
BACHELORTHESIS
Kamila Shirinova

Snowpack simulation on the
GPU in Unity

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES
Hochschule für Angewandte
Wissenschaften Hamburg

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme
Bachelor of Science Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg
Supervising examiner: Prof. Dr. Klaus Jünemann
Second examiner: Prof. Dr. Leutelt Lutz

Day of delivery: 16. September 2023

Kamila Shirinova

Snowpack simulation on the GPU in Unity

Kamila Shirinova

Title of Thesis

Snowpack simulation on the GPU in Unity

Keywords

Snow, Simulation, GPU, Compute, Unity

Abstract
Snow is a fascinating yet very complex phenomenon, its behavior is defined by a lot of
interconnected physical processes. Snowpacks and snow covers are common subjects in
computer modeling, especially in video gaming development, where snowy environments
are featured quite often. While there exists a variety of snow modeling solutions, with
some being quite advanced, not a lot of them dive into the specifics of these internal
processes. This thesis tackles the relation between snow density, temperature, stiffness,
and hardness, and simulates its vertical compression as a function of those parameters
and the applied pressure over time. Moreover, the simulation uses a 3-dimensional grid
as a means to discretize the snowpack volume and the performance advantage of a com-
pute shader, run on the GPU. As the intended application of this simulation is game
development, it is implemented as a Unity project.

Kamila Shirinova

Thema der Arbeit

Schneedecken-Simulation auf der GPU in Unity

Stichworte

Schnee, Simulation, GPU, Compute, Unity

Kurzzusammenfassung

Schnee ist ein faszinierendes und doch sehr komplexes Phänomen, dessen Verhalten
durch eine Vielzahl miteinander verbundener physikalischer Prozesse bestimmt wird.

iii

Schneemassen und Schneedecken sind häufige Themen in der Computermodellierung, ins-
besondere bei der Entwicklung von Videospielen, in denen verschneite Umgebungen recht
häufig vorkommen. Es gibt zwar eine Vielzahl von Lösungen zur Schneemodellierung,
von denen einige recht fortschrittlich sind, aber nur wenige gehen auf die Besonderheiten
dieser internen Prozesse ein. Diese Arbeit befasst sich mit der Beziehung zwischen
Schneedichte, Temperatur, Steifigkeit und Härte und simuliert die vertikale Kompres-
sion des Schnees in Abhängigkeit von diesen Parametern und von externem Druck über
Zeit. Die Simulation nutzt ein dreidimensionales Gitter als Mittel zur Diskretisierung des
Schneevolumens und einen auf der GPU laufenden Compute-Shader, um bessere Leis-
tung zu erzielen. Da die beabsichtigte Anwendung dieser Simulation die Entwicklung
von Spielen ist, wird sie als Unity-Projekt implementiert.

iv

Contents

Glossary vii

1 Introduction 1
1.1 Outline . 1

2 Background 3
2.1 Snow Theory . 3

2.1.1 Snow Density . 4
2.1.2 Snow Hardness . 6
2.1.3 Snow Stiffness . 8

2.2 Related Work . 9

3 Requirements 11
3.1 Project Scope . 11
3.2 Project Use Cases . 12

3.2.1 Uniform initial conditions . 12
3.2.2 Non-uniform initial conditions . 13
3.2.3 Run-time change of conditions . 13

3.3 Project Constraints and Requirements . 14

4 Design 19
4.1 Simulation Algorithm . 19

4.1.1 Pressure . 20
4.1.2 Hardness and the spring coefficient 20
4.1.3 Compression indent . 21
4.1.4 Compressed density . 21
4.1.5 Column resampling . 22

4.2 Prototyping in Python . 24

v

Contents

5 Implementation 28
5.1 Project Overview . 28

5.1.1 Tools of choice . 28
5.1.2 Project Structure . 29

5.2 Simulation . 34
5.3 Visualisation . 37

6 Evaluation and Tests 42
6.1 Uniform temperature . 42
6.2 Temperature gradient - bottom-up . 43
6.3 Run-time snow layering . 45

7 Summary and Outlook 51

Bibliography 53

A Appendix 55

Declaration 56

vi

Glossary

CFD CFD, or Computational Fluid Dynamics, is a branch of fluid mechanics that in-
volves the use of numerical methods and computational techniques to simulate and
analyze the behavior of fluids (liquids and gases) and their interactions with sur-
faces and boundaries, as well as other related phenomena. Simulation methods
such as MPM, SPH and FLIP all fall under the broader umbrella of CFD.

Compute shader A compute shader is a type of shader in computer graphics program-
ming that is used to perform general-purpose computations on a graphics processing
unit (GPU).

Eulerian grid An Eulerian grid, also known as a fixed grid or spatial grid, is a mathemat-
ical framework used in scientific simulations. In an Eulerian grid the computational
domain is divided into a regular, fixed arrangement of grid cells or voxels, and the
grid points or cell centers remain stationary throughout the simulation.

Extended Column Test The Extended Column Test (ECT) is a snow stability test used
in snow science and avalanche forecasting to assess the potential for snowpack in-
stability and the likelihood of triggering an avalanche. This test involves creating
an extended column of snow by cutting a rectangular block of snow from the snow-
pack and applying pressure to the snow surface. The goal is to observe if and how
cracks propagate across the column.

Firn Firn refers to a transitional stage in the transformation of snow into glacial ice. It is
a granular, compacted snow layer that lies between freshly fallen snow and glacial
ice.

FLIP FLIP, or Fluid-Implicit Particle, is a computational method used in computer
graphics and fluid simulation to accurately simulate the behavior of fluids, such
as liquids and gases, in animations and visual effects. This is a hybrid method,

vii

Glossary

that combines two popular techniques: the grid-based Eulerian approach and the
particle-based Lagrangian approach.

HLSL HLSL, or High-Level Shader Language, is a programming language developed by
Microsoft for use in graphics and compute shaders.

Hooke’s Law Hooke’s Law is a fundamental principle in physics that describes the re-
lationship between the force applied to an elastic material and the resulting defor-
mation or change in its shape.

Lagrangian particles Lagrangian particles are commonly used in computational simula-
tions, to represent a specific material or fluid particle within a flow or simulation.
The movement and behavior of these particles, together with other relevant prop-
erties, are tracked as they move through space and time.

MPM MPM, or Material Point Method, is a computational framework used for simu-
lating the behavior of materials undergoing complex deformation and dynamics.
Much like FLIP, this one combines aspects of both the Lagrangian (particle-based)
and Eulerian (grid-based) approaches, however, its focus on simulating material
behavior sets it apart from traditional fluid simulations..

Polynomial regression A type of regression analysis used to model the relationship be-
tween a dependent variable and one or more independent variables. In polynomial
regression, the relationship between the variables is expressed as a polynomial equa-
tion of a certain degree.

SPH SPH, or Smoothed Particle Hydrodynamics, is a computational method used for
simulating fluid flows, soft materials, and other phenomena involving complex in-
teractions. SPH is a specific method within CFD that focuses on simulating fluids
using particles rather than a grid-based approach.

Vertex-fragment shader A vertex-fragment shader is a pair of shaders used in modern
graphics programming pipelines to control the visual appearance of objects in a
3D scene. These shaders work in conjunction to determine how vertices (points) of
3D models are transformed and how pixels (fragments) are shaded to produce the
final rendered image.

viii

1 Introduction

Snow is an extremely versatile phenomenon which is to this day not yet fully stud-
ied. A characteristic property of snow that makes it stand out among other particle-
representable volumes like sand or fluids is its innate compressibility. This makes it so
much more interesting to explore its behavior, trying to recreate it in the context of
what is loved and enjoyed by many - including myself - the video games. Though snowy
levels are utilized extensively and modern game titles often do a great job at displaying
them, a physically accurate representation of the processes that run inside the snow-pack
is typically ignored. Not without a reason, since snow in video games is usually only
used for visual "dressing" and a higher player immersion, in which case the features of
snow simulation mostly limit themselves to leaving footprints/tyre tracks on the snow
cover, snowfall and accumulation, collision response and sometimes phase change. If a
snow simulation system is present in a game, it is usually responsible for modeling snow
dynamics as an immediate response to the interaction with the in-game environment or
entities, not considering the long term effects on the snow-cover state. The point of this
thesis, however, is to explore the internal processes of the snowpack that is represented
as a 3D volume in discretized space, where the state of each space unit is defined by a set
of spatial properties. When applied in game development, this kind of exposed spatial
information at any point in space could open a lot of doors for new gameplay options
and mechanics. The process simulated here is the vertical compression/compaction of
the snowpack under its own weight or external pressure, with the amount of compression
being dependent on the snowpack’s internal properties.

