
BACHELOR THESIS

Deepfake detection

via facial landmarkmotion

analysis during person-specific

word pronunciation

May 17, 2024

Jannik Zamboni

First examiner: Prof. Dr. Marina Tropmann-Frick

Second examiner: Prof. Dr. Martin Schultz

HOCHSCHULE FÜR ANGEWANDTE

WISSENSCHAFTEN HAMBURG

Department Technik und Informatik

Berliner Tor 7

20099 Hamburg

Abstract

Deepfakes have become increasingly more popular and realistic over the last few years
thanks to the fast advancement in machine learning architectures such as generative
adversarial networks (GANs). The creation and detection of these realistic deepfakes
remains a cat and mouse game due to the ever-improving nature of the GAN training
process. To break out of this cycle, a focus on person specific features instead of general
features to detect deepfakes is necessary. This thesis focuses on facial landmark features
that are in motion during the pronunciation of a select number of words of a specific
target person and utilizes different convolutional neural network (CNN) architectures
for its classification. It can be shown that this approach is feasible, produces results
with a high confidence and could also be expanded on more words. The trained model
is also resistant against various video resolutions and could successfully detect future
unseen video resolution formats.

Zusammenfassung

Deepfakes sind in den letzten Jahren dank der rasanten Fortschritte bei Architekturen
des maschinellen Lernens wie Generative Adversarial Networks (GANs) immer beliebter
und realistischer geworden. Die Erstellung und Erkennung dieser realistischen Deepf-
akes bleibt ein Katz- und Mausspiel, was in der Natur des GAN-Trainingsvorgangs liegt.
Um diesen Kreislauf zu durchbrechen, ist eine Konzentration auf personenspezifische
Merkmale anstatt allgemeiner Merkmale zur Erkennung von Deepfakes notwendig.
Diese Arbeit konzentriert sich auf Gesichtsmerkmale, die während der Aussprache einer
ausgewählten Anzahl vonWörtern einer bestimmten Zielperson in Bewegung sind, und
verwendet verschiedene Architekturen von Convolutional Neural Networks (CNNs) für
deren Klassifizierung. Es kann gezeigt werden, dass dieser Ansatz praktikabel ist, Ergeb-
nisse mit hoher Zuverlässigkeit liefert und auf weitere Wörter ausgedehnt werden kann.
Das trainierte Modell ist außerdem resistent gegen verschiedene Videoauflösungen und
könnte erfolgreich Videos von unbekannten Videoauflösungsformaten erkennen.

Contents

List of Figures III

List of Tables IV

1 Introduction 1

2 Related works 3
2.1 Categories of manipulation . 3
2.2 Detection . 4

3 Fundamentals 6
3.1 Neural Networks . 6

3.1.1 Regularization . 8
3.1.2 Loss functions . 9
3.1.3 Optimization functions . 10
3.1.4 Activation functions . 12
3.1.5 Convolutional Neural Networks 13
3.1.6 General Adversarial Networks 13
3.1.7 VGG 16 model . 15
3.1.8 ResNet 50 model . 16
3.1.9 DenseNet121 model . 17

3.2 Whisper . 18
3.3 MediaPipe . 19
3.4 TensorFlow . 20
3.5 Wav2Lip . 21

4 Data preprocessing 22
4.1 Collecting videos and transcribing words 22
4.2 Creating sub clips . 24
4.3 Facial landmark extraction . 26

I

4.4 Creating TensorFlow dataset with tensors 28
4.5 Preparation of fake dataset . 30
4.6 Fixing mistakes of the previous dataset 31

5 Results 33
5.1 First experiments and early problems 33
5.2 Experimenting with different model architectures 34
5.3 Testing different functions for a modified VGG16 model 35
5.4 Experimenting on more balanced dataset 36
5.5 Experiments to solve overfitting . 39
5.6 Scaling experiments up to balanced dataset 41
5.7 Final experiments with deepfake dataset 42

6 Discussion 46

References 49

II

List of Figures

3.1 Neural Network . 7
3.2 GAN architecture (Google, 2022) . 14
3.3 Residual Block (He et al., 2015) . 16
3.4 Facial Landmark Detection Task . 20

4.1 Selection of removed videos . 22

5.1 Confusion matrix of modified VGG16 model 37
5.2 Multi input model . 43
5.3 Confusion matrix for final run . 45

III

List of Tables

3.1 VGG-16 architecture (Datagen, 2024b) 15
3.2 ResNet-50 architecture (He et al., 2015) 17

4.1 25 most common words . 24
4.2 Most common 5 words - group A . 27
4.3 Most common 6-25 words - group B . 27
4.4 most common 20 words for fake dataset creation 30

5.1 Simple CNN-architecture . 33
5.2 modified VGG-16 model . 38
5.3 simplified VGG-16 model . 41

IV

1 Introduction

We are living in a time where we see the world through the lense of technology. The
same technology that is used in filters on social media, to improve the lighting in
photos or to add or remove parts in an image to make it more appealing to list a few
examples. In recent years these processes were greatly improved by the advancement
of machine learning, which were branded under artificial intelligence, and delivered
new capabilities in the synthesis and manipulation of convincing looking media even
up to the point of creating media that has never been seen before and that challenges
our ability to distinguish a well-made illusion from the truth.

This challenge becomes apparent in the rise of DeepFake manipulation that utilizes deep
learning techniques in machine learning to create fake videos based on a swap of the
face of the involved person with another person’s face. Examples are political figures
that deliver fabricated speeches or celebrities partaking in movies they have not been
cast for. The term “Deepfake” originated from the username of a Reddit user named
“deepfakes” who claimed in 2017 to have used deep learning algorithms to transpose
celebrity faces into porn videos. (Tolosana et al., 2020) Over the last few years there
have been great improvements in the quality, resolution, and its ability to conceive a
human. Through the fusion of voice manipulations and facial expressions it challenges
our understanding of the integrity of digital content.

To solve this problem deep learning networks were trained that classify an image as
real or as a fake. These networks were trained on various sources including fake and
original media content and utilized GAN-specific fingerprints, artifacts, and a range
in different color features among others. This led to a cat and mouse game due to the
ever-improving generation of fake media content as well as the classification thereof.

Due to the nature of these training processes that require vast computational resources,
to complete the process in a reasonable amount of time, and that make use of a diverse
training dataset of many people, a generalized network is trained that can be used
with a certain confidence for different people. However, due to the variation in the
training data of these individuals, the resulting network may not be able to imitate

1

each person-specific motion in every detail and those motions might be substituted by
a generalized pattern or a specific dominant but random motion from the training data.

The main hypothesis that is being followed in this bachelor thesis is that the facial
landmark motion during a word-specific pronunciation might be a way to identify
an original video from a fake one if the detector is only trained on the input data of
one specific person. Other research questions are whether this identifier would be
independent of video resolutions, as that is something other detectors are struggling
with, and what benefits different architectures might have. However the detector should
also stay competitive to other previous works ideally at the same time.

The person of interest for this project will be Barack Obama as there are already some
samples of deepfake available as well as archived original videos from the time of his US
presidency. A classifier that is able to identify the facial landmark motion for a selected
number of the most common words will be created for this project as proof of work.

Structure of this thesis

The second chapter of this thesis gives an overview of different categories of digital
image manipulation techniques as well as some different categories for deepfakes. It
also talks about methods that have been used to detect deepfakes such as anomalies in
the spatial or frequency domain or in biological signals. At last this chapter also briefly
touches how these detection methods could be evaded.

In chapter three the concepts and theory of how neural networks are designed and
what mathematical components are necessary in their creation. Some different network
architectures as welll as frameworks are also introduced that are used in the project for
this thesis.

The fourth chapter talks about the process of data preparation that was done for this
thesis as well as how some of the mistakes that were made could be fixed.

In the results chapter the experiments done for this project are explained. A large focus
of this part is on the experiments that failed and it ends with a successful training of a
model.

The thesis ends in the sixth chapter where the research questions are evaluated, the
findings are put in context and an outlook for future research is given.

2

2 Related works

When it comes to research on different techniques and methods that can be used to
manipulate digital media such as images, audio or video the list is very long. As audio
is not the focus of this bachelor thesis any techniques concerning audio only will
be mentioned briefly. Videos consist of multiple images so any technique for image
manipulation can apply to videos as well. Therefore a closer look at image manipulation
techniques will be taken in this section with a focus on face manipulation. It is important
to understand the limitations of different detection techniques so some variations may
be added as there is no single solution that is able to detect all manipulations.

2.1 Categories of manipulation

Facial manipulations of images can be categorized in four main groups. (Tolosana
et al., 2020) These are entire face synthesis, identity swap, attribute manipulation and
expression swap. Entire face synthesis involves the generation of a non-existent face
images that achieve a high level of realism. During identity swap the face of one
person in a video is replaced by the face of another person. Therefore this would be
the category that deepfakes are in. If only certain attributes such as glasses, gender
or age are manipulated it would be considered attribute manipulation. For expression
swap facial expressions of one person are replaced by the facial expression of another
person without swapping or changing the identity of the person in the video.
There are other categories of image manipulation that use original content in a way
that changes the narrative of the original. These include lookalikes, doctoring, splicing,
omission, isolation or misrepresentation parts or entire videos. (Ajaka et al., 2019)
Lookalikes, also known as impersonators or doppelgangers, of a target person can
create videos that lack signs of manipulation as the video itself is real. In combination
with low resolution, bad lighting, fog or rain the difficulty to differentiate truth from
fake is increased.
Doctoring includes alterations of a video by changing the speed, cropping, adding or

3

deleting visual information or dubbing the audio, which means the process of replacing
the original dialogue in a video with a translated version of the dialogue in a different
language (Amberscript, 2023). Dubbing can also be used to create a false narrative
through the choice of words that may not match the original meaning. (Brannon et al.,
2023)
Splicing describes the process of editing together different videos or rearranging parts
of a video to create an altered version of the story whereas omission means editing out
portions of a video in a way that changes the presented narrative.
Isolation involves the presentation of a video in a different context that can be achieved
by cutting a short clip out of a longer video. Misrepresentation means presenting an
unaltered video with a different narrative or description.
All of these categories could include facial manipulations but as the narrative is already
changed this would not need to be the case. If the faces are unaltered any detection
method that focuses solely on the faces would be unable to make correct predictions.

2.2 Detection

The detection of image manipulations relies on their extracted features in the spatial or
frequency domain as well as on biological signals. (Juefei-Xu et al., 2021) Three critical
factors for the practicality of a detector that is supposed to be deployed in the wild are
its generalization, meaning its ability to accurately predict new data, robustness against
various adversarial attacks, which means any sort of transformation or manipulation
aimed to deceive the detector and cause misclassification, and the explainability of the
detection results when it comes to human interpretation. (Juefei-Xu et al., 2021)

Spatial domain detection involves both visible and invisible artifacts on the spatial
domain. This includes image forensics based detectionmethods that focus on differences
between chrominance components, by highpass filtering to remove image content and
investigating the disparities in image residuals (H. Li et al., 2018), photo response non
uniformity pattern, which looks at the noise in digital camera images from a certain
sensor and therefore works similar to a fingerprint of a camera (Koopman et al., 2018),
or leveraging local motion features from real videos to identify if the local motion
of keypoints is consistent. (G. Wang et al., 2020) Deep neural network (DNN)-based
detection methods are data-driven that extract spatial features to improve generalization
in the detection of images created by various DNNs, but suffer from additive noises
or especially adversarial noise attacks. Some methods focus on obvious artifact clues

4

that are distinct patterns of individuals like facial and head movements. (S. Agarwal,
El-Gaaly et al., 2020) Others focus on locating manipulated regions and making them
visible so that future detectors can focus on these regions. (Y. Huang et al., 2020) Another
angle of detection is facial image preprocessing, that aims at extracting local features
of convolutional traces in a facial image that is then analyzed by a simpler classifier.
(Guarnera et al., 2020) Most popular are spatial detection attempts but with increasingly
realistic deepfakes these attempts might be less effective as each new generation of
GANs and DNNs could learn to reduce or avoid the artifacts and fingerprints that
current DNN spatial detection techniques rely on. (Juefei-Xu et al., 2021)

Frequency domain detection focuses on artifacts that are created by GANs due to
limitations or simplifications in their architecture. This could be a limited frequency of
saturated pixels or artifacts due to the upsampling in a network design. (McCloskey
und Albright, 2018) (Zhang et al., 2019) These artifacts could be destroyed by simple
perturbation attacks. (Yu et al., 2018) Frequency based detection methods are less
effective against compression, reconstruction, blurring but generalize well on unknown
synthetic techniques with similar architectures. (Zhang et al., 2019)(Yu et al., 2018)

Detection based on biological signals involves the consistency between visual and
acoustic signals. This can be letters such as M, B, P that have to start with closed lips.
(S. Agarwal, Farid et al., 2020) Another example is that faked faces are sometimes fixed
in their size or that synthesized faces lack eye blinking. (Y. Li und Lyu, 2018) (Y. Li
et al., 2018) Other attempts include determining the heart rate from a video or the
presence of blood flow based on subtle color differences in the human skin. (Qi et al.,
2020)(Hernandez-Ortega et al., 2020)

Evasion

Evasionmethods of deepfake detection include adversarial attacks that add imperceptible
adversarial perturbations to significantly reduce accuracy of detectors. (Carlini und
Farid, 2020) There are multiple other variants of this type but all add noise or reduce
image quality. (S. Wang et al., 2019) (Juefei-Xu et al., 2021) A different method focuses
on removing fake traces in the frequency domain which improves the synthesis quality
significantly. (Jiang et al., 2020) Newer trained GANs can generate images with realistic
frequencies. (Jung und Keuper, 2020) A third method uses advanced image filtering or
generative models to get rid of fake traces without a reduction in image quality. (Neves
et al., 2019)

5

3 Fundamentals

The goal of machine learning is to have a computer model mimic the behavior that is
done by human experts to achieve a desired outcome. (IBM, 2021) For this to work it is
not required to define the necessary steps for this process but instead it is important
to define the input with synchronized output that the model can attempt to extract
the desired connections from. Ideally the model can then be used in a more general
context if the training dataset and its context are similar enough and within the same
constraints as the new context.

