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ABSTRACT

Rare earth elements (REE) are recognized as :
emerging pollutants due to their widespread use / Taxonomic groups used in REE - Main factors inﬂuencinx
in modern society (e.g., in the production of sostoaicalogy, sindics MEE bioseays
electronics, renewable energy technologies, and

Precipitation

advanced medical devices) which leads to Freshwater organisms aarer hordiness
anthropogenically elevated concentrations in the wr 8% Bacteria

A . . = 15% Microalgae
environment with potential consequences for BT 50% Invertsbrates

W 27% Vertebrates

ecosystem health. This article critically reviews
the current scientific knowledge on aquatic bio-

availability and toxicity of REE and focuses on Marine organisms B cee mixtures
pitfalls that could influence the outcome of eco- - 3% Bacteris -
toxicity tests. After passing our quality criteria, we I O I 8225 Adsorption

reviewed 38 papers on the ecotoxicity of REE in Q Vertebrates A Exposure /
depth. Most studies focused on freshwater envi- conditions
ronments, indicating a need for more research

on marine ecosystems, particularly on marine

vertebrates. The results showed that heavy REE tend to be more toxic than light REE to aquatic organ-
isms. Critical aspects for biotesting REE include complexation with ions such as phosphates (nutrient in
algae tests) and carbonates. Carbonate complexation decreases potentially bioavailable aqueous REE
species and may lower toxicity at increasing water hardness, although this may also be caused by com-
petition of REE3* and Ca?* for the same binding sites in organisms. REE have a high tendency to adsorb
to glass and it is recommended to use vessels made of polyethylene terephthalate or polycarbonate
instead. More research is needed on chemical speciation and the interaction of REE with various organ-
isms, also in multi-species mesocosm studies. A robust aquatic risk assessment on REE requires informa-
tion on nominal and measured concentrations in both acute and chronic ecotoxicological bioassays as
well as a thorough characterization of exposure.

KEYWORDS Emerging contaminants; freshwater; lanthanides; marine; sediment; speciation

Introduction

The Rare Earth Elements (REE) are a group of metals comprising the 15 elements from the
lanthanide (Ln) series with atomic numbers (Z) from 57 to 71 as well as the chemically similar
elements scandium (Sc) (Z=21) and yttrium (Y) (Z=39; Wall, 2021). Despite being called “rare
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earth elements,” they are not particularly rare in the Earth’s crust. Indeed, the most common
REE, cerium (Ce), has a similar crustal abundance as nickel (Ni) and copper (Cu). With the
exception of promethium (Pm), which has no stable isotopes, even the rarest lanthanides, thu-
lium (Tm), and lutetium (Lu), are more common than silver (Ag) and platinum (Pt; Cotton,
2006). However, concentrated deposits are unusual.

The 17 REE show similar but not identical physical and chemical properties. Among the Ln,
from lanthanum (La) to lutetium (Lu), electrons occupy the inner 4f orbitals with little effect
on bonding properties. The effective nuclear charge, which is weakly shielded by the 4f electrons,
causes a decrease in the atomic radius as the atomic number increases, a phenomenon known
as the lanthanide contraction. This influences their chemical behavior, as heavier Ln with higher
charge densities have an increased affinity for negatively charged groups. In aqueous solution,
Ln as well as Y and Sc occur mostly in a trivalent (+3) oxidation state. The only other envi-
ronmentally relevant oxidation states are 4+ for Ce, under oxidizing conditions, and 2+ for
europium (Eu), under reducing conditions (Henderson, 1996). REE are often divided into light
REE (LREE, La to samarium (Sm)) and heavy REE (HREE, Eu to Lu), with the separation of
the categories being slightly different. Moreover, it is unclear whether Sc and Y should be included.

Given their low solubility in water and the assumption, that only the free trivalent ions would
be (bio)available, REE have historically been considered to present little or no environmental
risk. Consequently, there are no specific regulatory restrictions for REE, not even drinking water
standards for human health. However, due to the unique magnetic and/or optical properties of
REE and their compounds, there has been a growing demand for REE in new technologies, for
example, in the automotive industry and in renewable energy generation systems over the last
two decades. Intensified use goes along with increasing emissions to the environment. While
REE used to serve as natural geological tracers in hydrological systems, their current anthropo-
genically elevated concentrations in water, soil, and sediments have prompted the question: Could
REE have negative consequences for humans and the environment? This concern is reflected by
the relatively rapid increase in the number of scientific publications addressing the topic of REE
(eco)toxicity, along with the rise in their global production (Fig. 1).
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FIG. 1. World mine production of rare earth elements (REE) and the number of publications published from 1956 to 2023 con-
taining “rare earth “AND” *tox*," as listed in the SCOPUS database. Source for world production data: 1900-2020: U.S. Geological
Survey (2014); 2021: U.S. Geological Survey (2023); 2022-2023: U.S. Geological Survey (2024).
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A number of detailed experimental studies and literature reviews have been published over
the last 10years or more (Ng et al., 2011; Weltje, 2002). The more recent ecotoxicological studies
have focused on specific elements such as La (Herrmann et al., 2016) and Gd (Trapasso, Chiesa,
et al,, 2021) or solely on marine waters (Piarulli et al., 2021). Others have provided extremely
useful summaries on the current level of knowledge (Blinova et al., 2020; Gonzélez et al., 2014;
Kang & Kang, 2020; Malhotra et al., 2020) but have focused on individual REE, in single matrices
or organisms (Herrmann et al., 2016; Malhotra et al., 2020). There are also more recently pub-
lished reviews on the behavior and effects of REE in the environment (Balaram, 2019; Dushyantha
et al., 2020; Neira et al., 2022). In this review, we provide and discuss the current scientific
knowledge on the aquatic toxicity of the most commonly used REE, covering both marine and
freshwater environments as well as sediments. We emphasize studies that have either reached a
consensus or present conflicting observations. Additionally, we assess whether general conclusions
can be drawn based on the current understanding of REE toxicity. We use this analysis to
highlight the most critical aspects when performing biotests with REE, and to make more
meaningful suggestions to improve the assessment of their environmental risk.

Study design and method

A thorough review of the literature was carried out using Google Scholar (https://scholar.google.
com), the Scopus database (https://scopus.com), and PubMed (https://ncbi.nlm.nih.gov/pubmed),
as well as by examining the reference lists of previously published reviews. The keywords used
were Rare Earth Elements; REE; REY; lanthanides; Ln; the separate elements in combination
with ecotoxicity, speciation, ecosystems, and toxicity in various biological species (crustaceans,
bacteria, algae, vertebrates, invertebrates, and specific species (e.g., Raphidocelis subcapitata); and
variations of these terms. This review is based on articles published until 2022, with some
additions from 2023.

Studies measuring the ecotoxicity of REE-containing nanoparticles, lanthanide-modified ben-
tonites, and contrast agents were excluded from this review because the behavior of these REE
forms in water is different from that of dissolved species. All papers related to ecotoxicology
were checked using the criteria of Klimisch et al. (1997). These criteria include: references to
guidelines, data on the exposure period, a clear description of the test procedure, specification
of the test substances, data on the test animals, the number of individuals tested, data on the
measured parameters, data on the physical and chemical test conditions, the determined effect
concentrations, data on the statistical evaluations, data on the dosing of the test substance, and
data on feeding of the test animals (only for chronic tests). Each criterion that is included in
the article is assigned a score of 1, with a maximum of 10 points for acute tests and 12 points
for chronic tests. A paper was included only when the score was =8 points. This resulted in 38
REE ecotoxicity studies, of which 26 addressed freshwater and 12 marine exposure matrixes. The
nematode species Caenorhabditis elegans was categorized within the exposure freshwater matrix.

The compiled information on the ecotoxicity of REE provided insights into the distribution
of the exposure matrix type (i.e., the medium in which organisms are exposed to REE, such as
freshwater or sediments) and the studied biological species across publications (Fig. 2). Most
studies have focused on freshwater organisms (62%, Fig. 2b), followed by marine organisms
(29%, Fig. 2¢). Sediments represent the least studied exposure matrix at 9%, making them scarce
and do not allow for effective concentration estimations. Most freshwater related studies have
been performed on invertebrates (50%, with Caenorhabditis elegans and Daphnia magna being
the most studied organisms). Only 8% of the included studies have addressed freshwater bacteria.