1.1 Outline

This thesis is divided into 7 chapters. The current chapter with general introduction is
followed by the Background chapter, that contains the research made for this thesis, both
on the topic of real-life snow physics and the existing implementations of snow simulation.

1

1 Introduction

The goals and limitations of this thesis are listed in the Requirements chapter, followed
by the Design chapter that explains how the snow theory from the Background chapter
is adapted for the practical part (sometimes referred to as the project). The Implemen-
tation chapter is fully dedicated to the structure and inner workings of the project. Both
the visual and the numerical results of the implemented simulation are presented in the
Evaluation and Tests chapter, where they are checked against the requirements stated
earlier. Finally, the Summary chapter draws a conclusion for this thesis together with
ideas for further improvements.

All figures, plots and screenshots featured in this document were created for this thesis
by the author of this thesis, unless stated otherwise.

2

2 Background

This chapter covers the research made on the general topic of snowpack physics as well as
the existing methods of related simulations in applied computer graphics, in particular,
in game development. These prerequisites helped form a general understanding of snow
behavior during compression and this knowledge was later used when constructing the
simulation algorithm for the practical implementation. This chapter is divided into two
parts: the first one is devoted to the theory behind snow, explaining how it compresses
and what factors influence its behavior during compression. The second part covers a
number of selected works that are relevant to this topic. Since the focus of this thesis is
shifted more towards the correct interpretation and implementation of some of the aspects
of snow physics, rather than exploring the most efficient implementation strategy, the
respective theory sections are covered in corresponding proportion.

2.1 Snow Theory

The following physical properties and their connections were studied in the scope of this
thesis:

• Snow Density

• Snow Temperature

• Snow Hardness

• Snow Stiffness

3

2 Background

2.1.1 Snow Density

Snow compression, or, compaction is defined by the density changes within the snowpack
- here referred to as snow density profile. Freshly fallen snow usually forms a loose, porous
layer. As it lies, it gradually compacts under the influence of its own weight and various
meteorological factors. At a uniform temperature, after enough time has passed for the
snow not to be considered "fresh" anymore the density will gradually increase with snow
depth, according to Rikhter [9]. This state of the snow, during which only slight changes
in its density occur will be referred to as "stabilized snow" in this thesis.

This correlation between the snow depth and its density is depicted in figure 2.1.

Figure 2.1: Snow density profile for a given depth, based on empirical data taken from
[9]. The units were converted to kilograms and meters.

When thinking about the density profile of stabilized snow it is natural to assume that
the snow density will always increase with depth, however, this may not always be the

4

2 Background

case. In reality, whether the density increases or decreases with depth depends on the
snowpack temperature gradient, which is created by the heat convection and micro-
sublimation processes that constantly run inside the snowpack. The nature of those
processes is determined by the temperature of the underlying surface on which the snow
is accumulating.

In areas where snow accumulates on an icy surface that is usually colder than the snow
itself, the pressure of its own weight and the heat convection work in the same direction,
making the water fumes travel down, where they then crystallize. This way, the snow
becomes denser towards the bottom and eventually turns into firn. This process would
be different if the snow were forming on soil instead of ice, where due to the soil being
warmer, the heat distribution would make the water fumes rise up, and the water then
crystallizing closer to the snow surface would make the upper layers denser. The examples
of scenario 1 (arctic snow forming on ice) and scenario 2 (snow forming on soil) are shown
in fig. 2.2, left and right respectively.

Figure 2.2: Snow density profile for different underlying surfaces. The arrows indicate
the direction in which the given quantity increases.

Now that the general picture of stabilized snow density is covered, a more granular
inspection of the factors that contribute to the density changes can be done. In general,
the intensity with which the snow compacts under pressure depends on the following
properties:

• hardness

• stiffness

5

2 Background

• viscosity

• cohesion

• friction properties

These properties are referred to as the independent properties of the material, and can be
measured directly. Such properties have been used to determine how well a surface made
of this material is suited for transport [2]. For this simulation, only the snow hardness
and, to a lesser extent, the snow stiffness are considered, and will be covered in the next
sub-sections in more detail.

2.1.2 Snow Hardness

The main characteristic of snow strength can be described by its hardness. The snow
hardness is defined as the minimum force or pressure required for the initial snow de-
formation to happen, or the maximum force/pressure the snow can withstand without
deforming [2]. Thus, the following equations are true for the snow hardness H:

H = Fmax/A (2.1)

where H is the snow hardness [Pa], Fmax is the maximum withstandable force [N], A is
the pressure area [m].

In the experiment described in "The Strength of Snow in Compression" by Gold [6], the
stress required to continuously push a circular plate into a flat snow surface with the rate
of penetration of 0.3 meters per second was measured. The recorded values can be seen
in figure 2.3

A notable observation of the dependencies in figure 2.3 is that after surpassing the hard-
ness at around 50 g/cm2, the stress (pressure) curves fit well into the linear relation of
δx = δP∗A

k , where x is the penetration [cm], P is the change in active pressure [g/cm2],
A is the plate area of contact [cm2] and k is the spring coefficient [g/cm], and conform
to the Hooke’s Law. This assumption is heavily relied on during the construction of the
simulation algorithm. Additionally, Gold states that the snow hardness depends on its
internal properties such as density, temperature, and crystal size, and not the area of the
plate. The correlation between these parameters is expressed by equation 2.2:

6

2 Background

Figure 2.3: Plate stress (Pressure) as a function of penetration, recorded for plates of
different areas, taken from [6]

H ∝ ρ3.92 · e−0.063·T · e−0.340·d (2.2)

where

0.2 < ρ < 0.4

−40 < T < 0

0 < d < 3

In the equation 2.2, H denotes the snow hardness [Pa], ρ is the snow density [gm/cm3],
T is the snow temperature [◦C], and d is the average grain size [mm].

7

2 Background

In a more recent study on the mechanical properties of snow by Barakhtanov et al.[2], the
dependence of snow hardness on its density and temperature is estimated by polynomial
regression, and takes the form of:

H(ρ) =
n∑

j=0

Cj · ρj (2.3)

on density alone, and

H(ρ, T) =
n∑

j=0

C(n−j),j · ρ(n−j) · T j (2.4)

on both density and temperature. Here, H is the snow hardness [Pa], ρ is the snow
density [g/cm3], T is the snow temperature [◦C], n is the maximum power of polynomial
dependence, and Cj and C(n−j),j are the regression coefficients [0.13·j · m3·j−2·N

kgj
].

This way, an equation for the snow hardness for the winter period could look like as
follows, according to the study [2]:

H(ρ, T) = −0.16599 + 0.542153 · ρ− 0.08925 · T + 0.447667 · ρ2 + 0, 159256 · ρ · T

− 0.01336 · T 2 + 0.261043 · ρ3 − 0.15863 · ρ2 · T + 0, 022601 · ρ · T 2 − 0.00032 · T 3

(2.5)

with H, ρ and T denoting snow hardness [Pa], density [g/cm3] and temperature [◦C],
respectively.

2.1.3 Snow Stiffness

The stiffness is the property of a material that defines its deformation in response to
applied force, and can be expressed by:

x = P/k (2.6)

where x is the (vertical) indent in the snow cover [m], P is the pressure normal to the
snow surface [Pa], and k is the spring coefficient [Pa/m].

8

2 Background

The spring coefficient k is also dependent on the snow temperature - the lower the
temperature, the more resistant the snow becomes to any deformation. However, for
the sake of simplicity, only the influence of density on the the spring coefficient will be
considered here, for which the same regression formula has been proposed by Barakhtanov
et al.[2]:

k(ρ) =
n∑

j=0

Cj · ρj (2.7)

Where k is the spring coefficient [Pa/m], ρ is the snow density [g/cm3], n is the maximum
power of polynomial dependence, and Cj are the regression coefficients [0.13·j ·m3·j−2·N

kgj
].