3.1 Neural Networks

In machine learning it is common to loosely base the architecture for the learning
process on the biological neurons in the human brain (Kaste, 2023). This concept is
abstracted and transferred on a mathematical activation function that calculates an
output for a given input. If the output is above a certain threshold, the neuron will be
activated and data is sent to the next layer in a network of multiple neurons (IBM, 2021).
Each neuron is connected to at least one other neuron and has a weight, threshold and
bias assigned to it. The calculation from an input to an output throughout the entire
network is called forward propagation (Lin, 2023). The weights are randomly initialized
and the bias is initialized with 0.

During forward propagation the input is passed through the network only in one
direction through the hidden layers to the output layer. The network does not have any
loops that might prevent the successful computation of the output (deepai.org, 2024b).
In Figure 3.1 there are 4 inputs 𝑥1 to 𝑥4 that are connected to the first hidden layer.
Each of the connections between the neurons has a weight assigned to it and each of
the neurons in the hidden layer has a bias as well. When an input is received each
neuron in the first hidden layer will calculate the weighted sum of all its connected

6

x1

x2

x3

x4

h1,1

h2,1

h3,1

h1,2

h2,2

h3,2

y

w11

w33

w43

w73

w62

w51

w81

w101

w91

Input-Layer Hidden-Layer Output-Layer

w12

w13

w21

w32

w31

w42

w41

w52

w72

w71

w53

w63

w61

Hidden-Layer

w22

w23

b2 b3b1

Figure 3.1: Neural Network

input values and will add the bias. Malhotra defines the equation in (2018) as:

𝑎(𝑥) = 𝑏 +∑
𝑖
𝑤𝑖 ∗ 𝑥𝑖 (3.1)

This result is then passed to the activation function which Malhotra defines in (2018)
as:

h(x) = g(a(x)) (3.2)

This function calculates the non-linear output of the neuron (Iuhaniwal, 2019). This
process is repeated for all neurons of the hidden layers as well as the output neuron.
The inputs for the second layer of hidden neurons are the outputs of the previous
neuron layer.

During the training of a network the provided input data is passed to the network and
a result is calculated (Oppermann, 2024b). The combination of input and output will be
measured by a loss function, that determines how good the model is performing for its

7

designated task (Kaste, 2023). To improve and optimize the parameters of a network,
that are represented by the weights, a back propagation algorithm is applied. The
goal of this algorithm is to achieve a gradient descent in the error surface and thereby
approach a minimum of the loss function by optimizing the weights of the network
(Kaste, 2023). The loss function is used to calculate the partial derivative for all the
weights which are then updated in the direction of a negative gradient. The change of
the weights can be descriped as:

△𝑊 = 𝜇 ∗ ▽𝐸(𝑊) (3.3)

The learning rate determines how wide each step can be taken and is essential for how
fast a local minimum can be reached and also if other suitable minimum are skipped
(Kaste, 2023).

Under- and Overfitting

Overfitting is a machine learning behavior that occurs when the model adapts too well
on the training dataset and looses its ability to generalize well on new unseen data. To
prevent this behavior the dataset is usually split into training dataset and test dataset
in order to test if the accuracy between both datasets differs. In this case the model
likely adapted too close to the training dataset. (IBM, 2024)(AWS, 2024b)

Similar to overfitting is underfitting which is a behavior that occurs when the model
failed to identify dominant trends or datapoints. This happens in cases where there are
too many relevant features or the training process was stopped early. As a result the
accuracy for both the training dataset as well as any test dataset or new unseen dataset
is low. (IBM, 2024)(AWS, 2024b)

3.1.1 Regularization

“Regularization is a set of methods for reducing overfitting in machine learning models.
Typically, regularization trades a marginal decrease in training accuracy for an increase
in generalizability.” (Murel, 2023) Common examples are L1, L2 and elastic net regularization
for linear models as well as dropout for neural networks and early stopping for model
training.

L1 regularization is also known as L1 norm or Lasso regression (Murel, 2023). It is
supposed to penalize high-value and correlated coefficients (Pykes, 2023). The cost

8

function is altered and a penalty term (also known as a regularization term) added to
it. This penalty term is the absolute weights of each individual feature. It is known to
perform feature selection by shrinking the coefficients of less important features to
zero which will make some features obsolete. (Javatpoint, 2017) This results in a sparse
model where only a subset of features are used (Islam et al., 2024).

L2 regularization is also known as Ridge regression (Gupta, 2017). It is similar to L1
regularization but makes use of the squared weights instead of their absolute values
(Javatpoint, 2017). Therefore this technique is more prone to outliers (Pykes, 2023). L2
regularization shrinks the coefficients of less important features but does not set them
to zero (Murel, 2023). This results in a model where all features are used, but the less
important features have smaller coefficients (Islam et al., 2024).

Elastic net regularization combines both penalty terms of L1 and L2 regularization into
the squared errors loss function Murel, 2023). The L1 and L2 norm are muliplied by
two hyperparameters, 𝛼 and 𝜆, and the L1 norm is used to perform feature selection,
whereas the L2 norm is used to perform feature shrinkage (Dhumne, 2023).

Dropout can be utilized in neural networks to randomly drop out nodes including
their input or output connections during training from the network. This way several
variations of the network architecture are trained and the network without any left out
nodes is used for tests. After the training process, the result relies on an approximation
of the average modified training architectures and generalizes therefore better when
compared to an trained network without dropout. (Murel, 2023)

Early stopping is a regularization technique that is used during the training of a model.
After every epoch the validation accuracy is checked if it has plateaued within a set
number of epochs. The training is stopped in that case and a further increase in the
validation error is prevented (Murel, 2023).

3.1.2 Loss functions

A loss function measures how well a neural network has done a certain task such as
regression or classification. For classification tasks there are two popular loss functions
that were also used in this project. These are binary cross entropy and categorical
cross entropy (Chakravarthy, 2020). In general a small loss is better than a large loss
(Chakravarthy, 2020).

9

Binary crossentropy is used in case of binary decisions between two classes. The loss
provides insights of how accurate the predictions of the model are (Yathish, 2022). This
is measured for each class and the final loss contains the average of both involved
classes. A mathematical representation for binary crossentropy where ̂𝑦 is the predicted
value according to (Chakravarthy, 2020) is:

𝐿(𝑦, ̂𝑦) = − 1
𝑁

𝑁
∑
𝑖=0

(𝑦 ∗ 𝑙𝑜𝑔(̂𝑦𝑖) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − ̂𝑦𝑖)) (3.4)

For categorical crossentropy the function compares multiple classes against each other
and focuses on how the predictions are distributed compared to the true distribution
(Chakravarthy, 2020). Categorical crossentropy is very similar to binary crossentropy
when the number of classes is 2. The mathematical equation stated in Yathish, 2022 is:

𝐿(𝑦, ̂𝑦) = −1
𝑛

𝑁
∑
𝑖=1

𝑀
∑
𝑗=1

(𝑦 ∗ 𝑙𝑜𝑔(̂𝑦𝑖) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − ̂𝑦𝑖)) (3.5)

3.1.3 Optimization functions

In principle optimizers are methods that are utilized to update the weights of a neural
network during backpropagation to reduce the loss (Doshi, 2019).

Gradient descent is the most basic optimization algorithm (Doshi, 2019). The gradient
is calculated for the full dataset and the average is used to update the weights. Due to
this procedure it may take a lot of resources to calculate when the dataset is very large
(Baeldung, 2023). It might also get trapped at a local minimum (Doshi, 2019).

Stochastic gradient descent (SGD) is similar to gradient descent but does not calculate
every entry in the dataset before updating the weights. Instead a portion that is
chosen at random is used (Baeldung, 2023). The main advantage of this is an increased
speed compared to gradient descent. However the result can be more erratic as the
convergence can happen on a local minimum instead of the true minimum and the
steps are taken after a random sample of the dataset (Vungarala, 2023).

The Adam optimizer combines the strengths of Momentum Update, which introduces a
fraction of the weight adaptation of the previous time step to continue convergence in
case of a shallow local minimum or a change in the gradient direction, and RMSprop,
which introduces an adaptive learning rate based on a division between the current

10

gradient and the moving average of the squared sum of the previous gradients that
descends over time (Sharma, 2023). This causes the learning rate to increase when the
variance of gradients is low and the learning rate to decrease when the variance of
gradients is high. (R. Agarwal, 2023)

The steps for Adam are to initialize the weights, use the loss function to calculate the
gradient as well as the moving averages of squared values, to correct the bias that are
part of the moving average and to update the weights accorrdingly until a threshold or
iteration count is reached to end the calculation (deepai.org, 2024a). These calculations
are shown as follows:

𝑚0 = 0, 𝑣0 = 0 (3.6)

In equation 3.6 at time 𝑡 = 0 an initialization with 0 of the first and second impulseterm
𝑚0 and 𝑣0 is taking place (Oppermann, 2024c).

𝑚𝑡+1 ← 𝛽1𝑚𝑡 + (1 − 𝛽1)∇𝜃𝐿(𝜃) (3.7)

The equation 3.7 is showing the first impulse 𝑚𝑡. 𝛽1 is a hyperparameter that is also
multiplied as 1 − 𝛽1 with the current gradient (Oppermann, 2024c). It functions similar
to stochastic gradient descent (SGD) with impulse.

𝑣𝑡+1 ← 𝛽2𝑣𝑡 + (1 − 𝛽2)∇𝜃𝐿(𝜃)2 (3.8)

Equation 3.8 has 𝑣𝑡 as a second impulse. 𝛽2 is another hyperparameter that is multiplied
with the squared current gradient. This effectivelyworks similar to RMSprop (Oppermann,
2024c).

𝜃𝑗 ← 𝜃𝑗 −
𝜖

√𝑣𝑡 + 1 + 1𝜖−5
𝑚𝑡 + 1 (3.9)

The equation 3.9 combines both parts of 3.2 and 3.3 to have the advantages of SGD with
impulse and RMSprop combined in the Adam optimizer (Oppermann, 2024c).

𝑚𝑡+1 ←
𝑚𝑡+1

1 − 𝛽 𝑡1
𝑣𝑡+1 ←

𝑣𝑡+1
1 − 𝛽 𝑡2

(3.10)

The equations in 3.10 show the bias correction that needs to take place as the first and
second impulse were initialized with zero. This can cause large steps in the update of the
weights in the first few steps which can be avoided by this bias correction (Oppermann,
2024c).

11

3.1.4 Activation functions

The role of an activation function is to enable a neural network to learn patterns in
data that can be very complex. As not all patterns can be predicted by a linear classifier
(Jain, 2019). Without an activation function the output of a neuron would follow the
format 𝑤 ∗ 𝑥 + 𝑏 that is of degree 1 and therefore linear (Jain, 2019).

The Sigmoid or Logistic Sigmoid function is defined as:

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

(3.11)

It squishes all outputs between [0,1] and shows a saturation towards high and low
inputs. This makes it prone to the vanishing gradient problem. As the output is also not
centered around zero it tends to have poorer convergence compared to other functions
(Dubey et al., 2021). This function plays a central role in binary classification (Topper,
2023). It is also usually used in the last layer of a neural network.

The Softmax function is generally used in the last layer of a neural network for multi
class classification (Franco, 2024). Its purpose is to provide a probability distribution
in the interval [0,1] for all classes (Dubey et al., 2021). The combined values of the
distribution is equal to 1 (Franco, 2024). The function itself according to Lang, 2023 is
defined as:

𝑆𝑜𝑓 𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑧𝑖

∑𝐾
𝑘=1 𝑒𝑧𝑘

𝑓 𝑜𝑟𝑘 = 1, ..., 𝐾 (3.12)

The input to this function is a vector of K elements, where Z is the representation of
this vector and 𝑧𝑘 the representation of an element of said vector.

ReLU stands for Rectified Linear Unit and is an activation function which is the most
often used activation function for deep learning tasks (Krishnamurthy, 2024). The
activation itself for inputs above 0 are linear. ReLU is defined as 𝑅(𝑥) = 𝑚𝑎𝑥(0, 𝑥) or in
a more precise definition as stated in (Oppermann, 2024a):

𝑅(𝑥) = {
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.13)

”ReLU has been shown to accelerate the convergence of the gradient descent toward
the global minimum of the loss function compared to other activation functions.” as
stated by (Oppermann, 2024a) while also being computationally less expensive.

