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Abstract

This thesis contributes to the field of human-centred computing by exploring strate-

gies and pitfalls for developing generalisable machine learning models for sensor-

based exercise fatigue detection with small data. Machine learning faces several

challenges in exercise fatigue detection due to the scarcity of available data, as

fatigue research typically relies on sample data from a limited number of subjects

due to the time and effort required to design, conduct, and analyse studies with

human subjects. Although machine learning models can provide robust predictions,

even when trained on small data sets, careful consideration of variability and data

distribution is required to improve their generalisability.

A step-by-step framework for exercise fatigue detection with machine learning

and small data is introduced in this thesis. The framework is implemented in a

case study of 48 subjects performing squat exercises, using inertial measurement

units and 2D pose estimation to capture movement patterns and correlate these

patterns with ratings of perceived exertion. The results are analysed in terms of

generalisability, including different numbers of classes and subjects, class imbalances,

k-fold cross-validation, oversampling, inter-individual variability, evaluation metrics,

and evaluation types.

Based on a comparison between inertial units and 2D pose estimation, it is

concluded that 2D pose estimation can be used for fatigue detection. From the

literature survey and case study, it is also concluded that most exercise fatigue

detection models trained on small data sets may not perform well in a real-world

application.
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Abbreviations

A list of the key abbreviations used throughout this thesis:

HAR Human Activity Recognition

Ability to detect human activity or condition based on information from sensors.

PE Pose Estimation

A computer vision task that predicts and extracts the location of key points (joints)

for one or more individuals. PE-Side and PE-Front refer to PE based on the side and

front camera perspective, respectively.

IMU Inertial Measurement Unit

An IMU is an electronic sensor device that incorporates a combination of accelerom-

eter, gyroscope, and sometimes magnetometer.

RPE Rating of Perceived Exertion

RPE is based on a qualitative scale by Borg [51], commonly used in sport research.

ML Machine Learning

ML gives computers the ability to learn without being explicitly programmed. It

draws on concepts from several scientific disciplines, including linear algebra, opti-

misation problems, probability theory, statistics, and artificial intelligence.

T1-SOLO Evaluation Type 1: Personalised, Single Subject

Data from one individual is used for ML.

T2-LNSO Evaluation Type 2: Leave No Subject Out

Some data from all subjects is used as test set and excluded from the training set.

T3-LOSO Evaluation Type 3: Leave One Subject Out

Data from one subject is used as test set and excluded from the training set.

T4-LMSO Evaluation Type 4: Leave Multiple Subjects Out

Data from multiple subjects is used as test set and excluded from the training set.
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Introduction 1
During the COVID-19 pandemic, attendance at fitness studios and rehabilitation

centres was restricted, making unsupervised home exercise the only feasible option

for many people [334]. As a result, people have become accustomed to other forms

of exercise training, such as remote or remotely monitored home exercise [93, 16,

127]. However, home exercise proves challenging in regard to feedback on exercise

performance, which is an important area of research in sport and healthcare [239,

297]. A monitoring system can act as an early warning mechanism [239, 144]

to prevent injury, monitor the effectiveness of the training programme, maintain

performance, and prevent overtraining [239, 143, 323].

In computer science, human activity recognition (HAR) is the ability to recognise

human activity based on information from various sensors, which may include

cameras, wearable sensors, sensors attached to everyday objects, or sensors placed

in the environment [162]. HAR has the potential to monitor and support exercise

training at home, particularly for personal fitness and rehabilitation, in the absence

of a personal trainer [66, 40, 147]. In this context, machine learning (ML) has

attracted the attention of researchers in healthcare, sports science, and HAR to

improve the performance of assistive exercise training systems [343, 368]. For exam-

ple, ML methods may complement established models, such as the Fitness-Fatigue

model used in sports science [61], by incorporating more complex physiological

representations and using non-linear, multivariate algorithms [163].

Fatigue detection during physical activity can be considered as a special case

of HAR [98]. Exercise training is associated with physical fatigue [247], which

refers to the sensation of physical exhaustion resulting from physical exertion [276,

15]. Its presence not only increases the risk of injury but also reduces exercise

performance [256, 240, 306, 247, 189, 108]. Early detection of fatigue during
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physical activity can prevent overexertion, illness, and injury; and help individuals

adjust their activities or schedules accordingly [217, 306, 175, 143].

However, ML faces several challenges in the field of fatigue detection in physical

exercise, mainly due to the scarcity or inadequacy of data [100]. Although ML

models typically perform best when trained on large amounts of data [369, 354],

fatigue research often relies on sample data from a small number of subjects,

hereafter referred to as small data [150]. Most ML approaches to HAR rely on

supervised learning based on labelled data [62]. The main reason for small data

is the time and effort required to design and conduct studies with human subjects,

followed by the effort to clean, label, and analyse the collected data; this process

typically involves a large amount of manual labour and semi-automated methods [62,

100, 204, 162]. ML models can still provide robust predictions even when trained

on small data sets, but careful consideration of variability and data distribution

is necessary to improve generalisability [100]. There are techniques for dealing

with small data, such as transfer learning, regularisation, and visualisation, but they

require skilled practitioners and their effectiveness can be limited [204].

This thesis is divided into three main parts. The first part is about a literature

review to identify common strategies and pitfalls in sensor-based exercise fatigue

detection with ML and small data in order to design a Fatigue Recognition Chain

framework. This framework is intended as a general guide for interdisciplinary

researchers to conduct similar research projects. The framework covers the entire

process of building an exercise fatigue detection system from specification, collecting

raw data, data transformation, ML, evaluation, and dissemination of the results.

The second part is a case study, conducted as part of this thesis, with 48 subjects

to demonstrate the implementation of the framework and to collect data during

squat exercise based on ratings of perceived exertion (RPE), Inertial Measurement Unit

(IMU), and pose estimation (PE). The collected data is processed to train different

ML models, which are analysed for their generalisability under different evaluation
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methods, imbalanced data sets, and augmentation techniques. The third part is a

synthesis and discussion of the results of the two previous parts.

1.1 Research Aim

The aim of this thesis is to identify and address the strategies and pitfalls of sensor-

based exercise fatigue detection using ML with small data sets for physical activities

such as exercise training in terms of generalisability.

1.1.1 Research Questions

To fulfil this aim, the following research questions are investigated:

1. How to conduct research on exercise fatigue detection with ML?

2. What are common strategies and pitfalls of ML with small data?

3. How do small data, evaluation methods, and augmentation effect ML?

4. How generalisable are ML models trained on small data sets?

1.1.2 Research Objectives

To accomplish the research questions, the following objectives are defined:

1. To review the literature on exercise fatigue detection based on sensors and ML.

2. To create a framework for sensor-based fatigue detection research with ML.

3. To conduct a case study with squat exercises by implementing the framework.

4. To collect RPE-labelled sensor data from IMU and PE for ML analyses.

5. To investigate the ML fatigue predictions with an increasing data set.

6. To compare evaluation types and their effect on generalisability.

7. To explore data augmentation techniques to improve generalisability.
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1.2 Research Contributions

This thesis contributes knowledge to the field of human-centred computing, which

studies the design, development, and deployment of mixed-initiative human–computer

systems and has emerged from the convergence of several disciplines concerned

with the understanding of humans and the design of computational artefacts [167].

The contributions are supported by the following peer-reviewed publications:

1. “A Preliminary Experimental Outline to Train Machine Learning Models for the

Unobtrusive, Real-Time Detection of Acute Physiological Stress Levels during

Training Exercises” [173]

2. “Determining acute physiological stress levels with wearable sensors based on

movement quality and exhaustion during repetitive training exercises” [172]

3. “Small Data, Big Challenges: Pitfalls and Strategies for Machine Learning in

Fatigue Detection” [174] – Winner of the “Best Student Paper Award”

Regarding the research objectives, publication 1 covers the results of the first liter-

ature review and case study, as well as a first version of a framework. Publication

2 focused on the analysis of the ML models based on the collected data. Publica-

tion 3 used the collected data from additional case studies to analyse the fatigue

predictions with an increasing data set and to compare different evaluation types

and augmentation techniques for their generalisability.

Table A.1 in the Appendix illustrates the contributions of this thesis in relation to

the related works. These are briefly described below:

Survey and Analysis of Generalisability and Evaluation Methods Some literature

reviews addressed the use of ML to detect fatigue [157] or exercise fatigue [247,

248], but did not examine generalisability or evaluation methods. While many

primary studies have used ML with small data to detect exercise fatigue, discus-

sions of the generalisability are limited. The lack of strategies for developing and

evaluating generalise ML models with small data highlights a substantial gap in

current research (see Table A.1 in Appendix A). Addressing this gap is critical to
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avoid common pitfalls and to train more reliable and applicable ML models for

fatigue detection.

Framework for Exercise Fatigue Detection with ML and Small Data General ap-

proaches exist for HAR [57] and fatigue detection [50]. Maman et al. [242] proposed

a framework for physical fatigue management using wearable sensors and ML. How-

ever, there is no comprehensive guidance that specifically addresses the intersection

of HAR and fatigue detection with respect to ML and small data. This gap highlights

the need for a focused investigation of methods and strategies tailored to these

combined domains (see Table A.1). Future studies can draw on this knowledge

to design their own research and contribute to their field. Practitioners, such as

gym staff and health equipment developers, may benefit from the development of

unobtrusive fatigue detection systems. This research could also lead to less expensive

equipment and less labour-intensive ways of detecting fatigue during exercise, for

example, by avoiding the need for blood samples. Improved and timely feedback to

exercisers can enrich their training experience and help prevent injuries. Feedback

on the quality of exercise performance is vital in sports and healthcare [297].

PE for Exercise Fatigue Detection To date, no study has utilised PE based on 2D

cameras, nor has any study compared the effectiveness of ML models using data

from IMUs and PE for the purpose of exercise fatigue detection (see Table A.1). This

research aims to fill this gap by evaluating the performance of these data sources and

providing insights into their relative strengths and weaknesses in detecting fatigue

during exercise.

1.3 The Researcher’s Role

Creswell [88] emphasised the need to clarify the role of the researcher to ensure

the credibility of the research. This section describes the author’s background and

motivation for this work. This thesis started as part of the interdisciplinary research
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project “MoGaSens”1, which was funded by the European Regional Development

Fund through the Hamburgische Investitions- und Förderbank from 2019 to 2022.

The aim of the project was to develop a smart training shirt for the home fitness

market, capable of assessing movements during training exercises in real time and

providing additional health information. The experiments were carried out in the

Creative Space for Technical Innovations2 at the Hamburg University of Applied

Sciences3, Faculty of Engineering and Computer Science, where the author was

employed on a full/part-time basis.

The author is a yoga teacher with an additional focus on therapeutic yoga, aimed

at preventing injuries during yoga practice. The author’s interest in MoGaSens

was driven by the project’s goal of preventing injuries during exercise through

computational support. During the research project, the challenge of determining

the amount of data needed to train ML models was a recurring theme. As a computer

scientist, this became a key question, as machine support for injury prevention relies

on the generalisation and reliability of these models.

Since 2021, the author has also been teaching the course "Train Like A Machine"4

every semester, where groups of students explore different sensors and ML methods

for analysing physical activity. These courses have so far resulted in two publications

[329] and [155]. In addition, the author has co-supervised three bachelor theses in

this context.

1.4 Research Timeline

The following timeline, shown in Figure 1.1, presents an overview of the key

milestones, research activities, and outputs achieved during the course of this

thesis. The research outputs are marked by three key publications. The timeline

1https://csti.haw-hamburg.de/project/mogasens/
2https://csti.haw-hamburg.de
3https://haw-hamburg.de
4https://csti.haw-hamburg.de/project/tlam/
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To investigate the generalisability of the trained machine learning models from

the first case study, a second case study was conducted in December 2022, focusing

on squat exercises. Shortly after, a third case study revisited the squat exercises

to further validate the findings. Milestone M3 represents a turning point, as the

analysis of the data collected led to a shift in focus to the challenges of fatigue

detection, including small data, generalisability, and variability. The shift from stress

to fatigue detection was a measure to narrow the research topic (milestone M4).

The final phase of the research, from November 2022 to October 2024, focused

on identifying strategies and addressing pitfalls in sensor-based fatigue detection

using small data. This phase focused on overcoming issues such as generalisability,

class imbalances, and small data evaluation. The findings were published in a third

peer-reviewed publication (milestone M5).

Finally, the thesis was completed by updating the literature survey, refining the

Fatigue Recognition Chain framework, finalising the chapters, and preparing for

submission.

1.5 Key Terms

This section provides definitions for key terms used throughout this thesis.

Fatigue Fatigue is the momentary sensation of feeling the need for physical rest or

the mismatch between expended physical effort and actual physical performance.

Data points Data points are individual units of raw data (signals).

Small data Small data refers to data points from a small number of different

individuals.

Time series A time series is a sequence of data points collected at regular intervals

over time. Time series data allows the analysis of changes in a variable over a period

of time. Timestamps are often included to represent the order of the sequence, but

they do not necessarily have to represent the actual time [166].
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Features Features (or attributes) are low-level properties of data points that can

be measured or automatically calculated [179].

Samples Samples are individual instances or observations; each instance is typi-

cally represented as a vector (row) of multiple features, with each column corre-

sponding to a specific feature (dimension).

ML Machine Learning is the field of study that gives computers the ability to learn

without being explicitly programmed [291]. It draws on concepts from several

scientific disciplines, including linear algebra, optimisation problems, probability

theory, statistics, and artificial intelligence [179].

ML model An ML model is a mathematical construct derived from data points or

features that is designed to recognise patterns and make automated predictions.

ML method An ML method is an algorithm to train ML models.

Individual-based ML Individual-based ML aims to predict the behaviour or state of

individuals (or subjects) rather than treating the entire data set as a homogeneous

group, recognising that each individual has unique characteristics and patterns.

Generalisation Generalisation in ML is the ability of a trained ML model to accu-

rately predict results on unseen data which is assessed by testing [363].

Overfitting Overfitting ML models have low training but high testing error [148].

Label / Class / Target variable Label, class, and target variable are terms used

interchangeably in ML and refer to the output variable that the ML model is trying

to learn to predict.

Class distribution Class distribution is the proportion of samples belonging to each

class (label) in a data set.

RPE Rating of Perceived Exertion is based on a qualitative scale developed by Borg

[51] and commonly used in sport science.
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1.6 Thesis Structure

The following chapters structure this thesis:

Chapter 1: Introduction This chapter provides the contextual background for this

thesis, outlining the research aim, questions, and objectives. It also presents the

research contributions, key terms used throughout this thesis, and the researcher’s

role, concluding with this overview.

Chapter 2: Literature Review This chapter reviews the existing literature on the key

concepts in this thesis: small data, fatigue detection and HAR. It covers definitions,

taxonomies and measurement techniques. Following the key concepts, primary

studies and research gaps are presented.

Chapter 3: Fatigue Recognition Chain Framework This chapter introduces the Fa-

tigue Recognition Chain framework which draws on the works identified in the

literature review. General approaches and challenges are discussed in seven steps,

including the definition of foundational characteristics, raw data collection, prepro-

cessing, data transformation, feature engineering, ML, evaluation, and dissemination

of research results.

Chapter 4: Case Study: Fatigue Detection for Squats with IMU and PE This chapter

describes the case study conducted for this thesis, including a description of the

research design, research setting, sample selection, and data collection procedures.

It demonstrates the implementation of the fatigue recognition chain framework

specifically for squat exercises.

Chapter 5: Results This chapter presents the results of the experiments from the

case study. It discusses the performance of the trained ML models, the choice of

data source (IMU and PE) for fatigue detection, the role of RPE thresholds and class

number, feature augmentation for imbalanced classes, and the effect of evaluation

types. In addition to classification, regression methods are investigated. Furthermore,
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the performance of the ML models with increasing number of subjects is analysed to

investigate their generalisation.

Chapter 6: Discussion This chapter discusses the results, including a comparison

between IMU and PE data, the strategies and pitfalls of generalisable ML for exercise

fatigue detection, and generalisability myths. It also summarises the findings and

implications of this thesis.

Chapter 7: Conclusion The final chapter summarises the research, including its

implications and limitations. Recommendations for future research directions are

also provided.
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”In 1976, George Box, a famous statistician, said: all models are wrong but some are

useful. He was talking about statistical models, but the same is true today for machine

learning (ML) models.” – Baeza-Yates [25]
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Literature Review 2
This chapter is divided into two parts. The first part presents a comprehensive

literature review of the core concepts of this thesis: small data, fatigue detection,

and HAR. Generalisation is addressed in later chapters.

The second part is a systematic review of primary studies on sensor-based fatigue

detection with ML and physical activities. This part provides statistics on the

identified studies, including ground truth, imbalanced data, ML methods, evaluation

techniques, augmentation techniques as well as how small data and generalisation

are addressed. Based on this analysis, research gaps are highlighted.

The findings of this literature review form the basis for the development of the

Fatigue Recognition Chain framework presented in the following Chapter 3.

2.1 Small Data

While the term small data has been noted in publications as early as 1989, the

majority of the earlier publications used the term to refer to small data sets, typically

from the field of statistical mathematics, as opposed to the more recent variations

defined in the field of data and information sciences [324]. The first two publications

on the use of ML on small data sets indexed in Scopus were published in 1995. After

that, publications were rare until 2002, with the trend starting to increase linearly

in 2003 and exponentially in 2016 [202].
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2.1.1 Small Data Definition(s)

In the context of this thesis, small data refer to data sets collected from a small

number of different individuals that are used for ML to make predictions at the

individual level [150].

However, several other definitions for small data exist as well as perspectives

[198, 324, 115]. For example, Thinyane [324] explored the concept of small data,

including various interpretations and perspectives on what constitutes small data:

• Small data sets: This perspective emphasises the size of the data sets used,

contrasting them with the characteristics of big data.

• Actionable by-products of big data analytics: This perspective focuses on the

valuable insights generated by big data analytics.

• n = me: This perspective emphasises the individual-centric nature of small

data, often associated with digital traces left by individuals.

• Ethnographic human-centric observations: This approach emphasises the

importance of gaining insights into human behaviour and preferences.

• An approach to data analysis: The unit of analysis of data is congruent to the

unit of sampling of the data (e.g., individual-, household-, or city-level).

Miller [251] pointed out that small data studies often rely on tightly controlled

sampling techniques. These techniques can limit the scope, temporality, size and

diversity of the data, as well as the ability to capture and define levels of error, bias,

uncertainty, and provenance. Small data are therefore characterised by their limited

volume, non-continuous collection, limited diversity, and are usually generated to

answer specific questions.

Rauschenberger and Baeza-Yates [284] stated that small data in data science

might refer to 15000 data points for image analysis, whereas in human-centred

design it might refer to around 200 or less participants, depending on the domain

and context.
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2.1.2 Small vs Big Data

Another approach to defining small data is to compare small data to big data.

According to Kitchin and Lauriault [198], the term big is misleading because big

data is characterised by more than volume. Some small data sets can be very large,

such as the national censuses. However, census data sets lack velocity (typically

conducted once every 10 years), variety (typically about 30 structured questions),

and flexibility (it is almost impossible to change the questions). Other small data

sets also consist of a limited combination of the characteristics of large data sets. For

example, a qualitative data sets, such as interview transcripts, tend to be relatively

small in size, non-continuous in temporality, weakly relational, and limited in variety,

but high in resolution and flexibility. A comparison of different characteristics of

small and big data is shown in Table 2.1.

Tab. 2.1.: Comparison of small and big data characteristics by Kitchin and Lauriault [198].

Characteristic Small data Big data
Volume Limited to large Very large
Exhaustivity Samples Entire populations
Resolution and indexicality Coarse and weak to tight and strong Tight and strong
Relationality Weak to strong Strong
Velocity Slow, freeze-framed Fast
Variety Limited to wide Wide
Flexible and scalable Low to middling High

Kong et al. [204] noted that in the natural sciences, annotated data sets tend to

be small because data is typically collected manually using sophisticated equipment.

Despite the growing interest in big data in recent years, many problems are small

data problems [25, 202, 148, 115]. Kitchin and Lauriault [198] criticised the focus

on big data, which does not make the scientific method obsolete: data cannot be

analysed without hypotheses. Although ML finds patterns where science cannot,

correlation does not replace causation, and science should not proceed without

coherent models, unified theories, or any explanation at all.

Faraway and Augustin [115] pointed out that asymptotic analysis, while theo-

retically valuable, can have practical limitations with large data sets. Confidence
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intervals can become too narrow, leading to overly certain conclusions. Bayesian

approaches can also face this problem, as the likelihood can dominate the prior.

ML practitioners often avoid dealing with uncertainty by not providing explicit

estimates of uncertainty. However, uncertainty arises from factors beyond unknown

parameters, such as model selection and data quality issues. Incorporating these

uncertainties into models can improve their realism, but it’s a challenging task.

2.1.3 Small Data Quality

According to Lauriault [222], due to the limited sample sizes of small data, data

quality is paramount. They defined the following characteristics: small data sets

are clean (free of errors and gaps), objective (unbiased and representative of the

real world), consistent (with minimal discrepancies or inconsistencies), veracious

(authentic and accurately representing what it is intended to represent), and well-

documented (with clear lineage and provenance to establish its suitability for use).

2.1.4 Small Data Benefits

Small data sets have a long history of development, with established methodologies

and analysis techniques. Small data can be tailored to specific research questions,

allowing in-depth exploration of individual interactions and the complex ways in

which people make sense of the world. Researchers can focus on specific cases,

providing detailed, nuanced and contextualised stories. Small data can provide

valuable insights that may be missed by big data analysis methods [198]. According

to Faraway and Augustin [115], researchers often prefer small data sets, collected

under controlled experimental conditions, to large observational data of unknown

origin – where an inference of causality is desired, quality of data beats quantity.
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2.1.5 Small Data Challenges

According to Kokol et al. [202], the most commonly reported challenges related to

small data are small data set size, high/low dimensionality, and imbalanced data.

Small data set size is common due to the high cost of sampling [202, 166, 162, 154,

260] and imbalanced data is a long-standing problem in ML [373, 204]. Moreover,

aggregation bias can occur when large individual data sets are reduced to smaller

groups, which is particularly relevant in fields like personalised medicine [115].

ML often performs poorly on small data sets [115, 231]. ML, especially deep

learning, can learn effectively on big data sets, but cannot learn effectively on small

data sets due to problems such as overfitting, noise, outliers, and sampling bias [204,

154]. Kong et al. [204] highlighted overfitting as a major problem in the analysis of

small data, where a solution has to be found from a relatively large hypothesis space

with insufficient heuristics (guidance) in the form of data. The ability of ML to detect

patterns is proportional to the size of the data set; the smaller the data set, the less

powerful and accurate ML methods are. Kong et al. [204] also made the distinction

between data and knowledge. When there is big data, ML needs a small amount of

knowledge. When there is small data, ML needs a large amount of knowledge to

reduce the model search space. How to extract and represent knowledge to support

ML is a major challenge.

A data set has to be representative of the cases to be predicted. Complex ML

models can detect subtle patterns in the data, but noise or small data sets can

mislead models into detecting patterns in the noise itself [128]. Communicating un-

certainty is crucial with small data sets, as certain regions may be under-represented,

affecting the model’s ability to generalise [154]. However, finding a data set that

comprehensively covers all possible matches is almost impossible [62].
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2.1.6 Small Data Strategies

There are strategies for dealing with small data, such as data augmentation, transfer

learning, regularisation and visualisation. However, these methods require skilled

practitioners and their effectiveness may be limited [204, 154]. Other strategies

for dealing with small data include reducing the number of possible hypotheses,

reducing the degrees of freedom, and reducing the complexity of the models [154].