2.2 Related Work

When it comes to representation of deformable snow covers in computer graphics, the
current state of technology offers quite a number of solutions, ranging from the most
simple and undemanding ones (like using heightmaps to offset terrain) to complex sys-
tem solvers that are capable of extremely realistic visualisation but are by no means
real-time.
While non real-time solutions make little sense in the context of game development, it is
still interesting to mention Disney’s Material Point Method (MPM) for Snow Simulation
by Stomakhin et al. [11], which shows impressive realism in simulating snow dynamics
for different types of snow. Their method is capable of handling snow deformation, frac-
ture and stickiness in a variety of scenarios. Though the featured technique treats the
snow volume as a continuous material and does not render each snow flake individually,
it utilizes both a static Eulerian grid and a set of moving Lagrangian particles for its
calculations. The particle domain is responsible for tracking conserved properties such
as mass, momentum and deformation, while force interpolation happens on the grid.
The mass and the momentum are "checked in" by particles onto the grid; the grid then
computes forces, updates velocities, checks for collisions and finally transfers the updated
velocities back to particles. The particles then use the updated velocities to calculate
the deformation gradient, check for collisions once more and update their positions; the
cycle then repeats. The collisions are handled in both domains the same way, i.e. twice
per simulation cycle. The different behavior of snow types (chunky/powdery snow, frag-
ile/hardened snow, etc.) is governed by a set of manually tweakable snow parameters.
This MPM was later augmented to cover phase changes as well [12].

9

2 Background

In contrast to this, Gissler et al. [5] introduce a real-time Lagrangian approach based on
a Smoothed Particle Hydrodynamics (SPH) method that is also capable of simulating the
deformation, breaking, compression and hardening of snow and phase change from fluid
to snow. Additionally, due to SPH discretization, where single snow flakes are modeled
individually, their solution natively covers snow fall and accumulation, which was not
covered by the previous example. Gissler et al. inherit the physical basis for their snow
simulation from the model proposed by Stomakhin et al. [11], but argue than an SPH
realization can be an equal alternative to MPM.
Another real-time particle based solver for snow dynamics is introduced by Goswami et
al. [7], where the simulation simplicity and efficiency is achieved by avoiding the use
of complex CFD solvers altogether and being implemented in parallel on the GPU. The
same paper gives a great overview of the industry achievements at the time of its publi-
cation. The algorithm proposed by Goswami et al. [7] models the phase change to water
and ice, non-recoverable particle compression and particle cohesion through establishing
bonds particles that "stick together".
The most undemanding approach to snow cover representation in computer graphics is
pure surface based, and is also the most common one. Here the entire snow surface is
represented by a textcolorredheight or displacement map, that project collisions with ob-
jects into changed heights/indents in the snow surface. An example of such implemented
technique is given by J. Svensson [13]. Another example of an in-game implementation
was presented on the Game Developers Conference during the talk on Deformable Snow
Rendering in Batman: Arkham Origins [3].
The method used in this thesis is grid-only coupled with surface representation for snow
cover rendering. All the physics related calculations are performed on an Eulerian grid
(later referred to as grid), including the mass transfer. A single height buffer is used to
represent the indented snow surface.

10

3 Requirements

This section is dedicated to outlining the scope of the task, the simulation goals, and
the constraints. At the end of this chapter, a requirement map is introduced, which will
serve as the assessment criteria for the final project implementation.

3.1 Project Scope

The goal of this thesis is to model the changing density and height of a snowpack over
time as a function of its own weight, vertically applied external pressure, snow hardness,
temperature, and stiffness.

In order to visualize and test the algorithm a demo project is setup, that implements
and runs the simulation. The entire simulation is performed iteratively in discretized
timesteps and visualized on a 3d grid consisting of n · n · n cubic cells. Each of those
grid cells represents a fixed volume in space that can only contain either snow or air,
visualized accordingly, and stores information on physical properties at that location
(average temperature, density, etc). Implementing this kind of partitioning, rather than
calculating the average or total values for the entire snowpack, enables the cell grid to
eventually have non-uniform densities, leading to the desired gradient. Another base for
the grid-like representation of the space is that the information computed and stored
during the simulation could easily be sampled or contributed to by any entities within
the grid at any time. This notion will be used when detecting and registering applied
external pressure from objects in contact with the snow surface.

Since this thesis only focuses on vertical snow compression, it is helpful to think of
vertical stacks of such snow cells as snow columns. Snow columns serve as a convenient
way of representing properties that can be aggregated along the snow depth, e.g. the
total column mass or height.

11

3 Requirements

During the simulation, the cells are updated iteratively and the entire process is tracked
by the changed cell densities and total heights of the snowpack columns. These calcula-
tions are carried out in a compute shader in order to maximize the performance.

3.2 Project Use Cases

Within the scope of the demo project, 3 scenarios will be tested, i.e. 3 experiments will be
conducted to simulate snowpack compression under different weather conditions. These
conditions are defined by varying input parameters, mainly the (snowpack) temperature
or temperature gradient. The setting in which the snowpack is modeled, and that defines
the expected compression behavior, is considered the "Polar setting" from figure 2.2, left.
Moreover, the effects from heat sublimation in the same figure 2.2, right will be ignored,
as not to further extend the scope of the project. Other than that, any change in initial
snow-pack parameters should reflect on the snowpack’s behavior and its stabilized state
- for example, a lower temperature should lead to higher snow hardness, and therefore
smaller compression amount and change in snow cover height.

The effects of the external pressure will be tracked by the indents left by a number of static
objects of a given mass and area of contact with the snow surface. The expected behavior
in this case is universal for all test cases; objects with a bigger contact area should fall
deeper into the snowpack, and vice versa. In theory, this feature could become a base for
modelling a range of difficulties for trespassing snowy territories under different weather
conditions. As an example, during cold weather, due to a lower compressability of the
snow, one would have an easier time treading the snowy surface, without sinking too deep
into the snow. Alternatively, travelling with skis or by sleigh could also be considered a
safer option, since a bigger contact area would lower the pressure on the snow surface.

Below are listed the scenarios (use cases) in which the simulation experiments in the
demo project will be conducted.

3.2.1 Uniform initial conditions

The first scenario will test the amount of compression of the entire snow volume with
uniform initial temperature, both under its own weight and under external pressure. The

12

3 Requirements

resulting behavior should match the theory described in section 4.1.4, and the overall
density profile picture in stable state should resemble that in figure 2.1.

3.2.2 Non-uniform initial conditions

The second use case aims to recreate the scenario 2 discussed in chapter 2, shown in
figure 2.2, right. Although modelling heat convection is outside of the scope of this
thesis, it is still interesting to investigate how the non-uniform initial temperature affects
the simulation, as compared to it’s uniform configuration. The snow is still expected to
become denser at higher temperatures during this simulation. The snow will be initialized
with a bottom-up temperature gradient (figure 2.2, right), since the theoretical result of
a top-down temperature gradient (figure 2.2, left) is too close to and already covered by
the previous use case with the uniform initial conditions.

3.2.3 Run-time change of conditions

So far the simulation conditions were said to be pre-initialized for every expeniment and
to remain constant through-out the test runs. This time, the temperature will change
while the simulation still runs, in order to replicate snowpack layer formation due to
accumulation of snow at different points in time under different weather conditions.
Visualization of those layers should be indicative of the snowpack’s recent history, like
how many recent snowfalls have happened and under what weather conditions. Drawing
a parallel to real-life situations, this use case could represent a scenario where a weak
snow layer has formed that has made the snowy territory unsafe for passage. In the
world of backcountry skiing, a close inspection of the snowpack for identifying any weak
layers is key to predicting and avoiding avalanches. A weak layer in a snowpack refers
to a specific layer within the accumulated snow that has reduced structural integrity
and strength compared to the surrounding snow layers. An example of a snow-pit wall,
allegedly carved in order to perform the Extended Column Test, containing such layers
is shown in figure 3.1.

A more granular coverage of the requirements/constraints that encompass all three use
cases are listed in the next section.

