

Fakultät Technik und Informatik
Department Maschinenbau und Produktion

Faculty of Engineering and Computer Science
Department of Mechanical Engineering and

Production Management

Sebastian Mau

Topology Optimization using Column
Generation Methods

Master Thesis

Sebastian Mau

Topology Optimization using

Column Generation Methods

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Berechnung und Simulation im Maschinenbau
am Department Maschinenbau und Produktion
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Erstprüfer: Prof. Ivo Nowak
Zweitprüfer/in : Prof. Jens Telgkamp

Abgabedatum: 15.03.2022

Abstract

This thesis presents a new decomposition-based approach for solving topology
optimization problems and determines its feasibility and usefulness. Topol-
ogy optimization problems provide the possibility to reduce the mass of a
structural element with respect to a given load case by determining an opti-
mal shape. In general, the related optimization problems are non-convex and
difficult to solve. Most conventional approaches for solving such topology op-
timization problems are based on heuristics and solve the problems locally.
The aim of solving a topology optimization problem globally motivates to
develop a new approach to improve the quality of the results. The approach
uses methods of the column generation algorithm, i.e. it solves a convex
linear master problem repeatably instead of the complex original topology
optimization problem. This thesis shows that it is possible to estimate a
global solution point with a true lower bound in accordance to an original
topology optimization problem and approximate the original problem by that
master problem by using solutions of corresponding sub-problems. Further-
more, the implementation of the new approach for the solver ”Decogo” using
”Python” language is outlined.

In dieser Arbeit wird ein neuer dekompositionsbasierter Ansatz zur Lösung
von Topologieoptimierungsproblemen vorgestellt und seine Machbarkeit und
Nützlichkeit bestimmt. Topologieoptimierungsprobleme bieten die Möglichkeit,
die Masse eines Strukturelements im Hinblick auf einen bestimmten Last-
fall zu reduzieren, indem eine optimale Form bestimmt wird. Im Allge-
meinen sind die entsprechenden Optimierungsprobleme nicht konvex und
schwer zu lösen. Die meisten herkömmlichen Ansätze zur Lösung solcher
Topologieoptimierungsprobleme basieren auf Heuristiken und lösen die Prob-
leme lokal. Das Ziel, ein Topologieoptimierungsproblem global zu lösen, mo-
tiviert zur Entwicklung eines neuen Ansatzes, um die Qualität der Ergebnisse
zu verbessern. Der Ansatz verwendet Methoden des Spaltengenerierungsal-
gorithmus, d.h. er löst immer wieder ein konvexes lineares Masterprob-
lem anstelle des komplexen ursprünglichen Topologieoptimierungsproblems.
Diese Arbeit zeigt, dass es möglich ist, einen globalen Lösungspunkt mit
einer echten unteren Schranke in Übereinstimmung mit einem ursprünglichen
Topologieoptimierungsproblem zu schätzen und das ursprüngliche Problem
durch dieses Hauptproblem zu approximieren, indem Lösungen entsprechen-
der Teilprobleme verwendet werden. Darüber hinaus wird die Implemen-
tierung des neuen Ansatzes für den Solver ”Decogo” in der Sprache ”Python”
beschrieben.

Contents

1 Introduction 1
1.1 Motivation and State of the Art 2

1.1.1 Multistart Behavior . 2
1.2 Basic Idea . 3

1.2.1 Reformulation . 4
1.2.2 Master Problem . 4
1.2.3 Sub-Problems . 4

2 Topology Optimization Problem 6
2.1 General TO Problem . 6

2.1.1 Design Variables . 6
2.1.2 Objective Function . 7
2.1.3 Elasticity Problem Constraint 7
2.1.4 Volume Constraint . 7
2.1.5 Formulation . 8

2.2 Reformulation of a TO Problem 9
2.2.1 Simple Example . 9
2.2.2 Block Definition . 12
2.2.3 Block-separated Force Vector 14
2.2.4 Objective Function . 14
2.2.5 Copy Constraints . 14
2.2.6 Volume Constraint . 15
2.2.7 Elasticity Problem Constraint 15
2.2.8 Active and Passive Elements 15
2.2.9 Block-Separated TO Problem 17
2.2.10 MINLP Block-Separated TO Problem 17

3 FEM Formulation 18
3.1 Symbols of Domain Definition 19
3.2 General Properties . 20

3.2.1 Node Object . 20
3.3 Finite Element Analysis . 20

3.3.1 Elasticity Problem . 20
3.3.2 Element Formulation 21
3.3.3 Element Object . 24
3.3.4 Global Stiffness Matrix 25

3.4 Boundary Conditions . 25
3.4.1 Fixations . 25
3.4.2 Load Cases . 26

i

3.4.3 BoundaryConditions Object 26
3.5 Solving Elasticity Problems 27

3.5.1 Incorporating Boundary Conditions 27
3.5.2 Direct . 28
3.5.3 Iterative . 28

3.6 FEModel Object . 29
3.6.1 Constructor . 30
3.6.2 Attributes . 30
3.6.3 Methods . 31

3.7 Experimental Model . 35
3.7.1 Mapping Node to Degree of Freedom 36
3.7.2 Global Force Vector . 37

3.8 Domain Decomposition of TO-Problem 38
3.8.1 Sub-Domain Definition 39
3.8.2 Sub-Domain’s FEA . 40
3.8.3 SubDomain Object . 41
3.8.4 Boundary Definition 41
3.8.5 Boundary Forces . 41
3.8.6 Incorporate Boundary Forces to Objective Function . 44
3.8.7 TODecomposer Object 48

4 Approaches for Solving a TO-Problem 50
4.1 OC - Optimality Criterion . 50

4.1.1 SIMP - Solid Isotropic Material with Penalization . . . 51
4.1.2 RAMP - Rational Approximation with Material Prop-

erties . 52
4.2 SKO - Soft-Kill-Option . 53
4.3 TOSS - Topology Optimization for Stiffness and Stress 53
4.4 Filter . 53
4.5 Solving TO Problem with SIMP Approach 56
4.6 Algorithms using SIMP Approach 57
4.7 SIMPProblem Object . 60

4.7.1 Constructor . 60
4.7.2 Attributes . 60
4.7.3 Function solve . 62
4.7.4 Function oc . 63

4.8 Results for Experimental Model 64
4.8.1 Configuration and Start Conditions 64
4.8.2 Results . 64
4.8.3 Validation . 66

ii

5 Column Generation for TO Problems 67
5.1 Classic Column Generation . 67
5.2 Apply CG on Block TO . 68
5.3 Sub-Problems . 70

5.3.1 Algorithm . 71
5.4 TOCG algorithm . 72

6 Implementation and Results 73
6.1 Basic Course of Action . 73

6.1.1 Implementation Structure 73
6.2 TOModelBase Object . 74

6.2.1 Instantiate . 74
6.2.2 Attributes . 75
6.2.3 Methods . 75
6.2.4 TOReformulatedModel object 76
6.2.5 TODecomposer class . 76

6.3 Model Creation . 76
6.3.1 Programmatic . 77
6.3.2 Using ”Gmsh” . 77
6.3.3 MSHParser class . 78

6.4 Decogo . 79
6.4.1 Generic Framework of Decogo 79

6.5 Decogo TO Layer . 82
6.5.1 Input Model . 82
6.5.2 CG Cut Pool . 83
6.5.3 Sub-Model . 84
6.5.4 Sub-Problem . 84
6.5.5 Original-Problem . 85
6.5.6 Algorithm . 87

6.6 Solving TO Problems using Decogo 88
6.6.1 NLP . 89
6.6.2 MINLP . 92

6.7 Extensions . 96
6.7.1 Pertubation Extension 96
6.7.2 Direction Stabilizer Extension 101

7 Conclusion 102

8 Prospect 105
8.1 Reaching Global Optimality 105
8.2 Locally Solving Sub-Problems 106

iii

8.3 Impact of Volume Constraint 106
8.4 Implementation . 107

9 Additional and Prepared Features 108

A Annex I
A.1 Folder Structure . I
A.2 Programmatic Model . III
A.3 Mesh File . V
A.4 Configuration Dictionary . VII
A.5 Log Files . VIII

A.5.1 NLP Variant . VIII
A.5.2 MINLP Variant . XI
A.5.3 NLP Variant with Column Pertubation XVIII
A.5.4 MINLP Variant with Column Pertubation XXI

iv

List of Figures

1 Multistart investigation for classic SIMP-Approach with 100
runs . 3

2 Simple Example for Reformulation 9
3 Simple Example for Reformulation 10
4 Visualization of used finite elements for topology optimization

in this thesis . 22
5 Experimental Model . 35
6 Cutting Lines for Sample Main-Domain 39
7 Idea of Boundary Forces . 43
8 Model to prove g⃗ = 0⃗ . 46
9 Block Model . 46
10 Effect of Penalization Factor for SIMP Approach 51
11 Effect of Penalization Factor for RAMP Approach 52
12 Possible unwanted Checkerboard Effect 54
13 Results of the TO problem of the experimental model using

standard SIMP approach . 65
14 General course of action of the implementation to solve a TO

problem with new approach 74
15 Geometry and mesh created using ”Gmsh” 77
16 Export options . 78
17 UML diagram of framework 81
18 Resulting density distributions 91
19 Resulting density distributions of MINLP TO problem 95
20 Objective value of MP for NLP variant 98
21 Density distributions for column pertubation 99
22 Density distributions for MINLP variant with pertubation ex-

tension . 100

v

List of Tables

1 Symbols for general Topology Optimization Problem 19
2 Most Important Attributes of FEModel class 31
3 Basic Properties of a sub-domain Ωk 40
4 Mutable Parameters . 57
5 Attributes of SIMPProblem class 61
6 Abstract classes of framework 80
7 First results for experimental model solved by Decogo 90
8 Results for experimental model solved by Decogo as MINLP

problem . 94

vi

1 Introduction

Saving energy and material are some of the main challenges to handle the
climate crises. Besides exploring and developing climate-neutral technolo-
gies, the reduction of a structure’s weight is a key to solving these tasks.
For example, the energy consumption of a means of transport for moving
depends strongly on its weight. The research field of topology optimization
(TO) deals with the mass reduction of a given geometry, or rather finding
a geometry’s optimal shape in accordance to a given load case. This thesis
develops a basis for a new generate-and-solve approach for topology opti-
mization problems and tries to provide a starting point for further research.
One goal of this report is checking the feasibility and usefulness of using
column generation (CG) methods for solving TO problems. Another goal is
developing a topology optimization layer for the existing solver ”Decogo”,
which was developed at the university of applied science in Hamburg (HAW
Hamburg), to apply the new topology optimization approach. The solver
is completely written in the Python language. During this report, using a
simple experimental model (3.7) shows the basic course of action and visual-
izes the theory of the new method. The implementation can be found in the
”GitHub” repository ”aWsKlixz/DecogoTOLayer” [Tol], including some ex-
amples. The most important aspects are also provided in the Annex. While
describing the new approach, some implementation details are outlined.
The report starts with clarifying the motivation as to why this new approach
could be interesting and outlines the current state of the art for solving TO
problems (1.1). In addition, the basic idea of the new method is highlighted
(1.2). Section 2 presents the definition of a general TO problem based on
reducing a geometry’s compliance, including a corresponding block-separable
reformulation. After that, section 3 defines a general domain for TO prob-
lem, its decomposition and the related finite element analysis (FEA). Fur-
thermore, this section highlights the experimental model which is used for
the application and visualization of the new approach. The next section (4)
deals with different conventional approaches to solve a TO problem. Follow-
ing, in section 5, the column generation algorithm is explained and applied
to TO problems. Further, the corresponding algorithms are presented to
solve a TO problem using column generation methods. Section 6 outlines
the implementation details and presents first results for the new approach.
A conclusion then summarizes the use of CG for TO problems (7) before a
prospect for further investigations is provided (8). Lastly, some additional
features of the implementation are presented briefly (9).

1

1.1 Motivation and State of the Art

As long as, a general mixed-integer quadratic (MIQP) topology optimiza-
tion problem is small, it can be solved using global solving approaches, e.g.
a branch-and-bound algorithm. Application-oriented TO problems are very
large, so that the global solving methods do not find the corresponding global
solution in a reasonable time. Most of the existing solving methods use
heuristic approaches with strong simplifications to avoid this issue. One of
the most common simplifications is a transfer of a mixed-integer quadratic
(MIQP) TO problem to a none-linear programming problem (NLP) by means
of connecting properties continuously with empirical laws instead of proved
mathematical connections, so that a TO problem is solved locally instead of
globally. As the existing approaches are heuristics and solve a TO problem
locally only, these approaches strongly depend on initial values for solving.
Although, TO problems are only solved locally, experience has shown that
reasonable results can be achieved in realistic applications in reasonable cal-
culation time. This thesis and the new approach is motivated by several chal-
lenges of TO problems. Firstly, the quality should be improved, or rather
the heuristic character of the existing approaches should be decreased, re-
garding the results of a TO problem as the new method bases on a global
optimization approach, so that it is possible to make a statement whether a
result is globally optimal or whether there may be better solutions. Further-
more, it can be assumed that it is possible to consider large TO problems
as true mixed-integer optimization problems and the presented approach is
assumed to create the opportunity to solve complex TO problems fast by
domain decomposition and parallel solving sub-problems.

1.1.1 Multistart Behavior

This section outlines briefly the meaning of the initial values dependency for
a TO problem by means of a classic SIMP approach (4.1.1) without going
into detail. The results for a multi-start investigations can be found in the
figure below.

2

Figure 1: Multistart investigation for classic SIMP-Approach with 100 runs

For this chart, the experimental TO model, which is presented later, is solved
100 times with random initial values using a classic SIMP approach. As
shown, the resulting objective value strongly depends on the initial values.
An approach to reduce this effect (8.3) does exist, but the scale of this report
is restricted and focuses more on developing a working prototype of the
new approach. This is just an extreme example for visualizing the heuristic
character of a conventional approach and showing that the TO problem is
solved locally.

1.2 Basic Idea

The basic idea of this new decomposition based approach is reformulating
the TO problem to a block-separable problem, based on domain decomposi-
tion. Using that block-separable problem, a linear master problem (MP) is
formulated that can be efficiently solved globally, e.g. by using the Simplex
algorithm. The MP describes an approximation of the original problem (OP)
and depends on solutions of sub-problems of the block-separable problem. By
solving the MP and the sub-problems alternately, the quality of the approx-
imation can be increased. In the end, the solution of the MP provides an
estimated value of the global solution point of the original problem that can
be used for further searching the global optimum of that original problem.
As the MP is much easier to solve, a global solver without any heuristics is
used to determine an estimated global solution candidate, the dual bound,
related to the OP. Also, the sub-problems are small, making it possible to
solve them globally. The process briefly described above for solving a com-
plex problem with the help of a linear master problem is the basis of column

3

generation (CG) algorithms. More information about CG and applying it to
a TO problem is presented in section 5.

1.2.1 Reformulation

At first, the original TO problem needs to be reformulated to a block-
separable problem so that the CG method can be applied to the problem.
Regarding the TO problem, the domain of the original problem will be de-
composed in smaller sub-domains, whereby each defines a smaller TO prob-
lem itself and corresponds to a block of the block-separable reformulation.
The blocks will be independent of each other, so they can be solved sepa-
rately. By adding global linear constraints, the blocks are connected again.
The reformulation of the TO problem is shown in section 2.2.

1.2.2 Master Problem

The master problem defines a relaxation of the convex hull of the OP. After
applying the new approach, the master problem provides a true lower bound
(dual bound) and an estimated solution of the OP. This true dual bound
of the TO problem is the innovation of this new approach. The estimated
solution point can be used as a starting point for further searching the global
solution of the OP. In addition, the dual values of the MP define the objective
of the sub-problems. Compared to the original problem, the size of the MP
is very small, so that it is time- and performance-effective to solve the MP
as often as required. For updating the MP and improving the quality of the
approximation related to the original problem, results of sub-problems are
used, as the sub-problems depend on dual values of the MP. The objective
value of the master problem defines an approximated dual bound of the
original problem as it is solved globally. A local solver for the TO problem
can be used to determine the primal bound. The gap between the dual and
primal bound should be as small as possible so that the global solution of
the original problem can be found as easily as possible. As the MP is just
an approximation of the original problem, the gap can not be closed. In this
report, the solver ”Gurobi”[Gur] is used to solve the MP.

1.2.3 Sub-Problems

Related to the block-separable formulation, the sub-problems of those blocks
are also TO problems themselves, but they are much smaller than the origi-
nal TO problem. The size of these sub-problems can be controlled and needs
to be sufficiently small to solve the sub-problems globally. As this thesis

4

investigates the feasibility and usefulness of this new approach, an exist-
ing conventional solver is used instead of developing a global solver for TO
sub-problems as this would unfortunately exceed the scope of this report.
Nevertheless, it is highly recommended to develop a global solver to improve
the results of the sub-problems, as they define the quality of the approxima-
tion through the master problem. Sub-problems are solved very often during
the new process. The algorithm for solving TO sub-problems is outlined in
section 5.3.1. An advantage of this new approach is the possible usage of
any topology optimization solver to determine local and global solutions of
the sub-problems as this new method is fully generic. Some conventional
approaches for solving TO problems are outlined in chapter 4.

5

2 Topology Optimization Problem

This section starts with presenting a general formulation for a topology op-
timization problem (2.1.5), including the properties which define a TO prob-
lem (3.2), the objective function (2.1.2), and the required constraints (2.1.4).
Furthermore, the reformulation of a TO problem into a block-separable form
is outlined in section 2.2. For an easier understanding, the reformulation is
applied on a simple example (2.2.1) before its general character is explained.

2.1 General TO Problem

Topology optimization problems try to find an optimal design shape for a
given load case and base on the finite element method (FEM) approximation.
The geometry to be optimized is meshed with finite elements and normal-
ized densities are assigned to each element ρe. During the optimization, the
densities change between zero and one so that this process determines areas
of geometry where it is possible to reduce the geometry’s mass by removing
elements with a density equal to zero and calculates an optimal density dis-
tribution for each element for the whole geometry.
The objective of this general TO problem minimizes the compliance c, which
is the reciprocal value of the stiffness, of a geometry. Minimizing the compli-
ance is the same as maximizing the stiffness. The optimization variables or
rather the design variables are the displacements of the system’s nodes and
the densities of the different elements.
As this report also considers domain decomposition for topology optimiza-
tion problems, the original complete finite element system is also called main-
domain Ω. In the following sections, properties, the objective function and
constraints will be defined which are required for a general topology opti-
mization problem.

2.1.1 Design Variables

TO problems presented in this report contain two design variables, one for
the densities and the other one for the displacements of the degrees of freedom
at the model’s nodes. The vector ρ denotes the densities, which equal zero
or one for a mixed-integer optimization problem. The vector u⃗ maps the
displacements and has a direction in the design space, unlike the density
vector. Both design variables can be summarized into the vector

x = (ρ, u⃗) (1)

6

2.1.2 Objective Function

The topology optimization problems considered in this report minimize the
compliance c of a domain, which is defined by

C := u⃗TS(ρ)u⃗, (2)

where S(ρ) denotes the global stiffness matrix depending on the densities ρ of
the domain Ω. The objective is quadratic and depends on mixed-integer vari-
ables, so it is not easy to solve with conventional global solving approaches.
Using the force vector f⃗ , which maps the constant load case of a TO problem,
and the elasticity problem (4), it is possible to write the function as

c = f⃗T u⃗. (3)

This form matches the required form for the CG algorithm. The equation
shows that the total compliance is the sum of single compliances related to
the corresponding displacement. The compliance become smaller for smaller
displacements, as the forces are constants.

2.1.3 Elasticity Problem Constraint

The linear elasticity equation is simple defined as

Su⃗ = f⃗ (4)

for the complete domain. In a TO problem, this equation is used as a con-
straint that needs to be fulfilled at any time of the optimization. The equation
is solved during a finite element analysis (FEA) to receive the displacements
at the nodes during the optimization process. In addition, the global stiffness
matrix is calculated by means of the elements’ stiffness matrices as

S(ρ) =
∑
e∈M

ρe · Se, (5)

including the general approach-specific dependency on the element’s densi-
ties.

2.1.4 Volume Constraint

The complete volume of a domain depends on the elements’ densities and is
given by

V (ρ) =
∑
e∈M

ρe · ve, (6)

7

where ve denotes the volume of a finite element e and M represents the set of
elements of the domain. TO problems in this report optimize the compliance
of a domain related to a target volume

Vf = vf · V 0 (7)

which should be reached using the optimization. V 0 maps the original volume
of the domain, where the elements densities equal one and the factor vf
denotes a percentage of the original volume. This factor is defined by the
user and is within in a range between zero and one. The volume constraint
is given by

V (ρ)

V 0
≤ vf . (8)

Sub-gradient OC approaches require the volume constraint to receive a con-
vex optimization problem so that the optimality criterion for the correspond-
ing Lagrangian equation can be determined.

2.1.5 Formulation

What follows is the formulation of a general topology optimization problem.

min f⃗T u⃗

s.t. S(ρ)u⃗ = f⃗

V (ρ)

V0

≤ vf

ρi ∈ {0, 1}, i ∈M

ud ∈
[
u−
d , u

+
d

]
, d ∈ D

S(ρ) =
∑
i∈M

ρi · Si,

whereM denotes the set of finite elements andD maps the displacements. To
solve this problem effectively, several approaches exists, which are presented
in chapter 4.

8

2.2 Reformulation of a TO Problem

This section deals with the reformulation of the original TO problem regard-
ing the required block-separable form, including the block definition for a
TO problem. In addition to the reformulation of the objective function, the
elasticity problem constraint and the volume constraint, the connection of
the sub-domains is outlined too. In the end, this section shows the complete
reformulated topology optimization problem (RTO), which is the basis to
apply column generation methods for topology optimization.

2.2.1 Simple Example

The reformulation of the general original TO problem is shown by means of
a very simple one dimensional example made of two truss elements (figure
2).