Another strategy may be to develop custom ML methods specialised for small data

[154], for example, model-based ML [204], an alternative Naive Bayes approach

[85], context trees [105], multiple runs of neural networks, customised decision

trees [303], or adaptive local hyperplane algorithms [356].

2.2 Fatigue Detection

Fatigue is a multifaceted phenomenon that has been studied in various research

fields1, such as cognitive neuroscience, exercise physiology, psychology, medicine,

and workplace fatigue [217, 311, 269]. This section explores the different definitions,

factors, classifications, and measures of fatigue, as well as the ongoing challenges

in understanding and assessing fatigue, including both subjective perceptions and

objective changes in activity performance.

2.2.1 Fatigue Definition(s)

There are many definitions of fatigue [217, 43, 248] and there are ongoing attempts

to unify existing definitions [217, 311, 269, 110, 199]. One of the main obstacles

has been the scope of its usage: fatigue can denote a reduction in physical and

cognitive function, ranging from exercise-induced impairment of motor performance

to feelings of tiredness and weakness that may be accompanied by clinical conditions

[110]. According to Enoka and Duchateau [110], it is not possible to identify the

1A discussion of how fatigue relates to stress can be found in the Appendix E.
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etiology (causes or origins) of fatigue by attempting to disentangle the decline

in muscle force from sensations about fatigue. Exertion and fatigue are states

with both physiological and psychological aspects [114, 50]. Kluger et al. [199]

argued that when dealing with fatigue, one should distinguish between subjective

perceptions (fatigue) and objective changes in performance (fatigability). Pattyn et al.

[269] proposed three essential components of fatigue: the perception of effort, the

propensity to exercise effort which is the product of a decision-making process, and

the motivation which depends on several factors and influences the propensity to

exercise effort.

Fatigue is often classified into different types: physical, mental, cognitive, or

emotional [311]. Billones et al. [43] also identified motivational, central, peripheral,

and psychosocial fatigue. They found that 83% of the reviewed studies assessed

multiple types of fatigue at the same time. For example, Elsais et al. [107] charac-

terised physical fatigue – which is the focus of this thesis – by muscle fatigability: the

difficulty to initiate or sustain muscle activities. Exercise-induced fatigue (i.e., the

inability to continue a given exercise) is often associated with peripheral and central

factors [269]. Peripheral fatigue is usually described as an impairment located in the

muscle and characterised by a metabolic end point, while central fatigue is defined

as a failure of the central nervous system to adequately drive the muscle [269].

Martins et al. [248] categorised fatigue into the following four types: mental

fatigue, drowsiness, physical fatigue, and muscle fatigue. Mental fatigue is the

decrease in mental performance as a result of cognitive overload (due to task

duration and/or workload), independent of sleepiness. Drowsiness is fatigue arising

from sleep- and circadian rhythm-related factors (e.g., sleep deprivation, circadian

rhythm disruption), monotony or low task workload. Physical fatigue is the decline

in overall physical performance caused by physical exertion. Muscle fatigue is the

decrease in an isolated muscle performance due to reduced contractile activity.

Fatigue can also be distinguished by the time frame in which it occurs. State

fatigue is the momentary (acute) sensation of fatigue and can change rapidly within
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minutes or hours, whereas trait fatigue is the overall disposition and intensity of

fatigue over a period of time, i.e., each individual always has trait fatigue to a varying

degree [311, 110]. Prolonged state fatigue also involves the effect of recovery [311].

Chronic fatigue is generally defined as fatigue above a certain level that lasts for

six months or more [107]. Pathological fatigue is based on an identifiable cause,

consequence, or result of a disease, disorder, or trauma, e.g., cancer-related fatigue

[311]. Furthermore, some researchers distinguish between active and passive fatigue.

Passive fatigue is caused by prolonged, monotonous, boring work, whereas active

fatigue is caused by prolonged task-related work [269].

According to Enoka and Duchateau [110], fatigue is a single entity that does not

need to be modified by accompanying adjectives such as central fatigue, mental

fatigue, or muscle Although such descriptors are usually intended to imply the

likely location of the modulating factors that limit performance, the distinctions are

too vague to be meaningful and lead to an incoherent literature on fatigue. The

following composite definition of fatigue is used in this thesis. It is based on the set

of 13 definitions identified by Skau et al. [311]:

Fatigue is the momentary sensation of feeling the need for physical rest

or the mismatch between expended physical effort and actual physical

performance.

Where physical rest is a beneficial state that is intentional, temporary, and restorative,

involving cessation, minimisation, or change in activity or well-being (modified

definition based on Bernhofer [36]). Physical effort is the expenditure of energy for

the purpose of setting the body in motion (definition derived from Massin [249]).

Physical performance is any bodily activity that can be rated (e.g., by a jury) or

measured (e.g., by time, length, weight, or counting).

With regard to physical effort (e.g., exercise), fatigue is an inevitable consequence

[108]. Exercise-induced fatigue occurs when the effort required by the exercise task

equals the maximum effort that the individual is willing to exert to succeed in the
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psychological state of the individual [110]. Furthermore, Venhorst et al. [338]

proposed a three-dimensional dynamic system framework to better understand

the psychophysiological determinants of perceived motor fatigue. This system

distinguishes three dimensions: sensory-discriminatory, affective-motivational, and

cognitive-evaluative.

2.2.3 Fatigue Factors

Regardless of how fatigue factors are structured, fatigue should be understood as

multi-factorial [110]. Evans et al. [114] hypothesised that fatigue can be compared

to systems biology, where multiple components combine simultaneously in complex

and dynamic interactions to produce emergent properties in organisms. This is in

contrast to the reductionist perspective that a complex system can be fully understood

by gaining knowledge of its isolated parts [114].

Fatigue is influenced by cardiovascular, respiratory, metabolic and neuromuscular

factors and their interactions. In addition to the various physiological processes

and their interactions, fatigue-related factors identified in fields other than exercise

psychology, such as cognitive neuroscience and genetics, must not be ignored when

attempting to understand exercise-induced fatigue [269].

A more detailed description of the various factors contributing to fatigue that are

frequently mentioned in the literature can be found in the Appendix C. In summary,

fatigue depends on several interdependent factors and there are several proposals

on how to structure their interdependence. This is probably why there are many

different approaches to measuring fatigue in the literature. Fatigue is quantified

through its multiple effects, with different emphases in each discipline; fatigue is

thus a multidimensional construct, studied through approaches that depend on the

main interest of the research team and therefore with a limited focus [269].

2.2 Fatigue Detection 23



2.2.4 Fatigue Measurement

Although fatigue is relevant in many research fields and domains, there is no

standard for measuring fatigue. Whether measuring the cause, consequence, or

subjective state, there is no clear signature of fatigue [269]. This is probably why

there are such a wide variety of approaches to fatigue measurement. Regardless

of the method, Behrens et al. [34] suggested that perceived motor fatigue and its

contributing factors should be assessed before, during, and after fatiguing exercise.

Motor fatigue is usually quantified as the decrease in peak force (torque) after an

exercise intervention, although decreases in power, speed, or accuracy can also be

measured [34, 199].

Halson [143] distinguished between external and internal load. External load

quantifies task-related parameters (e.g., power output or speed) that are independent

of individual characteristics. In contrast, internal load reflects the physiological

and psychological load imposed by the task (e.g., heart rate variability or perceived

exertion). Another approach, suggested by Goyal et al. [136], is to distinguish

between subjective and objective measurement, which is adopted in this thesis.

Objective Fatigue Measurement

Objective measurement of fatigue is quantifiable, i.e., it is based on physiological,

kinetic, or contextual data [269]. This measurement approach can reduce the

possibility of self-deception, falsification, fabrication, attention, or recall bias that is

usually present in subjective data collection [307]. Objective measurement can be

further classified as either obtrusive or unobtrusive [23].

Obtrusive Fatigue Measurement Obtrusive measurement provides accurate quanti-

tative data [23]. For example, in sports science, saliva or blood samples are often

collected for cortisol, testosterone, creatine kinase, or lactate analysis [80, 108, 143].

Other potential markers include levels of blood glucose, muscle glycogen, blood acid,

muscle acid, skeletal muscle ergoreceptors, blood oxygen levels, lipid stores, liver
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glycogen stores, cardiovascular status, immune system activity, and body tempera-

ture [114]. During high-intensity exercise, large changes in metabolites and ions are

observed within the working muscles; disturbances in the concentration of muscle

lactate, hydrogen, potassium, and calcium ions are associated with fatigue and thus

ionic regulation becomes critical for muscle membrane excitation, contraction, and

energy metabolism [48].

There are also many non-invasive but obtrusive measurement methods for neu-

ral and muscular mechanisms, such as peripheral nerve stimulation, transcranial

magnetic stimulation, structural magnetic resonance imaging, electromyography,

positron emission tomography, electroencephalogram, magnetoencephalography,

functional near-infrared spectroscopy, 31-phosphorus magnetic resonance spec-

troscopy, and electroencephalography [199, 34]. The cardio-respiratory approach is

an obtrusive yet non-invasive method of detecting fatigue, commonly used in sports

science. It requires the use of a face mask to measure the ability of the circulatory

and respiratory systems to deliver oxygen. Other studies refer to this method as

VO2max, which stands for the maximum volume of oxygen consumption measured

during incremental exercise [108].

The main drawback of most of these obtrusive measures is that they are usually

not suitable for real time monitoring systems or frequent sampling due to bulky

devices or the requirement for post-analysis in a laboratory [23]. Halson [143] also

noted that the use of biochemical, hormonal, and immunological measures is not

currently justified based on the limited research. These measures can be costly, time

consuming, and impractical in an applied environment.

Unobtrusive Fatigue Measurement Unobtrusive measurement collects data either

from wearable sensors attached to the body or from portable sensors placed in

the immediate environment [23, 108]. In general, such unobtrusive measures can

provide continuous data in real time [130].
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Wearable sensors include, for example, electrocardiography (ECG) [4], blood flow

[139], photoplethysmogram (PPG) [300], inertial measurement unit (IMU) [26], plan-

tar pressure [20], global positioning system (GPS) [336], surface electromyography

(sEMG) [69], electrodermal activity (EDA)2 [252], electroencephalography (EEG),

[357], respiration (RESP) [331], skin temperature (ST) [22], and microphone (MIC)

[195]. Non-wearable but portable sensors include, for example, infrared image

sensors (e.g., Kinect) [9], video cameras [341], eyelid activity sensors [364], ther-

mal imaging [63], and force plates [67]. Many studies also use multiple wearable

sensors, also referred to as a multi-sensor or multi-modal approach. In particular,

Butkevičiūtė et al. [59] used multiple sensors (ECG, EMG, EEG, IMU) to detect

different types of fatigue. A comprehensive survey of unobtrusive techniques for

monitoring muscle fatigue can be found in Li et al. [229]. A review of sensors for

detecting physical exertion with ML in the workplace can be found in Lambay et al.

[217].

Wearable sensors in the form of smartphones, smartwatches or embedded systems

tend to be low cost, widely available, potentially easy to use, and suitable for

everyday use [130]. For example, smartwatches can monitor heart rate with clinically

acceptable accuracy and could be considered safe for use in cardiac rehabilitation

training programmes [108]. Smartphones typically consist of IMUs and video

cameras, which are more suitable for automated data collection [143] than manual

measurement of movement (e.g., by using a stopwatch or tape measure).

However, unobtrusive methods may not capture the perceived (motor and/or

cognitive) fatigue (see Section 2.2.2). According to Ameli et al. [14], unobtrusive

methods cannot provide comprehensive information on muscle fatigue due to their

limited ability to record different aspects of movement. In addition, unobtrusively

collected data may be susceptible to noise or artefacts due to poor sensor fixation

and physical activity [130]. In addition, measures of training load such as power,

work, energy, torque, or velocity are specific to the type of training, as the validity of

2Formerly known as galvanic skin response (GSR).
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a measure depends on the context. For example, heart rate is a less valid measure of

internal load for resistance training or short intermittent high intensity efforts than

for endurance, long distance or interval training. Furthermore, a single measure

may not have the same level of validity. For example, muscular fatigue increases

both heart rate and perceived exertion, whereas mental fatigue only increases RPE

[164].

Subjective Fatigue Measurement

Subjective fatigue measurement is traditionally used by psychologists in the form of

questionnaires, interviews, or self-reports. Subjective measures are less suitable for

frequent or real time monitoring of fatigue, but can still be used to determine fatigue

before, during, and after a task [307]. A common approach is to define fatigue on

the basis of exceeding a certain score on fatigue questionnaires [199].

Fatigue Scales Most clinical fatigue studies use self-report scales that can be

broadly classified as measuring perceptions of fatigue [199]. Available scales vary

widely in how they measure fatigue [217], including questions about momentary

(state) perceptions, chronic characteristics (trait perceptions), the impact of fatigue

on function, ratings of related constructs (e.g. tiredness), dimensions of fatigue

(e.g. mental vs. physical), and severity [199]. Some scales have been developed for

specific populations, but it is not clear whether such scales offer advantages over

general scales [199]. Billones et al. [43] identified 23 different clinical measures

used to assess fatigue in non-oncological conditions, with the Fatigue Severity Scale

being the most commonly used clinical measure across different conditions.

The ratings of perceived exertion (RPE) scale3 by Borg [50] is commonly used in

sports science [34, 236, 113]. It is a subjective measure of an individual’s perceived

level of exertion during physical activity. The scale is a numerical rating system

3The similar Borg CR10 scale is derived from psychophysical scaling methods. It is more complex in
its construction and is usually recommended for assessing pain rather than exertion [50].
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ranging from 6 to 20, with most numbers corresponding to a verbal anchor, as shown

in Table 2.2.

Tab. 2.2.: The RPE scale by Borg [50].

6 No exertion at all
7

Extremely light
8
9 Very light
10
11 Light
12
13 Somewhat hard
14
15 Hard (heavy)
16
17 Very hard
18
19 Extremely hard
20 Maximal exertion

As explained by Borg [50], studies using RPE should consider the five principles

in its application (see a detailed description in Appendix F and G):

1. Briefly explain the importance of RPE inquiries during testing.

2. Provide comprehensive instructions on how to assess perceived effort.

3. Explain the RPE scale, including what to rate, how the scale works, and the

meaning of verbal anchors.

4. Minimise distractions and external factors that may influence performance or

RPE.

5. Establish a positive and collaborative relationship with the subject while

maintaining standardised testing procedures. Adapt to individual personality

factors and unexpected situations.

Correlation with Objective Measurement To date, there have been inconsistencies

in finding significant correlations between objective measures with subjective fatigue

questionnaire data [43, 215]. One reason is that subjective quantification is prone

to recall errors [217]. Another reason is that sensory perception often does not grow
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linearly with physical stimulation, but follows positively or negatively accelerating

power functions [50].

Borg [50] argued that the RPE scale has high validity coefficients with heart rate

and oxygen uptake. For example, an RPE of 13 would correspond approximately to

a heart rate of 130 beats per minute, depending on factors such as age and physical

condition. However, the validity may not be as high as previously thought [143].

On the other hand, the RPE scale has been shown to better represent a person’s

performance in practice than monitoring heart rate alone [108].

2.2.5 Summary

Fatigue is a multifaceted phenomenon that has been studied in various fields, includ-

ing cognitive neuroscience, exercise physiology, psychology, and medicine. Despite

its widespread relevance, there is still no universally accepted definition of fatigue,

probably due to the different contexts in which it is used.

One of the key challenges in defining fatigue is its multidimensional nature. It

encompasses both subjective perceptions, such as feeling tired, and objective changes

in performance, such as a decline in muscle strength or mental acuity. Researchers

have proposed various taxonomies to classify fatigue, distinguishing between factors

such as perceived and performance fatigue, and further categorising it based on

physiological, psychological, and cognitive determinants.

The methods used to measure fatigue also vary widely depending on the focus of

the research. Subjective measures, such as self-reports and questionnaires like the

Borg RPE scale, provide insight into how individuals perceive their fatigue, but can

be influenced by individual bias. Objective measures can be either obtrusive (e.g.,

blood and saliva samples) or non-intrusive (e.g., wearable sensors) and can provide

quantifiable data frequently through physiological, kinetic, or contextual indicators,

but may only capture a limited aspect of fatigue.
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2.3 Human Activity Recognition

This section provides a brief introduction to HAR4, including its definition, main

applications, existing taxonomies, and different sensor technologies. It is also shown

why HAR is a key research area of this thesis, as HAR research covers not only

human activities, but also the state of the body, such as fatigue.

2.3.1 HAR Definition

As with fatigue, there is no commonly agreed definition of HAR [57]. The following

definition is adopted in this thesis: HAR is the ability to recognise or detect current

human activity (or status) based on information received from various sensors.

These sensors may include cameras, wearable sensors, sensors attached to objects of

daily use, or deployed in the environment [162].

Human activity is a human behaviour in relation to the body or the environment.

The detection of human activity aims to capture the action and/or status of an

individual (agent) from a series of observations. A human activity can be either

atomic or composed of many primitive actions performed in some sequential order

[39]. Human activities can be categorised into a hierarchy of human activities

according to their complexity, scaling from simple actions to more complex events

[32, 91]: (1) elementary human actions such as bending an elbow, (2) gestures

such as applause, (3) behaviour based on specific situations such as exercises, (4)

interactions based on human to human such as shaking hands or human to object

such as cooking, (5) group actions performed by a group of people such as cuddling,

and (6) events that take place in specific environments such as weddings. More

general taxonomies and categories of human activities can be found in [193, 267,

6].

4A related area of research is human action recognition, where human action is defined as an
observable entity that can be decoded by another entity, including a computer, through various
sensors [62].
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2.3.2 HAR Applications

HAR is a multifaceted research field, covering almost all human activities. For

this reason, HAR requires interdisciplinary knowledge to understand the behaviour

and to provide proper assistance [39]. There are various application areas such

as healthcare, smart environments, security and surveillance, human–computer

interaction, indoor navigation, shopping experience, autonomous driving, human–

robot interaction, smart home, and entertainment [162, 91].

2.3.3 HAR Taxonomies

A variety of taxonomies have been proposed for HAR [103, 339]. Hussain et

al. [162] divided HAR into two main categories: vision-based and sensor-based,

but the distinction is rather arbitrary as vision-based methods also incorporate

sensors. On the other hand, Vrigkas et al. [339] classified HAR into unimodal

and multimodal methods, but this classification does not clearly separate non-

hybrid or physiological approaches. Bulling et al. [57] described HAR systems

using five characteristic dimensions: execution (offline, online), generalisation (user-

independent, user-specific, temporal), detection (continuous, isolated), activity types

(periodic, sporadic, static), and system model (stateless, stateful).

Some researchers categorised HAR according to the object being tracked. For

example, Hussain et al. [162] proposed three categories: action-based, motion-based,

and interaction-based. Similarly, Vrigkas et al. [339] introduced six classes including

gestures, atomic actions, human-to-object, or human-to-human interactions, group

actions, behaviours, and events. However, such classifications do not cover body

states. Another approach is to classify HAR according to the intended task [39].

Other taxonomies are based on sensor characteristics, such as active versus passive

sensors, intrusive versus non-intrusive sensors, or by deployment method, including

wearables, objects, or environmental sensors [39]. In addition, HAR is often cate-

gorised by the sensor technology like the sensor type, including inertial, pressure,
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acoustic, vibration, ultrasonic, contact, electromagnetic, magnetic, visual, infrared,

and radio frequency sensors. Another approach is based on the operational posi-

tion of the sensor, such as environmental (e.g., pressure, temperature, humidity,

or open/closed states), ambient (e.g., cameras, microphones, radio frequency, or

motion detectors), and object attached sensors (e.g., inertial, heart rate, pulse, or

electrical activity). A further classification refers to the underlying sensing principles,

by organising sensors according to the types of waves they use (e.g., visible spectrum,

infrared, radio frequency, mechanical waves, or vibrations) [103].

In this thesis, the following two HAR taxonomies are adopted because they focus

not only on the detection of human activity, but also consider the perceived state

of the individual (i.e., fatigue): one is based on the targeted task, the other on the

physical measure of the sensor technology.

Targeted Task

Bian et al. [39] proposed a taxonomy organised into three classes according to the

attributes of the targeted tasks: "Where" refers to body position-related services,

including indoor positioning and tracking. "What" focuses on action-related recogni-

tion, including tasks such as fall detection and gait analysis. "How" focuses on the

status of the body, including aspects such as emotion detection, stress sensing, and

heart rate. Figure 2.3 illustrates this taxonomy and highlights the focus of this thesis,

namely body status-related emotion and stress sensing (i.e., fatigue).

Physical Measure

The type of sensor used in HAR applications has a considerable influence on the

performance and capabilities of the system. A key aspect is the need to balance

the trade-offs between factors such as accuracy, computational resources, power

consumption, and user acceptance. Each sensing technology has its own unique set
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questionnaires are not possible in such studies. Studies that do not use any

type of ML are also excluded, as are publications that only describe an intention

for future research.

3. Quality Assessment: Publications must be peer-reviewed.

4. Locate Publications: Find related works in human-centred computing, sports

science, and sports medicine databases using predefined search terms.

5. Select Publications: First, titles and abstracts are screened. Second, the full

texts that were not excluded in the first step. In addition, a backward and for-

ward search is performed on each publication that meets the inclusion criteria

(see Locate Publications). This step is detailed in the following Section 2.4.1.

6. Data Extraction: Relevant information from the selected publications is ex-

tracted, such as number of samples, evaluation and augmentation methods,

and statements about generalisability (see Appendix B).

7. Analysis: A statistical summary of the extracted information is created resulting

in a literature survey (see Section 2.4.2).

8. Interpretation: The results of the survey, including the findings of the case

study, are discussed in Chapter 6.

The findings extracted from the literature serve as the foundation for the Fatigue

Recognition Chain framework in Chapter 3 and the case study in Chapter 4. As the

case study of this thesis focuses on squats, studies related to squat-based fatigue

detection are examined in a separate section (see Section 2.4.3).

2.4.1 Selection Procedure

A literature review was conducted to provide an overview of common techniques

applied to fatigue detection during physical activity. The following search term was

used in the academic search engines IEEE Xplore, Scopus, and PubMed NIH for

publications in the last 15 years:
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numbers of subjects, ranging from 1 to 80, with an average of 21.1 (median: 17)

subjects. Other reviews on fatigue detection during physical activity found similar

numbers. Martins et al. [248] conducted a broad review of fatigue not limited to

ML and exercise, with varying numbers of subjects from 3 to 50 and an average

of 14 subjects. Marotta et al. [247] reviewed studies on fatigue detection with

accelerometers located at lower limbs during cycling exercise, ranging from 3 to 222

subjects per study with an average of 23.1 subjects. Sun et al. [320] analysed studies

on exercise fatigue detection with sEMG sensors, ranging from 6 to 58 subjects and

an average of 28.1 subjects.

Tab. 2.3.: Overview of the related works.

