
BACHELORTHESIS
Kristi Kola

Design and Implementation of
a Reliable Multicast Using the
OUTPOST Software Bus for
Embedded Spaceflight
Software

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES
Hochschule für Angewandte
Wissenschaften Hamburg

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme
Bachelor of Science Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg
Supervising examiner: Prof. Dr. Paweł Buczek
Second examiner: M.Sc. Jan-Gerd Meß

Day of delivery: 31 March 2022

Kristi Kola

Design and Implementation of a Reliable Multicast
Using the OUTPOST Software Bus for Embedded

Spaceflight Software

Kristi Kola

Title of Thesis

Design and Implementation of a Reliable Multicast Using the OUTPOST Software Bus
for Embedded Spaceflight Software

Keywords

OUTPOST Software Bus, Library, Moduls, Embedded Systems, Multicast, Reliability,
Synchronous Link, Synchronous Communication, Sender, Receiver, Bus Channel

Abstract

This thesis is part of the OUTPOST (Open modUlar sofTware PlatfOrm for SpacecrafT)
library of the German Aerospace Center (DLR), which provided the author an oppor-
tunity to design and implement a feature for one of their libraries- OUTPOST. The
OUTPOST library is developed at the German Aerospace Center (DLR) and provides
an execution platform targeted at embedded systems running mission-critical software.
The library is set up to be modular, allowing the user to choose which modules to use and
which modules to leave out. The goal of this thesis is to introduce a synchronous link fea-
ture called SyncLink for the Software Bus module of the OUTPOST library that allows
for a reliable and synchronous multicast of messages from one or more senders to one
or more receivers. Potentially, this work can result in the use of the OUTPOST library
for multicasting and synchronous communication in space applications from satellites to
communication between components inside a spacecraft.

Kristi Kola

Thema der Arbeit

Design und Implementierung eines zuverlässigen Multicasts mit dem OUTPOST - Soft-
ware Bus für Embedded Spaceflight Software

Stichworte

iii

OUTPOST Software Bus, Bibliothek, Modul, Eingebettete Systeme, Multicast, Zuver-
lässigkeit, Synchrone Verknüpfung, Synchrone Kommunikation, Sender, Empfänger, Bus
Channel

Kurzzusammenfassung

Diese Arbeit ist Teil der Bibliothek OUTPOST (Open modUlar sofTware PlatfOrm for
SpacecrafT) des Deutschen Zentrums für Luft- und Raumfahrt (DLR), die dem Autor die
Gelegenheit bot, ein Feature für eine seiner Bibliotheken zu entwerfen und zu implemen-
tieren - VORPOSTEN. Die OUTPOST -Bibliothek wird am Deutschen Zentrum für Luft-
und Raumfahrt (DLR) entwickelt und bietet eine Ausführungsplattform, die auf einge-
bettete Systeme ausgerichtet ist, auf denen unternehmenskritische Software ausgeführt
wird. Die Bibliothek ist modular aufgebaut, sodass der Benutzer auswählen kann, welche
Module verwendet und welche weggelassen werden sollen. Das Ziel dieser Diplomarbeit
ist die Einführung eines synchronen Link-Features namens SyncLink für das Software
Bus-Modul der OUTPOST -Bibliothek, das ein zuverlässiges und synchrones Multicast-
ing von Nachrichten von einem oder mehreren Sendern ermöglicht an einen oder mehrere
Empfänger. Potenziell kann diese Arbeit zur Verwendung der OUTPOST -Bibliothek für
Multicasting und synchrone Kommunikation in Weltraumanwendungen von Satelliten bis
zur Kommunikation zwischen Komponenten innerhalb eines Raumfahrzeugs führen.

Acknowledgements

I would like to thank my supervisors and mentors Prof. Dr. Buczek Pawel from the
Faculty of Engineering and Computer Science, Hamburg University of Applied Sciences
and M.Sc. Jan-Gerd Meß from the German Aerospace Center (DLR). Their guidance,
expertise and support were crucial to the completion of this thesis.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Thesis Structure . 2

2 Background 4
2.1 Deutsches Zentrum für Luft- und Raumfahrt e.V. 4
2.2 OUTPOST . 5

2.2.1 OUTPOST Architecture . 5
2.2.2 OUTPOST Software Bus . 7
2.2.3 Current Usage . 11
2.2.4 Housekeeping . 13

2.3 Communication paradigms . 13
2.3.1 Asynchronous and Synchronous Communication 13
2.3.2 Broadcast and Multicast Communication 15

2.4 Reliability . 16
2.5 Reliable Multicast Communication . 17

3 Requirements Analysis 19
3.1 Stakeholders . 19
3.2 Use Cases . 20

3.2.1 Actors . 20
3.2.2 Use Case Analysis . 21

3.3 Functional Requirements . 21
3.4 Non-Functional Requirements . 22

v

Contents

4 Design 31
4.1 Reliable Multicast Solution . 31

4.1.1 Developing Own Solution . 31
4.1.2 Devising a Problem Schedule . 31

4.2 Architecture . 32
4.2.1 Actors . 32
4.2.2 Sequence Flow . 33
4.2.3 Error mitigation and recovery . 35

5 Implementation 37
5.1 Project environment . 37

5.1.1 Tools . 37
5.1.2 File setup . 37

5.2 Class methods and implementation . 38
5.2.1 Registering a Channel . 38
5.2.2 Sending a message . 39
5.2.3 Receiving an acknowledgement . 40
5.2.4 Receiving a message . 42

6 Results and Evaluation 43
6.1 System requirements . 43
6.2 Testing . 43

6.2.1 Failure scenario . 43
6.2.2 Success scenario . 44
6.2.3 Unit testing . 45

6.3 Evaluation . 46
6.3.1 Synchronous communication . 46
6.3.2 Reliability and error mitigation . 46

6.4 Future work and extensions . 46
6.4.1 Gateway for distributed systems 47
6.4.2 Reliable asynchronous communication 47

7 Conclusion 48

Bibliography 49

A Glossary 51

vi

Contents

B Source Code 52

Declaration 61

vii

List of Figures

2.1 DLR Flight Software Stack [7] . 5
2.2 OUTPOST-core and OUTPOST-satellite modules. [7] 6
2.3 Class Diagram - OUTPOST swb module. 8
2.4 Asynchronous communication using the OUTPOST - Software Bus 11
2.5 DLR EU-Cropis Compact Satellite [3] . 12
2.6 Martian Moons Exploration (MMX) Rover[6] 12
2.7 Communication using the asynchronous communication paradigm 14
2.8 Communication using the synchronous communication paradigm 14
2.9 Synchronous communication using an ACK management system 17

3.1 Use case diagram . 23

4.1 Communication using the asynchronous communication paradigm 34

5.1 Nassi–Shneiderman diagram of registerChannel method implementation . 39
5.2 Nassi–Shneiderman diagram of sendMessage method implementation . . . 40
5.3 Nassi–Shneiderman diagram of receiveACK method implementation . . . 41
5.4 Nassi–Shneiderman diagram of receiveMessage method implementation . . 42

6.1 Simulation without a receiver - a timeout error occurring 44
6.2 Simulation with a success operation result 45

viii

List of Tables

3.1 List of Use Cases . 24
3.2 "Send Message" - Use Case 1 . 24
3.3 "Check ID" Use Case 1.2 . 25
3.4 "Send Message to SWB" Use Case 1.2 . 25
3.5 "Receive ACK" Use Case 2 . 26
3.6 "Register to Channel" Use Case 3 . 27
3.7 "Receive Message" Use Case 4 . 28
3.8 "Receive Message from SWB" Use Case 4.1 28
3.9 "Send Acknowledgement to SWB" Use Case 4.2 29
3.10 Functional requirements . 30
3.11 Non-Functional requirements . 30

ix

1 Introduction

This section highlights the motivation behind the selection of the bachelor thesis topic
and the relevance it presents to the "Deutsches Zentrum für Luft- und Raumfahrt e.V.",
in this paper interchangeably referred to as DLR.

1.1 Motivation

The paper’s topic was decided in a mutual agreement between the author and the main
supervisor after the propositions of the second supervisor on the relevant research topics
that can be concluded inside the scope of a bachelor thesis.

From lunch, to reaching the outer space, spaceflight systems need to operate efficiently
in a challenging environment with some of the most extreme conditions known to hu-
mankind. In order to successfully reach the goals of their missions, many of these complex
hardware and software components transmit their data through multiple communication
paradigms that accommodate for the general resource - constraint embedded nature of
these systems.

A typical communication paradigm takes into account aspects such as memory, speed,
accuracy, availability, power consumption etc., and not all aspects of communication can
be efficiently achieved by one single communication paradigm, therefore a trade-off needs
to be made especially when it comes to speed and reliability.

The German Aerospace Center (DLR) developed the Software Bus (SWB) module of
the OUTPOST library, which allows for asynchronous exchange of messages between
senders and receivers. Senders can send a message from their own memory pool and
receivers can register channels that filter for certain types of messages using their id

1

1 Introduction

and/or data as filtering criteria. This module is designed for a loosely-coupled asyn-
chronous communication that offers a flexible and versatile means of communication.

