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bereits bei der Rücktransformation von Laminatparametern in diskrete Lagenaufbauten 
Anforderungen bezüglich kontinuierlicher Lagen definiert werden, führt diese Methode das 
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Abstract 
This thesis introduces an innovative laminate blending recovery method for effectively blending 
independent laminate sections. Unlike conventional approaches, which involve defining 
blending constraints during the retransformation of lamination parameters into discrete stacking 
sequences, this method performs blending as a post-processing step. The key concept involves 
creating a blending matrix to capture positional information about potential continuous plies 
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possibilities with an established search algorithm. Through multiple examples, the author shows 
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1 Introduction

Climate change has become one of the most pressing challenges of our time. The aviation
industry, a key player in global transportation, has been identified as a major contributor
to greenhouse gas emissions [20]. The dire consequences of climate change necessitate a
paradigm shift in the way we conceptualize and engineer aircraft, pushing researchers and
engineers to explore sustainable alternatives and environmentally friendly solutions.

Recognizing the significant environmental impact of airplanes, researchers are actively ex-
ploring new configurations and propulsion systems to minimize ecological consequences.
This quest for more sustainable air travel extends to novel aircraft designs, including elec-
tric and hybrid-electric propulsion systems, aimed at reducing emissions and enhancing
operational sustainability. Additionally, the aviation industry is embracing sustainable
aviation fuels (SAFs), derived from renewable sources. Integrating SAFs into aircraft
operations aligns with the industry’s commitment to mitigating its carbon footprint, fos-
tering a greener future for air travel.

Simultaneously, a crucial aspect of this transformative journey involves structural opti-
mization to achieve lighter aircraft components. Recognizing that every kilogram matters
in the context of fuel efficiency, engineers are focusing on innovative ways to design and
fabricate structurally sound yet lightweight components. The objective is to strike an op-
timal balance between structural integrity and weight reduction, ensuring that the aircraft
remains robust while minimizing its overall mass.

The evolution of aircraft design has seen a significant shift towards the use of advanced
materials, particularly carbon fibre-reinforced polymers (CFRP). CFRPs are a material
structure consisting of layers of fibres, embedded in a matrix. They offer a high strength-
to-weight ratio, making them lightweight yet strong. They provide excellent corrosion
resistance and fatigue resistance, which makes them ideal for applications in aerospace,
automotive, and other industries where durability and performance are crucial [33]. As
recently as the 1990s, the proportion of carbon fibre-reinforced plastics in passenger air-
craft was only ten per cent. Today’s aircraft types such as the A350 XWB and Boeing
Dreamliner 787 already consist of more than 50 per cent carbon fibre-reinforced plastics
[4]. The composites are mainly used in the aircraft’s fuselage and wings but are now also
tested to be incorporated in new aircraft turbines such as the Rolls-Royce UltraFan [30].
The extensive incorporation of CFRPs marks a significant transformation in the aviation
industry, underscoring the crucial role of lightweight materials in attaining improved fuel
efficiency and overall sustainability.
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2 Literature Survey

The presented literature survey includes publications with the state of the art of current
implementations on how to achieve blending between several laminate sections. Reviewing
these publications also serves to identify specific criteria made by the authors to define
blending. A collection of these criteria can be used to assess the proposed method of
evaluating blended laminates.

In 2001, Kristinsdottir et al. [8] introduced the term Blending in the context of designing
manufacturable laminate structures where loads vary across the structure. In the paper,
a method was developed using a ply-add-and-drop technique [21].
In the same year, Liu and Haftka [10] published a paper on establishing continuity be-
tween two adjacent laminates by applying continuity constraints in the design process.
They proposed two continuity measures namely the composition continuity measure and
the stacking sequence continuity measure. The first measure examines two adjacent lam-
inates only by the appearance of common layers in relation to the total thickness of one
laminate. The second one examines the laminates further by counting possible continuous
plies and setting the overall thickness of these possible plies in relation to the thickness
of one laminate.
After that, the meaning of blending, designing manufacturable laminate structures, re-
mained the same but scientists incorporated different criteria on how to accomplish these
design tasks and pushed the boundaries for perfecting the laminates.
Liu and Haftka and later Soremekun et al. [25] implemented a genetic algorithm in their
optimization process, called DARWIN, to retrieve blended laminates. Genetic algorithms
are part of the evolutionary algorithms and are based on selection and genetics. In theory,
an artificial population undergoes an evolutionary process in which the individuals are
evaluated based on their fitness for a certain criterion. Through mutation and crossover,
descendants are produced and integrated back into the main population [15],[23]. This
algorithm performs reasonably well for this kind of solution finding as the approach fo-
cuses mainly on the discrete combinatorial nature of blending [21].
One drawback of designing fully blended laminate structures with these genetic algorithms
was the high computational cost [3]. Adams et al. [1] and Seresta et al. [24] adapted this
method and implemented additionally a guiding stack from which all laminates in a struc-
ture are obtained by deleting a contiguous series of outermost or innermost plies [3]. The
strategy was then known as Inner and Outward Blending (figure 2). Using a guide for
the stackings further simplifies the blending problem and reduces the computational cost
as it greatly reduces the design space [3].
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Figure 2: Inwardly and Outwardly Blended Laminate [3]

Optimizing to a fully blended structure comes with one disadvantage, which is a possible
increase in the overall weight due to the inflexibility of the layup for each section [3]. As
a guide always represents a possible layup for every section in the laminate structure, it
is obvious that each section won’t reach its optimum with regards to the number of layers
and stiffness value, thus increasing the number of layers to achieve the minimum stiffness
is needed.
By selecting multiple guides for the structure, this inflexibility can be reduced. Zeng et al.
[35] proposed a multiple-template-blending method, where a template refers to the previ-
ous explained guide. The difference between a single-template-blending and a multiple-
template-blending is displayed in figure 3.
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Figure 3: Multiple-template-blending [35]

Up to 2016, the most commonly used algorithm to solve the blending problem was the
genetic algorithm as a representative for metaheuristic algorithms. In 2016, Macquart et
al. [13] published a paper that featured a method for a gradient-based optimization using
lamination parameters. In the classical laminate theory (CLT), the laminate stiffness is
represented with the ABD-Matrix as the global stiffness of the laminate, which holds the
extensional stiffness matrix A, the bending stiffness matrix D and the extension-bending
matrix B. The matrix entries of the ABD-matrix are built upon the reduced stiffnesses
of each single ply that are transformed from a local to a global coordinate system. The
formulation of the first entry in the extensional matrix is given in equation 2 (assuming
all plies have the same material and thicknesses). For each layer k, information about
the ply angle and its thickness is combined with the material invariants U . The material
invariants are calculated from the single, non-transformed material stiffnesses Q (equation
1).

U1 =
1

8
(3Q11 + 3Q22 + 2Q12 + 4Q66)

U2 =
1

8
(Q11 +Q22)

U3 =
1

8
(Q11 +Q22 + 2Q12 + 4Q66)

(1)
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A11 = U1

N∑
k=1

(zk − zk−1) + U2

N∑
k=1

cos(2θk)(zk − zk−1) + U3

N∑
k=1

cos(4θk)(zk − zk−1) (2)

A11 can also be defined with the lamination parameters V , which is presented in following
equation.