Authors Year n Exercise Ground Truth Classes Samples Best Acc. (%)

Albert and Arnrich [9] 2024 16 Squats RPE20 14 2304 -

Gan et al. [126] 2024 16 Squats RPE10 3 31 80.7

Huang et al. [161] 2024 7 Static RPE10 2 N/A 86.13

Ma and Guo [240] 2024 30 Yoga Blood samples N/A N/A N/A

Mu et al. [256] 2024 32 Running Visual Analog Scale 2 2560 94

Wang et al. [342] 2024 32 Bicep Curls K-means clustering 3 580 83.3

Wang et al. [346] 2024 5 Material Handling Questionnaire 4 (5) 483 (12558) 94.7

Yao [358] 2024 20 N/A K-means clustering 2 (3) N/A 83.11

Zhang et al. [365] 2024 18 Running First vs last 5 min 2 5400 99

Adapa et al. [1] 2023 11 Bicep Curls Activity Intensity 2 N/A 86.51

Antwi-Afari et al. [20] 2023 10 Material Handling RPE20 2, 3, 4 1289 96.9

Anwer et al. [21] 2023 15 Material Handling RPE20 4 1425 93.5

Biró et al. [45] 2023 9 Cycling, Running, Football RPE20, Heart Rate N/A N/A 90

Biró et al. [44] 2023 19 Running Activity Intensity (Beep test) 2 1201 59

Bouteraa et al. [52] 2023 57 Wrist Torque Uncertainty algorithm 2 N/A 92.62

Cañellas et al. [63] 2023 80 N/A Linearly annotated 101 418813 -

Concha-Pérez et al. [83] 2023 30 Squeeze/Release (Arm) Activity Intensity 2 N/A 95.7

Dang et al. [92] 2023 10 Dynamometer Activity Intensity 3 N/A 93.5

De Vito et al. [97] 2023 1 Material Handling N/A 2 5634 83.9

Dimmick et al. [102] 2023 16, 9 Running RPE, MLSS, first and last km 2 N/A 68.9

Feng et al. [116] 2023 25 Rope-Skipping Activity Intensity 2 N/A -

Kathirgamanathan et al. [191] 2023 19 Running Activity Intensity (Beep test) 2 5510 97, 59

Liu et al. [235] 2023 20 Elbow RPE20 4 7560 96.67

Marena et al. [246] 2023 5 Material Handling Metabolic rate N/A N/A -

Perpetuini et al. [275] 2023 10 Squats Activity Intensity 2 N/A -

Pirscoveanu and Oliveira [278] 2023 43 Running RPE20 14 N/A -

Pravin et al. [280] 2023 N/A Bicep Curls Activity Intensity 2 24 87.5

Smiley et al. [313] 2023 10 Cycling RPE10 2 150 80

Valla et al. [335] 2023 41 Archimedean Spiral Test Questionnaire 2 33 78.8

Albert et al. [10] 2022 12 Squats RPE20, lactate 14 N/A -

Bustos et al. [58] 2022 24 Running RPE20 4 750 88

Jaiswal et al. [168] 2022 32 Walking First sets vs last two sets 2 N/A 80.5

Umer et al. [332] 2022 10 Material Handling RPE20 14, 4 1286 64.2, 75.73

Cheah et al. [69] 2022 4 Sit-Ups First vs last 20% reps 2 1092 65.3

Escobar-Linero et al. [112] 2022 7 Material Handling RPE20 4 360 91

Guo et al. [139] 2022 10 Bicep Curls RPE 3 800 92

Jiang et al. [176] 2022 12 Squats RPE10 10 N/A 83.7

Li and Chen [225] 2022 20 Pilates RPE 3 1200 94.25

Shi et al. [306] 2022 10 Walking Activity Intensity 5 N/A 88.9

Triantafyllopoulos et al. [327] 2022 48 Running RPE20 14 N/A -

Wang et al. [343] 2022 19 Running RPE20 3 N/A 91.1

Zhu et al. [374] 2022 24 Walking, Cycling, Running Activity Intensity 6 14400 97.7

Chen et al. [71] 2021 40 Material Handling Control group 2 80 72
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Table 2.3 continued from the previous page

Authors Year n Exercise Ground Truth Classes Samples Best Acc. (%)

Chen et al. [70] 2021 47 Material Handling Control group 2 94 89.47

K et al. [181] 2021 58 Bicep Curls First vs last rep 2 116 94.04

Sadat-Mohammadi et al. [288] 2021 15 Material Handling Activity Intensity, NASA-TLX 3 N/A 93.4

Wang et al. [344] 2021 20 Cycling Ventilation Threshold 2 8872 95.15

Zhang et al. [370] 2021 2, 10 Shoulder 10 s after exhaustion 2 18740, 93998 96.45; 78.25

Aguirre et al. [4] 2021 60 Sit-to-Stand RPE10 3 660 83.2

Balaskas and Siozios [28] 2021 14 Running Clustering 2 N/A 43

Chalitsios et al. [67] 2021 13 Running Ventilatory Threshold 2 29650 91.4

Chen et al. [72] 2021 10 Dumbbell (pick-up) Manually labelled 2 5000 90.4

Elshafei et al. [108] 2021 20 Bicep Curls RPE20 2 3000 18–95

Guan et al. [138] 2021 14 Running RPE20 3 N/A 80.6

Jiang et al. [175] 2021 14 Squats, Jacks, Touch RPE10 10 1790, 1240, 1140 -

Karvekar et al. [189] 2021 24 Squats, Walking RPE20 2, 3, 4 1240, 1800, 2400 91, 78, 64

Kuschan and Krüger [212] 2021 9 Material Handling RPE10 3, 5 282 83.8, 80.9

Lambay et al. [216] 2021 24 Material Handling RPE 2 N/A 65

Wang and He [341] 2021 12 Running RPE20 4 6624 87.7

Davidson et al. [95] 2020 12 Running RPE20 2 112 84.8

Luo et al. [238] 2020 27 Daily Activities Fatigue Assessment Scale 2 N/A 71.4

Umer et al. [331] 2020 10 Material Handling RPE20, SWAT 14 1286 98.5, 95.3

Wang et al. [345] 2020 20 Cycling Ventilation Threshold 2 100 83.51

Guaitolini et al. [137] 2020 13 Walking, Running First vs other reps 2 26 84.6

Maman et al. [242] 2020 15 Material Handling RPE 2 234 (46800) 85

Nasirzadeh et al. [261] 2020 8 Material Handling RPE20 2 3456, 1728, 691 90.36

Sani et al. [293] 2020 8 Material Handling RPE 2 N/A 78.2

Zhang and Wang [364] 2020 20 Ball Sports PERCLOS P80 2 8000 90

Chowdhury et al. [77] 2019 22 Walking, Running RPE20 3 615 -

Geurkink et al. [129] 2019 46 Football RPE10 10 913 91.7

Jebelli et al. [171] 2019 10 Material Handling Activity Intensity 2, 3 N/A 90, 87

Karvekar et al. [188] 2019 24 Squats, Walking RPE20 2, 4 N/A 91, 61

Papakostas et al. [265] 2019 10 Shoulder Exhaustion plus 10 s 2 90 -

Yang and Ren [357] 2019 20 Muscle Chair RPE10 2 220* 90

Wu et al. [353] 2018 N/A Running, Walking, Pedalling Activity Intensity 2 148 98.65

Baghdadi et al. [26] 2018 20 Material Handling RPE20 2 1000 90

Beéck et al. [33] 2018 29 Running RPE20 14 7607 -

Gordienko et al. [135] 2018 N/A Walking, Running, Skiing Clustering N/A N/A -

Jamaluddin et al. [169] 2018 20 Running Questionnaire 2 N/A 98

Karthick et al. [187] 2018 52 Bicep Curls First segments vs last segment 2 N/A 91.5

Aryal et al. [22] 2017 12 Material Handling RPE20 4 253 82.6

Lopez et al. [237] 2017 19 Running (stairs) Activity Intensity 2 5700 81.51

Shahmoradi et al. [302] 2017 6 Reaching (arm) Max. Voluntary Contract. 3 N/A 95.3

Vandewiele et al. [336] 2017 45 Football RPE10 10 913 -

Buckley et al. [55] 2017 21 Running Last 400 m 2 584 75

Maman et al. [243] 2017 8 Material Handling RPE20 2 144 -

Carey et al. [65] 2016 45 Football RPE10 10, 15 3398 -

Kupschick et al. [211] 2016 22 Material Handling RPE20 2 533 85.8

Pernek et al. [274] 2015 11 Dumbbell (upper body) RPE20 14 264 -

Bilgin et al. [41] 2015 31 Running Bruce protocol 2 N/A 92

Karg et al. [186] 2014 7 Squats Questionnaire 5 445 81

Zhang et al. [367] 2013 17 Squats, Walking Until 60% maximal exertion 2 340 90

Janssen et al. [170] 2011 9 Leg, Walking Activity Intensity 2, 3 162 98.1

Subasi and Kiymik [319] 2009 14 Dumbbell N/A 2 1100 91

Karg et al. [185] 2008 14 Rowing, Walking Activity Intensity 2 N/A 100

This thesis 2024 48 Squats RPE20 2, 3, 4 3595 78.4

The related works were published between 2008 and 2024 (median: 2021), as

shown in Table 2.4.

Tab. 2.4.: Number of related works per year.

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008
7 20 13 17 9 6 6 6 2 2 1 1 0 1 0 1 1
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Physical Activities

Table 2.5 lists the physical activities used in related works. 72 related works used

sports training as an activity, while 21 used work-related material handling. Running

was the most frequently used exercise, followed by material handling, walking, and

squats. At least two different activities were used in 10 related works.

Tab. 2.5.: Physical activities and the number of related works.

Activity Running Material Handling Walking/Gait Squats Bicep Curls Cycling Football Dumbbell Other N/A
Count 25 21 12 10 7 5 4 3 8 2

Note: 24 related works utilised multiple different activities.

Sensors

Table 2.6 lists the most frequently used sensors in the related works. ECG, IMU, and

sEMG were the most utilised sensors for exercise fatigue detection. 45 related works

utilised multiple different sensors, and 44 only a single sensor, with IMU counted as

a single sensor.

Tab. 2.6.: Sensors and the number of related works.

Sensor ECG IMU sEMG RESP ST GPS Kinect PPG MoCap EDA FP Thermal Cam Other N/A
Count 38 37 26 11 8 5 5 5 5 4 4 3 1 8 1

Note: 45 related works utilised multiple different sensors.

Ground Truth

44 related works (46.32%) applied any form of the RPE scale (RPE20 or CR10) as

ground truth.

A time-based approach was most commonly used by 26 of the 95 related works,

where the ground truth was collected in time intervals (see also Table B.2 in the

Appendix). The intervals range from 30 seconds to 24 h, with a median of 5 minutes.

Table 2.7 lists these intervals. 8 related works collected the ground truth after a

Tab. 2.7.: Ground truth time intervals and the number of related works.

Interval 0.5 s 1 min 2 min 3 min 4 min 5 min 10 min 15 min 60 min 24 h
Count 2 2 4 1 1 5 7 1 1 2
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certain number of exercise repetitions. The number of repetitions ranges from 5

to 15, with a median of 11 repetitions. Table 2.8 lists the number of repetitions

used in the related works. In 6 related works, ground truth was assessed after a

Tab. 2.8.: Ground truth repetition count and the number of related works.

Repetitions 5 10 12 15
Count 3 1 2 2

specific distance, ranging from 100 to 1000 m with a median of 400 m (typically 1

lap outdoors).

Table 2.9 shows the different ground truth approaches and how often they have

been used in the related works. “Activity Intensity” means that multiple sessions of

an exercise at different intensities are conducted to label the collected data. “First vs

Last” means that the collected data was divided into certain time periods and the

later periods were labelled as fatigue. Some studies utilised other subjective ques-

tionnaires than RPE. Clustering was applied in studies that applied deep learning

methods. “Ventilation Threshold” was mainly used for cycling exercises. Other ap-

proaches were used only once or twice, including automatic linear annotation, Bruce

protocol, control group fatigue assessment scale, lactate/blood samples, maximum

voluntary contractions, metabolic rate, MLSS, PERCLOS-P80, SWAT, uncertainty

algorithm, visual analog scale, and x seconds after exhaustion.

Tab. 2.9.: Ground truth approaches and the number of related works.

Approach RPE Activity Intensity First vs Last Questionnaire Clustering Ventilation Thres. Other N/A
Count 44 16 7 6 4 2 14 2

Note: 5 related works utilised multiple different ground truth approaches.

Samples

The number of samples collected by the related works ranges from 24 to 418813

with an average of 8759.9 and a median of 1046 samples per study (see Table B.4

in the Appendix). By far the most samples were collected by Cañellas et al. [63],

who used an algorithm to automatically label video frames. There is no information

on how many samples were collected in 33 studies.
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Classes

Table 2.10 shows the number of classes (or labels) used in the related works. Each

class requires a certain number of data points to train an ML model – the more

classes, the more data is required. Binary classification is the most common, used

by more than half of the related works. As RPE consists of 14 classes, different

strategies are applied to reduce them. Of the 44 studies that used RPE, 31 studies

reduced the number of classes for ML, usually by combining several classes and their

samples into one class (group).

Tab. 2.10.: Classes (labels) and the number of related works.

Classes 2 3 4 5 6 10 14 15 101 N/A
Count 55 16 11 3 1 5 7 1 1 4

Note: 7 related works utilised multiple class counts.

Some related works reduced the number of classes by merging them. Table 2.11

shows different thresholds for merging classes into smaller numbers of classes. In

general, these thresholds are less applicable to other research projects as they depend

on the particular research design, sample selection, and class distribution.

Tab. 2.11.: Label reduction in the related works.

Authors Exercise 2 classes 3 classes 4 classes
Elshafei et al. [108] Bicep Curls 6–16 / 17–20 - -
Smiley et al. [313] Cycling 1–3 / 4–10 - -
Liu et al. [235] Elbow - - 6–12 / 13–16 / 17–18 / 19–20
Umer et al. [332] Material Handling - - 6–10 / 11–13 / 14–16 / 17–20
Anwer et al. [21] Material Handling - - 6 / 7–11 / 12–16 / 17–20
Aryal et al. [22] Material Handling - - 6–11 / 12–14 / 15–16 / 17–20
Chen et al. [72] Material Handling 6–15 / 16–20 - -
Kupschick et al. [211] Material Handling 6–10|12 / 15|13–20 - -
Maman et al. [243] Material Handling 6–12|14 / 13|15–20 - -
Maman et al. [242] Material Handling 6–12 / 13–20 - -
Nasirzadeh et al. [261] Material Handling 6–14 / 15–20 - -
Antwi-Afari et al. [20] Material Handling - - 6 / 7–11 / 12–16 / 17–20
Bustos et al. [58] Running - - 6–11 / 12–14 / 15–16 / 17–20
Guan et al. [138] Running - 6–11 / 12–16 / 17–20 -
Mu et al. [256] Running - 1–4 / 4–7 / 8–10 -
Chowdhury et al. [77] Running, Walking - 6–11 / 12–14 / 15–20 -
Gan et al. [126] Squats - 0–1 / 2–4 / 5–10 -
Karvekar et al. [188] Squats, Walking 6–16 / 17–20 - -
Karvekar et al. [188] Squats, Walking 6–14 / 15–20 - 6 / 7–10 / 11–15 / 15–20 [sic!]
Karvekar et al. [189] Squats, Walking 6–14 / 15–20 6 / 7–13 / 13–20 [sic!] 6–11 / 11–13 / 13–15 / 15–20 [sic!]
This thesis Squats 6–14 / 15–20 6–9 / 10–15 / 16–20 6–9 / 10–11 / 12–15 / 16–20
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Imbalanced Classes

45 of the 95 related works reported if classes were balanced or imbalanced, as shown

in see Table 2.12 (see more details in Table B.6 in the Appendix). Furthermore, 70

related works made one or two direct or indirect remarks on class imbalances. To

handle imbalanced classes, 10 related works applied oversampling and 10 applied

undersampling, with 2 related works using both over- and undersampling in the

same study. However, the number or ratio of augmented samples was only reported

by Wang et al. [346]. Some related works reported, how imbalanced data was

handled. For example, Jiang et al. [176] and Maman et al. [242] duplicated samples

(bootstrap). Guan et al. [138] applied SMOTE to increase the data of the minority

classes. Aguirre et al. [4] mapped each class to the five closest repetitions for each

subject. Jiang et al. [176] divided the subjects into fast and slow fatiguing subgroups

according to the number of repetitions they have conducted prior to exhaustion.

Baghdadi et al. [26] extracted data from the first and last 10 minutes to obtain an

equal number of strides in both fatigued and non-fatigued states.

Tab. 2.12.: Imbalanced classes and data augmentation reported by the related works.

Imbalanced Classes Oversampled Undersampled
Yes 23 10 10
No 22 85 85
N/A 46 2 2

Evaluation Types

Wang and He [341] identified the following three types to evaluate the performance

of ML models:

• Type 1 - Single Subject (T1-SOLO): data from one individual is used for ML

(e.g., if multiple data sets of one individual exist).

• Type 2 - Leave No Subject Out (T2-LNSO): Some data from all subjects is used

as test set and excluded from the training set.

• Type 3 - Leave One Subject Out (T3-LOSO): Data from one subject is used as

test set and excluded from the training set [37].
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Depending on the total number of subjects, a single subject for evaluation usually

results in a low testing rate. To mitigate this problem, a fourth type is proposed in

this thesis to reduce the dependence of the evaluation on a single subject and to

increase the size of the test set relative to the training set (see [41, 242]):

• Type 4 - Leave Multiple Subjects Out (T4-LMSO): Data from multiple subjects is

used as the test set and excluded from the training set.

In addition, an ensemble approach can be implemented to train multiple ML models,

each with a different test set: the final decision is then made, for example, by

majority voting among all the models, which can reduce the dependence on a

specific test set or subject(s) [26]. Furthermore, Adapa et al. [1] introduced leave-

one-activity-out to examine the influence of different training loads and postures for

five different exercises.

Table 2.13 shows by how many related works each evaluation type was used, with

13 related works that applied multiple evaluation types (more details can be found

in Table B.4 in the Appendix).

Tab. 2.13.: Evaluation types and cross-validation (CV) and the number of related works.

Type T1-SOLO T2-LNSO T3-LOSO T4-LMSO CV
Count 9 47 34 6 63

Note: 13 related works applied multiple evaluation types.

Cross-Validation

The evaluation is usually combined with cross-validation where the training set is

divided into k folds. In each iteration, the ML model is then trained on k-1 folds and

validated on the unknown remaining validation fold. The partitioning can be such

that either all possible permutations are tested, or only a limited number of folds.

Cross-validation can also be performed on the test set. For example in T3-LOSO,

the test subject is swapped with another subject and the trained ML model is tested

again until all subjects (or a limited, random number) have been the test subject

once. Then, either the result of the ML model with the best score is taken [138] or an
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average of all the tests subjects is calculated [265, 357]. When T4-LMSO is combined

with cross-validation, multiple subjects are selected as the test set and multiple test

sets are created for cross-validation. To reduce the number of test sets, only a limited

number of (random) test sets may be used (Monte Carlo cross-validation [225]).

Cross-validation was applied in 63 related; and for 30 works, it is unknown

whether cross-validation was used (see Table B.4 in the Appendix). Table 2.14 shows

the number of folds used for cross-validation in the related works, with 5 folds being

the most common, followed by 10 folds.

Tab. 2.14.: Folds for cross-validation and the number of related works.

Folds 5 10 6 3
Count 22 19 3 1

ML Models

Table 2.15 lists the ML methods commonly used in the related works, which is

consistent (except for GANs) with the findings of Hooda et al. [157], who reviewed

fatigue detection approaches using ML. On average, 3.4 models were trained by the

related works, ranging from 1 to 14 models. 14 studies trained one ML model, while

Tab. 2.15.: ML methods and the number of related works.

Abbr. Full name Count
SVM Support Vector Machine 57
RF Random Forest 37
ANN Artificial Neural Network 26
k-NN k-Nearest Neighbours 25
LR Logistic Regression 24
DT Decision Trees 20
CNN Convolutional Neural Network 17
LSTM Long short-term Memory 13
NB Naive Bayes 12
SVR Support Vector Regression 5
LDA Linear Discriminant Analysis 4
RNN Recurrent Neural Network 4

Note: Other methods with less than four occurrences are not included.

26 studies trained at least two or more different models for comparison. The most

commonly applied ML method was SVM, followed by RF, ANN, k-NN, LR, DT, CNN,
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and LSTM. Most methods were used for supervised ML. Some works also adopted

less common ML methods, for example Gradient Boosting Regressor, Hidden Markov

Model, Gradient Descent, Gradient Boosting, Bagged Trees, Ensembles, and more.

The number of features used to train the ML models ranges from 1 to 531 features,

with an average of 34.8 and a median of 13.5 features per work. For 7 related works

the number of features was not available (see Table B.4 in the Appendix).

Reported Results

79 related works performed classification and 15 regression to evaluate the ML

models, with 2 doing both. The best accuracy results that were reported in the

related works average 85.7% with a median of 89.2%, ranging from 43% to 100%.

Table 2.16 lists the best results and measures reported by the related works.

Tab. 2.16.: Results and measures reported by the related works.

Measure Acc Spec Recall Prec F1 R2 RMSE MAE MAPE CM
Mean 85.7 87.0 86.7 87.2 84.1 74.4 1.9 3.2 9.6 -
Median 89.2 92.0 89.8 90.1 85.2 86.0 0.9 1.8 9.6 -
Min 43.0 25.0 44.3 59.0 59.0 48.0 0.3 0.2 7.7 -
Max 100 100 100 99.0 97.3 89.3 13.6 16.5 11.5 -
Count 77 14 28 17 29 4 12 7 3 34

Accuracy in % (Acc), Specificity in % (Spec), Recall in % (Recall), Precision in % (Prec), F1 score in %
(F1), coefficient of determination in % (R2), root mean square error (RMSE), mean absolute error (MAE),

mean absolute percentage error (MAPE), confusion matrix (CM)
Note: 65 related works applied multiple measures. Moreover, the measures Area Under the Curve and

Receiver Operating Curve were used by some related works but not included in this survey.

21 of the 95 related works utilised accuracy alone to evaluate the performance

of the ML models. Furthermore, 9 of the 79 related works, that used accuracy and

other measures, reported less than 75% accuracy as the best result [44, 102, 55,

238, 216, 28, 71, 69, 332]. The lowest results were reported by Balaskas and Siozios

[28] with 43%, while Umer et al. [332] aimed for a minimalist ML approach with

as few input features as possible and reported 64.2% accuracy for the group model

and 75.73% for the personalised model. 29 related works used F1 scores [294], but

these rarely specified the type (micro, macro, weighted).
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Table 2.17 shows the sizes of the training and test sets typically chosen by the

related works to train the ML models. The test ratio ranges from 50% to 95%, with

an average of 17.6% and a median of 15%.

Tab. 2.17.: Size of the training set, test set, and samples in the related works.

Size Training Set Test Set Samples
Mean 78.9% 17.6% 8759.9
Median 80% 15% 1046
Min 50% 2% 24
Max 95% 45% 418813

Generalisation

70 related works (77.77%) addressed in one or two sentences generalisation, over-

fitting, small data, and variability. 25 related works did not mention any of theses

topics (see Table 2.18).

Tab. 2.18.: Number of related works that addressed certain topics.

Topic Generalise Small Data Overfitting Variability None
Count 24 19 16 16 25

Some related works described specific findings or measures in regard to the four

topics, they are highlighted in the following (see Table B.7 in the Appendix for

details). Pernek et al. [274] was the only study among the related works that inves-

tigated how the ML models performed with different numbers of subjects. Baghdadi

et al. [26] evaluated the ML performance by adjusting the size of the training and

test sets. Some related works found significant intra- and inter-individual changes in

the parameters between normal and fatigued states [185, 170, 265, 364, 331, 102,

44, 336]. Karg et al. [186] found no correlation between variance and fatigue; they

suggested regression for small data. Lopez et al. [237] suggested transfer learning

to deal with small data. Chowdhury et al. [77] specifically mentioned merging

classes to improve generalisability. Some related works observed that adjacent data

samples of fatigued states were prone to confusion during classification [235, 302,

211]. Guaitolini et al. [137] suggested that part of the misclassification error is

related to population variability. Janssen et al. [170] selected subjects to create a
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relatively homogeneous group in which subjects fatigued with comparable levels

of exercise. Kathirgamanathan et al. [191] grouped similar subjects into separate

data sets. Wang et al. [346] used data augmentation to improve generalisation,

increasing the number of samples from 483 to 12558 by adding noise to the original

data. Mu et al. [256] developed a custom transformer framework for learning small

time series.