Figure 2: Simple Example for Reformulation

Transferring on the general formulation from section 2.1.5, the corre-

9

sponding simplified general TO problem is given by

min f⃗T u⃗

s.t. Su⃗ = f⃗

V (ρ)

V0

≤ vf

ρi ∈ {0, 1}, i ∈M

ud ∈
[
u−
d , u

+
d

]
, d ∈ D

M = {1, 2}, D = {1, 2, 3}

ρ =

(
ρ1
ρ2

)
, u⃗ =

u1

u2

u3

S =

 S1 −S1 0
−S1 S1 + S2 −S2

0 −S2 S2

 .

The dependency of the density variables are removed from the stiffness matrix
to reduce the complexity from the example. This model is split into two sub-
models by cutting node II so that the following block-model, made of two
blocks K = {1, 2}, is created.

Figure 3: Simple Example for Reformulation

As shown in the figure above, the number of displacement variables is in-

10

creased to four. The stiffness matrix S of this new multi-model is given
by

S =

S1 −S1 0 0
−S1 S1 0 0
0 0 S2 −S2

0 0 −S2 S2

 .

The block diagonal structure can be disjointed into two separated blocks. To
reach that separable stiffness matrix, node II is copied from the left block
to the right block, i.e. II ′ denotes that copied node. To keep the connection
between the blocks, so that the original problem is not changed, the new
displacement of the copied node needs to be equal to the displacement of the
original node, as

u22 = u12.

This constraint is part of the new reformulation and is called ”copy con-
straint”. As this constraint contains variables from both blocks, it is a global
constraint regarding the complete block-model. Below, the reformulation of
this simple block-model is presented

min f⃗T
1 u⃗1 + f⃗T

2 u⃗2

s.t.
(
ρ, u⃗

)
∈ P (Global Constraints)(

ρ
k
, u⃗k

)
∈ Xk, k ∈ {1, 2} (Local Constraints) ,

11

where

P = {(ρ, u⃗) ∈ Z2 × R4 : u22 = u12, V (ρ) ≤ vfV0}

X1 = {u⃗1 ∈ R2 : S1u⃗1 = f⃗1}

S1 =

(
S1 −S1

−S1 S1

)

u⃗1 =

(
u11

u12

)
X2 = {u⃗2 ∈ R2 : S2u⃗2 = f⃗2}

S2 =

(
S2 −S2

−S2 S2

)

u⃗2 =

(
u22

u23

)

If a constraint contains variables from different blocks, it will be a global
constraint. A local constraint just contains variables from one block. It
should be noticed that the TO problem of the simple example does not lead
reasonable solutions as no element can be omitted. The next sections describe
the creation of sub-models and reformulation of the general TO problem in
a general way.

2.2.2 Block Definition

The original TO problem is decomposed in |K| blocks. The sub-model cre-
ation and sub-problem definition can be interpreted as cutting nodes of finite
elements. The design variables for the densities and displacements of a block
k are

ρ
k
= (ρk,j) ∈ Znke , ρk,j ∈ {0, 1} (9)

u⃗k = (uk,j) ∈ Rnkd , uk,j ∈
[
u+
k,j, u

−
k,j

]
, (10)

where nke denotes the number of finite elements and nkd is the number of
possible displacements, or rather the number of degrees of freedom (DoF)

12

in a block k. In accordance to the block-separable problem, a summarized
design variable for a block k is defined as

xk := (ρ
k
, u⃗k) (11)

with the corresponding dimension

nk = |ρk|+ |u⃗k|. (12)

This leads to the requirement of the definition of indices sets for both vari-
ables relating to a summarized design variable xk. The index set for densities
to the corresponding elements is defined as

[Mk] := {0, . . . , nke − 1} (13)

and the index set for the displacements is given by

[Dk] := {nke, . . . , nke + nkd − 1}. (14)

Due to this index sets, it is still possible to differentiate between densities
and displacements using the summarized variable xk.
The block-separable formulation means that each block needs to be indepen-
dent of each other block, so that each block’s problem can be considered by
itself. This condition leads to the requirement that none variable must be in
two different blocks so that

M1 ∩M2 ∩ · · · ∩M|K| = ∅ (15)

D1 ∩D2 ∩ · · · ∩D|K| = ∅. (16)

This means in a more practical view, each element and node, i.e. the corre-
sponding DoFs, needs to be in one block. Due to cutting nodes, this condition
is already fulfilled for the elements so that

|M1 ∩M2 ∩ · · · ∩M|K|| = 0 (17)

and no adjustments have to be made. Regarding the nodes and consequently
regarding the displacement variables, the problem has to be adjusted as

|D1 ∩D2 ∩ · · · ∩D|K|| > 0. (18)

The intersection of the different DoF sets is not empty and so displacement
variables are used in multiple blocks. Displacements uki located on a block’s
boundary Γk are used in more than one block. The set DΓ includes all dis-
placement variables uki which are located on a boundary. To reach the block-
separated formulation, boundary displacements are copied and assigned to

13

the related neighboring blocks. The set D̃k denotes the displacements of a
block k including the copies. Those copied displacement variables are sim-
ply connected by their equality to each other. These connections, or rather
constraints, are called copy constraints. The size of the original problem in-
creases but it is necessary to reach the required block-separable formulation
of the original problem.

2.2.3 Block-separated Force Vector

As long as forces only grip at nodes which are not cut, the original force
vector f⃗ can be decomposed in terms of the corresponding displacements
because the added variables do not impact the load cases. This changes if
a node is cut where a force attacks: this node will be copied to each other
domain and the force is distributed to the new nodes so that the sum of
forces and therefore the original problem is not changed

f⃗ =
∑
k∈K

f⃗k. (19)

2.2.4 Objective Function

Before the copy constraints are defined explicitly, the objective function is
considered. It defines the compliance of the domain depending on the load
cases and the current displacements (equation 3). The transfer of the original
formulation to the block-separable is given by

c = f⃗T u⃗ ⇐⇒
∑
k∈K

f⃗T
k u⃗k. (20)

2.2.5 Copy Constraints

For this step, the user selects where the main-domain is cut, so that the
properties of the boundaries are indirectly defined by the user. The equality
of the displacements on the boundaries of the different blocks determines the
connection to each other. The set of copy constraints is defined by

I := {u⃗ : ukj = uℓi ∀ (k, j, ℓ, i) ∈ D̃Γ}. (21)

The number of copy constraints nc depends on the number of the different
DoFs on the boundaries.

14

2.2.6 Volume Constraint

The original volume constraint

V (ρ)

V0

≤ vf (22)

can be reformulated in the following block-separable form∑
k∈K

Vk(ρk) ≤ vf ·
∑
k∈K

Vk0 (23)

∑
k∈K

∑
j∈Mk

vkj · ρkj ≤ vf ·
∑
k∈K

Vk0. (24)

This connection is reformulated further and leads to the following constraint
formulation using the global density vector ρ

v := (vi) ∈ Rne (25)

vi := ve, ∀e ∈M (26)

V :=
{
ρ ∈ Rne : vTρ ≤ vf · V0

}
, (27)

where the vector v contains the volumes of each element. Like the copy
constraints, the volume constraint still depends on all blocks together.

2.2.7 Elasticity Problem Constraint

The elasticity problem constraint can be reformulated in a local block-specific
constraint for a block k

Xk := {u⃗k ∈ Rnkd , ρ
k
∈ Rnke : Sk(ρk)u⃗k − f⃗k = 0} (28)

Sk(ρk) =
∑
e∈Mk

Ske · ρke. (29)

2.2.8 Active and Passive Elements

It is possible to consider active and passive elements in the TO problem.
Both types depend on user definitions and boundary conditions of the main
domain Ω. Active elements need a density of one, whereas passive elements
need a density of zero. The user can define those elements to reach a specific

15

exterior shape or to ensure that a required fastening point exists. Bound-
ary conditions can also define active elements, as an attached element to a
loaded or fixed node needs to be active. Active and passive elements lead
to definitions of relating sets and local constraints. The set Ma defines the
active elements in a main-domain Ω, whereas the set Mp defines the passive
elements. The corresponding block-specific constraints are

Mka ⊆Ma ⊆M (30)

Mkp ⊆Mp ⊆M . (31)

The local constraints for the reformulation are defined as

Jk = {ρ ⊂ Z|ρke = 1, ∀e ∈Mka} (32)

Ik = {ρ ⊂ Z|ρke = 0,∀e ∈Mkp}, (33)

and can be appended to the corresponding block-specific constraints Xk as
required.

16

2.2.9 Block-Separated TO Problem

This section outlines the complete reformulation of a TO problem to a block-
separable formulation which is required to apply CG methods. The formu-
lation differentiate between global and local block-separated constraints.

min
∑
k∈K

f⃗T
k u⃗k

s.t. (ρ, u⃗) ∈ P, (ρ
k
, u⃗k) ∈ Xk, k ∈ K

P =
{ (

ρ, u⃗
)
∈ Z|M | × R|D̃Γ| : vTρ ≤ vf · V0,

ukj = uℓi ∀ (k, j, ℓ, i) ∈ D̃Γ

}
Xk :=

{(
ρ
k
, u⃗k

)
∈ Rnkd × Znke : Sku⃗k − f⃗k = 0

}
(34)

The problem above is the basis for solving TO problems using CG methods.
Later, some adjustments to this problem are presented. The following section
deals with the explicit definition of a TO domain, its decomposition and finite
element analysis.

2.2.10 MINLP Block-Separated TO Problem

Below, this sub-section briefly presents the formulation of the block-separated
TO problem as a general MINLP formulation using the summarized variables
x and xk.

min cTx

s.t. xk ∈ Xk, ∀k ∈ K

x ∈ P

, (35)

The proportional factor c in the objective function is made of zeros and the
block-specific force vectors f⃗k, so that it corresponds to the objective of the
block-separated TO problem (equation 20)

17

3 FEM Formulation

This section deals with the definition of a domain for the topology opti-
mization problem. It starts by outlining the symbols and defining general
properties (3.2) before the finite element analysis for a topology optimization
domain is described (3.3). This includes the definition of the different avail-
able boundary conditions and methods for performing the FEA. After that,
the explicit definition of an experimental model is shown on the basis of which
the new approach for topology optimization problems and the correspond-
ing implementation is described. Lastly, this chapter presents the applied
domain decomposition, which is required regarding the block-separated TO
problem. In between, brief descriptions of the implementation for corre-
sponding objects methods and variables can be found. Further information
about the implementation is provided in the repository.

18

3.2 General Properties

Each geometry to be optimized, is meshed with finite elements so each do-
main Ω is made of a number of elements ne which defines a set of elements

M := {1, . . . , ne} (36)

and a number of nodes nn which defines a set of nodes

N := {1, . . . , nn}. (37)

During a finite element analysis, the displacements of the degrees of freedoms
(DoF) of the nodes are considered. The number of degree of freedoms for a
node ndn or rather for a complete element depends on the dimension of the
design space (2D or 3D) and the element formulation itself.

3.2.1 Node Object

Nodes of a domain are considered as an object in the implementation. For
creating an instance of a node the global coordinates and a global node id
are required. The nid property is used to identify a node clearly in the
global system. Furthermore, the object contains the properties x, y and z to
map the coordinates. While instantiating a node object, the value for the z-
coordinate is an optional parameter, as it is not required in a two dimensional
space. The default value is zero for it. Additionally, the object provides a
numpy array for the coordinates directly as the property n vec. There is also
property called attached elements which stores all attached element
identifiers.

3.3 Finite Element Analysis

Solving the TO problem requires the performance a finite element analysis
to calculate the displacements at the domain’s nodes. For this, the analysis
solves the elasticity problem of the domain, which is presented briefly in the
next section. Furthermore, this subsection presents the finite element for-
mulation used in this report including its implementation and highlights the
global stiffness matrix. Lastly, the implementation for the FEA is outlined.

3.3.1 Elasticity Problem

The elasticity problem describes the connection between the displacements
of a domain u⃗ and the systems load cases. In this report, the formulation

20

that is the easiest to solve used for this problem to keep the calculation time
short.

Su⃗ = f⃗ . (38)

The proportional factor S describes the stiffness of the system and is also
known as stiffness matrix. This matrix can be assembled from the individual
finite elements stiffness matrices (3.3.4). The vector f⃗ maps the load cases
in a global force vector and can be imagined as the forces which attack at
the system’s nodes. In the following, the element formulation is presented
which is used in this report.

3.3.2 Element Formulation

In this thesis, only a simple linear element formulation for two dimensional
rectangles is used. This formulation is sufficient to examine the feasibility of
column generation for topology optimization problems. Each element is made
of four nodes and only the translational degrees of freedom are considered,
so that an element has eight degrees of freedom

en = 4

ed = 8.

Furthermore, the elements are square with an edge length of one so that the
surface or rather the volume of one element ve is one. Due to these simplifi-
cations, it is much easier to assemble the domain’s stiffness matrices because
each element has the same stiffness matrix and it is independent from coor-
dinates.

Shape Functions The shape functions for the four nodes are given by

N1(x̃, ỹ) =
1

4
(1− x̃)(1− ỹ)

N2(x̃, ỹ) =
1

4
(1 + x̃)(1− ỹ)

N3(x̃, ỹ) =
1

4
(1 + x̃)(1 + ỹ)

N4(x̃, ỹ) =
1

4
(1− x̃)(1 + ỹ)

[Bat16] for the local coordinate system of an element. They can also be used
to calculated element-specific forces.

21

Figure 4: Visualization of used finite elements for topology optimization in
this thesis

Stiffness Matrix A general element’s stiffness matrix Se can be defined
by

Se := (sij) ∈ Red×ed .

Every stiffness matrix is square and symmetric, and without any boundary
conditions a stiffness matrix is not invertible. For a detailed explanation of
calculating an element’s stiffness matrix the article ”Introduction to the finite
element method” by G.P. Nikishkov [Nik04] provides further information.

22

For this report, the element’s matrix is given by

S
e
:=

E
1
−
ν
2

 1 2
−

ν 6
1 8
+

ν 8
−

1 4
−

ν 1
2
−

1 8
+

3
ν 8
−

1 4
+

ν 1
2
−

1 8
−

ν 8
ν 6

1 8
−

3
ν 8

1 8
+

ν 8
1 2
−

ν 6
1 8
−

3
ν 8

ν 6
−

1 8
−

ν 8
−

1 4
+

ν 1
2
−

1 8
+

3
ν 8
−

1 4
−

ν 1
2

−
1 4
−

ν 1
2

1 8
−

3
ν 8

1 2
−

ν 6
−

1 8
−

ν 8
ν 6

−
1 8
+

3
ν 8
−

1 4
+

ν 1
2

1 8
+

ν 8

−
1 8
+

3
ν 8

ν 6
−

1 8
−

ν 8
1 2
−

ν 6
1 8
−

3
ν 8
−

1 4
−

ν 1
2

1 8
+

ν 8
−

1 4
+

ν 1
2

−
1 4
+

ν 1
2
−

1 8
−

ν 8
ν 6

1 8
−

3
ν 8

1 2
−

ν 6
1 8
+

ν 8
−

1 4
−

ν 1
2
−

1 8
+

3
ν 8

−
1 8
−

ν 8
−

1 4
+

ν 1
2
−

1 8
+

3
ν 8
−

1 4
−

ν 1
2

1 8
+

ν 8
1 2
−

ν 6
1 8
−

3
ν 8

ν 6
ν 6

−
1 8
+

3
ν 8
−

1 4
+

ν 1
2

1 8
+

ν 8
−

1 4
−

ν 1
2

1 8
−

3
ν 8

1 2
−

ν 6
−

1 8
−

ν 8
1 8
−

3
ν 8
−

1 4
−

ν 1
2

1 8
+

ν 8
−

1 4
+

ν 1
2
−

1 8
+

3
ν 8

ν 6
−

1 8
−

ν 8
1 2
−

ν 6

(39)

[Sig] and it shows that the matrix only depends on the material properties,
the Young’s Modulus E and the Poisson’s ratio ν.

23

Displacement Vector This formulation leads to the following general dis-
placement vector for one element

u⃗e = (ued) ∈ R8. (40)

Density and Volume The Symbol ρe describes the density of a finite
element and is more like a filling level. An element’s basic volume v0e is
strongly simplified in this report and always equals one. The actual general
volume of an element is

ve := ρe · v0e . (41)

3.3.3 Element Object

The Element class represents the element formulation above. To create an
instance of it, a dictionary with node identifiers and the corresponding node
objects must be provided. In addition, the stiffness matrix (for a Young’s
Modulus E it equals one and for a Poisson’s ratio ν it equals 0.3) of the
element needs to be passed to the constructor. This is just an initial stiffness
matrix for the optimization, as an update of it is required (cf. 4.6). The last
parameter to create an element object is the element’s density ρe which needs
to be a value between zero and one. Element objects have a lot of helper
functions and attributes which can be found in the explicit implementation
in the repository. The most important attributes are:

� Stiffness Matrix Ke

� Density x

� Compliance Ce

� Derived Compliance dCe

� Centroid centroid

and the most important methods are:

� update stiffness matrix

� set centroid

� determine neighbors

� update compliance

� derive compliance

24

� apply sensitivity filter

Regarding the stiffness matrix and all further vectors or matrices, it is strongly
suggested to implement the sparse form of them to increase the general per-
formance of this approach. Furthermore, the implementation contains a pre-
pared framework for arbitrary meshes, which depends on abstract classes.

3.3.4 Global Stiffness Matrix

The domain’s stiffness matrix S is assembled from the individual elements’
stiffness matrices Se and can be defined as

S := (sij) ∈ Rne×ne (42)

sij :=

{
Si : i = j

0 : i ̸= j
(43)

while considering the elements. To receive the scalar form of the matrix,
the degrees of freedom have to be considered so that the dimension equals
the number of degrees of freedom of the complete domain. In this case, the
stiffness matrix can be defined as sum of the element matrices

S =
∑
e∈M

Se.

This consideration is used for the implementation which is described in sub-
section 3.6.

3.4 Boundary Conditions

For solving the elasticity problem exactly, a domain also needs some bound-
ary conditions to make the stiffness matrix invertible, so that S−1 exists.
There are two types of conditions: fixations and load cases.

3.4.1 Fixations

Physically, the geometry is held in position by fixations. Mechanically, they
can determine a system statically which defines the way the FEA is solved.
Mathematically, fixations are boundary values for the elasticity problem
which is solved for the FEA. Here, fixations are applied to nodes of a do-
main as the corresponding displacements are zero. The set Nf describes the
global node indices, which are fixed in space, and the set Df describes the
corresponding DoFs.

25

3.4.2 Load Cases

Load cases are, like fixations, user-defined boundary conditions. All load
cases define the force vector

f⃗ := (fi) ∈ Rnd (44)

for the elasticity problem (4) of the domain. In this report, forces are also
applied to nodes directly.

3.4.3 BoundaryConditions Object

The current implementation contains an separate class to consider boundary
conditions of a domain. To avoid providing the complete outer force vector
f⃗ , as it can be very large, the constructor of the BoundaryConditions class
takes a dictionary to map them. A key of the dictionary describes the node
where a force attacks and the value is the corresponding force vector at the
node. Below, an example can be found:

import numpy as np

f = {2: np.array([0, -1, 0])}

This example defines a force gripping at node two and directs in negative y-
direction. Using dictionaries has the advantage of defining multiple load cases
in individual dictionaries and merging them into one resulting dictionary. An
example for multiple load cases is provided below:

import numpy as np

f1 = {2: np.array ([0, -1, 0])} # concentrated force at

node 2

q1 = {

3: np.array ([0, 1, 0]),

11: np.array([0, 1, 0])

12: np.array([0, 1, 0])

} # line load for nodes 3, 11 and 12

F = dict(f1.items() + q1.items()) # import dict for BC

Currently, it is just possible to define totally fixed nodes in space by providing
a list of fixed nodes as shown in the example below

fixed_node = [1, 5]

This list holds the nodes one and five in their position. A dictionary to define
the outer forces, a list of fixed nodes, a list of all node identifiers and the
number of degree of freedoms per node are required to create an instance of
BoundaryConditions.

26

3.5 Solving Elasticity Problems

While performing a FEA and solving the elasticity problem, two main steps
are carried out:

1. Incorporating boundary conditions

2. Solving reduced linear equations system (LES) depending on static
determinacy

During the first step, the LES of the elasticity problem is reduced by in-
corporating the fixation boundary condition. After that, the reduced LES is
solved by a direct or an iterative solver, depending on the static determinacy.

3.5.1 Incorporating Boundary Conditions

The fixed nodes change the original elasticity problem to a reduced one. Me-
chanically, they remove the degrees of freedom of the corresponding nodes,
so that the nodes can not move along that DoFs anymore. If the configura-
tion of boundary conditions does not allow any rigid body motions for the
geometry, the model is statically determined and a direct solver can be used.
The reduced global stiffness matrix is calculated by

Ŝ = (ŝi,j) ∈ Rnd×nd (45)

ŝi,j =

si,j : i, j ̸∈ Df

0 : i, j ∈ Df ∧ i ̸= j

1 : i, j ∈ Df ∧ i = j

(46)

and the reduced force vector is defined by

f⃗red = (f̂i) ∈ Rnd (47)

f̂i =

{
fi : i ̸∈ Df

0 : i ∈ Df

. (48)

For choosing the solver for the reduced LES, there are at least two properties
which lead to the direct exact solving method:

� rank(Ŝ) = nd

� det(Ŝ) ̸= 0

With these properties, the LES will have one exact solution.

27

3.5.2 Direct

As long as the finite element system is statically determined, the resulting
linear equations system of the elasticity problem can be solved directly and
an exact solution can be found. Static determinacy means the existing of the

inverse stiffness matrix Ŝ
−1
, so that

u⃗ = Ŝ
−1
f⃗ (49)

and the displacement vector u⃗ can be calculated directly, which is also exact.
The implementation uses the function linalg.solve(a,b) from the NumPy

package [Num], which solves a LES like

Ax⃗ = b⃗. (50)

In this case, the input parameter a is the reduced stiffness matrix Ŝ and
the parameter b corresponds to the reduced force vector f⃗red. This function
will return the displacements u⃗ regarding a stiffness matrix and a force vector.