12

3.1.5 Convolutional Neural Networks

CNNs are generally used with a more dimensional input as it would be the case with
a 2-dimensional image. This image will be processed by a kernel that is slid across
the image and multiplied with the input to reduce the kernel input to a single value.
Usually this kernel size is a square of 2,3 or 4 leading to a total size of 4, 9 or 16. The
stride controls how many steps are necessary to slide the kernel across the image. The
kernel generally starts on the top left, moves to the right while doing calculations, then
slides one step down and moves all the way to the left but without any calculations
done and starts again until it reaches to bottom right of the image. This process reduces
a 10 by 10 image with a 3 by 3 kernel to a 8 by 8 image and is referred to as convolution
(Ganesh, 2019).

Each image can also have multiple channels that are used for colors. This is processed
by running the kernel over the image once for each channel. In addition multiple
kernels of the same size but with different randomly initialized weights and biases
can be used as well. If the 10 by 10 image mentioned above would have 3 channels
for colors and is processed by 5 different kernels, this leads to a 8 by 8 image with 15
channels. The input image is therefore transformed and convoluted into a smaller but
deeper object. This process will happen for each convolutional layer. These resulting
images are called feature maps, as each of the 15 feature maps can contain information
about a different feature of the original input data.

A group of convolutional layers is followed by another layer that is supposed to further
reduce the size of the image. For this step the max-pooling layer is common that halves
the input image size with a 2 by 2 window size. For this it takes for each 2 by 2 segment
of pixels only the maximum value. The channel number is not increased by this. Before
being passed to the final steps of the network, the input is flattened to 1 dimension, and
the following layers behave like the neural network described above (Skansi, 2018).

This architecture has the benefit of reducing the amount of trainable parameters
significantly compared to a standard neural network. The CNN trains noticeably
faster because of this (Mahajan, 2020).

3.1.6 General Adversarial Networks

GAN is an architecture that involves two models that are adversaries of another. One
generative model G, is supposed to generate new authentic data based on the original

13

data distribution and random noise as input, whereas another model D, is estimating
the probability of a sample being from the original dataset or from G.
In this setup both models are being trained alternately. During this training G is being
optimized to maximize the probability of mistakes being made by D. The training
process for D is instead optimizing of minimizing the probability of making mistakes.
This training process is continued until the samples generated by G are realistic enough
that D can no longer distinguish a fake from an original (AWS, 2024a).

This architecture is frequently used in generating images, such as transferring the style
of one image to another, change black-and-white images to color or upscale images or
videos to a higher resolution (Goodfellow et al., 2014).

Figure 3.2: GAN architecture (Google, 2022)

14

3.1.7 VGG 16 model

The VGG 16 model is a CNN with 16 layers, that was designed to classify 1000 classes in
a large image dataset (Simonyan und Zisserman, 2015). It has a 224x224x3 input layer
followed by 13 convolutional layers with ReLu activation function which is followed
by 3 fully connected layers (FC). These last 3 layers have 4096 neurons for the first two
layers and 1000 neurons for the third. The network ends with a softmax activation
function (Datagen, 2024b).

Table 3.1: VGG-16 architecture (Datagen, 2024b)

Input 224 x 224 RGB image
Block 1 3x3 Conv,64

3x3 Conv,64
2x2 MaxPool

Block 2 3x3 Conv, 128
3x3 Conv, 128
2x2 MaxPool

Block 3 3x3 Conv, 256
3x3 Conv, 256
3x3 Conv, 256
2x2 MaxPool

Block 4 3x3 Conv, 512
3x3 Conv, 512
3x3 Conv, 512
2x2 MaxPool

Block 5 3x3 Conv, 512
3x3 Conv, 512
3x3 Conv, 512
2x2 MaxPool

Block 6 FC 4096
FC 4096
FC 1000
Softmax

15

3.1.8 ResNet 50 model

ResNet is shortened from Residual Network and ResNet-50 is a convolutional network
that has a total of 50 layers (Datagen, 2024a). 48 of those are convolutional layers,
one is a max pool layer and another an average pool layer. Residual networks were
designed to solve a vanishing gradient problem that occurred as architectures became
increasingly deeper (Kundu, 2023).

The vanishing gradient problem is manifesting in the backpropagation during training
when small gradients (i.e. 10−5)) are multiplied with each other (Mukherjee, 2022). This
leads to changes to the last layers of the network which are getting smaller with each
multiplication during backpropagation towards the beginning of the network.
The exploding gradient problem is similar to the vanishing gradient problem, as
the gradients can reach orders of up to 104 or more. Depending on the number of
multiplications the gradient can move towards infinity (Mukherjee, 2022).
Both these problems slow down the learning process up to the point where the learning
process can get stuck.

ReLu

weight layer

x
identity

x

+

F(x)

F(x) + x

weight layer

Figure 3.3: Residual Block (He et al., 2015)

The residual network can solve this problem by including residual blocks in its architecture.
These blocks add skip connections to the network that add the activation of one layer

16

to the output of a later layer (He et al., 2015). Due to this some layers, that might have
a small gradient, can be skipped if these do not contribute anything to the result. The
benefit of this is that the network can be much deeper than conventional CNNs (Kundu,
2023).

Table 3.2: ResNet-50 architecture (He et al., 2015)

Input 224 x 224 RGB image
Block 1 7x7 Conv,64
Block 2 3x3 MaxPool

Block 3 (Residual) [
1𝑥1, 64
3𝑥3, 64
1𝑥1, 256

] x 3

Block 4 (Residual) [
1𝑥1, 128
3𝑥3, 128
1𝑥1, 512

] x 4

Block 5 (Residual) [
1𝑥1, 256
3𝑥3, 256
1𝑥1, 1024

] x 6

Block 6 (Residual) [
1𝑥1, 512
3𝑥3, 512
1𝑥1, 2048

] x 3

Block 7 2x2 AveragePool
FC 1000
Softmax

3.1.9 DenseNet121 model

DenseNet121 is part of a group of CNNs that have a pattern between the layers of
the architecture called dense connectivity, which creates a connection between each
layer while using the output of previous layers as the concatenated input for a layer
(NocodingAI, 2023). This improves the feature reusability, reduces the problem of
the vanishing gradient problem, has a positive influence on feature propagation and
requires less parameters in the network (G. Huang et al., 2016). The name DenseNet
stands for dense convolutional neural networks. The name DenseNet121 derives from
its 121 layers.

17

3.2 Whisper

Whisper is a name that is based on web-scale supervised pretraining for speech
recognition (Radford et al., 2022). It is an automatic speech recognition system (ASR)
that was trained on “680,000 hours of multilingual and multitask supervised labeled
audio data” (OpenAI, 2022), which were collected from various unspecified sources
from the internet (OpenAI, 2022). It can provide transcriptions in English and multiple
other languages as well as providing direct translations from non-English audio into an
English transcript (OpenAI, 2022).

“The Whisper architecture is a simple end-to-end approach, implemented as an encoder-
decoder Transformer. Input audio is split into 30-second chunks, converted into a
log-Mel spectrogram, with a 25 ms window and a stride of 10 ms, and then passed
into an encoder. A decoder is trained to predict the corresponding text caption,
intermixed with special tokens that direct the single model to perform tasks such
as language identification, phrase-level timestamps, multilingual speech transcription,
and to-English speech translation” as stated in (OpenAI, 2022).

Due to the large dataset that features diverse audio data ofWhisper, of which the English
language makes up about two thirds of, the model is robust against additive noise but
is outperformed by other models under low noise (Radford et al., 2022)(OpenAI, 2022).

Whisper can take only 30-second audio context at once and in order to solve the problem
of transcribing longer audio it relies on predictions of the timestamp tokens and shifts
the 30-second window across the audio data (Radford et al., 2022). With this approach
an inaccurate transcription or timestamp may impact transcriptions in any subsequent
window negatively (Radford et al., 2022).
To avoid failures in long-form transcription a set of heuristics was developed that is
based on beam search and the temperature for selecting tokens. This made the model
more reliable but did not solve the issue that the model potentially ignores the first few
words in the audio input. To solve this issue the initial timestamp token constraints
were set to be between 0.0 and 1.0 second (Radford et al., 2022).

whisper-timestamped

The original Whisper model is limited in its prediction of timestamps on a phrase-level
instead of a word-level. As the latter is required in this project to extract the facial
landmark motion during the pronunciation of one word, an extension to Whisper is

18

needed to achieve this. The chosen extension to solve this problem is called whisper-
timestampedwhich is compatible with other original versions ofWhisper. The approach
of whisper-timestamped is based on the dynamic time warping (DTW) technique, which
is a “popular technique for comparing time series, providing both a distance measure
that is insensitive to local compression and stretches and the warping which optimally
deforms one of the two input series onto the other” as stated in (Giorgino, 2009). This
technique is then applied to cross-attention weights (Louradour, 2023). It improves
the original Whisper model by including a confidence score for each word, word-level
timestamps and a detector for voice activity to avoid hallucinations that occur when a
word or phrase appears in the transcription for a silent audio part (Louradour, 2023).

3.3 MediaPipe

MediaPipe is a framework that includes several machine learning tasks that can be
deployed on multiple devices such as mobile, web, desktop and others. It is published
by Google as open source and is used in Google’s own products such as Google Lense,
Google Meet, YouTube and Google Photos.

Under MediaPipe solutions preview are several on-device machine learning solutions
made available that are easily integrated with low-code API. These solutions range from
multiple solutions for vision tasks such as gesture recognition, image classification and
face landmark detection to text tasks and audio tasks. (Google, 2024e)

The facial landmark detection task is used in the extraction of facial landmarks for this
project.

MediaPipe Face Landmarker

The MediaPipe Face Landmarker task is able to detect face landmarks and facial
expressions in images and videos (Google, 2024b). It can be used to identify human
facial expressions, apply facial filters and effects, and create virtual avatars. “This task
uses machine learning (ML) models that can work with single images or a continuous
stream of images. The task outputs 3-dimensional face landmarks, blendshape scores
(coefficients representing facial expression) to infer detailed facial surfaces in real-
time, and transformation matrices to perform the transformations required for effects

19

rendering” as stated in (Google, 2024b). The total number of 3-dimensional face
landmarks provided by this task is 478.

Figure 3.4: Facial Landmark Detection Task

3.4 TensorFlow

“TensorFlow is an open-source platform for machine learning using data flow graphs.
Each node in the graph represents mathematical operations, while the graph edges
represent the multidimensional data arrays (tensors) that flow between them” as stated
by (Nvidia, 2024).

“There are three distinct parts that define the TensorFlowworkflow, namely preprocessing
of data, building the model, and training the model to make predictions. The primary
method is by building a computational graph that defines a dataflow for training the
model. The second, and often more intuitive method, is using eager execution, which
follows imperative programming principles and evaluates operations immediately.” as
written by (Nvidia, 2024).

20

Keras

Keras is a deep learning API written in Python that focuses on debugging speed, code
elegance and conciseness, maintainability, and deployability. It is capable of running
on top of Tensor Flow, JAX or PyTorch (Google, 2024c)
Keras main strength is its consistency and simpliciy that helps in reducing the cognitive
load while minimizing the number of user actions required for common use cases
(Google, 2024a).

Keras Tuner

“KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that
solves the pain points of hyperparameter search. Easily configure your search space
with a define-by-run syntax, then leverage one of the available search algorithms to
find the best hyperparameter values for your models. KerasTuner comes with Bayesian
Optimization, Hyperband, and Random Search algorithms built-in, and is also designed
to be easy for researchers to extend in order to experiment with new search algorithms.”
as stated in (Google, 2024d).

3.5 Wav2Lip

Wav2Lip is a newmodel, which is an adapted and trained version of SyncNet (Raina und
Arora, 2022). Wav2Lip is speaker-independent and able to provide lip-sync accuracy
that matches real synced videos (Prajwal et al., 2020). This model is created with the
utilization of a lip-sync discriminator for adequate penalization of wrong lip shapes as
well as a second discriminator, with an architecture similar to LipGAN, for better visual
quality (Prajwal et al., 2020). With the lip-sync discriminator it is possible to train a
generator to generate accurate and realistic lip-motion more consistently. The second
discriminator is needed to reduce visible artifacts around the morphed regions of the
lip shapes (Prajwal et al., 2020)

21

4 Data preprocessing

4.1 Collecting videos and transcribing words

The original data has been collected from the presidential weekly addresses during the
presidency of Barack Obama. Each of these videos has then been briefly screened to
identify the presence of additional faces or different speakers than the target person.
From the selection removed were all videos that did not have the face of Barack Obama
visible throughout the whole video such as during the display of images or diagrams
as shown in figure 4.1. Furthermore, the videos each had a part with the logo of the
White House in the beginning as well as in the end. Unfortunately, these sections in the
videos did not have a fixed duration but instead showed various lengths that changed
slightly over the course of the years. To get rid of the undesired sections, the videos
were clipped with the help of the python library moviepy. It was possible to identify
silent parts in the videos that were longer than the given minimum silence length of 4
seconds, which only happened in the beginning and the end of the videos, and to only
keep the desired part of the clip. At the end of this step were 372 videos remaining.