2.4.3 Related Works with Squats

This section takes a closer look at related works that have used squats as a physical

exercise, since squats were also chosen for the case study of this thesis. 10 of the

95 related works used squats. As shown in Table 2.19 , these 10 works enrolled an

average of 15.2 subjects, ranging from 7 to 24 subjects. The most commonly used

Tab. 2.19.: Overview of the related works that use squats as a physical exercise.

Authors Year n Sensor Ground Truth Frequency Classes Samples
Albert and Arnrich [9] 2024 14 Kinect, ECG, IMU, kMeter RPE20 12 reps 16 2304
Gan et al. [126] 2024 16 ECG RPE10 30/15 reps 3 31
Perpetuini et al. [275] 2023 10 sEMG, Thermal Activity Intensity - 2 N/A
Albert et al. [10] 2022 12 IMU, ECG, Kinect, kMeter RPE20, lactate 12 reps 14 N/A
Jiang et al. [176] 2022 12 IMUs RPE10 5 reps 10 N/A
Jiang et al. [175] 2021 14 IMUs, FP, MoCap RPE10 5 reps 10 1790, 1240, 1140
Karvekar et al. [189] 2021 24 IMU RPE20 2 min 2, 3, 4 1240, 1800, 2400
Karvekar et al. [188] 2019 24 IMU RPE20 2 min 2, 4 N/A
Karg et al. [186] 2014 7 MoCap Questionnaire 5 reps 5 445
Zhang et al. [367] 2013 17 IMUs, FP, MoCap 60% max. exertion Per set 2 340
This thesis 2024 48 IMU, PE RPE20 10 s 2, 3, 4 3595

Note: Some related works [175, 189] evaluated the ML models with a different number of classes (2,
3 or 4), hence the different number of samples.

sensors were IMU (6x), ECG (3x), Motion Capturing (MoCap) (3x), Kinect (2x),

force plate (FP) (2x), and EMG (1x). The most commonly used ground truth for

fatigue detection was RPE (7x), followed by a custom questionnaire, different levels

of exercise intensity, and 60% maximal exertion. In these works, subjects had to

report their ratings at different intervals, ranging from every 5 repetitions (reps) to

every 2 minutes. The number of used classes ranges from 2 to 14, while two related

works examined multiple classes in the same study. The number of samples (reps)
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used for ML ranges from 31 to 2400 with an average of 1273 samples, while 4 of

the 10 related works did not report the number of samples.

SVM was utilised most often, followed by RF, LR, CNN, and LSTM, while 6 of the

10 related works examined multiple ML models (see Table B.3 in the Appendix).

Table 2.20 summarises the measures and ML results reported by the related works

with squats. 5 out of 10 works used classification, while the remaining 4 works used

regression. One of the related works used a CNN model and was evaluated with

Pearson’s correlation coefficient. Confusion matrix (CM) was applied by 3 works.

Tab. 2.20.: Results and measures reported by the related works with squats.

Measure Acc Spec Recall Prec F1 RMSE MAE MAPE R2 CM
Mean 81.5 - 77.6 76.2 77.0 1.2 1.26 7.9 0.3 -
Median 80.9 77.6 76.2 77.0 1.0 1.26 7.9 0.3 -
Min 76.0 77.6 76.2 71.9 0.6 1.26 7.7 0.2 -
Max 90.0 77.6 76.2 82 2.2 1.26 8.1 0.5 -
Count 6 0 1 1 2 4 1 2 2 3

Table 2.21 shows the applied evaluation types of the 10 related works with squats.

The number of input features used for ML ranges from 8 to 122, with an average

of 21.8 and median of 12 features. The ratio between training and test sets ranges

from 1.6% to 30%, with an average of 18.3% and a median of 15%. None of these

works applied T1-SOLO evaluation, 3 works T2-LNSO, 6 works T3-LOSO, and none

T4-LMSO. Cross-validation was utilised by 9 of the 10 related works. Oversampling

was applied by 2 works, while 1 work applied undersampling. Furthermore, 4

related works reported balanced classes, 2 class imbalances, and 4 did not report on

class balance.

7 of the 10 related works with squats mentioned small data as a limitation (see

Table B.7 in the Appendix). Among them, Albert and Arnrich [9] used a large window

overlap of 95% to generate as much training data as possible. Karvekar et al. [189]

found that increasing the number of classes in their study led to a decrease in model

performance due to overlapping regions within the RPE scale. Gan et al. [126] stated

that the ML models need to be assessed in larger sample populations. Jiang et al.
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Tab. 2.21.: Number of features, applied evaluation types, cross-validation (CV), oversam-
pling (OS), undersampling (US), and if the classes were balanced (CB) in the
related works with squats.

Features Test Ratio T1-SOLO T2-LNSO T3-LOSO T4-LMSO CV OS US CB
Albert and Arnrich [9] 50, 100 6.3% - - x - x x - Yes
Gan et al. [126] 18 N/A N/A N/A N/A N/A 10 - - N/A
Perpetuini et al. [275] 9 10.0% - - x - x - - N/A
Albert et al. [10] 8 8.3% - - x - x - - No
Jiang et al. [176] 32 1.6% - - x - x - - N/A
Jiang et al. [175] 10, 6 15% - - x - 5, 6 Duplicates - No
Karvekar et al. [189] 42 N/A - x - - 5 - - N/A
Karvekar et al. [188] >12 N/A N/A N/A N/A N/A - - - N/A
Karg et al. [186] 17 N/A - x x - x - x No
Zhang et al. [367] 11 30% - x - - 5 - - Yes
This thesis 23, 67, 122 20% - x x x 5 SMOTE - No

[176] used 12 real subjects and increased the population by additional 50 simulated

subjects. 2 related works with squats mentioned data variability: Albert et al. [10]

included only male subjects for a homogeneous population. Jiang et al. [176] found

no significant difference between fast-tiring and slow-tiring sub-groups. 3 related

works with squats mentioned generalisation: Albert and Arnrich [9] and Perpetuini

et al. [275] noted that the small data set limits the generalisability of the results.

Perpetuini et al. [275] applied nested cross-validation to assess generalisability. Karg

et al. [186] stated that the linear model still generalises with unseen data of the

subjects despite the small number of 10 to 50 samples per subject.

2.4.4 Summary

A survey was conducted to find 95 primary studies addressing sensor-based fatigue

detection with ML during physical activity. The numbers of recruited subjects in the

related works ranged from 1 to 80, with an average of 21.1 and a median of 17)

subjects. The most common physical activities used in the related works studies

were running, manufacturing tasks, walking, and squats. ECG, IMU and sEMG

were the most commonly used sensors. The number of collected samples varied

widely, with an average of 8759.9 and a median of 1046 samples. RPE scales were

used most commonly as ground truth by 46.32% of the related works. Four main

evaluation methods were identified in the related works, with T2-LNSO (49.5%)

and T3-LOSO (35.8%) being the most commonly used, while T1-SOLO (9.5%) and
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T4-LMSO (6.3%) were rarely used. Cross-validation was commonly used with 5 or

10 folds.

83.2% of the related works performed classification and 15.8% regression to

evaluate the ML models, with two doing both. The dominant ML approach was

supervised. SVM, RF, ANN, k-NN, LR, DT, CNN, and LSTM were among the most

commonly used ML models. The average accuracy of the ML models in the related

works was 85.7%, with a median of 89.2%. Specificity, sensitivity, F1 score, and

confusion matrices were also used, but only in about one third of the related works.

The type of F1 score used (micro, macro, or weighted) was often not explicitly

reported. The median test rate was 15%. The number of fatigue classes to be

detected ranged from 2 to 14, with binary classification being the most common

(57.9%). Imbalanced classes were reported by 24% of the related works. 11% of

the related works applied oversampling or undersampling techniques to address

imbalanced data.

The topics small data, variability, overfitting, and generalisation were mentioned

in 77.77% of the related works, but none of them address these topics in depth.

2.5 Research Gaps

This section highlights the research gaps identified based on the related works.

Elshafei et al. [108] found a lack of research on sensor-based fatigue detection,

although HAR systems are part of everyday life; despite the abundance of literature

in this area, little is known about the impact of muscle fatigue on the performance of

these systems. Enoka and Duchateau [110] noted that despite the growing interest

in fatigue, little is known about its effects on human performance. This lack of

studies on fatigue detection is also highlighted by other works [156, 241, 326, 247].

Enoka and Duchateau [110] observed that fatigue can limit human performance,

but there are considerable gaps in knowledge of the underlying mechanisms and
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how to manage them. This dilemma appears to be largely due to the inability of

current terminology to address the range of conditions attributed to fatigue.

Halson [143] highlighted the lack of generalisable markers of fatigue: "There are

a number of potential markers that can be used to gain an understanding of training

load and its effect on the athlete. However, very few of these markers have strong

scientific evidence to support their use, and no single definitive marker has yet been

described in the literature”. Closely related to this comment is reproducibility –

the ability to verify the generalisability of published findings through independent

third-party verification. According to Zheng and Stodden [372], work has been done

on technical and cyberinfrastructure solutions for reproducible ML, but research on

incentives to adopt reproducible practices lags behind.

The survey in Section 2.4 has shown that T2-LNSO and T3-LOSO evaluations are

commonly used. T4-LMSO has only been used in 6 related works, but so far there

has been no comparison between all of these evaluation methods. This leads to

another research gap on how the evaluation methods affect ML models trained on

small data and the resulting generalisability, especially in light of the generally high

performance results reported.

Small data sets are mentioned to varying degrees in the related works, often as a

limitation. It is often assumed that ML models trained on small data are generalisable

as long as they do not overfit, which will be discussed further in this thesis. Vrigkas

et al. [339] argued that learning human activities from very little training data or

missing data is challenging. Several issues, such as the minimum number of learning

examples for modelling the dynamics of each class or safely inferring the activity

label performed, are still open and need further investigation. More attention should

also be paid to the development of robust methods under the uncertainty of missing

data, either on training steps or on testing steps. According to Iwana and Uchida

[166], there is a need for more publicly available time series data.

Generalisability and variability are rarely addressed in the related works, and if so,

briefly. Hussain et al. [162] noted that current solutions for activity recognition face
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the challenge of variability. Variability means that the same activity is performed by

a different person or the same activity is performed by the same person at a different

pace. Many existing systems cannot deal with the variability problem, i.e., if the

same activity is performed by a different person, the system’s recognition accuracy

is very low. Also, if the same person performs the same activity in a different style,

the system’s performance degrades. Modern systems should be robust and deal with

the issue of variability. This is still an open question and requires further research.

2.6 Summary

This chapter explored the key concepts of this thesis. Small data refers to data sets

collected from a small number of subjects and is used for ML to make predictions at

the individual level. Fatigue is a multifaceted phenomenon that has been studied

in various fields. Despite its widespread importance, there is still no universally

accepted definition of fatigue, nor standard methods of objective and subjective

measurement. HAR is presented as sensor-based detection of activity, including

the state of the individual, such as fatigue. In addition, several taxonomies were

introduced for each key concept.

In a survey, 95 related works were found that investigated fatigue detection in

physical activity based on sensors and ML. The survey showed that RPE scales

were most commonly used as ground truth, as well as binary classification, with

supervised ML being the dominant approach. Furthermore, four common evaluation

types were identified: T1-SOLO, T2-LNSO, T3-LOSO, and T4-LMSO, with T2-LNSO

and T3-LOSO being the most common. The average prediction accuracy in the

related works is 85.7%.

In addition, the research gaps were described, including the lack of robust evalua-

tion methods and the need for more attention to generalisation and variability in

regard to ML with small data.
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Fatigue Recognition Chain

Framework

3

According to the Cambridge Dictionary, a framework is a system of rules, ideas, or

beliefs used to plan or decide something1. This chapter introduces the Fatigue Recog-

nition Chain framework, which is intended as a general guide for interdisciplinary

researchers to conduct sensor-based exercise fatigue detection research with small

data. The framework covers the entire process from specification, collecting raw

data, ML, evaluating generalisable performance of ML models, and sharing of the

research. The framework is inspired by the works of Usama Fayyad [333], Bulling

et al. [57], Lin et al. [233], Maman et al. [242], Rauschenberger and Baeza-Yates

[284], Chicco et al. [75], and Zheng and Stodden [372].

The Fatigue Recognition Chain describes an incremental process [333] of seven

steps (see Figure 3.1). If unanticipated obstacles arise, researchers are encouraged to

go back to previous steps to make the necessary adjustments before moving on to the

next step. Each step contains sub-steps that can be adapted to suit different research

needs and workflows. These sub-steps can be skipped, implemented in any order,

performed in parallel, or even performed multiple times, providing flexibility to

accommodate different research scenarios. Although the Fatigue Recognition Chain

provides a flexible structured approach, there may be cases where this framework is

not fully applicable. For this reason, it is recommended that preliminary trials are

carried out to assess the feasibility of a planned approach and to ensure that it can

meet the objectives.

1https://dictionary.cambridge.org/dictionary/english/framework
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3.1.1 Research Topic & Design

A well-defined research topic is usually developed iteratively, involving continuous

refinement of the research idea until it is fully articulated and accepted. This process

involves formulating and clarifying research questions, defining a related aim, and

setting specific research objectives. The research design is the general plan of how

to answer these research questions (see also the research onion in Figure M.1 in the

Appendix) [295, 110].

3.1.2 Research Environment

A research environment should enable continuous monitoring and the generation

of reliable responses at the right time to ensure the validity of the results provided.

The time at which the experiments are conducted may be important, as it may

affect the participants, for example due to temperature, humidity, noise, or circadian

rhythms [130, 184, 201, 317]. Furthermore, it is important to consider the natural

environment in which the physical activities are performed. For example, performing

experiments in a laboratory environment that does not aesthetically resemble a gym

may yield different data than performing the same experiments in a real-world

setting [130, 339, 255]. Other factors to consider are the ease of use of the sensors,

the preparation and conduction effort, logistics, required personnel and equipment,

and cost [57].

3.1.3 Ground Truth

Ground truth can refer to a fundamental truth, the real or underlying facts, or

information that has been collected at source, however, the origin and interpretation

of the term is debatable [352]. In ML, ground truth is usually obtained through

mathematical formulae or manual (subjective) labelling. The latter is often time-

consuming and labour-intensive; for example video-based frame-by-frame analysis of

3.1 Step 1: Foundational Characteristics 55



training exercises. When labelled data is limited, techniques such as semi-supervised,

unsupervised, or transfer learning may be an option [57].

While a clear understanding of the target activities and their characteristics is

essential [57], objectively correlating physiological variables with perceived fatigue

remains challenging [213]. Despite numerous proposed fatigue detection methods, a

universally accepted gold standard has yet to be established [248] (see Section 2.2).

Non-invasive methods for fatigue assessment are typically based on the following

principles: subjective measures, performance-related methods, bio-mathematical

models, behaviour-based methods, and physiological signal-based methods. Each

approach has distinct advantages and limitations, with varying suitability as ground

truth [248]. Further details of fatigue assessment can be found in Section 2.2.

3.1.4 Required Data

The data needed to answer the research question should be specified in terms of

type, structure, unit, quality, quantity, and variability [57, 295, 333]. If new data

need to be collected, a systematic set of rules should be defined and followed. Data

should be stored in an appropriate format, in an appropriate database, anonymised

to protect personal information and, where possible, made publicly available to

facilitate further research (requiring the consent of the subjects). How much data a

research project needs is a challenging question. So far, there is no general answer

or formula.

The use of publicly available databases can reduce the burden of data collection. A

variety of data sets are available for HAR, with different sensors, sensor placements,

and activities, however, a significant proportion of them were recorded in controlled

environments [339, 273]. Another limitation is the availability of labelled data. For

example, current activity and fatigue detection data sets do not represent and label

every variation of a target activity. This is largely due to the immense variability

in human movement, environmental factors, sensor devices, and experimental
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setups [162]. Existing data sets may also be limited, inadequate, and imbalanced,

posing significant challenges to the development of effective models and analysis.

Moreover, the accuracy and generalisability of a fatigue detection model is likely to

be inadequate, if the data set does not represent the same data distribution as that

of the target application [62]. Another potential source of data could be simulations

[176], but such data may not accurately represent real data.

3.1.5 Sensor Selection

Automated fatigue detection requires sensors that can detect physiological or be-

havioural signals, such as heart rate, muscle activity, or movement patterns. Sensors

allow researchers to obtain objective measurements. They can be categorised based

on their deployment location: wearable, object-bound, or environment-bound [162].

However, the lack of a standardised definition of fatigue may lead to a potential

reality gap due to the indirect nature of fatigue measurement (see Section 2.2). For

this reason, multiple sensors are often necessary to capture the full spectrum of

fatigue indicators, including a comprehensive range of physiological and motion data

relevant to fatigue. Additional sensors may also be required for specific purposes,

such as segmentation, labelling, and environmental monitoring [233, 57]. Further-

more, each sensor has different capabilities and possible configurations, resulting

in trade-offs between accuracy, system latency, data storage, power consumption,

and processing power. In some systems, low-latency classification and immediate

feedback are paramount, while in others these factors may be less important. The

variability in sensor characteristics, including hardware errors or failures, sensor

drift, operating temperature changes, and loose straps, as well as sensitivity to

environmental conditions, should be addressed to ensure uninterrupted monitoring

and reliable performance [57]. Further details of sensors, commonly used in fatigue

research, can be found in Section 2.2.4.
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3.1.6 Sample Selection

Sample selection is particularly important in ML with small data, because it controls

the variability of the data and can either improve or weaken the generalisability

of ML models. Selection criteria in fatigue research are based on subjects and

may include factors such as age, gender, fitness level, exercise frequency, exercise

experience, and occupational background. Variability in subjects (and data) also

affects the number of similar subjects required. Variability affects the required

sample size. If a system needs to support a more diverse population or complex

exercises, larger data sets are required to capture the full range of variability. User-

specific systems can reduce overall data variability by tailoring models to individual

users, potentially leading to higher performance for those specific individuals [57].

3.1.7 Exercise(s) and Sequence

The choice of exercises should be based on the specific objectives of the study

and the targeted muscle groups to be fatigued. For example, exercises such as

squats primarily target the lower body, whereas push-ups primarily target the

upper body. Other considerations may include aerobic and anaerobic training. By

carefully selecting exercises based on the desired criteria, researchers can increase

the likelihood that the data collected will accurately reflect the desired physical

activity and fatigue patterns.

The order in which exercises are performed can also affect fatigue assessment.

A randomised sequence can minimise bias and account for potential order effects,

while a standardised sequence can improve consistency and comparability between

subjects. Attention should be given to biomarkers with slow response and decay

times, such as heart rate, which is considerably affected by the order in which the

exercises are performed. In addition, factors such as exercise intensity, duration,

and rest periods between exercises should be standardised or carefully controlled to

reduce interfering variables and to improve the reproducibility of results. However,
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the exercise protocol should also reflect realistic scenarios that are as close as possible

to the targeted application. This often requires a balancing act between controlled

and realistic exercise scenarios.

3.1.8 Unit of Analysis

In the context of physical activity, a unit of analysis represents the individual data

point or set of data points being studied, such as a repetition, a set, a session, a

specific time interval during exercise, or physiological measures. For repetitive

exercises, the unit of analysis – or segment – is usually a repetition of an exercise or

a set of repetitions. A precise definition of the unit of analysis is essential to obtain

consistent and reproducible results. However, the definition is often subjective,

dependent on the algorithm, and influenced by the specific application. Once a

definition has been established, a specific segmentation algorithm can be designed

[233].

3.1.9 Computational Complexity and Storage Requirements

The overall computational complexity of fatigue detection systems is influenced

by several factors, including signal processing, data preprocessing, segmentation

algorithms, fatigue prediction algorithms, and hardware capabilities. All of these

factors can have a cumulative effect on the overall computational effort required.

Scalability is a related concern: many algorithms exhibit a disproportionate increase

in computational time as the dimensionality of the feature set or the number of

templates in the motion library increases [233]. A fatigue detection system can

operate in different modes, each with a different impact on computational complexity

and memory requirements:

Online systems: Sensor data are collected and processed in real time. These

systems are typically optimised for limited computational resources and therefore

do not require the full observation sequence before performing segmentation or
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fatigue detection, and often operate with limited data windows. Online approaches

are often used in interactive applications [57].

Semi-online systems: The ML model is trained offline and then applied in an online

context. Some offline algorithms are non-causal and require the entire observation

sequence to be available for processing [233]. In addition, model training could be

performed continuously in an online manner, with the model being adapted in real

time as new data become available.

Offline systems: First, all sensor data are first recorded. Then, fatigue detection is

performed. Offline systems are typically used in non-interactive applications such as

health analysis [57].

3.1.10 Ethical Concerns & Consent

The implementation of fatigue detection systems raises ethical concerns that need

to be addressed to protect individual privacy. One of the concerns is the perceived

intrusiveness of these systems, as they often require continuous monitoring of

physiological and behavioural data. To minimise intrusiveness, sensors and data

collection methods should be as minimal and unobtrusive as possible [330, 57].

The side effects of monitoring devices in private and public spaces should also be

considered. Users may feel uncomfortable or anxious about being monitored, which

could affect their behaviour and overall well-being. Fatigue detection systems should

be designed with respect for personal space and comfort. When used in public

settings – such as laboratories, schools, or workplaces – fatigue detection systems

need to follow ethical guidelines to avoid misuse or discrimination by ensuring that

the system does not have a disproportionate impact on certain groups [330, 377].

The collection, storage, and analysis of sensitive personal data, such as health

and activity information, requires additional privacy measures. Such data must

be anonymised and stored securely to protect individuals’ identities and prevent

unauthorised access [330]. In addition, transparent data use policies should be
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established to inform users about what data are collected, how the data are used,

who has access to the data, and how long the data are stored. Participants should

be required to sign a declaration of consent, ensuring they are aware of and agree

to these terms. These terms should also be reviewed by an independent ethics

committee [348].

Ethical considerations also extend to the transparency and accountability of the

deployed detection system. Users should be informed about the algorithms and

decision-making processes used to detect fatigue [330].

3.2 Step 2: Raw Data Collection

Step 2 of the Fatigue Recognition Chain addresses raw data collection, another

fundamental step, as it directly influences subsequent steps and ultimately deter-

mines the performance of an ML system [91]. Raw data are data points that have

not undergone any processing and have been collected directly from a specific

source, such as a sensor signal or pixels within a video frame. The result of raw

data collection is typically an n-dimensional vector, where each row represents

a new sensor reading, for example, a timestamp with accelerometer values (see

Figure 3.2)2. The following vector notation is commonly used to describe sensor

output: si = (d1, d2, d3, ..., dt), for i = 1, ..., k where k denotes the number of sensors

and di denotes the multiple values at time t. Each sensor is sampled at regular

intervals, resulting in a multivariate time series [57].

Timestamp (ms) Acceleration X Acceleration Y Acceleration Z

0 0.34 0.56 0.13

4 2.79 0.23 0.78

8 0.22 0.01 0.45

16 0.53 0.14 0.75

… … … …

Raw Data Set

Fig. 3.2.: Example of raw data time series from a 3-axis IMU. Each row is a vector. Each
column is a variable/dimension. Each cell contains a data point.

2The representation of time series in column vectors is purely conventional.

3.2 Step 2: Raw Data Collection 61



3.2.1 Sampling Rates

Raw data is typically collected as time series data at a specified sampling rate.