13

3 Requirements

3.3 Project Constraints and Requirements

The density is calculated as the result of the change in the snow volume, driven either
by gravitational force or by externally applied vertical pressure. The changed volume,
in turn, is derived from the deformation/indent length x via formula 4.5 (The detailed
algorithm is covered in the next chapter), and the factors that influence the deformation
amount are limited by the scope of this project to:

• Snow hardness [Pa]

• Snow stiffness [Pa/m]

with the snow hardness being dependent on the following parameters:

• Snow density [kg/m3]

• Snow temperature [◦C]

and snow stiffness only depending on the density, forming a feedback loop.

In order to help form a behavior curve of the snow density for a given snow depth, the
following constraints were derived from the theory described in the previous section,
based on scenario 1 illustrated in figure 2.2 (Left, Snow density increases with depth):

1. The snow density starts at some uniform minimum value ρfresh

2. The snow density stays at that value until a pressure threshold that is defined by
the snow hardness is passed by acting pressure

3. The snow density then keeps increasing until it reaches some maximum value

4. In between the minimum and maximum points the density is proportional to the
pressure acting on the snow at the given point in space.

Moreover, in order to establish the overall relations between the variables in question
(hardness, temperature, stiffness, and density), regardless of the specific formulas chosen,
the following conditions must be satisfied:

5. The snow hardness is proportional to its density (increasing the snow density in-
creases its hardness)

14

3 Requirements

6. The snow hardness is in reverse proportion to its temperature (increasing the snow
temperature decreases its hardness)

7. The snow stiffness, defined by the spring coefficient, is proportional to its density
(increasing the snow density increases the spring coefficient)

With the above constraints in mind, the first crude predictions of what the density curve
could look like were made (see Figure 3.2). This graph shows the theoretical response of
uniform snow density to pressure, for some initial density ρfresh,1, temperature Tfresh,1

and hardness Hfresh,1, plotted against the snow depth. The graph can be interpreted
in the following way: for an imaginary slab of snow, with uniform initial density and
temperature, the snow starts to compress under its own weight at point depth1 below
the surface, and around point depth2 it reaches its maximum density ρmax. The point
depth1 is a crucial turning point associated with the depth at which the pressure from
the overlying snow layers is enough to exceed the snow hardness and make the underlying
snow compress and deform. This point shifts further to the right from the origin, the
higher the initial density value is, according to the prerequisites 2.2 and 2.5, as well as
for a lower snow temperature.

In addition to the compaction of snow under its own weight, the correct response to the
(vertical) external pressure is modeled. The external pressure is provided by the weight
pressure of in-scene objects (snow colliders). The assessment criteria is the indent made
in snow surface by multiple objects of same mass, but different collision areas, that must
satisfy:

8. With constant mass, a larger collision area results in a lower pressure, and, there-
fore, lower indent.

Finally, since only the vertical compression is considered here, an assumption can be
made that the snow mass does not transfer left or right, only down, due to vertical
compression itself. Therefore, the mass conservation constraint is added to the list:

9. The total mass of a column stays constant, whereas the mass of a cell may change.

All of the constraints listed above are summarized into a set of requirements and mapped
to the use cases by which they are covered in table 3.1. In general, the listed requirements
apply to all use cases and should be fulfilled always, but the table only lists the ones whose
discussion in the Evaluation chapter will be focused on those specific requirements.

15

3 Requirements

Table 3.1: Project requirement map

№ Requirement Constraint(s) Use case(s)
1 Snow can compress under pressure 1,2,3,4 1,2,3
2 Snow only starts compressing after

a certain pressure threshold is passed 2 1
3 Snow should not compress indefinitely 3 1,2
4 Higher snow density leads to less compression 5,7 1,2,3
5 Higher snow temperature leads to more compression 6 1,2,3
6 Objects that lie on the snow cover sink deeper into

snow the smaller the areas of contact between
them and the snow cover, and the bigger
their masses are 8 1

7 There should be no artificial increase in snow mass
i.e. snow mass should stay constant unless fresh snow
is added explicitly 9 1,2,3

16

3 Requirements

(a)

(b)

Figure 3.1: Snowpack containing a visible weak layer (a) and a weak layer forming on
the surface prior to its burial (b). The weak layers are identified by their
relatively lower strength and density, and thus higher fracture potential than
their surrounding layers. The photos are taken from avalanche.org.

17

3 Requirements

Figure 3.2: Theoretical visualization of the snow density at each depth level as a func-
tion of its initial parameters and the pressure of its own weight, based on
constraints 1 - 8. The x-axis represents the depth from the snow surface,
while the y-axis is the resulting pressure gradient.

18

4 Design

This chapter explains in detail the algorithm that was constructed for the simulation
based on the theory and the requirements. Before being implemented in shader code,
the simulation algorithm was prototyped in Python. The next section gives a detailed
breakdown of the relations between the pressure, hardness, and density that is used by
the simulation, followed by preliminary Python tests.

4.1 Simulation Algorithm

As already mentioned, the simulation iterates over all grid cells, and each iteration up-
dates some of the cell’s properties. A complete cycle ends with the updated densities and
snow column heights, then the next cycle is run with the newly computed parameters
and so on. Every cycle that a snow cell goes through, consists of the following steps:

1. Calculate the total pressure acting on the cell

2. Calculate the cell hardness based on its density and temperature

3. Calculate the cell stiffness (spring coefficient) based on its density

4. Calculate the compression indent based on the total pressure, hardness and stiffness

5. Calculate the new temporary cell density candidate based on the cell indent amount

6. Calculate final cell densities by resampling the columns, as well as total column
heights and masses

The next subsections explain every step in detail. The snow cells are denoted celli, where
i is the index (number) of the cell counted from the top, e.g cell0 is the top most snow
cell that is in contact with air, cell1 is the one below it and so on. All cells have equal
and constant dimensions, their side size, or height is denoted by hcell.

19

4 Design

4.1.1 Pressure

For an ith snow cell, with n = the total number of cells per column, the total pressure
acting on that cell is calculated as:

Pi = Fi,mg/Acell + Pi,ext (4.1)

with

Fi,mg =
n∑

k=0

mk · g (4.2)

and

mk = ρk · Vcell (4.3)

where Pi is the total cell pressure [Pa], Fi,mg is the total gravitational force acting on the
cell [N], A is the cell base area [m2] which is equal to h2cell and Pi,ext is the externally
applied pressure [Pa]. Fi,mg is calculated from the sum of masses of all the overlying cells,
including the current one, multiplied with the gravitational constant g = 9.81 m/s2. A
cell’s mass is calculated as its average density multiplied by the constant cell volume Vcell

= h3cell [m3].

4.1.2 Hardness and the spring coefficient

The snow hardness is calculated using the direct formula 2.5 proposed by Barakhtanov
et al.

H(ρ, T) = −0.16599 + 0.542153 · ρ− 0.08925 · T + 0.447667 · ρ2 + 0, 159256 · ρ · T

− 0.01336 · T 2 + 0.261043 · ρ3 − 0.15863 · ρ2 · T + 0, 022601 · ρ · T 2 − 0.00032 · T 3

(4.4)

with H, ρ and T denoting the snow hardness [Pa], density [kg/m3] and temperature [◦C],
respectively.

20

4 Design

The spring coefficient k uses the modified version of formula 2.7:

k = ρn1 (4.5)

Where k is the spring coefficient [Pa/m], ρ is the (average) density [kg/m3], n1 = 3.56
was estimated during prototyping, by making sure the density curve does not compress
indefinitely while still showing appropriate range.

4.1.3 Compression indent

The new cell density can be calculated as the result of change in the snow volume after
compression, under assumption that the snow mass is constant per column (requirement
8). The change in the snow volume is dictated by the indent/compression amount x,
resulting from the external vertically applied force and gravitation. Based on the formulas
2.1 and 4.5, and the observations from fig 2.3 the vertical indent of snow under vertically
applied force/pressure can be described with the equation:

x = min(P −H, 0)/k (4.6)

where x is the indent amount [m], P is the pressure acting on the snow cell [Pa], H is the
snow hardness [Pa] and k is the spring coefficient [Pa/m].