3.5.3 Iterative

As this report also considers domain decomposition for TO problems (3.8),
it is required to solve static undetermined finite element systems. Static
undeterminacy means that it unclear whether the inverse of a stiffness matrix
exists so rigid body motions of the domain are possible. There are not enough
boundary conditions which can be incorporated to the stiffness matrix. The
resulting LES has an infinite number of solutions but most of these solutions
are not reasonable for the problem. One constraint for a main domain is the
static determinacy, so that an exact solution can always be calculated for it
and an initial solution vector

u⃗init := (uinit,i) ∈ Rnd (51)

can be provided, which is used to define a trust region or rather bounds for the
displacement vector u⃗. The displacements change during the optimization
but it is not expected that the direction of a displacement changes because
the loads are constant. Regarding the range of the trust region, a factor ν

28

estimates the bounds.

u⃗+ := (u+
i) ∈ Rnd

u+
i := max({u0,i · ν, u0,i · (1− ν)})

u⃗− := (u−
i) ∈ Rnd

u−
i := min({u0,i · ν, u0,i · (1− ν)})
ν ∈ [0, 1] .

If the estimation factor ν is too small, no solution will be found for this prob-
lem. But if the factor is too large, there will be an unreasonable solution for
the problems. It may be possible to find the optimal value for ν by consider-
ing a maximum allowed stress, but it is still possible to find a good solution
by guessing a factor. A reasonable solution for the static undetermined do-
main can be estimated by defining a least-squares problem and considering
the trust region for the displacements in this problem.

min ||Ŝu⃗− f⃗red|| (52)

s.t. u⃗− ≤ u⃗ ≤ u⃗+. (53)

This problem formulation is used to receive a reasonable solution for a static
undetermined domain. It is necessary to keep in mind that this only works
well if an initial solution for a similar domain is known. In addition, it needs
to be investigated how this approach for solving a static undetermined system
impacts the global optimality of the CG approach. As there are initial values
for the displacement, it is possible to determine a reasonable trust region for
the problem, so the global optimality should not be restricted. However,
there is no evidence for this.
The implementation uses the function optimize.least squares(...) from
the SciPy module [Sci]. Detailed information on the explicit implementation
is provided in section 3.6.3.

3.6 FEModel Object

This section presents the implementation view of a finite element analysis for
a topology optimization domain. The implemented class FEModel provides
all properties and methods that are required to perform a FEA for a domain.
This class can be applied to each domain, regardless of whether it is a main
domain or sub-domain. The class can be found in ”pylib/fea/fea.py”.

29

3.6.1 Constructor

The constructor takes a list of node identifiers of the domain, an element
dictionary from the corresponding domain and the applied boundary con-
ditions as a BoundaryConditions object as required input parameters. Be-
sides creating an instance of this object, the constructor examines the static
determinacy of the domain by

if len(self.boundary_conditions.fixed_nodes) > 1:

self.is_undetermined = False

else:

self.is_undetermined = True

As long as the implementation provides just holding complete nodes in space
and single degrees of freedom, this way of testing is sufficient.

3.6.2 Attributes

This class provides several attributes regarding a FEA and the most impor-
tant ones can be found in the table below.

30

distribution provided for the optional input parameter x, the densities of
the element objects or rather the element stiffness matrices will be used
directly for it. If the user provides a density distribution in accordance to
the domain, this method will use this density distribution to assemble the
domain’s stiffness matrix by using the SIMP approach (4.1). The method
applies an optional parameter, which is described later (4.1.1). The specific
description for the method is shown below:

def get_k(self , _x=None , p=3):

k = np.zeros((self.dof_number , self.dof_number))

for dict_it , (e_id , element) in enumerate(self.elements.items ()):

local_dofs = np.where([self.global_dofs == d for d in

element.DoFHelper])[1]

for it, i in enumerate(local_dofs):

for jt, j in enumerate(local_dofs):

if _x is None:

k[i, j] += element.Ke[it, jt]

else:

k_val = ((1e-9 + _x[dict_it] ** p *

(1 - 1e-9)) * element.Ke0)[it ,

jt]

k[i, j] += k_val

return k

It is highly recommended to rewrite this method using a sparse form to
improve the performance. The non-sparse form is used because the models
described in this report are simple and this method provides a clearer view
regarding assembling a domain’s stiffness matrix.

Function incorporate boundary conditions The functionality to incor-
porate the fixed nodes boundary condition into a stiffness matrix and a force
vector is provided by the method incorporate boundary conditions. The
stiffness matrix and the force vector are required input parameters. The
function returns the reduced stiffness matrix and the reduced force vector
according to section 3.5.1. Below, the specific implementation is outlined:

def incorporate_boundary_conditions(self , k: np.array , f: np.array):

local_fixed_dofs = np.where([self.global_dofs == d for d in

self.boundary_conditions.fixed_dofs])[1]

for i, d in enumerate(local_fixed_dofs):

k[:, d] = 0

k[d, :] = 0

k[d, d] = 1

f[d] = 0

return k, f

Applying the sparse form may change this method as well.

Function set bounds To define the bounds of the displacements for static
undetermined domain, the method set bounds is implemented. Regarding
the function to solve the least-squares problem, it is required that every

32

lower bound must be truly lower than the corresponding upper bound. This
leads to a brief adjustment in the implementation as this constraint is not
ensured if an initial displacement is zero. Below, the implemented function
is presented:

def set_bounds(self , u_domain):

self.u_base = u_domain

_ub = np.array (((1 - nu) * u_domain , nu * u_domain)).T

for i in range(len(_ub)):

_ub[i] = _ub[i, np.argsort(_ub[i])]

self.u_bounds = (

_ub[:, 0],

_ub[:, 1]

)

self.u_bounds [0][self.u_bounds [0] == 0] -= 1e-3

self.u_bounds [1][self.u_bounds [1] == 0] += 1e-3

Regarding the last two lines, it is necessary to ensure that each lower bound
is truly lower than the corresponding upper bound. This method changes
the class attributes instead of returning the new bounds.

Function solve This method performs the FEA and solves the elasticity
problem for the corresponding domain described in the object. It is also
possible to provide a user-specific reduced force vector to the input parameter
f user. If this parameter is None, this method will use the object’s force
vector. The method contains two different solvers, one for a static determined
system and one for an undermined system. Which solver is used makes no
difference to the return as it is always the domain’s displacements and a
boolean value which describes whether a solution is feasible or not in terms
of the displacement bounds. Calling this method will always update the
domains attributes for the displacements and reaction forces. Furthermore,
this method updates the element objects of the domain. This update includes
the elements’ nodal displacements and nodal forces.
Using the direct solver for a static determined system is quite simple as the
corresponding NumPy function, numpy.linalg.solve, can be called directly
by passing the domain’s stiffness matrix and the required force vector to it.
The solution will always be feasible. To use the iterative solver for the least
squares approach, it is required to define a function which represents the
objective. In the following, the implemented part for the iterative approach
is shown.

make the objective function for least -squares problem

def make_func(_k, _f):

def func(_u):

return np.dot(_k , _u) - _f

return func

solve the indeterminate system using scipy ’s least -squares solver

res = least_squares(make_func(self.K, _f), self.u_base ,

bounds=self.u_bounds , method=’dogbox ’)

33

self.U = res.x

To map the objective, an enclosure for the required function is used. It re-
turns the function object which can be used for the SciPy function optimize.
least sqaures. This is required because the stiffness matrix changes dur-
ing the optimization. The parameter u base defines the starting point for
the algorithm and equals the initial displacements of the FEA for the origi-
nal domain. The method parameter defines the method or rather the algo-
rithm which is used to solve the problem. After testing the different possible
methods, the ”dogleg”-algorithm generated the best results in terms of time,
quality and stability. Further information can be found here: https://docs.
scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.

html [Sci].

34

3.7 Experimental Model

The experimental model contains 25 nodes and 16 elements in a two-dimen-
sional design space. In accordance to the element formulation from section
3.3.2, this leads to a total degree of freedom number of 50. The shape is
square with four elements each in x- and y-direction. Regarding the boundary
conditions, there are two fixed nodes and one force attacks on the lower right
node with a value of one in negative y-direction. The main-domain is shown
in the figure below.

Figure 5: Experimental Model

35

Properties for the TO problem description can be found in the table below.

Name Symbol Value

Geometry

Number of Nodes nn 25
Number of DoFs nd 50
Number of Element ne 16

Boundary Conditions

Fixed Nodes Nf {1, 4}
Loaded Nodes Nl {2}

The force vector at node two equals

f⃗2 =

(
0
−1

)
and is fixed during the optimization process. Due to the boundary conditions,
the main-domain is statically determined and a direct solver for the FEA can
be used. This is a constraint for TO models in this report. Since this thesis
only determines the prove of concept of the new approach, the model was
deliberately chosen to be so simple in order to go out of scope and to make
it as easy as possible to obtain initial results.

3.7.1 Mapping Node to Degree of Freedom

Often, it is required to calculate the indices of degrees of freedom to a corre-
sponding node and vice versa. The following functions describe the connec-
tion between node numbers and numbers of degree of freedom. The functions
depend on the element formulation and in particular on the number of de-
grees of freedom per node ndn . Indices start counting from zero

d(n) =

(
2 · n

2 · n+ 1

)

n(d) =

{
d
n

: d mod n = 0
d−1
n

: d mod n = 1
.

These two functions only work if the number of degree of freedom at a node
is two. It is possible to write them more generally, but it is not necessary
here. The function d(n) returns the indices of degrees of freedom for a given
node index n while the other function n(d) provides the node index n to a
given degree of freedom index d.

36

3.7.2 Global Force Vector

The load case only contains one force at node two with the index one. Hence,
the corresponding DoF indices are

d(1) =

(
2
3

)
taking into consideration that there is only a force in y-direction. The global
force vector f⃗ for the main-domain is defined by

f⃗ := (fd) ∈ Rnd

fd =

{
−1 : d = 3

0 : d ̸= 3
.

This vector is constant during the optimization process.

37

3.8 Domain Decomposition of TO-Problem

The blocks k of the reformulated topology optimization problem, the block
TO problem (2.2), can be understood as sub-domains Ωk of the main-domain
Ω and define a TO problem itself. This section shows the decomposition
which can be applied to a main-domain and is currently implemented in the
layer. As this report determines just the feasibility whether it makes sense to
use column generation for topology optimization problems, it is not fully clear
if the shown decomposition performs best. There are some suggestions for
further investigations for the domain decomposition. This chapter describes
the decomposition by means of the experimental model, which is also used
for some first investigations using column generation for a TO problem. The
experimental model corresponds to the main domain Ω and will be cut by
two lines in four sub-domains. The cut lines applied to the main domain are
shown in figure 6.

38

Figure 6: Cutting Lines for Sample Main-Domain

3.8.1 Sub-Domain Definition

There are several options for domain decomposition of finite element systems
as it is a separate field of research. It is divided into two areas: overlap-
ping and non-overlapping methods. In this report, a simple non-overlapping
method is used to decompose the main domain. In addition, it must be
noted that this method is targeted specifically at solving topology optimiza-
tion problems, as a FEA is executed again and again during the process.
The decomposition is based on an initial FEA for the complete model, so it
becomes clear that this method is not suitable for a classic FEA. By cutting

39

nodes of the main-domain, the sub-domains are created. A sub-domain Ωk is
very similar to the main-domain Ω and should define a TO problem itself in
terms of the required sub-problems for the CG algorithm. The following table
highlights some basic properties of a sub-domain that are very similar to the
properties of a main domain (table 1). In addition, their connections to the
main-domain are highlighted. In general, an index k denotes a sub-domain
symbol, whereas the main symbol stays the same.

Name Symbol Connection to Main-Domain

Set of Elements Mk Mk ⊆M

Set of Nodes Nk Nk ⊆ N

Set of DoFs Dk DK ⊆ D

Volume Vk V =
∑

k∈K Vk

Table 3: Basic Properties of a sub-domain Ωk

In addition, a sub-domain needs a definition of the boundary to its neigh-
boring sub-domains. Γk denotes this boundary of a sub-domain Ωk. This
definition is required to map the interaction between the sub-domains among
each other. Furthermore, a sub-domain does not need to be statically dert-
ermined, as the iterative FEA can be applied to the sub-domain (3.5).

3.8.2 Sub-Domain’s FEA

As a sub-domain Ωk should define sub-problems, it must be possible per-
forming a FEA for it by solving the elasticity problem for the sub-domain

Sku⃗k = f⃗k. (54)

The stiffness matrix of a sub-domain is defined as

Sk :=
∑
e∈Mk

Ske. (55)

and corresponds to the definition of the stiffness matrix of Ω with the differ-
ence that just the elements of Ωk are used for the required domain’s stiffness
matrices Sk. The domain’s displacement vector is defined by

u⃗k := (uki) ∈ R|Dk| (56)

40

and the force vector of the sub-domain is

f⃗k := (fki) ∈ R|Dk|. (57)

This is very similar to the FEA of the main-domain and corresponds to the
reformulation of a TO problem.

3.8.3 SubDomain Object

This section outlines the most important aspects of the SubDomain class
which maps the sub-domain definition, including the required methods for
performing the FEA and solving the TO problem. The class is placed in
file ”pylib/tomodel/subdomain.py” Each SubDomain object is assigned an
unique integer identifier SubDomain ID. Like done for the TOModelBase ob-
ject, an instance of this class includes a dict of nodes and a dict of Elements
regarding the sub-domain. Furthermore, each object of the SubDomain class
provides properties to represent the related FEA and SIMP solver.
Besides some simple functions, such as determining the current volume or re-
ceiving the current density distribution, the class provides two very significant
methods regarding the functionality. Calling the method update domain sets
all important attributes, including properties for the FEA and SIMP solver.
Furthermore, this method sets the boundary conditions of the sub-domain
so it needs to be called after instantiating an object of SubDomain. The
other significant function is get boundary forces, which is described in the
following chapters. More detailed information can be found in the explicit
implementation in the repository.

3.8.4 Boundary Definition

Each sub-domain Ωk has a boundary Γk to its neighboring sub-domains. As
the domain decomposition cuts nodes and not elements, a boundary contains
boundary nodes Γkn which lead to the corresponding boundary DoFs Γkd

Both are sub-sets of the relating domain’s sets

Γkn ⊆ Nk

Γkd ⊆ Dk.

.

3.8.5 Boundary Forces

Just cutting the main-domain Ω in sub-domains Ωk can lead to very ill-posed
sub-problems such as

41

� insufficient number of boundary conditions from original problem for
statically determinacy

� sub-problem does not contain any outer forces f⃗k = 0⃗

The first issue is solved by using the iterative solver (3.5.3) for the elasticity
problem. The required boundaries for the displacements u⃗+ and u⃗− have
been calculated in an initial FEA of the main-domain. This is has been done
because it is not expected that displacements change its direction during
the TO, as the load cases are constant. The factor ν can be estimated as
the displacements must not extremely large because that would increase the
compliance which is going to be minimized. The bounds describe a trust-
region for the least-squares problem.
Solving the elasticity problem of the main-domain leads to the observation
that in each relating sub-domain, displacements occur even if it does not
contain an outer force from the original problem. To remove this uncertainty,
boundary forces g⃗k are introduced to the sub-domain’s elasticity problem

Sku⃗k = f⃗k + g⃗k. (58)

The basic idea for the boundary forces was found in the paper ”Solution of
the Topology Optimization Problem Based Subdomains Method” [ARE08]
but the idea is modified in this report, as the article does not consider ill-
posed sub-problems. The method from the article determines the stresses at
a boundary, whereas the domain decomposition from this report calculates
the forces at a sub-domain’s boundary to modify the right hand side of the
elasticity problem in accordance to initial displacements. They grip on the
boundary nodes as the right-hand side considers outer gripping forces of a
finite element system. Figure 7 outlines the idea of the boundary forces by
meaning of the experimental model.

42

Figure 7: Idea of Boundary Forces

The light-blue arrows of the boundary forces are not scaled and directed
according to the true load case, as they just outline the idea of the boundary
forces.
There are two methods to calculate the boundary forces g⃗k. The easier
method is evaluating the elasticity equation (equation 55) in terms of the
initial displacements u⃗k,init

g⃗k = Sku⃗k,init − f⃗k. (59)

as it directly provides the required right-hand side of the elasticity problem,
which can be used for the sub-domain’s TO problem. This method is mostly

43

considered in this report.
There is another way to calculated those boundary forces using the Gaussian
integration points of the element formulation, but there are ongoing research
on it. One expected advantage of this method is the calculating of every
elements’ forces in one single method and uncovering connections between
them.

Function get boundary forces The function get boundary forces cal-
culates the boundary forces g⃗k depending on given displacements and a den-
sity distribution. The density distribution is required to calculate the stiffness
matrix Sk. As described in the section above, two methods are implemented
to calculate the boundary forces whereby the selection is steered by the op-
tional string parameter method. The value of this parameter can be ’ku’ or
’gauss’. In addition, a boolean value can be passed to the function to update
the corresponding class attributes, while calculating the forces. A dictio-
nary, which has the same structure as the dictionary for the outer forces,
and a numpy array is returned for the boundary forces. Below, the current
implementation for the simple ’ku’ method is provided.

g_dict = {} # initialize g_dict; not required for g_vec

if method == ’ku’:

solve k_domain dot u_domain - f_domain_outer

get k for corresponding density distribution

_k = self.FEModel.get_k(_x=x)

if len(self.FEModel.boundary_conditions.fixed_nodes) > 0:

_k, _ =

self.FEModel.incorporate_boundary_conditions(_k,

self.FEModel.F)

g_vec = np.dot(_k , u) -

self.FEModel.boundary_conditions.outer_forces_vec

create the return dict

for boundary_node in self.domain_boundary_nodes: # there

is an entry in dict for every boundary node

ndofs = get_dofs(boundary_node) # get the global

dofs for the node

extract the force vector from g_vec

_g = g_vec[np.array ([self.get_local_dof_index(d)

for d in ndofs])[:] - 1]

set entry

g_dict[boundary_node] = _g

The complete implementation including the second ’gauss’ method can be
found in the SubDomain class.

3.8.6 Incorporate Boundary Forces to Objective Function

In accordance of the reformulated block TO problem, the usage of the bound-
ary forces must not change the original and reformulated TO problem. It
needs to be proven that the incorporation of the boundary forces for the

44

blocks by cutting the main domain does not change the original problem.
The objective function of the block-separable TO problem shows that the
sum of the single compliances of each block equals the total compliance and
the following condition for the boundary forces and boundary displacements
can be derived

c =
∑
k∈K

ck

⇐⇒
∑
k∈K

u⃗T
k · f⃗k =

∑
k∈K

u⃗T
k · (f⃗k + g⃗k)

⇐⇒
∑
k∈K

u⃗T
k · f⃗k =

∑
k∈K

u⃗T
k · f⃗k + u⃗T

k · g⃗k

⇐⇒
∑
k∈K

u⃗T
k · f⃗k =

∑
k∈K

u⃗T
k · f⃗k +

∑
k∈K

u⃗T
k · g⃗k

⇐⇒
∑
k∈K

u⃗T
k · g⃗k = 0.

As the boundary forces just occur in a boundary, the boundary forces cause
displacements at the corresponding boundary nodes so that

uki · gki ̸= 0, k ∈ K, i ∈ Γk,d, (60)

but it is also possible to prove that the boundary forces cancel each other
out, hence

g⃗ =
∑
k∈K

g⃗k = 0⃗ (61)

by means of a simple one-dimensional example. One important and obvious
condition is the equality of displacements at the artificial added nodes (copy
constraints) on a block’s boundary Γk, so copied nodes are subject to the
same displacements as the original node

uki = ulj, k, l ∈ K, i ∈ Γk,d, j ∈ Γl,d. (62)

45

A simple example model is given by

Figure 8: Model to prove g⃗ = 0⃗

with the corresponding compliance

c = u3 · F . (63)

The next figure shows a corresponding block model in which the original
model is decomposed in two sub-domains and node I is copied

Figure 9: Block Model

The compliance of the block model is given by the sum of the single compli-
ances of each block

c = c1 + c2 = g1 · u1 + g2 · u1 + F · u2. (64)

As the total compliance of the original problem must remain unchanged, this
equation leads to the following condition for the boundary forces

g1 = −g2. (65)

46

The domain decomposition or rather the block creation depends on initial
displacements

ũ =

u1

u2

u3

 (66)

which are calculated using the elasticity problem as follows S1 −S1 0
−S1 S1 + S2 −S2

0 −S2 S2

u1

u2

u3

 =

FL

0
F

 ,

where FL denotes to the reaction force at the fixation. Hence, including the
boundary condition for the fixation on the left side

u1 = 0

u2 =
F

S1

u3 =
F (S1 + S2)

S1 · S2

.

Solving the elasticity problems for the blocks leads to the boundary forces g1
and g2 (

S1 −S1

−S1 S1

)(
u1

u2

)
=

(
FL

g1

)
→ g1 = S1 · u2(

S2 −S2

−S2 S2

)(
u2

u3

)
=

(
g2
F

)
→ g2 = S2 · u2 − S2 · u3.

47

Hence,

g1 = −g2

S1 · u2 = −(S2 · u2 − S2 · u3)

S1 ·
F

S1

= −S2 ·
F

S1

+ S2 ·
F (S1 + S2)

S1 · S2

F = −F · S2
2

S1 · S2

+
F · S2 · (S1 + S2)

S1 · S2

F = F
S2(−S2 + S1 + S2)

S1 · S2

F = F
S1 · S2

S1 · S2

F = F

The proof above shows that the incorporation of the defined boundary condi-
tions, based on the initial displacements, does not change the original prob-
lem and can be used in the reformulation to reach well-posed sub-problems.
This also clearly defines the objective for the reformulated topology opti-
mization problem

min
∑
k∈K

u⃗T
k · (f⃗k + g⃗k). (67)

Regarding the summarized block variable xk, the objective function is given
by

min
∑
k∈K

cTk · xk (68)

ck :=
(
(0) ∈ Znke , f⃗k

)T ∈ Rnk . (69)

3.8.7 TODecomposer Object

An object of the class TODecomposer can be used to perform the presented
domain decomposition. It will decompose and reformulate an TOModelBase

object so that it is prepared for Decogo. For instantiating, a list of the cut
nodes numbers a dictionary of sub-domains and the base model needs to
be passed to the constructor. To improve the process, it should be possible

48

to develop an algorithm to decompose a main-domain automatically, just by
providing a list of cut node numbers. The dictionary of sub-domains contains
the number of the sub-domain as the key and a ”raw” object of SubDomain
as the corresponding value. The constructor of the TODecomposer class up-
dates the sub-domains, by inserting the corresponding boundary conditions
and setting the initial displacements from the main-domain. This class pro-
vides some mappings for nodes, DoFs and sub-domains. To apply the de-
composer, the class TOModelBase provides the function reformulate which
can be called by passing an instance of the decomposer class to it. The cur-
rent implementation is not optimized, but it is sufficient for testing the new
approach.