While only 14 freshwater biological species have been tested, most of the marine studies have
been performed on the bacterium Aliivibrio fischeri or on different sea urchin species (inverte-
brates). There were no studies on marine fish that met the criteria of this review. As shown in
Fig. 2, information on the effects of REE on biological species is limited. REE toxicity on certain
species has been disproportionately understudied within the freshwater and especially in marine
environments.
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a. Exposure matrix

W 62% Freshwater
B 29% Marine
B 9% Sediment

b. Freshwater species c. Marine species

P. reticulata

E. coli M. galloprovincialis C. gigas

G. rarus
S. vacuolatus .
S. granularis

D. rerio C. vulgaris

R. subcapitata P. lividus A. fisheri

O. mykiss H. tuberculata

H. azteca C. elegans C. rodgersii

H. vulagris A. lixula C. vulgaris

T. tubifex

D. similis S. costatum P. tricornutum
D. magna
Total=12
Total=26

W 8% Bacteria Bl 33% Bacteria

B 15% Microalgae B 25% Microalgae

B3 50% Invertebrates Em 42% Invertebrates

B 27% Vertebrates Bm 0% Vertebrates

FIG. 2. Distribution of the exposure matrix type and the studied biological species used to calculate the rare earth element (REE)
effect concentrations presented in this literature review. The pie charts show (a) the distribution of the exposure matrices used,
(b) the distribution of the evaluated freshwater species, (c) the distribution of the evaluated marine species.

Natural occurrence and anthropogenic emissions of REE to the aquatic environment

Because of their chemical similarity, REE behave as a group and are distributed in the environ-
ment through geogenic erosion processes. Their concentrations in environmental media maintain
a consistent pattern. In general, REE follow the Oddo-Harkins rule (Harkins, 1917; Oddo, 1914)
with the highest concentrations being found for the first even-numbered REE (Ce), while the
lowest concentrations are found for the last two odd-numbered REE (Tm and Lu), with con-
centrations typically two orders of magnitude lower than for Ce (Table 1 and Fig. SI).

Out of the 17 REE, only Pm does not have a stable isotope and has therefore no natural
occurrence. An analysis of geochemical data prepared by the Forum of European Geological
Surveys (FOREGS; Salminen et al., 2005) concluded that the overall distribution pattern over
Europe is entirely due to the geological characteristics. Concentrations in water vary over two
orders of magnitude, depending on the regional geology.

The absolute concentration of REE in aquatic systems depends on the rock composition
in the respective catchment and the water chemistry (Elderfield et al., 1990). When normal-
izing dissolved REE concentrations to shale composition, the REE distribution follows the
natural background level. Small anomalies in this pattern can be caused by differences in the
stability of complexes or redox-sensitivities (Tepe et al., 2014), while large positive anomalies
point to anthropogenic sources. For example, local and regional anomalies are derived from
substantial targeted mining and intentional application in industrial products. Most extensive
REE mining is carried out in China, where 62% of global production occurred in 2019
(Garside, 2021). Liang et al. (2014) compiled data from mining areas in China and showed
that soil contamination in these areas reached magnitudes of mg g™' (or mmol kg™), well
above the world average (Fig. 3). In acidic waters from mining sites on a branch of the Yellow
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Table 1. The median concentrations of rare earth elements (REE) in the upper continental crust (Rudnick & Gao, 2003) as
reported in the Forum of European Geological Surveys (FOREGS database) and the median REE concentrations and ranges in
stream water and stream sediment in Europe according to the FOREGS database (Salminen et al., 2005).

Upper continental Stream sediment, size fraction <150
crust Stream water, filtered <0.45 pm um
Median Range Median Range

REE pmol kg~ umol | pmol 17! pmol kg~ pmol kg~
Sc 311 No data No data

Y 236 7.20x107% <3.37%107%-7.34 %1072 289 7.63-3630
La 223 2.45x107% <1.44x107%-1.15%10"Y 230 1.33-705
Ce 450 3.93x10°% <1.43%x107%-7.21x 1072 475 0.33-46.50
Pr 50.40 6.39%x107% <1.42x107%-1.06x 10~ 49.70 1.27-576
Nd 187 2.77x107% <1.39%107%-3.99 x 10~ 191 0.13-91.20
Sm 31.30 5.99x10°% <1.33%x107%-7.12%107% 34.60 0.68 —-481
Eu 6.58 3.29%10°% <1.32%x107%-1.32%x107% 6.51 0.24-101
Gd 25.40 6.36x107% <1.27x107%-6.17 %1079 31 0.42-275
Tb 4.40 1.26x107% <1.26Xx107%-8.18x 107 4.85 0.12-38.10
Dy 24 4.92x107% <1.23x107%-4.86 %1070 27.40 0.58-247
Ho 5.03 1.21x107% <1.21x107%-1,03% 1079 5.40 0.11-34.50
Er 13.80 3.59%10°% <1.20%107%-2.87x107% 15.50 7.63-3630
Tm 1.78 1.18x107% <1.18Xx107%-4.,03x 107 2.31 1.33-705
Yb 11.30 3.47x107% <1.16Xx107%-2.37x107% 14.30 0.33-46.50
Lu 1.77 1.14x107% <1.14Xx107%-4,00x 107 217 <1.27-576

REE concentrations in soil samples in Chinese mining areas

* World average
Gd~ * — —]
m
& Nd- * || —
k]
2
3
3 Ppre [ —
(7]
La- [ S
1 T ] T 1
100 101 102 103 104 105

Concentrations in pmol kg'1

FIG. 3. The soil concentrations of select rare earth element (REE) in Chinese mining areas compared with the world average
concentrations (stars), based on data from Liang et al. (2014). The box and whisker plots display the distribution of the measured
concentrations, with limits of the boxes indicating the range of the central 50% of concentrations measured at seven mining
areas, the central line indicating the median, and the whiskers extending to the minimum and maximum values.

River in China, REE were enriched by a factor of more than 1000 compared with the less
affected main river section. In suspended particulate matter and deposited sediment,
REE-concentrations exceeded average values of rivers in Northern China by up to 200-fold
(Liang et al., 2014).

Outside China’s mining area, product manufacturing and related technological processes can
lead to elevated REE environmental concentrations. The transport pathways that link production
and uses to elevated concentrations in the aquatic environment include atmospheric deposition,
surface run-off, and effluents. Among these, atmospheric deposition may occur but has not been
shown to contribute substantially to the contaminant load of rivers (Cidu et al., 2013), at least
outside of mining areas. Substantial Gd anomalies in surface waters due to the presence of
magnetic resonance imaging (MRI) contrast agents in hospital effluents have first been described
by Bau and Dulski (1996). Subsequently, this phenomenon has been reported for all rivers
worldwide that flow through densely populated areas (Klaver et al., 2014). For example,
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anthropogenic Gd fluxes in the Garonne watershed in France increased from 203 mol year™ in

2003 to 477 mol year™! in 2017 (Lerat-Hardy et al., 2019). Moreover, production sites of fluid
cracking catalysts lead to substantial increases in Ce, La, and Sm, as do mining activities (Table 2).

Industrial effluents containing REE can be discharged directly into surface waters, as REE
are currently unregulated. A study by Kulaksiz and Bau (2011) traced a La anomaly in the Rhine
river to an upstream plant producing fluid cracking catalysts in Worms, Germany, and emitting
substantial quantities of La into the river. In addition, La could be traced up to the North Sea
(Klaver et al., 2014). If levels exceed the median values, they remain within the range of natural
background concentrations (Table 1). With increasing emissions, these concentrations are likely
to rise in the future and will specifically accumulate in sediments. However, elevated loads by
themselves are not necessarily a cause for concern.

Speciation and adsorption
Speciation

In water, REE partitioning between bulk waters, pore waters, the dissolved fraction, and the
colloidal fraction, is controlled by speciation and adsorption (Zhong & Mucci, 1995). The spe-
ciation of REE is characterized by the competition between stable aqueous complexes and the
adsorption to or (co)precipitation of solid phases. Therefore, REE exist as free metal ions or
complexed with organic or inorganic ligands and are impacted by colloidal composition and
water chemistry (Verplanck, 2013).

With a similar ionic radius, REE also competes with divalent cations such as calcium (Ca?*)
and magnesium (Mg?*) for binding sites of organic ligands (Du et al., 2019; Marang et al., 2008).
Apart from being present in their free ionic form (REE**), REE can form complexes with inor-
ganic ligands such as carbonate, hydroxide, phosphate, and chloride (Millero et al., 2009;
Moermond et al.,, 2001; Wood, 1990). While REE nitrates, chlorides, and sulfates are more
soluble, REE carbonates, phosphates, and hydroxides have high stability constants (Table 3) and
are considered practically insoluble (Wells & Wells, 2012). Metal complexation and precipitation
with inorganic and organic ligands correlate positively with pH (Han, 2020; Millero et al., 2009;
Moermond et al., 2001).

