FAKULTÄT TECHNIK UND INFORMATIK Department Fahrzeugtechnik und Flugzeugbau

The 50 Most Important Parameters of the 60 Most Used Passenger Aircraft

How to overcome industry's secrecy towards passenger aircraft data?

When dealing with passenger aircraft, it is convenient to have a database with parameters at hand. As such, we never lose control of reality. A database exists since 2001 from Jenkinson et al. It is a good example but has not been maintained or extended for two decades. It is time to start from scratch.

PURPOSE

This project creates a database of more than 60 passenger aircraft types, which are most in use (based on in-service data from 2020). The aircraft are characterized by the most important 50 parameters.

METHODOLOGY

Almost all parameters were retrieved from manufacturer's documents for airport and maintenance planning as well as from EASA and FAA type certificate data sheets. Numbers were uniformly converted to SI units or aviation units (nautical mile, knot, flight level).

FINDINGS

In 2020 many aircraft were in storage but got also considered here. The Boeing 737-800 and the A320ceo account already for a 30% share of the market. With 60 aircraft types more than 94,66% of existing passenger aircraft are covered. The database (Figure1) contains general parameters, overall dimensions, parameters from the engine, cabin, fuselage, landing gear, wing and tail. In addition, fuel tank volume, mass, range, and parameters from cruise flight are available.

RESEARCH LIMITATIONS

For aircraft still in development, certificate data sheets and manufacturer's data will be available only after certification.

PRACTICAL IMPLICATIONS

The database is convenient for general use. It is available in Excel and HTML. The Excel table can be used to calculate further values and to easily add parameters.

ORIGINALITY

The well-known database from Jenkinson et al. is from 2001. This new approach includes recent aircraft types and shows its data sources.

	B	С	D	E	F	G	Н	1	J	K	
1	Manufacturer	Airbus	Airbus	Airbus	Airbus	Airbus	Airbus	Airbus	Airbus	Airbus	
2	Aircraft type	A220-300	A319ceo	A319neo	A320ceo	A320neo	A321ceo	A321neo	A330-200	A330-300	
3	Total number of operating A/C	72	1243	0	4132	1009	1591	355	502	707	

4	Option/Variant	-	-	-	-	-	-	-	A330-203	A330-303	
5	No. of Engines	2	2	2	2	2	2	2	2	2	
6	Model	PW1521G	CFM56-5A5	LEAP-1A26	CFM56-5B4	LEAP-1A29	CFM56-5B1	LEAP-1A32	CF6-80E1A3	CF6-80E1A3	
7	Max. Rated Takeoff Thrust, T_TO [kN]	97,73	104,53	120,64	120,1	130,29	133,44	143,05	304,84	304,84	
8	Equivalent Power, P [kW]	-	-	-	-	-	-	-	-	-	
9	Propeller	-	-	-	-	-	-	-	-	-	
10	Length, I_CABIN [m]	27,5	23,78	23,78	27,51	27,51	34,44	34,44	45	50,36	
11	Max. Height, h_CABIN [m]	2,13	2,25	2,25	2,25	2,25	2,25	2,25	2,4	2,4	
12	Max. Width, d_F,I[m]	3,28	3,7	3,7	3,7	3,7	3,7	3,7	5,26	5,26	
13	Passenger Compartment Volume, V_CABIN [m³]	N/A	120	120	139	139	155	155	335	372	
14	Height, h_F [m]	3,72	4,14	4,14	4,14	4,14	4,14	4,14	5,64	5,64	
15	Width, w_F [m]	3,51	3,95	3,95	3,95	3,95	3,95	3,95	5,64	5,64	
16	Length, I_A/C [m]	38,7	33,84	33,84	35,57	35,57	44,51	44,51	58,82	63,66	
17	Span, b_W[m]	35,1	35,8	35,8	35,8	35,8	35,8	35,8	60,3	60,3	
18	Height, h_A/C [m]	11,5	11,76	11,76	11,76	11,76	11,76	11,76	17,39	16,79	
19	Track, I_T [m]	6,73	7,59	7,59	7,59	7,59	7,59	7,59	10,68	10,68	
20	Wheelbase, I_WB[m]	15,31	11,04	11,04	12,64	12,64	16,91	16,91	22,18	25,38	
28	Area, S_H[m²]	36,6	N/A	N/A							
29	Span, b_H[m]	12,26	12,45	12,45	12,45	12,45	12,45	12,45	19,4	19,4	
30	Taper Ratio, λ_H	0,375	0,375	0,375	0,375	0,375	0,375	0,375	0,4	0,425	
31	1/4 Chord Sweep, φ_25,H[°]	30,5	28	28	28	23,5	23,5	23,5	29	29,5	
32	V_MO [kt]	489	488	488	488	488	488	488	573	573	
33	M_MO [Mach]	0,82	0,82	0,82	0,82	0,82	0,82	0,82	0,86	0,86	
34	Cruise Speed, M_CR[Mach]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
35	Max. Certified Flight Level, h_MCR [FL]	410	410	410	410	410	410	410	414,5	414,5	
36	Cruise Altitude, h_CR [FL]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		105					10	1.0	070	070	

Aircraft database in Excel. Figure 1:

All details in the Bachelor Project of Hirsch (2022): https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2022-10-01.013

Associated research data (Harvard Dataverse): https://doi.org/10.7910/DVN/YAHODP

Prof. Dr. Dieter Scholz, MSME

HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Database in HTML: https://purl.org/aero/AircraftDatabase/html

Database in Excel:

https://purl.org/aero/AircraftDatabase/excel