In its current state, the Software Bus cannot fulfill the needs for a synchronous type
of communication, meaning that there is no way for a sender to know if the receivers
registered on a Bus Channel have received the data sent through the Software Bus, or if
they have failed to do so. Additionally, the Software Bus does not allow for a Reliable
Multicast of messages.

1.2 Objectives

The objective of this thesis paper is to design and implement a reliable multicast com-
munication to DLR’s OUTPOST Software Bus Module. This feature should be able to
provide senders with a synchronous and reliable means of communication to the receivers,
and also allow for the senders to choose the receivers for specific messages. This feature
is to be referred as SyncLink (short for synchronous link).

1.3 Thesis Structure

The remainder of this paper is structured as follows:

• The next chapter 2 provides a short background on the institution, the OUT-
POST library architecture, the Software Bus (SWB) module, some of the missions
where the OUTPOST library was and is going to be used, and the communication
paradigms of a synchronous communication and reliable multicast of messages.

• Chapter 3 focuses on an overview of the stakeholders, requirements analysis, use
cases and introduces the Synchronous Link (or short SyncLink) feature.

• Chapter 4 lays down the conceptual design and the architecture of the SyncLink.

• Chapter 5 describes the implementation of SyncLink.

2

1 Introduction

• Chapter 6 describes the process of testing, the results and evaluation of the usage
of SyncLink on a modified application example, as well as the space for future
extensions.

• The work is concluded on chapter 7.

3

2 Background

This chapter provides a small background on the DLR and gives insight into the OUT-
POST library, the OUTPOST - Software Bus Module as well as some missions where
the OUTPOST library was and will be used. Finally, a theoretical background on the
communications paradigms and the concept of reliability is provided.

2.1 Deutsches Zentrum für Luft- und Raumfahrt e.V.

The Deutsches Zentrum für Luft- und Raumfahrt e.V., commonly known as the DLR is
the Federal Republic of Germany’s research center for aeronautics and space. The DLR
conducts research and development activities in the fields of aeronautics, space, energy,
transport, security, and digitalization. The German Space Agency plans and implements
the national space program on behalf of the federal government.[4]. DLR’s space re-
search contributes towards addressing societal challenges such as climate change, secure
communications, health, and demographic change. Its research and development work
covers all areas of technology and applications in spaceflight.

In the spaceflight domain, DLR develops spaceflight infrastructures and technologies,
and its activities range from the development of new engines to the development and use
of satellites and spacecraft. It is also working on new communications and navigation
technologies. The aim of its research is to generate knowledge and technologies in the
fields of climate research, environmental monitoring, and disaster management.

The Institute of Space Systems located in Bremen designs and analyzes future space-
craft and space missions (launch systems, orbital and exploration systems, satellites)
and evaluates them with regard to their technical performance and costs. The Avionics
department does research and development in the avionics field, especially on spaceflight
applications. [5]

4

2 Background

Figure 2.1: DLR Flight Software Stack [7]

2.2 OUTPOST

The OUTPOST library (Open modUlar sofTware PlatfOrm for SpacecrafT) is a library
developed by the DLR to promote an open-access, modular-based platform for research
and development activities.

2.2.1 OUTPOST Architecture

The target environment of OUTPOST is the on-board computer of a spacecraft, which
consists of a microcontroller. Supported processors include the LEON3FT SPARC V8
processor or the ARM Cortex M1-4 processors. As shown in Figure 2.1, the library is
located between the underlying OS and the board support package (BSP) on the one
hand and the applications on the other hand. It is comprised of the OUTPOST - core
(time, logging, communication) and OUTPOST - satellite (space packets, ECSS PUS,

5

2 Background

Figure 2.2: OUTPOST-core and OUTPOST-satellite modules. [7]

security) libraries as shown in figure 2.2. To keep the software applications independent
from the embedded RTOS used and facilitate later re-use, the software does not access
the OS directly, but through a thin abstraction layer. This RTOS layer provides C++-
style access to e.g. the synchronization mechanisms like mutexes and semaphores.[8]
Currently, the RTOS layer is ported upon the following Operating Systems:

1. RTEMS

2. FreeRTOS

3. POSIX compatible (e.g. Linux)

The implementation is selected at link/compile time. The setup, initialization, and re-
source management of the corresponding OS are beyond the scope of this library and
have to be done by the user itself during the system initialization[8].

The utils module contains support functions such as shared buffers which are containers
used to store data in data structures such as arrays, fixed-size arrays, maps, lists, or
views/slices. The time module contains secure time management functions and provides
classes for converting between different time representations such as Spacecraft Elapsed

6

2 Background

Time (SCET), GPS Time, TAI Time, and Unix Time (leap-second correction). The hard-
ware abstraction layer for communication interfaces resides in the HAL module, which
focuses on communication interfaces such as SpaceWire, Serial (UART), Ethernet, and
platform-specific hardware drivers located in platform repositories like LEON and Zynq
(ARM)[7].

The RTOS wrapper layer allows OUTPOST to build on different operating systems. The
standard C++ RTOS interface is used for functions such as the Clock, Thread, Mutex,
Semaphore, Periodic Task, Timer, Queue, Failure Handler, and Checkpoints. The Sim-
ple Message Passing Channel (SMPC) module offers a simple and fast public/subscriber-
based communication middleware for objects located in the same address space. The
l3test module contains a Lua-based test framework that enables the execution of Lua
scripts as part of unit tests[7]. Figure 2.2 is not up-to-date as further modules were
added to the OUTPOST libraries, therefore the SIP and SWB modules are missing from
the figure. A further explanation for this module is given in section 2.2.2. At the time
this paper was written the public outpost-core repository is also not up-to-date with
these changes.

Some of the architectural goals of the OUTPOST library in whole and the Software Bus
module in specific are type safety, testability, portability and resource efficiency. Type
safety is achieved by not using any void pointers or raw values, testability is achieved
with unit testing coverage being above 90% and separation of functional logic and timing,
portability by running on RTEMS, FreeRTOS and POSIX, and finally resource efficiency
by avoiding unnecessary copying.

2.2.2 OUTPOST Software Bus

The Software Bus (SWB) is a module of the OUTPOST library which allows for asyn-
chronous exchange of messages between senders and receivers. Senders can send messages
from their own memory pool or use the bus’s pool. Receivers can register channels that
filter for certain types of messages using their id and/ or data. Housekeeping is also
provided through a number of counters. The Software Bus Module is built following the
Publisher-Subscribe pattern [1]. As such, it supports loose coupling between components
and provides scalability. The implementation is efficient as it allows for a direct func-

7

2 Background

Figure 2.3: Class Diagram - OUTPOST swb module.

8

2 Background

tion call. Type safety is guaranteed by safely matching the topic type to the function
parameter type. The Software Bus has the following parameters:

1. pool: Shared Buffer Pool from which the Software Bus shall allocate its memory.

2. queue: Reference Queue Base to which the Message will be sent. For internal use
only.

3. priority: Priority of the internal Bus Handler Thread.

4. heartbeatSource: Heartbeat Source for the software watchdog.

Per definition, a Message is the fundamental data structure that is passed around in the
Software Bus, and it consists of an individual ID, which can be used for filtering the
messages, and of a Buffer which consists of the data that is transferred.

In Figure 2.3 the main architecture of the Software Bus is shown through a UML - Class
Diagram. The classes functionalities are described as follows:

1. The Bus Distributor holds the underlying thread that handles passing around of
messages as well as a list if registered channels. It is not meant to be used directly
but through the SoftwareBus by inheritance.

2. The Bus Handler Thread handles incoming Messages and distributes them to reg-
istered BusChannels.

3. Shared Buffer Pools are pre-allocated memory blocks (cf. SharedBufferPool). They
are accessed by SharedBufferPointers, which as long as they are referenced can be
passed around the system without the need to ever copy their contents. This is
especially useful for applications that push around big chunks of data.

4. Software Bus Filtered is a variant of the SoftwareBus that uses in incoming filter to
limit the type of Message that is accepted for distribution. It consists of parameters
ID and filter.

5. The Bus Channel interface is used to receive messages from the SoftwareBus. A
SoftwareBus will distribute messages to registered BusChannels according to their
filtering.

9

2 Background

6. Buffered Bus Channel is a variant of the Bus Channel with an additional Filter
parameter that decides whether the channel wants a message and a buffer in order
to store messages.

7. Bus Subscription can be used together with a SubscriptionFilter on a BusChannel
to filter by (masked) Message id.

8. Subscription Filter uses Subscriptions for Filtering.

In figure 2.4 an asynchronous communication between a Sender and the Receivers using
the OUTPOST - Software Bus is shown. The Sender sends a message to the Software
Bus by calling a public method named sendMessage(). The message should consist of a
message ID and the Data that needs to be transmitted. The ID of the message could be
used by the Software Bus or the Bus Channels to filter messages depending on the needs
of the application it is being used. In case the Software Bus uses a "Copy Once" method,
the message will be stored in the SharedBufferPool, otherwise, in case of a "Zero Copy",
the Sender will use its own memory pool to send messages.