49

4 Approaches for Solving a TO-Problem

The approaches presented in this report vary the Young’s Modulus E to
course a geometry change. Each element can be assigned a different Young’s
Modulus and this will be updated during the process. The updated Young’s
Modulus is used in an iteration step. If an element has a low density, its com-
pliance will be high because the corresponding displacements will be high.
Due to the low compliance, the corresponding element with the low Young’s
Modulus does not contribute to the strength of the geometry and can be
omitted. This has led to the idea of connecting the Young’s Modulus with
the density of an element.
Topology optimization problems should result in a solution, where the den-
sities of the elements are zero or one so an element is switched on or off.
Mathematically, the problem would be a MINLP problem. As the number
of elements and nodes can be very large and the problem is non-convex, TO
problems can be very difficult to solve. The approaches used in this report
convert the MINLP problems to NLP problems by connecting the Young’s
Modulus and the density of an element continuously. This is a strong simpli-
fication and leads to the heuristic character of the conventional approaches.
Unless otherwise stated, the general descriptions of the different approaches
base on the theory user manual of the freeware topology optimization soft-
ware ”Z88Arion” [[Z88]], which was published by the University Bayreuth.

4.1 OC - Optimality Criterion

The optimality criterion approach is used while minimizing the compliance
c of a finite element system. For this approach, the Lagrangian equation for
the general TO problem is formed,

L(ρ, η, ν, µ) = u⃗TSu⃗+ν(V (ρ)−Vf)+
∑
e∈M

(λe(ρe−ρmax)+µe(ρ
min−ρe)) (70)

and the optimal criteria
∇L(ρ, η, ν, µ) = 0 (71)

can be set up. This is used to calculate an updated density distribution
depending on the stiffness matrix and displacements from the FEA before by
determining the Lagrangian parameters which fulfill the optimality criteria.
It is a sub-gradient based approach. To include the new density distribution
to the FEA in the next iteration step, different heuristic approaches will
presented in following paragraphs.

50

4.1.1 SIMP - Solid Isotropic Material with Penalization

SIMP is the abbreviation form for ”Solid Isotropic Material with Penaliza-
tion”. It penalizes densities which are not zero or one by connecting the
density and the Young’s Modulus proportional with a penalization factor p
using a heuristic empirical material law

E = ρpE0, (72)

where E is the updated Young’s Modulus, ρ is the element’s density and E0

equals an initial value of the Young’s Modulus. In this report E0 is always
one. The factor p is a user-defined option. In general, the value of p is in
a range between three and five. Figure 4.1.1 shows the effect of different
penalization factors to densities between zero and 1.

Figure 10: Effect of Penalization Factor for SIMP Approach

51

To improve the numerical stability, equation 72 is adjusted with a lower
bound for the Young’s Modulus

E = Emin + ρp(E0 − Emin). (73)

This report focuses on the SIMP approach to investigate the feasibility. Fur-
ther investigations could examine the usage of other approaches to solve
topology optimization problems using column generation methods.

4.1.2 RAMP - Rational Approximation with Material Properties

”RAMP” is the abbreviation form for ”Rational Approximation with Mate-
rial Properties”. This approach provides similar results as using ”SIMP” but
the relation between the normalized density and Young’s Modulus is different

E = Emin +
ρ

1 + q · (1− ρ)
· (E0 − Emin). (74)

The factor q is equivalent to the penalization factor p for the SIMP approach.
This equation also includes the lower bound of the Young’s Modulus Emin.
The following figure also shows the impact of the penalization factor q.

Figure 11: Effect of Penalization Factor for RAMP Approach

52

4.2 SKO - Soft-Kill-Option

The ”Soft-Kill-Option” approach (SKO) differs from the OC approaches as
it attempts to imitate geometries and structures that can be found in nature.
This basic idea is based from the assumption that the structures are almost
ideal due to the long evolution process. There is no explicit mathematical
background such as the Lagrangian equation and the corresponding opti-
mal criteria. Another difference between those two optimization processes
is that the OC minimizes the compliance (maximizing the stiffness) and the
SKO attempts to maximize the strength of a geometry. This is a non-sub-
gradient-based approach. An advantage of this genetic algorithms is the fast
performance to receive results.

4.3 TOSS - Topology Optimization for Stiffness and
Stress

The last presented approach in this report is ”Topology Optimization for
Stiffness and Stress” (TOSS). It combines the OC and the SKO approach,
making it a multi-objective optimization method. Firstly, it uses an OC
approach to optimize the stiffness. After that, the structure’s strength is
maximized using the SKO approach. One advantage of this method is the
homogenization of the surface tension which is more close to reality.

4.4 Filter

During the optimization process, an unwanted checkerboard effect may occur
(Figure 12).

53

Figure 12: Possible unwanted Checkerboard Effect

Using high order elements (e.g. shape functions with quadratic order) or
applying a filter can reduce this effect. The report considers just the filter
method and the current implementation just contains a common sensitivity
filter. The filter is applied before the Lagrangian equation for the optimality
criterion is solved. It updates the partial derived compliance of an element
regarding its density using weight factors which depend on neighboring ele-
ments. The neighboring elements are defined by an impact radius rmin and
the distance d between two elements. The following equations describe the

54

implemented filter [SS13]:

∂̃c

∂ρe
:=

1

ρe

∑
j∈Mn

∂c

∂ρe
wejρe (75)

W := (wij) ∈ Rne×ne (76)

wij :=

rmin−d(e,j)∑

ϵ∈Mn
(rmin−d(e,ϵ))

: j ∈Mn

0 : j ̸∈Mn

(77)

Mn := {e, j ∈M |d(e, j) ≤ rmin} (78)

The equations above show a minor adjustment by defining a weights ma-
trix W but it is the same formulation as in the cited paper. Sometimes the
weights matrix W is called ”convolutional operator” in literature. The paper
contains several other filters for topology optimization problems, which can
be interesting to improve the results of this report, so it is suggested to exam-
ine if another filter performs better for these kinds of problems. Furthermore
it could be interesting to use high-order elements for the CG approach.

55

4.5 Solving TO Problem with SIMP Approach

This section outlines the original TO problem including the SIMP approach.
The previous sections are summarized to clarify which formulation is assumed
when the new approach is developed.

min : c = f⃗T · u⃗ Minimize the compliance

s.t. : S(ρ)u⃗− f⃗ = 0 Elasticity condition must be fulfilled at any time

V (ρ)

Vf

≤ vf Reach a pre-defined target volume

S(ρ) =
∑
e∈M

ρpe · Se Apply SIMP-Approach

0 ≤ ρe ≤ 1, e ∈M Consider normalized densities

M = {1, 2, 3, . . . , ne} Define set of elements

N = {1, 2, 3 . . . , nn} Define set of nodes

D = {1, 2, 3 . . . , nd} Define set of degrees of freedom

u⃗ =

u1

u2
...

und

 ρ =

ρ1
ρ2
...

ρne

 Define vectors for design variables

56

Following, the general algorithm to solve a topology optimization problem
using the OC approach with the SIMP heuristic is shown.

Algorithm 1 Solve TO-Problem using SIMP-Approach

function solve(ρ
init

)

b← 1

ρ← ρ
init

while b > 1e−3 do

u⃗← FEA(S(ρ, p))

c← u⃗T · f⃗
∂̃c
∂ρ
← SensitivityFilter(∂c

∂ρ
, rmin)

ρ∗ ← updateByOC(ρ, η)

b← ||ρ− ρ ∗ ||

ρ← ρ∗

end while

return ρ∗

end function

58

The algorithm for the optimizer to update the densities finds the missing
Lagrangian multiplier of equation 70 which fulfills the volume constraint
[Sig] is outlined below. It is identical to the cited paper. There is also a
Python variant of the Matlab code.

Algorithm 2 Optimize Density Distribution rel. to FEA-Results

function updateByOC(ρ, ∂̃c
∂ρ
, η)

l1 ← 0

l2 ← 1e5

m← 0.2

while l2 − l1 > 1e−4 do

l̃← l2+l1
2

ρ∗ ← max(0.001,max(ρ−m,min(1,min(x+m, ρ · (−∂c
∂ρ·l̃)

η))))

if V (ρ∗)− Vf > 0 then

l1 ← l̃

else

l2 ← l̃

end if

end while

return ρ∗
end function

These algorithms are used to solve any topology optimization problem in
this report because the considered geometries are very simple in this report
and it is known that the presented SIMP algorithm can solve these problems
reliably. Furthermore, the implementation of this solver is rather simple,
given that the solver not complex. In addition, the results can be compared
to existing solvers. Further information on the implementation is provided
in section 4.7. The presented SIMP solver does not contain any completely
new developments and, with the exception of the filter, it is the same as
presented in ”A 99 line topology optimization code written in Matlab” by
O. Sigmund [Sig]. In section 8, some suggestions for other algorithms and
methods are highlighted which can be tested whether they perform faster or
lead to better results.

59

4.7 SIMPProblem Object

Every TOModelBase object and SubDomain object contains a SIMPProblem

object for solving the corresponding domain’s topology optimization problem
using the SIMP approach. This object is created during instantiating the
model object and it maps the topology optimization problem for both a main
domain and/or a sub-domain. In addition to the most important function
solve, which specifically solves a topology optimization problem, there are
some other helpful properties and methods. There is also an output class
SIMPOutput to visualize the optimization (section 9).

4.7.1 Constructor

To create an instance of this class, the node number, the domain’s element
dictionary and the corresponding finite element model (FEModel) need to be
passed to the constructor. It also has the task to create the weights matrix
for the sensitivity filter (section 4.4) depending on the predefined radius.

4.7.2 Attributes

The class contains all parameters required for the SIMP approach as class
attributes. The public attributes can be found in the table below.

60

4.7.3 Function solve

The most important public function is solve as it solves the topology opti-
mization problem depending on an initial density distribution, which is the
only required parameter for this function. It returns the optimized density
distribution, the corresponding displacements, and the resulting value of the
objective function, i.e. the compliance. The activation of the output is con-
trolled by the optional parameter output, typed as boolean with False as
default value. If it is True, the user will see how the geometry is optimized.
Briefly summarized, this function starts by updating the densities of the el-
ement objects regarding the initial density distribution and initializes the
change parameter with one.

change = 1

for i, (e_id , element) in enumerate(self.Elements.items()):

element.x = x_init[i]

After that, the main while loop starts by checking whether the predefined
main iterations are reached and whether the change is greater than 0.03.
Each iteration starts with increasing the counter loop. Following, the ele-
ments’ stiffness matrices are updated by calling the element’s object function
update stiffness matrix.

update elements stiffness matrices

for i, (e_id , element) in enumerate(self.Elements.items()):

element.update_stiffness_matrix(e_min=self.Emin ,

e_max=self.Emax , p=self.p)

The matrices are stored in the corresponding element’s object, such that the
densities. In the next step, the domain’s stiffness matrix is calculated and
the boundary conditions are incorporated as required. Now, it is possible to
perform the FEA to receive the displacements globally.

update domain ’s stiffness matrix

self.FE_Model.K = self.FE_Model.get_k()

inc. boundary conditions to new K

if len(self.FE_Model.boundary_conditions.fixed_nodes) > 0:

self.FE_Model.K, self.FE_Model.F =

self.FE_Model.incorporate_boundary_conditions(self.FE_Model.K,

self.FE_Model.F)

solve and get u

u, self.feasible_solution = self.FE_Model.solve()

Each element object has an attribute to store their displacements itself and
those attributes are updated by the global displacements. Once the displace-
ments are stored in the objects, the element objects determine its compliance
and derive it according to the density.

update elements properties

for e_id , element in self.Elements.items():

element.update_element_displacements(u,

np.array(self.FE_Model.global_dofs))

element.update_flexibility ()

62

element.derive_flexibility(p=self.p, e_max=self.Emax ,

e_min=self.Emin)

The global displacements are used to calculate the value of the objective
function that is just used for the output. After that, the filter is applied
to each element. For this, the element object contains a function called
apply sensitivity filter which requires the domain’s elements as a dic-
tionary and the corresponding row from the weights matrix. This function
updates the element object’s property dCe filtered which stores the derived
filtered compliance.

apply filter for each element

for j, (e_id , element) in enumerate(self.Elements.items()):

element.apply_sensitivity_filter(self.Elements ,

self.H[j])

In the next step, the density distribution is updated using the OC approach
calling a separate function, which is described in the next section. The final
steps in one iteration of the main loop update the densities in the element
objects and calculate the new value for the parameter change

update elements densities

for i, (e_id , element) in enumerate(self.Elements.items()):

element.x = x_new[i]

update change

change = np.linalg.norm(x_new - x_old , np.inf)

The complete implementation can be found in the repository as there are
also some supporting tools for the output of the process.

4.7.4 Function oc

The private function oc optimizes the density distribution depending on
the provided derived compliances which indirectly are based the FEA, using
the OC approach. The implementation corresponds to algorithm 2, is part
of the SIMPProblem class and was adopted from Python variant of the 99
line Matlab code [Sig]. As input parameters, the function requires the den-
sity distribution, which are to be optimized, and the corresponding filtered
derived compliances. It returns the optimized densities. In general, the func-
tion tries to find the missing Lagrangian variable, which solves equation 71.
During the development of the approach presented in this report, it turned
out that this function can cause some issues for several solver inputs, so that
this function may need to be revised and made more stable. Zero division can
occur under certain conditions, so that there will be an extra error handler
for this issue. If the error raises, the objective function will be infinite, the
densities and the displacement will be zero. Furthermore, a variable will map
the infeasibility of the problem as a boolean. It is not fully clear whether it

63

is possible to determine solver inputs that raise the zero division error. It is
suggested to check it.

4.8 Results for Experimental Model

In this section, the implemented solver optimizes the experimental model,
using the standard SIMP approach. Before the results are presented, the
applied configuration and initial values are presented briefly.

4.8.1 Configuration and Start Conditions

The configuration parameters to solve the experimental model using the
SIMP approach are

� Penalization Factor p: 3

� Target Volume Percentage vf : 0.44

� Damping Factor η: 0.5

� Filter: Sensitivity

� Neighboring Radius rmin: 1.5

, provided the initial density distribution is homogeneous, so each element
has the same density in the beginning.

4.8.2 Results

The figure below outlines the results of the topology optimization problem
for the experimental model using the standard SIMP approach.

64

Figure 13: Results of the TO problem of the experimental model using stan-
dard SIMP approach

In initially state, the geometry’s compliance was 128.797 Nmm. This is im-
proved to 69.297 Nmm during the optimization within 14 iteration steps.
This is a reduction of around 46.197%. An application-orientated result
would be a real binary solution for the elements, so that an element is clearly
switched on or off. The resulting shape, which is shown in the figure above,
shows that this purely binary solution is not reached and it is still neces-
sary to analyze the results to find the final resulting shape. Since the SIMP
approach considers topology optimization problems continuously (NLP Prob-
lem), it is difficult to come to such an application-oriented solution. With a
view to performance, the continuous consideration quickly leads to reason-
able results, which is one big advantage of this approach, especially if the
models become very large. The biggest disadvantage of this approach is the
heuristic characteristic so that the problem strongly depends on initial values
and is only solved locally. Furthermore, the user needs to guess a reasonable
target volume as initial condition.
Briefly summarized, a user would like to reduce the volume of a geometry
to a target percentage and find the corresponding optimal shape regarding a
given load case. The optimizer adopts the geometry and its initial percentage
volume as input. Now, it reduces the compliance by determining the optimal
density distribution without increasing the volume.

65

4.8.3 Validation

As the implementation contains its own variant of the SIMP approach, it
is necessary to validate the results to ensure that the implementation works
correctly. For this, the SIMP problem for the experimental model is solved
again using the Python variant from ”A 99 line topology optimization code
written in Matlab” [Sig], which is also called ”topopt”, and the Python mod-
ule ”topy” [Hun+17]. In the table below, the results are compared. All input
parameters are the same.

Decogo TO-Layer topopt topy

Flexibility [Nmm] 69.297 70.070 64.914

Iterations 14 10 100

Density Distribution

The results of all three solvers are similar, so it can be assumed that the
implemented solver works correctly. There were several reasons for imple-
menting this rewritten SIMP solver. One reason is the preparation for ar-
bitrary meshes as the other two solvers include some great simplifications
regarding usable meshes, elements and geometries. Another reason was the
idea of creating a perfect working interface for Decogo so that the solver can
be easily adapted to the special requirements of Decogo. In addition, the
implementation contributed significantly to the understanding of the mode
of operation, although there are several more optional features which can be
implemented.

66

5 Column Generation for TO Problems

This section deals with the column generation (CG) algorithm and its ap-
plication to TO problems. First, section 5 presents the classic CG method
(5.1) before it is connected to the reformulated block-separable TO problem
(5.2). After that, the required sub-problems are defined and described (5.3).
Lastly, the algorithm for the new approach is outlined (5.4).

5.1 Classic Column Generation

The classic CG method tries to solve a large complex original problem (OP)

min
∑
i∈I

cTi xi

s.t.
∑
i∈I

aTi xi ≥ bi

∀i ∈ I

using a simple linear master problem (MP)

min
∑
i∈Ĩ

cTi xi

s.t.
∑
i∈Ĩ

aTi xi ≥ bi

∀i ∈ l̃, Ĩ ⊂ I,

where the size of Ĩ is much smaller than the size of I. The master problem,
sometimes called inner approximation, is simple to solve globally, e.g. using
the Simplex approach, to obtain an optimal primal point x̃∗ ∈ Ĩ and the
corresponding optimal dual values µ. To test whether a solution from the
MP is optimally related to the OP as well, the pricing sub problem

δ = min{δi|i ∈ I}
δi := ci − µTai, i ∈ I

can be analyzed. If δ ≥ 0, the point x̃∗ solves the master problem optimal
and the objective of the master problem can not be improved anymore. The
reduced costs δ can be considered as a converge criterion, or rather as a

67

potential for improvement of the master problem. If δ < 0, a better solution
exists regarding the OP and the MP is updated in accordance to the dual
values

Ĩ = Ĩ ∪ argmini∈I{ci − µTai}.

The updated master problem has to be solved again until all reduced costs
are greater than zero. Below, the basic algorithm for CG is presented.

Algorithm 3 Basic Column Generation Algorithm

δ ← −∞, Ĩ ← initColumns() ▷ Initialization

while δ < 0 do ▷ Check if minimal reduced costs lesser than 0

x̃, µ← solveMP (Ĩ) ▷ Obtain x̃ and corresponding dual values µ

δ = min{ci − µTai|i ∈ I} ▷ Determine minimal reduced costs

if δ < 0 then ▷ Check if MP has to be updated

Ĩ ← Ĩ ∩ argmini∈I{ci − µTai} ▷ Update the MP

end if

end while

y∗ ← solveOP (x̃) ▷ Solve OP, using point from MP

The master problem contains slack variables which can be analyzed to de-
termine the violation of the global constraints. If all of these slack variables
equal zero, the master problem does not violate the global constraints P .
Slack variables resemble the artificial added variables in the Simplex algo-
rithm. Further information on CG can be found in the presentation ”Column
Generation, Dantzig-Wolfe, Branch-Price-and-Cut” by M. Lübbecke [Mlc].

5.2 Apply CG on Block TO

In this section, the CG method is combined with the block TO problem (2.2).
In general, the block-separated TO problem with |K| blocks is given by

min cTx

s.t. xk ∈ Xk, ∀k ∈ K

x ∈ P

, (79)

68

where P denotes the global constraints, the copy and volume constraints. Xk

maps the local block-specific constraints. CG solves a problem like

min cTx

s.t. xk ∈ conv(Xk)

x ∈ P

(80)

with the corresponding generated master problem (inner approximation)

min cTx

s.t. xk ∈ conv(Rk)

x ∈ P

, (81)

where Rk are inner points of Xk. Using the block-separable formulation of
an optimization problem changes the CG algorithm as follows.

Algorithm 4 CG for block-separated notation

δ ← −∞, R← initCols() ▷ Initialize reduce costs and a Column set

while δ ≤ 0 do ▷ Check if reduce costs less than 0

x, d← SolveMP (R) ▷ Solve simple MP depending on R

for k ∈ K do ▷ Gen. new cols., using sub-problem solutions

yk ← argmin dTkAkxk, xk ∈ Xk ▷ Solve sub-problem

δk ← min{dTk rk−dTkAkyk : rk ∈ Rk} ▷ Min. reduced costs for block

if Akyk ̸∈ Rk then ▷ If col. is not in current block column set

Rk ← Rk ∪ {Akyk} ▷ add column

end if

end for

δ ← min{δk : k ∈ K} ▷ Get minimal reduced costs of all blocks

end while

(Y ∗, X∗)← SolveOP (x) ▷ Solve OP using point from MP

The resource matrix Ak is used to transform points of the sub-problems to
the space of the master problem, whereby the matrix contains the coefficient
of the objective function ck and the coefficients of the global constraints. d

69

denotes a search direction for new columns, including the dual values µ of
the master problem. By using the block-separated formulation, it is possible
to use solutions of sub-problems to determine the lowest reduced costs. Fur-
ther information on the master problem, resources and on solving a general
optimization problem using column generation methods can be found in the
paper ”A column generation algorithm for solving energy system planning
problems” [Mut+21].

5.3 Sub-Problems

In general, sub-problems for a block k for the CG algorithm above are defined
by

min dTk xk

s.t. xk ∈ Xk,

where dk is the search direction provided by the solution of the master prob-
lem related to the sub-problem space and is typically defined by its dual
values. Regarding the block TO problem, a corresponding sub-problem can
be formulated as a TO problem itself.

min dTk uk

s.t. Sk(ρk)uk = dk

ρki ∈ {0, 1}, i ∈Mk

ukd ∈
[
u−
kd, u

+
kd

]
, d ∈ D̃k.