Adopting a high sampling rate may provide sufficient information for detailed

data analysis, but it also burdens the system with large data sizes and increased

computational load. Conversely, using a low sampling rate may not capture the

intrinsic characteristics and may miss important nuances. There is no consensus on

the optimal sampling rate for motion-sensitive sensors, as it often depends on the

specific application and the nature of the activity being monitored [79]. Table B.1

in the Appendix shows the various sampling rates for different sensors applied by

related works.

3.2.2 Synchronisation

Synchronisation of data signals from multiple sensors is essential [57]. Maintaining

synchronised clocks across all sensor units, which can drift over time, is a special

area within distributed systems in computer science [78, 224, 219]. The accuracy

required for clock synchronisation varies depending on the application. Some

scenarios require strict accuracy, while others allow more flexibility. In addition,

synchronisation may involve different sampling rates, which may require upsampling,

downsampling, interpolation, and/or wavelet transformation techniques.

3.2.3 Data Storage

There are specialised databases for querying, storing, sharing, managing, and

analysing different types of data, such as InfluxDB or MongoDB, which support

time series data3.

3https://en.wikipedia.org/wiki/Time_series_database
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3.2.4 Labelling

Labels are high-level attributes assigned to data points that represent quantities of

interest, such as fatigue levels [254]. The term ’label’ is often used interchangeably

with ’class’, ’response’, ’output’, or ’target variable’. The acquisition of labelled data

can be a costly process, requiring the input of human experts [179].

The majority of related works applied supervised ML (see Section 2.4.2), which

requires a labelling process. Data labelling involves establishing guidelines, cate-

gorising classes, labelling tools, and storage pipelines [62]. Labels are often added

as an additional dimension to a data vector, typically at the end by convention (see

example in Figure 3.3)4. Labels can be created during or after data collection, either

Timestamp (ms) Acceleration X Acceleration Y Acceleration Z Label

0 0.34 0.56 0.13 8

4 0.28 0.23 0.78 8

8 0.22 0.01 0.45 8

12 0.42 0.08 0.60 8

16 0.53 0.14 0.75 10

… … … …

Labelled Data

Fig. 3.3.: Example of labelled data in a time series.

manually by humans or automatically by machines (see also Section 2.2.4). Manual

labelling is limited by the frequency and complexity of the labels, with more complex

labels requiring more analysis time. Domain experts can be recruited to label the

data either ad hoc or post hoc, for example through video or graph analysis. This

process may also be outsourced to crowdsourcing services, but validity can be an

issue with such services. Another source of labels is the subjects, who typically

provide labels by voice or questionnaire, although this method also has limitations

in terms of frequency [179, 128]. Automatic labelling offers advantages such as

increased consistency and frequency, support for real time systems, and minimal

additional effort. However, not all labels can be assessed automatically, particularly

subjective and qualitative labels, which are difficult to encode into an algorithm.

4Label information may also be stored separately with a start and end timestamp to reduce redundant
data and thus the amount of storage required.
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A label is typically denoted by y (if it is a single number) or y (if it is a vector of

different label values). Numerical labels are used for regression, while categorical

labels are used for classification. In binary classification, each data point or sample

belongs to exactly one of two classes. In multi-class classification, data points or

samples belong to exactly one of more than two categories. In addition, there are

applications where data points can belong to several categories simultaneously. Ordi-

nal labels fall between numeric and categorical labels, where labels are represented

by sequential numeric values. For example, 0 might indicate no fatigue, 1 some

fatigue, and 2 exhaustion [179].

One challenge is that fatigue is a continuous process and the exact boundaries

defining its start and end are often ambiguous. To overcome this problem, different

labelling methods are used, as shown in the literature review (see Section 2.4.2).

Some related works used automated labelling approaches (e.g., thresholds) and

some relied on manual labelling approaches (e.g., RPE). In unsupervised learning,

the data is typically not explicitly labelled, as there are no fixed targets given to

the ML model during training. Instead, the model identifies patterns and structures

in the data without relying on external labels. However, certain tasks, such as

clustering, can be thought of as implicit labelling.

3.2.5 Data Integrity Verification

While ML automates data analysis, the quality of the output depends on the quality

of the input data. The phrases "garbage in, garbage out" and “data ̸= information”

underline the fact that inaccurate, biased or incomplete data used for ML is likely to

lead to unreliable predictions [25, 75, 148, 91]. Data integrity ensures that data is

accurate, consistent, and reliable throughout its lifecycle. This includes verifying

that the assumptions made about the data are valid, and that the data have not

been tampered with or corrupted. Hardware or software failures, human error, and

malicious actors can all pose threats to data integrity [180]. For example, time series
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data can be affected by various data quality issues due to frequent equipment and

transmission failures [318]. In addition to technical issues, distributional shifts and

selection bias can be a problem [25].

High quality data is characterised by attributes such as accurate, clean, compatible,

complete, easy to access, interpretable, reliable, secure, timely, traceable, trustwor-

thy, unbiased, useful, and valuable. Quality data prevents error propagation and

improves model performance and convergence rates. Conversely, outliers, missing

values, high dimensionality, varying scales, bias, and privacy concerns can degrade

data quality [322]. For statistical reasons, these issues may have a greater impact on

small data than on big data.

One approach for achieving high quality data, often feasible with small data,

is initial data exploration by visually inspecting the plotted data for anomalies

[75]. Exploratory Data Analysis is a related approach, originally from statistics,

used to understand data and prepare it for further analysis. It involves initial

exploration to discover patterns, identify anomalies, and test hypotheses using

statistical techniques and visualisations and can help to ensure that the data is well

prepared for subsequent ML methods [90, 197, 268].

However, these approaches are usually manual and time-consuming. As a result,

only a limited number of samples can be validated in a reasonable amount of time. To

overcome these limitations, data constraints can be defined to automatically validate

data against specific (statistical) criteria, such as plausible value ranges (e.g., joint

angles). Constraint-based validation can increase data reliability and avoid erroneous

results [318, 75]. However, the constraints depend on the particular application

and the desired data quality standard [322]. Analogous to unit testing in software

development [196], data integrity verification should be performed regularly and,

where possible, automatically. For this reason, data integrity verification is a sub-step

that spans several steps (2–4) in the Fatigue Recognition Chain.
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3.3 Step 3: Data Transformation

Step 3 of the Fatigue Recognition Chain addresses data transformation. According

to Kahneman [182], data is incomplete, dirty, and noisy, and it takes most of the

time to curate it. The overall goal of the data transformation step is to refine

the collected raw data into a form suitable for effective feature extraction and

subsequent ML [57, 233]. If a data set contains a considerable number of errors,

outliers, or noise, it will prove more challenging for an ML method to identify the

underlying patterns. Consequently, most data scientists spend a significant amount

of time on data cleansing and transformation [128]. The following sub-steps aim

to enhance the informative characteristics of a data set. These sub-steps are often

interdependent, which means that their order of execution can be important.

3.3.1 Preprocessing

Preprocessing5 involves the transformation of data into a more structured and

usable format. This process may include various techniques such as cleaning,

filtering, calibration, normalisation, resampling, synchronisation, segmentation, and

signal-level fusion [322, 75, 57]. For example, preprocessing may find and replace

missing data or remove noise, outliers, and artefacts while preserving the essential

information [75]. Artefacts can come from a variety of sources, such as physical

activity disturbances or sensor malfunctions. The reduction of noise is often required

due to sensor variability and limited digitisation processes [130, 350]. For specific

sensors such as accelerometers, specific signal processing techniques such as noise

reduction and baseline drift correction can be applied [57]. According to Kokol

et al. [202], the most commonly employed preprocessing techniques to overcome

small data are linear and non-linear principal component analysis, discriminant

analysis, data augmentation, virtual sample, feature extraction, and autoencoder. A

comprehensive survey of preprocessing techniques for time series can be found in

5Preprocessing and signal processing are two related concepts.
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Tawakuli et al. [322]. Figure 3.4 shows an example of raw data transformed into a

vector series, with missing data interpolated and outliers corrected.

Timestamp (ms) Acceleration X Acceleration Y Acceleration Z

0 0.34 0.56 0.13

4 2.79 0.23 0.78

8 0.22 0.01 0.45

16 0.53 0.14 0.75

… … … …

Raw Data Set

Timestamp (ms) Acceleration X Acceleration Y Acceleration Z

0 0.34 0.56 0.13

4 0.28 0.23 0.78

8 0.22 0.01 0.45

12 0.42 0.08 0.60

16 0.53 0.14 0.75

… … … …

Preprocessed
Data Set

Outliers and missing data interpolated

Fig. 3.4.: Example of preprocessing, with missing data interpolated and outliers corrected.

The goal of preprocessing is to prepare the data for analysis while ensuring that

essential signal characteristics, which convey critical information about the activities

of interest, are preserved. In addition, preprocessing can be used to support other

tasks. For example, a signal filter can be used to facilitate a segmentation algorithm.

A model could then be trained on the raw data using the identified segments. In

general, preprocessing should be generic, i.e., it should not depend on anything

other than the data itself, e.g., it should not be specific to a particular person [57].

On the other hand, overly aggressive data correction can remove relevant nuances in

the data set, which can corrupt existing patterns and negatively affect the outcome

of ML.

Filtering

Sensor data often contain noise due to miscalibration, malfunction, placement

errors, environmental conditions, or multiple activities. Common noise reduction

techniques include low-pass, mean, linear, wavelet, and Kalman filters [91]. Finite

Impulse Response (FIR) and Infinite Impulse Response (IIR) filters are two basic types
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of digital filters typically used in signal processing. The main purpose of FIR and

IIR filters is to manipulate or modify a signal by removing unwanted components

(e.g., low-/high-/band-pass filters), enhancing certain characteristics, or preparing

the signal for further processing [76, 234, 266]. Both types of filters have specific

advantages depending on the application. FIR filters (e.g., moving average) are

known for their inherent stability as they have no feedback loops. In addition, FIR

filters can be designed to have a linear phase response, ensuring that all frequency

components of the signal are delayed by the same amount of time, preserving

the signal’s waveform shape. However, FIR filters often require more computing

resources than IIR filters (e.g., Butterworth) because they can involve a greater

number of coefficients to achieve the desired frequency response. Moreover, the

design process for FIR filters is generally easier in many applications (see also

Appendix L) [234, 266].

Interpolation

Timestamps in a data set can vary due to data corruption, hardware problems or

connection errors. These discrepancies can lead to misaligned data streams, which

can affect the reliability of algorithms (e.g. Butterworth filters). Interpolation is a

mathematical technique used to estimate unknown values within the range of known

data points. Interpolation techniques, such as linear interpolation, can be applied

to infer missing or misaligned data points. Interpolation uses known data points to

construct new data points within the range of a discrete set of known data points,

effectively filling in the gaps caused by irregular timestamps. More sophisticated

interpolation methods, such as polynomial or spline, may be used, depending on

available computing resources and the complexity of the data [340].
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Sample Rate Conversion

Sample rate conversion is a common technique used to align the sample rates of

different data sources. Downsampling reduces the sample rate by dropping some

data points, which can also help manage storage requirements when dealing with

high frequency data. Upsampling, on the other hand, increases the sample rate by

adding interpolated data points, ensuring that lower frequency data can be aligned

with higher frequency signals. This alignment is essential when integrating data

from multiple sensors to keep all data streams comparable [277]. Another approach

is the transformation of time series into a spectral or wavelet representation.

Unit Conversion

When dealing with data from multiple sources, different units of measurement

can introduce inconsistencies and make analysis more difficult. Some raw sensor

signals can also be difficult to interpret. For example, raw IMU signals are typically

converted to acceleration in m/s2.

Data Fusion

Multimodal data refers to information collected from different sources or modalities,

including text, images, audio, numeric, biometric and behavioural data. Each

modality can provide unique and complementary insights. By integrating data from

different modalities through data fusion, it is possible to enhance model performance

and gain a more comprehensive understanding of the subject or phenomenon under

investigation Pawłowski et al. [270] and Bian et al. [39].

Data fusion algorithms are commonly classified according to the level of infor-

mation abstraction: signal level, feature level, or decision level. At the signal level,

multiple signals are combined to produce one or more signals of the same form but

with better quality. Alternatively, fusion can be performed after feature extraction.

Decision-level fusion represents the highest level of abstraction and is often used
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when the signals are dissimilar [177, 104]. However, a universal approach to data

fusion has not yet been established. According to Pawłowski et al. [270], all data

fusion models suffer from the following main problems: they are either task-specific

or overly complicated, and they often lack interpretability and flexibility.

Windowing

Sensor data can be processed in windows to reduce computational complexity

and data storage requirements. In this context, windows refer to subsets of data

collected over a period of time or of a defined size. This approach is useful in

resource-constrained or real time scenarios where limited processing power and

memory require efficient data processing. The two main variables in windowing are

the size of the window and the amount of overlap between adjacent windows. The

window size can be either fixed or dynamic, allowing flexibility depending on the

application and desired level of detail [233]. For small data sets, windowing may

be less critical due to the smaller sample size and thus reduced computational and

storage requirements, although this depends on the specific characteristics of the

data set. On the other hand, a large window overlap can also be utilised as a kind of

bootstrap to generate more training data Albert and Arnrich [9].

Class Reduction

To improve ML model performance with small data, class reduction is often used

[212]. This involves grouping similar classes into broader categories, allowing the

ML model to focus on more distinctive patterns. However, overly broad categories

can obscure important distinctions within the data, leading to a loss of information.

It’s also important to preserve the original distribution of the data, otherwise the

transformed data may no longer be representative.
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3.3.2 Motion Segmentation

Segments group individual data points and describe contextual information to

distinguish individual movements [91]. Motion segmentation can be useful for

detecting exercise fatigue by providing insight into changes in motion patterns

over time, which may be indicators of fatigue onset and progression [247, 189,

26, 175]. It is probably for this reason that many related works rely on motion

segmentation, where a sample for ML often represents an exercise repetition (see

Section 2.4). Motion segmentation can be applied to a variety of sources, including

video playback, time series, secondary proxy sensors, or event-based data [57]. It

involves identifying the temporal boundaries of motions of interest, decomposing

a continuous sequence of motion data into smaller components, and determining

the start and end points of each motion primitive (i.e., segment or repetition).

Furthermore, motion segmentation allows to distinguish between repeated motions

and transitions between different types of motion. Segments can also be labelled

with the appropriate motion type and/or quality [233, 91]. Figure 3.5) shows an

example of a segmented time series, where a dimension is added to associate data

points with segments6.

Timestamp (ms) Acceleration X Acceleration Y Acceleration Z Segment ID Label

0 0.34 0.56 0.13 1 8

4 0.28 0.23 0.78 1 8

8 0.22 0.01 0.45 1 8

12 0.42 0.08 0.60 1 8

16 0.53 0.14 0.75 2 10

… … … … …

Segmented and 
Labelled Data

Fig. 3.5.: Example of segmented time series.

Segmentation Generalisability

A segment should be defined in a manner that facilitates the creation of a man-

ual or automatic algorithm capable of generalisable and consistent (reproducible)

6Segment information may be stored separately, including start and end timestamps, to reduce data
redundancy and storage requirements.
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segmentation of the collected data. Segmentation generalisability refers to the

ability of an algorithm to perform on data that differs from the training set [233].

The generalisability of segmentation methods can be divided into intra-subject,

inter-subject, and inter-primitive variability. Intra-subject segmentation refers to

consistent segmentation for the same subject. Inter-subject segmentation is able to

reliably segment across multiple subjects. Inter-primitive variability occurs when

the training data is obtained from one set of motion primitives, while the test set

consists of a second set of unseen primitives [233].

Segmentation Categories

A segmentation method consists of four components: filtering and outlier rejection,

feature space transformation, segmentation mechanism, and identification mech-

anism [233]. While various segmentation approaches exist, this section outlines

common motion segmentation categories.

By Technique Segmentation techniques can be window-, energy-, or proxy-based.

In a sliding window approach, a window is moved sequentially over the time series

to extract segments. The choice of window size, window step size, and overlap

affects segmentation accuracy and computational efficiency [57, 91]. Dynamically

adjusting the window size can improve performance, particularly in scenarios where

motion patterns change over time, such as during fatigue onset [108]. Energy-

based segmentation leverages the varying energy levels within sensor signals to

identify different activity intensities and segment the data accordingly by applying

thresholds to the energy levels, for example, by having a subject perform a predefined

rest position between activities [57, 91]. However, these thresholds may need to

change over time, as average muscular endurance typically decreases due to fatigue

[108]. Proxy sources refers to additional sensors and contextual sources to support

segmentation [57]. For example, a camera-based tracking system could compute
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the absolute joint coordinates during an activity to segment accelerometer signals

from a smartwatch.

By Boundary Detection Physical changes occur when the motion in question begins

or ends. These changes may include alterations in joint motion direction, changes in

contact, or the act of picking up an object. Deciding which joint motion to track or

how to handle multiple joint changes introduces an additional layer of complexity,

as it is not always obvious which joint to use for segmentation. Derived metric

boundaries can be defined by changes in a metric or derived signal, e.g, changes in

variance, metric thresholds, or state transitions. Such metrics can be determined

by either unsupervised or supervised algorithms. Unsupervised approaches have

the advantage of reducing the need for manual data labelling. However, for some

segments it may be difficult to derive appropriate metrics. Template boundaries

are based on user-provided templates, which are calculated by algorithms such as

template matching, dynamic time warping, or classifiers. The creation of a template

requires the collection of prior data. Selecting the most appropriate template can be

challenging, as it should ideally represent the generalisable motion pattern rather

than a marginal case [233].

By Labelling Approach Supervised approaches use labelled data to identify the key

features of segments. This approach may be feasible depending on the resources

available, such as time, personnel, budget, the volume of data to be labelled, and

the effort required to label. Unsupervised approaches do not use labelled data or

pre-trained models. Adaptive approaches update the model online as new data is

collected [233].

By Processing Requirements Online methods process data in real time without

requiring prior training. They often employ simple techniques like thresholding

or segment point modelling. Semi-online methods combine offline training with

online segmentation, allowing for more complex segmentation models while main-

taining real time capabilities. Offline methods require the entire data set for both
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training and segmentation, enabling the use of computationally intensive algorithms

[233]. Figure 3.6 by Lin et al. [233] visualises the relationship between these three

segmentation approaches in terms of training and testing.

Online

Online

Offline

Offline

Supervised

Unsupervised

Online
Approaches

Segment Point 
Modelling, Regression

Semi-online
Approaches

Offline Supervised 
Approaches

Offline Unsupervised 
Approaches

Template Matching, 
Classification, Viterbi

DTW, Viterbi, GMM 
Forward/Backward

Clustering

Testing Training Categories Examples

Fig. 3.6.: Overview of the segmentation mechanics by Lin et al. [233].

Segmentation Verification

According to Lin et al. [233], the majority of studies do not perform or report

segmentation verification, making comparisons between methods difficult. However,

verification of segmentation is necessary to evaluate its performance on a given data

set against a ground truth. Ground truth data typically consist of manual segment

points labelled by experts. These segment labels are compared with those generated

by the segmentation algorithm to calculate metrics such as false positives, false

negatives, true positives, and true negatives. Additional evaluation metrics, such as

shape similarity between templates and observations, may also be applied. Another

aspect is how the segments are labelled. Time series can be labelled either with

a temporal tolerance at the segment boundaries or with all data points within a

segment. The latter method is less stringent than the temporal tolerance approach,

as incorrect segment boundaries do not greatly affect the results, since there are

usually many more data points within the segment to smooth out poor segment

boundaries [233]. Figure 3.7 illustrates this difference.
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scarce, as most algorithms are evaluated on small data sets, hindering their ability to

generalise across subjects and movement types. Fourthly, there is a lack of reported

segmentation accuracy and public segmentation databases that would provide a

common basis for comparing different algorithms. Such databases could also reduce

the amount of post-processing required by researchers to verify algorithms. Finally,

some segmentation algorithms require labelled data for training, which can be

time-consuming to generate [233].

3.3.3 Data Augmentation

Data augmentation creates new, synthetic data points based on existing ones, in-

creasing data diversity without altering class distribution. Data augmentation is

commonly used in fields such as image processing and deep learning. Data aug-

mentation artificially extends data sets through random transformations. There

are different augmentation techniques depending on the type of data. Common

techniques for images include rotations, flips, translations, scaling, adding noise,

cropping, and colour adjustments [210, 309]. For time series, techniques include

adding random noise (jittering), inverting the signal (flipping), changing the am-

plitude of the signal (scaling), distorting the time axis (time warping), extracting

random windows from the series (window slicing), randomly shuffling parts of the

series (permutation), and applying random distortions to the amplitude (magnitude

warping). The suitability of these methods depends on the specific characteristics

of the time series data. For example, adding noise assumes that it is normal for

the time series patterns of the particular data set to be noisy. A comprehensive

taxonomy of time series augmentation can be found in Iwana and Uchida [166] (see

also Appendix Q).
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3.4 Step 4: Feature Engineering

Step 4 of the Fatigue Recognition Chain addresses feature engineering. Most ML

methods require the data to be arranged in a particular representation prior to the

learning phase [75]. Feature engineering is the process of transforming data into

features with the aim of improving ML and predictions of ML models [208].

3.4.1 Feature Dimensionality

This section briefly introduces the concept of features. It then explores the challenges

associated with feature dimensionality.

Features

Features (also known as attributes) are low-level properties of data points that can be

measured or automatically calculated. Synonyms for the term feature are covariate,

explanatory variable, independent variable, input (variable), predictor (variable), or

regressor [179]. The choice of which characteristics to use as features is a design

decision [179]. In individual-based ML, features should be robust across subjects

and intra-subject variation to be effective [57]. Traditionally, researchers have

relied on domain expertise to manually craft features, a process often hampered by

subjectivity and limited generalisability [39]. In contrast, deep learning methods can

automatically extract relevant features that can outperform hand-crafted features.

However, deep learning models can be computationally intensive and require large

amounts of data [91].

Balancing feature complexity with computational efficiency is another aspect,

especially in real time applications. Minimising the number of features while

still achieving the desired performance is a central aspect of feature engineering

[207, 208]. However, fatigue can be a challenge in this regard, as fatigue can cause

subjects to change their movement patterns over time, which can affect the relevance
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of features by reducing their correlation coefficients, rendering some previously

significant features insignificant.

Multimodal Features

Combining data from different modalities to create features can improve ML, es-

pecially when the data are complementary. The optimal fusion strategy depends

on factors such as the nature of the data, computational resources, and the specific

application. Early fusion combines data at the feature level, creating a single feature

vector. Late fusion integrates information at the decision level, combining the out-

puts of independently trained models. Slow fusion combines data at intermediate

processing stages, balancing the benefits of early and late fusion [339].

Feature Quantity

Any additional feature can introduce noise due to measurement or modelling errors,

which can affect the accuracy of the ML method [179]. For example, a data set can

contain redundancy because some data are highly correlated [192]. While there

are no definitive guidelines on the maximum number of features, a general rule of

thumb suggests a much larger sample size compared to the number of features to

achieve robust ML. The informal condition numSamples
numF eatures ≫ 1 can be satisfied either

by collecting a sufficiently large number of samples or by using a sufficiently small

number of features [179].

Curse of Dimensionality

Bellman [35] coined the term “curse of dimensionality” to describe several phenom-

ena associated with high-dimensional data. A key issue is that as the dimensionality

of the feature vector (or feature space) increases, the amount of training data re-

quired to estimate model parameters increases exponentially [57, 89]. The variation

in the distance between arbitrary points decreases with the addition of more dimen-
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sions; consequently, as more features are used to describe the data, data points tend

to appear more similar to each other [89]. For most ML methods, the computational

cost also increases with the number of features, as does the cost of collecting the

data. Therefore, reducing the number of features is beneficial for both theoretical

and practical reasons [89].