Organisms such as microalgae absorb carbon dioxide (CO,) and secrete metabolites that affect
the aqueous pH (Wu et al., 2022). Therefore, buffering agents are commonly employed in eco-
toxicological studies to maintain a constant pH. When performing bioassays, the suitability of
the pH buffer used should be considered. A study with Eu(III) indicated that the pH buffers’
ability to form complexes with the metal varied significantly, with 3-(N-morpholino))propane
sulfonic acid (MOPS) exhibiting the highest complex-forming capacity. In contrast, tris(thy-
droxymethyl)aminomethane (TRIS) had no significant interaction with Eu(III) while the other
buffers did (Mandal et al., 2022). However, metal-buffer complexation should not be the only
consideration when deciding which buffer is most suitable for an assay. For example, it has been
demonstrated that test media buffered with sodium bicarbonate (NaHCO;) increased the toxicity
of copper (Cu) and zinc (Zn) for algae, while there were no differences in metal toxicity for
the pH buffers MOPS and hydrochloric acid (HCl; De Schamphelaere et al., 2004).

Dissolved organic matter (DOM, often expressed as dissolved organic carbon (DOC)) has a
high complexation ability with REE. In freshwater solutions, about 95% of REE is associated
with DOM, which mainly consists of humic and fulvic acids; REE bind to their carboxylic and
phenolic groups (Dupré et al., 1999; Marang et al., 2008; Perdue et al., 1984; Torres & Choppin,
1984). The presence of DOM strongly affects REE speciation as it can increase the solubility of
REE by counteracting precipitation and increasing the mobility of REE in the environment by
serving as a transport vehicle (Choppin, 1986; Mccarthy et al., 1998). However, at higher con-
centrations, the presence of DOM in a water system significantly reduces bioaccumulation and
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Table 2. Detected anomalies of rare earth elements (REE) in aquatic systems and the reported concentrations.

REE Concentrations Unit Matrix Region/location Country Probable source  Reference
Ce 1.19%x10%% pmol Sediment  Anning River, China Mining activity Wang et al.
kg™ Sichuan (2021)
Province
Ce 1.10%107%-1.01% 107 pmol L' Surface Rhine River, ca.  Germany Fluid cracking  Kulaksiz and
water 250 km catalyst Bau
downstream production (2013)
of effluent
Ce 1.21x10%% umol Sediment  Rhine estuary The Netherlands Artificial Bakkenist
kg™ fertilizer and van
plant de Wiel
(1995)
Gd 1.70x107%-1.18x 10 pmol L' Surface Suzhou City China WWTP Shilin et al.
water (urban (2021)
waters)
Gd 9.79%107%-551x10"% pmol L' Surface Jinzhong Stream China WWTP from a  Zhang et al.
water hospital (2019)
Gd 458x107%-2.09%x 107 pmol L' Surface Han-River, South Korea WWTP from Song et al.
water influenced by hospitals (2017)
a WWTP
Gd 1.14%x107%-4.58%107% pmol L' Surface Garonne River  France WWTP from Lerat-Hardy
water hospitals et al.
(2019)
Gd 1.01%x10°% pumol L= Surface Havel River Germany WWTP from Bau and
water hospitals Dulski
(1996)
La 3.42x107% pumol L= Surface Anning River, China Mining activity, Wang et al.
water Sichuan industrial (2021)
Province and
agricultural
activity
La 2.38x 1070 pumol L= Surface Rhine River, ca.  Germany Fluid cracking  Kulaksiz and
water 50km catalyst Bau
downstream production (2011)
of effluent
La 9.07%107%-6.41x10"% pmol L' Surface Rhine River, ca.  Germany Fluid cracking  Kulaksiz and
water 250km catalyst Bau
downstream production (2013)
of effluent
La 5.76x 10+ pmol Sediment  Rhine estuary The Netherlands Artificial Bakkenist
kg™ fertilizer and van
plant de Wiel
(1995)
Nd 5.55x 10+ pmol Sediment  Rhine estuary The Netherlands Artificial Bakkenist
kg™ fertilizer and van
plant de Wiel
(1995)
Pr 2.13x10%2 pmol Sediment  Rhine estuary The Netherlands Artificial Bakkenist
kg™ fertilizer and van
plant de Wiel
(1995)
Sm 1.27x107%-2.11%x10"% umol L' Surface Rhine River, ca.  Germany Fluid cracking  Kulaksiz and
water 250km catalyst Bau
downstream production (2013)
of effluent
Sm 1.33%x10%02 pmol Sediment  Rhine estuary The Netherlands Artificial Bakkenist
kg™ fertilizer and van
plant de Wiel
(1995)
Y 2.70%x10*9"-3.60x 10*°2  pmol Sediment  Tagus estuary Portugal Chemical and  Brito et al.
kg™ phosphorus (2018)
fertilizer
industry

WWTP =Wastewater treatment plant.
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Table 3. The solubility constants of three selected
rare-earth elements (REE) based on the increase in the
atomic number (lightest =La; heaviest=Lu) (from NIST
Database 46 Version 8.0).

REE species log(K)
La(OH) 5.5
La(CO,) 6.98
La(NO,) 0.7
La(So,) 3.64
LaCl 0.53
La(PO,)(s) 25.75
Lu(OH) 6.6
Lu(CO,) 8
Lu(NO,) 0.4
Lu(So,) 3.52
LucCl -1.97
Lu(PO,)(s) 24.8

toxicity of REE due to strong complexation and precipitation (El-Akl et al., 2015; Lachaux,
Cossu-Leguille, et al., 2022; Tang & Johannesson, 2003; Vukov et al., 2016).

The half-maximal (50%) effective concentration (EC,,), which is often used to assess envi-
ronmental risk, can be influenced by the solution composition and chemical speciation. So, these
factors should be considered when assessing the toxicity of REE and calculating the EC,; (Lachaux,
Catrouillet, et al., 2022). While chemical speciation is an essential consideration when investi-
gating REE behavior and toxicity, it remains a challenging issue. Apart from analytical techniques
such as voltammetry (the labile fraction including the free REE ions; Lee et al.,, 1997) or induc-
tively coupled plasma mass spectrometry (ICP-MS; Haraguchi et al., 1998) that allow quantifying
the dissolved metal concentration in solution, speciation modeling can be carried out by using
geochemical modeling software such as PHREEQC (Parkhurst, 1995), Visual MINTEQ (Gustafsson,
2011), Geochemist’s Workbench (Bethke, 2022), or WHAM (Tipping, 1994). Speciation calcula-
tions on natural waters demand an intense analytical effort to characterize the system in terms
of its components but also simplification when considering the influence of DOM (Dupré et al,,
1999) and other factors such as the fluctuation of abiotic parameters and/or the presence of
organisms.

Surface adsorption

Sediments, and more precisely mineral phases such as iron (Fe-) and manganese (Mn-) oxyhy-
droxides, are efficient adsorbents for REE (Gwenzi et al.,, 2018). Metals associated with the
Fe-containing aluminosilicate mineral fraction can undergo diagenesis after deposition in sedi-
ments (Michalopoulos & Aller, 2004; Wen et al., 2008).

Silicates (SiO,)*") are the main component of glass and are known to be a strong adsorbent
of REE. Indeed, silicate materials are used to remove REE from industrial wastewater (Callura
et al., 2018; Pereao et al., 2018; Weltje, Brouwer, et al., 2002). The amount of lanthanum that
can be adsorbed by glass (silica) is up to 25% of the total La present in the medium (Weltje,
Brouwer, et al., 2002). It is therefore recommended to avoid the use of glassware apparatus in
bioassays; rather, containers with a lower adsorption capacity for REE should be used.

Other material surfaces used in the apparatus in bioassays can also adsorb a certain amount
of metal ions, including materials such as polyethylene, polypropylene, Teflon, stainless steel,
borosilicate glass, quartz, and “soft glass” (Eichholz et al., 1965; Weltje, Brouwer, et al., 2002).
In fact, Ce adsorption (measured in % adsorption per cm?) to polypropylene is stronger than
for borosilicate glass (Eichholz et al., 1965). Furthermore, a decrease in pH significantly reduces
the adsorption on glass and has an even more pronounced effect on plastic. However, it has
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been suggested that REE adsorption remains low enough to be neglected in bioassays (Eichholz
et al., 1965). For example, Aharchaou et al. (2020) measured La and Ce concentration variation
in abiotic media and found that even after 120h, less than 20% of the initial amount had been
adsorbed onto the walls of the test vessel.