Furthermore, the sub-problems are created by applying the domain decom-
position (3.8) to the original model. The block-specific partial direction dk
should correspond to the outer forces of the corresponding sub-domain fk.
As the master problem does not consider the boundary forces g (3.8.5), they
have to be incorporated to the sub-problems to avoid ill-posed problems. The
sub-problems in this approach are solved by a provided initial value from the
MP, so the volume constraint for a block can be omitted because the initial
point defines the target volume for the OC approach and depends on the
global volume constraint. Using the boundary forces leads to the following

70

definition of sub-problems for a block TO problem.

min (dk + gk)
Tuk

s.t. Sk(ρk)uk = dk + gk

ρki ∈ {0, 1}, i ∈Mk

ukd ∈
[
u−
kd, u

+
kd

]
, d ∈ D̃k.

In this report, these sub-problems are solved by the SIMP approach to receive
first results and determine the feasibility and usefulness of this approach.
To improve the quality of the results further, it is suggested to develop a
global solver for small TO problems e.g. using the ”SCIP - Optimization
Suite”[Bes+21].

5.3.1 Algorithm

Below, the algorithm for solving a TO sub-problem by the SIMP approach
is shown in more detail. It depends on an initial value of the master problem
xk,init and the partial direction dk related to the corresponding block k.

Algorithm 5 Sub-problem solving related to CG

function SolveTOSubProbl(xk,init, dk)

ρ
k
, u⃗k, f̃k ← Split(xk,init, dk)

g⃗k ← GetBoundaryForces(xk,init)

f̃k ← f̃k + g⃗k

ρ∗
k
, u⃗∗

k, c
∗
k ← SIMP (ρ

k,init
, f̃k)

s← Check(u⃗∗
k)

return x∗
k, c

∗
k, s

end function

The function Split decomposes the initial values and the partial direction
related to the density and displacement variables. The vector f̃k replaces the
sub-domain’s force vector f⃗k so that the sub-problem is solved depending on
the direction of the master problem. s denotes a boolean value, which maps
the feasibility of the solution provided by the SIMP approach. As long as
the SIMP approach is completed without any errors, this value is True.

71

5.4 TOCG algorithm

This section shows the algorithm for solving TO problems using column
generation methods applied to the block-separable formulation.

Algorithm 6 Block-TO CG

δ ← −∞, R← initCols() ▷ Initialize reduce costs and a Column set

while δ ≤ 0 do ▷ Check if reduce costs lesser than 0

x, d← SolveMP (R,P) ▷ Solve simple MP depending on R and P

for k ∈ K do ▷ Gen. new cols., using sub-problem solutions

gk ← GetBoundaryForces(x) ▷ Get gk related to sol. of MP

Xk ← updateLocCons(gk) ▷ Update the local constraints Xk

yk ← argmin (dk + gk)
Tuk, xk ∈ Xk ▷ Solve sub-problem

δk ← min{dTk rk−dTkAkyk : rk ∈ Rk} ▷ Min. reduced costs for block

if Akyk ̸∈ Rk then ▷ If col. is not in current block column set

Rk ← Rk ∪ {Akyk} ▷ Add column

end if

end for

δ ← min{δk : k ∈ K} ▷ Get minimal reduced costs of all blocks

end while

(Y ∗, X∗)← SolveOP (x) ▷ Solve OP using point from MP

The algorithm shows that it is different from the classic column generation
algorithm as the local constraints Xk are not static and changed in every it-
eration. This is comparable with a trust region approach, with the difference
the trust region is continuously updated. It is necessary to keep in mind that
this is just a first approach to determine the usefulness and feasibility of this
new approach. There are several ongoing research projects and suggestions
to improve the performance and quality, which would exceed the scale of
this report. Below, the implementation is outlined and some first results are
presented.

72

6 Implementation and Results

This section mainly presents the second part of this report: the development
of the TO layer for Decogo. Furthermore, first results for solving a TO
problem using the new column generation approach are shown. In addition,
this section also highlights some small adjustments to improve the quality of
the solutions. The section starts by giving an overview of the basic course
of action of the implementation and providing the general implementation
structure. After that, the base class for a TO domain is shown, before two
procedures of creating the original TO problem are shown. Then, Decogo and
its generic framework is presented briefly. Afterwards, the explicit TO layer
for Decogo is shown. Using this implementation, first results are generated
and shown then. Lastly, this section introduce some small extensions of the
TOCG algorithm.

6.1 Basic Course of Action

This subsection outlines the basic course of action for solving a TO problem
with the new approach using the developed implementation. This is briefly
done by the following list.

1. Create an original structure/geometry/model and formulate TO prob-
lem

2. Reformulate in accordance to block-separable formulation

3. Generate sub-problems

4. Pass it to Decogo

6.1.1 Implementation Structure

This section gives a first overview of the developed implementation, including
a visualized course of action of the implementation. The total folder struc-
ture can be found in the Annex (A.1). The actual functionality for the solver
is located in the folder ”pylib” located in the root dictionary. The current
implementation includes several features for the visualization of the results,
which will briefly be presented in section 9.
The following figure outlines the general course of action of the implementa-
tion.

73

Figure 14: General course of action of the implementation to solve a TO
problem with new approach

There are two different ways to create an original model object. This will be
reformulated before it is passed to Decogo. The names of the containers in
the figure correspond to the class names of the implementation.

6.2 TOModelBase Object

The TOModelBase class represents an original domain for a topology opti-
mization problem. It provides general information on the domain as well as
the corresponding finite element model and the optimization problem. The
class is placed in ”pylib/tomodel/tousermodel.py”.

6.2.1 Instantiate

To create an instance of the TOModelBase class, the constructor’s parameters
are shown in the table below.

74

Parameter Type Description Required?

nodes dict Keys describe the global
node-id; Value is the
corresponding Node object

Yes

elements dict Keys describe the global
element-id; Value is the
corresponding Element object

Yes

boundary

conditions

Boundary

Condition
Predefined BoundaryCondition

object for the original domain
Yes

dofs per

node
int Number of degrees of freedom

at a node
Yes

With these parameters it is possible to define a domain for a topology opti-
mization problem. There are two procedures to create this object which are
presented in the next subsection. The constructor also solves the domain’s
FEA with the initial values to generate first values for the displacements.

6.2.2 Attributes

In general, the attributes of the TOModelBase correspond to the symbols of
table 1, but there are some minor differences in the implementation, e.g.
implemented objects for smarter usage. The property Nodes is the same as
the input parameter nodes and the property elements is the same as the
input parameter elements. The input parameter boundary conditions

is required to define an object which maps the boundary conditions for the
corresponding domain (3.4.3). Furthermore, the constructor of TOModelBase
creates another object which maps the topology optimization problem. It will
also be used to solve the problem for the corresponding domain.

6.2.3 Methods

The class itself does not contain a large number of methods. One function
is reformulate, which creates a reformulated model by using a specified
”decomposer” and is always required for the layer for Decogo. To calculate
the volume of a domain, the function get volume can be used which is shown
below.

75

def get_volume(self):

return sum(e.x * e.V for i, e in self.elements.items())

In addition, the class provides the function display(self) to print all in-
formation of a domain to the console. It is just a supporting function and is
not absolutely necessary.

6.2.4 TOReformulatedModel object

An object of the class TOReformulatedModel maps the reformulation of the
TO problem (2.2.9). It provides information on the sub-domains, or rather
the blocks, and prepares information about the required constraints and the
design variables. Calling the function reformulate of the class TOModelBase
by passing a TODecomposer object to it returns an instance of this class.

6.2.5 TODecomposer class

An object of the class TODecomposer can be used to perform the presented
domain decomposition. It will decompose and reformulate an TOModelBase

object so that it is prepared for Decogo. For instantiating, a list of the cut
nodes numbers, a dictionary of sub-domains and the base model needs to be
passed to the constructor. To improve usage, it should be possible to develop
an algorithm to decompose a main domain automatically just by providing a
list of cut node numbers. The dictionary of sub-domains contains the num-
ber of the sub-domain as the key and a ”raw” object of SubDomain as the
corresponding value. The constructor of the TODecomposer class updates the
sub-domains by inserting the corresponding boundary conditions and setting
the initial displacements from the main domain. This class provides some
mappings for nodes, DoFs and sub-domains. To apply the decomposer, the
class TOModelBase provides the function reformulate which can be called
by passing an instance of the decomposer class to it. The current implemen-
tation is not ideal, but it is sufficient for testing the new approach.

6.3 Model Creation

This section outlines the implemented features to create models which can
be optimized, using Decogo. In general, there are two basic procedures for
the creation: a manual programmatic procedure and a procedure using the
finite element mesh generator ”Gmsh” (https://gmsh.info/) [GR09]. Both
procedures return a TOModelBase object, which is used for further steps.

76

6.3.1 Programmatic

The constructor requires two dictionaries for the nodes and for the elements
and a BoundaryCondition object for the domain, which can be created by
manually. The Annex (A.2) provides an example for a manual model. Briefly
summarized, lists of identifiers for the nodes and the elements are created
using the range object. The coordinates for the Nodes have to be created
manually. During the creation of the element objects, it is necessary atten-
tion must be paid to the order of node numbers. As long as the model is
simple, like in the example, this procedure can be an alternative to the other
procedure, as this one can be very fast and more stable and does not show
unwanted side effects. If the element formulations are more complex or the
size of the problem is larger, the procedure using ”Gmsh” is suggested.

6.3.2 Using ”Gmsh”

Application-oriented meshes are complex and large in terms of the geometry.
To handle complex geometries and mesh them, the open-source tool ”Gmsh”
can be used to create meshes and export them as a mesh file (.msh). The
tool can be used to mesh existing geometries and/or create new ones.

Figure 15: Geometry and mesh created using ”Gmsh”

Besides meshing complex geometries, the procedure offers the advantage that
most element geometries (triangles, rectangles, tetrahedrons, hexahedrons,
...) can be used. The mesh file also provides the correct node order for each
element.

77

Gmsh - Boundary Conditions It is also possible to determine bound-
ary conditions using the software tool. For this, physical groups need to be
added to the geometry. For fixations, the name of the corresponding group
must contain ”fix”, whereas physical groups which describe the load cases
must contain ”load” in their name.
After creating the mesh, it needs to be exported as a ”.msh”-file. The applied
options for the export can be found in figure 16.

Figure 16: Export options

The file always has the same struc-
ture. It starts with a header which is
followed by different sections for the
nodes, the physical groups and ele-
ments. An example of a ”.msh”-file
is provided in the Annex(A.3) and
further information on the structure
of such a file can be found in the ref-
erence manual of ”Gmsh” on their
website.

6.3.3 MSHParser class

To use the created mesh file, the implementation provides a parser class,
called MSHParser. It can read the mesh file and can create a TOModelBase

object based on the mesh file. The class can be found in ”pylib/mesh-
parser/mshparser.py”.

Constructor The constructor of the MSHParser class just requires the path
for the corresponding mesh file. It starts by reading the file and determining
the position of the different sections in the file. After that, it translates
the file object descriptions to the required object type and stores them as
class properties. All of these properties can be found in the implementation.
There are also two supporting classes for a ”.msh” node and element, but
they are just containers to store certain file properties.

Methods The most important public method is get base model. It re-
turns the TOModelBase object which corresponds to the mesh file presented
to the constructor. It also takes the optional parameter bc which is used to
consider manual boundary conditions, so the user can decide if the boundary
conditions are taken from the mesh file or from the code itself. The method
write mesh file writes a ”.mesh” file to the same path as the original file.

78

6.4 Decogo

The solver which is used to apply the CG methods to the TO problem is
called Decogo. It was developed in pure Python language at HAW Ham-
burg. The article ”A column generation algorithm for solving energy system
planning problems” [Mut+21] provides detailed information on the solver.
This section briefly summarizes Decogo’s tasks, its special features and mod-
ification from the classic CG. Decogo’s main task is generating and solving
the master problem (inner approximation) for an input model. It generates
the master problem using the Pyomo modeling language and solves it by
using ”Gurobi”[Gur]. The algorithm of Decogo varies from classic CG and is
divided into three phases. During the first phase, it initializes columns au-
tomatically by a sub-gradient method, where sub-problems are also solved.
Phase two can generate a large number of columns by solving sub-problems
approximately, or rather locally. Through this, the slack variables should
be eliminated. In addition, a heuristic will be provided for this elimination,
which is described in section 6.5.5. In phase three, the classic CG is applied
to the input model to improve the quality of the results from phase two and
solve the sub-problems globally. As this report just considers the feasibility
and the usefulness of the new TOCG approach, phase two and three will be
similar, as just a SIMP solver is implemented and can be used for solving
sub-problems.

6.4.1 Generic Framework of Decogo

Decogo is generic, as it provides a framework for creating user-specific layers.
The Frameworks is based on abstract classes and the Python ”abc” module.
Every layer requires inherited classes from those base classes and the cor-
responding methods need to be overridden so that the Decogo understands
the new layer. Currently, there is a Decogo layer for the Pyomo modelling
language [Byn+21] so that Decogo can solve a Pyomo model using column
generation methods. The following table summarizes the abstract classes
briefly.

79

Abstract Class Name Short Description

InputModelBase

� Passed to Decogo

� Contains all information

� Instances of all other abstract classes placed
here

� cuts property maps constraints

SubModelBase

� Contains variables of a block k

� Is more like a container only

SubProblemBase

� Provide solvers for sub-problems

� Is used while CG

OriginalProblemBase

� Provide a solver for the original problem

� Provide heuristic for slack elimination

Table 6: Abstract classes of framework

In addition, the next figure shows the UML diagram of the framework. The
full information can be found in the specific implementation and the docu-
mentation of Decogo.

80

F
ig
u
re

17
:
U
M
L
d
ia
gr
am

of
fr
am

ew
or
k

81

6.5 Decogo TO Layer

In this section, the basic implemented TO layer for Decogo is outlined, in-
cluding an input model, sub-models for the corresponding sub-domains with
the relating sub-problems and the required class to map the original problem.
Furthermore, there is an object to hold the constraints of the TO problem.

6.5.1 Input Model

An instance of the class TOInputModel can be passed to Decogo. Regard-
ing the presented framework for Decogo (6.4.1), this class inherits from
InputModelBase. For creating an instance of this class, the constructor
takes an object of TOReformulatedModel as the only required parameter. It
provides all required information so that Decogo can handle this input model.
In the following table, the most important properties are listed with a short
description and an indicator whether they are abstract and overridden from
the base class.

82

As the global linear constraints connect the different blocks to each other
after an original problem is decomposed, these constraints are called ”cuts”
and all of these cuts define a pool of constraints, relating to the reformulated
problem. For the TO problem, the cuts are the volume constraint and the
copy constraints.

6.5.3 Sub-Model

An instance of TOSubModel provides the variable definition of a block. In the
case of the TO problem, the variables are the densities ρ

k
and the displace-

ments u⃗k of a block or a sub-domain k. To describe a variable for Decogo,
the solver provides a class called VarDomain. Further information on it can
be found in the documentation of Decogo. The displacements variables are
always of type real (∈ [0, 1]) with the bounds described in chapter 3.5.3.
The type of density variables depends on the consideration of the TO prob-
lem. If the problem is solved as a NLP problem, the variables will be also
of type real. However, the variables’ type will be int (∈ {0, 1}), if the TO
problem is solved as a MINLP problem. All variables are stored in one list
and the corresponding class attribute is called variables. This list has the
same shape as the block specific summarized variable vector

xk = (ρ
k
, u⃗k)

T

The class also contains the property block id, which maps the identifier for
the sub-domain and the property linear, which can be set to true if a block
has only linear constraints. In the case of a TO problem, a block is always
non-linear, so this property is always false.

6.5.4 Sub-Problem

The class TOSubProblem is used to handle and solve the sub-problems for
Decogo. The partial solutions of the sub-problems regarding the original
problem are used to generate columns, which feed the inner approximation so
that it becomes similar to the original problem. This abstract class contains
two abstract methods, which need to be overridden for the TO specific layer.
These two abstract methods are local solve and global solve. In this
report, only a SIMP solver is used to solve any TO problem as it is sufficient
to examine the feasibility of the new approach. In section 8, some processes
and other approaches for further research on solving TO sub-problems are
presented. The input parameters for these methods are

� a result object provided by Decogo

84

� the direction d from the master problem

� the point of the master problem according to the direction as the start
point for the SIMP algorithm

� a problem object provided by Decogo which stores for example the
columns

Like the input parameters, the return is also the same as

� optimized point of the sub-problem

� primal bound

� dual bound

� boolean if the solution is feasible regarding the local constraints

Regarding the primal and dual bound of the TO problem, as long as SIMP
is used, it is not possible to calculate the correct dual bound in terms of
the global optimality because of the heuristics used in this approach. So
the implemented methods set the primal and dual bound equal. If the SIMP
approach finds a solution candidate, it will always fulfill the local constraints,
as it is an OC approach. In this new approach, it is possible that the SIMP
approach runs into an error while evaluating the Lagrangian parameter in
the OC optimizer depending on the provided start point and direction, so
an error handler is used in the abstract methods, which sets the boolean
value for the feasibility to False if this error raises. In addition to the
error, the objective value and so the primal and dual bounds are set to
infinite. These methods are called in each of the three phases of Decogo.
Regarding the expected results of the sub problems, Decogo should not find
new columns in its third phase, because there is just a local solver available
at this point (SIMP solver) so that the local and global solver are the same.
The complete implementation of the class TOSubProblem is also located in
the ”pylib/tomodel” folder.

6.5.5 Original-Problem

The last required class for the framework is TOOriginalProblem, which in-
herits from OriginalProblemBase. Its two main tasks are solving the orig-
inal problem related to the start point provided by Decogo and eliminating
the slacks from the master problem by finding any feasible point of the orig-
inal problem. These two tasks are implemented by two abstract methods
in the base class which need to be overridden. The function local solve

85

solves the original problem regarding a calculated point by Decogo. Firstly,
the provided point is split into two partial vectors for the density variables
and the displacement variables. After that, the original problem is solved
by the SIMP approach and a new primal bound is determined. The primal
bound is used to test the quality of the master problem. This is done by
calculating the gap between the objective value of the MP and the primal
bound of the original problem by using the SIMP approach

gap := val(80)− val(81). (82)

The second function is local solve fast, which attempts to find a first
feasible solution candidate to eliminate the slacks of the master problem.
This task can be extremely difficult for complex problems or if the problem is
considered as a true MINLP problem. However, for the NLP variant of a TO
problem, finding a feasible solution candidate is simple, as the initial values
calculated by the initial FEA are feasible. If the TO problem is considered
as a MINLP problem, finding a solution could be difficult, as the initial
state is a fractional solution with densities between zero and one. Random
binary density distribution can easily violate the volume constraint or lead to
illogical structures compared to the original problem. Currently, the SIMP
approach performs two iterations, the resulting densities are round and the
corresponding displacement and compliance is solved again. Some tests show
that this process violates the volume constraint, so the right-hand side of
this constraint is updated with the rounded values. This procedure is very
heuristic and unstable so there is ongoing research on this issue to make
that process stable for a MINLP problem without updating the constraint
in phase two of Decogo. Another way to remove the slacks from the master
problem is generating that many columns so that a random combination of
them map the original problem similarly. Maybe, this way is more useful for
solving the TO problem as a true mixed-integer problem.

86

6.5.6 Algorithm

This section presents the general algorithm for solving a block-separable TO
problem using Decogo depending on the different phases of Decogo.

Algorithm 7 SolveBlockSeparatedTO

Require: xinit, phase ▷ Initial homogeneous mass distribution
n← 0 ▷ Set initial step
u⃗init ← FEA(S(xinit), f⃗) ▷ Get initial u⃗
y
init
← (xinit, u⃗init)

T ▷ Build initial solution vector
repeat ▷ At least one Step performs

dn, ỹn ← Decogo : getSearchDirections(phase) ▷ Call Decogo
if n = 0 then ▷ Empty approx. sol. vector for n = 0

ỹn ← y
init

end if
g⃗ ← getBoundaryForces(ỹn) ▷ Update boundary forces
for k ∈ K do ▷ Consider each block

yn+1
k
← SolveSubProblSIMP (ỹnk , d⃗

n
k , g⃗

n
k) ▷ Solve sub-problem

if yn+1
k

Is feasible and new point in Yk then

Decogo : (Sk, Rk)← updateDecogo(yn+1
k

) ▷ Update Sk & Rk

end if
end for
n← n+ 1 ▷ Increase step

until max. step reached ▷ Stop condition
Y n ← Decogo : getLastPoint() ▷ Get the last Point from Decogo
Y ∗ ← SolveOriginalTO(Y n) ▷ Solve original TO problem with xn as
initial

87

6.6 Solving TO Problems using Decogo

Section 6.6 presents first results of solving the experimental model with the
TOCG algorithm using Decogo. It starts by solving the model considering
the TO problem as a NLP problem (6.6.1) which should be the most simple
variant of the TO problems. After that, the TO problem of the model is
attempted to be solved as a MINLP problem (6.6.2).To differentiate between
those two variants of solving a TO problem, the configuration dictionary for
the TO layer provides the key MINLP. The value of the key is of the type
bool, so that the problem is solved as a MINLP problem if the value is True;
otherwise the problem is solved as a NLP problem. The initial conditions for
applied SIMP solver are the same in both solving variants

� Neighboring radius rmin: 1.44

� Fractional target volume vf : 0.44

� OC damping factor η: 0.5

� Penalization factor p: 3

� Filter: Sensitivity

The configuration of Decogo is also the same for both variants and the main
options are

� max. time: 1000 seconds

� CG max. iterations: 5

� sub-gradient max. iterations: 5

� Use fast Frank Wolfe: False

� LP solver: Gurobi [Gur]

The code below shows how an input model can be passed to Decogo, be
configured and solved.

from decogo.solver.decogo import DecogoSolver # import solver

from config import config_decogo , Configuration_TOLayer # import

configs

from examples.topopt_model import inp_model # import example input

model

if __name__ == "__main__":

solver = DecogoSolver () # create an instance of the solver

config_decogo () # configure Decogo

inp_model.configure(Configuration_TOLayer) # configure the

input model

solver.optimize(inp_model) # solve the TO problem

All log files related to the presented results are provided in Annex (A.5).