A11 = U1T + U2V1 + U3V2 (3)

This formulation smears the ply angle and the thickness for each individual ply to a lam-
inate that is defined by its total thickness, the material invariants and the lamination
parameters. The full relation between the ABD-Matrix entries and the lamination pa-
rameters can be found in the appendix C.1. The initially non-linear relationship between
laminate stiffness and a discrete stacking sequence becomes linear when replacing the
trigonometric functions with the lamination parameters so that the lamination parame-
ters can be used as continuous and dimensionless design variables within a gradient-based
optimization process [31]. This optimization process offers a less computationally costly
approach than the heuristic and metaheuristic search algorithms. Until the publication
of the paper from Macquart et al., lamination parameters had already been used in
multi-step optimizations that split the blending problem into a continuous and discrete
optimization step. However, there is a big design space discrepancy between the con-
tinuous and discrete optimization step, which results in a relevant performance loss [13].
Applying blending constraints during the continuous optimization instead, the method in
the published paper aimed to reduce the performance loss observed between optimization
levels. The blending constraints quantify the change in lamination parameters from one
panel to another due to ply drops. The constraint formulation guarantees that no blended
solution exists in case the constraint is not fulfilled.
A more recent research from Scardaoni et al. [21] and Panettieri et al. [17] focuses on the
application of polar parameters instead of laminate parameters to define the blending con-
straints for an optimization process. In this approach, polar parameters are derived from
the First-order-shear-deformation-theory (FSDT) that formulates the stiffness tensor of
a laminate in the form of

Klam =

 A B O

D O

sym H

 (4)

where A is the membrane stiffness tensor of the laminate, D is the bending stiffness tensor,
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H is the out-of-plane shear stiffness tensor, and B is the membrane/bending coupling
stiffness tensor. The FSDT is a generalisation of the CLT. It includes the transverse
shear deformation for a plate.
While both laminate parameters and polar parameters highlight some physical aspects of
the laminate that cannot be easily caught when using the Cartesian representation, the
laminate parameters have one drawback over the polar parameter. Laminate parameters
are not tensor invariants and do not have a simple and immediate physical meaning.
Conversely, polar parameters are true tensor invariants and have an immediate physical
meaning, which is linked to the different (elastic) symmetries of the stiffness tensors of the
laminate [17]. It has been shown that the use of polar parameters eliminates redundant
mechanical properties, and eases expressing changes in reference frames which leads to the
design of laminates with enhanced mechanical responses beyond traditional approaches
reliant on symmetric, balanced stacks and limited layer orientations [14].
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3 Research gap

The following section summarizes some of the most relevant points from the literature
review to then introduce the novelty approach of this work from which the objectives,
scope and research question can be derived.

From reviewing the literature about blending implementations, it can be identified that for
structural optimizations, a gradient-based approach for top-level optimizations is favoured
due to the higher efficiency compared to non-gradient-based algorithms. But as stated,
these optimization methods need continuous design variables which enforces a transfor-
mation of the stiffness description with the ABD matrix into laminate parameters. Lam-
ination parameters can establish a non-linear relationship between the laminate stiffness
and its discrete stacking that allows this kind of continuity.
Using them in the optimization, however, comes with the expense of information loss
about the real stacking sequence of the laminate. It is therefore necessary to perform a
retransformation of the lamination parameters back to a discrete stacking sequence. This
retransformation is an ongoing challenge and researchers tested various methods that in-
clude genetic algorithms and particle swarm optimizations [27],[2].
While the blending constraints in the top-level optimization shall ensure that retrans-
formed laminate stackings are blendable to a unified structure, a methodology needs to
be devised to guarantee that the laminates, once retransformed, also demonstrate a cer-
tain blending with continuous plies.
Guide-based approaches offer the advantage that perfect blending is automatically gener-
ated when such a method is implemented. A perfect blending is reached if the structure is
constructed with the least possible amount of plies. This feature is advantageous for trans-
ferring the loads acting on the structure between the individual sections. The resulting
inflexibility for individual stacking sequences can be reduced with the multiple-template-
blending approach from Zeng et al. [35], but the fundamental basis that layers must be
taken from a guide remains.
To further reduce the inflexibility and to better match the stiffness requirements for the
individual sections to avoid adding plies and therefore weight in a post-processing step,
it would be beneficial to separate the retransformation of the lamination parameters and
the blending procedure. Noval layup retrieval algorithms, like the one from Sprengholz
et al. [27], are able to minimize the discrepancy between desired and retrieved stiffness
values from laminates to a minimum. The hypothetical structure in figure 4 shall illus-
trate the shift from a perfectly blended structure to a non-perfectly blended one where
the stacking sequence for sections one and four is modified in favour of their desired stiff-
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4 Blending method

This section explains the main idea of the new implementation of blending, beginning
with a little introduction dealing with the motivation for it. To better understand the
method, a blending problem between only two adjacent sections is discussed.

0
90
0
45
90
45

90
0
90
45
90
0

Figure 5: Blending two laminate sections

4.1 Combinatorial problem

A straightforward approach for blending the two layups in figure 5 could be established
with combinatorial methods and filtering. For that, every possible combination of plies
between the left and the right layup could be identified. Through permutations, these
combinations could be varied in their order of appearance, which would create different
ways of blending the two layups. However, by simply permutating different combinations,
non-realisable blended sections would be created due to the crossing of plies or selecting
plies twice for the same continuous ply. A filter process must therefore be performed after
the permutation to filter out non-realisable blended sections.
Achieving blended sections with this method, however, has two main drawbacks. One,
the permutative nature of the method causes a high number of solutions. Considering the
problem in figure 5, one must find for each ply in the left layup, possible plies in the right
layup, then select one of these plies and finally perform the permutations and filter the
results. The resulting number of solutions, that must be filtered, can be calculated with
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equation 5, where b is the number of solutions, n is the number of plies in the left layup
and mi is the number of possible in the right layup for each ply in the left layup.

b = n!
n∏

i=1

mi (5)

And secondly, only a small number of the solutions can actually be realised in a man-
ufacturing process. For the above-mentioned blending problem, 720 solutions must be
filtered to only 10 realisable solutions. For small laminate sizes, the found solutions are
manageable to filter. Considering, however, a laminate with 12 plies, the factorial part of
the equation already extends the number of solutions to 479001600.

4.2 Representing blending solutions in matrix

The new method shall avoid the two problems stated in the previous sections by estab-
lishing a representation of all possible continuous plies between two adjacent layups in
the form of a matrix. Figure 6 represents the blending problem from figure 5.

45 90 45 0 90 0

0 0 0 0 1 0 1

90 0 1 0 0 1 0

45 1 0 1 0 0 0

90 0 1 0 0 1 0

0 0 0 0 1 0 1

90 0 1 0 0 1 0

Figure 6: Blending representation

In figure 6, the numbers to the left of the matrix are the ply angles from the left layup from
figure 5 from the top of the layup to the bottom. The numbers on top of the matrix from
left to right equal the ply angles from the right layup. The matrix itself now displays every
possible combination of plies between the left and the right layup, which is indicated by a
one in the field. For example, the matrix element [1, 4] (zero-based numbering) indicates
that the second ply from the left layup can be combined with the fifth ply from the right
layup resulting in a continuous 90 degree ply from left to right.
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4.2.1 The counting method

To extract various blending solutions from the matrix, the matrix must be traversed by
selecting several ’ones’ on the way. Figure 7 shows several paths through the matrix.

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

Figure 7: Different blending solutions

Fields in yellow represent possible starting points for traversing the matrix. The dark
colour fields indicate that a combination is selected for the overall blending solution be-
tween the two layups. When selecting one of these fields, the search for other combina-
tions must continue from the next row and the next column. In indices terms, that means:
When finding a combination at [i, j], the search continues from [i+1, j+1]. In principle,
it would be allowed to then select one of all other combinations which fulfil row >= (i+1)

and column >= (j + 1). Though, it would be wise to select ones near [i + 1, j + 1], as
this increases the chances of selecting more combinations on the pass-through. Selecting
combinations at i or j is not allowed, as this would mean that either the ply from the left
layup or the ply from the right layup is used twice for a combination.
Figure 8 displays what each path would symbolize as a real blended solution with layups.
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Sparse matrices are characterized by having mostly zero-value elements. Substantial mem-
ory requirement reductions can be also realized by storing only the non-zero entries.
To convert multiple stackings to sparse stackings, all existent entries in the stackings must
be identified. In case, a group of stackings differs in length, the longest array (layup with
the most amount of plies) must also be identified. The shape of the sparse matrix is set
to n×m where n is equal to the number of stackings and m is equal to the length of the
longest array multiplied by the number of existent entries in the stackings. The sparse
matrix can be visually grouped into several sections each representing the stackings where
only one specific ply angle is marked. Essentially, the stackings are hereby divided into
their constituent parts.
Now, it is possible to perform a matrix multiplication with two sparse vectors, taken from
the sparse matrix, to find possible combinations of plies between two layups. In figure 9,
a matrix multiplication with the sparse vectors that represent the layups from figure 5 is
shown.