The adsorption of REE on external parts (e.g., shells and cell walls) of aquatic organisms
such as microorganisms, algae, invertebrates, and vertebrates has been well studied and differs
among organisms (Cheng et al.,, 2018; Das et al., 1988, 2014; Martinez et al., 2014; Ramasamy
et al., 2019; Tamjidi & Ameri, 2020). La sorption has been quantified at 1010 umol g™' for crab
shells (Vijayaraghavan et al., 2009), 7200 umol g' for the green freshwater algae Desmodus
multivariabilis (Birungi & Chirwa, 2014) and 1080 umol g™! for the marine brown algae Turbinana
canoides (Vijayaraghavan et al.,, 2010). The affinity of REE for Bacillus subtilis increases with
the atomic number, which suggests an enrichment of HREE on the surface of these bacteria
(Martinez et al., 2014). The Langmuir isotherm model points toward carboxylic groups on the
cell wall of bacteria as potential REE adsorption sites.

Potential environmental impact of REE
Uptake of REE and occurrence in biota

REE are considered non-essential elements but can be (bio)accumulated in almost all organisms
including microorganisms (Tsuruta, 2006), phytoplankton (Ramasamy et al., 2019), zooplankton
(MacMillan et al., 2017, 2019), benthos (Merschel & Bau, 2015), and other aquatic invertebrates
(Amyot et al., 2017; Pastorino et al., 2020). Bioaccumulation of REE seems to be dependent on
the biological species and size (e.g., age; Hanana et al., 2017; Kazak et al., 2021; Merschel &
Bau, 2015; Perrat et al., 2017) and is often related to the surface area of an organism (Palumbo,
1963) and the location (Weltje, Heidenreich, et al., 2002). These variations can be explained
through site-specific REE availability and the different feeding pathways (e.g., grazing and filter
feeding), as well as exposure routes (Bustamante & Miramand, 2005; Weltje, Heidenreich, et al.,
2002). Accumulation of the different elements in algae and bacteria reflects the environmental
concentrations, and under natural conditions follow the Oddo-Harkins rule (Weltje, Heidenreich,
et al.,, 2002). However, this does not seem to apply to crustaceans (Gonzalez et al., 2015).

Lanthanides are not equally distributed between the shells and soft tissue of bivalves (Akagi
& Edanami, 2017; Tijink & Yland, 1998; Weltje, Heidenreich, et al., 2002), with REE concen-
trations being up to 10 times higher in tissues than in shells (Akagi & Edanami, 2017). Among
the soft tissues, the digestive gland of bivalves tends to bioaccumulate the most REE (Bustamante
& Miramand, 2005; Lobel et al., 1991; Perrat et al., 2017). This difference in bioaccumulation
among the organs also occurs in fish. For example, La and Gd bioconcentration are known to
decrease in the order of internal organs > gills > skeleton > muscle in carp (Cyprinus carpio; Qiang
et al.,, 1994).

REE are also known to bioaccumulate in both micro- and macroalgae (Diniz & Volesky, 2005;
Oliveira et al., 2012; Ramasamy et al., 2019; Yang & Wilkinson, 2018). The concentration of
seven REE in 35 different marine species sampled in China varied from 8.69x107% to 0.27 umol
g ldry weight (Hou & Yan, 1998). This accumulation varied with algal species but also with
the specific REE or the atomic number. These observations are different than what Bingler et al.
(1989) reported: The marine diatom Skeletonema costatum showed a difference in LREE and
HREE uptake. The authors concluded that LREE adsorb preferentially onto the surface of the
microalgae or are taken up by the algae while HREE show a stronger affinity for the test media,
meaning that metals are less taken up or absorbed by the organisms.

If a food-borne compound is bioaccumulated, it may also be biomagnified, that is, lead to
concentrations in the organisms that increase with the trophic level. At present, the biomagni-
fication potential of REE is unclear. On the level of plants and invertebrates (e.g., Lemna minor
and several species of sea urchins and blue mussels), researchers have found limited potential
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for the biomagnification of REE (MacMillan et al., 2017; Weltje, Heidenreich, et al., 2002).
Others found that the opposite effect, biodilution, dominates: The metal concentrations decrease
as the trophic level increases in both freshwater and marine food chains (Amyot et al., 2017;
Liu et al., 2011; MacMillan et al., 2017).

La®* adheres to the bacterium Escherichia coli, which is commonly used as food in bioassays
with C. elegans (Zhang et al., 2010). Elemental mapping of C. elegans indicated dose-dependent
La accumulation. This bioaccumulation might mostly be due to the ingestion of high levels of
La absorbed to E. coli. Marked La accumulation in C. elegans can lead to a distinct elemental
imbalance where there is a decline in concentrations of Ca?*, potassium (K*) and zinc (Zn?";
Zhang et al., 2010). Several studies have suggested that REE ions can bind to the Ca?" binding
sites in several proteins in nematodes (Burroughs et al., 1994; Fujimori & Jencks, 1990;
Wakabayashi et al., 2016).

Sediment-bound REE are usually considered to be unavailable, but they may become available,
when sediment particles are ingested by organisms, or when environmental conditions are
changed (Mori, 1999). As such, the sediment may be considered a source for REE in water.
Benthic fish have a higher concentration of REE than pelagic-feeding fish species (Mayfield &
Fairbrother, 2015). Benthic fish species are in direct contact with the sediments and can ingest
greater amounts of REE from benthic organisms (Mayfield & Fairbrother, 2015; Wang et al,,
2019). Non-predatory microbenthic invertebrates (e.g., the genera Caenis and Baetis) have been
suggested to accumulate more REE than predatory organisms because the most efficient route
of assimilation is through the intake of sediment (Pastorino et al., 2020).

Further, it remains challenging to replicate identical exposure conditions between laboratory
and natural environments, which could (partly) explain the discrepancies observed between field
and laboratory results. REE concentrations in organisms seem to correlate negatively with the
trophic level in marine ecosystems regardless of the studied conditions.

Effect assessment

The toxicity of REE to freshwater organism has been studied more widely among different levels
of the aquatic food web in comparison to marine organisms. Tables 4 and 5 compile all current
available lethal concentration (LC), effect concentration (EC), and inhibition concentration (IC)
data on freshwater and marine organisms exposed to REE, respectively, providing a comprehen-
sive overview of the research in this field. However, there are still knowledge gaps that require
further investigation to fully understand the ecotoxicological profile of REE.

Freshwater conditions

Bacteria. Even though bacteria have been studied extensively in relation to the biological effects
of common trace metals in the aquatic environment, there have been relatively few studies on the
effect of REE, despite the fact that these organisms are directly exposed to REE enriched water.
Moreover, bacteria have been shown to influence the mobility and adsorption of REE by producing
organic matter with a high affinity for REE (Perelomov & Yoshida, 2008). This affinity results in
the creation of low-dissolved REE complexes, which notably increases as the pH levels decreases
(Martinez et al., 2014; Takahashi et al., 2010).

Bacteria are often more sensitive to REE than other microorganisms (e.g. fungi; Talburt &
Johnson, 1967). The toxicity also varies depending on the specific REE. For example, Técher
et al. (2020) characterized the toxic effects of 16 REE on the growth kinetics of E. coli. The
estimated EC,, indicated that four HREE (Er to Lu) and Y are the most toxic metals (Table 4),
with values ranging from 3.00 to 8.30 uM, followed by Sc with an EC,, of 1.10uM. There are
limited data regarding the EC,, of REE for freshwater bacteria, while several studies have
addressed the effect of REE on marine bacteria, especially A. fischeri (Table 5 and the “Bacteria”
subsection of “Marione conditions”; Gonzalez et al., 2015; Kurvet et al., 2017; Weltje et al,,
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2004). The general consensus between the studies on freshwater bacteria (Técher et al., 2020)
and marine bacteria (Gonzalez et al., 2015; Kurvet et al., 2017; Weltje et al., 2004) is that REE
could be toxic to microbial cells in a concentration-dependent manner. Both E. coli and A.
fischeri appear to follow the pattern that LREE are less toxic than HREE, with the exception of
the LREE classified Sc (Técher et al., 2020).

A study found that the LREE inorganic compound La,O, shows antimicrobial activity against
the gram-positive bacterium Staphylococcus aureus, but not against the gram-negative species E.
coli and Pseudomonas aeruginosa (Balusamy et al., 2012). This is in agreement with the study
of Técher et al. (2020) that LREE are not very toxic to gram-negative bacteria and that is an
interaction between the gram-positive bacterial cell wall and REE. HREE appear to have different
effects on bacterial activity. It has been demonstrated that Y** can inhibit the ammonium oxi-
dation rate of bacteria commonly used in wastewater treatment systems (Su et al., 2020). However,
this inhibitory effect only occurs at concentrations higher than 1120 uM, suggesting that the
ammonium-oxidizing bacteria (AOB) and the specific nitrate production rate are particularly
resistant to Y**. Moreover, 300 and 500 uM Gd could temporarily reduce the nitrite production
of the gram-negative nitrifying bacterium Nitrosomonas europaea (Fujita et al., 2020). Thus, there
are indications that elevated Gd concentrations as high as 360uM do not negatively impact
AOB. More studies are needed to determine the toxicity of HREE to different freshwater bacteria
and the consequences on bacterial activity in both wastewater treatment systems and the
environment.