Dimensionality Reduction

Dimensionality reduction is a technique used to transform high-dimensional data

into a lower-dimensional space while preserving essential information. By reducing

the number of features, it simplifies the data set, improves computational efficiency,

and mitigates the challenges associated with the curse of dimensionality [24]. For

example, a data set with n dimensions has 2n possible feature subsets [192].

3.4.2 Feature Extraction

Feature extraction transforms the raw or preprocessed data set into a new set of

features that capture the most important information in a more compact way [57].

This process can also involve mapping complex data structures, such as images or

graphs, into a set of features that are needed for some ML methods [75]. Figure 3.8

shows how segments from an accelerometer are transformed into feature vectors.

Feature extraction methods create new features through mathematical transfor-

mations or combining existing features, with the aim of improving the performance

of ML models [24]. Various types of features can be incorporated, including signal-

based features (e.g., statistical [140], frequency-domain [19], wavelet-domain [91],

and dynamic features [38]), body model features, event-based features, and multi-

level features (e.g., clustering followed by event statistic reduction) [57, 233]. A

potential drawback of feature extraction methods is the possible loss of relevant

information [192].
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Timestamp (ms) Acceleration X Acceleration Y Acceleration Z

0 0.34 0.56 0.13

4 0.79 0.23 0.78

8 0.22 0.01 0.45

… … … …

Timestamp (ms) Acceleration X Acceleration Y Acceleration Z Segment ID Label

0 0.34 0.56 0.13 1 8

4 0.79 0.23 0.78 1 8

8 0.22 0.01 0.45 1 8

12 0.84 0.81 0.33 2 10

16 0.99 0.73 0.41 2 10

20 0.33 0.58 0.72 3 11

… … … … … …

Feature A Feature B Feature … Feature N Segment ID Label

0.45 0.27 … 0.43 1 8

0.92 0.77 … 0.64 2 10

0.33 0.58 … 0.41 3 11

… … … … … …

Segmented
and
Labelled
Data

Raw Data
or
Preprocessed
Data

Feature 
Set

Manually or automatically segmented and labelled

Compute features

Sample 1

Sample 2

Sample 3

Sample N

Fig. 3.8.: Example of transforming raw time series into a feature set. Each row is a feature
vector (also: sample or observation). Each column is a feature (dimension).

There are three extraction approaches, which can also be combined. (1) Domain-

specific approaches rely on expert knowledge to create new features that are pre-

dictive for the specific problem, but may be limited by the availability of such

knowledge. (2) Explicit or implicit feature mapping transforms data into a higher

dimensional space to build non-linear models. For sequential data such as time

series, explicit feature mapping can be done in several ways, such as splitting the

sequence into sub-sequences (sequential or not, and overlapping or not) and then

computing properties of these sub-sequences (e.g., mean, mode, and variance).

However, explicit feature mapping can suffer from the curse of dimensionality with

excessive (irrelevant) feature generation, which is why implicit methods (e.g., ker-

nel methods) are more popular although less interpretable. (3) Learned feature

mapping generates tailored features, e.g., by using deep neural networks, but often

requires large data sets [75].
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3.4.3 Feature Transformation

Feature transformation is the process of modifying or combining existing features to

create new features that better represent the underlying patterns in the data. The

aim is to transform the data into a different space where the relationships between

the features and the target variable are more apparent. This can be achieved through

various techniques such as normalisation, merging features through mathematical

operations, or mapping skewed data to a target distribution [253, 376].

3.4.4 Feature Selection

Feature selection and feature transformation are distinct but complementary tech-

niques for reducing the complexity of high-dimensional data. Feature selection

identifies and retains a subset of the original features, while feature transformation

converts the data into a lower-dimensional space [207]. Figure 3.9 presents a

taxonomy of common dimensionality reduction methods, drawing on the works of

Cheung and Jia [74], Kathirgamanathan and Cunningham [192], and Pudjihartono

et al. [281]. Each of these methods has specific limitations to consider. For exam-

Supervised

Filter-based
(Uni-/Multivariate)

Wrapper-based Embedded (Intrinsic)

Importance
(Random Forest)

Backward
Elimination (BE)

Pearson Correlation

Kendall Tau
Seq. Forward

Selection (SFS)

Logistic Regression 
(LASSO)

Spearman's Rho

Chi-squared

Mutual Information

ANOVA F-score

Point-biserial

Unsupervised

Principal Component 
Analysis (PCA)

Independent Component 
Analysis (ICA)

Non-Negative Matrix 
Factorization (NMF)

t-distr buted Stochastic 
Neighbor Embed. (t-SNE)

Autoencoder

Exhaustive Search

Linear Discriminant 
Analysis (LDA)

Feature Selection

Stochastic Search

Decision Trees

Category

Method

Legend

Correlation-based 
Feature Selection (CFS)

Fisher score

ReliefF / TURF / SURF

Information Gain

Q-alpha

Laplacian score

Local Kernel Regression 
score

Feature Transformation

Dimensionality 
Reduction

Linear Non-Linear

Fisher's Linear Discr.
Analysis (FLDA)

Singular Value 
Decomposition (SVD)

Factor Analysis (FA)

Multidimensional Scaling 
(MDS)

Isomap

Local Linear Embedding 
(LLE)

Laplacian Eigenmaps

Local Linear Coordination 
(LLC)

Local Tangent Space 
Alignment (LTSA)

Discriminative Locality 
Alignment (DLA)

Laplacian score

SPEC framework

Eigenvalue Sensitive 
Feature Selection (ESFS)

Multi-cluster Feature 
Selection (MCFS)

t-test

Mann-Whitney U test

Fast Correlation-based 
Filter (FCBF)

Min-Redundancy-Max-
Relevance (mRMR)

Recursive Feature 
Elimination

Euclidean Distance

Gradient Boosting

Fig. 3.9.: Taxonomy of common dimensionality reduction methods.
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ple, principal component analysis works best with data that follow a multivariate

Gaussian distribution, and using the correlation coefficient will only reveal linear

relationships, while non-linear correlations may still be present [75].

Feature selection methods can be broadly categorised into supervised and un-

supervised approaches [74, 310]. Ang et al. [17] proposed semi-supervised and

semi-unsupervised feature selection as extensions to traditional supervised and

unsupervised methods. These approaches leverage both labelled and unlabelled

data to identify informative features when labelled data is scarce.

In practice, feature selection involves subset selection and feature evaluation.

Subset selection aims to optimise subsets of features by removing irrelevant or

redundant features [24, 207]. Several studies have shown that there is no universal

method for feature subset selection; the optimal approach is often context-specific

and requires tailor-made solutions for different problem situations [281]. Figure 3.10

shows an example of subset selection. In contrast, feature evaluation assesses the

Feature 1 Feature 2 Feature 3 Label

0.64 0.34 0.56 8

0.41 2.79 0.23 8

0.86 0.22 0.01 10

0.16 0.53 0.14 11

… … … …

Feature Subset Selection

Feature 1 Feature 3 Label

0.64 0.56 8

0.41 0.23 8

0.86 0.01 10

0.16 0.14 11

… … …

Feature Set for Training

Feature Set

Reduced
Feature Set

Fig. 3.10.: Example of dimensionality reduction through feature subset selection.

individual quality and relevance of features [287]. Ultimately, both approaches help

to improve model performance by focusing on the most informative aspects of the

data [17, 207, 208].
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Embedded Embedded (or intrinsic) methods integrate feature selection directly

into the training process of ML. Methods such as AdaBoost, Lasso, decision trees,

and random forests have built-in feature selection mechanisms – they inherently

select features that contribute most to improving model accuracy [57, 207].

Hybrid Hybrid methods combine filter and wrapper approaches to leverage their

respective strengths [281]. These methods aim to balance computational efficiency

and predictive performance by integrating techniques like filter ranking with wrapper

optimisation or employing ensemble strategies, i.e., aggregating the results of

multiple feature selection methods [192, 281].

Unsupervised Feature Selection

Unsupervised feature selection identifies relevant features without relying on labelled

data. By analysing data structure and patterns, these methods aim to select features

that capture the inherent variability and relationships within the data [74].

3.4.5 Feature Augmentation

Feature augmentation artificially expands the feature set by applying various trans-

formations to the data. This technique can improve model robustness and generalisa-

tion by exposing ML models to a wider range of data variations. This is particularly

beneficial for small data sets or data sets with imbalanced classes [166].

Imbalanced Classes

Imbalanced classes refer to a skewed distribution of classes (or labels) in a data

set, which can lead to unreliable performance of trained ML models [315, 321]. To

accurately assess model performance, normalised confusion matrices or metrics such

as precision, recall and F1 score are essential [57]. Accuracy is not an appropriate

metric when imbalanced classes exist [204]. According to Spelmen and Porkodi

[315], the causes of imbalanced data are the lack of density in the training data set,
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the presence of small disjuncts, the overlapping between classes, the identification

of noisy data, the importance of borderline instances, and the data shift between

the training and the test distributions. Data sets with biases are likely in health

data; gender or age biases are even normal [284]. In the context of exercise fatigue

research, data sets are prone to bias because less data is usually collected for the

fatigued state [243] – subjects cannot exercise indefinitely in a fatigued state. On the

other hand, exercising to exhaustion guarantees the fatigued state for each subject.

An alternative is to perform exercises with a fixed amount or time limit, which may

result in some subjects not reaching the fatigued state due to differences in fitness

and energy levels [4] (see also Fatigue Exercise Load in Appendix D).

Feature Augmentation Approaches

Methods to address imbalanced data include certain loss functions such as focal

loss [233], class weights to reduce the influence of majority classes [375], or

balanced accuracy that highlights the low performance of minority classes [54]. In

addition, the experimental procedure could be designed in such a way that equal

class distributions are more likely or even guaranteed. Another approach might be

to reduce the total number of classes [57].

Imbalances can also be reduced by undersampling the majority classes or oversam-

pling the minority classes [315]. Virtual sample generation and Synthetic Minority

Over-sampling Technique (SMOTE) are oversampling techniques. Both can be used

to generate synthetic instances for the minority class. Virtual sample generation

creates samples by transformations like rotation, scaling, translation, noise addition,

or mega trend diffusion [347]. SMOTE interpolates between existing minority class

instances and their nearest neighbours [279, 117, 68]. Sharma and Gosain [304]

provided a comparison of different SMOTE variants. A common problem encoun-

tered with oversampling is that no (real) new information is added to the data set,

which can lead to overfitting [315]. Undersampling removes majority class instances,

but this usually leads to a substantial loss of information in small data sets [117].
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Other generative models exist, such as normalising flows, diffusion networks, or

GANs, but they require sufficiently large data [49]. Rauschenberger and Baeza-Yates

[284] recommend not to use augmentation methods when the imbalanced data

have high variances, as the newly added data are unlikely to adequately represent

the class variances.

Feature Augmentation Challenges

If not applied correctly, data and feature augmentation can degrade rather than

enhance model performance. This issue often stems from the fact that not all

augmentation methods are universally effective. Some methods may introduce noise

and artefacts that obscure the underlying data patterns, while others can exacerbate

the risk of overfitting [166, 258]. The lack of standardised guidelines for the optimal

level of augmentation makes it difficult to determine the appropriate level for a

given data set [210]. Additionally, there is a lack of robust metrics for assessing

the quality of augmented data, further hindering the evaluation process [258].

Augmentation can also lead to longer training times and higher computational costs,

adding another layer of complexity to its implementation [166, 258].

3.4.6 Feature Normalisation

Feature normalisation is a method to adjust the scale and distribution of features so

that they are on a common scale or within a specified range. This process ensures

that different features contribute equally to ML (not all models require normalised

features) [60, 232, 160, 75]. Huang et al. [160] classified normalisation techniques

into centering, scaling, decorrelating, standardising, and whitening. For example, a

common normalisation technique is min-max scaling to values between 0 and 1.

Normalisation can be challenging with small data sets that lack variability but

contain outliers. Outliers are data points that deviate substantially from the norm

and can distort the effectiveness of normalisation methods, leading to biased trans-
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formations. However, according to Goldstein and Uchida [134], removing outliers

can have a negative impact on model performance and does not necessarily guar-

antee an improvement in ML accuracy, as outliers are usually averaged out during

feature extraction. In contrast to normalisation, standardisation (e.g., Z-score) is less

sensitive to outliers, as data is centred around the mean and scaled by the standard

deviation. However, both methods can be affected by skewed distributions, as some

statistical techniques and ML methods assume or perform better with approximately

normal data. For example, distance-based algorithms such as k-nearest neighbours

are sensitive to feature scales [60, 232].

3.5 Step 5: Machine Learning

Step 5 of the Fatigue Recognition Chain addresses the basic concepts and challenges

associated with the application of ML. In particular, fitting an ML model to a small

data set which presents unique challenges, including the risk that the model may

not generalise. ML is the field of study that gives computers the ability to learn

without being explicitly programmed [291]. It draws on concepts from several

scientific disciplines, including linear algebra, optimisation problems, probability

theory, statistics, and artificial intelligence [179].

3.5.1 ML Method Selection

The choice of which ML method to use is often a trade-off between computational

complexity and recognition performance, where the trade-off is influenced by the

specific type of activity and the complexity of the feature space being analysed.

Other considerations include latency requirements, online processing capabilities,

adaptability, and available computing and memory resources [57]. Forman and

Cohen [122] showed that feature and model selection are related tasks, and that

visualisation of different regions of the learning surface is critical to finding the
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optimal combination. Table 2.15 in Section 2.4.2 shows the ML methods commonly

used in the related works. Similarly, Kokol et al. [202] found that the most common

ML methods used on small data are SVM, DT, RF, CNN, and transfer learning.

Li et al. [231] studied different ML methods in the context of small data sets. They

found that SVM often struggles with outliers and noise in the training data. k-NN

can suffer from reduced precision and classification failure due to an inappropriate

value of k. ANNs are prone to falling into local minima, have long training times,

and the number of hidden layers and nodes is challenging to determine. Statistical

learning theory and bootstrap methods may not effectively separate test and training

sets, leading to value errors. Bayesian methods can handle incomplete data sets

and learn causal relationships between data, while deep neural networks are more

suited for perception tasks.

One of the most widely used working assumptions for the design and analysis

of ML is the i.i.d. (independent and identically distributed) assumption. The i.i.d.

assumption states that the samples in a data set are independent of each other and

come from the same probability distribution. Some ML methods are specifically

designed for i.i.d. data, such as SVM, k-NN, DT, RF, NB, and LR. There are also

several ML methods specifically designed to handle non-i.i.d. data, especially time

series, such as CNN, LSTM, and RNN. Time series is not i.i.d. because it consists of

temporally ordered (consecutive) data points [179] as well as fatigue data due to

time-dependent behavioural changes [110].

3.5.2 ML Strategy

A variety of ML strategies exist, such as supervised, unsupervised, semi-supervised,

self-supervised, transductive inference, online, reinforcement, active, and transfer

learning [128, 283, 254, 237]. In supervised learning, the training set contains target

variables (i.e., labels). In unsupervised learning, the training data is unlabelled.

Semi-supervised learning combines labelled and unlabelled samples in the training

88 Chapter 3 Fatigue Recognition Chain Framework



set, often due to the time and cost associated with labelling the data. A survey

of unsupervised and semi-supervised methods with regard to small data can be

found in Qi and Luo [283]. Self-supervised learning generates a fully labelled data

set from an initially unlabelled one. In reinforcement learning, an agent observes

the environment, selects and performs actions, and receives rewards (or penalties)

in return, ultimately learning the most rewarding strategy (policy) independently

[32, 128]. Transfer learning trains a model on one task as a starting point for a

related task, which can be particularly useful when there is limited data available

for the new task [237]. Supervised, semi-supervised, and unsupervised learning are

commonly employed in related works, as shown in Table 2.15 in Section 2.4.2, with

supervised learning being the most commonly used.

ML can be further divided into incremental (online) and non-incremental (batch)

learning. In online learning, models are trained incrementally by processing data

points or samples one at a time, allowing for continuous updates as new data

becomes available. In contrast, batch learning trains the model with the entire

data set at once, without supporting incremental updates. In addition, ML can be

classified according to how it generalises to new data: instance-based or model-

based learning. Instance-based learning generalises by comparing new instances

directly with previously observed instances using a similarity measure. In contrast,

model-based learning constructs a model from the training data to make predictions,

generating classifications, or quantitative outputs based on input features [128].

3.5.3 ML Training

ML models need to be trained before they can be used. Model training is typically

performed by dividing the data set into three distinct sets: training, validation, and

test. This approach helps to assess model performance and overfitting [149, 128].

The training set is used to train the model by adjusting its parameters to minimise

error. In supervised learning, this data set contains correct labels that guide the
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model’s learning process. In unsupervised learning, the training data lacks labels,

leaving the model to discover the underlying patterns on its own. The validation set

is used to monitor and optimise the performance of the model during training. It

helps to tune the hyperparameters and regulate overfitting. The performance of the

model on the validation set also provides insight into how well it might generalise

to unseen data. The test set is used to evaluate the final performance of the trained

model. It assesses how well the model generalises to unseen data (of the test set)

that was not used during training or validation [128].

According to Hastie [149], determining the optimal ratio for each of the three

data sets – training, validation, and test – can be challenging. This decision is

influenced by factors such as the signal-to-noise ratio in the data and the overall size

of the training sample. If the test ratio is too small, it can lead to suboptimal model

selection, while if it is too large, it reduces the data available for the other data sets

[128]. In the related works, 10% to 30% of the data was usually allocated to the

test set (see Section 2.4.2).

3.5.4 ML Prediction

Once the best performing model has been selected, trained and tuned, it is retrained

using all available data, including the training, validation, and test sets, to build

a final model for deployment in a specific application. This final model can then

process any new feature vector to predict a class (classification) or a numerical value

(regression) [316]. Other tasks include ranking, clustering, and dimensionality

reduction [254]. To further improve the predictive performance of a model, multiple

models can be used, known as ensemble or boosting. These models can be fused

either at an early stage (i.e., at the feature level) or at a later stage (i.e., at the

classifier level). Common fusion methods include summation, majority voting, and

Bayesian fusion [57].

90 Chapter 3 Fatigue Recognition Chain Framework



3.6 Step 6: Evaluation

Step 6 of the Fatigue Recognition Chain addresses the assessment and optimisation of

ML models through various metrics, validation techniques, and evaluation types.

3.6.1 Classification Metrics

Classification is about predicting discrete categories. Common metrics are [57]:

• True Positives (TP): correctly predicted positive samples.

• True Negatives (TN): correctly predicted negative samples.

• False Positives (FP): incorrectly predicted negative samples.

• False Negatives (FN): incorrectly predicted positive samples.

These metrics are used to calculate a range of measures, such as [57, 204]:

• Accuracy: T P +T N
T P +T N+F P +F N

• Recall/Sensitivity/True Positive Rate: T P
T P +F N

• Specificity T N
F P +T N

• Precision: T P
T P +F P

• F1-score: 2·T P
2·T P +F P +F N

Precision and recall are inversely related; increasing precision often decreases recall

and vice versa [204].

Confusion Matrix A confusion matrix is a tool for evaluating the performance of

classification models. It visualises the relationship between the predicted and actual

class labels for a data set. Each cell in the matrix represents the number of samples

that were predicted to belong to one class but actually belong to another [57].

ROC and PR Curve Other common evaluation methods for classification are receiver

operating characteristic (ROC) and precision-recall (PR) curves, which are primarily

designed for binary classification [2, 204, 17, 57] (see also Appendix P).
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3.6.2 Regression Metrics

In contrast to classification, a regression model predicts continuous numerical values.

Different (distance) metrics can be applied for regression [9], the most common

are mean square error (MSE) 1
n ·

∑n
i=1(yi − ŷi)2, root mean square error (RMSE)√

1
n ·

∑n
i=1(yi − ŷi)2, mean absolute error (MAE) 1

n ·
∑n

i=1 |yi − ŷi|, mean absolute

percentage error (MAPE) 100%
n ·

∑n
i=1(yi−ŷi

yi
), and coefficient of determination (R2)

1 −
∑n

i=1(yi−ŷi)2∑n

i=1(yi−ȳ)2 , where ŷ is the predicted value, y the actual target variable, and i

the index of the feature vector (see also Table 2.16 in Section 2.4.2).

MSE and RMSE use the Euclidean norm (L2 norm) as the distance measure,

whereas MAE uses the Manhattan norm (L1 norm). MSE or RMSE are generally the

preferred performance measures for regression tasks because they penalise larger

errors more than MAE. However, if there are many outliers, MAE may be a better

alternative as it is less sensitive to outliers [128]. While MSE, RMSE, and MAE

focus on the magnitude of the errors, R2 measures the proportion of variance in the

target variable that is explained by the features [118]. Since R2 is expressed as a

percentage, it can be used to compare different ML models, especially if the target

variables have different units. However, Figueiredo Filho et al. [118] criticised R2 as

a statistical measure with little substantive meaning.

3.6.3 Visualisation

(Interactive) visualisation can be helpful in ML evaluation, for example by visualising

data characteristics, data distribution, evolving model predictions, or test errors.

Through visualisation, researchers can gain a deeper understanding of how models

work and identify relevant data, potential biases, and shortcomings [226].
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3.6.4 Optimisation

Metrics are the basis for optimising ML models. The optimisation goal may be max-

imising a single performance metric or multiple metrics simultaneously, depending

on the specific application [57]. According to Géron [128], different training, valida-

tion, and test data sets can be used to assess generalisation, and once a model shows

satisfactory prediction performance – without significant underfitting or overfitting –

further hyperparameter tuning can be performed.

3.6.5 Bootstrapping

Bootstrapping is a resampling technique that creates multiple training sets by ran-

domly sampling with replacement from the original data. ML models trained on

these bootstrap samples can be evaluated on the out-of-bag data (observations not

included in the specific sample) [73, 128]. While bootstrapping provides insight into

model variability [128], cross-validation generally provides a more reliable estimate

of generalisation performance by systematically testing different subsets of data.

Bootstrapping can be useful with small data sets as it allows multiple uses of each

data point or feature vector [152, 73], but it does not add new information.

3.6.6 Cross-Validation

Cross-validation is a resampling technique used to evaluate the performance of ML

models. It involves partitioning the data into multiple folds, training the model on a

subset of the folds, and validating it on the remaining fold. This process is repeated

iteratively, with different subsets used for training and validation in each iteration. By

averaging the performance metrics across these iterations, cross-validation provides

a more reliable estimate of the model’s ability to generalise than a single train-test

split [57, 128]. A similar evaluation method is T3-LOSO and T4-LMSO, where the

data points or samples are distributed across the folds according to which subject
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they belong to. Furthermore, Manna [244] proposed a cross-validation method that

uses both training and test measures to reduce the risk of incorrect classification

predictions caused by unfortunate data partitioning – the smaller the data set, the

greater the likelihood of such errors.

For k-fold cross-validation, k determines the number of folds and thus the size of

the folds. A potential risk of partitioning small data sets into k folds is that some of

the created folds may be biased or skewed because they do not contain all classes

or are not evenly distributed. For this reason, some metrics, such as Cohen’s kappa

and F1 score, may require special treatment. The following metrics address class

imbalances in k-fold cross-validation for the F1 score [296]:

Micro F1 score evaluates the overall model performance, regardless of class dis-

tribution. However, it can be heavily influenced by the majority class, potentially

neglecting the performance on minority classes.

2 ·
∑C

c=1 TPc

2 ·
∑C

c=1 TPc +
∑C

c=1 FPc +
∑C

c=1 FNc

where C is the number of classes, TPc is the number of true positives for class c, FPc

is the number of false positives for class c, and FNc is the number of false negatives

for class c.