0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0

1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0

0 45 90

0

45

90

Figure 9: Multiplication of two sparse vectors

In each coloured section, a non-zero entry indicates that a ply from the left section can be
continued to the right. The sub-row and sub-column show at which position the individual
plies are located. To create the blending matrix from figure 6, the coloured submatrices
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graphs, however, restrict the traversing. There is only a connection from A to B but
not vice versa. Multigraphs come in handy when weights are assigned to the edges of a
graph. Weights are especially useful when there is more than one connection between the
vertices but the connections differ. An example of weighted graphs could be networks
representing the highway between cities. In some cases, there is more than one way to
reach certain cities from other cities. The weights can then represent the length of the
routes. The network map of a metro, however, is typically an undirected graph. Metros
drive normally in two directions and the distances between the metro stations are the
same, which makes assigning weights to the edges redundant.
A classic way of representing graphs for further use is through an adjacency list. An ad-
jacency list collects for every node its possible neighbours. Depending on the connection,
nodes can appear twice as a neighbouring node, indicating that there is more than one
connection. For the undirected multigraph in figure 10, the adjacency list can be seen in
the following listing. In this case, the ’list’ is actually a Python dictionary.

Listing 1: Adjacency list

1 ad j a c en cy_ l i s t =
2 {
3 A: [B, D, D] ,
4 B: [A, C] ,
5 C: [B, D] ,
6 D: [C, A, A]
7 }

For directed graphs, only the nodes that can be reached from the respective node are
listed in the list for the respective node.
The task at hand is now to convert the blending matrix into a graph. As discussed in
section 4.2.1, the goal is to traverse the matrix by selecting non-zero entries on the pass-
through. By defining the non-zero entries from the matrix as nodes in the graph, one
can instead search through the graph to find a solution for the blending of two layups by
travelling from node to node and storing the path on the way.
When traversing through the blending matrix, it is mandatory that when selecting a
combination, the search must continue in the second row and second column. This means
that for every node, i.e. every non-zero entry in the matrix, the neighbours for a node
could be all non-zero entries which appear after the ith row and jth column. This, however,
would result in unreasonable complex graphs because the graphs would contain paths that
would skip certain combinations. The problem is illustrated in figure 11. All theoretical
neighbouring nodes for the node (2,0) (coloured yellow) are coloured green and red. It
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4.3.2 The search algorithm

To find now multiple blending solutions in that graph, a graph traversal algorithm must
be applied. These algorithms are essential tools in computer science for exploring the
structure of graphs. Two of the more common ones are the depth-first-search (DFS) and
the breadth-first-search (BFS). Both belong to the uninformed search algorithms which
are characterised by avoiding any heuristics for finding a solution. Given a source and a
target, the algorithms explore the graph, each in their own way.
In graph theory, nodes are often further described by the position inside the graph relative
to a source or root node, known as the level. The level indicates, how far the node is from
the source node. In figure 13, the nodes are positioned horizontally to indicate the different
levels to the source node 0. It can be seen that the BFS and the DFS differ in reaching
certain levels of the graph timewise.
The BFS starts from the source and investigates first every neighbour that the source
has. Then, the search continues at the first neighbour by analyzing its neighbours. After
that, the search returns to the second neighbour from the source and continues there. In
other words, the BFS analyzes the nodes level by level.
On the other hand, the DFS tries to explore the depth of the graph by continuously
reaching deeper into the graph until there are no neighbours for a certain node. The
search then backtracks to the last node with an unvisited neighbour and continues to
explore the graph from there.

Figure 13: BFS and DFS [18]

In general, both search algorithms need the same amount of time to explore the graph,
which is referred to as the time complexity of the search algorithm. Though, the BFS can
be advantageous when the target node for a search is located closer to the source node,
whereas the DFS is expected to find target notes faster if they lie deeper in the graph.
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It must be also mentioned that the space complexity (required space on memory) for a
BFS is greater due to its implementation. In most cases, the BFS uses a variable called
queue. The queue determines which node shall be visited next after the current node.
When reaching a new unvisited node, the queue is append by the neighbours of that node
to the end of the queue. But the next node is always the first node in the queue. This
ensures that each level is analyzed after each other. Storing the queue, however, is the
drawback of the algorithm as complex graphs cause a long queue.
The DFS is often implemented as a recursive function. A recursive function calls itself
inside its definition. A recursion happens every time, the search dives on level deeper into
the graph. In contrast to the BFS, the DFS doesn’t need a queue to proceed with the
search. Below, a Python code snippet for a DFS function is given. The function searches
for every path from a source to a destination.

Listing 2: DFS in Python

1 def DFS( ad j a c ency_ l i s t , source , d e s t i n a t i on , path ) :
2 i f ( s ou r c e == de s t i n a t i o n ) :
3 a l l p a t h s . append ( copy . deepcopy ( path ) )
4 else :
5 for adjacent_node in ad j a c en cy_ l i s t [ s ou r c e ] :
6 path . append ( adjacency_node )
7 DFS( ad j a c ency_ l i s t , adjacency_node , d e s t i n a t i on

, path )
8 path . pop ( )

In the for-loop, which loops over every adjacent node (neighbours) of the current node,
the DFS function is called within itself.

To search the graph created from the blending matrix, the DFS method is chosen. The
smaller space complexity is important when analyzing big graphs. It is further advanta-
geous that the method traverses the graph in a vertical direction which simplifies storing
the different blending solutions. In the code snippet (listing 2), it can be seen that the
presented DFS always holds a record of the current path. So when a valid blending so-
lution is found, the current path, which represents this blending solution, can be easily
stored. For example in figure 13, the DFS can find the path [0, 1, 3]. After that, the last
entry is removed from the path and the search continues at node 1 to find node 4. Node
4 is appended to the path and a second solution path is found. The nodes 0 and 1 remain
permanently in the list during this time.

Both methods need source- and destination nodes. Finding source nodes is comparable

Blending method 19



to the Selecting-neighbouring-nodes problem. Source nodes are technically all nodes that
directional wise are not adjacent to other nodes, i.e. only have adjacent nodes. Referring
back to the base example from figure 5 and 12, the yellow mark nodes are source nodes
and technically also the node (0, 5). While it would be in theory correct to select these
nodes as source nodes, this would also mean that the search method must be repeatedly
initiated for every source. To initiate the search only once, an additional master source
node is added above the source nodes (figure 14).

Figure 14: Graph with master source node

As the master source node is not part of the solution, it is not appended to the path
variable.
The destination (target) nodes are all nodes which don’t have adjacent nodes. These
nodes can be easily identified from the adjacency list.