Microalgae. The impact of REE on freshwater algae has been well studied over the last 10years
and several hypotheses have been developed to explain the toxicity to microalgae. Several
studies identified a similar sensitivity for REE among different microalgae species (Table 4 and
Table 5; Bergsten-Torralba et al., 2020; Joonas et al., 2017; Tai et al., 2010). While some studies
have reported that REE exert similar toxicity to microalgae (Joonas et al, 2017; Tai et al,
2010), others have indicated that REE toxicity correlates positively with the atomic number
(Bergsten-Torralba et al., 2020; Gonzélez et al., 2015). For example, a stronger sensitivity of C.
vulgaris to Sm (atomic number = 62, EC,, 170puM) than for La and Nd (atomic number = 57
and 60, respectively, and EC,, 340 and 380 uM, respectively) was reported by Bergsten-Torralba
et al. (2020). This difference in toxicity could be explained by a difference in the biodistribution
in the microalgal cells. Indeed, Rezanka et al. (2016), using fluorescence microscopy found that
La and Gd mainly biodistributed in the cytoplasm of Desmodesmus quadricauda, while Nd and
Ce were localized in their chloroplasts. Additional studies are necessary to validate this
hypothesis.

REE toxicity to algae depends on their capacity to form complexes and eventually precipitate
in the presence of hydroxides, phosphates, and carbonates. REE precipitation with phosphate
not only complicates the process of assaying toxicity, but also limits the availability of this
nutrient for algae, leading to indirect effects on their growth (Goecke & Goecke, 2016; Gonzalez
et al., 2015). Sequestration of nutrients from algal growth media by REE has clearly been
demonstrated in several studies (Gonzalez et al., 2014, 2015; Tai et al., 2010).

REE presence exhibits intriguing dual effects due to their chemical similarities with certain
elements. REE can act as competitors and cause adverse effects on algae. However, REE also
have the potential to alleviate Ca deficiency by reacting with Ca?* receptors, influencing algal
metabolism (Goecke et al., 2015; Li et al.,, 2011). Moreover, the high affinity of REE for phos-
phate allows interactions with algal phospholipids in cell membranes, leading to metal agglom-
eration on the membrane surface and potentially inducing nutrient deficiencies that hinder
growth and photosynthesis (Joonas et al., 2017).

Low concentrations of NdCI, have been shown to enhance the photosynthetic rate and to
increase the total chlorophyll content, albeit with a decrease in the chlorophyll a/b ratio (Rezanka
et al., 2016). Conversely, higher concentrations of NdCl, inhibit the photosynthetic rate, indi-
cating potential consequences for plant growth (Goecke et al., 2015; Joonas et al., 2017).
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In Microcystis aeruginosa, low doses of La have been observed to promote the production of
microcystins (MCs), while high doses decrease this process (Liu et al., 2020; Shen et al., 2018).
This modulation is accompanied by significant changes in the ratios of different MC variants.
The activation of clathrin-mediated endocytosis by La enables the absorption of essential ele-
ments, stimulating algal growth, photosynthesis, and MC production (Liu et al., 2020). The
ability of REE to promote growth at low concentrations has also been shown in other algal
species (e.g., D. quadricauda) and terrestrial plants (e.g., Glycine max and Oryza sativa; de
Oliveira et al.,, 2015; Ramirez-Olvera et al., 2018; Rezanka et al., 2016), and explains why REE
are currently used as fertilizers in some countries, including China (Tommasi et al., 2020).

Invertebrates. The highest concentrations of REE are often found at lower trophic levels, especially
in aquatic invertebrates (MacMillan et al., 2017). Aquatic invertebrates are more likely to be at
risk from REE discharges in aquatic ecosystems because they are among the most sensitive
organisms to REE at the first consumer level compared to other taxonomic groups (Bergsten-
Torralba et al.,, 2020; Herrmann et al., 2016). However, other results indicate that crustaceans are
the least sensitive species when using standardized protocols compared with cnidarians, rotifers,
algae, and bacteria (Gonzalez et al., 2015), they are among the most studied aquatic organisms in
ecotoxicology.

The nematode C. elegans, even though not considered an aquatic organism, has been used
very often as a model organism to assess aquatic toxicity because of its easy use, short life cycle,
cellular simplicity and sensitivity (Tejeda-Benitez & Olivero-Verbel, 2016; Williams & Dusenbery,
1990). Tatara et al. (1998) reported that after exposure to La for 24h, the half-maximal lethal
concentration (LC,) for C. elegans is 9.72 uM. Zhang et al. (2010) found that LaCl, has adverse
effects on the growth, brood size, and number of eggs in the body of C. elegans, but it does
not cause mortality. They reported a La EC,, for brood size of 1.42uM, making it the most
sensitive endpoint for La exposure (Table 4). Several studies suggest that La, Nd, Pr, and Sc can
reduce the body length and brood size of C. elegans without causing any mortality (Wakabayashi
et al., 2016; Xu et al., 2017; Zhang et al., 2010). Sc and Lu are more toxic than the other REE
(Lan et al., 2023), but less toxic than Cu (Wakabayashi et al., 2016), suggesting that these two
REE may not have the same mode of action and negative effects as other REE.

Various studies have revealed that neurophysiological processes such as locomotor frequencies
of body bends, head thrashes and pharyngeal pumping in C. elegans are affected by REE (Han
et al., 2022; Xu et al,, 2017). Although the life stage of C. elegans influences the sensitivity (Han
et al., 2022), Wakabayashi et al. (2020) found that a variety of neurons are involved in the REE
avoidance behavior of C. elegans. The nematodes use these chemosensory neurons to improve
their avoidance of REE ions. Although clear avoidance of Y and all lanthanides was noted, this
is not the case for Sc, perhaps due to the relative high toxicity and permeability of Sc** into
the body of C. elegans compared with other REE ions (Wakabayashi & Nakano, 2019; Wakabayashi
et al., 2016). The chemosensory system used by C. elegans to avoid REE ions is similar to that
used to avoid heavy metal ions. However, the avoidance response for both REE and heavy metal
ions only partially overlap, suggesting that the avoidance mechanisms used by C. elegans for
REE is specific (Wakabayashi et al., 2020).

There is currently only one study that has addressed the environmental toxicity of REE salts
through the oligochaete freshwater sludge worm Tubifex tubifex express test. Rucki et al. (2021)
studied the movement inhibition (EC,,) of the worms by exposing the worms to all REE except
Sc at five different concentrations for 3min. The acute toxicity for T. tubifex shows an EC.,
value around 1.11M for almost all the tested REE (Table 4), comparable to the results found
for barium and cadmium salts, meaning that REE could be classified as exerting acute toxic
effects on the aquatic environment.

REE toxicity to Daphnia spp. has been particularly well documented (Table 4). However,
differences in sensitivity have been found among crustacean species. For example, Hyalella azteca
seems to be more sensitive to REE than Daphnia spp. (Vukov et al., 2016). Contradictory
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information can be found regarding the difference of toxicity among the REE to Daphnia. Several
studies suggested a difference of toxicity among these elements to daphnids, with Nd** appearing
to be the most toxic element (Bergsten-Torralba et al., 2020; Egler et al., 2023; Ma et al., 2016).
In contrast, other studies have calculated similar toxicity to daphnids for all REE (Blinova,
Lukjanova, et al., 2018; Lachaux, Catrouillet, et al., 2022). Similar EC., values of 20 uM for Nd,
Gd, and Yb were obtained after 48h exposure of D. magna (Lachaux, Catrouillet, et al., 2022).
Moreover, they reported similar toxicity when testing REE individually as well as in mixtures.
In contrast, Hanana et al. (2022) reported an antagonistic effect of an REE mixture (La, Ce, Pr,
Nd, and Sm) on Hydra vulgaris, with the mixtures showing less toxicity than the sum of the
toxicity of each REE. This implies that La, Ce, Pr, Nd, and Sm compete with the same physi-
ological targets but have different toxic outcomes. H. vulgaris is sensitive toward REE exposure.
Furthermore, the LC,, calculated by Blaise et al. (2018) for CeCl, (8860 uM; Table 4) is similar
to what Blinova, Lukjanova, et al. (2018) reported for chronic tests with D. magna. It indicates
that cnidarians are similar to daphnids regarding their chronic toxicity responses toward REE.