The message is then transmitted to the Distributor, which holds the underlying BusHan-
dlerThread. Using this thread, the Distributor will send the message to the registered
Bus Channels. According to their filtering settings, there could be one, many, or all
registered Bus Channels that can receive the message.

On the other side, one or many Receivers will from time to time request to receive a
message from the Bus Channels. If there is a message, the return of the function will
deliver the message to them, otherwise, if no message is available they will have to try
again at a later time.

In the current asynchronous type of communication that the Software Bus is based upon,
there is no way for the sender to know if any of the receivers have received the message
or has failed to do so, making it unreliable for applications where there is a need for a
confirmation of delivery.

10

2 Background

Figure 2.4: Asynchronous communication using the OUTPOST - Software Bus

2.2.3 Current Usage

The OUTPOST library was and will be used by several projects by the DLR. A few of
them are:

1. The Eu:CROPIS satellite mission (figure 2.5) hosted a biological experiment from
the National Aeronautics and Space Administration (NASA), testing photosyn-
thetic cyanobacteria for the production of food for non-photosynthetic microbes.
The application of this experiment is to be seen in the provision of a biological
source of energy for future Space colonies.

2. The Martian Moons Exploration is a mission to travel to Mars and survey its two
moons named Phobos and Deimos. The spacecraft will explore both moons, it will
collect a sample from Phobos surface and will bring it back to Earth. The launch
of MMX is planned for 2024, and the spacecraft will also carry a rover which is
shown in figure 2.6. The project is a collaboration between the Japanese (JAXA),
French (CNES) and German (DLR) Space Agencies. The DLR is responsible for
the development of the rover housing, the robotic locomotion system as well as

11

2 Background

Figure 2.5: DLR EU-Cropis Compact Satellite [3]

Figure 2.6: Martian Moons Exploration (MMX) Rover[6]

12

2 Background

a spectrometer and a radiometer, each of which will measure surface composition
and texture. [6]

3. SCORE: Payload 4 is a technology demonstrator for next-generation on-board com-
puting in hardware and software. SCORE is complemented by a set of three digital
cameras that are commanded via SCORE. [2]

2.2.4 Housekeeping

The housekeeping mechanism is an application that uses the OUTPOST - Software Bus
module for communication, developed by the DLR’s Avionics Group. It is made from
a single controller that is used for collecting status and environmental data throughout
the spacecraft. Housekeeping is a typical mechanism on board of a spacecraft, therefore
it was found suitable to be used as an application example for the OUTPOST - Software
Bus module.

2.3 Communication paradigms

2.3.1 Asynchronous and Synchronous Communication

An asynchronous type of communication is a simple form of communication that allows
for the delivery of messages from point A to point B, as showcased in figure 2.7 where
the Sender actor initiates the communication by sending a message to a Receiver actor.
This form of communication is fast in execution due to the one direction of messages, as
in most scenarios it does not use clocks or blocking/busy-wait methods. Nevertheless, in
the asynchronous communication paradigm, the sender will not know if the message has
been successfully transmitted or if it has been lost from any hardware or software failure
on the receiver’s side.

In figure 2.8 a sequence diagram illustrating the basic synchronous communication pro-
cess used in one embodiment for receiving and processing acknowledgement messages
is displayed. The process begins with the Sender actor sending a message and pro-
ceeds to the receiving of the message from the Receiver actor, who in turn processes
the message it received and generates an acknowledgement message, which is then deliv-
ered to the original sender. Many synchronous communication applications use clocks or

13

2 Background

Figure 2.7: Communication using the asynchronous communication paradigm

Figure 2.8: Communication using the synchronous communication paradigm

14

2 Background

blocking/busy-wait methods, which compared to the asynchronous design, trades speed
and simplicity for additional information and complexity. [12]

In conclusion, a synchronous communication although it can provide additional infor-
mation from the receiver, might not be suitable for simple and straightforward commu-
nications that rely on speed, and the choice between those paradigms is made on a need
basis.

2.3.2 Broadcast and Multicast Communication

Broadcast networks are one of the most common forms of communication and are broadly
found in local-area communication systems. The data and messages transmitted by such
a network are available to all the recipients who are able to receive messages. However, it
is a very common problem for this kind of network to lose a message from multiple types
of transmission errors, including buffer overflow errors within the receivers. Compared
to point-to-point communications where protocols are implemented to recover the lost
messages, in a broadcast this is not the case, therefore broadcasting is considered an
unreliable method of communication. [11]

Multicast communications are used to communicate data from a sender to multiple re-
ceivers. In a multicast network, the sender can choose the receivers who can get the
message. This can be done by using filtering, most commonly done by filtering the iden-
tification for receivers. In a simple multicast usage, the receivers are the actors who are
responsible for compensating for lost messages, and often one of the options used is to
ignore lost messages. Multicast on the OUTPOST - Software Bus is implemented by
filtering the IDs of messages that go through the Bus Channel(s).

Both broadcast and multicast communications are at their core asynchronous-based,
which makes them unsuitable in many applications where a certain degree of reliability
is required for the delivery of the data based on knowing which of the receivers has failed
to receive the message. Therefore a reliable communication must be established between
the senders and receivers. Per definition, a reliable multicast communication is a com-
puter network communication protocol that offers a reliable delivery of data or packets
to multiple recipients or nodes. [12]

15

2 Background

2.4 Reliability

Neither synchronous nor asynchronous communications are considered to be reliable on
their own. Reliability is a concept based on error handling that can be crucial to critical
applications that require a degree of guarantee for delivery. A fundamental restriction
on reliability is the fact that there is no perfectly reliable system, therefore some trade-
offs are unavoidable in relation to the needs for reliability and core functionality of the
system. Depending on how critical the delivery of data is, error detection and handling
can include multiple concepts such as parity checks, checksums, timeouts, re-delivery of
messages, etc, but the more reliable the communication is, the more complex and heavy
it becomes.

Another common problem on the topic of reliability is that it is difficult to know for
sure that the receiver has received a message, with the same exact data sent by the
sender. Without a deep understanding of the receiver, a generic system can only offer
so much in terms of guarantee of delivery, as there are many reasons that can lead for a
receiver to fail to receive a message and create an error. A hardware component failure or
software failures like buffer overflows and infinity loops, or failures caused by the receiver
might have not completely failed, but due to an internal busy processing might delay the
delivery of an acknowledgement, which in turn can arrive after a timeout has occurred
on the system, and that would still lead to an error.

Reliability in itself is delivered through three general steps firstly error detection, second
isolation of the unit where the error happened in order not to lead to a critical system
failure and finally handling and recovery from the error. The error handling and recov-
ery steps to reach reliability heavily depend on the implementation of the receiver, and
a deep understanding of the receiver’s functionality and design is required.

Nevertheless, a synchronous communication with an acknowledgement management sys-
tem can provide a good basis towards reaching the desired guarantee level, especially
if such a system introduces error mitigation through timeouts during busy waits and
keeping track of messages and receivers who might have failed to receive the message
on the first try, as such information can allow for further recovery processes such as the
re-delivery of messages. The system which will be introduced in the later chapters of this
thesis is a flexible generic system, that follows this philosophy and provides some of the
means to achieve reliability in a more specific system.

16

2 Background

Figure 2.9: Synchronous communication using an ACK management system

2.5 Reliable Multicast Communication

One of the ways that can introduce reliability to multicast communication is to imple-
ment a synchronous communication with a timeout. Synchronicity in a multicast design
can be achieved by creating a management system that handles the acknowledgement
of messages. There are two ways that a message can be acknowledged, either by imme-
diately acknowledging messages or delaying the acknowledgement of messages. In the
first method, a receiver will send an acknowledgement directly to the sender after it re-
ceives the message, which can be beneficial for a relatively small number of receivers. In
this method, the control is given back to the sender by the receiver, as shown in figure 2.8.

The idea of delaying the delivery of acknowledgement messages is related to the ac-
knowledgement implosion problem occurring in systems that have a very large number
of receivers. If there is a large number of receivers who will send an acknowledgement
message directly to their original sender, the sender might receive in the worst-case sce-
nario a total of number of acknowledgements equal to the number of receivers it has
sent the message to. As shown in figure 2.9, in order to tackle the implosion problem,
an intermediate acknowledgement management system can be created, which will delay
the delivery of acknowledgements to the sender until all of the receivers have sent an
acknowledgement, or until a timeout occurs, thus still forming a synchronous communi-

17

2 Background

cation. That can then allow for further error handling and recovery which depends on
the implementation of the applications where it will be used.

18

3 Requirements Analysis

This chapter presents the relevant stakeholders, actors, and use cases for the system
that is being developed. After that functional and non-functional requirements are dis-
cussed.

3.1 Stakeholders

There are multiple stakeholders of the product. They can be categorized into internal
and external groups. The internal group refers to DLR groups, while the external one is
composed of 3rd parties interested in the product.