4.4 Directing the search for continuous plies

While the search method for finding continuous plies is able to find all possible blending
solutions between two adjacent sections, there are applications where finding all solutions
is not required and it is sufficient to find only blending solutions with the most number
of continuous plies. Depending on the layups, layup combinations with up to 25 plies
can generate around 3 million blending solutions and adding only a small amount of plies
can easily double the number of solutions. When searching for continuous plies within
a structure, the method therefore should prioritize blending solutions between sections
with more continuous plies, gradually transitioning to those with fewer continuous plies.
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Translating this to the graph object representing blending solutions, longer paths shall be
found first and shorter paths later on in the search.
In general, the DFS code in listing 2 can not be modified to reliably find the paths in
the order of their length. However, it is still possible to influence the search. In line 5
(listing 2), the for-loop loops over every adjacent node of the current node. By sorting
the adjacent nodes before looping over them, one can choose, which adjacent node can be
selected first. As already mentioned in section 4.2.1, when selecting a combination in the
blending matrix, the next combination should be close to the current one, as this increases
the chances of selecting more combinations in one path. By calculating the distance from
every combination to every possible other combination, one can sort these combinations
based on their relative distance. For the proposed method, the sorting part is integrated
into the build-up of the adjacency list for the graph of the blending matrix. First, all
possible adjacent nodes are identified and then sorted based on their column and row
position in the blending matrix.

The distance is calculated with

distance = icurrent_combination − ipossible_next_combination+

jcurrent_combination − jpossible_next_combination (6)

where i is the column index and r is the row index.
Figure 15, with figure 10 as the representative graph, displays for the base example the
distance to the combination [2,0] with different shades of grey. A darker shade of grey
resembles a greater distance to the combination.
This example demonstrates very well that the sorting method only increases the chance of
finding longer paths first but does not guarantee it. Based on the grey scale, the sorting
method would set the adjacency list for the graph node (2,0) with

1 adjacent_nodes = [ ( 3 , 1) , ( 5 , 1) , ( 3 , 4) ]

Node (3,1) is clearly the best node to be selected next because the path can then be
further append with the nodes (4,3) and (5, 4). Specifically for this example, however, it
would be better if the DFS continues its path with the node (3,4) from the adjacency list.
Selecting node (3, 4) allows additional selection of node (4, 5) whereas selecting node (5,
1) would end the search for a path with one selection less.
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Figure 16: Verifying the directed search

The plot groups every blending solution from every blending problem into the number
of continuous plies for the solution and the x-axis marks then the iterations number for
every solution. The red dot indicates where the average for each group of numbers lies.
The average values are plotted solely on the right to better identify the iteration number.
It can be seen that a few blending solutions with 10 continuous plies are found near the
beginning of the search.

In general, the averaged values indicate that the directed search finds, on average, solutions
with a higher number of continuous plies first. Solutions with fewer continuous plies are
found later on in relation to the search duration. Though, it must be mentioned that this
behaviour is not guaranteed. Depending on the laminates of the blending problem, it is
still possible to find a solution with a small amount of continuous plies before solutions
with a greater amount of continuous plies.

4.5 Continuous plies over multiple sections

So far, the blending problem has only been discussed between the two adjacent laminate
sections. Extending the problem to find continuous plies over multiple sections, one must
search for possible continuous plies between all adjacent sections and combine the results.
In figure 17, a blending problem with three sections is displayed.
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5 A blending recovery criterion

As a post-processing step for the proposed blending method, blended laminates have to
be assessed in order to compare different blended solutions. In previous work, especially
with generic algorithms (see literature review), blending is implemented as an integral
part of the laminate generation. For that, constraints are defined in the process that
eliminate certain laminates if the constraints are not fulfilled. Usually, these constraints
restrict the solution between two adjacent laminate sections [10],[3],[21].
For the proposed blending method, a new criterion for assessing blended laminates is
developed, the Blended Plies Ratio (BPR). For the BPR, the number of existent plies n
is related to the best and worst case of a blended laminate.
The best case can be equated to a fully blended laminate, i.e. inwardly or outwardly
blended laminates (figure 2). The worst case reflects a laminate with no existent blending.
Every section has its own plies and no plies continues from one section to another. In
contrast to methods, where the degree of blending is defined before constructing the
laminate structure with its discrete stacking sequence, assessing laminate structures with
this criterion can be done independently from their generation. The ratio is calculated
with

BPR =
nno blending − nlaminate

nno blending − nfully blended

(7)

In figure 18, BPRs of different blending solutions for a given laminate structure are pre-
sented.

Figure 18: Laminate with different BPRs (left:1, right:0, middle:0,71) [13]

This method of assessing blended laminates with the new criterion broadens the scope
from focusing solely on local blending degrees between adjacent sections to considering
the entirety of the structure. It was important for the criterion to assess several solutions
of a blended structure equally when the local blending degrees between the adjacent
sections are the same but the order of appearance is changed for the solutions. Figure
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6 A new layup retrieval method

The following section describes the integration of the blending method and criterion into
an optimization process to find blended laminate structures from optimized lamination
parameters. A general explanation of the optimizer itself and the optimization process is
additionally given.
The main concept of the layup retrieval method is to vary the orientation angles of the
plies for every laminate section in the structure and optimize them towards their optimal
stiffness from optimized lamination parameters and blending.
In many studies about stacking sequence retrieval, an optimization process is part of
the overall retrieval procedure. As mentioned in the literature review, early methods
integrated genetic algorithms to find optimal blended laminates. In a more recent study
from Sprengholz et al. [27], a rapid, universal layup retrieval algorithm was developed
to transform one set of lamination parameters into one continuous stacking sequence. A
continuous stacking sequence is here characterised by having continuous ply angles instead
of discrete ones, i.e. 0, 45, -45 or 90 degrees.. The objective function of the optimization
calculates the difference between optimal the lamination parameter set and the lamination
parameter set from the current ply angles.
The objective function for this optimization is similar but instead uses discrete ply angles
such that the blending method together with the blending criterion can be applied.

6.1 The optimization problem

For the present retransformation method, the objective function from Sprengholz et al.
is adapted to calculate the error for multiple laminates concerning their optimal stiffness
values instead of only one laminate. The deviations from the optimal stiffness value from
the optimised lamination parameters are calculated with the Root Mean Square Error
(RMSE). The effect of each error on RMSE is proportional to the size of the squared
error which causes a greater distinction between optimal and less optimal ply orientations
for the layup. A comparison of the RMSE and the Mean Absolute Error (MAE) is
displayed in figure 20. At [45, 15], the RMSE optimization surface has a significant drop
whereas the MAE optimization surface shows a similar decrease in value at [-45, 15].
The surface of the MAE also has more fluctuations compared to the RMSE. The RMSE,
by squaring errors, tends to weigh larger errors more heavily, yet it can obscure the
significance of improvements in individual lamination parameters. Squaring small errors
further diminishes their impact on the overall error, making incremental improvements
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While it is possible to set the BPR as a constraint for the optimization, defining it as an
objective is more suited to the goal of the optimization. Plotting the Pareto front can
reveal improvements for the stiffness of the laminate via the lamination parameters for a
compromise in blending if the lamination parameters of adjacent sections would dissolve
in laminates with dissimilar plyshares or stackings. In these conditions, the blending
method is most effective as the blending between the laminates can not easily be made
just by looking at the stackings. Consequently, the guide-based optimization with perfect
blending excels, when the laminates would differ less in the stacking sequence.
Based on the above-mentioned objectives, the formulation of the optimization problem
can be stated as: find a set of design variables x that will

minimize f1(x)

maximize f2(x)

subject to : gi(x) = 0, i = 1, ..,me

hi(x) ≥ 0, i = 1, ..,mi

x = {x1, x2, .., xi}, i = 1, ..., n

xi ∈ L, L = {θ1, θ2, ..., θk}

where f1 defines the RMSE for the whole structure (equation 8, right) and f2 defines the
BPR, which both are subject to possible equality constraints g and inequality constraints
h. Each design variable represents one ply in one section with its ply angle θ.