Figure 4.1: Selection of removed videos

22

These videos ranged from 5.3 MB to 77 MB in size as the video data rate and video
total bit rate ranged from 186 kBit/s or 314 kBit/s up to 1767 kBit/s or 1893 kBit/s. The
duration of the videos ranged from 2:08 min to 7:56 min. The framerate per second
remained the same but a small portion of 3 videos were in a resolution of 640x360 pixels
instead of 1280x720 pixels.

After this step the audio was extracted for each video with the python library pydub and
saved in the WAV-format. This format was selected as it does not use any compression
and therefore removes the risk of losing information compared to other formats like
MP3.

To receive a transcription of the audio files a modified version of the Whisper model
is used. This model named whisper-timestamped can provide word-level timestamps
and confidence additional to the transcription. It is recommended to use the aid of
hardware acceleration with GPU that is supported by PyTorch as this step is fairly time
consuming (PyTorch, 2024).
Even in the standard version of Whisper there are several different models available.
These differ mainly in the language selection, as there are models that are solely trained
on the English language as well as other models trained on multiple languages. In this
project the medium.en model has been selected as it provided better accuracy for the
word timestamps compared to smaller models as well as also having the benefit of only
expecting English audio input.
The result of the transcription is saved in the JSON-format as a text file. The file size
for these JSON-files ranged from 63 KB to 252 KB.

The resulting files of the previous step were sorted and the most common 150 words
searched for. In this step a conversion to lower case letters as well as regular expressions
to drop non-letters were utilized to treat “Hello”, “hello” and “hello!” as the same word.
This was necessary as the transcription from Whisper includes various punctuation
marks that were not removed by the whisper-timestamped model and identification of
words.

The total number of words in all 372 videos that were kept in the sorting process was
229092 and the number of unique words was 9182. The most common word “the”
appeared 10246 times and the 150th most common word appeared only 235 times.

The most common 150 words still made up 134921 of all words in all videos or 58.89%.
As this reduced the workload of words to process only by half a further reduction in
the number of words to be used in the scope of this project is necessary.
Continuing with the most common 25 words as shown in table 4.1 this reduced the

23

representation among all words to 33.48% as these words still appeared combined 76707
times. The number of appearances between the most common word and the 25th most
common words was an order of magnitude as “the” appears 10246 times and “but”
appeared only 1081 times.
Even the most common 5 words only reduced the representation among all words to
16.56% as the combined occurrences accumulated to 37944. However, the fact that all
most common 25 words occur more than 1000 times has been used later in the creation
of the training dataset.

Table 4.1: 25 most common words

1. the 10246 2. and 8665 3. to 8563 4. of 5580 5. a 4890
6. in 3969 7. that 3877 8. we 3400 9. our 3367 10. for 2822

11. this 2189 12. on 1705 13. is 1677 14. have 1632 15. i 1491
16. it 1439 17. more 1413 18. are 1378 19. will 1339 20. their 1338
21. as 1259 22. you 1147 23. with 1128 24. thats 1112 25. but 1081

4.2 Creating sub clips

In the previous section the timestamps on a word level were already identified and
stored in the JSON-files.

When getting to the point of creating sub clips for these timestamps and trying to
isolate each word to a different clip it became apparent that the timestamps themselves
were not very accurate. Sometimes they were shorter or longer than the actual duration
of the word. In some cases, this happened because the following word came after a
punctuation mark, end of sentence or paragraph or due to some other form of pause
during speech. Sometimes the start and end times for a word were too short isolating
only the first half of a word and dropping the second half.
This was the case even with the extension whisper-timestamped that was used to
identify the timestamps on a word-level.

Part of the reason for this can be explained by an earlier attempt to isolate the words
into sub clips, that was done before the silence parts with the logos in the beginning and
end of each video were removed. This caused a shift throughout the entire prediction
of the timestamps by several seconds. In these cases, the words were still transcribed
correctly but the prediction for the beginning of a word or even sentence could be

24

marked after that part was already over. However even after these silent parts were
removed some inconsistencies remained in the predicted timestamps on a word-level.

To account for some inaccuracy in the prediction, that cannot be fully removed without
a model specifically trained for this task, a buffer for each word was introduced. This
buffer was based on the average word duration that an average speaker of the English
language takes when speaking roughly 140 words per minute. This leads to roughly
0.42 seconds on average per word. This buffer was then divided in half and added to
the beginning and end of each word. With this buffer the probability of the timestamps
wrapping the full word greatly increased.

It is important to point out that this also caused shorter words to contain parts of other
words in almost all instances. As this is going to be the case in all stages of training
and testing as well as during the prediction when the model is deployed, it might lower
the potential negative impact it has on the actual results of the model.

The sub clips for each individual word were then saved to disk. Similarly to the JSON-
files these clips varied greatly in size from 50 KB to 225 KB. This was caused mainly by
different video lengths and bit rate. In the initial attempts of creating the sub clips the
amount of all words let to over 200k+ files. In order to be able to find files for a specific
video quickly and to avoid the need to open and load a single folder with thousands of
files, each original video received its own folder.
The naming convention for the files was the date of the weekly address video followed by
theword that was isolated in the subclip and then ten digits that are incremented for each
word in the video. A template for thismight look like “MM_DD_YYYY_WORD_10DIGITS”.
The third word of the sub clip created on 1st January 2011 would therefore be named
“01_01_2011_the_0000000003.mp4”.

Even though one video that was split up into sub clips showed similar variations to
the different originals in video data rate and video total bit rate. This caused the file
size for the sub clips to range between 36 KB and 220 KB for the video mentioned in
the naming example above. The framerate per second remained the same but a small
portion of subclips were in a resolution of 640x360 pixels instead of 1280x720 pixels.

For all 372 processed videos were a total of 134536 sub clips created for the 150 most
common words. These are 385 words fewer than compared to the 150 most common
words counted in the JSON files. The reason is that some videos were split into sub
clips with very inaccurate timings compared to other sub clips and some had elements
in them that prevented the target face to be seen at all times. These faulty clips were

25

removed. The total size of the remaining sub clips is 14.8 GB on disk at the end of this
step.

4.3 Facial landmark extraction

With the MediaPipe Face Landmarker task it was possible to receive 3-dimensional face
landmarks for 478 points of interest on each face. The initial idea for this step was to
create the frames separately for each video. After the attempt of the process for the
first video this resulted in 6593 items totaling 5.7 GB. To process all 372 videos in this
way would have resulted in approximately 2 TB of data. Therefore this approach was
quickly dropped. In addition the number of words processed was also lowered from
150 to 25 of the most common words.

Instead of extracting the face landmarks from a photo it was then attempted to extract
the face landmarks directly from video. To do so the library OpenCV2 has been used to
capture each video frame. Each frame captured this way was then converted to the RGB
color code and changed into a PIL object. This object was then passed to the MediaPipe
image object type which could then be used by the detector for the facial landmarks.
It was not possible to extract the facial landmarks directly from the frames captured by
OpenCV2 due to formatting errors.
During the extraction there were errors in 46 sub clips as the face was not visible in the
entire video. These sub clips were then dropped.

After the successful extraction there were then 478 3-dimensional normalized landmark
data points per frame available in a numpy array. Other features that theMediaPipe Face
Landmarker task was able to extract, such as face blendshapes or facial transformation
matrixes, were dropped as they were of no further use.

The numpy arrays were saved in a JSON-file format for each word and each file had an
average size of 1 MB. An attempt to use the CSV-file format instead resulted in a similar
file size and did not yield any significant improvements. There were at this stage 76276
facial landmark files available that totaled 77.1 GB in size.

26

Preparation of lists

With the already existing lists for the most common 25 words these are split into the
most common 5 (group A) and the most common 6 to 25 words (group B).
For each of these lists 1000 files for each word were then processed and added to the
list. The last list of group B only had 996 occurrences on its own and so the remaining
4 were added from words of the same group. Now all 25 lists had 1000 entries.
The words of group B were then split into 5 new lists evenly in a way that 200 entries
per word of the 20 words in group B were in each of the new lists with a total of 4000
files per list. These 5 lists of group B were then concatenated together to form one list
of 20.000 entries for group B.

Table 4.2: Most common 5 words - group A

1. the 1000 2. and 1000 3. to 1000 4. of 1000 5. a 1000

Table 4.3: Most common 6-25 words - group B

6. in 1000 7. that 1000 8. we 1000 9. our 1000 10. for 1000
11. this 1000 12. on 1000 13. is 1000 14. have 1000 15. i 1000
16. it 1000 17. more 1000 18. are 1000 19. will 1000 20. their 1000
21. as 1000 22. you 1000 23. with 1000 24. thats 1000 25. but 1000

Binary encoding of words

As the words couldn’t be passed as letters into the already existing numpy array of
the facial landmarks, a representation in binary form was chosen instead. For this
the words in question were added to a dictionary that contained the most common 25
words and had a binary representation of their index value added to a dictionary next
to the word itself.
This binary encodingwas then used in the numpy arrays in the top row as a representation
of which word was linked to the rest of the array.

The word “the” did translate in this binary representation to “0” whereas “and” was
represented by “1”. As each row had 90 columns, and could therefore contain up to 90
numbers, which were not fully filled by this representation, the other columns were
filled with zeros.

27

After this step the structure of the facial landmarks looked similar to:

frame 1 frame 2 frame 3 ... frame 90

binary word representation 0. 0. 0. 0. 0. 0. 0. 0. 0. ... 0. 0. 1.
1st facial landmark x1 y1 z1 x1 y1 z1 x1 y1 z1 ... x1 y1 z1
2nd facial landmark x1 y1 z1 x1 y1 z1 x1 y1 z1 ... x1 y1 z1
3rd facial landmark x1 y1 z1 x1 y1 z1 x1 y1 z1 ... x1 y1 z1
4th facial landmark x1 y1 z1 x1 y1 z1 x1 y1 z1 ... x1 y1 z1
5th facial landmark x1 y1 z1 x1 y1 z1 x1 y1 z1 ... x1 y1 z1

...
478th facial landmark x1 y1 z1 x1 y1 z1 x1 y1 z1 ... x1 y1 z1

4.4 Creating TensorFlow dataset with tensors

With the list of words from group A and group B containing the extracted facial
landmarks including the binary word representations in the same file that could
be loaded from disk, both lists were used to create a dataset in TensorFlow with
“from_tensor_slices”. Lists of labels were created for each of these datasets. The
labels for the words of group A received “True” and the labels for the words of group
B “False”. Each dataset was then combined with its corresponding label with the
“tensorflow.data.Dataset.zip” function and both datasets saved separately. After this
step both datasets were then concatenated with “tensorflow.data.Dataset.concatenate”
creating a dataset with 25k entries of a tuple of facial landmark features and binary
word combinations as well as a label of type “Boolean”.

This dataset could then be saved to disk. Even though it contained 25k entries for facial
landmarks and binary word combinations, that made up roughly 25 GB in data when
saved in the JSON-format, the new saved TensorFlow dataset format made up only 4.1
GB.

Solving dataset shape problems during training

The dataset was in a shape of (479, 90) when the first problems in training arose. This
happened because the CNN expects an input in the form of (None, 479, 90, 1). The first
dimension “None” was a placeholder for the batch size and number of files presented for

28

one training step. The last dimension “1” was important as it represented the number
of channels an image can have. Without any channels, that are typically used for color
representations such as RGB with 3 channels, the image input is incomplete.

To solve this the dimension was added with only one channel. The numpy function
“reshape” is used for this as shown in codeblock 4.1. Each element in the dataset was
individually reshaped with the following code snippet:

Codeblock 4.1: Reshaping dataset

1 elem = next (iter (dataset))

2 x , y = elem

3 landmark , word = x

4 landmark . numpy (). reshape (landmark , (479 ,90 ,1))

After this step all elements were in the desired shape. The first dimension of the CNN
input was added by batching the dataset before passing it to the training step. In order
to run the above code the dataset was split into 5 parts of 5000 files each and later
recombined to solve space constraints in the RAM.

Creation of a balanced dataset with 10000 samples

To solve some problems that occurred due to previously imbalanced datasets the dataset
with 25000 samples is reduced to 10000 samples in section 5.4. All of the 5000 “True”
samples are taken as well as additional 5000 “False” samples. The other 15000 “False”
samples are dropped. The resulting dataset is now balanced with 5000 samples for two
classes. In addition to that only 10 words are used in total for this dataset which are
evenly distributed in the new dataset between true and false labels.

Creation of dataset for 2 words 1000 samples

After some problems occurred with the training results of the previous dataset version, a
new dataset was created in section 5.4 that consisted of only 2 words with 1000 samples
each. This appeared to be the best way to test the binary classification problems of the
model.

29

For this the two most common words “the” and “and” were used as shown in table 4.1.
Due to the way the previous datasets were created this was achieved by using the first
2000 elements in the dataset of group A. Labels for this new dataset were assigned with
“True” to “the” and “False” to “and” for binary classification.

4.5 Preparation of fake dataset

In this step a new dataset was created, that is used in section 5.7, with a different
approach compared to the previously used datasets. With a list of the most common 20
words, all sub clips of the videos were searched through and the first 1000 occurrences
for each of the 20 words selected. These selected videos were then copied to a new folder
that then contained 20000 video clips. This was possible as the naming convention
allowed direct access to the word of each sub clip. (see 4.2) The audio of all these files
was extracted as done in previous steps. (see 4.1) For future reference the file names
were saved in a separate list as well.