• DLR Avionics Group

• Users of the OUTPOST library

• Thesis supervisor

The users of the OUTPOST library can be both internal to the DLR and external such as
other space-related companies or agencies that are currently collaborating or will in the
future collaborate with the DLR’s Avionics Group, and use the OUTPOST - Software
Bus module for their applications.

Although the first version of the Synchronous Link is a prototype written as a proof
of concept, there is an expectation that the end result of this Thesis will be further de-
veloped and used in practice by the DLR and the OUTPOST library users eventually.

19

3 Requirements Analysis

3.2 Use Cases

This section describes the main functionalities from the perspective of the actors partici-
pating in the system. The feature being developed is essentially an interface that uses the
OUTPOST Software Bus module to let senders and receivers interact in a synchronous
method by using the system referred to as SyncLink or Synchronous Link interchange-
ably in this paper.

The use case diagram of the SyncLink System is illustrated in figure 3.1. The Anal-
ysis for each of the use cases will follow on chapter 3.2.2.

3.2.1 Actors

The actor is a role specified in a use case diagram for someone (or something) who inter-
acts with the system, has a responsibility toward the system (inputs), or has expectations
from the system (outputs).[15] An actor can be a person, an organization, or another
system as well as another external device that interacts with the system under design to
achieve its goals. The actors are external objects, which is why they are placed outside
of the system as shown in figure 3.1.

Actors can be categorized as primary and secondary, where a primary actor initiates
the use of the system (or a part of it) and is placed on the left, while a secondary actor is
thought as a reactionary, thus placed on the right of the system. Based on the analysis
described above, the actors of the system are the following:

• Primary Actors

1. Sender

2. Receiver

• Secondary Actors

1. Software Bus

The sender is defined as any system or device that can interact with the system described
in this paper, and its end goal is to multicast a message. A receiver on the other hand is a
system or device similar to the sender, but whose end goal is to receive a message. They

20

3 Requirements Analysis

are categorized as primary users as they are both independent entities that initiate the
system or a part of it, and are reacting as a result of their initial request to the system
and not because of the actions happening in the system.

The OUTPOST - Software Bus module is described as an actor for the reason that
it is an already existing system, that can be used to deliver and receive messages. The
Software Bus does not provide any sort of capability of sending acknowledgements, how-
ever the Software Bus and its Bus Channels are used by the SyncLink to achieve that
goal. This actor is categorized as secondary, as it is reactant to the actions of the System
described in this thesis.

3.2.2 Use Case Analysis

For the purpose of keeping an organizational level between the use case relations, the use
cases are classified into the categories of parent and child-use cases. This helps create a
structure in the existing relationships between the use cases. Depicted in figure 3.1, are
the use cases, the actors, and their respective relationships. The «include» relationship
between use cases means that i.e. use case "Check ID" is called every time the parent
use case "Send Message" is also initiated.

Table 3.1 describes shortly all the use cases. An individual Use Case analysis is pro-
vided in the following tables: UC1 table 3.2, UC1.1 table 3.3, UC1.2 table 3.4, UC2
table 3.5, UC3 table 3.6, UC4 table 3.7, UC4.1 table 3.8 and finally UC4.2 table 3.9.

3.3 Functional Requirements

The functional requirements were derived after several discussions with the stakeholders.
These requirements are listed in table 3.10. They are identified by their ID in the format
of "F[Num]" and will be referred to throughout this paper in that manner.

The requirements F1 and F8 state that the sender should be able to send messages
and receive acknowledgements. The rationale for these requirements is related to the
sender’s capability of communicating with the system synchronously and creating a ba-
sis for reliable communication.

21

3 Requirements Analysis

Requirement F2 is introduced as a need to manage acknowledgement implosions from
multiple receivers, in order to not block the sender’s workflow with a large number of
acknowledgements that might be incoming. F3 is related to the capability of the system
to send the acknowledgements to the sender, respecting the requirement from F2 which
requests to handle a possible implosion of acknowledgements scenario.

Requirement F4 states that the system should use the Software Bus and the Bus Chan-
nels from the OUTPOST - Software Bus Module in order to achieve its goals of sending
and receiving messages. Requirement F5 imposes additional restrictions on the sender’s
communication with the system, however, it increases interoperability in the system, and
it does not affect efficiency.

The rationale for requirement F6 is that the receivers should register to the system
in order for the system to know which of them might have failed to receive a message.
Requirement F7 is imposed on the receivers who should from time to time request to
receive a message from the system.

3.4 Non-Functional Requirements

The Non-Functional requirements listed in table 3.11 describe the quality attributes of
the system. Similar to the functional requirements they are identified by their ID in the
format of "NF[Num]".

NF1 mentions the necessity of having the system integrated in the OUTPOST library.
This is for the reason that the system needs to use the OUTPOST - Software Bus Mod-
ule, and be able to run on all the platforms that the OUTPOST - Software Bus Module
can.

NF2 brings up the modularity, maintainability, and testability points, which are already
emphasised in the architecture of the OUTPOST library. As an integral part, this system
should also fulfill these requirements.

NF3 describes the need for the code to be easily understood and well documented for
future use. This increases its maintainability.

22

3 Requirements Analysis

Figure 3.1: Use case diagram

NF4 is a vital requirement of the technologies and programming features allowed. The
system is going to be deployed in embedded environments, therefore it should be resource-
efficient, and not use i.e. dynamic memory allocations.

23

3 Requirements Analysis

Use case Title Description
UC1 Send Message Parent Use Case: Initiates the system. Send Message

to the Receiver.
UC1.1 Check ID Child of UC1: Checks and stores Message and Ac-

knowledgement IDs.
UC1.2 Send Message to SWB Child of UC1: Delivers the message to the Message

Channels of SWB.
UC2 Receive ACK Parent Use Case: Wait to receive an ACK from the

Acknowledgement Channel of SWB.
UC3 Register To Channel Parent Use Case: Registers the Receiver to an exist-

ing Message Channel
UC4 Receive Message Parent Use Case: Manages the Receiver’s requests to

receive message from the Message Channel of SWB.
UC4.1 Receive Message from

SWB
Child of UC4: Receives message from Message Chan-
nel of SWB if available.

UC4.2 Send Acknowledge-
ment to SWB

Child of UC4: Sends an ACK message to the Ac-
knowledgement Channel of SWB.

Table 3.1: List of Use Cases

Use Case 1 Send Message
Description Initiates the system. Send Message to the receiver.
Actors Sender
Trigger Sender requests to send a message
Precondition The System is ready to receive a message
Success end
condition

Message is sent to the Software Bus Message Channel

Failure end
condition

Message failed to be delivered to the Software Bus

Typical flow

1. Sender sends a message by calling the SendMessage() function.

2. SyncLink checks if the message is an ACK or an ID by calling UC1.1
- "Check ID"

3. If the message is an ID, UC1.2 - "Send Message to SWB" is called
and the Acknowledgement is sent to the sender.

4. Else a failure message is sent

Table 3.2: "Send Message" - Use Case 1

24

3 Requirements Analysis

Use Case
1.1

Check ID

Description Child of UC1: Checks IDs and stores Message and Acknowledgement IDs.
Actors Sender
Trigger Parent Use Case 1: Function flow calls checkMessage()
Precondition Sender has initiated the system by sending a message
Success end
condition

The message has a compatible message ID

Failure end
condition

The message has an incompatible message ID

Typical flow

1. checkMessage() is called

2. Check the message ID

3. If compatible, store the ID and its respective ACK and then return a
success message

4. Else return fail message

Table 3.3: "Check ID" Use Case 1.2

Use Case
1.2

Send Message to SWB

Description Child of UC1: Delivers the message to the SWB Message Channel of SWB.
Actors Sender, Software Bus
Trigger Parent Use Case 1: Function flow calls sendMessage() on SWB
Precondition The message ID is compatible
Success end
condition

Message is sent to Message Channel

Failure end
condition

Software Bus failure

Typical flow

1. Function flow calls Software Bus’s sendMessage()

2. The Software Bus delivers the message to the Message Channel

Table 3.4: "Send Message to SWB" Use Case 1.2

25

3 Requirements Analysis

Use Case 2 Receive ACK
Description Parent Use Case: Requests to receive an ACK from the Acknowledgement

Channel of SWB.
Actors Sender, Software Bus
Trigger Use Case 1: Function flow waits for ACK to give feedback back to sender
Precondition The message has been sent to the Message Channel
Success end
condition

ACK is received in the ACK Channel

Failure end
condition

Timeout has occurred

Typical flow

1. Function receiveACK() is called

2. A timeout is initiated

3. Receive from ACK channel

4. If the ACK is the same as the stored ACK return success

5. Else try again until timeout

Table 3.5: "Receive ACK" Use Case 2

26

3 Requirements Analysis

Use Case 3 Register to Channel
Description Parent Use Case: Registers the Receiver to a Message Channel of the SWB.
Actors Receiver
Trigger Receiver requests to register to SyncLink
Precondition None
Success end
condition