4.1.4 Compressed density

The compressed density of a cell celli is calculated as a function of the cell indent x, and
assigned back as the temporary partial density of that cell. Knowing that for a constant
mass, the volume and the density are in reverse proportion, and ignoring adjacent cells,
the new density can be calculated as:

Vi

V ′
i

=
h3cell

h2cell · (hcell − x)
=

hcell
hcell − x

Therefore,

ρ′i = ρi ·
hcell

hcell − x
(4.7)

Where Vi is the cell volume before compression [m3], hcell is the cell side size [m], V ′
i

is the partial volume after compression [m3], ρi and ρ′i are the old and the new cell

21

4 Design

densities [kg/m3], before and after compression respectively. Figure 4.1 gives a visual
representation of this calculation.

Figure 4.1: Visualization of the compressed density calculation for an example cell of
hcell = 1m and a compression indent x = 0.5m, based on equation 4.7.
Vi,ρi,V ′

i and ρ′i are the variables defined in equation 4.7.

The new density value ρ′i is a temporary value, and is only true for the partial cell volume
V ′
i . The average call densities are calculated by resampling all cells from bottom to top,

which is described in the last step.

4.1.5 Column resampling

After storing the calculated temporary densities for each cell together with their indents,
each column is iterated from bottom to top to calculate the final cell masses and densities,
update the total heights and masses of each column. The average density of the current
cell is calculated as mcell

Vcell
, where mcell is the total cell mass, and Vcell is the cell volume.

The total cell mass is calculated by combining the product of the partial density and
partial volume of the current cell with products of densities sampled from the upper cells
and their partial volumes until the volume of the current cell is filled up, or until the
current cellmass

cellvolume ratio reaches the maximum density that a cell is able to hold. Figure
4.2 demonstrates this process. The total column masses and heights are calculated as

22

4 Design

shown in equations 4.8 and 4.9.

mcolumn =

n∑
k=0

mcell,n−1−k (4.8)

and updates its height by subtracting all of the cell indents from the initial height value

h
′
column = hcolumn −

n∑
k=0

xn−1−k (4.9)

Here, mcolumn is the total mass of the snow column [kg], mcell are individual cell masses
that the column consists of. h

′
column and h

′
column are the updated and the old total

column heights [m] respectively, and x are the individual cell indents [m].

Figure 4.2: Visualization of the cell density resampling process. The densities ρ0,1,2,3
are the partial densities [kg/m3] calculated during the previous step 4.1.4 for
cells 0-3, x0,1,2,3 are example indents [m], ρ′0,1,2,3 are the final average densities
[kg/m3], m′

3 is the average mass [kg] of cell 3, Vcell is the constant cell volume
[m3] (in this example, V cell = 1 for a cubic cell of height 1 m).

This calls the end of one simulation cycle. The simulation continues to iterate until all
cells become stable. A cell can reach stability either by arriving at the maximum snow
density or having its hardness outgrow the active pressure.

23

4 Design

4.2 Prototyping in Python

The above algorithm was tested on a singe column with a total height of 8 m. The
column was partitioned into 50 cells, each of height 0.04 m. The simulation was run for
multiple cycles using:
start density of fresh snow = 20 kg/m3

snow temperature = - 3 ◦C

and n1 = 3.56 for equation 4.5. The x in the equation 4.6 is capped at 99% of the
cell height to avoid division by zero and overflows. Due to the iterative nature of the
simulation, the error produced by the clamp operation can be neglected.
Figure 4.3 demonstrates the effects of the 1st cycle on the initial fresh density. With
this configuration, it takes about 2 meters for the weight pressure to exceed the snow
hardness and start compressing the underlying snow cells, which can be seen in the first
(left) subplot in figure 4.5. Most of the compression happens during the first cycle (figure
4.3, right) and with each consecutive cycle the changes in densities become less and less
significant. This decay is shown in figure 4.4 that combines the density curves after cycles
1,2,5 and 10.

The pressure and hardness curves plotted against each other during cycles 1,2,5 and
10 can be seen in figures 4.5 and 4.6. These plots demonstrate how with each cycle an
increase in density leads to increase in hardness (constraint 5). Due to the polynomial re-
lation between density and hardness, the hardness curve completely outgrows the weight
pressure after cycle 10, stopping the density curve from any further changes. This ensures
that even when being far from reaching the maximum cell density limit, the average cell
density will not increase indefinitely, regardless of how many cycles are run.

Another test run was conducted by lowering the temperature and keeping the start den-
sity as it was: start density of fresh snow = 20 kg/m3

snow temperature = - 10 ◦C

This configuration resulted in a far lower impact of the weight pressure due to increased
snow hardness, fulfilling constraint 6. Figure 4.7 compares the density behavior for dif-
ferent temperatures, showing that it now takes more snow volume for its weight pressure
to exceed the snow hardness. The density behavior of cycles 1,2,5 and 10 can be seen in
figure 4.8.

24

4 Design

Figure 4.3: The fresh density before the simulation start (left) and the density gradient
after the 1st cycle (right). The column total height is compressed by 2 meters.

Figure 4.4: Density curves after cycles 1,2,5 and 10, for start density = 20 km/m3 and
temperature = -3 ◦C.

25

4 Design

Figure 4.5: The pressure and hardness curves plotted against each other during cycles
1 (left) and 2 (right). Density changes only happen at those levels of depth
where the pressure value (solid line) is greater than the hardness value (dashed
line). For cycle 1 it is the entire length after point d1, where the weight
pressure exceeds the snow hardness.

Figure 4.6: The pressure and hardness curves plotted against each other during cycles
5 (left) and 10 (right). As the hardness curve catches up with the weight
pressure, the density stabilizes.

26

4 Design

Figure 4.7: Density curves after cycles 1,2,5 and 10, for start density = 20 km/m3 and
temperature = -10 ◦C. The total column height is compressed by 1.5 meters.

Figure 4.8: The pressure and hardness curves plotted against each other during cycle 1,
for temperatures -3 ◦C (left) and -10 ◦C(right). The point d1 shifts further
to the right for lower temperatures, indicating increase in snow hardness.

27

5 Implementation

This chapter covers the implementation of the practical part of the thesis (project). The
Project Overview section is focused on listing the tools of choice and describing the overall
project structure, followed by the Simulation and Visualization sections that cover the
corresponding project features.

5.1 Project Overview

The practical part of the thesis is developed as a Unity project. As mentioned in the
previous chapter, the simulation is implemented on a grid of cells, that represents a
snowpack volume. The immediate visualization is done by rendering a grid of cubes,
with colors indicating the different parameters, such as cell density, cell pressure, cell
position, and so on.

5.1.1 Tools of choice

Below are listed the software tools that were used during the implementation together
with their short descriptions:

Unity 3D
Software for independent game development, that provides a flexible and easy-to-use in-
frastructure for building games, including support for writing compute and custom pixel
shaders. Moreover, the extensive documentation and manuals provided both by the of-
ficial Unity website and third-party sources makes it very appealing to work with. All
programming in Unity is done through C# scripting.

28

5 Implementation

Visual Studio
Unity 3D does not provide its own code editing tool, however, supports external code
editors and debuggers. Visual Studio is the default script editing software for Unity and
can be attached to the Unity client instance for debugging during runtime.

NSight
NSight is a GPU debugging software that enables a frame-by-frame inspection of draw
calls and retrieving data such as structured buffers from the GPU

Python 3
In addition to algorithm prototyping, Python scripts are used in this project for evalu-
ating the data retrieved from the GPU.

5.1.2 Project Structure

The project implementation is split between the CPU and the GPU. The CPU-side code
is responsible for the creation and routing of data, and user input control and is written
in C#. The GPU part in turn comprises of a compute shader and a vertex-fragment
shader, and is written in the shader-specific language HLSL. The object-class diagram in
Figure 5.1 shows the relations between different project components, without going into
very specific implementation details.

The code for all physics-related calculations resides in a single compute shader with
multiple kernels, where each includes one or several simulation steps covered in the
previous chapter. Since most of the calculations associated with the cell updates are self-
contained and involve the same amount of steps, the parallelism offered by the compute
shader threads is used for performance gains. This applies to cases where the grid
iteration order does not matter, meaning that all the cells can be updated at the same
time. In cases where the grid cells must be iterated in a specific order and rely on data
from adjacent cells, the computation time can still benefit from parallelism by handling
all the grid columns concurrently.