6.2 The optimizer

Already in the year 2001, Kristinsdottir et al. [8] stated

”It has been shown that optimal design of composite structures is a global
optimization problem, with multiple local optima and complex design space”

This has been proven many times over past years, lately by Sprengholz et al. [27]. The
optimization surface plots in the previous chapter further confirm this statement.
It is therefore a necessity to employ an appropriate optimizer that can handle those com-
plex design spaces. Unlike conventional optimizers that need continuous design variables,
the optimizer for the current problem must be able to work with discrete values for the
design variables due to the implementation of the optimization problem.
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One optimizer, that can be applied for the current problem, is MIDACO (Mixed Inte-
ger Distributed Ant Colony Optimization) [22]. MIDACO serves as a solver designed to
tackle a wide array of numerical optimization problems. It’s a versatile tool applicable
to continuous, discrete/integer, and mixed integer problem types. Whether dealing with
single- or multi-objective optimization, MIDACO handles problems constrained by equal-
ity and/or inequality limitations.
What sets MIDACO apart is its adaptability to handle substantial problem sizes, com-
fortably managing thousands of variables and hundreds of objectives. Its strength lies in
implementing a derivative-free, evolutionary hybrid algorithm. This algorithm approaches
problems as black-box scenarios, accommodating various critical function properties like
non-convexity, discontinuities, or stochastic noise. Midaco is fundamentally based on
an Ant Colony Optimization (ACO) algorithm. ACO mirrors how ants find food effi-
ciently. Developed in 1990, this technique mimics how ants efficiently find the shortest
path between their nest and food sources. This technique has evolved into a versatile
problem-solving approach.
At its core, ACO revolves around the collaborative behaviour of ants. The insects com-
municate through pheromones, leaving chemical traces along their paths. When an ant
discovers a food source, it returns to the nest, leaving behind a trail of pheromones. Other
ants then follow these trails, with a preference for paths marked by a higher concentration
of pheromones. Over time, shorter paths are favoured due to the faster accumulation of
pheromones, leading to an emergent optimal route. This behaviour is displayed in figure
23. The source is equivalent to the nest of the ants and the target represents possible
food. Initially, the ants are spread randomly on the paths towards the food. But over
time, the concentration of ants on the shorter path is increased.
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The key features of MIDACO that are used for the optimization problem are the black
box handling of the objectives functions and its ability to work with up to 10000 discrete
variables. The documentation of MIDACO also states that the software excels in global
optimization problems which is in line with the statement from Kristinsdottir et al. For
reference, global optimization aims to find the best solution considering all possibilities,
covering the entire feasible region. On the other hand, local optimization focuses on
finding the best solution within a limited area, typically around a starting point. Global
optimization explores the entire space, potentially taking longer, while local optimization,
being faster, examines a smaller portion. However, local optimization runs the risk of
getting trapped in local best solutions and missing the global optimum.

6.3 Optimization process

This chapter explains the implementation of the optimization process with the integration
of the blending method. Figure 24 highlights the main process steps that are performed
at every iteration.
First, the design variables are split into subarrays with the desired length of each section
such that each subarray represents one section in the laminate with its size and ply
angles. The values in the subarrays at this point are not the actual ply angles but only
representative discrete integers as MIDACO is not able to select values for the design
variables from a predefined list of ply angles. Instead, the range of possible values can
only defined via box constraints that limit the variables to an upper and lower bound.
The discrete integer values can then be transformed to ply angles with the use of a ply
angle mapper that maps the box-constrained integers to any desired ply angles.
For each section, the lamination parameters are then calculated and compared to the
desired lamination parameters. And second, the BPR is calculated for the evaluation of
the blending. Here, the sign of the BPR must be changed because MIDACO demands all
objectives to be minimized.
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Laminates with ply angles symmetrically aligned to the mid-plane are termed symmetric
laminates. As highlighted in the reference [16],[11], these laminates offer a significant
advantage: their uncoupling of membrane and bending behaviours within the structure
results in a more predictable deformation behaviour. This predictability simplifies analy-
sis and testing processes, facilitating the measurement of stiffness and strength values of
the structure. Furthermore, managing tolerances during assembly becomes more straight-
forward. It is important to note that adhering strictly to this design rule might not always
be feasible, particularly in areas where laminate thickness changes, such as tapering re-
gions. In cases where laminates are locally non-symmetric, placing the asymmetric part as
close as possible to the mid-surface helps minimize warping effects. To create symmetric
laminates in the optimization process, the number of design variables is cut in half and
the resulting subarrays (figure 24) are reversed and then concatenated with the original
one, thus forcing the V B

[1,2,3,4] lamination parameters (equation 9) to be 0. This reduces
the design space, making the search for optimal solutions more efficient. For the blending
evaluation, half of the subarrays are used as the BPR doesn’t change if the sub-laminates
are mirrored. Consequently, symmetrical laminates can be analyzed with the computa-
tional effort for only half the laminate size.

Another design guideline specified in Niu [16] concerns the arrangement of ±45 degree
plies on the outer surfaces of the laminate in the thickness direction. This arrange-
ment aims to enhance damage tolerance and increase resistance against impacts, such as
tool drops. Simultaneously, it’s advised to avoid placing the load-bearing 0 degree plies
on the outer surfaces due to operational considerations. This recommended approach
is particularly beneficial for potentially unstable laminates, aiming to optimize buckling
resistance. To enforce ±45 degree plies on the outer surface of the laminate, the box
constraints for the design variables representing the outer plies can be limited to only the
desired integer according to the ply angle mapper.

Expanding on the concept of symmetric laminates, the application of balanced lami-
nates becomes relevant. Balanced laminates entail ply angles arranged such that, aside
from 0 degree and 90 degree, each angle is paired as +θ and −θ above and below the mid-
surface. These laminates offer similar advantages to symmetric ones. Notably, they enable
the decoupling of in-plane membrane and shear behaviour within the structure. This de-
coupling arises from specific characteristics in the stiffness terms of the plies, as elucidated
by Jonas [7]. The coupling between membrane stiffness terms relies on the summation
of ply stiffness terms containing odd powers of sine and cosine functions. Consequently,
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0 degree and 90 degree angles do not contribute to these stiffness terms, and when +θ

angles have a corresponding −θ angle, their summation results in zero, also contribut-
ing nothing. Another significant criterion favouring symmetric and balanced laminates
involves maximizing buckling strength. As detailed in references like Niu [16] and Jonas
[7], the coupling between membrane-bending and bending-twisting amplifies deformation
while simultaneously reducing buckling resistance and vibration frequencies. This effect
aligns with the expected behaviour of panels possessing significantly lower bending stiff-
ness. This design rule must implemented by formulating an appropriate constraint on
the optimization process. In theory, it would be possible to instead adjust the ply angle
mapper to map the boxed integer values not to single ply angles but to ply pairs. One
integer value could then represent the ±45 degree ply pair. The drawback would be that
other ply angle orientations must also be mapped as a pair of two ply angles to ensure
that sub-laminates do not exceed or fail short of the specified laminate size.
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The diagram demonstrates the exceptional performance for calculating the blending solu-
tions for smaller laminate sizes. One must keep in mind, that these are randomly generated
laminates. The computation time is linked to the generated number of solutions. The
number of solutions is mainly dependent on the size of the laminate and the number of
combinations that can be made between the left and the right layup in a two-laminate
problem. Laminates with only one fibre orientation angle (extreme laminates) cause a
high computation due to the many variations of continuous plies.
To counteract this exponential relationship between the laminate size and the number
of solutions when searching for optimal blending solutions, the directed search for the
DFS, described in section 4.4 was developed, so that the chance of finding better blending
solutions first is increased and one doesn’t analyse the whole solution graph.
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8 Application examples

This chapter contains at the beginning applications of the blending method for two simple
blending problems to showcase the capabilities and limitations of the method, which
are followed by two self-created and one final benchmark optimization problems. The
discussion of the results can be found in the following section.