The Receiver is successfully registered to a Message Channel of the SWB

Failure end
condition

No message available

Typical flow

1. Receiver call function registerChannel() referencing SyncLink

2. SyncLink checks if there are available message channels

3. If true, SyncLink checks if the Receiver is already registered

4. If false, the receiver is registered

5. Else an "Invalid State" message is returned to the Receiver

Table 3.6: "Register to Channel" Use Case 3

27

3 Requirements Analysis

Use Case 4 Receive Message
Description Parent Use Case: Manages the Receiver’s requests to receive message from

the Message Channel of SWB.
Actors Receiver
Trigger Receiver requests to receive a message from SyncLink System
Precondition The Receiver is registered
Success end
condition

ACK is sent to the ACK Channel and the Receiver receives the message

Failure end
condition

No message available

Typical flow

1. Receiver call function receiveMessage() referencing SyncLink

2. SyncLink checks if the Receiver was registered

3. Check if there are messages on the Message Channel

4. If message available proceed to UC4.1 and UC4.2

5. Else send "No message available" to receiver

Table 3.7: "Receive Message" Use Case 4

Use Case
4.1

Receive Message from SWB

Description Child of UC3: Receives message from Message Channel of SWB if available.
Actors Receiver, Software Bus
Trigger Parent Use Case 4: Function flow calls receiveMessage() from SWB
Precondition A message is sent to the SWB’s Message Channel
Success end
condition

Retrieves a message from the Message Channel

Failure end
condition

Software Bus or Bus Channel failure

Typical flow

1. Function flow calls receiveMessage() from Message Channel

2. The message is retrieved from the Message Channel

Table 3.8: "Receive Message from SWB" Use Case 4.1

28

3 Requirements Analysis

Use Case
4.2

Send Acknowledgement to SWB

Description Child of UC4: Sends an ACK message to the Acknowledgement Channel of
SWB.

Actors Software Bus
Trigger Parent Use Case 4: Function flow calls sencACK() to SWB
Precondition Receiver has requested a message from SyncLink and a message is available

at the Message Channel
Success end
condition

Sends an ACK to the Acknowledgement Channel

Failure end
condition

Software Bus or Bus Channel failure

Typical flow

1. Function flow calls sendACK() to the Acknowledgement Channel

2. If the ACK to be sent is the same with the stored ACK send it to the
Acknowledgement Channel.

Table 3.9: "Send Acknowledgement to SWB" Use Case 4.2

29

3 Requirements Analysis

ID Description Derived
from

Priority Acceptance criteria

F1 The System shall be able to re-
ceive messages from senders.

UC1 High The sender shall be able to send
messages.

F2 The System shall manage ac-
knowledgements from multiple
receivers.

UC4 High The system should provide a
method to manage the acknowl-
edgement implosion.

F3 The System shall send ac-
knowledgements to the
senders.

UC1,
UC2

High The system should send an ac-
knowledgement back to the sender
for the correct message.

F4 The System shall use the OUT-
POST - Software Bus and the
corresponding Bus Channels to
send and receive messages and
acknowledgements.

UC1.2,
UC2,
UC4.1,
UC4.2

High The system shall be integrated in-
side the OUTPOST - Software Bus
Module, thus having access to the
whole of the OUTPOST library.

F5 The System shall differenti-
ate messages from acknowl-
edgements.

UC1.1 High The system should distinguish mes-
sages by imposing a restriction to
the IDs of messages and acknowl-
edgements.

F6 The Receivers shall be able to
Register to Bus Channels.

UC3 High The Receivers shall be able to suc-
cessfully register to the Bus Chan-
nels of the SWB.

F7 The Receivers shall request to
receive messages from the Sys-
tem.

UC4 High The receiver should have access to a
function in the system that allows it
to request a message if one is avail-
able.

F8 The Senders should be able to
receive ACK messages/reports.

UC1,
UC2

Middle The sender should be available to
receive the ACK messages from the
system.

Table 3.10: Functional requirements

ID Description
NF1 The System should be integrated in the OUTPOST library.
NF2 The code should be modular, maintainable and testable.
NF3 The code should be intuitive.
NF4 The code should be resource efficient as it is used in Embedded Systems.

Table 3.11: Non-Functional requirements

30

4 Design

This chapter describes the required parts to building a reliable multicast for the OUT-
POST Software Bus module. It also explains the main implementation decisions for the
Synchronous Link System.

4.1 Reliable Multicast Solution

It should be mentioned that the development of a system that is specific to the OUTPOST
library was the only valid option as OUTPOST has a generally unique and complex
architecture and requirements that have no existing equivalent. The OUTPOST library
is an in-house library built mainly from scratch by the German Aerospace Center (DLR),
so publicly marketed solutions of such a software do not exist as of the writing of this
thesis.

4.1.1 Developing Own Solution

A main decision and motivation for the Thesis was to write a custom solution for the
reliable multicast using the OUTPOST Software Bus module, as that would provide full
adaptability, scalability and maintainability of the implementation.

4.1.2 Devising a Problem Schedule

The OUTPOST library is an in-house project of the DLR with a modular architecture
which allows it to be used as a development advantage. The current architecture of OUT-
POST was explained on chapter 2, however, this paper focuses only on the OUTPOST
- Software Bus module.

31

4 Design

The main goal of this thesis is to develop a management interface that can allow for
a reliable multicast communication. This interface is to be built on top of the exist-
ing Software Bus module, thus it can be safely concluded that there is no motivation
to change the underlying code used in the OUTPOST library and of the Software Bus
module.

The idea behind a synchronous communication lies on a sender, or a sender’s thread
waiting to receive an acknowledgment message in order to continue its operation, bring-
ing forward the need to exchange the current asynchronous and loosely-coupled broadcast
type of communication to a synchronous one. This connection of the SWB module to the
management system that could synchronously link the senders to the receivers inspired
the name of the system under design to be Synchronous Link or short SyncLink.

In the previous status of the Software Bus module, the IDs of the messages were imple-
mented alongside the filters on the bus and bus channels for the purpose of a possibility
to multicast messages by using the filters to exclude receivers from receiving a message.
Nevertheless, this type of multicast is not reliable, as it does not provide the sender
for a confirmed delivery of the data, and a re-delivery of a message is not implemented
from the sender’s as they wouldn’t know which of the receiver’s have failed to receive a
message.

4.2 Architecture

To come up with the architecture, the requirements discussed on the previous chapter
and the background provided on chapter 2 were used as a starting point. Depicted in
figure 4.1 is a sequence diagram of a communication use the system under design called
SyncLink.

4.2.1 Actors

To increase the understanding of the roles, a coloring system is provided for grouping the
actors, systems, and subsystems into their specific categories based on their functionality
and interaction with the system as follows:

32

4 Design

• Blue

1. Sender

2. Receiver(s)

• Red

1. Software Bus

2. Acknowledgement Channel

3. Message Channel(s)

• Green

1. SyncLink

The sender and the receiver are depicted in blue and belong to the same category of
external actors who interact with the system, but are not part of it. A sender can reach
multiple receivers using the system, however the actions leading to the synchronous de-
livery of a message to the receiver are similar. In red are depicted the OUTPOST -
Software Bus, and the Bus Channels who serve different roles, namely an Acknowledge-
ment Channel for the Acknowledgement messages, and one or many Message Channels
depending on the registered number of Receivers. In green, the system under design is
depicted. SyncLink acts as an intermediary between the external actors and the Software
Bus system, and fills the requirements described on chapter 3.

4.2.2 Sequence Flow

The synchronous delivery of the message is achieved using the following flow.

As a prerequisite, at least one receivers should be registered to a channel in order to
allow for the intended usage of the system. This is not done directly to the Software
Bus as it would have normally be done in the OUTPOST - Software Bus module, but
instead through SyncLink, which after processing the registration request and storing
the receiver’s ID internally, will deliver the request to the Software Bus, which will then

33

4 Design

Figure 4.1: Communication using the asynchronous communication paradigm

34

4 Design

assign a message channel to the receiver. The receiver ID is stored to allow for identi-
fication in case of a failed delivery of messages to the intended receiver. This process
should be performed only once for each receiver, and after this step, the receiver will be
registered.

The sender will try to deliver a message and the expected number of receivers to be
reached by referencing SyncLink. A message should consist of an ID and the data. The
ID should have it’s first bit set to 1, otherwise it will not be accepted. The reason for
setting the limitation on the first bit of the ID of messages to 1 is a result of filtering
in order to distinguish between the message and acknowledgement channels, which for
the later, the first bit of the ID must be a 0. This check is performed by the SyncLink
on the CheckMessage() sequence. Once the message is checked and fills the criteria, the
SyncLink will proceed to forward the message to the Software Bus, in which through a
series of internal processes as described in subsection 2.2.2 will be delivered to the Mes-
sage Channel(s). Immediately after that, SyncLink will wait for an acknowledgement for
the delivered message on the Acknowledgement Channel.