88

6.6.1 NLP

In this section, the experimental model is solved with Decogo as a NLP
problem and compared to the original results. Solving the TO problem as
a continuous NLP problem deviates from the general problem, but it should
provide a first impression for solving TO problems using CG methods. Below,
the configuration of the implementation is shown including the SIMP options

Configuration = {

’report_name ’: NLP ,

’MINLP’: False ,

’SimpProblem ’: {

’volfrac ’: 0.44,

’penalization_factor ’: 3,

’emin’: 1e-9,

’emax’: 1,

’rmin’: 1.44,

’filter ’: ’sensitivity ’

}

}

Furthermore, it should be noted that no active or passive element is consid-
ered. The problem should be the most easiest possible variant. The next
table (table 7) presents some statistics of the RTO problem and the first
results of the TO problem solved by Decogo.

89

Model Statistics

Number of blocks/ sub-domains 4

Total number of variables 88

Density variables 16

Displacement variables 72

Variable numbers in blocks

Sub-domain 1 22

Sub-domain 2 22

Sub-domain 3 22

Sub-domain 4 22

Number of global constraint 23

Solver statistics

Total time [seconds] 25.212

Main iterations 1

Number of CG iterations 2

Number of solved sub-problems 60

Number of generated columns 10

Sum of slacks in MP 0.0

Maximum slack value in MP 0.0

Results

Primal bound of RTO 68.96

CG relaxation objective value 128.80

Quality gap 46.46%

Table 7: First results for experimental model solved by Decogo

The table above shows that Decogo understands the TO problem and can
perform on it. Decogo is able to find columns to feed the master problem

90

with it. In addition, the slack variables were eliminated by presenting a fea-
sible problem to the master problem. Regarding the third phase of Decogo,
the expected results can be explained by the fact that Decogo was not able
to find further columns to improve the objective value of the master problem,
so the solver converges after one iteration. Nevertheless, the results reveal
several challenges which must be mastered to receive useful results by this
approach. The algorithm was not able to find better columns which improve
the objective value of the master problem. The value is constantly 128.80
after eliminating the slack variables. Due to the results of the original prob-
lem, it is known that better results exist with a compliance of 69.257 Nmm.
This is also reflected in the quality gap of 46.46%. As long as better columns
are not found, the bound can not be decreased or changed at all. It is strik-
ing that only ten columns were added to the master problem. This could
be a reason for the lack of improvement in the master problem’s objective
value. Analyzing the starting points presented to the sub-problems reveals
that they are often equal or at least similar to points which are used to solve
sub-problems before, so that it seems that the current implementation is not
flexible enough when it comes to the different provided densities and dis-
placements. This static behavior can also be shown while plotting the initial
values from the master problem to solve the original problem to determine
a new primal bound (18). It completely corresponds to the initial homoge-
neous density distribution for calculating the initial values by the FEA at
the beginning. This underlines, that the algorithm does not find any better
columns.

Figure 18: Resulting density distributions

91

In the next section, the reformulated TO problem is solved considering true
mixed-integer variables, before an extension is shown that can handle the
challenge of the static behavior.

6.6.2 MINLP

After the TO problem is solved using continuous variables to map the den-
sities (NLP) with the new approach, this problem is attempted to be solved
as a mixed-integer quadratic non-convex problems, which corresponds to the
general problem (2.1). This is more difficult and requires minor adjustments
in the process of solving the sub-problems, finding an initial feasible solution
to eliminate the slacks and solving the original problems using an initial point
provided by Decogo. As long as there is no global solver for sub-problems,
the SIMP approach is used to imitate a true binary solution regarding the
density variables.
For the sub-problems the solutions obtained from the SIMP approach, are
simply rounded to integral numbers. After rounding, the corresponding dis-
placements and compliance is calculated again. The following algorithm
roughly describes this process.

Algorithm 8 Solve Sub-Problem as MINLP

function SolveSubMIP(xk,init, dk)
gk ← GetBoundaryForces(xk,init)
ρk, uk, ck ← SIMP (xk,init, dk, gk)
ρ̃k ← Round(ρk)
ũ, c̃← TransformRelaxatedPoint(ρ̃)
return ρ̃, ũ, c̃

end function

The function TransformRelaxatedPoint calculates the new relaxated values
for the displacements and densities. For finding an initial solution candidate
for the slack elimination, a strong heuristic is used, which should be avoided in
further investigations. The SIMP approach performs one or two iterations on
the original problem, then the densities are rounded to a integral number and
the corresponding relaxated values are calculated again, like it was done for
the sub-problems. The biggest problem of this process is that the relaxated
densities lead to a violation of the volume constraint in many cases so that
the point is not feasible regarding the global constraints and the slacks will
not be eliminated. To avoid this issue, the right-hand side of the volume
constraint, i.e. the target volume, is changed so that the relaxated point is
feasible. This is a very strong heuristic, as the original problem is changed.

92

It is necessary to keep this in mind while comparing the results of the original
problem and the results from this new approach. Further research should deal
with removing this heuristic. Reasons for using this heuristic are the scale
and simplicity of this report. As it is defined by the CG method, this process
does not restrict the global optimality. A second issue of this process is that
simply rounding the densities while eliminating the slack variables can lead
to unreasonable geometries so that there are very major displacements due
to unconnected elements. For the experimental model, this issue was avoided
by varying the number of SIMP iterations. The number was determined just
by testing different numbers of main iterations, which has shown that two
iterations lead to usable results. This number strongly depends on the model.
To map the MINLP problem in the implementation, the configuration key
MINLP is set to True, while the rest of the configuration stays the same as
used for the NLP problem (6.6.1). The results of solving the TO problem as
a MINLP problem are shown in the table below.

93

Model statistics

Number of blocks/ sub-domains 4

Total number of variables 88

Density variables 16

Displacement variables 72

Variable numbers in blocks

Sub-domain 1 22

Sub-domain 2 22

Sub-domain 3 22

Sub-domain 4 22

Number of global constraint 23

Solver statistics

Total time [seconds] 50.60

Main iterations 5

Number of CG iterations 26

Number of solved sub-problems 148

Number of generated columns 10

Sum of slacks in MP 0.96

Maximum slack value in MP 0.96

Results

Primal bound of RTO 13.59

CG relaxation objective value 24.26

Quality gap 43.98%

Table 8: Results for experimental model solved by Decogo as MINLP problem

Compared to the table of the NLP results (table 7), some parallels can be
pointed out. The solver neither able to improve the objective value of 24.26

94

of the master problem nor to reduce the duality gap. The reason for this
should be the same, as only ten columns were generated and added to the
master problem. In addition there are still slacks, although a feasible point
is presented to the MP. The small values for the objectives of the primal
bound and the master problem stand out immediately, as they are signifi-
cantly smaller than if the experimental model is solved with the classic SIMP
approach without methods of column generation. This can be explained by
the rounding: the rounded solutions of the original problem and the block-
separated problem are the same, so this is no improvement compared to
solving a domain with the SIMP approach directly and strongly depends
on the rounding heuristic. The number of solved sub-problems is 148 and
significantly deviates from the first variant. It seems that the problem is
more flexible, but there are also only ten columns added, so this is not a real
improvement. Furthermore, the analysis of the input density distribution
(figure 19) shows that the problem is static again, because it is the same as
presented as feasible point to the master problem.

Figure 19: Resulting density distributions of MINLP TO problem

Solving both variants with the basic new approach shows that Decogo can
understand a TO problem but is not able to solve it leading to good results
yet. There are some extensions which are used to manage the challenge of not
finding better columns. These extensions are presented in the next section.

95

6.7 Extensions

This section presents some prepared extensions, which can lead to an im-
provement of the new approach and handle the main issue of not reducing
the dual gap between the primal bound and the objective function’s value of
the master problems. Due to the scale of this report, the presented extensions
are only rudimentarily implemented in the current TO layer at this point.
Some of them also require changing the source code while using the required
testing. Furthermore, they are not fully tested regarding usage and their
influence on the results. They are only intended to provide starting points
for further research. Nevertheless, the current implementation contains some
configurable functions to map some of these extensions.

6.7.1 Pertubation Extension

The first results for both variants show that Decogo struggles to find better
columns which can improve the objective value of the master problem. Due
to this issue, the duality gap between the master problem and the original
can not be decreased. As the boundary forces can vary, but this is not
mapped while solving sub-problems, it seemed that the master problem is
not flexible regarding those boundary forces. It is expected that the most
sub-problems are similar to each other regarding the density distribution,
which means that an element with a high density after solving the sub-
problem always has a high density. The same applies to elements with low
densities. For elements with a medium density, it can vary. The thresholds
for defining high and low densities are user-specific. In addition to of varying
the density distribution, the boundary force vector g⃗k is varied to make the
master problem more flexible in terms of the boundary forces so that the
CG methods may find new columns. Varying the boundary forces depends
on a factor which determines a range for the new pertubated force vector.
The following algorithm outlines the creation of a pertubated feasible point
related to a solution point of a sub-problem. For this the generated point
needs to fulfill the local constraints Xk.

96

Algorithm 9 Create pertubated local point

function PertubatePoint(ρ∗
k
, f⃗k)

ρ
ks
← ρ∗

k
for ρe ∈ ρ∗

k
do

if ρe > ϵ+ then
ρe ← 1

else if ρe < ϵ− then
ρe ← 0

else
ρe ← Rρ, Rρ ∈ {0, 1}

end if
end for
f⃗kp ← f⃗k ·Rf , Rf ∈

[
1− rf

2
, 1 +

rf
2

]
, rf ∈ [0, 1]

u⃗kp ← FEA(ρks, f⃗kp)
return ρ

ks
, u⃗kp

end function

ϵ− and ϵ+ denote the lower and upper threshold for determining low and
high densities. The available range for the force vector is denoted by rf . R
indicates a random number.
For the implementation, the parameters of this extension, i.e. the thresholds
and force vector range, can be configured by a dictionary, which is part of the
total configuration for the TO layer. Below, an example of this sub-dictionary
is given

’Pertubation ’: {

’adding_points ’: 10,

’threshold ’: (0.3, 0.7), # (lower upper)

’force_range ’: 0.8

}

The key adding points determines how many similar points are created
after solving one sub-problem.

97

First tests with this extension by applying it to the NLP variant of the TO
problem show that as expected, a lot of feasible columns can be generated and
added to the master problem. Due to that adding of columns, the solver is
able to improve the objective value of the master problem, as better columns
are provided to the master problem by this pertubation extension. Figure
20 shows this development during the optimization process since the slack
variables are eliminated for the NLP variant.

Figure 20: Objective value of MP for NLP variant

The objective value is reduced from 128.781 to 60.589, which in a reasonable
range with view to the primal bound and leads to a resulting duality gap of
12.39%. For these results a total number 2778 columns were added to the
master problem. In addition, the primal bound equals 69.157 which is an
improvement of 0.14% compared to the result for directly solving the exper-
imental model with the SIMP approach. This is a very minor improvement,
but can be an indicator that the new approach leads to the desired results.

98

Figure 21: Density distributions for column pertubation

As shown, the density distribution provided by the master problem has some
similar characteristics compared to the SIMP solution. The elements in the
upper right corner have zero or a very small density so they can be omitted.
The same applies for several elements on the left side of the model. There are
also some elements with high densities that match to the expected solution.
The provided density distribution does not fit perfectly but it is a basis for
further research and improvements of this new approach. It seems that the
target volume restricts the problems strongly, as it is fully exhausted.
Taking the MINLP variant including the pertubation extension into consid-
eration proves that the algorithm was able to eliminate the slack variables,
by providing a pertubated inner point. For this quick test, 1286 inner points
were added to the master problem. The objective value of the master prob-
lem equals to the primal bound so the quality gap is fully closed. On a first
glance, this seems to be reasonable, but the details reveal that the prob-
lem is still very static, which can easily be explained: This striking feature
are coursed by the presented feasible point to the master problem for try-
ing to eliminate the slacks, as the compliance of that point corresponds to

99

the objective value of the master problem. This points depends on that
strong heuristic of rounding the solution of the SIMP approach. In addi-
tion, the objective value is constant during the optimization process. The
static character is also outlined by considering the input density distribution
provided by the master problem (figure 22). In addition, it is the same as
without applying the pertubation extension. The solution of the rounded
SIMP approach is not considered in detail because the volume constraint is
violated. It can only be derived that the volume constraint strongly restricts
an optimal solution.

Figure 22: Density distributions for MINLP variant with pertubation exten-
sion

Nevertheless, the master problem approximates the original problem. This
confirms the assumption of the feasibility of the new approach, as it is possible
to generate a linear master problem which maps the original TO problem
regarding its bounds and constraints. As long as a global solver for small
topology optimization problems is not available, the objective value of the
master problem can not be improved further.

100

By showing that it is possible to improve the objective value of the master
problem by the solutions of the generated sub-problems, and by showing
that the linear master problem can approximate a TO problem in terms of
its bounds and constraints, it is proposed to continue working on this new
generate-and-solve approach to tackle the elaborated challenges. Moreover,
this approach still has the potential to determine a global solution to the
general TO problem. In addition, this approach provides the possibility of
parallel solving sub-problems.

6.7.2 Direction Stabilizer Extension

There is a theory for reducing the required iterations while solving a large
optimization problem using the column generation algorithm. This method
is outlined in the paper ”Stabilized column generation” by O. du Merle [du
+99] and could be interesting for this approach for further research. The
basic functionality is still implemented but not fully tested. Just using the
configuration to apply this method does not lead to improvements of the
results regarding neither the performance nor the duality gap. The con-
figuration is mapped with a dictionary, like it is done for the pertubation
extension, in the main configuration dictionary for the TO layer.

101

7 Conclusion

This thesis has given a proof of concept of a new decomposition-based ap-
proach for solving topology optimization problems using methods of column
generation and has determined its usefulness and feasibility. Generally, the
quadratic non-convex TO problem is solved by reformulating the general TO
problem to a block-separable problem (2.2) and alternately solving a lin-
ear master problem (inner approximation of convex hull) and corresponding
sub-problems. The sub-problems of the TO problem are generated (5.3) by
applying domain decomposition to the original problem (3.8). Solutions of
these small sub-problems are used to update the master problem to improve
the quality of the approximation. After the new approach converges (re-
duced costs are greater or equal than zero), the master problem provides a
true lower bound of the original problem. In addition, it provides an esti-
mated optimal solution of the original problem and a search direction that
can be used to determine the global optimal solution of the original problem.
The basis of this new approach is the column generation algorithm which is
already applied to large optimization problems. The real innovation of this
approach is solving TO problems with the help of a dual master problem by
using sub-problems in accordance with the original problem and determining
a true lower bound of the original TO problem. Hopefully, this method can
improve the quality of conventional approaches for solving TO problems, or
rather find better solutions in general, as most of them solve a TO problem
only locally so that it is not known whether better solutions exist. Further-
more, this approach provides the possibility for a parallel calculation. In
addition, it is easy to use any conventional approach for this new algorithm
for solving sub-problems, as the new algorithm is generic. Since the proof
of concept was the aim of the work, the experimental model (3.7) was de-
liberately chosen to be simple in order to obtain initial results for the new
approach with as little effort as possible. Further research should deal with
the scalability of the TO models, so that application-oriented structures can
be optimized. There are basically two different views on the new approach:
the theoretical view and the implementation view.
The complete implementation can be found in a ”GitHub” repository lo-
cated here: ”aWsKlixz/DecogoTOLayer” [Tol]. It also provide the examples
presented in this report including the experimental model. There are some
further features that are not necessarily required for this new approach. In
terms of functionality, the implemented layer for Decogo can understand a
TO problem and apply the CG methods to it. Topology optimization mod-
els, or rather their finite elements models, can be created programmatically
or by using the open-source tool ”GMSH”. In addition, the implementation

102

contains a rewritten SIMP solver and a prepared framework for arbitrary
meshes with more complex element formulations than the rectangular two-
dimensional elements. Moreover, there are some functionalities to visualize
the solving progress, TO domains and printing information about the current
TO problem. Some of these functionalities are briefly presented in section
9. The project’s size for the implementation became large, so it may be re-
quired to reorganize it to improve the usage of the different functionalities.
Furthermore, the current implementation only contains the SIMP solver to
calculate the results of a TO problem. The source code is not commented
everywhere, which might lead to confusion. If there is more time and this
project is continued, there will be some aspects to improve the performance
and usage of the current implementation. Some of those aspects are pre-
sented in the next section.
As to be expected, there were a number of challenges in the development
of the theory and comparing them to the received results from this new ap-
proach. Originally, it was intended that this new approach does not require
any heuristics so that the problem is definitely solved globally. However,
heuristics are still needed to receive solutions of static undetermined sub-
problems (3.5.3) by solving a least-squares problem instead of exactly cal-
culating the required displacements directly (3.5.2). During this process, a
trust region for the displacements is generated and it is not fully clarified
whether this region can restrict the problem in such a way that it can not
be solved globally anymore. Currently, a hard trust region is defined in the
implementation. Another idea would be a flexible trust region by updating it
each time a static undetermined sub-problem is solved. Both variants of the
trust region require further research to determine their impact on the global
optimality. The second heuristic is used while eliminating the slack variables
of the master problem of the MINLP variant, by changing the original by
modifying the right-hand side of the volume constraint. This was done to
eliminate the slack variables in the first place, so the CG algorithms can find
feasible points for the master problem. It was also done because of the scale
of this report. Analyzing the results generated with the new approach includ-
ing the intermediate solutions of the sub-problems leads to the assumption
that the SIMP approach is unsuitable for the new approach as it blurs good
starting points provided by the master problem to a more fractional density
distribution. This may happen due to the applied filter or due to the OC
approach in general. Further research are required to determine whether the
SIMP approach could be at least used to determine approximate solutions
of sub-problems, or rather can be used as the required local solver. Another
challenge is improving the master problem’s objective value and simultane-
ously reducing the duality gap to determine the global optimality of this

103

new approach. As long as only the SIMP solver exists, this will not succeed
because the SIMP approach has a heuristic character, so it is only a local
solver regarding the original TO problem, but the master problem is solved
globally.
Despite the revealed challenges and issues outlined above, this report con-
firms the feasibility and usefulness of the new generate-and-solve approach
for solving TO problems using column generation methods. It is possible to
generate a linear master problem, which is easy to solve and similar to an
original quadratic non-convex topology optimization problem, using a block-
separable reformulation of a TO problem. The calculations have shown that
the column generation algorithm was able to improve the objective value of
the master problem only by solving sub-problems of the TO problem. A
very interesting discovery is that the resulting objective value of the inner
approximation almost matches the compliance of the expected optimal solu-
tion of the topology optimization problem. This observation underpins the
assumption that the original TO problem and the master problem span a
relaxated convex hull; however this needs to be proved. At this point in
time, the implemented solver determines a local solution using the new ap-
proach because it contains heuristics but nevertheless, this method has the
potential to solve a TO problem globally. Regarding all of those heuristics,
some suggestions for further research exist with the aim of avoiding or cross-
ing them out. Due to the scale of this report, the implementation is not
fully elaborated regarding the global optimality. In the following section, the
suggestions for avoiding the heuristics, for improving the performance of the
implementations and reaching the global optimality are outlined.

104

8 Prospect

While developing the new decomposition-based approach for TO problems
and creating the implementation for the TO layer of Decogo, some sugges-
tions have been worked out to improve usage, performance and quality and
to avoid the outlined heuristics. These extensions would exceed the scale of
this report as during this report, only a prototype for the new approach was
developed to determine the feasibility and usefulness. In this section, the
suggestions related to the revealed challenges for further research are sum-
marized. As this approach is generic and Decogo is still under development,
improvements of Decogo will lead to improvements of this new approach.
This section starts by presenting possible solutions to reduce the duality gap
while the master problem’s objective value is improved, so that the quality
of the approximation is improved, leading to an estimated optimal solution
closer to the global optimal solution. In addition, some ideas are outlined to
improve solving sub-problems. After that, an unproven idea is given to re-
move the volume constraint from the general TO problem to avoid the strong
simplification while trying to find a feasible solution candidate to remove the
slacks from the master problem. Lastly, some suggestions and ideas are pre-
sented related to the implementation.

8.1 Reaching Global Optimality

The new approach has the potential to solve the TO problem globally. To
reach this quality of the results, it is necessary to reduce the duality gap
so that the final estimated solution point, provided by the master problem,
is close to the global solution. One advantage of the new approach is using
solutions of sub-problems to estimate the final solution. If these sub-problems
are solved globally, it will be possible to reduce the quality gap more an
provide a reasonable estimated starting point to find the global solution of
the original problem. As the sub-problems are small compared to the original
problem, it is possible to develop a global solver for these small problems,
e.g. using the ”SCIP Optimization Suite” [Bes+21]. For a beam framework,
this was already done in the master project ”Global Optimization of Beam
Structures”. The corresponding implementation is found in the following
”GitHub” repository ”aWsKlixz/PyomoBeamOptim” [Pyb]. Using a global
solver will show that the primal bound of the original problem converges
to the global solution. The optimization process will perform as follows:
Firstly, the columns will be initialized using that sub-gradient method of
”Decogo” to find initial columns for the master problem. Then, the slacks

105

will be eliminated by approximated columns made of local solutions of the
sub-problems by presenting a feasible point of the original problem to the
master problem. After that, global solutions of the sub-problems are used
in the third phase of Decogo for the column generation algorithm to find
better columns and to further improve the objective of the master problem.
If no new columns are found by the global solver in the third phase, the
quality of the approximation due to the master problem is already good due
to the local solutions of the sub-problems. If the estimated value of the
master problem is close to the global solution, it could be interesting how
conventional approaches perform using that estimated solution as a start
point for searching the global solution of the original problem.

8.2 Locally Solving Sub-Problems

In section 4, different approaches are presented to solve TO problems. These
approaches also contain heuristics but they may perform better than the
SIMP approach to solve the sub-problems locally, like evolutionary TOSS
approaches. They may lead to a solution which better matches to the global
solution, e.g. by having a more binary character, so the total number of
required columns can be reduced. Furthermore, as artificial intelligence and
machine learning methods become more popular and perform better regard-
ing calculation time and quality, they can be interesting for further research.
A starting point could be the paper ”3D Topology Optimization Using Con-
volutional Neural Networks” [Ban+18].