Weighted F1 score weights each class according to its proportion in the data set

which can be useful for imbalanced data sets, where some classes have fewer samples

and more weight should be given to classes with larger samples.

∑C
c=1(wc · 2·T Pc

2·T Pc+F Pc+F Nc
)∑C

c=1 wc

where wc is TPc + FNc: the weight, or proportion of samples, in class c.

Macro F1 score also evaluates overall performance but weights each class equally.

It is useful for assessing performance in individual classes, and penalises models that

do not perform well in the minority classes.
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1
C

C∑
c=1

2 · TPc

2 · TPc + FPc + FNc

A division by zero can occur when calculating F1 scores in k-fold cross-validation

if a fold is missing samples from all classes. This is more likely with small data sets.

To address this issue, data or feature augmentation can be applied. Another measure

is stratified k-fold cross-validation, where the data set is divided into k folds, but

with the additional constraint that each fold must contain approximately the same

proportion of samples from each class [10, 58, 274] as illustrated in Figure 3.12.

Training Set

Class 2

Class 3

Class 1

Test Set

Stratified
k-folds

Data 
Set

1 2 3 4 5

Fig. 3.12.: Stratified k-fold cross-validation of labelled data with three classes.

3.6.7 Evaluation Types

As described in Section 2.4.2, the related works applied one or more evaluation

types (T1-SOLO, T2-LNSO, T3-LOSO, T4-LMSO) to assess the performance of the

trained ML model(s). In T1-SOLO and T2-LNSO evaluation, k-fold cross-validation is

applied on the test set. In T3-LOSO evaluation, one subject (i.e., fold) is used as the

test set and a model is trained with the remaining subjects, repeating this process

until each subject has served as a test set once. The overall performance is usually

calculated by averaging the metrics across all cross-tested models [138, 265, 357].

In T4-LMSO evaluation, each fold consists of multiple subjects, allowing for different
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strategies to generate these folds, such as random subject selection (Monte Carlo) or

subject permutation [225]. The advantages and disadvantages of each evaluation

type are discussed in Section 6.2.2.

In addition, multiple models can be trained, for example with different subjects,

and their results aggregated – typically by majority voting – to make the final

decision. This ensemble approach can reduce the dependence on a single test set

or subject, potentially improving the robustness and generalisability of the overall

model [26].

3.6.8 Generalisation

Generalisation in ML is the ability of a trained ML model to accurately predict results

on unseen data which is assessed by testing. Uniform convergence, margin theory,

and algorithmic stability are key theoretical tools for understanding generalisation.

These concepts help to quantify the relationship between model complexity and

the amount of data required to make accurate predictions. While considerable

theoretical work has been done, the practical value and applicability of these theories

in real world scenarios is still debated [363]. The following section explores factors

that influence generalisation in the context of small data, including model complexity,

sample variability, and sample complexity, sample size, and sample bias.

Model Complexity

Model complexity influences the ability of a model to generalise to unseen data.

The following describes various theoretical and practical aspects for assessing and

addressing model complexity.

Hypothesis Space ML methods learn a hypothesis h(x), that processes data x and

returns a prediction ŷ = h(x). Every practical ML method operates within a certain

hypothesis space from which the hypothesis h is selected (learned). The set of

all possible mappings from the sample space to the labelling space, considered
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PAC Probably Approximately Correct (PAC) learning theory provides a framework

for relating the hypothesis space to sample complexity. The goal of PAC learning is

to determine the minimum sample size required to ensure that the learned model

has a high probability of being within a specified error margin of the best possible

hypothesis. In essence, PAC learning quantifies the number of samples required to

develop a model that is probably and approximately correct (within a defined level

of accuracy) [13, 46].

Loss Function Due to finite computational resources, an ML method can only

consider a subset of all possible hypothesis mappings. For small data, computational

resources are less of an issue, but there are concerns about the completeness of

the data and whether it adequately covers all relevant possibilities. To learn an

appropriate hypothesis from a subset, the quality of a given hypothesis map must be

assessed. This is achieved by a loss function, such as the squared error loss (y−h(x))2,

which quantifies the difference between the actual data and the predictions made by

a hypothesis map. The ML method learns a hypothesis by tuning its internal weights

(or parameters) to minimise the average loss, given sufficient samples [179].

Underfitting and Overfitting A fundamental aspect of generalisation is the balance

between sample size and model complexity. If the sample size is relatively small,

choosing a model with excessive complexity can lead to poor generalisation, com-

monly referred to as overfitting. Conversely, choosing a model that is too simple

may not achieve adequate accuracy, resulting in underfitting [203, 254]. Under-

fitting occurs when a model is too simple to capture the underlying patterns and

relationships in the data, resulting in inadequate model performance. Conversely,

overfitting occurs when a model becomes too complex and fits too closely to the

training data, including noise and outliers. This results in unstable ML models with

low training errors but high testing errors. Ensuring model stability is essential

as it generally leads to improved generalisation and consistency [128, 257, 337].

Overfitting with small data is particularly challenging as it involves searching for

solutions in a relatively large hypothesis space with probably insufficient data to
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features can reduce the effectiveness of these techniques, leading to less reliable

models [361].

Bias-Variance Trade-off The bias-variance trade-off describes the interplay between

a model’s complexity, the accuracy of its predictions, and its ability to generalise to

unseen data, as illustrated in Figure 3.15. Increasing model complexity can reduce
E
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Model Complexity

underfitting
high bias
low variance

overfitting
low bias
high variance
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Generalisation 
(Test) Error

Bias Variance

Fig. 3.15.: The classic risk curve of the bias-variance trade-off.

bias but increase variance, while simpler models can have higher bias but lower

variance7. Bias error is the degree to which the average prediction across all data

sets deviates from the desired target. The variance error measures how much the

predictions for individual data sets fluctuate around their average, indicating the

model’s sensitivity to the particular data set. Noise is the unavoidable component of

error, independent of the learning algorithm. Generalisation error can be expressed

as the sum of bias, variance, and noise: generalisationerror = bias2 + variance +

noise [121].

Radical vs Conservative Generalisation Kong et al. [204] proposed the distinction

between radical and conservative generalisation for small data analysis, as shown

in Figure 3.16. Radical generalisation creates models that encompass the entire

7For very large over-parameterised models, increasing their complexity seems to reduce the test error
(double descent phenomenon) [214].
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[128, 363]. In practice, data is never homogeneous or has uniform properties such

as density, coverage, or instance complexity [25]. It is almost impossible to obtain a

data set that comprehensively covers all possible scenarios [62]. Especially small

data sets with a low number of subjects usually do not cover all possible variations

[67, 56]. A balance has to be found between sample variability, homogeneity,

representativeness, and the number of samples. The different aspects that lead to

the sample variability are presented in the following.

Intra- and Inter-class Variability The high degree of freedom in human movement

leads to considerable variability in how an activity can be performed. This variability

is increased by differences in individual body flexibility, body composition and

training status [220, 62, 339, 57, 285, 50]. Intra-class variability occurs because

the same activity can be performed differently by the same person (in different

sessions). Inter-class variability refers to differences in how individuals perform

the same activity. Exercises of the same type may be performed by different people

with different body movements [57]. The way a person performs an activity may

even make it difficult to identify the activity [339]. An inverse challenge is posed

by activities (or classes) that are fundamentally different but show very similar

characteristics in the sensor data. Such similarities can be resolved by additional

cues detected by different sensor modalities [57].

Another challenge is subjectivity, which can vary according to individual perception

and familiarity with the scale. This can lead to inaccurate reporting of fatigue

levels during exercise, but a subject’s familiarity with a scale usually improves with

repeated use, leading to more consistent assessments over time [108]. Individual

differences in fatigue responses and adaptive capacity also contribute to variability in

training load requirements [164]. The training load required for adaptation may vary

between individuals [143, 110], but also between sessions for the same individual

and is further influenced by various fatigue factors [108] (see Appendix C).

There are several approaches to address intra- and inter-class variability. One

approach is to increase the amount of training data, either through more experiments
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or through data augmentation. Another approach is to use subject-independent

features that are more robust to such variability. For example, features derived from

whole-body models rather than low-level signals can improve robustness. However,

this requires a trade-off: a highly specific and discriminative feature set may be less

effective across individuals, whereas a more generic feature set may offer greater

robustness at the cost of lower discriminative power [57]. According to Reid et al.

[285], if the intra-class variance of a biometric trait is low, then the trait is said

to demonstrate permanence and repeatability. If the inter-class variance is high,

then that biometric trait can be successfully used to distinguish between people.

Impellizzeri et al. [164] recommended internal load as the primary measure because

it better reflects the individual’s response to external load. Elshafei et al. [108]

applied min-max normalisation to the RPE for the current exercise set to account for

subjective differences. Furthermore, a longitudinal approach to data collection may

help subjects to become more familiar with the tasks and the scales.

Sensor Variability Variability can also originate from the sensing equipment itself,

particularly due to variations in sensor characteristics. This variability can be caused

by both internal and external factors. Internal causes include hardware malfunction,

complete failure, and sensor drift. External factors can include changes in operating

temperature or problems such as loose straps. In addition, some sensors are sensitive

to environmental conditions. Wearable devices and sensors can be used differently

or positioned in different locations or orientations on the body, which can also

contribute to variability [57, 91]. Such sensor issues should be minimised as far as

possible, which is usually easier in controlled environments.

Temporal Variability In time series, temporal variability refers to fluctuations and

changes that occur over time. This type of variability is particularly evident during

exercise due to fatigue and can add complexity to the data. The exercise and the

sequence of exercises, including breaks, are other factors that affect variability. For

example, if an intensive exercise is performed first, followed by a low-intensity
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exercise, there may be after or ripple effects that can manifest as variability in the

data [199].

Spatial Variability Spatial variability refers to differences in behaviour or mea-

surements based on the location. Individuals may exhibit different behaviours in

different environments. According to Giannakakis et al. [130] and Hussain et al.

[162], maintaining constant environmental conditions is challenging due to the wide

range of potential factors that may affect individuals, such as noise, temperature,

lighting, and air quality.

Sample Complexity

Sample complexity quantifies the relationship between the size of the training data

and model performance, with a particular focus on generalisation error. It indicates

the amount of data required for a model to perform adequately on unseen data.

A model with a high generalisation error typically has a high sample complexity,

meaning it requires a larger data set to effectively learn and generalise from the

data [13]. Sample complexity is closely related to multiple interrelated concepts:

the model complexity, the acceptable margin of error, the probability of failure, and

the generalisation error of the model [13].

A practical method for estimating sample complexity is empirical testing, where

the size of the data set is gradually increased and the performance of the model

is monitored to understand its evolution. This approach provides insight into how

the accuracy of the model improves with more data. Alternatively, theoretical

methods such as PAC learning bounds can provide guidance [145]. Although these

mathematical bounds are often conservative and may not always provide accurate

estimates for real world scenarios, they provide a general indication of the sample

size required to achieve a desired level of performance. For example, models with

high VC dimensions, such as deep neural networks, generally require larger sample
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sizes due to their complexity [13, 91]. Similarly, data sets with high variability often

require larger sample sizes to effectively capture the underlying patterns [13].

Sample Size

For all learning algorithms trained on sample data, there is a target conflict between

the following factors [13]:

1. The complexity of the model that is being adapted to the data.

2. The sample size.

3. The generalisation error for unseen samples.

The relationship between model complexity, sample size, and generalisation is

complex. As model complexity increases, performance on training data generally

improves, but the risk of overfitting, i.e., poor performance on unseen data, also

grows. Conversely, increasing sample size can mitigate overfitting, but only to a

certain extent. For example, if the data has been sampled from a straight line and

a higher degree polynomial is used, the fitted curve will closely approximate the

straight line in regions where there is sufficient training data. However, in regions

with sparse data, the polynomial can still deviate substantially from the true pattern,

as shown in Figure 3.17. For best generalisation, the complexity of the model should

be adjusted to the complexity of the data [13]. However, this requires that there is

sufficient representative data for the targeted task available.

Sample Bias

Bias can be broadly defined as a systematic deviation of results or conclusions from

the truth, or the processes that lead to such a deviation. It can affect the accuracy,

accountability, fairness, and transparency of ML [101]. Sample bias occurs when

the sample data used to train an ML model is not representative of the real world

population. This can lead to biased or unfair predictions and limit the model’s ability

to generalise to unseen data. Typical causes include selection and measurement
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3.7 Step 7: Dissemination

Step 7 of the Fatigue Recognition Chain addresses the documentation and dissemi-

nation of the research project, including open data, open source, and open science.

Scientific articles can be published as open access, if affordable [123], to increase

accessibility – e-Print repositories [75], such as arXiv, should be used to promote

open science. In addition, the data and source code should be made publicly avail-

able to allow reproducibility, verification, transparency, and collaboration for wider

research. Other researchers could use this data to perform secondary analyses and

discover new insights by applying different approaches. The data and sources also

need to be properly annotated and described, such as column names that reflect the

meaning of the data, ideally based on standardised conventions. In addition, the

steps in the research process should be documented, including the rationale for each

decision made. Version control tools such as Git, SVN or Mercurial can facilitate this

process [75, 372]. All of this requires open platforms that should be independent.

3.8 Summary

This chapter introduced the Fatigue Recognition Chain, a structured framework for

conducting sensor-based fatigue detection research with ML and small data. The

framework consists of seven steps, including foundational characteristics, raw data

collection, preprocessing, feature engineering, ML, evaluation, and dissemination.

Generalisation was highlighted as part of the evaluation step. Generalisation is

the ability of a trained ML model to accurately predict results on unseen data

which is assessed by testing. Multiple aspects affect generalisation, such as model

complexity, sample variability, sample complexity, sample size, and sample bias. It

has been shown that even if a model does not overfit the given data, it may still fail

to generalise in a real world application if the training samples lack the relevant
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variability or representativeness, which is a key challenge when working with small

data.
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Case Study: Fatigue

Detection for Squats with IMU

and PE

4

This chapter presents a case study to demonstrate the application of the Fatigue

Recognition Chain framework that has been introduced in the previous Chapter 3.

Building on the works of Shi et al. [306], Jiang et al. [176], Wang et al. [343], and

Jiang et al. [175], a case study was conducted to illustrate the practical implementa-

tion of the framework in the context of fatigue detection for squat exercises with

IMU and PE. The results of this case study form an integral part of this thesis by

allowing the analysis of ML models trained on small data sets.

4.1 Step 1: Foundational Characteristics

In this step, the foundational characteristics of the case study were established,

including the research design and method.

4.1.1 Research Topic & Design

The aim of the case study was to collect RPE, IMU and PE data during squats to

train different ML models on small data sets for fatigue detection and to analyse the

generalisability of these models. Following the research layers described by Saunders

[295], the case study followed a positivist research philosophy and took a deductive

approach. An experimental research strategy was adopted to investigate the potential

relationship between sensor data and fatigue. This strategy was based on a multi-
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method quantitative research design for data collection and analysis. The methods

used included multi-sensor data collection, survey scales, data labelling, data mining

and hypothesis testing. Data were collected in a multi-session experiment, with one

subject per session.

Delimitations: There were certain delimitations to the case study. Firstly, it focused

on supervised ML based on subjective RPE as ground truth. Secondly, only squats, a

repetitive exercise, were used to induce fatigue in the subjects. Squats was one of

the training exercises selected by sports scientists as part of the MoGaSens research

project (see below). Thirdly, heart rate monitoring was considered as complement to

RPE [45], but preliminary tests showed that heart rate values were highly dependent

on the previous activity including the order of the exercises and the rest between

them (see Appendix I). In addition, changes in sensor-based heart rate monitoring

were delayed in relation to the actual changes in intensity; this delay was not

constant and depended on various factors such as age, gender, and fitness level of

the individual [274]. For these reasons, heart rate monitoring was excluded from

the case study. Fourthly, although lactate testing could provide valuable insights, its

cost and the impracticality of frequent blood sampling during short training sessions

limited its applicability and it was therefore excluded from the case study.

4.1.2 Research Setting

The research project was conducted at the University of Applied Sciences Hamburg,

specifically in the Creative Space for Technical Innovations (CSTI)1 laboratory (see

Figure 4.1), where the author was employed as a research assistant during his

doctoral studies. The experiments took place on multiple weekdays between 10:00

and 15:00. The experiments were conducted in a laboratory because of the controlled

environment with sufficient space (for video recordings and motion tracking) and

the availability of the necessary equipment.

1http://csti.haw-hamburg.de/
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Fig. 4.1.: Squat exercises in the laboratory.

4.1.3 Ground Truth

The RPE scale was utilised to collect labels for supervised ML, which is common

in related works (see Section 2.4.2), where 46.32% used RPE scales as ground

truth. 80% of the related works that used squats as a physical activity also utilised a

subjective scale (see Section 2.4.3).

4.1.4 Required Data

At the time of the case study, there was no labelled and publicly available data

on squats. Therefore, new data had to be collected in experiments. As stated by

Kluger et al. [199], the technology should be able to examine physiological variables

that are hypothesised to be responsible for the fatigue experienced by the target

population. The general idea in the case study was to infer fatigue (RPE) from

changes in movement patterns similar to studies conducted by Jiang et al. [176],

Karvekar et al. [189], Karg et al. [186], and Zhang et al. [367]. Statistical features

derived from IMU and PE sensor data were chosen as the main variables. Both

sensors capture the subjects’ motion data and can also complement each other since
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IMU is a wearable sensor and PE is an off-body sensor. As PE has not yet been

investigated in this context, a comparison between IMU and PE was also of interest

(see Contributions in Section 1.2). Two independent variables would also allow the

results to be cross-checked. A brief description and suitability assessment of IMU

and PE sensors is provided in the following two sections.

IMU

The need for activity recognition beyond instrumented spaces led to the adoption of

body-worn IMU sensors. Since then, there has been considerable research into HAR

with unobtrusive, wearable sensors [162].

Definition: An IMU is a wearable sensor for mechanical kinematic sensing (see

Appendix J). Modern IMUs are typically based on MEMS2 technology and com-

Source: https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi160/

Fig. 4.2.: Bosch BMI160 IMU, consisting of accelerometer, gyroscope, and magnetometer.

bine multiple sensors, such as accelerometer, gyroscope, and magnetometer (see

Figure 4.2). An accelerometer measures the specific force (in m/s2), which is the

acceleration relative to the inertial frame of reference. This acceleration is the weight

experienced by a mass inside the device, as explained by Newton’s second law, mea-

sured by capacitive, piezoresistive, or thermoelectric sensors. A gyroscope measures

the rate of rotation (in ◦/s) caused by changes in attitude relative to inertial space.

Gyroscopes use principles such as the Coriolis effect [81]. A magnetometer measures

2MEMS stands for Micro-Electro-Mechanical Systems, a technology that combines electrical and
mechanical components on a single silicon chip measured in micrometres [178].
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the strength and direction of a magnetic field, usually the Earth’s [286]. It can

act as a compass and help to improve the accuracy and robustness of orientation

estimation [47].

Applications: Signals from an IMU can be used to identify physical activity, track

the location or motion of objects, track the intensity and frequency of motion,

recognise gestures, detect segments, or calculate joint angles. IMUs can also assess

the quality of movement [273, 39, 162, 325, 272, 131]. IMUs are often integrated

into personal devices, such as smartphones, watches, fitness bands, wristbands,

gloves, and rings [39]. According to Tong et al. [325], accelerometers are perhaps

the most common wearable sensor in HAR. IMUs have also become a dominant

technology for home-based exercise therapy [53].

Benefits: An IMU-based system makes minimal assumptions about the deployment

environment and does not require line of sight [233]. An IMU can be ubiquitously

deployed in smart devices and often has advantages in power consumption, cost,

size, high accuracy, and high sensitivity for HAR [39, 273]. In addition, multiple

IMUs can be distributed on the body to improve accuracy [273].

Limitations: IMUs must be worn on the body, which requires robust fixation and

precise positioning [39]. Wearing an IMU may not always be practical depending

on the task [39, 162]. IMUs also suffer from integrational drift, leading to accuracy

problems and accumulated errors over time that must be corrected by constant

recalibration [39], which is particularly problematic in precise tracking scenarios.

Magnetometers can be ineffective indoors where metallic objects, such as steel

frames in walls, can interfere with the sensors [233]. Physical activity can be difficult

to distinguish with IMUs [325] as well as detecting precise deviations from ideal

movements, such as inappropriate timing of muscle activation. To overcome this,

other devices, such as electromyographic or electrocardiographic sensors, must be

integrated [272]. In addition, IMUs inherently lack the ability to capture contextual
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and social information beyond motion, making the full spectrum of human activity

unattainable [325].

Conclusion: The above limitations did not apply to the case study, as only the

acceleration and angular velocity signals were required for fatigue detection, with

no need for activity recognition or motion tracking.

PE

Historically, HAR has been a focus of computer vision research [39, 162], based

on optical signals (see Appendix J), including RGB, depth, infrared, and thermal

cameras [62]. Vision-based approaches are unobtrusive [99] and can achieve high

recognition accuracy [39]. Vision-based HAR is either marker-based or markerless.

Marker-based systems are considered the gold standard in biomechanics and offer

the highest accuracy but require wearable markers, specialised equipment, and

controlled environments [233]. In contrast, markerless systems eliminate the need

for markers and allow for more natural and flexible motion capture [220]. Depth

cameras, such as Kinect, leverage technologies like triangulation, time-of-flight, or

structured light. They offer a markerless alternative to vision-based HAR approaches.

While their affordability and compact size have contributed to their popularity, their

accuracy and operating range remain limited in certain environments, particularly

in the presence of strong ambient light or reflective surfaces [366].

Definition: Human PE is a markerless, vision-based approach to identify critical

body joints or key points within an image or video depicting a person’s body. These

key points often include joints such as the elbows, wrists, and knees, which are

connected to form a coherent structure [209] and can be represented as a skeleton,

shape, or mesh model [99].

Methods: Early PE methods relied on predefined models and statistical learning.

Since 2013, deep learning techniques, such as CNN, RNN (for temporal information

in sequential inputs), graph convolutional networks (ideal for skeleton-based tasks),
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and transformers have emerged as the leading techniques [209]. The success of

deep learning can be attributed to the abundance of image data, the powerful

representational capacity of deep neural networks, and the availability of high-

performance hardware [220]. Typical characteristics for PE are top-down or bottom-

up, single- or multi-person, and 2D or 3D (mono-view, multi-view, or multimodal)

[220]. Top-down approaches first predict the body parts and then compute the poses

for each individual (often used for single-person PE). Bottom-up approaches first

capture all human body parts and then group these parts to associate them with

specific individuals [209]. 2D PE identifies key points within an image plane, while

3D PE extends these spatial coordinates into three-dimensional space [220, 209].

Fig. 4.3.: Skeletal model of a participant performing a squat derived from MediaPipe Pose.

There are many implementations of 2D PE, including MediaPipe Pose, which

specialises in exercises. For this reason, MediaPipe Pose was chosen for the case

study. It is a lightweight, real-time CNN developed by Google for human PE that

extracts 33 key body points for a single person from RGB images. It first identifies

human bodies within an image frame, selects the most prominent, and then locates

key points on the selected body (see Figure 4.3). MediaPipe Pose estimates the

human pose without the need for a graphical model or explicit modelling of the
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human body [31, 339]. Appendix N provides more detailed information on how

MediaPipe Pose works. Figure 4.4 illustrates a taxonomy for PE adapted from Lan

et al. [220] and highlights the characteristics and elements used in the case study.