Table 4.4: most common 20 words for fake dataset creation

1. the 1000 2. and 1000 3. to 1000 4. of 1000 5. a 1000
6. in 1000 7. that 1000 8. we 1000 9. our 1000 10. for 1000

11. this 1000 12. on 1000 13. is 1000 14. have 1000 15. i 1000
16. it 1000 17. more 1000 18. are 1000 19. will 1000 20. their 1000

These 20000 video clips are then processed with Wav2Lip to create the deepfakes for
the training dataset. The videos and audios are shifted by 20 throughout the process so
that each word is faked 50 times with each other word. This works as the first 1000
video clips belong to the first word and the next 1000 video clips to the second word.

The result of this process was then checked to avoid any errors that reduce the
effectiveness of the training data. It turned out that this was a good idea as 381 errors
were found. 190 word combinations were created too many and 191 word combinations
were created too few.

This was solved by deleting word combinations that were too many and by creating
lists of the already used files in the creation of deepfakes as well as the list that was
saved earlier in this step for future reference. A comparison between these lists showed
the files that could be processed again to fill the missing word combinations. With
these steps all required word combinations have been created in the correct amount.

30

The 20000 video clips and 20000 deepfake video clips that have been available after the
previous steps, were passed to the facial landmark extraction process and the results
for deepfakes and originals saved separately from each other. (see 4.3) At this stage
appeared 2 errors in the extraction process as the faces were not always visible. This
was solved manually by identifying 2 files that have not been used yet and adding these
files into the process.

As the part of the dataset for the videos have been already prepared, the next step was
the creation of the labels both for the words and for the boolean values. The previously
created and saved file names were used to get a list of the corresponding words for
each video. This worked without any problems as the videos and lists in this part have
not been shuffled yet.

The word labels as well as the boolean labels were then one hot encoded with the
functions of the sklearn.preprocessing library. This ensured that the labels were
transformed from categorical values to numerical floating point values. As the input for
the videos was already provided to the model as floating point values, an error occurred
when different input formats such as a combination of floating point and integer values
were provided. This proved to be important as both the video data as well as the word
label were provided as input to the multi input model.

The dataset was then combined from eight different parts as the 20000 files were split
up into parts of 5000 files.

4.6 Fixing mistakes of the previous dataset

Experiments revealed that the previously created dataset had not been properly assembled
as the first eight parts were supposed to be the original videos as extracted facial
landmarks in JSON-format as well as the Wav2Lip videos. Due to a copying error this
turned out to be twice the original videos in 4.5. and had to be corrected.

During experimentation with the dataset of the previous step an error occured in the
built in tensorflow.keras.utils.split_dataset function as the provided dataset that was
supposed to be split contained more than the common (train, test) tuple. Instead the
train part consisted itself of another tuple of facial landmarks and word label. It was
attempted to fix this issue with a custom function to split the dataset which seemed
promising at first but later kept crashing the Jupyter environment.

31

While investigating this issue an execution of python code in the command line revealed
that during the custom function a segmentation fault occurred that caused the crash
and reset of the Jupyter environment.
This was finally fixed by separating the facial landmarks, word label and boolean
label from each other, splitting and shuffling them separately with the same seed. For
the shuffling with the same seed tests were made to ensure that the three data parts
were still consistent to each other. The separation of the dataset into three parts also
had the benefit, that these could be transformed into a numpy array. This allowed
for a high control of the input of the test and training data. As the x-argument of
tensorflow.keras.model.fit allowed for a list of arrays this was a perfect fit for the facial
landmark and word label numpy arrays.

Codeblock 4.2: Shortened training comparison

1 # shortened example for loading the dataset into the model training

2 # loading via numpy arrays with high control

3 model . fit (x =[ds_x1_train , ds_x2_train], y= ds_y_train ,

4 validation_data =([ds_x1_test , ds_x2_test], ds_y_test))

5

6 # loading via tuple of tensorflow dataset

7 model . fit (ds_train_batches , validation_data = ds_test_batches , epochs =30)

It is worth mentioning that the numpy arrays were not saved but the TensorFlow
dataset format was still used due to its high compression. The size of the final dataset
was 12.8 GB for 40.000 files with an individual file size of roughly 1 MB.

32

5 Results

5.1 First experiments and early problems

When the first dataset was finished after section 4.9. the first attempt of training could
be started. The first model was a very basic CNN-model as shown in table 5.1 that
consisted of three pairs of convolution and maxpooling layers. The data was then
flattened and given to a dense layer with a sigmoid activation function. This function
has the property that it maps most inputs to either close to zero or close to one which
is helpful for binary classification. The final layer in this first model was a dense layer
with 2 neurons that were combined with a categorical crossentropy loss function. The
first attempt of the training revealed that the shape of the input did not have enough
dimensions to fulfill all the requirements for the required input shape. This was solved
in section 4.4. in more detail.

Table 5.1: Simple CNN-architecture

Input 479 x 90 x 1
Block 1 3x3 Conv,32

2x2 MaxPool
Block 2 3x3 Conv, 64

2x2 MaxPool
Block 3 3x3 Conv, 64

FC 64
FC 2

Sigmoid

33

Problems with value error and low accuracy

After the input shape was fixed the next error that was found was a ValueError as
the input was not batched before the training as the dataset had a size of 4.1 GB, that
consisted of 25.000 pairs of facial landmarks and boolean values, and fit both in RAM
and VRAM of the training computer. However this affected the input-shape which was
(479,90,1) instead of (None, 479, 90,1). This was easily solved by batching the dataset
that was in the same step also shuffled and repeated to an infinite dataset. In the second
version of the model the loss function was replaced against binary_crossentropy and
the optimizer to Adam instead of SGD. A first training result with a batch size of 100
and 50 steps per epoch for 1 epoch resulted in an accuracy of only 0.2122 and was
therefore considered unsuccessful.

When searching for the origin of this low training result, a prediction of one input
sample of the dataset revealed that the predicted result was an array ([[4.300631]],
dtype=float32) which was significantly different from the training label tf.Tensor([False],
shape=(1,), dtype=bool). It was assumed that there might have been a problem due to a
false split of x_train and x_label in the tensor before the training. Some of the values of
the dataset were sampled, converted to a list of tuples and the tuple contents checked
which did not result in any noticeably errors.

The training was run again with the same setup for batch size, steps per epoch and
epoch including the batching and shuffling as it was done in the previous experiment.
The difference was that 100 values of the dataset batches were taken and their values
separated for x_train and x_test. The training for these 100 values resulted in an
accuracy of 0.7800.
The difference seemed to be in the input type which was in the first attempt a tensor of
type tf.float32 and in the second attempt a tensor of type float32 but as a numpy array.

In a third attempt this resulted back to the low accuracy of 0.2026 as the dataset of
tensors was used again which confirmed the previous thesis that there might be some
problems in the dataset or the model.

5.2 Experimenting with different model architectures

To check if the model might be the problem a plan was made to test the training
data with other well known model architectures. The first model architecture that

34

was considered was the VGG16. The input shape, the number of classes and the loss
function were changed compared to the original VGG16 model. Created in a similar
way were the modified ResNet50 and modified DenseNet121.

The modified VGG 16 model was then trained with a batch size of 128, 3 epochs, and
196 steps per epoch. The accuracy stayed below 0.2 in the first attempt of this modified
model. A second attempt was started for 5 epochs with the highest result being 0.2029
accuracy. It became clear very quickly that an increase in the number of epochs would
not result in better results.
A second attempt was made with sparse categorical crossentropy as the loss function
and two neurons in the last dense layer. This attempt resulted after 5 epochs in an
accuracy of roughly 0.8 with the highest score at 0.8013.
This made it seem as if the model might have been the problem instead of the data as
scores of up to 0.8 accuracy were reachable.

The second model architecture tested was the ResNet50. The modified ResNet50 model
was also trained with a batch size of 128, 5 epochs, and 157 steps per epoch. The
difference to the 196 steps per epoch results in the step calculation being done on the
split train data length for the ResNet50 model instead of the full data length for the
VGG16 model. With a sigmoid activation function and a single neuron for the output
layer the model scores an accuracy of 0.7975 as the highest value. Due to the split
between training and test data the validation accuracy was also calculated and reached
0.8076. The model does not score better than the modified VGG16 model, but it was
of interest that the validation accuracy was close to the accuracy as that hinted at no
problem of overfitting.

The third model architecture tested was the DenseNet121. The DenseNet121 was trained
with a batch size of 128, 5 epochs and 157 steps per epoch. The loss function used was
binary crossentropy and the activation function softmax. During the training the peak
for the accuracy was 0.7982 and the highest score of the validation accuracy was 0.8070.
The validation accuracy is again close to the accuracy similar to the ResNet50 model.

5.3 Testing different functions for a modified VGG16
model

A series of tests was done with the modified VGG16 model to test different loss funtions
and neurons in the last layer of the model and their impact to the accuracy of the model.

35

For these tests the softmax activation function and 1 neuron in the last layer were
combined with either binary crossentropy, which resulted in an accuracy of 0.2, or
sparse categorical crossentropy as the loss functions, that resulted in an accuracy of 0.8.
Also the sigmoid activation function and 2 neurons in the last layer were combined
with binary crossentropy, that resulted in a value error, and again sparse categorical
crossentropy, which led to a result of 0.8.
The solve the value error for the combination of the sigmoid activation function and
binary crossentropy as the loss function, the number of neurons in the last layer was
reduced to 1. This resulted in an accuracy of 0.8. This combination was then kept as
the default going forward with other experiments.

As several different model architectures have been trained with different activation and
loss functions scoring close to 0.8, it was assumed that the model architecture is not the
problem. This assumption was supported by the observation that the training accuracy
did not reach significantly beyond the accuracy of 0.8 in all tested model architectures.
Instead this pointed at something being not as intended with the training data.

The dataset that was being used until this point consisted of 25.000 files that were
based on the most common 25 words with 1.000 files each. The first 5 words and
therefore 5.000 files were labeled as “True” whereas the other 20.000 files were labeled
as “False”. The original idea was that the model had more data to identify and therefore
to learn better when something is false. Unfortunately this led right into the problem
of overfitting. 20% of the labeled data were labeled “True” and 80% were labeled “False”.
This were the same proportions that were found during the training in the accuracy
and validation accuracy. It appeared as if the model had just predicted everything as
false to reach a high accuracy. This was confirmed by a confusion matrix shown in
figure 5.1.

To solve this unintended problem a new dataset was created with the first 10.000 files
of the previous dataset. See section 4.4. for more details.

5.4 Experimenting on more balanced dataset

The training of the new balanced dataset with the modified VGG16 model, binary
crossentropy and sigmoid activation function resulted in the accuracy being stuck at
0.5041 with the validation accuracy frozen at 0.4835. This remained mostly the same

36

Figure 5.1: Confusion matrix of modified VGG16 model

with very minor changes in the accuracy, that was still stuck around 0.5, even with
multiple restarts of the training process and up to 20 epochs.

As the model architecture had been tested before and seemed to not be the problem,
the cause for the accuracy problems with the new balanced dataset were assumed to
be still in the dataset, even though the main issue of unbalanced classes was fixed.
This was attributed to errors in the creation process of the dataset as well as too few
differences between the facial landmarks due to the grouping of multiple words into
one class. Another possible error was the fact that the word label was represented as
a binary row at the top of the facial landmark array. Due to the computations in the
convolutional layers, this first line was calculated into the other data rows and therefore
likely unrecognizable at the end of the layers when the binary decision is made.

In order to solve this without the need to recreate the entire dataset from the beginning,
the dataset was further reduced to only 2.000 files. See section 4.4 for further details.

37

Experiments on small dataset

During the training of this shortened dataset the expectation was that the accuracy
should be much higher compared to the previous tests. However the accuracy had the
same problems and was also stuck at the same precision at around 0.5.
This proved that the grouping of multiple words into one class could not be the cause
of the current problem as there were now only 2 words involved. Before attempting
to change the dataset again, an attempt was made to use a very simple CNN model
with the idea in mind that the models might have been too complex for the problem. In
addition making another test with a simpler model was still cheaper compared to the
overhaul of the entire dataset creation process.

This simple model from table 5.1 was adjusted to the input shape of the current dataset,
the number of neurons at the end was changed to one and the sigmoid and binary
crossentropy functions were used again. As the dataset and model had both been
simplified over the past experiments this had a positive effect on the training times.
Therefore the first attempt was done with 100 epochs and had an accuracy of 0.5006
and a validation accuracy of 0.6025 after the first epoch. This quickly improved over
the next epochs and reached up to an acurracy of 0.8131 and a validation accuracy of
0.7500 after 100 epochs. After training for additional 200 epochs the accuracy reached a
peak of 0.9381 and a validation accuracy of 0.8700 at epoch 294.
Compared to the previous problem that was a success. It showed that a simpler model
was able to score a higher accuracy than a more complex model did.