8.1 Two-section-blending

The first blending problem is a simple two-section blending problem with four different
ply orientations (0, 45, 135 as a representative for -45 and 90 degrees) and a laminate size
of 26 plies. The two laminates with one of the best blending solutions with the highest
number of continuous plies are displayed in figure 27. The method finds in 43 seconds
3702721 blending solutions. 50 blending solutions have the maximum of 21 continuous
plies between the two laminates. The first solution with 21 continuous plies is available af-
ter 0.6 seconds at iteration step 35700 from 3702721. The last solution with 21 continuous
plies is found after 15.8 seconds at iteration step 1607533 from 3702721.
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Figure 27: Two laminates with random plies
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It was identified through multiple test runs with random plies that analyzing a blending
problem with 25 plies using one thread on an Intel(R) Core(TM) i5-8265U takes around
one minute, depending on the stacking of the two laminates. Adding plies from here
one will have a noticeable increase in the computation time as the number of solutions
significantly increases with increasing ply numbers as described in section 7. A two-
section blending problem with 12 plies and only one ply angle takes about 2 seconds to
run and the blending method finds 281287 solutions. Compared to a randomly generated
two-section blending problem that is a 400 per cent increase in computation time.

8.2 Multiple-section-blending

An example of the multiple-section-blending problem is given in figure 28. The method
takes about 2.1 seconds to calculate 166705 blending solutions between the sections. The
best blending solutions result in a laminate structure with a total of 44 plies. This
concludes to a BPR of 0.84.
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Figure 28: Multiple laminates with random plies
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8.3 Optimization results

8.3.1 Verification of the optimization process

During the integration of the blending method, multiple tests were conducted to verify
if MIDACO can find pre-known optimal solutions to a problem. More specifically, the
task for these test runs is to find the stackings of each laminate such that the difference
from the optimal lamination parameters is zero. The test problem is a three-section
laminate structure, each section having 20 plies. The lamination parameters are built
up such that they would represent a symmetric laminate with an equal amount of 0 and
90 degree plies, stacked collected together on top of each other, beginning with the 0
degree plies. The blending algorithm is disabled for this optimization as an optimum in
the lamination parameter set would automatically cause a perfect blending. The LPs are
shown in equation 11.

V A
[1,2,3,4] = [0, 1, 0, 0]

V B
[1,2,3,4] = [0, 0, 0, 0]

V D
[1,2,3,4] = [0.75, 1, 0, 0]

(11)

The design variables are allowed to take one of the four common 0, 45, -45 or 90 degree
ply angle.
The optimization is split into two sub-optimizations to first find the region where the
optimum could possibly ly and then secondly, with starting values for the design values
from the previous run, to refine the solution and find the optimal solution. This has been
proven to be a good strategy for finding optimal solutions. While MIDACO has its own
restart mechanism to avoid getting stuck in certain local optimums, a manual restart of
the optimization further minimises the time to find the optimal solution. Restarting the
optimization to find faster better solutions is advised by the MIDACO manual and was
also part of the optimization process from Sprengholz et al. [27].
The optimization takes in total 304000 iterations to find the optimal stacking sequence
after 102 seconds. Interesting to note is that MIDACO can find a solution close to the
optimum in just one second after 4000 iterations. Figure 29 shows the results after 4000
iterations and after 304000 iterations. It can be seen that, after 4000 iterations, the 90
degree plies are already more concentrated near the centre of the laminate and the 0
degree plies are located further away from the centre. Additionally, the plyshares are also
close to the desired plyshares.
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8.3.2 Pareto-Front Example

This second example shows an extreme scenario with a three-section laminate, where the
outer sections have LPs representing a laminate with only 0 and 90 degree plies and the
middle section with only 45 and -45 plies. The individual laminates have again 20 plies
and are symmetrical. The LPs for the laminate with only 45 and -45 degree plies are
shown in equation 12.

V A
[1,2,3,4] = [0,−1, 0, 0]

V B
[1,2,3,4] = [0, 0, 0, 0]

V D
[1,2,3,4] = [0,−1, 0.75, 0]

(12)

Figure 30 plots the Pareto front of the current problem with the two objective functions,
the BPR for the blending evaluation and the RMSE for the stiffness evaluation. The
BPR values are all negative as all objective functions are subject to minimization, which
is mandatory for MIDACO. The plot is generated with the plotting tool from MIDACO.
The optimization took in total 764 seconds for 44000 iterations. MIDACO found 11 non-
dominated Pareto points during the optimization. The lowest RMSE of 0.154 can be
achieved with a BPR of 0.3. The best blending with a BPR of 0.8 results in an RMSE of
0.346. The most balanced solution is marked with a green hexagon.
It is possible to set a balance parameter for MIDACO. This parameter defines on what
part/area of the Pareto front MIDACO should focus its main search effort. By default and
for this Pareto front, MIDACO focused most of its search effort on that part of the Pareto
front, which offers the best equally balanced trade-off between all objectives. Using the
BALANCE parameter, this focus can be shifted to any part of the Pareto front. Shifting
the focus completely to BPR, it was identified that MIDACO is also able to achieve 100
per cent blending for certain blending problems.
The RMSE values from the Pareto Front for the three sections along with the corre-
sponding MAE are listed in table 1. It can be seen that with an increase in the BPR, the
deviation from the optimal stiffness values increases as well except for those of the left
section. The deviation is minimized for a BPR of 0.6 compared to vales for a BPR of 0.3
and 0.8 which both have an RMSE close to 0.19.
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Figure 30: Pareto Front for non-matching ply sections

Table 1: RMSE and MAE for Pareto points

Section
BPR = 0.3 BPR = 0.6 BPR = 0.8

RMSE MAE RMSE MAE RMSE MAE

left 0.1954 0.1265 0.1651 0.0857 0.1916 0.1290
middle 0.1550 0.0747 0.3015 0.1688 0.4871 0.2685
right 0.1092 0.0550 0.1770 0.1032 0.2904 0.1567

combined 0.1540 0.0854 0.2232 0.1192 0.3456 0.1847
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8.3.3 Wing Box Use Case

One common use case for composite optimization methods that is utilised in many pub-
lications ([12], [19], [17], [24]) is the wing box use case (figure 31). The wing box is fixed
at its root section and subjected to four asymmetric transverse forces at the wing tip.
Within this structure, there are nine distinct design regions in both the upper and lower
covers, delineated by four spars and ribs, intended for optimization. For this analysis,
the design regions are reduced such that there is only one region widthwise. The id for
the new design region results from the highest id of the individual design regions. For
example, regions 1, 2 and 3 are combined to the design region with the id 3.

Figure 31: Geometry of the wing box use case

The same use case has been used in the publication of Liu et al. [12] about a bilevel op-
timization of blended composite wing panels. In the paper, two optimization approaches
are used for the optimization of stacking sequences of laminated composite structures:
a smeared-stiffness-based method and a lamination-parameter-based method. In the
smeared-stiffness-based method, a gradient-based optimization is used to optimize the
total volume of the structure at the top level subject to the buckling and strain con-
straints. A blending scheme and a ply shuffling code based on the layup design rules
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are applied. In the lamination-parameter-based method, the total number of plies and
the lamination parameters related to the out-of-plane stiffness matrix are treated as the
design variables in the top-level optimization problem. Buckling and strain constraints
are applied at this level and the total material volume is the objective function. Next, a
permutation GA is used to shuffle the layers to minimize the difference between the val-
ues of computed lamination parameters for a current stacking sequence and those coming
from the top level. This is embedded into a blending procedure applied at this level to
achieve global ply continuity.

For this analysis, the genetic algorithm is replaced with the optimization procedure pre-
sented in this thesis. The data from the top-level optimization with the lamination-
parameter-based method from Liu et al. is presented in table 2. The variable n represents
half the number of the plies in the total stack that have the specified ply angle. For clar-
ification, the D-Lamination parameters differ from those presented in the paper from Liu
et al. A different notation other than the notation from Tsai and Pagano [29] was used.
A transformation of the LPs was further performed such that all lamination parameters
were above zero. Table 2 presents the back-transformed LPs with the notation from Tsai
and Pagano.