The receiver in its own time intervals is from time to time checking if there are any
messages available by requesting to receive a message from SyncLink. If a message is
available on the receiver’s designated Message Channel, the receiver will receive the mes-
sage. Immediately after that, an acknowledgement message for the corresponding ID
that was delivered alongside the ID of the receiver who received the message will be sent
to the Acknowledgement Channel.

The previous wait to receive acknowledgements on the receiveACK() sequence, will now
verify that the acknowledgement ID is the one that was initially expected, and will inter-
nally confirm that the receiver has received the message, however SyncLink will not send
any results to the sender if the expected number of receivers is not reached. Assuming
that in this sequence, the number of expected receivers would be 1, the operation result
would be a success.

4.2.3 Error mitigation and recovery

The design of SyncLink uses timeout based error mitigation. Unless the message has
reached the number of receivers that was initially expected by the sender, SyncLink will

35

4 Design

wait until a timeout occurs. In that case, the sender will receive a timeout result, and can
further access information to the IDs of the receivers that failed to receive the message.
This way, SyncLink through its synchronous communication and timeout generates an
error detection.

Regarding recovery, once it receives a timeout operation result, the sender can decide
to re-deliver the message, however, without having a deep knowledge of the receiver’s
implementation there can not be any correct information if the receiver has failed com-
pletely, if it is in a frozen state and might need to be restarted, or if any other error like
buffer overflows have occurred. For this reason, SyncLink’s generic architecture does not
provide a sophisticated recovery method.

36

5 Implementation

This chapter describes the project environment and the implementation details for the
architecture described in chapter 4.

5.1 Project environment

In this section, the environment of the project, including tools and setup.

5.1.1 Tools

The programming language of the implementation is C++ with an embedded coding style
specific to the OUTPOST library. The project is developed using the Visual Studio Code
from Microsoft Corporation[13] as an editor and compiled with Debian GNU/Linux[14],
a Linux-based operating system. The library is set up on an online repository on GitLab
- a DevOps software provided by GitLab Inc.[9] and is version controlled using Git - a
free version control software by Software Freedom Conservancy[10].

Apart from Visual Studio Code, which was a tool choice of the author used only for
writing and editing code, the OUTPOST - Software Bus module was already using a
combined C++ and Debian environment, and the repositories were already set up on
GitLab and version controlled by Git, therefore it was only logical to continue with the
same tools.

5.1.2 File setup

The implementation is located on the outpost-core/modules/swb/src on a separate branch
on GitLab of the swb-communication named "/feature/SyncLink". The implementation

37

5 Implementation

consists of two files named "sync_link.h" and "sync_link_impl.h" where the first file
holds the SyncLink class, its constructor, its class methods and member variables with
their respective public, protected and private restrictions, while the second implement file
holds the implementation of the methods and is where the core functionality of SyncLink
lies.

5.2 Class methods and implementation

The constructor of the SyncLink class references a Software Bus and is instantiated with
an Acknowledgement Channel. A destructor is also provided. A limitation in this class
is the maximum number of receivers provided by a member variable of the class, as dy-
namic allocation is avoided due to the embedded nature of the system. A timeout for the
receiveACK() method is arbitrarily chosen to be 3 seconds, but that can also be mod-
ified regarding the needs of the application. Another arbitrarily chosen decision is the
counter for the number of while-loops happening in receiveACK(), which is chosen to be 5.

The main methods that implement the core functionality and that will further be dis-
cussed in this section are the following:

• registerChannel(receiverID)

• sendMessage(id, data, nrOfExpectedReceivers)

• receiveACK(timeout)

• receiveMessage(message. timeout, receiverID)

5.2.1 Registering a Channel

The registering of a channel is implemented by firstly looping with a for-loop through a
receiver array where the receiver IDs are stored. If the receiver ID exists, the operation
is ended with an error operation result because the receiver cannot register again as a
message channel was already assigned to that receiver ID. Another check is also performed
to see if there is an available message channel, and only if there is an available channel,
the registration of the receiver can take place, otherwise, an error operation result will
be returned. If both conditions are fulfilled respectively, the registration will proceed

38

5 Implementation

Figure 5.1: Nassi–Shneiderman diagram of registerChannel method implementation

to happen by registering the ID to the channel, and the receiver ID will then be stored
on the receiver array alongside the channel number which is assigned to it. Then, a
success operation result will be returned to the receiver. This process is described using
a Nassi-Shneiderman diagram in figure 5.1.

5.2.2 Sending a message

The send of a message is implemented by firstly checking the ID of the message. As
per restrictions that were discussed in the previous chapter, this part checks if the first
bit of the ID is a 1, and if that is true, it stores the corresponding message ID and the
expected acknowledgement ID for that message internally. If the ID is valid, the message
is sent to the SWB, which further transmits this message to the message channels. A
while-loop is then initiated, with the condition for the number of expected receivers to
be bigger than 0. This number is given as an input parameter by the sender. Inside
the while-loop, the receive acknowledgement method is called and its operation result is
analysed by a conditional if. If the result is a success, the number of expected receivers is
decreased, otherwise, a timeout is returned. This will happen until the initial condition
of the while-loop is not met, and there are no more expected receivers. This will result

39

5 Implementation

Figure 5.2: Nassi–Shneiderman diagram of sendMessage method implementation

in a break from the while-loop and will return a success operation result to the sender.
This process is described using a Nassi-Shneiderman diagram in figure 5.2.

5.2.3 Receiving an acknowledgement

The receive of an acknowledgement method happens immediately after the message has
been sent for distribution to the SWB. This function is instantiated with a counter loop,
arbitrarily chosen to be 5. A while-loop checks if the counter has already reached 0. If
that is the case the method will return a timeout operation result. If the counter is still
bigger than 0, a request will be made to receive a message from the Acknowledgement
Channel. If there is a message, the logic will then compare the received acknowledgement
ID from the channel to the expected acknowledgement ID. If that is the case, SyncLink
will mark the receiver ID internally as successful, and will return a success operation
result, otherwise it will decrease the counter and restart the loop operation. A break
point is if the receive message request will receive an operation result other than success,
which will immediately break the while loop and return a timeout operation result. This
process is described using a Nassi-Shneiderman diagram in figure 5.3.

40

5 Implementation

Figure 5.3: Nassi–Shneiderman diagram of receiveACK method implementation

41

5 Implementation

Figure 5.4: Nassi–Shneiderman diagram of receiveMessage method implementation

5.2.4 Receiving a message

The receive of a message is implemented by firstly checking if the ID of the receiver is
already stored. If that is true, the channel is then found internally and a request to
receive a message from the assigned message channel is then initiated. The operation
result of this receive message request is then checked if it was successful. If that is true,
an acknowledgement ID is generated by flipping the first bit of the message id to 0, and
together with the receiver ID, the sent to the SWB and eventually from the SWB to
the acknowledgement channel. This will then return a success operation result to the
receiver. This process is described using a Nassi-Shneiderman diagram in figure 5.4.

42

6 Results and Evaluation

This chapter looks at the results of the implementation after being tested and simulated,
discusses possible shortcomings of the system, gives an evaluation of the desired goals,
and concludes with an overview of future work.

6.1 System requirements

As per the requirements discussed in chapter 3, the program should be able to run on any
application that the OUTPOST library and more specifically the OUTPOST - Software
Bus module is able to run. The program is written in C++ and is tested by a modified
simulation example for a housekeeping mechanism originally provided by the DLR.

6.2 Testing

This section outlines the testing procedure used for the SyncLink system.

Testing is performed on a modified version of the existing housekeeping example provided
by the DLR, which instead of using the software bus, uses SyncLink to communicate syn-
chronously. The program is built on Debian, having three separate Debian terminals for
the simulation, the receiver, and the sender. The sender has to toggle the housekeeping,
by using the command "toggle hk" on the terminal.

6.2.1 Failure scenario

In figure 6.1, SyncLink is run on a situation where the receiver has completely failed
and is non-responsive. In terms of simulation, this would mean that the receiver is not
built, and only two terminals are used, the simulation and the sender terminals. The

43

6 Results and Evaluation

Figure 6.1: Simulation without a receiver - a timeout error occurring

expected result would be a timeout coming originally from the receive acknowledgement
method, as the communication fails to receive an acknowledgement message because the
message is not picked up by a receiver. The timeout operation result has the code 8,
as specified on the internal outpost class "outpost::swb::OperationResult", located on
"swb/types.h".

6.2.2 Success scenario

In figure 6.2, SyncLink is run on a situation where the receiver has been available and
has received the message. In terms of simulation, this would mean that the receiver
along the simulation and the sender terminals are built. The expected result would
be a success operation coming originally from the receive acknowledgement function, as
the communication successfully receives an acknowledgement message as the message is
picked up by the receiver on its message channel, and matches the expected receiver
number from the sender. Using prints, on the simulation terminal can be seen the IDs
of the messages. The sender sent a message with an ID 0x8123, with the first bit being
a 1. The acknowledgement for the message received on the acknowledgement channel,
as expected had a reversed first bit to 0 as the ID had the code 0x0123, and matched

44

6 Results and Evaluation

Figure 6.2: Simulation with a success operation result

the expected acknowledgement ID which is calculated and stored internally after the
message is sent to the SWB. The success operation result has the code 0, as specified on
the internal outpost class "outpost::swb::OperationResult", located on "swb/types.h".