Table 5.2: modified VGG-16 model

Input 479 x 90 x 1
Block 1 2x(3x3 Conv,64) + 2x2 MaxPool
Block 2 2x(3x3 Conv,128) + 2x2 MaxPool
Block 3 3x(3x3 Conv,256) + 2x2 MaxPool
Block 4 3x(3x3 Conv,256) + 2x2 MaxPool
Block 5 3x(3x3 Conv,512) + 2x2 MaxPool
Block 6 3x(3x3 Conv,512) + 2x2 MaxPool

Flatten
Block 7 2x(FC 4096)

FC 1
Sigmoid

38

To follow up on the new findings the modified VGG16 model was simplified and the
number of convolutional and maxpooling layers reduced. In particular this effected
blocks 4-6 of table 5.2. The training was then done over 100 epochs that resulted in an
accuracy of 0.8600 and a validation accuracy of 0.7925. This was already better than
the accuracy of the simpler model in the previous experiment when compared after 100
epochs.
The difference between the accuracy and the validation accuracy for both this and the
previous experiment showed that the model had been adapted better to the training
data compared to the validation data in both experiments. This hints at the existence
of overfitting in the model.
Overfitting might have also been linked to the learning process of the more complex
modified VGG16 model that either adapted its neuron connections too well or too slow
in the model training and was therefore unable to reach an accuracy higher than close
to 0.5.

One additional finding during the training process of the modified and simplified VGG16
model was that the training process was in some experiments stuck at an accuracy
under 0.5. Even with additional epochs no progress in the calculated loss and validation
loss could be measured. If the same model was trained again with a clean restart, which
means that there were no information of the previous training progress available, this
continued to be the case in some instances but in others the model was able to overcome
this barrier and reach better scores.
When a training run that successfully overcame this barrier and was allowed to train
for a total of 500 epochs the best validation accuracy of 0.9275 and an accuracy of 0.9825
was reached after 468 epochs.

5.5 Experiments to solve overfitting

To investigate this behavior more closely and to also attempt to prevent overfitting
through the introduction of dropout layers or other forms of regulization to the kernel,
the activity and the bias, a series of experiments was started where each of these
measures was added incrementally.
The basis for these experiments was the modified VGG16 model that was not simplified
yet as shown in table 5.2. Each experiment was done over 20 epochs.
In the first experiment of this series a dropout layer was added after the third max
pooling layer. After 20 Epochs the accuracy did not rise above 0.5025 and the validation

39

accuracy was stuck at 0.4900.
In the second experiment a second dropout layer was added bevor the flatten layer
towards the end of the model. This did not provide any significant increases but the
accuracy reached 0.5075 and the validation accuracy 0.4700.
With additional dropout layers after every max pooling layer the accuracy reached
0.5044 and the validation accuracy 0.4825. Dropout layers alone showed no major
improvements of the training accuracy. Also the training progress generally peaked
between one and three epochs and didn’t improve afterwards.
The experiments were then continued with an added L2-bias regularizer after every
dense and convolutional layer. This spread the progress during the training over 10
epochs instead of up to three but the accuracy of 0.5013 and validation accuracy of
0.4950 cannot be described as a real improvement.
For the next experiment L1 and L2 kernel regularizer were added after the convolutional
and dense layers. This changed The accuracy to 0.5069 and the validation accuracy to
0.4725. The progress during the training halted again after the third epoch and didn’t
change further after that.
As a next attempt both dense layers with 4096 neurons at the end of the model in block
7 were dropped. This reduced the number of trainable parameters from 90 million to 14
million. The accuracy of 0.5031 and validation accuracy of 0.4875 showed no significant
improvements and froze after the second epoch.
With an added L2 activity regularizer after every convolutional and dense layer the
training progress didn’t freeze after a few epochs anymore but the accuracy of 0.5013
and validation accuracy of 0.4950 cannot be described as being better.
As dropout layers and L1 and L2 regularizers were added throughout the model without
any improvements to the model’s accuracy, the next experiments focused again on
simplifying the model architecture.
In a first step the last block of convolutional and max pooling layers was dropped which
was block 6 in table 5.2. This resulted in a mostly unchanged accuracy of 0.5050 and a
validation accuracy of 0.4800.
Dropping again the last block or block 5 of convolutional and max pooling layers
resulted in 0.4988 accuracy and 0.5050 validation accuracy.
Only after the block 4 or the last block of convolutional and max pooling layers was
dropped again, which resulted in a reduction by a total of 3 blocks of the model, the
results started to improve significantly. After 20 epochs the accuracy reached 0.6619
and the validation accuracy 0.6825.
This model’s training was then continued for another 80 epochs to a total of 100 epochs
and reached an accuracy of 0.8225 and a validation accuracy of 0.7525.

40

Therefore the overfitting problem was successfully reduced, even though the model
architecture had to be simplified again.

Table 5.3: simplified VGG-16 model

Input 479 x 90 x 1
Block 1 2x(3x3 Conv,64) + 2x2 MaxPool + Dropout
Block 2 2x(3x3 Conv,128) + 2x2 MaxPool + Dropout
Block 3 3x(3x3 Conv,256) + 2x2 MaxPool + Dropout

Flatten
FC 1

Sigmoid

5.6 Scaling experiments up to balanced dataset

As the previous experiments in sections 5.4. and 5.5. were done on the dataset with
2.000 files, the findings of those experiments were tried to be scaled up to the larger
balanced dataset with 10.000 files.

The samemodified VGG16model with 3 convolutional blocks was used. During training
with a batch size of 128, a train/test split of 80/20 and training for 20 epochs with 63
steps per epoch, the model reached an accuracy of 0.5745 and a validation accuracy of
0.5890. The model did not improve much after the fifth epoch and the training was then
continued for another 80 epochs to see if this plateau could be overcome. This resulted
in the model reaching an accuracy of 0.5935 and a validation accuracy of 0.5955 which
meant that the difference between the predictions on the train and test data were very
close to each other. The measures against overfitting as experimented in the previous
section were doing a good job of preventing overfitting over the first 100 epochs.
As the current result was an improvement compared to previous results the training
is continued for another 400 epochs to see how the model behaves if the likelihood
of overfitting increases as the model adapts more and more to the training data over
the numerous additional epochs. The training resulted in an accuracy of 0.9484 and a
validation accuracy of 0.5755. This is the greatest difference in all the experiments that
have been run up to this point. The best validation accuracy in this training actually
occurred already in epoch 146 with a validation accuracy of 0.6220 and an accuracy of
0.6259.

41

Based on these findings the current model was able to predict these ten words in the
dataset correctly in 62% of occurrences when accounting for both seen and unseen data.

However the current model could still run into a frozen training progression as a rerun
of the same model in a clean environment showed. The training progress froze after
three epochs for the accuracy and after 2 epochs for the validation accuracy. This is a
phenomenon that occurred in several of the experiments based on the modified VGG16
model.

5.7 Final experiments with deepfake dataset

As all of the datasets up to this point have always been splits between different sets of
original facial landmarks, that were labeled differently into “True” and “False” parts to
test different approaches, this step would be to finally include actual deepfakes in the
dataset. This was done by creating a new balanced dataset of 40.000 files that included
20.000 original data entries as well as 20.000 deepfakes as described in section 4.5. The
dataset was created for a new model that was designed to receive multiple inputs of
facial landmarks and word labels. The concept of this is shown in figure 5.2. The shown
model has multiple convolutional layers as well as multiple iterations of the layers
in the dotted box. The separate inputs for the facial landmarks and the word labels
received separate computations through different layers before the flattened results
were concatenated together. This changed the way the model needed to be built from
a sequential model to a model that was built with the help of the functional API of
Keras. Additionally this model received tuneable parameters with the utilization of
keras tuners. With these tuners in place, the optimal parameters of the model were
searched during different trials of the model training phase.

After three trials of 20 epochs on a portion of 500 samples of the dataset were run, the
validation data was at 0.9802 which was the highest any model had ever reached before.
This was problematic as tests for the evaluation of the best epoch revealed that the
model reached an accuracy of 0.6409 and a validation accuracy of 0.9802 after the first
epoch. It was clear at this point that something had to have gone wrong either with
the split of the training and test data or with the creation of the entire dataset as the
validation accuracy was already close to 100% right out of the box. This might have
been a problem of the sampling of 500 samples but the problem persisted even with
different shuffling seeds of the dataset.

42

facial_landmark_input InputLayer

conv2d Conv2Dconv2d Conv2D

max_pooling2d MaxPooling2D

dropout Dropout

flatten Flatten

concatenate Concatenate

flatten Flatten

dense Dense

word_input InputLayer

3x
2-3x

class_output Dense

Figure 5.2: Multi input model

At this point the model could not be trained on more than 500 samples at the same time
as the splitting of the model caused errors. The source of these errors lied in the custom
splitting function that caused a memory leak. These issues were fixed in section 4.6.
and the dataset now contained both original as well as deepfake entries.

For the experiments the dataset had to be split into three parts before it could be passed
to the model. These parts were created from the elements that were stored in the dataset
which were added to three different lists and then converted into a numpy array for
the required input control into the multi input model as shown in codeblock on page
32. The Keras tuner were now also configured to be able to train the dropout values
and kernel regularizers. A total of 7 parameters were trainable in the current setup as
shown in the codeblock below.

Codeblock 5.1: Keras tuner parameter

1 # Tune the kernel_regularizer for the first 15 runs without shuffle

2 hp_kernel_regularizer_l1 = hp . Choice (' kernel_regularizer_l1 ',

3 values =[1 e -3 , 1e -4 , 1e -5] , default =0.0001)

4 hp_kernel_regularizer_l2 = hp . Choice (' kernel_regularizer_l2 ',

5 values =[1 e -3 , 1e -4 , 1e -5] , default =0.0001)

43

6 # Tune the activity_regularizer

7 hp_activity_regularizer_l2 = hp . Choice (' activity_regularizer_l2 ',

8 values =[1 e -3 , 1e -4 , 1e -5] , default =0.001)

9 # Tune the bias_regularizer

10 hp_bias_regularizer_l2 = hp . Choice (' bias_regularizer_l2 ',

11 values =[1 e -3 , 1e -4 , 1e -5] , default =1e -05)

12 # Tune the Dropout - Layer

13 hp_dropout = hp . Choice (' dropout ', values =[0.15 , 0.2 , 0.25] , default =0.2)

14 # Tune the learning rate for the optimizer

15 hp_learning_rate = hp . Choice (' learning_rate ',

16 values =[1 e -2 , 1e -3 , 1e -4] , default =0.0001)

17 # Tune the batch size for the optimizer

18 batch_size = hp . Int (" batch_size " , 32 , 128 , step =32 , default =96)

The search for the ideal parameters with the Keras tuner was run for 15 trials which
resulted in the highest validation accuracy of 0.7859. The model was then trained with
early stopping to get the best epoch. After 9 epochs the model training found the best
validation accuracy which was at 0.8664 with an accuracy of 0.8725. A confusion matrix
is shown in figure 5.3.

The search with the Keras tuner was then run again for another 100 trials. After the
completion of these trials the model was trained for a total of 150 epochs with the
highest result being a validation accuracy of 0.8622 and an accuracy of 0.8720 that were
both slightly lower compared to the previous experiment.

44

Figure 5.3: Confusion matrix for final run

45

6 Discussion

This section presents and discusses the results of the experiments according to the
research hypotheses. In the main research hypothesis it was proposed that the facial
landmark motion during a word-specific pronunciation might be a way to identify an
original video from a fake one if the classifier is only trained on the input data of one
specific person. To test this hypothesis training data for Barack Obama was collected
and a CNN model trained on this data. The evaluation of the model proved that it is
possible to train a classifier for the word pronunciation of one specific person.

It was found that the model is able to predict in 86.64% of cases across all of the involved
most common 20 words, that were taken from the presidential weekly addresses during
the presidency of Barack Obama from 2009 to 2017, whether the word was pronounced
correctly based on the specific facial landmark motions of the target. In addition the
model is not limited to a specific video resolution as the extraction of facial features has
been successful with different video resolutions which confirmed another hypothesis.

Throughout the experiments several model architectures have been tested. However it
turned out that the architecture can become too complex for meaningful results after
the first 3 convolutional blocks. In addition a multi input model was needed to combine
the input of facial landmark and words to not loose information of the word during
computations.

The analysis shows that it is possible to use person specific facial landmark motions to
detect the correct pronunciation of a target person and thereby being able to identify
a deepfake video. This finding is consistent with the results of previous research of
(S. Agarwal et al., 2022). However the accuracy of the model trained in this project
stayed significantly below the results of other research like (S. Agarwal et al., 2022)
while also focusing on one specific person compared to a general approach as shown in
(S. Agarwal, El-Gaaly et al., 2020) or (Y. Huang et al., 2020).

The results contribute insights with regard to detection measures that prove whether
a video is actually depicting one specific individual or someone else. This detection

46

method is harder to evade as the trained model is person specific instead of being able
to generalize well for various different persons.

However, some limitations should be acknowledged for this thesis. The experiments
were limited on training data that had only one face in it that faced the camera directly.
The model also hasn’t been tested against any videos in the wild and therefore might
not fully consider the problems that can appear in real situations. The transcription
model used was trained with a focus on English and might behave different in other
languages. In addition the prediction of the word time stamps wasn’t native to the
model and were slightly off and were buffered. Hence, caution should be taken with
generalizing the findings and applying them to real-life situations.