The code that is responsible for visual debugging and rendering of the 3d grid is in the
vertex-fragment shader, associated with the grid material.

29

5 Implementation

Figure 5.1: Object-class diagram of the project

Data Structures

The data for holding input and output values covered in the previous chapter is encap-
sulated into structs, namely the cell data struct and the column data struct.

A cell struct contains the following data:

• Snow density

• Snow hardness

• Snow temperature

• Snow mass

• Snow indent

30

5 Implementation

• Weight pressure

• External pressure

as well as some meta-data, containing information about the grid:

• Cell world position

• Cell content - snow, air or ground

The cell grid only lives as a concept and does not have its own dedicated struct. Instead,
it is represented as an arrangement of n · n · n cells instanced with corresponding world
coordinates, with n denoting the number of cells per grid dimension. This initial creation
of cells and their arrangement is handled by the CPU-side code as well. The grid is defined
by its initialization parameters which are listed below:

• cell side size

• cell number along the x-axis (grid width)

• cell number along the z-axis (grid depth)

• cell number along the y-axis (grid height)

A grid contains 2 types of cells: air cells and snow cells. If a cell is marked as ground or
air, it will be skipped during most of the simulation-related computations.

A column struct looks as follows:

• Snow column height

• Snow column mass

It is important to differentiate between a column buffer - which is a collection of column
data structs, and a grid column - which is a conceptual representation of a vertical stack
of cell structs.

Additionally, there is a special data struct for holding collision information:

• World position (of affected cell)

• Pressure

31

5 Implementation

Figure 5.2: The 3d grid consisting of 50 · 50 · 50 cells, with their world positions rep-
resented by color. The gizmo in the bottom left corner indicates the world
coordinate system.

CPU

The CPU-side code lives in a C# script with the Manager class that contains all the ini-
tialization logic, is responsible for data routing between the CPU and the GPU, and the
command execution order during every frame update. By default, all newly created C#
scripts inherit from Unity’s MonoBehavior class, which provides the following overrid-

32

5 Implementation

able functions: Update() and Start(). The Update() function executes every frame. The
Start() function is executed only once in a script’s lifetime before any of the Update()
calls. The Manager class, as well as the SnowCollider, have their initialization logic
nested in the Start() function. At initialization time, the cell grid is created, with each
cell’s parameters set to 0, except for the density, which is set to freshSnowDensity from
table 5.1. All data structs are routed between the CPU and the GPU using structured
buffers. The Manager script is in charge of authoring updates on those buffers every
frame, i.e. 1 frame = 1 simulation cycle. It also controls the simulation and visualization
by passing over some changeable parameters to the GPU (like simulation speed, grid
output toggles, and so on). Simulation dispatch calls, as well as the control parameters
updates happen in the Update() function. Table 5.1 refers to such simulation control
parameters and their default values.

Table 5.1: Global parameters

parameter controls initial value applies at
grid related

cellSize cell height/side size 0.2 m init time
gridWidth cells along x-axis 50 init time
gridDepth cells along z-axis 50 init time
gridHeight cells along y-axis 50 init time

simulation related
cellV cell volume, derived from cellSize 0.008 m3 init time
kN density exponent for formula 4.5 3.56 kg/m3 run-time
freshSnowDensity fresh snow density 20 kg/m3 init time
maxSnowDensity maximum snow density 100 kg/m3 init time
airTemperature air cells’ temperature -3 ◦C run-time
addedSnow height of freshly added snow 5.8 m run-time
timeScale simulation speed 1 run-time

visualization related
showGrid grid visualization toggle true run-time
showDensity density visualization toggle true run-time
showTemperature temperature visualization toggle false run-time
showPressure pressure visualization toggle false run-time

Collision and external pressure

33

5 Implementation

The CPU-side code also detects the collision of objects with the snow surface, and logs
which grid cells are affected and the external pressure per cell. In order to detect and
correctly pass the collision information a SnowCollider class is implemented. That class
holds a reference to the collision buffer, as well as contains parameters that define the
collider itself, like its mass and the collision area. When the collision happens, the snow
collider fills the buffer with all generated collisions. Those values will be used during the
simulation for calculating the total vertical pressure. There are 3 snow collider objects
present in the scene, represented by 3 differently sized cuboids of same mass (figure 5.3).
The cuboids with their defining parameters are listed in table 5.2.

Table 5.2: In-scene snow colliders

mass collision area
Collider 1 100 kg 16 m2

Collider 2 100 kg 1 m2

Collider 3 100 kg 0.1 m2

The external pressure that is received by each colliding cell of the snow surface is calcu-
lated as the collider’s gravitational force divided by its total contact area with the snow,
here referred to as collision area.

GPU

After the cell and the column buffers are created on the CPU, their references are passed
down to the GPU. The compute shader executes the simulation cycles, triggered by the
Manager script every frame, and updates the buffers with newly calculated values. The
vertex/fragment shaders are assigned to the rendered geometry and then use those values
for visual output.

5.2 Simulation

The compute shader handles all the simulation-related work. The simulation algorithm
described in section 4.1 is implemented by 5 compute kernels. A compute kernel refers
to a specific function or program that is executed on a GPU’s compute units to perform
parallel computations. Most kernels involved in this simulation cover one or more steps

34

5 Implementation

Figure 5.3: Snow colliders 1,2 and 3 from table 5.2, in their initial positions before the
simulation start - their volumes almost entirely above the snow surface.

of the algorithm. Sometimes, due to different mapping between the buffer indexes and
kernel threads, a step is split between kernels. Additionally, there are 2 helper kernels
that are dispatched on demand by the Manager script. For referencing convenience, the
helper kernels will be covered here first:

AddHeight
This kernel simply adds the value addedSnowHeight, supplied by the CPU side to all the

35

5 Implementation

column heights in the columns buffer. The updated structured buffer will then be used
for adding fresh snow cells.

SetPressure
This kernel is dispatched every time a collision with the snow surface is detected. It
reads from the collisions buffer that had been updated by the SnowCollider and sets the
external pressure of all the affected cells in the cells buffer.

The simulation kernels are dispatched every frame. Each kernel thread is run per grid
cell unless stated otherwise. Below is a detailed breakdown of every kernel in the same
order as they are dispatched by the Manager script’s update call:

PopulateGrid
The first kernel fills out all the cell parameters and prepares them for simulation, based
on their content (label). The total snow height is sampled from the columns buffer. The
cells are labeled "air" if they are above the snow height and "snow" otherwise. The
following cell properties are calculated and stored:

Cell temperature Air cells always sample their temperature from the controllable
airTemperature value. If a cell is freshly labeled as "snow", it samples its tempera-
ture from airTemperature and keeps it for as long as it remains labeled "snow", meaning
that for older "snow" cells the temperature remains constant.

The following properties are calculated only for "snow" cells, and for "air" cells are set
to 0:
Cell density For fresh "snow" cells density is sampled from freshSnowDensity, for old
"snow" cells remains intact.
Cell hardness Hardness is calculated and stored based on formula 4.4.
Cell mass: Mass is calculated by a simple relation celldensity

vCell .

In the next kernels, the calculations are only carried out for "snow" cells.

ComputePressures
This kernel is dispatched per grid column, instead of a grid cell, and fully covers the
step 4.1.1 of the simulation algorithm. Within the column, it iterates through all cells
from top to bottom to calculate and store the total acting pressure (formula 4.1). The

36

5 Implementation

weight pressure is calculated during the for loop iteration, via formula 4.2. The external
pressure is sampled from the corresponding cell’s external pressure property, where it
had been added by the SetPressure() kernel.

ApplyPressures
This kernel combines the algorithm steps 4.1.3 and 4.1.4. The spring coefficient is calcu-
lated on the fly via formula 4.5. The indent from compression is calculated via formula
4.6. In order to make use of the discretized time steps while still retaining the control
over the simulation speed, the result x is multiplied with the scaled timeStep value. The
full modification then looks like the following:

x
′
= min(x ∗ timeStep ∗ timeScale, cellSize ∗ 0.99) (5.1)

where x is the indent per cell [m], cellSize is the cell side size/height, timeStep is the
time passed since the last simulation cycle/frame [s], supplied by Unity, and timeScale
is the simulation speed controller. The partial density is calculated via formula 4.7 and
stored as the temporary density value of that cell. It will be updated for the correct,
final one by the next kernel.