There have been very few studies evaluating the chronic toxicity of REE to crustaceans. Of
the available studies, Daphnia are by far more sensitive to REE during chronic tests compared
with acute tests (Barry & Meehan, 2000; Blinova, Lukjanova, et al., 2018a; Ma et al., 2016). Only
one long-term multigenerational study is available (Galdiero et al., 2019). The authors reported
that both Ce and Er reduce the survival, growth, and reproduction of D. magna (3.85 and
2.83 uM, respectively). They noted more pronounced negative effects of Er compared with Ce,
suggesting the presence of phenotypic adaptative mechanisms (e.g., detoxification), supported by
the decrease in the number of dead organisms at the end of each generation of daphnid.

The different conclusions found in the literature could be due to the use of different chemical
forms of REE, which seem to have dissimilar toxicity to crustaceans (Blinova, Vija, et al., 2018).
However, they could also be due to differences in REE speciation (Borgmann et al., 2005;
Loveridge et al., 2021; Vukov et al., 2016). In standardized acute test (OECD, 2004), La precip-
itates more than Gd, leading to a difference in metal biodistribution and toxicity to D. magna
(Revel et al., 2023). Therefore, researchers now recommend considering metal speciation and to
measure dissolved concentrations when calculating the EC,, (Lachaux, Cossu-Leguille, et al,
2022). This is in agreement with a study that examined the toxicity to REE on H. azteca:
Loveridge et al. (2021) demonstrated that the presence of organic matter increases the 96h LC;,
of Tm due to stronger metal complexation.

Vertebrates. A large number of different effects have been described for fish and the toxicity of
REE varies depending on the fish species, the exposed life stage, and the type of REE (Macova
et al, 2011). Except when studying fish cells (Fleurbaix et al., 2022), REE toxicity to fish generally
increases with the atomic number (Table 4; Cui et al., 2012; Dubé et al., 2019; Hanana et al,,
2021). This toxicity can be explained by the similar ionic radius of REE and Ca?', leading to
competition on the action site and perturbing different cell functions of the organism. Furthermore,
REE can affect the expression of SPARC3, which encodes a glycoprotein that binds Ca and
participates in the calcium homeostasis (Dubé et al., 2019; Hanana et al.,, 2021). Consistently, La
can perturb Ca homeostasis by inhibiting calcium influx in killifish (Zimmer et al., 2019).

Five REE chlorides (Ce, Er, Gd, La, Nd, and Sm) affect the expression of several genes in
the liver of juvenile rainbow trout (Dubé et al.,, 2019). These alterations lead to perturbations,
such as cell growth arrest, DNA and protein damage, cell proliferation, disturbed Ca homeostasis
and metabolism, as well as disruption of the detoxification pathway mediated by hemoproteins
and protein chaperones. Furthermore, Hanana et al. (2021) identified that the presence of Dy
or Lu activates the xenobiotic detoxification pathways of rainbow trout juveniles. GACl, triggers
lipid peroxidation (LPO), antioxidant gene activity, and oxidative stress in trout hepatocytes
(Laville et al., 2004). On the contrary, La does not cause oxidative stress on glass eels (Anguilla
anguilla) due to a good protection against reactive oxygen species (ROS) activity (Figueiredo
et al., 2018).
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REE cause severe physiological and histological alterations in a concentration- and exposure
time-dependent manner (Chen et al., 2020; Correia et al., 2019; Cui et al., 2012; Gong et al,,
2021; Hua et al, 2017; Su et al., 2022). For example, Nd activates apoptosis in the neurons of
Danio rerio embryos while significant cerebrovascular arrangement structure changes and the
cerebrovascular disappearance was observed which could be affected by the autophagy down-
regulation flux in the cerebrovascular vessels (Chen et al., 2020). Furthermore, the activity of
acetylcholinesterase (AChE) was significantly higher in La" exposed glass eels, which suggests
that La reduces the acetylcholine concentration in the brain of the fish (Figueiredo et al., 2018),
leading to neurotoxic effects.

The gills and liver appear to be particularly affected by REE exposure (Correia et al., 2019;
Hua et al,, 2017). Severe histopathological changes were observed in the gills and liver of rare
minnow (Gobiocypris rarus) after exposure to La for 21 days, suggesting some metabolic distur-
bance (Hua et al., 2017). Moreover, LaCl, inhibits mitochondrial energy turnover in the liver
of goldfish (Carassius auratus; (Wu et al., 2015). These alterations are accompanied by abnormal
behavior, which could be due to nervous system damage (Hua et al., 2017).

A few studies have investigated the effect of REE mixtures on freshwater fish. Exposure for
96h to binary mixtures (Nd, Gd, and Yb) resulted in a notable synergistic effect on fish cell
viability, suggesting that the combined presence of these lanthanides has a greater impact than
their individual effects (Fleurbaix et al., 2022). Similarly, additive effects of La and Gd mixtures
were observed for Danio rerio (Kang et al., 2022).

Marine conditions

Research on the toxicity of REE to marine organisms is much more limited compared with
freshwater environments. While REE bioaccumulation studies have been conducted, the focus
on their toxic effects has been sparse, particularly regarding marine vertebrates. This knowledge
gap highlights the need for further investigation to understand the potential risks and ecological
implications of REE in marine ecosystems.

Bacteria. Most studies that address the effect of REE on marine bacterium have focused on the
EC,, (Gonzalez et al.,, 2015; Kurvet et al., 2017; Weltje et al., 2004) for the naturally luminescent
gram-negative bacteria species A. fischeri (also known as Vibrio fischeri and Photobacterium
phosphoreum). For this organism, the toxicity of REE increases with the atomic number (Table 5;
Gonzalez et al., 2015; Kurvet et al., 2017). For instance, Gonzélez et al. (2015) calculated a nominal
EC,, after 30min of exposure of 18.30uM for Lu, 47.70uM for Ce, and 40.70puM for Gd (Table
5). The EC;, for Gd is slightly higher than 22.40uM estimated by Kurvet et al. (2017).

It was also hypothesized that the kinetics of the luminescence of the bacteria could act as a
good mechanistic toxicity endpoint (Kurvet et al., 2017). Indeed, it reflects early changes in the
bacterial membrane due to the exposure to REE and the high affinity of REE to phosphates.
According to the acute kinetics of A. fischeri bioluminescence, the toxicity of REE is triggered
by disturbing the integrity of the cell membrane. However, Kurvet et al. (2017) and Gonzalez
et al. (2015) stated that REE do not appear to have harmful effects on marine bacteria at the
current environmental concentrations and forms (e.g. insoluble salts) with exception of hotspots
or where peak concentrations occur.

Bacteria are particularly sensitive to REE in the presence of organic ligands. Indeed, the effect
of Lu on the bioluminescence of A. fischeri decreases in the presence of small organic molecules
such as citrate, malate, and oxalate (Weltje et al., 2004). However, the authors estimated a low
elimination rate of free Lu** and calculated an EC,; of 1.57 uM for Lu?* after 15min of exposure.
This finding suggests that the free ion Lu’* is more toxic than the free ions of bivalent metals
such as Cd** or Zn?* (Table 5; McCloskey et al., 1996). This hypothesis is contrary to many
studies that suggest that in general REE have a lower toxicity than Cd, Cu, Pb and Zn for the
marine bacterium A. fischeri (Newman & McCloskey, 1996).
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Microalgae. REE exert varying effects on the growth of Skeletonema costatum, with an EC,,
ranging from 21.90 to 43.20uM (Tai et al, 2010). The authors also evaluated the toxicity of a
mixed solution containing the same amount of the 13 REE on S. costatum. The EC.; of this
mixture was not significantly different from the toxicity of single REE. Similar sensitivity to REE
was found among two marine microalgae species such as Phaeodactylum tricornutum (Siciliano
et al., 2022) and the diatom S. costatum (Tai et al, 2010). In the latter study, the authors found
no interactions when examining REE in mixture (Tai et al, 2010). However, Sun et al. (2019)
demonstrated that the toxicity of La(NO,), varies with the algal species, with a nominal EC,, of
23.30 and 13.10puM for C. vulgaris and P. tricornutum, respectively (Table 5). The authors examined
the mechanism of toxicity of REE by measuring fluorescence yield and antioxidant responses. The
fluorescence of P tricornutum decreased rapidly compared with C. vulgaris at the same
concentration of La(NO,),.

Exposure to La increases in a dose-dependent manner, the activity of four enzymes involved
in the antioxidant responses of P. tricornutum, namely catalase (CAT), superoxide dismutase
(SOD), peroxidase (POD), as well as glutathione (GSH; Sun et al., 2019). This study also demon-
strated that the destruction of photosystem II (PS II) and the antioxidant system mediated by
La(NO,), are responsible the growth inhibition in algae. However, after 48h photosynthesis was
restored while oxidative stress remained present and affected in growth of algae in the longer
term. The oxidant stress and destruction of PS II as a reason for the inhibition of algae growth,
would imply the importance to study the impact of REE on essential elements for marine algae,
just as it has been done for freshwater algae.