Summary

In summary, this thesis proved that it is possible to create a deep learning model that
can detect a deepfake based on the facial movements during the pronunciation of a
select number of words for one specific person only. It detailed the process of how a
video needs to be prepared in order to be added to a dataset that can be used in the
training process, highlighted some problems to avoid on the way and showed what
model architectures of convolutional neural networks can be successfully trained on
the processed data of facial landmarks. Even though the final model cannot compete
at the same level as current state of the art deepfake detection models, this approach
broke out of the cycle of generalized GAN training for detection purposes. Due to this
the model is less likely to loose effectiveness against unseen generative models as it is
both person specific and resistant to changes in video resolutions which increases the
longevity of the relevance of this model compared to other more generalized detection
models.

Future work

While this thesis highlights useful insights about the potential of detecting a video based
on person specific word-pronunciation, future research can extend this research in
several ways. Future experiments could attempt to improve the accuracy of the current
model architecture by reducing the facial landmark features to the most prominent
ones. This could allow the model architecture to become deeper and more complex as

47

well as greatly decrease the training times of the model as the input shape and number
of parameters would be decreased significantly.
Other experiments might focus on the minimum number of samples that are required
per word to be detected with a certain minimum in the accuracy. Research in this
direction might make this approach of deepfake detection more accessible to the public
and interested individuals who are seeking a personal deepfake detection model.
Future work could also focus on different languages. This might be interesting as
different languages vary in their vocalizations and therefore different patterns of facial
landmark motions might exist. This could also be coupled with an analysis of the most
prominent features. To a likely smaller degree this could also be based on different
accents of the same language.
As the experiments relied heavily on accurate time stamps for each word this might
also be an option for future experiments. Less noise due to more accurate predictions
due to improvements of the same model or a different one could improve the accuracy
of the model significantly.
Another limitation in this thesis was the lack of testing the trained model against videos
in the wild. An analysis on videos such as other videos of the target person that might
not face the camera directly, deepfake videos created through other means than used in
this thesis or also including video footage of impersonators in the analysis could build
on the findings of this thesis.

48

References

Agarwal, R. (2023). Complete Guide to the Adam Optimization Algorithm. Zugriff 4. Mai
2024 unter https://builtin.com/machine-learning/adam-optimization

Agarwal, S., El-Gaaly, T., Farid, H., & Lim, S. (2020). Detecting Deep-Fake Videos from
Appearance and Behavior. CoRR, abs/2004.14491. https://arxiv.org/abs/2004.
14491

Agarwal, S., Farid, H., Fried, O., & Agrawala, M. (2020). Detecting Deep-Fake Videos
from Phoneme-Viseme Mismatches. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2814–2822. https://doi.org/
10.1109/CVPRW50498.2020.00338

Agarwal, S., Hu, L., Ng, E., Darrell, T., Li, H., & Rohrbach, A. (2022). Watch Those
Words: Video Falsification Detection Using Word-Conditioned Facial Motion.
https://arxiv.org/abs/2112.10936

Ajaka, N., Kessler, G., & Samuels, E. (2019). Seeing istn’t believing: The Fact Checker’s guide
to manipulated video. Zugriff 17. April 2024 unter https://www.washingtonpost.
com/graphics/2019/politics/fact-checker/manipulated-video-guide/

Amberscript. (2023). Dubbing: What Is It and How Does It Work? Zugriff 17. April 2024
unter https://www.amberscript.com/en/blog/what-is-dubbing-and-how-does-it-
work/

AWS. (2024a). What is a GAN? Zugriff 24. April 2024 unter https://aws.amazon.com/
what-is/gan/#:~:text=A%20generative%20adversarial%20network%20system,is%
20fake%20or%20real%20data

AWS. (2024b). What is overfitting? Zugriff 23. April 2024 unter https://aws.amazon.com/
what-is/overfitting/?nc1=h_ls

Baeldung. (2023). Differences Between Gradient. Zugriff 4. Mai 2024 unter https://www.
baeldung.com/cs/gradient-stochastic-and-mini-batch

Brannon, W., Virkar, Y., & Thompson, B. (2023). Dubbing in Practice: A Large Scale
Study of Human LocalizationWith Insights for Automatic Dubbing. Transactions
of the Association for Computational Linguistics, 11, 419–435. https://doi.org/10.
1162/tacl_a_00551

49

https://builtin.com/machine-learning/adam-optimization
https://arxiv.org/abs/2004.14491
https://arxiv.org/abs/2004.14491
https://doi.org/10.1109/CVPRW50498.2020.00338
https://doi.org/10.1109/CVPRW50498.2020.00338
https://arxiv.org/abs/2112.10936
https://www.washingtonpost.com/graphics/2019/politics/fact-checker/manipulated-video-guide/
https://www.washingtonpost.com/graphics/2019/politics/fact-checker/manipulated-video-guide/
https://www.amberscript.com/en/blog/what-is-dubbing-and-how-does-it-work/
https://www.amberscript.com/en/blog/what-is-dubbing-and-how-does-it-work/
https://aws.amazon.com/what-is/gan/#:~:text=A%20generative%20adversarial%20network%20system,is%20fake%20or%20real%20data
https://aws.amazon.com/what-is/gan/#:~:text=A%20generative%20adversarial%20network%20system,is%20fake%20or%20real%20data
https://aws.amazon.com/what-is/gan/#:~:text=A%20generative%20adversarial%20network%20system,is%20fake%20or%20real%20data
https://aws.amazon.com/what-is/overfitting/?nc1=h_ls
https://aws.amazon.com/what-is/overfitting/?nc1=h_ls
https://www.baeldung.com/cs/gradient-stochastic-and-mini-batch
https://www.baeldung.com/cs/gradient-stochastic-and-mini-batch
https://doi.org/10.1162/tacl_a_00551
https://doi.org/10.1162/tacl_a_00551

Carlini, N., & Farid, H. (2020). Evading Deepfake-Image Detectors with White- and
Black-Box Attacks. CoRR, abs/2004.00622. https://arxiv.org/abs/2004.00622

Chakravarthy, S. (2020). Loss Functions in Deep Learning Models. Zugriff 4. Mai 2024
unter https://srinivas-yeeda.medium.com/loss-functions-in-deep-learning-
models-129866be93e

Datagen. (2024a). ResNet-50: The Basics and a Quick Tutorial. Zugriff 3. Mai 2024 unter
https://datagen.tech/guides/computer-vision/resnet-50/

Datagen. (2024b). Understanding VGG16: Concepts, Architecture, and Performance. Zugriff
3. Mai 2024 unter https://datagen.tech/guides/computer-vision/vgg16/

deepai.org. (2024a). Adam. Zugriff 5. Mai 2024 unter https : / /deepai .org/machine-
learning-glossary-and-terms/adam-machine-learning

deepai.org. (2024b). Feed Forward Neural Network. Zugriff 4. Mai 2024 unter https :
//deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-
network

Dhumne, S. (2023). Elastic Net Regression detailed guide ! Zugriff 23. April 2024 unter
https://medium.com/@shruti.dhumne/elastic-net-regression-detailed-guide-
99dce30b8e6e

Doshi, S. (2019). Various Optimization Algorithms For Training Neural Network. Zugriff 4.
Mai 2024 unter https://towardsdatascience.com/optimizers-for-training-neural-
network-59450d71caf6

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2021). A Comprehensive Survey and
PerformanceAnalysis of Activation Functions inDeep Learning.CoRR, abs/2109.14545.
https://arxiv.org/abs/2109.14545

Franco, F. (2024). The Softmax Activation Function. Zugriff 5. Mai 2024 unter https :
//medium.com/@francescofranco_39234/the-softmax-activation-function-
137c321461ca

Ganesh, P. (2019). Types of Convolution Kernels : Simplified. Zugriff 24. April 2024 unter
https://towardsdatascience.com/types-of-convolution-kernels-simplified-
f040cb307c37

Giorgino, T. (2009). Computing and Visualizing Dynamic Time Warping Alignments
in R: The dtw Package. Journal of Statistical Software, 31(7). https://doi.org/10.
18637/jss.v031.i07

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. https :
//arxiv.org/abs/1406.2661

Google. (2022). Overview of GAN Structure. Zugriff 16. Mai 2024 unter https://developers.
google.com/machine-learning/gan/gan_structure

50

https://arxiv.org/abs/2004.00622
https://srinivas-yeeda.medium.com/loss-functions-in-deep-learning-models-129866be93e
https://srinivas-yeeda.medium.com/loss-functions-in-deep-learning-models-129866be93e
https://datagen.tech/guides/computer-vision/resnet-50/
https://datagen.tech/guides/computer-vision/vgg16/
https://deepai.org/machine-learning-glossary-and-terms/adam-machine-learning
https://deepai.org/machine-learning-glossary-and-terms/adam-machine-learning
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://medium.com/@shruti.dhumne/elastic-net-regression-detailed-guide-99dce30b8e6e
https://medium.com/@shruti.dhumne/elastic-net-regression-detailed-guide-99dce30b8e6e
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://arxiv.org/abs/2109.14545
https://medium.com/@francescofranco_39234/the-softmax-activation-function-137c321461ca
https://medium.com/@francescofranco_39234/the-softmax-activation-function-137c321461ca
https://medium.com/@francescofranco_39234/the-softmax-activation-function-137c321461ca
https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37
https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.18637/jss.v031.i07
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://developers.google.com/machine-learning/gan/gan_structure
https://developers.google.com/machine-learning/gan/gan_structure

Google. (2024a). About Keras 3. Zugriff 24. April 2024 unter https://keras.io/about/
Google. (2024b). Face landmark detection guide. Zugriff 24. April 2024 unter https :

//developers.google.com/mediapipe/solutions/vision/face_landmarker
Google. (2024c). Keras: Simple. Flexible. Powerful. Zugriff 24. April 2024 unter https:

//keras.io/
Google. (2024d). KerasTuner. Zugriff 24. April 2024 unter https://keras.io/keras_tuner/
Google. (2024e). On-device machine learning for everyone. Zugriff 24. April 2024 unter

https://developers.google.com/mediapipe
Guarnera, L., Giudice, O., & Battiato, S. (2020). DeepFake Detection by Analyzing

Convolutional Traces. CoRR, abs/2004.10448. https://arxiv.org/abs/2004.10448
Gupta, P. (2017). Regularization in Machine Learning. Zugriff 23. April 2024 unter https:

//towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition.

CoRR, abs/1512.03385. http://arxiv.org/abs/1512.03385
Hernandez-Ortega, J., Tolosana, R., Fiérrez, J., & Morales, A. (2020). DeepFakesON-Phys:

DeepFakes Detection based on Heart Rate Estimation. CoRR, abs/2010.00400.
https://arxiv.org/abs/2010.00400

Huang, G., Liu, Z., & Weinberger, K. Q. (2016). Densely Connected Convolutional
Networks. CoRR, abs/1608.06993. http://arxiv.org/abs/1608.06993

Huang, Y., Juefei-Xu, F., Wang, R., Xie, X., Ma, L., Li, J., Miao, W., Liu, Y., & Pu, G.
(2020). FakeLocator: Robust Localization of GAN-Based Face Manipulations via
Semantic Segmentation Networks with Bells and Whistles. CoRR, abs/2001.09598.
https://arxiv.org/abs/2001.09598

IBM. (2021). Dubbing. Zugriff 18. April 2024 unter https://www.ibm.com/de-de/topics/
neural-networks

IBM. (2024). What is overfitting? Zugriff 23. April 2024 unter https://www.ibm.com/
topics/overfitting

Islam, R., Mazumdar, S., & Islam, R. (2024). An Experiment on Feature Selection using
Logistic Regression. https://arxiv.org/abs/2402.00201

Iuhaniwal, V. (2019). Forward propagation in neural networks: Simplified math and
code version. Zugriff 4. Mai 2024 unter https : / / towardsdatascience . com /
forward-propagation-in-neural-networks-simplified-math-and-code-version-
bbcfef6f9250

Jain, V. (2019). Everything you need to know about Activation Functions in Deep learning
models. Zugriff 5. Mai 2024 unter https://towardsdatascience.com/everything-
you-need-to-know-about-activation-functions-in-deep-learning-models-
84ba9f82c253

51

https://keras.io/about/
https://developers.google.com/mediapipe/solutions/vision/face_landmarker
https://developers.google.com/mediapipe/solutions/vision/face_landmarker
https://keras.io/
https://keras.io/
https://keras.io/keras_tuner/
https://developers.google.com/mediapipe
https://arxiv.org/abs/2004.10448
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2010.00400
http://arxiv.org/abs/1608.06993
https://arxiv.org/abs/2001.09598
https://www.ibm.com/de-de/topics/neural-networks
https://www.ibm.com/de-de/topics/neural-networks
https://www.ibm.com/topics/overfitting
https://www.ibm.com/topics/overfitting
https://arxiv.org/abs/2402.00201
https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250
https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250
https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models-84ba9f82c253
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models-84ba9f82c253
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models-84ba9f82c253

Javatpoint. (2017). Regularization in Machine Learning. Zugriff 23. April 2024 unter
https://www.javatpoint.com/regularization-in-machine-learning

Jiang, L., Dai, B., Wu, W., & Loy, C. C. (2020). Focal Frequency Loss for Generative
Models. CoRR, abs/2012.12821. https://arxiv.org/abs/2012.12821

Juefei-Xu, F., Wang, R., Huang, Y., Guo, Q., Ma, L., & Liu, Y. (2021). Countering Malicious
DeepFakes: Survey, Battleground, and Horizon. CoRR, abs/2103.00218. https:
//arxiv.org/abs/2103.00218

Jung, S., & Keuper, M. (2020). Spectral Distribution Aware Image Generation. CoRR,
abs/2012.03110. https://arxiv.org/abs/2012.03110

Kaste, J. (2023). Künstliche neuronale Netzwerke zur adaptiven Fahrdynamikregelung
(1. Aufl.). Springer Vieweg.