The step 4.1.5 from the algorithm is split between the last two kernels:

ResampleDensities
This kernel covers the density resampling part, by, again, iterating grid columns, this
time from bottom to top. The correct densities are calculated as illustrated in figure
4.2.

UpdateSnowColumns
The last kernel simply calculates the corresponding total column height and mass, based
on formulas 4.9 and 4.8 respectively for each column struct in the columns buffer. Based
on these height values, the cells that are no longer within the snowpack volume will be
labeled as "air" during the next PopulateGrid() kernel execution.

5.3 Visualisation

The cell grid rendering is done with a help of a vertex-fragment shader that reads data
from the cells buffer and renders each cell according to its properties. Additionally, there

37

5 Implementation

are toggles controlled from the CPU side, listed under the visualization tag of table 5.1.
This is useful for visual debugging and quick result assessment.

Additionally, there is another vertex-fragment shader applied to a horizontal plane, that
offsets the plane’s vertices based on the sampled heights from the snow column buffer.
This is done to visually output the column heights when the grid visualization is turned
off. Different parameters with the initial configuration in table 5.1 are visualized in
figures 5.4, 5.5 and 5.6.

38

5 Implementation

Figure 5.4: Visualization of grid density, for cells where density is greater than 0. The
color intensity represents the percentage of the maximum density. In this
example, the uniform fresh density before the 1st cycle is visualised as a ratio
20kg/m3

100kg/m3 . The screenshot is taken from the implemented demo project.

39

5 Implementation

Figure 5.5: Visualization of grid temperature. The color hue represents temperature
range from 0 to -20; red to blue respectively. This example visualizes the
start temperature of -3 ◦C before the 1st cycle. The screenshot is taken from
the implemented demo project.

40

5 Implementation

Figure 5.6: Visualization of total active grid pressure where it exceeds the hardness, for
the initial values in table 5.1. The screenshot is taken from the implemented
demo project.

41

6 Evaluation and Tests

In this chapter the results of the simulation are evaluated. Each section of this chapter
covers a separate test with its initial conditions and results, that correspond to the use
cases described in the Requirements chapter (chapter 3). In total, there are 3 tests,
with the first one being a general assessment of the expected behavior with the default
initial configuration that is shown in table 5.1, and split into 2 sub-tests. The other 2
tests dive into the specifics of different temperature configurations and their effects on
the resulting density profile. Once the simulation reaches visual stability, the cell buffer
data is retrieved for evaluation via the GPU debugging software NSight and is plotted in
Python, the plots are then presented alongside the visual results from the project build
window.

6.1 Uniform temperature

The first test aims at evaluating the compression of snow under conditions of uniform
initial density and temperature. This test includes 2 simulation runs (test 1.a and test
1.b), one for a higher and another one for a lower value of the initial temperature, with the
rest of the configuration copied from table 5.1. The defining input parameters of each
sub-test are reiterated in table 6.1. The same table lists the tracked output variables
that characterize the overall compression response and give some assessment criteria.
Figures 6.1 and 6.2 demonstrate the start, half-point and stable states of simulation for
sub-tests a and b, respectively. In both cases the snow colliders show similar expected
behavior: collider 1 not moving due to its weight pressure not being enough to exceed
the snow hardness, collider 2 indenting the snow surface underneath it just a little bit
and collider 3 being almost entirely submerged into the snowpack by the end of the
simulation. Figures 6.1.d and 6.2.d both show a slight density gradient that increases
towards the bottom, however the exact numerical values given in figure 6.3 indicate a
clear difference in the behaviors of snow hardness and density in both cases. Figure

42

6 Evaluation and Tests

6.3.b shows lower values for density and higher values for hardness across the entire
snow column, as well as the compression starting as a deeper level for test 1.b than
the results of test 1.a shown presented in figure . Thus, the results of 2 simulation runs,
authored under the same conditions except for the temperature, show less compression for
a lower temperature value. The tracked output variables in table 6.1 show that despite
the column resampling some artificial mass increase is still present, leading to failed
mass conservation requirement. The incorrect mass accumulation persists through-out
all tests. Though neglectable, this discrepancy is evident of one major drawback of a grid-
based implementation in 3D and that being the non-trivial mass transferring problem.
Moreover, there is an artifact of an incorrectly added height in vicinity of the indent
from the thinnest collider (collider 3), that is likely tied to a mis-match in coordinates
mapping between the affected cell and the height map.

Table 6.1: Test 1 parameters

Input parameters Test 1.a Test 1.b
Fresh snow density 20 kg/m3 20 kg/m3

Temperature -3 ◦C -10 ◦C

Output parameters Test 1.a Test 1.b
Before sim. After sim. After sim.

Column mass 4.64 kg 4.92 kg 4.66 kg
Column height 5.8 m 4.8 m 5.4 m
Column avg. density 20 kg/m3 24.39 kg/m3 21.57 kg/m3

6.2 Temperature gradient - bottom-up

The bottom-up temperature gradient was achieved by initializing the cell grid with their
the temperatures decremented by 2 ◦C every 0.8 meters, starting with -3 ◦C at the
bottom. Table 6.2 lists the input parameters as well as the tracked output parameters
for this test. The resulting start temperature profile is shown in figure 6.4.a. Figures
6.4.b and 6.4.c show a relative fast compression rate in comparison to the previous tests.
Though the amount of total height decrease is considerably lower than for test 1.a and
exceeds that of test 1.b only by 0.2 meters, the compression at the bottom of the grid,
where cells have the lowest hardness and are exposed to highest weight pressure, is visibly
higher than of test 1, as shown by the stable density profile in figure 6.4.d. This is backed

43

6 Evaluation and Tests

(a) (b)

(c) (d)

Figure 6.1: Visualization of simulation run for test 1.a, taken from the implemented demo
project. Screenshots show the pressure profile mixed with the current tem-
perature of -3 ◦C at simulation time = 0 s (a), 30 s (b) and approx. 2 minutes
(c). Sub-figure (d) shows the stable-state density gradient

by the plots in figure 6.7, where at deeper levels the snow density reaches its highest values
quite fast.

44

6 Evaluation and Tests

(a) (b)

(c) (d)

Figure 6.2: Visualization of simulation run for test 1.b, taken from the implemented
demo project. Screenshots show the pressure profile mixed with the current
temperature of -10 ◦C at simulation time = 0 s (a), 30 s (b) and approx. 2
minutes (c). Sub-figure (d) shows the stable-state density gradient

6.3 Run-time snow layering

The last test aims to mimic multiple snowfalls under different conditions, defined by the
air temperature at the time of new snow formation. Instead of initializing the entire

45

6 Evaluation and Tests

(a)

(b)

Figure 6.3: Simulation results of test 1.a (a) and test 1.b (b), taken from cell data of the
central column. The curves show the snow density as a function of depth
(left) and snow hardness as a function of density (right).

snowpack height before the simulation start, this time the snow height is added consec-
utively, with enough time in between new additions for the existing snow to settle down
and stabilize. The aim of this test is to force the visible snowpack layer formation due
to uneven compression, as described in section 3.2.3.
The simulation parameters listed in table 6.3 were hand-tuned in order to produce the
largest visible difference in snow hardness and density. The stabilized density profile
of the snowpack is depicted in figure 6.6.a, along with its temperature profile in figure

46

6 Evaluation and Tests

Table 6.2: Test 2 parameters

Input parameters
Fresh snow density 20 kg/m3

Temperature range {-3 ; -15}
Output parameters

Before sim. After sim.
Column mass 4.48 kg 4.92 kg
Column height 5.6 m 5 m
Column avg. density 20 kg/m3 24.6 kg/m3

6.6.b. The plots in figure 6.6 show which cells are responsible for the layer with the
lowest density.