6.2.3 Unit testing

In order to assert the correct functionality of the SyncLink class and its methods, the
development process of SyncLink included a continuous manual logging/printing of dif-
ferent values on the Debian terminal for every method, however, this process was not
formalized and integrated into a full-scale automatic build.

45

6 Results and Evaluation

6.3 Evaluation

This section provides an evaluation of the results of SyncLink.

6.3.1 Synchronous communication

As demonstrated in the testing section, the receiver was able to successfully receive
messages using SyncLink, and the sender was able to receive acknowledgements for their
delivery of messages, provided by SyncLink ’s implementation.

6.3.2 Reliability and error mitigation

By internally using a timeout-based system, SyncLink was able to successfully deliver
error operation results to the sender when a timeout had occurred and the message was
not delivered to all receivers. SyncLink also stored the IDs of all the receivers, the number
of the message channel to which they were connected, and the result of delivery, thus
further allowing the sender to know which receiver had failed to receive a message if
needed.

6.4 Future work and extensions

Due to time constraints, some functionalities were not implemented in the system. The
system can be extended to have an internal mechanism for re-sending the messages to
the failed receivers, instead of having the sender send the message again, as well as
having an unsubscribe method for the receivers. The current version of SyncLink is
only good for delivering one message at a time and cannot deal well with subsequent
messages as it cannot distinguish between two messages with the same ID but different
data. A suggestion to solve this problem is to add a checksum for the data. Additionally,
it is currently supporting a 1:n relationship, and the implementation can be extended
to better manage an m:n relationship which at this moment was neither tested nor
implemented. Another interesting problem to solve for future developers is dealing with
late acknowledgements that might arrive after the timeout has occurred.

46

6 Results and Evaluation

6.4.1 Gateway for distributed systems

SyncLink can be extended to work on distributed systems that run on different processors,
connected through a gateway that serves as a link between two or more such systems
that run their own SyncLink and SWB.

6.4.2 Reliable asynchronous communication

SyncLink can have an asynchronous counterpart that can manage the acknowledgements,
and after some time it can deliver an acknowledgement report to the sender, or the sender
running its own thread can check from time to time for the acknowledgement of messages,
but with the highlight that this exchange of information happens asynchronously, instead
of using a blocking - poll or a busy-wait as the synchronous communication of SyncLink
currently does.

47

7 Conclusion

This paper is part of a project at the German Aerospace Center (DLR), who developed an
asynchronous software bus module as part of the OUTPOST library, and this thesis’s ob-
jective is to build a synchronous link system between senders, receivers and the software
bus, that at the same time offers the means for reliability by using a timeout, delivering
error operation results and storing information for failed delivery of messages to receivers.

This paper looked at the required features for this system; researched the available li-
braries and simulation examples; chose an appropriate architecture based on multiple
communication paradigms, and finally, it delivered a basic prototype version.

The current prototype can be further extended. A gateway for distributed systems can
be built. Another reliable asynchronous version can be implemented.

48

Bibliography

[1] Chen Chen, Yoav Tock, Sarunas Girdzijauskas: BeaConvey: Co-Design of
Overlay and Routing for Topic-based Publish/Subscribe on Small-World Networks.
[Online]. 2018. – URL https://www.researchgate.net/publication/

325884886_BeaConvey_Co-Design_of_Overlay_and_Routing_for_

Topic-based_PublishSubscribe_on_Small-World_Networks. – Ac-
cessed: 2022-02-12

[2] Deutsche Zentrum für Luft- und Raumfahrt e.V.: Eu:CROPIS (Euglena
and Combined Regenerative Organic-food Production in Space). [Online]. 2016.
– URL https://directory.eoportal.org/web/eoportal/satellite-

missions/e/eu-cropis. – Accessed: 2022-02-12

[3] Deutsche Zentrum für Luft- und Raumfahrt e.V.: Institute
of Space Systems Status Report 2007–2016. [Online]. 2016. – URL
https://www.dlr.de/irs/en/Portaldata/46/Resources/2015_

dokumente/DLR-RY_Status_Report_2007-2016_Part_I.pdf. – Ac-
cessed: 2022-02-12

[4] Deutsche Zentrum für Luft- und Raumfahrt e.V.: DLR at a
glance. [Online]. 2022. – URL https://www.dlr.de/content/en/

downloads/publications/brochures/2019/dlr-at-a-glance-

2019.pdf?__blob=publicationFile&v=5. – Accessed: 2022-01-26

[5] Deutsche Zentrum für Luft- und Raumfahrt e.V.: Institute of Space
Systems. [Online]. 2022. – URL https://www.dlr.de/irs/PortalData/

46/Resources/2015_dokumente/Institutsbroschu_re_Bremen_ENG_

ONLINE_251115.pdf. – Accessed: 2022-02-16

[6] Deutsche Zentrum für Luft- und Raumfahrt e.V.: Martian moon mission
MMX. [Online]. 2022. – URL https://www.dlr.de/rb/desktopdefault.

aspx/tabid-13789/. – Accessed: 2022-02-16

49

Bibliography

[7] Fabian Greif, Jan-Gerd Meß: Introduction to OUTPOST. [Online]. 2020. –
Accessed: 2022-01-26

[8] Frank Dannemann, Fabian Greif: Software Platform of the DLR Compact
Satellite Series. [Online]. 2014. – URL https://elib.dlr.de/89344/. – Ac-
cessed: 2022-01-29

[9] GitLab Inc.: About GitLab. [Online]. 2022. – URL https://about.gitlab.

com/. – Accessed: 2022-04-16

[10] GitLab Inc.: Git. [Online]. 2022. – URL https://git-scm.com/. – Accessed:
2022-04-16

[11] Jo-Mei Chang, Nicholas F. Maxemchuk: Reliable Broadcast Protocols. [On-
line]. 1984. – URL https://dl.acm.org/doi/abs/10.1145/989.357400.
– Accessed: 2022-02-12

[12] Mamillapalli Sudhakar, Belair Stephen P.: Reliable Multicast Communica-
tion. – URL https://www.researchgate.net/publication/302598559_

Reliable_multicast_communication

[13] Microsoft Corporation: VS Code. [Online]. 2022. – URL https://code.

visualstudio.com/. – Accessed: 2022-04-16

[14] Software in the Public Interest, Inc.: Debian. [Online]. 2022. – URL
https://www.debian.org/. – Accessed: 2022-04-16

[15] Visual Paradigm: What is Use Case Diagram? [Online]. 2022.
– URL https://www.visual-paradigm.com/guide/uml-unified-

modeling-language/what-is-use-case-diagram/. – Accessed: 2022-03-
01

50

A Glossary

• SWB - Software Bus

• SyncLink - Synchronous Link System

• DLR - Deutsches Zentrum für Luft- und Raumfahrt e.V.

• OUTPOST - Open modUlar sofTware PlatfOrm for SpacecrafT

• ACK - Acknowledgement

• ID - Identification

51

B Source Code

1

2 #ifndef OUTPOST_SYNCLINK_H

3 #define OUTPOST_SYNCLINK_H

4

5 /*
6 * Authors:

7 * - 2021-2022, Kristi Kola (DLR + HAW HAMBURG)

8 */

9 #include "bus_channel.h"

10 #include "bus_handler_thread.h"

11 #include "types.h"

12

13 #include <outpost/swb/software_bus.h>

14 #include <outpost/utils/container/container.h>

15 #include <outpost/utils/container/shared_buffer.h>

16 #include <stdint.h>

17 #include <type_traits>

18

19 namespace outpost

20 {

21 namespace utils

22 {

23 class SharedBufferPoolBase;

24 class ConstSharedBufferPointer;

25

26 template <typename T>

27 class ReferenceQueueBase;

28 } // namespace utils

29

30 /***/

31

32 namespace swb

33 {

34

35 template <typename IDType>

52

B Source Code

36 class SyncLink

37 {

38 public:

39 /**
40 * Constructor initialized with a software bus and channels.

41 */

42 SyncLink(outpost::swb::SoftwareBus<IDType>& bus) :

43 mSoftwareBus(bus)

44 {

45 acknowledgmentChannel.getFilter().setRange(0x0000,0x7FFF);

46 bus.registerChannel(acknowledgmentChannel);

47 };

48

49 /**
50 * Destructor

51 */

52 virtual ~SyncLink() = default;

53

54 /**
55 * Receiver registers a Multicast Link channel.

56 */

57 outpost::swb::OperationResult

58 registerChannel(const IDType id);

59

60 /**
61 * Wrapper to sendMessage() function on the software bus.

62 * @param msg is sent to the software bus.

63 */

64 outpost::swb::OperationResult

65 sendMessage(const IDType id, const outpost::Slice<const uint8_t>& data,

uint32_t& nrOfReceivers);

66

67 /**
68 * A request called by the receiver to retrieve a message if there is a

message on the

69 * message channel.