Koopman, M., Macarulla Rodriguez, A., & Geradts, Z. (2018). Detection of Deepfake
Video Manipulation.

Krishnamurthy, B. (2024). An Introduction to the ReLU Activation Function. Zugriff 5.
Mai 2024 unter https://builtin.com/machine-learning/relu-activation-function

Kundu, N. (2023). Exploring ResNet50: An In-Depth Look at the Model Architecture
and Code Implementation. Zugriff 3. Mai 2024 unter https : / /medium.com/
@nitishkundu1993 / exploring - resnet50 - an - in -depth - look - at - the -model -
architecture-and-code-implementation-d8d8fa67e46f

Lang, N. (2023). Was ist die Softmax-Funktion? Zugriff 5. Mai 2024 unter https : / /
databasecamp.de/ki/softmax

Li, H., Li, B., Tan, S., & Huang, J. (2018). Detection of Deep Network Generated Images
Using Disparities in Color Components. CoRR, abs/1808.07276. http://arxiv.org/
abs/1808.07276

Li, Y., Chang, M., & Lyu, S. (2018). In Ictu Oculi: Exposing AI Generated Fake Face Videos
by Detecting Eye Blinking. CoRR, abs/1806.02877. http://arxiv.org/abs/1806.02877

Li, Y., & Lyu, S. (2018). Exposing DeepFake Videos By Detecting Face Warping Artifacts.
CoRR, abs/1811.00656. http://arxiv.org/abs/1811.00656

Lin, T. (2023). Forward Propagation: The Neural Network Predictions. Zugriff 3. Mai 2024
unter https : / /medium.com/@chuntcdj / forward-propagation- the -neural -
network-predictions-36cdd1a5306e

Louradour, J. (2023). whisper-timestamped. https://arxiv.org/abs/2212.04356
Mahajan, P. (2020). Fully Connected vs Convolutional Neural Networks. Zugriff 8. Mai

2024 unter https://medium.com/swlh/fully-connected-vs-convolutional-neural-
networks-813ca7bc6ee5

52

https://www.javatpoint.com/regularization-in-machine-learning
https://arxiv.org/abs/2012.12821
https://arxiv.org/abs/2103.00218
https://arxiv.org/abs/2103.00218
https://arxiv.org/abs/2012.03110
https://builtin.com/machine-learning/relu-activation-function
https://medium.com/@nitishkundu1993/exploring-resnet50-an-in-depth-look-at-the-model-architecture-and-code-implementation-d8d8fa67e46f
https://medium.com/@nitishkundu1993/exploring-resnet50-an-in-depth-look-at-the-model-architecture-and-code-implementation-d8d8fa67e46f
https://medium.com/@nitishkundu1993/exploring-resnet50-an-in-depth-look-at-the-model-architecture-and-code-implementation-d8d8fa67e46f
https://databasecamp.de/ki/softmax
https://databasecamp.de/ki/softmax
http://arxiv.org/abs/1808.07276
http://arxiv.org/abs/1808.07276
http://arxiv.org/abs/1806.02877
http://arxiv.org/abs/1811.00656
https://medium.com/@chuntcdj/forward-propagation-the-neural-network-predictions-36cdd1a5306e
https://medium.com/@chuntcdj/forward-propagation-the-neural-network-predictions-36cdd1a5306e
https://arxiv.org/abs/2212.04356
https://medium.com/swlh/fully-connected-vs-convolutional-neural-networks-813ca7bc6ee5
https://medium.com/swlh/fully-connected-vs-convolutional-neural-networks-813ca7bc6ee5

Malhotra, A. (2018). Tutorial on Feedforward Neural Network — Part 1. Zugriff 4. Mai 2024
unter https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-
neural-network-part-1-659eeff574c3

McCloskey, S., & Albright, M. (2018). Detecting GAN-generated Imagery using Color
Cues. CoRR, abs/1812.08247. http://arxiv.org/abs/1812.08247

Mukherjee, S. (2022). The Annotated ResNet-50. Zugriff 3. Mai 2024 unter https : / /
towardsdatascience.com/the-annotated-resnet-50-a6c536034758

Murel, E. K., Jacob Ph.D. (2023). What is regularization? Zugriff 23. April 2024 unter
https://www.ibm.com/topics/regularization

Neves, J., Tolosana, R., Vera-Rodrıǵuez, R., Lopes, V., & Proença, H. (2019). Real or
Fake? Spoofing State-Of-The-Art Face Synthesis Detection Systems. CoRR,
abs/1911.05351. http://arxiv.org/abs/1911.05351

NocodingAI. (2023). DenseNet. Zugriff 3. Mai 2024 unter https://medium.com/nocoding-
ai/densenet121-760df192f12d

Nvidia. (2024). TensorFlow. Zugriff 6. Mai 2024 unter https://www.nvidia.com/en-
us/glossary/tensorflow/

OpenAI. (2022). Introducing Whisper. Zugriff 24. April 2024 unter https://openai.com/
research/whisper

Oppermann, A. (2024a). Activation Functions in Deep Learning: Sigmoid, tanh, ReLU.
Zugriff 5. Mai 2024 unter https://artemoppermann.com/activation-functions-in-
deep-learning-sigmoid-tanh-relu/

Oppermann, A. (2024b). Backpropagation: Training der neuronalen Netzwerke. Zugriff
4. Mai 2024 unter https://artemoppermann.com/de/training-der-kuenstlichen-
neuronalen-netze/

Oppermann, A. (2024c). Optimierung in Deep Learning: AdaGrad, RMSProp, ADAM.
Zugriff 5. Mai 2024 unter https://artemoppermann.com/de/optimierung-in-
deep-learning-adagrad-rmsprop-adam/

Prajwal, K. R., Mukhopadhyay, R., Namboodiri, V. P., & Jawahar, C. (2020). A Lip
Sync Expert Is All You Need for Speech to Lip Generation In the Wild. https:
//doi.org/10.1145/3394171.3413532

Pykes, K. (2023). Fighting Overfitting With L1 or L2 Regularization: Which One Is Better?
Zugriff 23. April 2024 unter https://neptune.ai/blog/fighting-overfitting-with-l1-
or-l2-regularization

PyTorch. (2024). PyTorch. Zugriff 16. Mai 2024 unter pytorch.org
Qi, H., Guo, Q., Juefei-Xu, F., Xie, X., Ma, L., Feng, W., Liu, Y., & Zhao, J. (2020).

DeepRhythm: Exposing DeepFakes with Attentional Visual Heartbeat Rhythms.
CoRR, abs/2006.07634. https://arxiv.org/abs/2006.07634

53

https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
http://arxiv.org/abs/1812.08247
https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758
https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758
https://www.ibm.com/topics/regularization
http://arxiv.org/abs/1911.05351
https://medium.com/nocoding-ai/densenet121-760df192f12d
https://medium.com/nocoding-ai/densenet121-760df192f12d
https://www.nvidia.com/en-us/glossary/tensorflow/
https://www.nvidia.com/en-us/glossary/tensorflow/
https://openai.com/research/whisper
https://openai.com/research/whisper
https://artemoppermann.com/activation-functions-in-deep-learning-sigmoid-tanh-relu/
https://artemoppermann.com/activation-functions-in-deep-learning-sigmoid-tanh-relu/
https://artemoppermann.com/de/training-der-kuenstlichen-neuronalen-netze/
https://artemoppermann.com/de/training-der-kuenstlichen-neuronalen-netze/
https://artemoppermann.com/de/optimierung-in-deep-learning-adagrad-rmsprop-adam/
https://artemoppermann.com/de/optimierung-in-deep-learning-adagrad-rmsprop-adam/
https://doi.org/10.1145/3394171.3413532
https://doi.org/10.1145/3394171.3413532
https://neptune.ai/blog/fighting-overfitting-with-l1-or-l2-regularization
https://neptune.ai/blog/fighting-overfitting-with-l1-or-l2-regularization
pytorch.org
https://arxiv.org/abs/2006.07634

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2022). Robust
Speech Recognition via Large-Scale Weak Supervision. https://arxiv.org/abs/
2212.04356

Raina, A., & Arora, V. (2022). SyncNet: Using Causal Convolutions and Correlating
Objective for Time Delay Estimation in Audio Signals. https://arxiv.org/pdf/
2203.14639

Sharma, P. (2023). What is momentum in Machine Learning? Zugriff 4. Mai 2024 unter
https://www.tutorialspoint.com/what-is-momentum-in-machine-learning

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-
Scale Image Recognition. https://arxiv.org/abs/1409.1556

Skansi, S. (2018). Introduction to Deep Learning: From Logical Calculus to Artificial
Intelligence (1. Aufl.). Springer. https://doi.org/https://link.springer.com/book/
10.1007/978-3-319-73004-2

Tolosana, R., Vera-Rodrıǵuez, R., Fiérrez, J., Morales, A., & Ortega-Garcia, J. (2020).
DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection.
CoRR, abs/2001.00179. http://arxiv.org/abs/2001.00179

Topper, N. (2023). Sigmoid Activation Function: An Introduction. Zugriff 5. Mai 2024
unter https://builtin.com/machine-learning/sigmoid-activation-function

Vungarala, S. K. (2023). Stochastic gradient descent vs Gradient descent: Exploring the
differences. Zugriff 4. Mai 2024 unter https : / /medium.com/@seshu8hachi /
stochastic-gradient-descent-vs-gradient-descent-exploring-the-differences-
9c29698b3a9b

Wang, G., Zhou, J., & Wu, Y. (2020). Exposing Deep-faked Videos by Anomalous Co-
motion Pattern Detection.CoRR, abs/2008.04848. https://arxiv.org/abs/2008.04848

Wang, S., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2019). CNN-generated images
are surprisingly easy to spot... for now. CoRR, abs/1912.11035. http://arxiv.org/
abs/1912.11035

Yathish, V. (2022). Loss Functions and Their Use In Neural Networks. Zugriff 4. Mai 2024
unter https://towardsdatascience.com/loss-functions-and-their-use-in-neural-
networks-a470e703f1e9

Yu, N., Davis, L., & Fritz, M. (2018). Attributing Fake Images to GANs: Analyzing
Fingerprints in Generated Images. CoRR, abs/1811.08180. http://arxiv.org/abs/
1811.08180

Zhang, X., Karaman, S., & Chang, S. (2019). Detecting and Simulating Artifacts in GAN
Fake Images. CoRR, abs/1907.06515. http://arxiv.org/abs/1907.06515

54

https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356
https://arxiv.org/pdf/2203.14639
https://arxiv.org/pdf/2203.14639
https://www.tutorialspoint.com/what-is-momentum-in-machine-learning
https://arxiv.org/abs/1409.1556
https://doi.org/https://link.springer.com/book/10.1007/978-3-319-73004-2
https://doi.org/https://link.springer.com/book/10.1007/978-3-319-73004-2
http://arxiv.org/abs/2001.00179
https://builtin.com/machine-learning/sigmoid-activation-function
https://medium.com/@seshu8hachi/stochastic-gradient-descent-vs-gradient-descent-exploring-the-differences-9c29698b3a9b
https://medium.com/@seshu8hachi/stochastic-gradient-descent-vs-gradient-descent-exploring-the-differences-9c29698b3a9b
https://medium.com/@seshu8hachi/stochastic-gradient-descent-vs-gradient-descent-exploring-the-differences-9c29698b3a9b
https://arxiv.org/abs/2008.04848
http://arxiv.org/abs/1912.11035
http://arxiv.org/abs/1912.11035
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
http://arxiv.org/abs/1811.08180
http://arxiv.org/abs/1811.08180
http://arxiv.org/abs/1907.06515

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit mit dem Titel

Deepfake detection based on facial landmark motion analysis during person
specific pronunciation

selbstständig und nur mit den angegebenen Hilfsmitteln verfasst habe. Alle Passagen,
die ich wörtlich aus der Literatur oder aus anderen Quellen wie z. B. Internetseiten
übernommen habe, habe ich deutlich als Zitat mit Angabe der Quelle kenntlich gemacht.

Hamburg, 17. Mai 2024

	List of Figures
	List of Tables
	Introduction
	Related works
	Categories of manipulation
	Detection

	Fundamentals
	Neural Networks
	Regularization
	Loss functions
	Optimization functions
	Activation functions
	Convolutional Neural Networks
	General Adversarial Networks
	VGG 16 model
	ResNet 50 model
	DenseNet121 model

	Whisper
	MediaPipe
	TensorFlow
	Wav2Lip

	Data preprocessing
	Collecting videos and transcribing words
	Creating sub clips
	Facial landmark extraction
	Creating TensorFlow dataset with tensors
	Preparation of fake dataset
	Fixing mistakes of the previous dataset

	Results
	First experiments and early problems
	Experimenting with different model architectures
	Testing different functions for a modified VGG16 model
	Experimenting on more balanced dataset
	Experiments to solve overfitting
	Scaling experiments up to balanced dataset
	Final experiments with deepfake dataset

	Discussion
	References