Table 6.3: Test 3 parameters

Snowfall 1 Snowfall 2 Snowfall 3 Snowfall 4
Fresh snow density 20 kg/m3 20 kg/m3 20 kg/m3 20 kg/m3

Added height 3.6 m 1.2 m 3.6 m 3.2 m
Temperature - 3 ◦C -15 ◦C - 3 ◦C - 3 ◦C

This concludes the simulation experiments. The fulfilled and failed requirements are
reiterated in table 6.4.

Table 6.4: Project evaluation map

Req № Constraint(s) Use case(s) Experiment(s) Successful
1 1,2,3,4 1,2,3 1.a, 1.b, 2, 3 yes
2 2 1 1.a, 1.b yes
3 3 1,2 1.a, 1.b , 2 yes
4 5,7 1,2,3 1.a, 1.b, 2, 3 yes
5 6 1,2,3 1.a, 1.b, 2, 3 yes
6 8 1 1.a, 1.b yes
7 9 1,2,3 1.a, 1.b, 2, 3 no

47

6 Evaluation and Tests

(a) (b)

(c) (d)

Figure 6.4: Visualization of the simulation run for test 2, taken from the implemented
demo project.. Screenshots show the start temperature gradient alone (a),
the pressure profile mixed with temperature gradient at simulation time = 0
s (b) and 30 s (c). Sub-figure (d) shows the stable-state density gradient

48

6 Evaluation and Tests

Figure 6.5: Simulation results of test 2, taken from cell data of the central column. The
curves show the snow density as a function of depth (left) and snow hardness
as a function of density (right).

(a) (b)

Figure 6.6: Visualization of the simulation run for test 3, taken from the implemented
demo project.. Screenshots show the stable state density profile (a), and the
temperature (b) of the snowpack.

49

6 Evaluation and Tests

Figure 6.7: Simulation results of test 3, taken from cell data of the central column. The
discretized graphs show the snow density as a function of depth (left) and
snow hardness as a function of density (right), the individual data points are
marked with circles.

50

7 Summary and Outlook

As mentioned in the previous chapter, the most obvious limitation of a fixed grid-based
implementation in 3D space is that the correct mass transfer proves to be a challenging
task, an issue that could be easily solved by moving particles. In all the other aspects,
grid calculations showed quite stable results in replicating the relation between the snow
density, temperature and hardness, and, subsequently the deformation amount. This
dependency could be further extended by taking into account such parameters as grain
size, humidity, porosity etc. The vertical compression and mass movement could also be
extended to cover all directions. It would be interesting to see the results produced by
coupling this grid-based implementation with a particle system, that could potentially
fix the limitations stated earlier. Moreover, the same particle system could be used to
simulate snow fracture and stickiness (for example, by modeling bonds between particles
as described in [7]).
Additionally, the problem of where and how much the snow should accumulate during a
snow fall could be explored further. Figure 7.1 shows the different configurations of ac-
cumulated snow based on the underlying terrain and the wind direction, that could serve
as a good basis for templating procedural snow cover generation. Simulating the snow
fall itself would become a trivial task once particles are utilized. So, a more sophisticated
simulation coupled with Lagrangian particles could make up for a versatile self-contained
snowy environment that "lives its own life", waiting for the player to interact with it.

51

7 Summary and Outlook

Figure 7.1: Snow accumulation on different shapes of underlying terrain. The wind flow
is indicated with arrows. The original figure is taken from [9].

52

Bibliography

[1] A., Anikin A. ; V., Barakhtanov L. ; O, Donato I.: Fiziko-mekhanicheskie svoistva
snega kak polotna puti dl’a dvizhenia mashin [Physical and mechanical properties of
snow as a roadbed for the movement of vehicles]. In: Mashinostroenie i komputernie
tekhnologii [Mechanical engineering and computer technology] (2010), 10, Nr. 10,
S. 5. – URL http://technomag.edu.ru/doc/160649.html

[2] Barakhtanov, Lev ; Belyakov, Vladimir ; Blokhin, Aleksandr ; Denisenko,
Elena: Mathematical dependence of physical-mechanical properties of snow cover
as support base for movement of vehicles. In: Science and Education of the Bauman
MSTU 12 (2012), 08

[3] Barre-Brisebois, Colin: Deformable Snow Rendering in Batman: Arkham
Origins. 2014. – URL https://www.gdcvault.com/play/1020177/

Deformable-Snow-Rendering-in-Batman. – Game Developers Conference

[4] DeWalle, David R. ; Rango, Albert: Principles of Snow Hydrology. Cambridge
University Press, 2008

[5] Gissler, Christoph ; Henne, Andreas ; Band, Stefan ; Peer, Andreas ;
Teschner, Matthias: An implicit compressible SPH solver for snow simulation.
In: ACM Transactions on Graphics 39 (2020), 07

[6] Gold, Lorne W.: The Strength of Snow in Compression. In: Journal of Glaciology
2 (1956), Nr. 20, S. 719–725

[7] Goswami, Prashant ; Markowicz, Christian ; Hassan, Ali: Real-time particle-
based snow simulation on the GPU. In: Eurographics Symposium on Parallel Graph-
ics and Visualization :, 2019. – open access

[8] Purho, Petri: Exploring the Tech and Design of ’Noita’. 2020.
– URL https://www.gdcvault.com/play/1025695/Exploring-the-

Tech-and-Design. – Game Developers Conference

53

http://technomag.edu.ru/doc/160649.html
https://www.gdcvault.com/play/1020177/Deformable-Snow-Rendering-in-Batman
https://www.gdcvault.com/play/1020177/Deformable-Snow-Rendering-in-Batman
https://www.gdcvault.com/play/1025695/Exploring-the-Tech-and-Design
https://www.gdcvault.com/play/1025695/Exploring-the-Tech-and-Design

Bibliography

[9] Rikhter, Gavriil D.: Snezhnyi pokrov, ego formirovanie i svoistva [Snow cover, its
formation and properties]. AN SSSR Publ., 1945

[10] Sofer, M: Sneg [Snow]. In: Nauka i Zhizn’ [Science and Life] (1982), Nr. 1,
S. 33–39

[11] Stomakhin, Alexey ; Schroeder, Craig ; Chai, Lawrence ; Teran, Joseph ;
Selle, Andrew: A material point method for snow simulation. In: ACM Transac-
tions on Graphics (TOG) 32 (2013), 07

[12] Stomakhin, Alexey ; Schroeder, Craig ; Jiang, Chenfanfu ; Chai, Lawrence ;
Teran, Joseph ; Selle, Andrew: Augmented MPM for phase-change and varied
materials. In: ACM Transactions on Graphics 33 (2014), 07, S. 1–11

[13] Svensson, Josen: REAL-TIME RENDERING OF DEFORMABLE SNOW COV-
ERS, URL https://api.semanticscholar.org/CorpusID:208195618,
2019

[14] Tarasov, Lev V.: Fizika v Prirode [Physics in Nature]. “Prosveshcheniye” Publ.,
1988

54

https://api.semanticscholar.org/CorpusID:208195618

A Appendix

The appendix to this thesis is in electronic form and can be obtained from the supervisors.
It contains the project build application, the Unity editor project with the source code
and a digital copy of this thesis. Those can be accessed from the root folder in the
following way:

The project application can be launched via Build/Snow Simulation.exe.
The source code can be accessed from the Snow-Simulation/Assets/Scripts folder.
The digital copy is accessible under the file name thesis.pdf.

55

Declaration

I declare that this Bachelor Thesis has been completed by myself independently without
outside help and only the defined sources and study aids were used.

City Date Signature

56

	Glossary
	Introduction
	Outline

	Background
	Snow Theory
	Snow Density
	Snow Hardness
	Snow Stiffness

	Related Work

	Requirements
	Project Scope
	Project Use Cases
	Uniform initial conditions
	Non-uniform initial conditions
	Run-time change of conditions

	Project Constraints and Requirements

	Design
	Simulation Algorithm
	Pressure
	Hardness and the spring coefficient
	Compression indent
	Compressed density
	Column resampling

	Prototyping in Python

	Implementation
	Project Overview
	Tools of choice
	Project Structure

	Simulation
	Visualisation

	Evaluation and Tests
	Uniform temperature
	Temperature gradient - bottom-up
	Run-time snow layering

	Summary and Outlook
	Bibliography
	Appendix
	Declaration