Table 2: Data from Liu et al. [12]

Panel No. n0 n45 n90 V D
1 V D

2 V D
3

12 5 1 1 0.5573 -0.3927 0.0869
15 4 1 2 0.1716 -0.3141 0.0864
18 8 2 3 -0.2352 -0.1038 0.0728

In the publication from Liu et al., five design rules are considered for the genetic algorithm

1. The laminate is symmetric

2. The laminate is balanced

3. Because of the damage-tolerance requirements, the outer plies for the skin should
always contain at least one set of ±45 deg plies

4. The number of plies in any one direction placed sequentially in the stack is limited
to four

5. A 90 deg change of angle between two adjacent plies is to be avoided, if possible
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Applying some of the design rules, the set of individual LPs can be reduced. The lami-
nation parameters resulting from the extension-bending coupling matrix [B] are all zero.
Is the laminate in addition balanced according to its mid-plane, the third and fourth LPs
V A
[3,4] for the [A]-matrix are zero. 0 degree and 90 degree plies have no contribution to the

sum of sine functions. Pairs of angled plies cancel out each other due to the antisymme-
try of the sine function with respect to the ordinate. Is the set of allowable ply angles
reduced to 0 degree, ±45 degree and 90 degree plies, the fourth LPs are zero, due to the
factor 4 within the sine function. The lamination parameters for the A matrix are linear
combinations of the ply share and can be computed with

V A
1 = 2

(
2n0

ntotal

− 0.5 +
n45

ntotal

)

V A
2 =

2n45

ntotal
− 0.5

−0.5

(13)

where ntotal is the total number of plies in the stack. With this information, the target
LPs for the optimization can be calculated (table 3).

Table 3: Target LPs for wing box use case

Panel No. V A
1 V A

2 V D
1 V D

2 V D
3

12 0.5714 0.7143 0.5573 -0.3927 0.0869
15 0.2857 0.7143 0.1716 -0.3141 0.0864
18 0.3846 0.6923 -0.2352 -0.1038 0.0728

The first design rules for symmetry and outer-ply-damage-tolerance from Liu et al. are
implemented for the retransformation of the LPs to discrete stackings. Implementing
the other design rules would result in less to no Pareto points in the Pareto front. The
deviation from the target LPs in the form of the RMSE and MAE is presented in table
4. The difference in error between the several blending solutions for the three panels is
relatively small except for panel 12 between the blending solution with a BPR of 0.9 and
1.0. The RMSE is increased by 65.7 per cent and the MAE is increased by 70.6 per cent.
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Table 4: Solutions for wing box use case

Panel No.
Solution Liu
(BPR = 0.9)

BPR = 0.8 BPR = 0.9 BPR = 1.0

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

12 0.1054 0.0575 0.1054 0.0575 0.1054 0.0575 0.1746 0.0981
15 0.1000 0.0526 0.0777 0.0356 0.0777 0.0356 0.0776 0.0356
18 0.1917 0.0956 0.0913 0.0502 0.1009 0.0675 0.0991 0.0628

combined 0.1389 0.0668 0.0921 0.0478 0.0955 0.0535 0.1243 0.0665

Figure 32: Pareto Front of wing box use case
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imized. However, the data points are not located on are linear line but are slightly
scattered. The RMSE values from the D-Matrix entries are more scattered for low and
middle RMSE values. The scattering is minimized for the higher RMSE values. The
RMSE values for the D-Lamination parameters show a reversed behaviour. The scatter-
ing is minimized for for low RMSE values and increases with for higher RMSE values.
The RMSE values for the Pareto front example (table 1) and the wing box use cases ex-
ample (table 6) are calculated with the full lamination parameter set (all 12 LPs). Using
the full set for the buckling load case would cause an even greater scattering of the data
points, which is shown in appendix B.1.
Consequently, the RMSE for the Pareto front example and the wing box use cases are
determined again but this time only for the D-Lamination parameters. The results are
listed in table 5 and 6. Looking at the results for the Pareto front example, the RMSE
values for the lowest and highest BPR are further apart. The same applies to the RMSE
values from the wing box use case with a BPR of 0.8 and 1.0.

Table 5: Pareto Points with D-Matrix LPs (RMSE values)

Section BPR = 0.3 BPR = 0.6 BPR = 0.8

combined 0.1270 0.2507 0.4491

Table 6: Wing box solutions with D-Matrix LPs (RMSE values)

Panel No. BPR = 0.8 BPR = 0.9 BPR = 1.0

12 0.1435 0.1435 0.2377
15 0.0793 0.0793 0.0793
18 0.0613 0.1544 0.1508

combined 0.1011 0.1300 0.1666

Application examples 54



9 Discussion of the results

Blending Method

The practical applications have demonstrated that the blending method is effective in
efficiently blending small to midsize laminates within a reasonable timeframe, thanks to
its adept search algorithms. The analysis capability in terms of ply number can be dou-
bled when dealing with symmetric laminates and further increased by having the blending
method search for continuous ply packages rather than individual plies. These ply pack-
ages would consist of more than one ply stacked together with predefined ply angles. For
instance, ply packages comprising two plies can enable the analysis of up to 100 plies in
under a minute instead of laminates of 50 plies with individual plies. For comparison,
laminates in wing structures can have a thickness of 40 layers near the tip to 250 layers
close to the root of the wing [26]. However, it’s important to note that opting for ply
packages may limit the achievable stackings compared to using single plies.
While the addition of plies to a specific section results in an exponential increase in com-
putation for the blending method, as discussed in chapter 7, incorporating more sections
into the blending problem itself does not exhibit an exponential nature. This is because
blending solutions between individual sections can be straightforwardly combined to yield
a single blending solution for the entire structure. Consequently, the total computation
time for the blending analysis is the sum of the computation times for blending between
each section. This method’s characteristic positions it favourably for structural optimiza-
tion problems involving small laminate sizes but with numerous design regions.
The computational effort to find all blending solutions is further decreased if the number
of ply orientations present in the stackings is increased. On the other hand, an analy-
sis of extreme-like stackings (stackings with one ply orientation) leads to an increase in
computing time. However, it can be argued that the trend moves towards generating
laminate stackings with ply angles other than the classic 0, +- 45 and 90 ply angles to
achieve better stiffness characteristics [27], [21]. This could therefore excuse the impaired
performance of extreme-like laminates.
All blending solutions, if generated from independent laminate sections, should also be
investigated for compliance with design rules. As the blending criterion focuses solely on
the appearance of continuous plies, there is no influence of disregarding certain design
rules on the BPR. For example, the multiple-section blending example 28 shows that
there are some dropped edges from plies in contact with each other. Dropped edges in
physical contact should generally be avoided because they are difficult to produce us-
ing tape-laying or tow-placement technology. Besides, local overlapping of plies due to
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differences in orientation, makes these regions very unattractive [3].