Invertebrates. Most of the marine invertebrates studied to determine REE toxicity are classified as
macrozoobenthos. REE are known to strongly affect sea urchin embryos, and the effects vary
depending on the REE, concentration, and sea urchin species (Table 5; Gravina et al., 2018;
Martino, Bonaventura, et al., 2017; Oral et al., 2017; Pagano et al., 2016; Trifuoggi et al., 2017).
Martino, Bonaventura, et al. (2017) compared the LC50 of Gd for four species. Of the four species,
the found that Heliocidaris tuberculata, which naturally develops a more extensive skeleton, is the
most sensitive to Gd exposure (LC50=5.60x 10"2uM). Because Gd** has a similar ionic radius to
Ca?, it can block Ca?* channels (Sherry et al., 2009). If Gd** blocks Ca?* channels, then it could
lead to a calcification response and the development of skeletal abnormalities. Therefore, species
with a high need for Ca could be more impacted compared with species with a lower need. This
variable response in sea urchin species highlights the importance of evaluating the toxicity of REE
on more than one species.

Studies using sea urchins have also revealed REE exposure has detrimental effects on embryo-
genesis, including inhibition of the mitotic activity and an increase in mitotic aberrations (Oral
et al., 2017; Pagano et al., 2016), oxidative stress (Pagano et al.,, 2016), and/or skeletal abnor-
malities in embryos (Gravina, et al., 2018; Martino, Bonaventura, et al., 2017; Martino, Chiarelli,
et al. 2017; Martino et al., 2018; Oral et al., 2017; Saitoh et al., 2010).

Bivalves are also macrozoobenthic organisms commonly used to study REE toxicity for marine
invertebrates. Ecotoxicity tests on embryos and juveniles oyster Crassostrea gigas (Moreira et al.,
2020) and the mussel Mytilus galloprovincialis (Mestre et al., 2019) showed that La exerted
significantly higher toxicity than Y. The La toxicity for C. gigas had an EC,, of 4.82x1072uM
after 24h and 0.26 uM after 48h. The EC,, for Y was at 24h 1.65uM and at 48h 2.50 uM (Table
5). Thus, La is more toxic than Y to the C. gigas developing embryos (Moreira et al., 2020).
On the other hand, (Mestre et al., 2019) found that La is more toxic than Y to the developing
embryos of M. galloprovincialis than to juveniles, while Y appears to be more toxic to juveniles
than to embryos. The toxic concentration of an REE can vary by a factor of 100 for the different
life-cycle stages of these bivalves (Mestre et al., 2019). However, more ecotoxicological data on
macrozoobenthos will be needed to further develop ecological risk assessment of REE. This
should not be limited to EC,, based on mortality; it should also evaluate development and/or
metabolic and oxidative stress.
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Several studies have measured the capacity of REE to trigger oxidative stress through LPO.
Compared with control organisms, the marine bivalve M. galloprovincialis shows significantly
higher LPO when exposed to Gd (Andrade et al., 2022a; Henriques et al., 2019; Trapasso,
Coppola, et al., 2021). There were similar results for this bivalve species when exposed to Nd
(Freitas, Costa, et al., 2020) and Dy (Freitas, Cardoso, et al., 2020). LPO decreases significantly
in M. galloprovincialis exposed to La (Pinto et al., 2019), although Andrade et al. (2022b) did
find an increase in LPO levels at 7.20 x 102uM after 28 days of exposure. For Tb no cellular
damages on the lipids were found in M. galloprovincialis regardless of the concentrations tested
up to 0.25uM for 28days (Andrade et al., 2023).

Additional research is necessary to elucidate the effects of REE in combination with multiple
stressors—for example, the rise in temperature caused by climate change. Several studies have
found that La and Gd in combination with other climate-related stressors, such as increased
temperature and variable salinity, depress metabolism, activate glutathione S-transferases (GSTs),
inhibit antioxidant enzymes, and increase LPO in M. galloprovincialis and Spisula solida (Andrade
et al., 2021, 2022a, 2022b, 2023; Figueiredo et al., 2022).

Effects from exposure to REE in sediments

Anthropogenic REE anomalies in sediments can reach high concentrations (Table 2), as ions in
the water phase adsorb to the surface of particles and solid complexes are formed and deposited.
In experiments with microcosms, it was found that after 12h more than 80% of the spiked REE
(La, Ce, Sm, Gd, and Y) were in the sediments (Yang et al, 1999). Metal uptake with food
particles seems to be an important exposure pathway for benthic organisms and collector-gatherers,
among macrobenthic invertebrates, have been suggested as good tracers of REE in freshwater
systems (Pastorino et al., 2020). While bioaccumulation or REE from sediments has been studied
frequently (“Uptake of REE and occurrence in biota” section), information on the toxicity of
REE in sediments remains scarce.

A number of studies have demonstrated elevated toxicity in REE-contaminated environmental
sediment samples (Dickman & Rygiel, 1996; Romero-Freire et al., 2018). The authors have con-
cluded that it is even more difficult to determine the relative toxicity of REE in sediments
compared with water samples due to the large number of potential contaminants in sediments
with different adsorption kinetics, and the complexity of sediment geochemistry. Toxicity-testing
of spiked sediments would facilitate understanding of cause-effect relationships (USEPA, 2000).
In the case of REE, however, this endeavor has been restricted to three studies: They were all
carried out with La on behalf of a company (Grace GmbH & Co. KG. Worms, Germany), so
the results are not freely available.

Most macrozoobenthos species are exposed to REE through sediments due to the high
adsorption of metal to sediment particles (Tijink & Yland, 1998; Weltje, Heidenreich, et al.,
2002) and fine organic matter (Schaller, 2013). In general, the accumulation of REE is | higher
in benthic invertebrates compared with other species (Amyot et al., 2017; MacMillan et al.,
2017). Two studies, Hanana et al. (2017) and Hanana et al. (2018), found no significant change
in LPO levels in the freshwater zebra mussel Dreissena polymorpha exposure to Gd, Sm, and Y
for 28 days. Although the levels of LPO were not significant for Gd there was still a mild increase
observed for 37.90 and 0.19uM (Hanana et al., 2017). These findings suggest that REE can
induce cellular damage, which may compromise the physiological performance (e.g., growth and
reproductive success) of bivalves.

Other tests have been performed with benthic organisms but with exposure to water only
(e.g., Mestre et al., 2019; Rucki et al., 2021; Zhang et al., 2015). The challenges, when carrying
out and interpreting sediment toxicity data, are to be aware of confounding factors that can
alter the bioavailability and thus the toxicity of REE. The impact of physicochemical properties
of sediments and medium composition on results of sediment contact tests was clearly demon-
strated when testing sediments with naturally elevated REE concentrations (Romero-Freire et al.,
2018). A study that investigated the influence of soil composition with REE and heavy metal
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co-contamination. They found that shifts in microbial communities depend on both metal con-
tamination and the physiochemical properties of soil (Luo et al., 2021). Thus, the physiochemical
properties of soils and sediments in combination with REE can have major implications for
ecological risk assessment.

Conclusion: Critical parameters and potential pitfalls in bioassays with REE

As metals with great technological applicability, REE are increasingly used and released into the
environment. Due to the wide range of geogenic background concentrations in water and sed-
iment (Table 1), anthropogenically elevated concentrations (Table 2) often are within the potential
natural range but considerably exceed the natural median values. This gives rise to concerns
regarding their potential impact on biological communities. REE are taken up by bacteria, algae,
plants, invertebrates, and fish, but not enough is known yet about the species-specific toxico-
dynamics of the elements to relate elevated tissue concentrations to toxicity. The available evi-
dence points to the chemical similarity of REE** and Ca?' ions as an important cause for
cytological effects, and La’* is an efficient Ca-channel blocker. Oxidative stress and impairment
of gene expression have also been demonstrated for various REE, but most of the mechanisms
of action for the effects remain to be elucidated.

Experimental bioassays with REE which could serve to study cause-effect relationships have
resulted in EC,, values which partly differ by several orders of magnitude—even with the
same biological species and for a specific REE—for example, EC., for A. fischeri: 48 uM of La
(Kurvet et al., 2017) compared to 1690 uM of La (McCloskey et al., 1996); EC,, of 9.14uM
(Joonas et al., 2017) compared to 372uM of La (Bergsten-Torralba et al., 2020) for R. sub-
capitata. Figures 4 and 5 provide a visual overview of the ecotoxicity studies analyzed in
this review.