8.3 Impact of Volume Constraint

The general and the corresponding block-separated TO problem described in
section 2 contains a volume constraint. During the development process in
this report, this constraint has led to issues repeatedly. It is the main course
for the fact that the SIMP approach depends on an initial value and prevents
the solver from finding a true binary solution, as many of that true binary
solutions would violate this constraint (6.6.2). From the user’s point of view,
the percentage target volume vf needs to be predefined, but it is practically
impossible to define a logical value for it related to a complex application-
oriented structure. Due to these issues, further research should address the
elimination or replacement of this constraint. Regarding the SIMP approach,
the independence of vf can be reached by a multi-resolution approach pre-
sented in the paper ”A computational paradigm for multiresolution topology
optimization (MTOP)” [Ngu+10]. This approach was roughly tested on the
experimental model and it seems that the desired results are achieved. Due

106

to the scale of this report, this approach has not been pursued further. The
main disadvantage of this method is that the original problem is changed,
like it was done for the slack elimination for the MINLP variant (6.6.2). An-
other idea to avoid the volume constraint is using a maximum allowed stress
constraint directly, so that the displacements are restricted indirectly. This
could also be used for solving static undetermined elasticity problems of the
sub-domains. But this may require fundamental reformulation of the general
TO problem 2.1.

8.4 Implementation

Suggestions for the implementation also exist to improve the performance
and handling. The sparse form from the scipy.sparse module should be
implemented for the FEA to be able to handle more complex geometries in
an appropriate time. Regarding application-oriented structures, the frame-
work of the finite elements needs to be continued by adding further element
formulations. As it could make sense to test different solvers for the sub-
problems, a solver framework could help to quickly replace these sub-solvers
in a modular way.

107

9 Additional and Prepared Features

At the end of this report, this section briefly presents some additional and
prepared features of the current implementation.
Since the pertubation extension (6.7.1) was added to the new approach, the
idea came up to save calculations runs as they depend on random values.
For this, a simple SQLight database was created. It stores general data on a
calculation run in columns. The complete information including the model’s
parameter, the run’s configuration, the results using a conventional approach
and the results using the new approach, are stored in a separated column as a
JSON string. This string can easily be interpreted as a Python dictionary. To
view the results of a specific run, a basic web application based on the flask
framework [Fla] was created. A screenshot is provided below. In addition,
the implementation contains a reader to translate the JSON string back to
model objects, so that they can be visualized again.

The implementation contains a folder called ”tests”, which provides some
first unittests. The current implemented tests can be used to test whether
an original TO problem is reformulated correctly, e.g. both formulations lead
to the same objective value for the same input parameters. Furthermore, the
test reviews whether the copy constraints are fulfilled for the initial state of
the model depending on the initial solutions of the FEA.
The figures, which present stages of the experimental model in this report,
were created by a class called Visualizer, which can be found in ”pylib/visu-
alizer/visualizer.py”. It creates those figures based on a TOModelBase object
and the corresponding decomposer. These presented features are not perfect
but work for the current state of the project and will be continued in further
research.

108

References

[ARE08] Makrizi Abdelilah, Bouchaib Radi, and Abdelkhalak ELHami.
“Solution of the Topology Optimization Problem Based Subdo-
mains Method”. In: Applied Mathematical Sciences 2 (Jan. 2008),
pp. 2029–2045.

[Ban+18] Saurabh Banga et al. “3d topology optimization using convo-
lutional neural networks”. In: arXiv preprint arXiv:1808.07440
(2018).

[Bat16] K.J. Bathe. Finite Element Procedures. Prentice Hall, 2016. isbn:
9780979004957. url: https://books.google.de/books?id=
rWvefGICfO8C.

[Bes+21] Ksenia Bestuzheva et al. The SCIP Optimization Suite 8.0. Tech-
nical Report. Optimization Online, Dec. 2021. url: \texttt{http:
//www.optimization-online.org/DB_HTML/2021/12/8728.

html}.

[Byn+21] Michael L. Bynum et al. Pyomo–optimization modeling in python.
Third. Vol. 67. Springer Science & Business Media, 2021.

[du +99] Olivier du Merle et al. “Stabilized column generation”. In: Dis-
crete Mathematics 194.1 (1999), pp. 229–237. issn: 0012-365X.
doi: https://doi.org/10.1016/S0012-365X(98)00213-1.
url: https://www.sciencedirect.com/science/article/
pii/S0012365X98002131.

[Fla] Flask Web Framework. The Pallets Projects. Jan. 16, 2022. url:
https://flask.palletsprojects.com/en/2.0.x/ (visited on
01/16/2022).

[GR09] Christophe Geuzaine and Jean-François Remacle. “Gmsh : a three-
dimensional finite element mesh generator with built-in pre-and
post-processing facilities”. In: 2009.

[Gur] Gurobi Solver. url: https://www.gurobi.com/.

[Hun+17] William Hunter et al. ToPy - Topology optimization with Python.
2017. url: https://github.com/williamhunter/topy.

[Mlc] Column Generation, Dantzig-Wolfe, Branch-Price-and-Cut. url:
\texttt{https://co-at-work.zib.de/slides/Donnerstag\

_24.9/cgbpdw-coatwork-annotated.pdf}.

[Mut+21] Pavlo Muts et al. “A column generation algorithm for solving
energy system planning problems”. In: Optimization and Engi-
neering (2021), pp. 1–35.

109

[Ngu+10] Tam H Nguyen et al. “A computational paradigm for multireso-
lution topology optimization (MTOP)”. In: Structural and Mul-
tidisciplinary Optimization 41.4 (2010), pp. 525–539.

[Nik04] GP Nikishkov. “Introduction to the finite element method”. In:
University of Aizu (2004), pp. 1–70.

[Num] numpy.linalg.solve. url: https://numpy.org/doc/stable/
reference/generated/numpy.linalg.solve.html.

[Pyb] PyomoBeamOptim. url: \texttt{https://github.com/aWsKlixz/
PyomoBeamOptim}.

[Sci] scipy.optmize.least squares. url: \texttt{https://docs.
scipy.org/doc/scipy/reference/generated/scipy.optimize.

least_squares.html#scipy.optimize.least_squares}.

[Sig] O Sigmund. Structural and Multidisciplinary Optimization. A
99 line topology optimization code written in Matlab. English.
JOUR. Structural and Multidisciplinary Optimization: Springer.
url: https://doi.org/10.1007/s001580050176.

[SS13] Krister Svanberg and H Svard. “Density filters for topology opti-
mization based on the geometric and harmonic means”. In: 10th
world congress on structural and multidisciplinary optimization.
Orlando. 2013.

[Tol] DecogoTOLayer. url: \texttt{https://github.com/aWsKlixz/
DecogoTOLayer}.

[Z88] Theory User Manual. url: http://download.z88.de/z88arion/
V2/benutzerhandbuch.pdf.

110

A Annex

A.1 Folder Structure

This section provides the folder structure for the topology optimization layer
for Decogo. The highlighted structure does not include the web application
and temporary testing files. The folder ’geometry’ contains different mesh
files.

examples

geometry

pylib

elements

C2D3.py

C2D4.py

C3D8.py

element.py

finiteelement.py

massmatrix.py

materialproperties.py

templatefiniteelement.py

fea

boundary condition.py

fea.py

meshparser

msh boundary.py

msh element.py

mshparser.py

penalizer

dev function.py

reporter

reporter.py

simp

output.py

simp.py

simp config.py

tomodel

subdomain.py

to input model.py

to original model.py

to rformulated user model.py

to sub model.py

I

to sub problem.py

todecomposer.py

tousermodel.py

utils

base model interface.py

cimp mesh creator.py

designspace.py

node.py

utils.py

visualizer

visualizer.py

tests

tomodel

config.py

main.py

README.md

II

A.2 Programmatic Model

The example below shows how to create the experimental model in a pro-
grammatic way. At the end of this script, an object of the TOModelBase class
is provided.

import numpy as np

from pylib.elements.element import Element

from pylib.elements.C2D4Simple import ke

from pylib.utils.node import Node

from pylib.tomodel.tousermodel import TOModelBase

from pylib.tomodel.boundary_condition import BoundaryConditions

nodes = {} # initialize dict for nodes

elements = {} # initialize dict for elements

base_nodes = list(range(1, 26)) # set up the list of node -ids; N =

{1 ,... ,25}

element_numbers = list(range(1, 17)) # set up list of element -ids; M =

{1 ,... ,16}

Design Space Section; works only for this model because of the 2

dimensional space and square elements

element_space = np.array(element_numbers).reshape ((4, 4)).T # set up a

2D design space for the elements

node_space = np.array(base_nodes).reshape ((5, 5)).T # set up a

2D design space for the nodes

col = -1 # will be equivalent to x- coordinate of a node

row = 0 # will be equivalent to y- coordinate of a node

Determine dict for nodes

for i, n_id in enumerate(base_nodes):

if n_id % 5 == 1:

row = 4

col += 1

nodes[n_id] = Node(n_id , float(col), float(row), z=0.0, index=i) #

Node object is created

row -= 1

Determine dict for elements

for e_id in element_numbers:

i = int(np.where(element_space == e_id)[0]) # get x-position in

design space

j = int(np.where(element_space == e_id)[1]) # get y-position in

design space

element_nodes = node_space[i:i+2, j:j+2]. reshape ((4,)) # get the

corresponding nodes

element_nodes = element_nodes [[2, 3, 1, 0]] # reorder

node -ids so they fit to element formulation

elements[e_id] = Element(e_id , {n: nodes[n] for n in element_nodes},

ke(1, 0.3), dense_x =0.44) # Element object is created

outer_forced_nodes = [25] # create a

list of loaded nodes

f_dict = {n: np.array([0, -1]) for n in outer_forced_nodes} # create

the dict for outer forces

fixed_nodes = [1, 5] # create a

list of fixed nodes

III

bc = BoundaryConditions(f_dict , fixed_nodes , list(base_nodes)) # create

the boundary conditions nodes

base_model = TOModelBase(nodes , elements , bc, 2) # create

the instance of TOModelBase

base_model can be used for further actions or rather will be imported for

optimization

IV

A.3 Mesh File

Below, the .msh-file for the experimental model is provided.

$MeshFormat

2.2 0 8

$EndMeshFormat

$PhysicalNames

3

1 1 "fixation"

1 2 "load"

2 5 "plane"

$EndPhysicalNames

$Nodes

25

1 0 0 0

2 4 0 0

3 4 4 0

4 0 4 0

5 1 0 0

6 2 0 0

7 3 0 0

8 4 1 0

9 4 2 0

10 4 3 0

11 3 4 0

12 2 4 0

13 1 4 0

14 0 3 0

15 0 2 0

16 0 1 0

17 1 1 0

18 1 2 0

19 1 3 0

20 2 1 0

21 2 2 0

22 2 3 0

23 3 1 0

24 3 2 0

25 3 3 0

$EndNodes

$Elements

V

28

1 15 2 0 1 1

2 15 2 0 2 2

3 15 2 0 3 3

4 15 2 0 4 4

5 1 2 0 1 1 16

6 1 2 0 1 16 15

7 1 2 0 1 15 14

8 1 2 0 1 14 4

9 1 2 0 2 2 8

10 1 2 0 2 8 9

11 1 2 0 2 9 10

12 1 2 0 2 10 3

13 3 2 0 1 1 5 17 16

14 3 2 0 1 16 17 18 15

15 3 2 0 1 15 18 19 14

16 3 2 0 1 14 19 13 4

17 3 2 0 1 5 6 20 17

18 3 2 0 1 17 20 21 18

19 3 2 0 1 18 21 22 19

20 3 2 0 1 19 22 12 13

21 3 2 0 1 6 7 23 20

22 3 2 0 1 20 23 24 21

23 3 2 0 1 21 24 25 22

24 3 2 0 1 22 25 11 12

25 3 2 0 1 7 2 8 23

26 3 2 0 1 23 8 9 24

27 3 2 0 1 24 9 10 25

28 3 2 0 1 25 10 3 11

$EndElements

VI

A.4 Configuration Dictionary

Here, an example of a configuration dictionary for the TO layer is presented.
It also contains some prepared extensions which are not part of this report.

Configuration_TOLayer = {

’use_stabilizer ’: False ,

’use_penalization_approach ’: False ,

’MINLP’: False ,

’is_reported ’: True ,

’report_name ’: ’Complex ’,

’SimpProblem ’: {

’volfrac ’: 0.44,

’penalization_factor ’: 3,

’emin’: 1e-9,

’emax’: 1,

’rmin’: 1.44,

’filter ’: ’sensitivity ’

},

’FEModel ’: {

’preferred_solver ’: ’direct ’

},

’Pertubation ’: {

’adding_points ’: 10,

’fast_sol_simp_iter ’: 2,

’threshold ’: (0.3, 0.7), # (lower upper)

’force_range ’: 0.4

},

’CGPenalization ’: {

’factor ’: 2.0

},

’CGStabilizer ’: {

’delta’: 1.0,

’eps’: 1.0

}

}

VII

A.5 Log Files

The presented log files in this section were used to visualize the results. In the
log files, the density distributions that were presented to the sub-problems
are also highlighted.

A.5.1 NLP Variant
Block separable reformulation:

Number of blocks: 4

Number of nonlinear blocks: 0

Min size of blocks: 22

Max size of blocks (without linear blocks): 22

Max size of blocks (including linear blocks): 22

Number of vars: 88

Number of global constraints: 23

Number of nonzero resources per block: 15,12,11,11

Number of equal./inequal. of global constraints: 22/1

Used time: inf

Initialization

Subgradient steps

Subgra.iter Lagrange bound alpha

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

1 84.86239791836496 1

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

2 33213.80698719126 1

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

3 294986.8112530708 2

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

4 275914.3181959714 4

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

5 1527928.509851672 2.0

Time used for SubGradient: --9.67-- seconds

Elapsed time: inf

===

Column generation: approximated subproblem solving

Initial CG objective value: 97.20469586403783

CG iter IA obj. value max slack value IA sum slack values IA

1 97.20469586403783 28.231050743601976 268.2628376421817

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

Reduced costs greater than zero

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 0

===

Time used for init CG in iter 0: --7.51-- seconds

Elapsed time: --inf-- seconds

===

Find solution - init

Found approx. first primal bound of c=128.80

Pertubation Statistics: 0 of 10 points are infeasible

VIII

Time used for init FindSol in iter 0: --0.36-- seconds

Elapsed time: --inf-- seconds

Found the first feasible solution

IA obj. val: 97.20469586403783

Elapsed time: inf

Fast column generation

iter IA obj. value slacks

0 128.79669782543593 0.0

IA obj. val: 128.79669782543593

Elapsed time: inf

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

iter IA obj. value slacks

1 128.79669782543593 0.0

IA obj. val: 128.79669782543593

Elapsed time: inf

New columns in FastCG:

[0, 0, 1, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.81-- seconds

Time used for init cg fast fw in iter 1: --1.19-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 128.79669782543593 0.0

IA obj. val: 128.79669782543593

Elapsed time: inf

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.53-- seconds

Time used for init cg fast fw in iter 2: --0.89-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 128.79669782543593 0.0

IA obj. val: 128.79669782543593

Elapsed time: inf

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.56-- seconds

Time used for init cg fast fw in iter 3: --0.9-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 128.79669782543593 0.0

IA obj. val: 128.79669782543593

Elapsed time: inf

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

IX

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.5-- seconds

Time used for init cg fast fw in iter 4: --0.82-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 128.79669782543593 0.0

IA obj. val: 128.79669782543593

Elapsed time: inf

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.5-- seconds

Time used for init cg fast fw in iter 5: --0.84-- seconds

Elapsed time: --inf-- seconds

CG relaxation obj. value in iter 0: 128.79669782543593

Time used for total init CG in iter 0: --12.5-- seconds

Elapsed time at CG iter 0: --inf-- seconds

===

Column generation

Initial CG objective value: 128.79669782543593

CG iter IA obj. value max slack value IA sum slack values IA

1 128.79669782543593 0.0 0.0

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.44 0.44 0.44 0.44]

Reduced costs greater than zero

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 4

===

CG relaxation obj. value in iter 1: 128.79669782543593

Time used for CG: --0.84-- seconds

Elapsed time at CG iter 1: --inf-- seconds

Num of MINLP subproblems solved in iter loop *1* 4

Total number of minlp subproblems solved in iter 1: 24

Total number of columns in iter 1: 10

Columns in blocks in iter 1: [2, 2, 4, 2]

Time used for CG in iter 1: --0.84-- seconds

CG regarding all blocks

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.44 0.44 0.44 0.44]

Time used for CG for all blocks: --0.77-- seconds

Elapsed time: --inf-- seconds

CG converges, checking the convergence by exact subproblem solving

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.44 0.44 0.44 0.44]

===

Find solution - projection from ia solution - local search

Time used for FindSol in iter 1: --0.85-- seconds

Elapsed time at FindSol iter 1: --inf-- seconds

Total time used in iter 1: --3.03-- seconds

CG converged

Total time: 25.21238684654236

Reformulation time: 0

Decomposition time: 0

Containers time: 0

Primal bound: 68.963132875

X

Main iterations: 1

Number of CG iterations: 2

CG relaxation obj. value: 128.79669782543593

Number of MINLP subproblems: 32

Number of unfixed NLP subproblems: 28

Number of fixed NLP subproblems: 0

Number of solved sub-problems after CG: 60

Number of columns after CG: 10

CG Gap (CG relaxation and primal bound): 46.4558186002

Total number of columns: 10

A.5.2 MINLP Variant
Block separable reformulation:

Number of blocks: 4

Number of nonlinear blocks: 0

Min size of blocks: 22

Max size of blocks (without linear blocks): 22

Max size of blocks (including linear blocks): 22

Number of vars: 88

Number of global constraints: 23

Number of nonzero resources per block: 15,12,11,11

Number of equal./inequal. of global constraints: 22/1

Used time: inf

Initialization

Subgradient steps

Subgra.iter Lagrange bound alpha

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

1 84.86239791836496 1

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

2 33213.80698719126 1

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

3 294986.8112530708 2

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

4 275914.3181959714 4

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

5 1527928.509851672 2.0

Time used for SubGradient: --9.68-- seconds

Elapsed time: inf

===

Column generation: approximated subproblem solving

Initial CG objective value: 97.20469586403783

CG iter IA obj. value max slack value IA sum slack values IA

1 97.20469586403783 28.231050743601976 268.2628376421817

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886948 0.59156963 0.38188732 0.4963061]

Reduced costs greater than zero

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 0

===

Time used for init CG in iter 0: --8.13-- seconds

Elapsed time: --inf-- seconds

===

Find solution - init

XI

Attention: Updated r.h.s. of volume constraint to 8.0 due to MINLP solving.

Found approx. first primal bound of MINLP with c=24.260951194847255

Found approx. first primal bound of c=24.26

Pertubation Statistics: 0 of 10 points are infeasible

Time used for init FindSol in iter 0: --0.41-- seconds

Elapsed time: --inf-- seconds

Found the first feasible solution

IA obj. val: 97.20469586403783

Elapsed time: inf

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.96

[1. 0. 1. 0.]

C:\FinalThesis\DecogoTOLayer\pylib\simp\simp.py:135: RuntimeWarning: invalid value encountered in true_divide

np.minimum(1.0, np.minimum(x_old + move, x_old * (-dc / lmid) ** eta))))

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.11-- seconds

Time used for init cg fast fw in iter 1: --0.42-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.12-- seconds

Time used for init cg fast fw in iter 2: --0.43-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.13-- seconds

Time used for init cg fast fw in iter 3: --0.46-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.96

XII

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.11-- seconds

Time used for init cg fast fw in iter 4: --0.42-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --0.13-- seconds

Time used for init cg fast fw in iter 5: --0.45-- seconds

Elapsed time: --inf-- seconds

CG relaxation obj. value in iter 0: 24.260951194847276

Time used for total init CG in iter 0: --10.73-- seconds

Elapsed time at CG iter 0: --inf-- seconds

===

Column generation

Initial CG objective value: 24.260951194847276

CG iter IA obj. value max slack value IA sum slack values IA

1 24.260951194847276 0.96 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.28886948 0.59156963 0.38188732 0.4963061]

CG iter IA obj. value max slack value IA sum slack values IA

2 24.260951194847276 0.96 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.28886948 0.59156963 0.38188732 0.4963061]

CG iter IA obj. value max slack value IA sum slack values IA

3 24.260951194847276 0.96 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

XIII

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.28886948 0.59156963 0.38188732 0.4963061]

CG iter IA obj. value max slack value IA sum slack values IA

4 24.260951194847276 0.96 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.28886948 0.59156963 0.38188732 0.4963061]

CG iter IA obj. value max slack value IA sum slack values IA

5 24.260951194847276 0.96 0.96

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.62094513 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.28886948 0.59156963 0.38188732 0.4963061]

Iteration limit

New columns added: [0, 0, 1, 0]

number of minlp subproblems solved during CG: 40

===

CG relaxation obj. value in iter 1: 24.260951194847276

Time used for CG: --5.81-- seconds

Elapsed time at CG iter 1: --inf-- seconds

Num of MINLP subproblems solved in iter loop *1* 40

Total number of minlp subproblems solved in iter 1: 60

Total number of columns in iter 1: 10

Columns in blocks in iter 1: [2, 2, 4, 2]

Time used for CG in iter 1: --5.81-- seconds

CG regarding all blocks

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Time used for CG for all blocks: --0.67-- seconds

Elapsed time: --inf-- seconds

===

Find solution - projection from ia solution - local search

Solved Original MINLP TO problem with a resulting compliance of 13.59

Time used for FindSol in iter 1: --0.57-- seconds

Elapsed time at FindSol iter 1: --inf-- seconds

Total time used in iter 1: --7.05-- seconds

===

Column generation

Initial CG objective value: 24.260951194847276

CG iter IA obj. value max slack value IA sum slack values IA

1 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

2 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

XIV

CG iter IA obj. value max slack value IA sum slack values IA

3 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

4 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

5 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Iteration limit

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 10

===

CG relaxation obj. value in iter 2: 24.260951194847276

Time used for CG: --4.4-- seconds

Elapsed time at CG iter 2: --inf-- seconds

Num of MINLP subproblems solved in iter loop *2* 10

Total number of minlp subproblems solved in iter 2: 74

Total number of columns in iter 2: 10

Columns in blocks in iter 2: [2, 2, 4, 2]

Time used for CG in iter 2: --4.4-- seconds

CG regarding all blocks

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Time used for CG for all blocks: --0.62-- seconds

Elapsed time: --inf-- seconds

===

Find solution - projection from ia solution - local search

Solved Original MINLP TO problem with a resulting compliance of 13.59

Could not find a better solution using start point provided by Decogo.