70 */

71 outpost::swb::OperationResult

72 receiveMessage(outpost::swb::Message<IDType>& message, outpost::time::

Duration timeout, uint8_t receiverID);

73

74 protected:

75 /**
76 * Checks an incoming message for validity.

53

B Source Code

77 * \return Returns true if the message is valid for sending, false

otherwise.

78 */

79 virtual bool

80 valid(IDType, const outpost::Slice<const uint8_t>&)

81 {

82 return true;

83 }

84

85 /**
86 * Checks whether an incoming message is a message or an acknowledgement.

87 * If it is a message, then it is stored @param mStoredID, and a message

is

88 * sent to the swb.

89 * If it is an acknowledgement, then it is stored on @param mStoredAck

90 *
91 */

92 outpost::swb::OperationResult

93 storeID(const IDType id, const outpost::Slice<const uint8_t>&);

94

95 //function that returns the correct index mReceiversArray channel number;

input: Receiver’s ID

96 int

97 findIndex(const IDType id);

98

99 /**
100 * Checks if the ID if it is an ACK

101 * If first bit of ID = 1 => message,

102 * else ID = 0 => ACK

103 */

104 bool

105 checkMessage(const IDType id);

106

107 /**
108 * Flips the first bit of the ID, and stores it at mStoredAck.

109 */

110 void

111 storeAckID(const IDType id);

112

113 /**
114 * Receives an ACK from the Acknowledgment Channel on the SWB

115 * Waits until the receiver has received the message and an ACK has been

generated.

116 */

54

B Source Code

117 outpost::swb::OperationResult

118 receiveACK(outpost::time::Duration timeout = outpost::time::Seconds(3));

119

120 /**
121 * Sends an acknowledgement to the Swb

122 */

123 outpost::swb::OperationResult

124 sendACK(const IDType id, uint8_t receiverID);

125

126 outpost::swb::SoftwareBus<IDType>& mSoftwareBus;

127 BufferedBusChannelWithMemory<10 /*size of queue*/, IDType, RangeFilter<

IDType>> acknowledgmentChannel;

128

129 static constexpr uint32_t mMaxNumberOfReceivers = 5;

130 BufferedBusChannelWithMemory<10 /*size of queue*/, IDType, RangeFilter<

IDType>> messageChannelArray[mMaxNumberOfReceivers];

131

132 private:

133 uint32_t mStoredID;

134 uint32_t mStoredAck;

135 uint32_t mAckCounter;

136 uint32_t mExpectedNrOfReceivers;

137 uint32_t mNumberOfAvailableChannels = 5;

138 uint32_t mReceiversArray[mMaxNumberOfReceivers];

139 bool mHasReceivedMessage[mMaxNumberOfReceivers];

140 }; //Class SyncLink

141

142 } //namespace SyncLink

143 } //namespace Outpost

144

145 #include <outpost/swb/sync_link_impl.h>

146

147 #endif // SYNCLINK_SENDER_IMPL_H

Listing B.1: sync_link.h

1

2 #ifndef SYNCLINK_IMPL

3 #define SYNCLINK_IMPL

4 /*
5 * Authors:

6 * - 2021-2022, Kristi Kola (DLR + HAW HAMBURG)

7 */

8 #include <outpost/utils/container/reference_queue.h>

9 #include <outpost/utils/container/shared_object_pool.h>

55

B Source Code

10 #include <outpost/utils/container/shared_object_pool.h>

11 #include <iostream>

12

13 namespace outpost

14 {

15 namespace swb

16 {

17 template <typename IDType>

18 outpost::swb::OperationResult

19 SyncLink<IDType>::registerChannel(const IDType id)

20 {

21 for (uint32_t i = 0; i < mMaxNumberOfReceivers; i++)

22 {

23 if (mReceiversArray[i] == id)

24 {

25 return outpost::swb::OperationResult::invalidState;

26 }

27 }

28

29 if (mNumberOfAvailableChannels > 0)//check for double id of receiver

30 {

31 --mNumberOfAvailableChannels;

32 messageChannelArray[mNumberOfAvailableChannels].getFilter().

setRange(0x8000, 0xFFFF);

33 mSoftwareBus.registerChannel(messageChannelArray[

mNumberOfAvailableChannels]);

34 mReceiversArray[mNumberOfAvailableChannels] = id;

35 return outpost::swb::OperationResult::success;

36 }

37 else

38 {

39 return outpost::swb::OperationResult::invalidState;

40 }

41 }

42

43 //function that returns the correct index mReceiversArray channel number;

input: Receiver’s ID

44 template <typename IDType>

45 int

46 SyncLink<IDType>::findIndex(const IDType id)

47 {

48 for (int i = 0; i < mMaxNumberOfReceivers; i++)

49 {

50 if (mReceiversArray[i] == id)

56

B Source Code

51 {

52 return i;

53 }

54 }

55 return -1;

56 }

57

58 template <typename IDType>

59 outpost::swb::OperationResult

60 SyncLink<IDType>::sendMessage(const IDType id, const outpost::Slice<const

uint8_t>& data, uint32_t& nrOfReceivers)

61 {

62 //Call checkMessage() and assign the output to a bool variable

63 bool messageIsID = SyncLink<IDType>::checkMessage(id);

64

65 if (messageIsID == true)

66 {

67 mSoftwareBus.sendMessage(mStoredID, data);

68

69 while(nrOfReceivers > 0)

70 {

71 outpost::swb::OperationResult res = SyncLink<IDType>::

receiveACK();

72 if (res == outpost::swb::OperationResult::success)

73 {

74 --nrOfReceivers;

75 }

76 else if(res == outpost::swb::OperationResult::timeout)

77 {

78 return res;

79 }

80 }

81 return outpost::swb::OperationResult::success;

82 }

83 else

84 {

85 return outpost::swb::OperationResult::sendFailed;

86 }

87 }

88

89 template <typename IDType>

90 bool

91 SyncLink<IDType>::checkMessage(const IDType id)

92 {

57

B Source Code

93 IDType tmp = id;

94 /*
95 Check if first bit is not a 0

96 Equation:

97 byte * nr of bits in byte - 1 because starts counting from 0

98 */

99 if ((tmp &= (1 << (sizeof(IDType) * 8 - 1))) != 0)

100 {

101 mStoredID = id;

102 storeAckID(id);

103 return true;

104 }

105 else

106 {

107 return false;

108 }

109 }

110

111 template <typename IDType>

112 void

113 SyncLink<IDType>::storeAckID(const IDType id)

114 {

115 //toggle first bit of id and store it as an ack

116 mStoredAck = id ^ (1 << (sizeof(id)*8 - 1));

117 }

118

119 template <typename IDType>

120 outpost::swb::OperationResult

121 SyncLink<IDType>::receiveACK(outpost::time::Duration timeout)

122 {

123 uint8_t counter = 5;

124

125 while (counter > 0)

126 {

127 outpost::swb::Message<IDType> m;

128 if(acknowledgmentChannel.receiveMessage(m, timeout) == outpost::

swb::OperationResult::success)

129 {

130 if(m.id == mStoredAck)

131 {

132 if (m.buffer[0] < 5)

133 {

134 mHasReceivedMessage[m.buffer[0]] = true;

135 return outpost::swb::OperationResult::success;

58

B Source Code

136 }

137 else

138 {

139 return outpost::swb::OperationResult::invalidMessage;

140 }

141 }

142 else

143 {

144 --counter;

145 }

146 }

147 else

148 {

149 break;

150 }

151 }

152 return outpost::swb::OperationResult::timeout;

153 }

154

155 template <typename IDType>

156 outpost::swb::OperationResult

157 SyncLink<IDType>::receiveMessage(outpost::swb::Message<IDType>& message,

outpost::time::Duration timeout, uint8_t receiverID)

158 {

159

160 outpost::swb::OperationResult res;

161 //call the new findIndex function. Return error message to receiver

in case it is not true.

162 int channelNumber = findIndex(receiverID);

163 if (channelNumber >= 0 && messageChannelArray[channelNumber].

receiveMessage(message, timeout) == outpost::swb::OperationResult::

success)

164 {

165 res = sendACK(message.id, channelNumber);

166 }

167 else

168 {

169 res = outpost::swb::OperationResult::noMessageAvailable;

170 }

171 return res;

172 }

173

174 template <typename IDType>

175 outpost::swb::OperationResult

59

B Source Code

176 SyncLink<IDType>::sendACK(const IDType id, uint8_t receiverID)

177 {

178 const IDType ackID = id ^ (1 << (sizeof(id)*8 - 1));

179 uint8_t buffer[1] = {receiverID};

180 outpost::Slice<uint8_t> slice(buffer);

181 return mSoftwareBus.sendMessage(ackID, slice);

182 }

183

184 } //namespace swb

185 } //namespace outpost

186

187 #endif //SYNCLINK_IMPL

Listing B.2: sync_link_impl.h

60

Declaration

I declare that this Bachelor Thesis has been completed by myself independently without
outside help and only the defined sources and study aids were used.

City Date Signature

61