Variations in exposure times, endpoints, and REE salts can complicate the comparison of
bioassay results. Nevertheless, there are a number of challenges associated with REE bioassays
and careful consideration must be given to how the data is being interpreted. A number of
these aspects are covered in the sections that follow.

Complex formation in the presence of carbonates, phosphates, and hydroxides: As indicated by
their high complex stability constants, REE form especially strong complexes with carbonates,
phosphates, and hydroxides, leading to precipitation. Carbonates are often used as buffers in
test media for bioassays with algae and daphnids. Phosphates are usually needed as inorganic
nutrients in bioassays with algae. In combination with REE, complexes are formed and the
concentration of free REE ions as well as nutrients is reduced. Whether this has led to an
overestimation of REE toxicity in the past by confusing the effect of nutrient limitation with
the effect of metals, or whether complex formation has masked the toxic potential of REE,
should be investigated in the future. For instance, the toxicity of REE on microalgae could be
investigated by using different media, containing various phosphate sources. With the help of
speciation analysis, it may be possible to determine whether the observed toxicity is due to the
direct effects of REE or due to phosphate limitation.

The impact of water hardness: Similarly to other metals, REE are affected by these confounding
factors. Concentrations of Ca?* and Mg?* ions in water have been shown to influence the toxicity
of many divalent metals (Borgmann et al,, 2005; Pascoe et al,, 1986), including REE*'. Barry
and Meehan (2000) reported marked differences in La toxicity to D. carinata by 2 orders of
magnitude based on the water hardness, with a 48h EC., of 0.31, 0.35, and 8.49 uM of La for
water with a hardness of 220, 979, and 1600 uM of CaCO,, respectively. Lower toxicity as water
hardness increases may be caused by competition of REE*" and Ca?* for the same binding sites
or by the decrease of potentially bioavailable species such as La*" or LaOH?* through carbonate
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FIG. 4. Freshwater ecotoxicological data for vertebrates, microalgae, invertebrates, and bacteria, with the half maximal effective
concentration (ECs,) presented in M. These graphs provide a highly simplified representation of Tables 4 and 5 in this review and
should only be used as a visual tool and not as an actual representation of data.

complexation (Moermond et al., 2001). Linear dependence of REE toxicity to water hardness,
however, has yet to be shown (Herrmann et al., 2016).

Influence of pH and use of buffer: pH strongly affects the bioavailability of REE. Consequently,
accurate measurement and maintenance of pH levels become imperative in ensuring the con-
sistency of toxicity studies. The ability of pH buffers to form complexes with REE varies greatly.
For example, Eu(III) showed with MOPS (3-(N-morpholino))propane sulfonic acid) the highest
complexation capacity, whilst TRIS (tris(hydroxymethyl)aminomethane) did not show a significant
interaction (Mandal et al., 2022). However, metal sensitivity can also be altered if a buffer dis-
turbs the physiology of organisms (De Schamphelaere et al., 2004). Biological effects and
metal-buffer complexation should both be considered when performing experiments (Ferreira
et al., 2015).

Role of DOM on REE toxicity: Studying the effects of DOM on metal bioavailability and toxicity
is important because organic matter is ubiquitous in natural environments. A low DOM con-
centration can increase the solubility of REE (Choppin, 1986; Mccarthy et al., 1998), while high
concentrations can reduce the bioaccumulation and toxicity of REE (EI-AKkl et al., 2015; Lachaux,
Cossu-Leguille et al. 2022; Tang & Johannesson 2003; Vukov et al., 2016). Thus, DOM should
be considered when assessing the toxicity of REE due to its influence on the bioavailability of
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FIG. 5. Marine ecotoxicological data for microalgae, invertebrates, and bacteria, with the half maximal effective concentration
(EC5o) presented in M. No marine vertebrate (e.g., fish) ecotoxicity data was available. These graphs provide a highly simplified
representation of Tables 4 and 5 in this review and should only be used as a visual tool and not as actual representation of
data.

the metals. There seems to be a large knowledge gap regarding the impact of DOM on REE.
The environmental realism of bioassays could be enhanced by including DOM. Most studies do
not consider biological processes such as the excretion of organisms or exudate formation by
algae during biotests, and the presence of feces in natural ecosystems. There also appears to be
a gap in the understanding of the effect of DOM on REE toxicity for chronic exposures, as
most studies on DOM have focused on acute exposure (Lachaux et al, 2023; Lachaux,
Cossu-Leguille et al., 2022; Vukov et al., 2016). To address this deficiency, researchers could
perform long-term exposure experiments where organisms are exposed to REE following chronic
standardized test guidelines (e.g., OECD 211 for D. magna or OECD TG 210 for fish) with
exposure media containing natural DOM. Measuring the DOM composition and the dissolved
REE concentration in the media over time, alongside conducting speciation analysis, could help
to better understand the effects of organisms on REE availability and, consequently, the toxicity
of REE to these organisms.

REE in mixtures: REE are rarely present as single elements in the natural environment; hence
studying their behavior and toxicity in mixtures is critical. When in mixtures, REE bio-uptake
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tend to decrease due to an increase of competition for the same biotic ligand (Aharchaou et al,,
2020; Yang et al., 2014). Studies have obtained varying effects for REE when they are combined
with additive effects (Lachaux, Cossu-Leguille, et al., 2022; Tai et al., 2010). Moreover, synergistic
effect were recorded for fish cells, bacteria, and algae (Fleurbaix et al., 2022; Romero-Freire
et al., 2018); and an antagonistic effect for rotifers (Romero-Freire et al., 2018) when exposed
to REE mixtures. The underlying mechanisms or biological explanations for these antagonistic
or synergistic effects remain to be fully elucidated.

Adsorption of REE: The adsorption of lanthanides to different surfaces has been studied in
several studies (Eichholz et al., 1965; Weltje, Brouwer, et al., 2002). For La, glass surfaces can
adsorb up to 25% of the total concentration (Weltje, Brouwer, et al., 2002). Thus, it is recom-
mended to avoid glassware and to use materials such as PET (polyethylene terephthalate),
polycarbonate, or nylon when performing bioassay experiments (Bau et al., 2010; Reimann et al,,
2010; Weltje et al.,, 2003). However, there is limited knowledge regarding which materials and
what specific material treatment is required to prevent REE adsorption on experimental vessels.
Even when using less adsorbing REE vessels during experiments, REE can still adsorb strongly
to organic surfaces such as sediments, organisms, and DOM (Birungi & Chirwa, 2014; Das
et al., 1988; Gwenzi et al., 2018; Lachaux, Cossu-Leguille, et al.,, 2022; Martinez et al., 2018;
Vijayaraghavan et al., 2009). The adsorption of REE can impact how we evaluate the toxicity
of REE in our ecosystems.

Quantifying the exposure conditions: Researchers have noted the importance of considering mea-
sured concentrations over nominal concentrations. For example, the dissolved La EC,, (Siciliano
et al., 2022) is four times higher than the nominal La EC,, (Sun et al., 2019) for microalgae.
To use measured concentrations, we need a good understanding of the chemical speciation of
REE before performing the experiments. In addition, determining the dissolved concentrations
is often very time consuming and expensive, and there is a lack of understanding of the kinetics
involved in precipitation. An understanding of the cause-effect relationship for the different
chemical species on organisms is necessary.

With the increase in use of REE there has also been an increase in scientific scrutiny of
these metals in various research fields. There is a need to have a deep understanding of the
biochemical and physical processes; environmental behavior; and fate of REE in freshwater,
marine, and sediment environments. Discussion on the environmental impact needs to address
environmental concentrations, speciation, partitioning, and bioavailability relative to the ecotox-
icity of the elements in question. Comparison and interpretation of REE toxicity data are also
often complicated even more due to other confounding factors such as pH, metal precipitation,
adsorption, and relevant exposure routes. The limited knowledge on chemical speciation and
the interactions of REE with a wide range of biological systems, such as bacteria, microalgae,
invertebrates, and vertebrates call for more systematic studies (e.g., the use of consistent and
reproducible conditions to evaluate the effects of REE across different aquatic organisms). We
recommend that more ecotoxicological research is performed on a wide variety of biological
species across all levels of both the aquatic and marine ecosystems, while considering biochemical
and physical processes, paying special attention to the pitfalls and critical parameters (i.e., pH,
water hardness, or the presence of organic matter) when bio-testing REE. Not only are individual
bioassays essential here but also further development across ecosystem levels and services.
However, vertebrate studies should be limited as much as possible for animal welfare reasons.
Most studies have focused on the nominal concentrations of La, Gd, and Ce. While there is
also a need to look further into the mode of action of these lanthanides, the other REE should
also be included in future studies. It will be fundamental for robust risk assessment to consider
the nominal and measured REE concentrations for determining the acute and chronic ecotoxi-
cological effects.
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