The compliance regarding the starting point equals 13.59

Time used for FindSol in iter 2: --0.62-- seconds

Elapsed time at FindSol iter 2: --inf-- seconds

Total time used in iter 2: --5.64-- seconds

===

Column generation

Initial CG objective value: 24.260951194847276

CG iter IA obj. value max slack value IA sum slack values IA

1 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

2 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

3 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

4 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

5 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Iteration limit

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 10

XV

===

CG relaxation obj. value in iter 3: 24.260951194847276

Time used for CG: --4.63-- seconds

Elapsed time at CG iter 3: --inf-- seconds

Num of MINLP subproblems solved in iter loop *3* 10

Total number of minlp subproblems solved in iter 3: 88

Total number of columns in iter 3: 10

Columns in blocks in iter 3: [2, 2, 4, 2]

Time used for CG in iter 3: --4.63-- seconds

CG regarding all blocks

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Time used for CG for all blocks: --0.81-- seconds

Elapsed time: --inf-- seconds

===

Find solution - projection from ia solution - local search

Solved Original MINLP TO problem with a resulting compliance of 13.59

Could not find a better solution using start point provided by Decogo.

The compliance regarding the starting point equals 13.59

Time used for FindSol in iter 3: --0.62-- seconds

Elapsed time at FindSol iter 3: --inf-- seconds

Total time used in iter 3: --6.07-- seconds

===

Column generation

Initial CG objective value: 24.260951194847276

CG iter IA obj. value max slack value IA sum slack values IA

1 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

2 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

3 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

4 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

5 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Iteration limit

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 10

===

CG relaxation obj. value in iter 4: 24.260951194847276

Time used for CG: --4.44-- seconds

Elapsed time at CG iter 4: --inf-- seconds

Num of MINLP subproblems solved in iter loop *4* 10

Total number of minlp subproblems solved in iter 4: 102

Total number of columns in iter 4: 10

Columns in blocks in iter 4: [2, 2, 4, 2]

Time used for CG in iter 4: --4.44-- seconds

CG regarding all blocks

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

XVI

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Time used for CG for all blocks: --0.67-- seconds

Elapsed time: --inf-- seconds

===

Find solution - projection from ia solution - local search

Solved Original MINLP TO problem with a resulting compliance of 13.59

Could not find a better solution using start point provided by Decogo.

The compliance regarding the starting point equals 13.59

Time used for FindSol in iter 4: --0.63-- seconds

Elapsed time at FindSol iter 4: --inf-- seconds

Total time used in iter 4: --5.74-- seconds

===

Column generation

Initial CG objective value: 24.260951194847276

CG iter IA obj. value max slack value IA sum slack values IA

1 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

2 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

3 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

4 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

CG iter IA obj. value max slack value IA sum slack values IA

5 24.260951194847276 0.96 0.96

[0.56272047 0.43976428 0.46721342 0.28937013]

[1. 0. 0. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Iteration limit

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 10

===

CG relaxation obj. value in iter 5: 24.260951194847276

Time used for CG: --4.46-- seconds

Elapsed time at CG iter 5: --inf-- seconds

Num of MINLP subproblems solved in iter loop *5* 10

Total number of minlp subproblems solved in iter 5: 116

Total number of columns in iter 5: 10

Columns in blocks in iter 5: [2, 2, 4, 2]

Time used for CG in iter 5: --4.46-- seconds

CG regarding all blocks

[1. 0. 1. 0.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[0.56272047 0.43976428 0.46721342 0.28937013]

[0. 1. 0. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

Time used for CG for all blocks: --0.61-- seconds

Elapsed time: --inf-- seconds

===

Find solution - projection from ia solution - local search

Solved Original MINLP TO problem with a resulting compliance of 13.59

Could not find a better solution using start point provided by Decogo.

The compliance regarding the starting point equals 13.59

Time used for FindSol in iter 5: --0.61-- seconds

Elapsed time at FindSol iter 5: --inf-- seconds

Total time used in iter 5: --5.68-- seconds

Iteration limit

Total time: 50.6037700176239

XVII

Reformulation time: 0

Decomposition time: 0

Containers time: 0

Primal bound: 13.5908647761

Main iterations: 5

Number of CG iterations: 26

CG relaxation obj. value: 24.260951194847276

Number of MINLP subproblems: 120

Number of unfixed NLP subproblems: 28

Number of fixed NLP subproblems: 0

Number of solved sub-problems after CG: 148

Number of columns after CG: 10

CG Gap (CG relaxation and primal bound): 43.9804768369

Total number of columns: 10

A.5.3 NLP Variant with Column Pertubation
Block separable reformulation:

Number of blocks: 4

Number of nonlinear blocks: 0

Min size of blocks: 22

Max size of blocks (without linear blocks): 22

Max size of blocks (including linear blocks): 22

Number of vars: 88

Number of global constraints: 23

Number of nonzero resources per block: 15,12,11,11

Number of equal./inequal. of global constraints: 22/1

Used time: inf

Initialization

Subgradient steps

Subgra.iter Lagrange bound alpha

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

1 84.86239504434809 1

[0.62094514 0.27034214 0.53394013 0.3348674]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886947 0.5915696 0.3818873 0.49630607]

2 45905.24143865322 1

[0.33985489 0.13998638 0.80795563 0.47149565]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886947 0.5915696 0.3818873 0.49630607]

3 2098643.653722888 2

[0.33985489 0.13998638 0.80795563 0.47149565]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886947 0.5915696 0.3818873 0.49630607]

4 2509751.9338034247 4

[0.33985489 0.13998638 0.80795563 0.47149565]

[0.38414203 0.36013004 0.54796867 0.46747253]

[0.56272047 0.43976428 0.46721342 0.28937013]

[0.28886947 0.5915696 0.3818873 0.49630607]

5 2993850.5211507073 8

Time used for SubGradient: --11.9-- seconds

Elapsed time: inf

===

Column generation: approximated subproblem solving

Initial CG objective value: 97.20469586403783

CG iter IA obj. value max slack value IA sum slack values IA

1 97.20469586403783 28.444273121373 285.77407535417353

[0.62094514 0.27034214 0.53394013 0.3348674]

Adding pertubated columns for Sub-Problems

[0.38414203 0.36013004 0.54796867 0.46747253]

Adding pertubated columns for Sub-Problems

[0.56272047 0.43976428 0.46721342 0.28937013]

Adding pertubated columns for Sub-Problems

[0.28886947 0.5915696 0.3818873 0.49630607]

Adding pertubated columns for Sub-Problems

[1. 0. 1. 0.]

Adding pertubated columns for Sub-Problems

[0. 0. 1. 1.]

Adding pertubated columns for Sub-Problems

[1. 1. 0. 0.]

Adding pertubated columns for Sub-Problems

XVIII

[0.0705198 0.90029258 0.09322763 0.87703652]

Adding pertubated columns for Sub-Problems

Reduced costs greater than zero

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 0

===

Time used for init CG in iter 0: --104.16-- seconds

Elapsed time: --inf-- seconds

===

Find solution - init

Found approx. first primal bound of c=128.80

Pertubation Statistics: 0 of 10 points are infeasible

Time used for init FindSol in iter 0: --0.47-- seconds

Elapsed time: --inf-- seconds

Found the first feasible solution

IA obj. val: 175.44055579607996

Elapsed time: inf

Fast column generation

iter IA obj. value slacks

0 128.78137635521526 0.0

IA obj. val: 128.78137635521526

Elapsed time: inf

[0.54253359 0.3629303 0.49856094 0.40803825]

Adding pertubated columns for Sub-Problems

[0.49524748 0.48547023 0.59570901 0.54649562]

Adding pertubated columns for Sub-Problems

[0.42184549 0.29582884 0.32854706 0.23926326]

Adding pertubated columns for Sub-Problems

[0.371017 0.5444728 0.42139174 0.48264839]

Adding pertubated columns for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --15.43-- seconds

Time used for init cg fast fw in iter 1: --15.86-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 121.60191308348365 0.0

IA obj. val: 121.60191308348365

Elapsed time: inf

[0.63383439 0.29049695 0.59863776 0.32660229]

Adding pertubated columns for Sub-Problems

[0.32686765 0.32104171 0.75875858 0.72940876]

Adding pertubated columns for Sub-Problems

[1. 0.16006721 0. 0.]

Adding pertubated columns for Sub-Problems

[0.21733338 0.73316245 0.24684177 0.69694711]

Adding pertubated columns for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --24.45-- seconds

Time used for init cg fast fw in iter 2: --25.05-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 70.45301144523413 0.0

IA obj. val: 70.45301144523413

Elapsed time: inf

[0.85028292 0.11877783 0.83589179 0.13473593]

Adding pertubated columns for Sub-Problems

[0.10331136 0.10331136 1. 1.]

Adding pertubated columns for Sub-Problems

[0.46821659 0.46821659 0. 0.]

Adding pertubated columns for Sub-Problems

[0.08787543 0.89210831 0.0998067 0.87746519]

Adding pertubated columns for Sub-Problems

XIX

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --13.71-- seconds

Time used for init cg fast fw in iter 3: --14.27-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 64.63646908426908 0.0

IA obj. val: 64.63646908426908

Elapsed time: inf

[0.88215373 0.09349317 0.87082609 0.10511326]

Adding pertubated columns for Sub-Problems

[0.30569403 0.30569403 1. 1.]

Adding pertubated columns for Sub-Problems

[0.23851284 0.23851284 0. 0.]

Adding pertubated columns for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated columns for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --111.8-- seconds

Time used for init cg fast fw in iter 4: --112.37-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 63.97977412742179 0.0

IA obj. val: 63.97977412742179

Elapsed time: inf

[0.8995618 0.0796825 0.88990747 0.08958609]

Adding pertubated columns for Sub-Problems

[0.39567443 0.39567443 1. 1.]

Adding pertubated columns for Sub-Problems

[0.14495664 0.14495664 0. 0.]

Adding pertubated columns for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated columns for Sub-Problems

iter IA obj. value slacks

1 63.58039113952233 0.0

IA obj. val: 63.58039113952233

Elapsed time: inf

Number of new columns in the current iteration:

[0, 1, 0, 0]

[0.90994198 0.0714474 0.90128541 0.08032746]

Adding pertubated columns for Sub-Problems

[0.44229649 0.44229649 1. 1.]

Adding pertubated columns for Sub-Problems

[0.09620239 0.09620239 0. 0.]

Adding pertubated columns for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated columns for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 1, 0, 0]

number of unfixed nlp subproblems solved during CG: 8

Time used for solving subproblem: --243.46-- seconds

Time used for init cg fast fw in iter 5: --244.06-- seconds

Elapsed time: --inf-- seconds

CG relaxation obj. value in iter 0: 63.58039113952233

Time used for total init CG in iter 0: --516.26-- seconds

Elapsed time at CG iter 0: --inf-- seconds

===

Column generation

Initial CG objective value: 60.58783924056511

CG iter IA obj. value max slack value IA sum slack values IA

1 60.58783924056511 0.0 0.0

[1. 0. 1. 0.]

XX

[0. 0. 1. 1.]

[1. 0. 0. 0.]

[0. 1. 0. 1.]

Reduced costs greater than zero

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 4

===

CG relaxation obj. value in iter 1: 60.58783924056511

Time used for CG: --12.25-- seconds

Elapsed time at CG iter 1: --inf-- seconds

Num of MINLP subproblems solved in iter loop *1* 4

Total number of minlp subproblems solved in iter 1: 24

Total number of columns in iter 1: 2778

Columns in blocks in iter 1: [795, 795, 394, 794]

Time used for CG in iter 1: --12.25-- seconds

CG regarding all blocks

[1. 0. 1. 0.]

[0. 0. 1. 1.]

[1. 0. 0. 0.]

[0. 1. 0. 1.]

Time used for CG for all blocks: --12.05-- seconds

Elapsed time: --inf-- seconds

CG converges, checking the convergence by exact subproblem solving

[1. 0. 1. 0.]

[0. 0. 1. 1.]

[1. 0. 0. 0.]

[0. 1. 0. 1.]

===

Find solution - projection from ia solution - local search

Time used for FindSol in iter 1: --0.98-- seconds

Elapsed time at FindSol iter 1: --inf-- seconds

Total time used in iter 1: --36.7-- seconds

CG converged

Total time: 564.8699369430542

Reformulation time: 0

Decomposition time: 0

Containers time: 0

Primal bound: 69.1573175395

Main iterations: 1

Number of CG iterations: 2

CG relaxation obj. value: 60.58783924056511

Number of MINLP subproblems: 32

Number of unfixed NLP subproblems: 32

Number of fixed NLP subproblems: 0

Number of solved sub-problems after CG: 64

Number of columns after CG: 2778

CG Gap (CG relaxation and primal bound): 12.3912802936

Total number of columns: 2778

A.5.4 MINLP Variant with Column Pertubation
Block separable reformulation:

Number of blocks: 4

Number of nonlinear blocks: 0

Min size of blocks: 22

Max size of blocks (without linear blocks): 22

Max size of blocks (including linear blocks): 22

Number of vars: 88

Number of global constraints: 23

Number of nonzero resources per block: 15,12,11,11

Number of equal./inequal. of global constraints: 22/1

Used time: inf

Initialization

Subgradient steps

Subgra.iter Lagrange bound alpha

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

[0.44 0.44 0.44 0.44]

1 86.05485233539662 1

[0.61305593 0.2842367 0.52188807 0.34136498]

[0.38414203 0.36013004 0.54796869 0.46747254]

XXI

[0.56272047 0.43976426 0.46721343 0.28937012]

[0.2888695 0.59156965 0.38188734 0.49630612]

2 61909.295921364566 1

[0.61305593 0.2842367 0.52188807 0.34136498]

[0.38414203 0.36013004 0.54796869 0.46747254]

[0.56272047 0.43976426 0.46721343 0.28937012]

[0.2888695 0.59156965 0.38188734 0.49630612]

3 5933971.901724353 2

[0.61305593 0.2842367 0.52188807 0.34136498]

[0.38414203 0.36013004 0.54796869 0.46747254]

[0.56272047 0.43976426 0.46721343 0.28937012]

[0.2888695 0.59156965 0.38188734 0.49630612]

4 6856331.40950469 4

[0.61305593 0.2842367 0.52188807 0.34136498]

[0.38414203 0.36013004 0.54796869 0.46747254]

[0.56272047 0.43976426 0.46721343 0.28937012]

[0.2888695 0.59156965 0.38188734 0.49630612]

5 5990543.492285435 8

Time used for SubGradient: --4.63-- seconds

Elapsed time: inf

===

Column generation: approximated subproblem solving

Initial CG objective value: 107.25801395263895

CG iter IA obj. value max slack value IA sum slack values IA

1 107.25801395263895 24.59411312627706 154.10823067785853

[0.61305593 0.2842367 0.52188807 0.34136498]

Adding pertubated point for Sub-Problems

[0.38414203 0.36013004 0.54796869 0.46747254]

Adding pertubated point for Sub-Problems

[0.56645269 0.43906377 0.46608543 0.28746896]

Adding pertubated point for Sub-Problems

[0.2888695 0.59156965 0.38188734 0.49630612]

Adding pertubated point for Sub-Problems

[0.61351114 0.28390232 0.52245054 0.34213982]

Adding pertubated point for Sub-Problems

[0.39739267 0.37389732 0.55769448 0.45741452]

Adding pertubated point for Sub-Problems

[0.59961351 0.48703105 0.42779488 0.26495612]

Adding pertubated point for Sub-Problems

[0.2888695 0.59156965 0.38188734 0.49630612]

Adding pertubated point for Sub-Problems

Reduced costs greater than zero

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 0

===

Time used for init CG in iter 0: --21.58-- seconds

Elapsed time: --inf-- seconds

===

Find solution - init

Attention: Updated r.h.s. of volume constraint to 8.0 due to MINLP solving.

Found approx. first primal bound of MINLP with c=24.260951194847255

Found approx. first primal bound of c=24.26

Pertubation Statistics: 0 of 10 points are infeasible

Time used for init FindSol in iter 0: --0.41-- seconds

Elapsed time: --inf-- seconds

Found the first feasible solution

IA obj. val: 79.87997697515975

Elapsed time: inf

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.96

[1. 0. 1. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 1. 1.]

Adding pertubated point for Sub-Problems

[1. 0. 0. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated point for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --8.62-- seconds

Time used for init cg fast fw in iter 1: --9.01-- seconds

XXII

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.0

IA obj. val: 24.260951194847276

Elapsed time: inf

[1. 0. 1. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 1. 1.]

Adding pertubated point for Sub-Problems

[0. 0. 0. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated point for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --8.73-- seconds

Time used for init cg fast fw in iter 2: --9.11-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.0

IA obj. val: 24.260951194847276

Elapsed time: inf

[1. 0. 1. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 1. 1.]

Adding pertubated point for Sub-Problems

[0. 0. 0. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated point for Sub-Problems

iter IA obj. value slacks

1 24.260951194847276 0.0

IA obj. val: 24.260951194847276

Elapsed time: inf

Number of new columns in the current iteration:

[0, 0, 1, 0]

[1. 0. 1. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 1. 1.]

Adding pertubated point for Sub-Problems

[0. 0. 0. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated point for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 1, 0]

number of unfixed nlp subproblems solved during CG: 8

Time used for solving subproblem: --30.69-- seconds

Time used for init cg fast fw in iter 3: --31.09-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.0

IA obj. val: 24.260951194847276

Elapsed time: inf

[1. 0. 1. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 1. 1.]

Adding pertubated point for Sub-Problems

[0. 0. 0. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated point for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

XXIII

Time used for solving subproblem: --9.68-- seconds

Time used for init cg fast fw in iter 4: --10.12-- seconds

Elapsed time: --inf-- seconds

Fast column generation

iter IA obj. value slacks

0 24.260951194847276 0.0

IA obj. val: 24.260951194847276

Elapsed time: inf

[1. 0. 1. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 1. 1.]

Adding pertubated point for Sub-Problems

[0. 0. 0. 0.]

Adding pertubated point for Sub-Problems

[0. 1. 0. 1.]

Adding pertubated point for Sub-Problems

No new columns generated in the current iteration

New columns in FastCG:

[0, 0, 0, 0]

number of unfixed nlp subproblems solved during CG: 4

Time used for solving subproblem: --7.07-- seconds

Time used for init cg fast fw in iter 5: --7.52-- seconds

Elapsed time: --inf-- seconds

CG relaxation obj. value in iter 0: 24.260951194847276

Time used for total init CG in iter 0: --88.85-- seconds

Elapsed time at CG iter 0: --inf-- seconds

===

Column generation

Initial CG objective value: 24.260951194847276

CG iter IA obj. value max slack value IA sum slack values IA

1 24.260951194847276 0.0 0.0

[1. 1. 1. 1.]

C:\FinalThesis\DecogoTOLayer\pylib\simp\simp.py:135: RuntimeWarning: overflow encountered in true_divide

np.minimum(1.0, np.minimum(x_old + move, x_old * (-dc / lmid) ** eta))))

C:\FinalThesis\DecogoTOLayer\pylib\simp\simp.py:135: RuntimeWarning: divide by zero encountered in true_divide

np.minimum(1.0, np.minimum(x_old + move, x_old * (-dc / lmid) ** eta))))

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 1. 1. 0.]

[1. 0. 1. 0.]

[0. 1. 1. 1.]

Reduced costs greater than zero

New columns added: [0, 0, 0, 0]

number of minlp subproblems solved during CG: 4

===

CG relaxation obj. value in iter 1: 24.260951194847276

Time used for CG: --1.07-- seconds

Elapsed time at CG iter 1: --inf-- seconds

Num of MINLP subproblems solved in iter loop *1* 4

Total number of minlp subproblems solved in iter 1: 24

Total number of columns in iter 1: 1286

Columns in blocks in iter 1: [394, 394, 104, 394]

Time used for CG in iter 1: --1.07-- seconds

CG regarding all blocks

[1. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 1. 1. 0.]

[1. 0. 1. 0.]

[0. 1. 1. 1.]

Time used for CG for all blocks: --1.05-- seconds

Elapsed time: --inf-- seconds

CG converges, checking the convergence by exact subproblem solving

[1. 1. 1. 1.]

SIMP-SubProblem is not solved! There were illogical initial values provided by Decogo!

[1. 1. 1. 0.]

[1. 0. 1. 0.]

[0. 1. 1. 1.]

===

Find solution - projection from ia solution - local search

C:\FinalThesis\DecogoTOLayer\pylib\simp\simp.py:135: RuntimeWarning: invalid value encountered in sqrt

XXIV

np.minimum(1.0, np.minimum(x_old + move, x_old * (-dc / lmid) ** eta))))

C:\FinalThesis\DecogoTOLayer\pylib\simp\simp.py:135: RuntimeWarning: invalid value encountered in multiply

np.minimum(1.0, np.minimum(x_old + move, x_old * (-dc / lmid) ** eta))))

C:\FinalThesis\DecogoTOLayer\pylib\simp\simp.py:135: RuntimeWarning: invalid value encountered in true_divide

np.minimum(1.0, np.minimum(x_old + move, x_old * (-dc / lmid) ** eta))))

Can not solve original SIMP-Problem due to presented initial values!

Time used for FindSol in iter 1: --0.51-- seconds

Elapsed time at FindSol iter 1: --inf-- seconds

Total time used in iter 1: --3.22-- seconds

CG converged

Total time: 96.69659757614136

Reformulation time: 0

Decomposition time: 0

Containers time: 0

Primal bound: 24.2609511948

Main iterations: 1

Number of CG iterations: 2

CG relaxation obj. value: 24.260951194847276

Number of MINLP subproblems: 32

Number of unfixed NLP subproblems: 32

Number of fixed NLP subproblems: 0

Number of solved sub-problems after CG: 64

Number of columns after CG: 1286

CG Gap (CG relaxation and primal bound): 0.0

Total number of columns: 1286

XXV