Optimization

Even though MIDACO has a built-in backtracking line search for fast local convergence
[22], Ant Colony Optimizer perform much better for global searches and has some short-
comings in the convergence speed and solution accuracy when dealing with a large amount
of data [5],[34]. The results from the blending problem from figure 29 greatly support this.
After a relatively small amount of iterations, MIDACO was able to identify that the stack-
ings should not contain ±45-degree ply angles and the sequence of 0 and 90-degree plies
matches also the desired sequence very closely. After that, it takes a long time to converge
to the optimal solution.
Besides the problem of converging to the global optimum in complex problem spaces
with multiple local optima, ACOs performance is sensitive to the appropriate tuning of
its parameters. The choice of parameters, such as the pheromone evaporation rate and
exploration-exploitation trade-off, can significantly impact the algorithm’s convergence
speed and solution quality [9],[18]. While some recommendations from the manual for
MIDACO showed some improvements in convergence speed and solution quality, a sig-
nificant increase could not be achieved. It is therefore possible that parameters for the
blending problems are still not adequately tuned.
To achieve these significant improvements, one idea was to set the plyshares for the lam-
inate section that can be calculated from the lamination parameter for the [A] Matrix (if
only 0, ±45 and 90 degre plies exist) as constraints for the optimization. To evaluate the
violation of constraints, MIDACO uses a penalty method that transforms a constraint
problem into a series of unconstrained problems by replacing the original objective func-
tion with a penalty function which is a weighted sum (or product) of the original objective
function and the constraint violations [22]. Due to this evaluation method, it was expected
that this would allow the best possible solution to stand out even more clearly. Unfortu-
nately, the significant improvements could not be achieved. This observation can lead to
the assumption that there are only a few or even no local optima in the vicinity of the opti-
mal solution that do not fulfil the constraints, hence the problem of convergence is present.

The results from the Pareto Front example showed that the blending method is responsible
for most of the computational effort of the optimization. Without the method, a laminate
with three sections and a symmetric ply sequence with 20 plies could be analyzed in terms
of LPs discrapency with 304000 iterations in 102 seconds. With the blending method,
the performance is reduced to 44000 iterations in 764 seconds. From profiling the code,
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it could be identified that in general, the search for solutions takes up the most amount
of time. And as the blending evaluation occurs for every iteration step, this time adds up
for the whole optimization. The directed search method can significantly minimize this
time by stopping the search for blending solutions after a desired amount of solutions.
However, it was observed that when reducing the number of desired solutions, most of
the time from the blending method was used to create the graph object from the blending
matrix. The time for creation is generally small but significant when the blending method
is applied at every iteration in the optimization.
Regarding the Pareto front in 30, it is interesting to see that the non-dominated Pareto
points are not on a straight line between the point with the lowest and highest BPR. They
rather form a curve that is bent towards the lower left part of the diagram. This indicates
that there is indeed an optimal solution if the BPR and RMSE are both of equal value.
Reviewing the stacking s of the Pareto front example of the left section for the three
solutions in the appendix A.1, it can be identified that for every solution, each stacking
has in total four plus or minus 45 degree plies. For the solutions with a BPR of 0.6,
two of these plies are located right in the middle of the stacking whereas for the other
two solutions, these two plies are located further outwards. The influence of the appear-
ance of a 45 degree ply in stackings on the lamination parameters for the [D] Matrix
is maximized if the ply is located further outwards than inwards in stacking due to the
exponential weighting term in the computation of the lamination parameters that weights
the trigonometric functions. This explains why the RMSE is minimized for the middle
section from the solution with BPR of 0.3 to a BPR of 0.6 and then again increased for
the solution with a BPR of 0.8.

Compared to the results from the Pareto front example, the results from the wing box
use case show a smaller improvement in the combined stiffness values for a reduction of
blending. In addition, the location of the Pareto points on the Pareto front shows that
the best tradeoff between blending and discrepancy to optimal stiffness values already lies
close to a perfectly blended laminate.
Upon examining the RMSE values of the three panels individually, it becomes evident
that panel number 12 primarily drives the enhancements in overall stiffness. Inspection
of the stacking sequences in the appendix (see A.2) indicates that panel number 12 has
preferably only two 90-degree plies near the centre. However, to achieve 100 per cent
blending, two extra 90-degree plies need to be incorporated to match the stacking se-
quence from panel number 15. While the averaged improvement for all three panels is
small, the individual improvement for panel three with 70.6 per cent MAE and 65.7 RMSE
is remarkably high.
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It is interesting to see that even though the blending solution from Liu et al. [12] for
the bottom skin doesn’t have a BPR of 1.0 , the combined RMSE is still greater than
the RMSE for a BPR of 1.0 in this analysis. This is probably due to the fact that the
laminates from Liu et al. are all balanced, limiting the possible stackings for the three
panels.

The increased scattering of the datapoints of the reserve factor for buckling load case
34 makes it difficult to give an exact statement about the improvement of the reserve
factor when the RMSE is reduced. The scattering itself is probably caused by the uneven
influence of the D-Matrix entries on the reserve factor while the RMSE calculation treats
all entries equally (14,16). Using the D-Lamination parameters instead of the D-Matrix
entries directly for the determination of the RMSE further worsens the scattering effect.
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10 Conclusion and Outlook

In conclusion, this thesis presents an innovative blending method designed to blend in-
dependent laminate sections effectively. Notably, this method stands out by performing
blending as a post-processing step, eliminating the necessity for defining blending con-
straints in the retransformation of lamination parameters into discrete stackings. The core
concept revolves around creating a blending matrix that encapsulates information about
continuous plies between stackings. This matrix is then transformed into a graph object
to explore diverse blending possibilities. The implementation of an enhanced depth-first
search algorithm, tailored to prioritize solutions with a higher prevalence of continuous
plies, optimizes the discovery of the most effective blending configurations. The appli-
cation of the method on several blending problems revealed its limitation to blending
layups with over 25 individual plies in under a minute but on the other hand showed that
the method performs very well if instead the number of plies, the number of sections is
increased.
The diversity introduced by the blending method necessitates the development of a blend-
ing criterion, allowing for the assessment of laminates based on their blending character-
istics. The criterion classifies laminate structures based on the individual section size
between a perfectly blended and non-blended structure.
The primary motivation behind postponing the blending process was to better address
the stiffness requirements for individual design regions within a structural optimization
framework by moving away from optimal blended structures. To demonstrate the pos-
sibility of utilizing the blending method in stacking sequence retrieval problems and to
gauge the effectiveness of the postponing approach, the blending method was combined
with the ant colony optimizer MIDACO. The synthesis of the blending method and MI-
DACO aimed to showcase the retransformation of lamination parameters into a blended
laminate structure and to analyze the discrepancy between desired lamination parameters
and those produced for both perfectly blended and non-perfectly blended laminates.
Indeed, the analysis indicated improvements for the stiffness requirements, which resulted
from a reduced blending degree. However, the extent of these improvements varies de-
pending on the specific problem at hand. As anticipated, problems where adjacent sec-
tions require dissimilar ply angles in their stackings exhibited significant enhancements
in overall stiffness. Conversely, for real-world problems where adjacent sections had less
disparity in their requirements for certain ply angles, these overall improvements were
less pronounced. But, as seen in the benchmark problem, improvements made in specific
sections may be overshadowed by the averaging process, underscoring the importance of
closely examining the results.
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This thesis concentrated on delivering a computationally efficient solution for the blending
problem. A comprehensive exploration and implementation of the following ideas could
not be performed within the timeframe of the master thesis and can therefore be reviewed
as recommendations for future research.

1. Improvements for the search algorithm: The directed DFS method has been proven
to be very useful for finding optimal blending solutions first. The search method
could however be extended from an uninformed search method to an informed search
method that includes a heuristic function to search in an ever more targeted manner
and thus possibly reduce the runtime. It would be further beneficial to optimize
the design of the graph object in a more efficient way or even dynamically while
performing the search. This would ultimately extend the capabilities of the blending
method to blended laminates with a greater amount of plies.

2. Laminate database: Another approach to tackle the stacking sequence retrieval
problem from optimized lamination parameters is the usage of laminate databases.
These databases have pre-designed laminate stacking sequences in-store that can
already adhere to certain design rules. The blending method could be incorporated
in the search for optimal stackings for a laminate.
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A.2 Wing box use case

Blending solutions for wing box use case with a BPR of 0.8 (top), 0.9 (middle) and 1.0
(bottom).
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C Theoretical Background

C.1 Relation between ABD-Matrix entries and Lamination Parameters
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