ea t e −−name tf_truggy python=3.7
conda a c t i v a t e tf_truggy

7. Install the required dependencies in the Conda environment:
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B. Raspberry Pi Preparation Steps

pip i n s t a l l https : // github . com/ bi t sy−a i /
tensor f l ow−arm−bin / r e l e a s e s /download/
v2 .4.0 − rc2 / tensor f l ow −2.4.0 rc2−cp37−none−linux_aarch64 . whl
conda i n s t a l l −c conda−fo r g e opencv
pip3 i n s t a l l ada f ru i t −c i r cu i tpython −s e r v ok i t
pip3 i n s t a l l imu t i l s
pip3 i n s t a l l paho−mqtt
sudo apt i n s t a l l f fmpeg l ibsm6 l i bx ex t 6 −y
sudo apt i n s t a l l mosquitto mosquitto−c l i e n t s −y

8. Edit the mosquitto configuration file to allow remote connections to the mosquitto
mqtt server:

cd / e tc /mosquitto
sudo nano mosquitto . conf

9. Add the following lines to the end of the file:

l i s t e n e r 1883
allow_anonymous true

10. Save the file by pressing:

c t r l x
y
ente r

11. Enable the Pi Camera interface and I2C bus:

sudo rasp i−con f i g
S e l e c t : I n t e r f a c i n g opt ions
Set the Legacy camera opt ion to : enabled
Set I2C opt ion to : enabled

12. The Raspberry Pi is now ready to run the control system.
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