Human Pose 
Estimation
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Choices

Approaches

Mono-view

Multi-view

Multi-modal

RGB

Depth

Infrared

Thermal

Recurrent Neural 
Networks

Graph 
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Neural Networks

Transformers

Predefined Models Statistical Learning Deep Learning

Architecture
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Bottom-up

ResNet

AlexNet
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Hourglass

HRNet

MobileNetV2

…

Regression 
Paradigm

Heatmap 
Paradigm

OpenPose

AlphaPose

DCPose

Hourglass

UPD-POSE

DARK

BlazePose

…

Single Person

Multi Person 2D 3D

Dimension
Detectable 

Persons

Identify Human(s) / 
Body Parts

Extract Features
(Network Design /

Backbone)

Pinpoint Keypoints
(Prediction Head)

Implementations

Fig. 4.4.: A taxonomy for human PE, adapted from Lan et al. [220]. The highlighted boxes
represent the characteristics and elements utilised in the case study.

Applications: Vision-based approaches cover almost all HAR tasks such as position-

ing, navigation, body part monitoring, whole body monitoring, individual and group

activity recognition [39].

Benefits: PE methods achieve high recognition accuracy [209, 220]. In addi-

tion, skeleton tracking can be used to estimate joint angle data [233]. They can

also capture contextual information and interaction with people, objects, and the

environment.

Limitations: Perspective limitations and occlusion are major challenges for PE.

The camera’s field of view can partially or completely obscure the subject, while

factors such as object interference or self-occlusion can further hinder accurate

PE [62, 233]. There is also no semantics to the placement of the camera sensor:

a subject can appear in infinite perspectives and scales. The perceived speed of

movement is also affected by the distance of the object from the camera [62, 39,
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273]. Other challenges include background clutter and moving backgrounds, as

well as environmental conditions such as light, shadow, temperature, weather, and

air quality [62, 39]. In addition, camera sensors can have shortcomings, such as

low video quality, precision, or temperature sensitivity [62, 39, 273]. Real time

poses computational challenges due to the high dimensionality of the data and the

need for fast processing of high frame rate video streams. The complex nature

of human motion, characterised by multiple degrees of freedom per limb, further

exacerbates these problems [39, 339]. Privacy is one of the main issues that can

lead to discomfort or a sense of intrusion. [62, 39, 273]. Furthermore, a camera

cannot follow a moving person without additional equipment.

Conclusion: The controlled laboratory environment minimises computational and

environmental limitations, allowing a focused investigation of ML generalisation un-

der optimal conditions. However, this ideal setting may limit the direct applicability

to real world scenarios.

Dependence on Body Composition

Acceleration and angular velocity from the IMU can be used for inter-subject compar-

isons, although these metrics are affected by body composition [289, 7, 350]. This

effect can be reduced by homogeneous subject groups. In the case study, the effect

of differences in limb length was mitigated by attaching the IMU to the sternum,

minimising the influence of individual body proportions. In contrast, PE provides ab-

solute joint coordinates that are highly dependent on camera position and individual

body proportions. To allow comparison between subjects, the PE coordinates in the

case study were normalised by transforming them to the trajectory-based metrics

(i.e., velocity) [366].
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4.1.5 Sensor Selection

The following specific sensor models were selected for the case study as they were

already available in the CSTI laboratory. A Bosch BMI160 IMU with nine degrees of

freedom was employed. It was calibrated once prior to the experiments3. In addition,

two Logitech c920 webcams were deployed to capture the front and left side of

each subject with a fixed sampling rate of 30 Hz at 720p resolution. Marker-based

infrared cameras from ART GmbH & Co KG were used for verification purposes only.

A comparison between ART and PE can be found in the Appendix K.

4.1.6 Sample Selection

As described in Section 2.4.2, related works recruited an average of 21.1 subjects. A

similar cohort was targeted for the case study. However, the number of subjects was

gradually increased to examine the effect on classification and generalisation: 20

subjects in the first, 10 in the second, and 18 in the third cohort, for a total of n=48

(32 males and 16 females).

Morris et al. [255] emphasised that variation inevitably affects recognition ac-

curacy and therefore advocated large-scale training. However, when large-scale

training is not feasible, it is crucial to minimise variation. Therefore, a balanced set

of training data was sought to avoid class imbalances that could negatively affect

classification performance [321]. To achieve this, healthy volunteer students from

non-sporting disciplines (ecotrophology and computer science) with similar fitness

levels (occasional weekly fitness routine) and ages (between 20 and 30 years) were

recruited to form a homogeneous group.

3https://community.bosch-sensortec.com/t5/Knowledge-base/BMI160-Series-IMU-Design-Guide/ta-p/7376
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4.1.7 Ethical Concerns & Consent

Ethical approval for the case study was given by the University of the West of

Scotland Ethics Committee. All sessions of the case study were attended by a subject,

a sports scientist, and the author. Each session began with the author informing

the subject of the general procedure and aims of the study. This was followed by a

demonstration of the exercise. A detailed description of the data to be collected and

the purpose was given to the subject by the author. The subject then confirmed his

or her understanding and agreement by signing a consent form.

4.1.8 Exercise and Sequence

Prior to the start of a session, the subject was equipped with the IMU on the sternum

using a chest strap. Meanwhile, the author asked the subject to self-assess their

general and current level of fitness and their current RPE. A session consisted of

three sets of squats without weights. There was a rest period between each set.

Squats were chosen to induce fatigue because, unlike exercises such as push-ups,

most healthy people can perform them several times for one minute. Moreover,

squats involve the largest muscle group [10]. The subject was then given some

instructions for the exercise in terms of foot position (hip width) and arms position

(straight forward) – detailed recommendations for performing squats with weights

can be found in Comfort et al. [82].

Sensor data was collected throughout the session, including breaks. The subject

was asked to report a value between 6 and 20 on the Borg RPE scale every 10 seconds

during the exercise. Each exercise lasted 60 seconds, followed by a break of 60

seconds. A session, including the introduction, took approximately 12 minutes per

subject. Figure 4.5 illustrates the lab protocol.

In the related works with squats (see Section 2.4.3), RPE were repeatedly collected

from a subject, either based on time or after a certain number of repetitions. A

2-minute interval was used in [188, 189], while every 5 repetitions was used in
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Fig. 4.5.: The laboratory protocol for a session of three sets of squats.

[176, 175, 186], every 12 repetitions in [9, 10], and every 15/30 repetitions in

[126]. A time interval of 10 seconds was chosen for the case study. This corresponds

to approximately 5–8 squat repetitions. This interval was considered sufficient as

initial tests revealed that the same RPE values were repeated more frequently with

shorter time intervals.

4.1.9 Unit of Analysis

A squat repetition was chosen as the unit of analysis, specifically the features derived

from the time series within the time span of a squat repetition.

4.1.10 Computational Complexity and Storage Requirements

Real time fatigue detection was initially considered. However, given the scope

of this thesis and the small data set, offline processing and analysis was adopted.

Data collection was performed on a Windows 11 computer equipped with a Core

i7-4790K processor, 16 GB of DDR3 RAM, 256 GB SSD, and GeForce GTX 1080 Ti

graphics card. Data transformation, feature engineering, ML, and evaluation were

performed on a separate Windows 11 computer with Python v3.12 and MATLAB

2024a installed. This machine featured an AMD Ryzen 7 5800X processor, 32 GB of

DDR4 RAM, 2 TB SSD, and GeForce RTX 3080 graphics card.
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4.2 Step 2: Raw Data Collection

In this step, the raw data from IMU and PE were collected for the case study.

4.2.1 Sampling Rates

Sampling rates of 50–100 Hz were suggested by Trimpop et al. [328] as suitable for

the detection of activity and vital parameters. In the related works (see Table B.1

in the Appendix), the sampling rate for IMU ranges from 20 to 1125 Hz, with an

average of 189.5 Hz and a median of 100 Hz. In the case study, a sampling rate of

200 Hz was used for the IMU. The webcams had a fixed sampling rate of 30 Hz at

720p resolution – this is lower than recommended, but sufficient for squats as the

movements are slow compared to, for example, badminton or boxing.

4.2.2 Data Storage

The data collected for each subject was organised into five comma-separated values

(CSV) files and one mp4 file4, each covering a specific aspect of the data collection.

The CSV files took up approximately 80 MB of disk space per subject, while an

MP4 file took up approximately 200 MB. Table 4.1 gives an example of the file

organisation for subject ID 1. Each subject was assigned a unique random ID, which

is included in the filename. All filenames followed the same naming convention:

id_datetime_{imu/pe-side/pe-front/sync/borg}.csv.

Tab. 4.1.: Example of all files stored for the subject with ID 1.

1_2022-11-21_12-47-41.mp4
1_2022-11-21_12-47-41_borg.csv
1_2022-11-21_12-47-41_imu.csv
1_2022-11-21_12-47-41_pe_front.csv
1_2022-11-21_12-47-41_pe_side.csv
1_2022-11-21_12-47-41_sync.csv

4Although a time series database would have been beneficial for sharing data between researchers, it
was not considered for this PhD project.
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Raw IMU data was transferred via a RS232 serial interface using a USB v2.0

cable to minimise data loss. Data was collected with HTerm v0.8.65. Table 4.2

illustrates the information stored in an IMU raw file, including timestamps as well

as accelerometer and gyroscope values for the x, y and z axes.

Tab. 4.2.: Example of a CSV file containing raw IMU data.

timestamp_ms hwTimestamp accX accY accZ gyroX gyroY gyroZ
0 2843910 0.19464111328125 -0.849609375 0.42156982421875 -0.426829268292683 -0.609756097560976 -0.853658536585366
4 2844015 0.19464111328125 -0.849609375 0.42156982421875 -0.426829268292683 -0.609756097560976 -0.853658536585366
8 2844120 0.19659423828125 -0.845458984375 0.42767333984375 -0.853658536585366 -0.609756097560976 -0.853658536585366
... ... ... ... ... ... ... ...

Videos were recorded using Logitech Capture v2.02.1556 in picture-in-picture

mode (front and side view), as shown in Figure 4.6. Since the front and side videos

were combined into a single MP4 file by the software, no synchronisation was

required. All recorded videos were anonymised with deface v1.1.17, a Python-based

command line tool for video anonymisation using facial recognition.

Fig. 4.6.: Picture-in-picture video recording of squat exercises.

5https://der-hammer.org/
6https://www.logitech.com/en-us/software/capture.html
7https://pypi.org/project/deface/
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4.2.3 Labelling

RPE from the subject were manually recorded during the exercise in a corresponding

borg file. Table 4.3 shows an example where the "label" column contains the only

collected data – the other columns contain constant values that have been added to

quickly find specific values algorithmically.

Tab. 4.3.: Example of a borg file.

subjectId setNumber timeBlock from to label
1 1 1 0 10000 11
1 1 2 10000 20000 12
1 1 3 20000 30000 13
1 1 4 30000 40000 14
1 1 5 40000 50000 14
1 1 6 50000 60000 13
1 2 1 0 10000 11
1 2 2 10000 20000 12
1 2 3 20000 30000 12
1 2 4 30000 40000 13
1 2 5 40000 50000 14
1 2 6 50000 60000 15
1 3 1 0 10000 13
1 3 2 10000 20000 14
1 3 3 20000 30000 14
1 3 4 30000 40000 15
1 3 5 40000 50000 15
1 3 6 50000 60000 15

4.2.4 Synchronisation

For each subject a sensor sync file was created to store offset values in milliseconds

to synchronise the different sensors8. These offset values referred to the beginning of

the first frame of the corresponding video footage for each subject (see Table 4.4).

Tab. 4.4.: Example of a sync file with offset values used for sensor synchronisation.

Exercise Value_ms
artOffsetInMs 0
hamesOffsetSternumInMs -725
hamesOffsetBellyInMs unused
mbientlabsOffsetInMs unused

8Additional sensors for collecting biosignals and another IMU sensor from MBIENTLAB were used in
preliminary studies
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The offset values for the first 10 subjects were determined manually by comparing

the initial acceleration pulses of the PE and IMU signals on a graph: As each subject

started in a standing position, the sensor signals were an almost straight line until the

subject initiated the exercise. For the remaining 38 subjects, a macro recorder9 was

utilised to initiate recording for all sensors simultaneously, with sensor connections

established beforehand to minimise latency. A comparison between the macro and

manual synchronisation gave similar results, with an average difference of less than

10 milliseconds, which was considered acceptable given the IMU sampling rate of

200 Hz (i.e., one reading every 4 ms). Figure 4.7 shows the synchronised IMU

and PE signals. Albert et al. [10] used a similar approach: they calculated the

acceleration in the vertical axis of the Kinect marker and cross-correlated it with the

IMU acceleration data.

Fig. 4.7.: Synchronised IMU and PE signals through cross correlation.

4.2.5 Data Integrity Verification

Some of the collected data sets were corrupted due to hardware malfunctions caused

by computer crashes, disconnections, sensor failures, incorrect camera perspectives,

or failures to start recording. Other problems included premature termination of

the exercise and incorrect execution by the subject. In the former case, two subjects

9https://www.macrorecorder.com/
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terminated the session prematurely after completing only two sets of squats. In the

latter case, one subject’s squats deviated considerably from the prescribed squat,

resulting in a session reset after corrective instructions were given. A data set (IMU,

side PE, or front PE) was considered corrupt if, for any reason, it did not record all

the data in a set of exercises. To verify this, each of the recorded IMU and PE signals

were plotted on a graph and visually inspected for anomalies such as flat lines,

missing data, and unusual signal patterns. As a result, seven sets were considered

corrupt and discarded for both IMU and front PE, while three sets were discarded

for side PE.

4.3 Step 3: Data Transformation

In this step, the raw IMU and PE data were preprocessed and segmented into

individual squat repetitions.

4.3.1 Preprocessing

Different measures were required to preprocess the IMU and PE data. Therefore,

both processes are described separately in the following sections.

PE

Additional calculations were required for the PE data to ensure that the measure-

ments were independent of individual body proportions. For this reason, the joint

coordinates were converted into joint velocities and joint angles.

Joint Coordinates Extraction The joint coordinates were extracted from the recorded

video using MediaPipe Pose v0.9.0.110 with default settings. A Python script11 was

10https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
11https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/

examples/pose_landmarker/python/%5BMediaPipe_Python_Tasks%5D_Pose_Landmarker.
ipynb
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run separately for the side (PE-Side) and front (PE-Front) videos. Since the videos

were recorded in picture-in-picture format, it was necessary to ensure that the PE

algorithm selected the correct image. For this reason, the PE-Front videos were

cropped from 0 to 383 pixels on the x-axis and 0 to 673 pixels on the y-axis, so that

only the front view was visible12. To extract the PE-side joints, the top left PE-Front

image was blacked out by reusing the same image coordinates as for the cropping.

Figure 4.8 visualises the extracted joints.

Fig. 4.8.: The joint coordinates for the front and side video were extracted separately.

An extracted data file for PE-Side and PE-Front consisted of 70 columns: the

timestamp in milliseconds starting from zero, the absolute x-, y-, and z-coordinates

for the nose13, as well as the absolute x-, y-, and z-coordinates for the left and right

shoulder, elbow, wrist, thumb, pinky, index finger, hip, knee, ankle, heel, and foot

index. The extracted joint coordinates were normalised by MediaPipe Pose between

0 and 1. MediaPipe Pose could also extrapolate z-coordinates from a 2D image, but

this feature was considered less accurate and not used.

12The size of the picture-in-picture was set by drag&drop once and used for all recordings.
13Due to video anonymisation the extracted nose coordinates were considered unusable.
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Joint Velocities Calculation Absolute joint coordinates were not suitable for ML

due to differences in body proportions between subjects [9]. One possible solution

considered was to normalise the coordinates based on a reference point, such as

the central hip joint [5]. However, this approach relies on accurate detection of

the reference point. Instead, the velocity, a trajectory-based metric [366, 282],

was derived from the joint coordinates. The joint velocities were computed from

the extracted joint coordinates over successive frames. Following Aguirre et al.

[4], coordinate deltas were computed for the x- and y-axis: ∆xi = xi+1 − xi and

∆yi = yi+1 − yi. The Euclidean distance di =
√

∆xi
2 + ∆yi

2 was then computed.

Given ti, the velocity vi = di
ti+1−ti

was obtained in an arbitrary unit per millisecond.

The joint velocity was added as an extra column to the respective PE file. This was

done for each joint.

Joint Angles Calculation Joint angles were computed based on the positions of

two adjacent joints. For example, to compute the left hip angle, the coordinates of

the left shoulder ax, ay, left hip bx, by, and left knee cx, cy were used. The angle β in

degrees was determined by the following equation:

β =
∣∣∣∣(arctan 2(cy − by, cx − bx) − arctan 2(ay − by, ax − bx)) · 180

π

∣∣∣∣
Figure 4.9 illustrates the computed angle of the left hip. The computed angles for

all joints were added as extra columns to their respective PE files.

IMU

The IMU data required unit conversion. Additionally, a certain level of cleansing and

interpolation was necessary due to missing sensor values.

Unit Conversion The raw IMU data were first converted into acceleration m/s2 and

angular velocity ◦/s using the following calculations: acc = rawSensorV alue/16.384

and gyro = rawSensorV alue/16.4. The divisors represent the sensor sensitivity as

specified in the documentation14 of the IMU.

14https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi160-ds000.pdf
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Fig. 4.9.: The hip angle was calculated based on the position of two adjacent joints.

Interpolation Since the IMU data occasionally suffered from minor data loss (less

than 1%), the "fillmissing" function in MATLAB15 with the "pchip" method was

used to interpolate missing points. This method performed a shape preserving

piecewise cubic spline interpolation. Tests with different interpolation methods

showed minimal impact on the ML results, probably due to the high sampling

rate and infrequent missing data. Nevertheless, interpolation was used to create a

continuous time series, allowing subsequent processing methods such as Butterworth

filtering. In addition, an ’interpolated’ column was added to the respective IMU file

to flag interpolated data points that could be used to assess their impact.

Outliers

The MATLAB function isoutlier16 with the "percentiles" method and a threshold of

0.1 was used to identify outliers in the IMU and PE data. The total outlier rate was

less than 0.3%. As these outliers were removed indirectly during the subsequent

computation of statistical features, no explicit removal was applied [134].

15https://de.mathworks.com/help/matlab/ref/fillmissing.html
16https://de.mathworks.com/help/matlab/ref/isoutlier.html
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4.3.2 Motion Segmentation

Various methods for segmentation detection have been proposed in the literature,

such as minima and maxima searches [233], also referred to as zero-velocity crossing

[53], which is based on physical changes and requires minimal computational

resources. However, it is prone to over-segmentation [53] and exhibits limited

generalisability across exercise variations and individuals [233]. Additionally, zero-

velocity crossing is sensitive to parameters such as sliding window length and can

be highly affected by data preprocessing techniques.

As the unit of analysis was a single squat repetition, the preprocessed data were

segmented into individual squat repetitions. This step involved identifying the start

and end points of each repetition. Figure 4.10 shows a typical repetition cycle. Given

the clear peaks on the y-axis of the left hip joint coordinates (PE-Side), these data

were used as a reference for segmentation detection with zero-velocity crossing,

following the approach described in [4]. The segments detected via the PE-Side data

could be used to segment the raw data from the PE-Side, PE-Front, and IMU data

because all the data were synchronised.

Fig. 4.10.: A complete repetition cycle (i.e., segment) for performing a squat.

Preliminary tests showed that the moving average filter [272] tended to introduce

multiple local minima and maxima, complicating peak detection unless extreme

filter settings were used. Instead, a third-order low-pass Butterworth17 filter [38]

with a cut-off parameter of 0.06 was applied to the PE-Side joint coordinates (see

17https://de.mathworks.com/help/signal/ref/butter.html
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to have irregular motion that distinguishes them from the rest [206]. Figure 4.11

illustrates the segmentation process for the first four repetitions of a set.

All identified start and end timestamps (in milliseconds) of each squat repetition

were used to create three new files: imu.mat, peSide.mat, and peFront.mat. These

.mat files are in MATLAB’s binary format. and can be loaded into memory more

quickly than CSV files. Each mat-file stored the respective sensor data from all

subjects, with additional columns for subject ID, segment number, set number, RPE

(label), and exercise ID (to accommodate future exercises). Table 4.6 provides an

example of a segmented mat file for IMU data. Redundant data were included in

certain columns to allow flexible data selection during ad hoc experiments, such

as plotting data for a specific subject or segment. As RPE were collected every

10 seconds, multiple squat repetitions often shared the same label. Although RPE

interpolation was considered [4] (see Appendix H), it was not applied due to

potential data distribution alterations.

Tab. 4.6.: Example of an imu.mat file after preprocessing and segmentation with IMU data
from all subjects and additional columns for subject ID, set number, segment
number, exercise ID, segment duration.
Note: The IMU values have been rounded for visualisation purposes.

timestamp_ms subjectId setNumber segNumber exerciseId duration accX accY accZ gyroX gyroY gyroZ label
9063 1 1 2 1 1833 -0.413 -0.049 0.126 10.548 -54.146 5.914 8
9063 1 1 2 1 1833 -0.401 0.0309 0.146 16.829 -55.365 8.658 8
9063 1 1 2 1 1833 -0.451 -0.111 0.078 20.670 -55.121 11.158 8
9063 1 1 2 1 1833 -0.456 -0.057 0.097 15.914 -48.109 7.926 8
10896 1 1 3 1 1866 -0.475 -0.047 0.153 15.670 -44.695 7.621 8
10896 1 1 3 1 1866 -0.499 -0.057 0.174 13.963 -43.597 7.865 8
10896 1 1 3 1 1866 -0.520 -0.058 0.187 11.951 -43.231 7.926 8

4.3.3 Label Quantity Reduction

Due to small data, the number of RPE labels (originally 14) was reduced to allow

more data points to be distributed on each label [212]. Table 4.7 shows how the

labels were grouped into different numbers of classes in the case study. These

empirically determined groups and thresholds retain an acceptable distribution

compared to the original data (see also Section 2.4.2).
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Tab. 4.7.: Threshold used in the case study to merge RPE labels.

2 classes 3 classes 4 classes
6–14 / 15–20 6–9 / 10–15 / 16–20 6–9 / 10–11 / 12–15 / 16–20

For each class count, the new labels were normalised to start at 0 and added as

alternative labels in extra columns in the segmented mat files, as shown in Table 4.8.

Tab. 4.8.: Example of mapping RPE labels for different numbers of classes in the case study.

timestamp_ms other columns label 2 classes 3 classes 4 classes
1020 ... 9 0 0 0
14304 ... 11 0 1 1
37668 ... 15 1 1 2
51176 ... 16 1 2 3

4.3.4 Euclidean Norm

In line with related works [343, 140], the Euclidean norm was computed for the

accelerometer and the gyroscope data points, respectively, and added to the IMU

mat file as new columns.

norm =
√

x2 + y2 + z2

The Euclidean norm eliminated the need to identify the axis with the strongest

signal and ensured independence from sensor orientation [191]. For example,

since the accelerometer detected gravity distributed over all axes, the Euclidean

norm effectively aggregated these components into a single value. In addition,

using only the Euclidean norm, rather than individual x, y and z axes, reduced

the dimensionality of the data. For the latter reason, the Euclidean norm was also

applied to the PE data, including the joint velocities and joint angles of the hip,

shoulder, and knee. The norm was computed individually for each joint and added

as a new column to the respective PE mat file. For PE-Side, the norm was computed

as
√

v2
l and

√
β2

l , where vl and βl represent left-side joint velocities and angles,

respectively. For PE-Front, the norm was computed as
√

v2
l + v2

r and
√

β2
l + β2

r ,

taking into account both the left (l) and right (r) joints.
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4.3.5 Relevant Data Selection

Some of the collected data was removed as it was not used in subsequent steps. For

the IMU data, only the timestamps, labels, and Euclidean norm of the accelerometer

and gyroscope were retained for further processing. For the PE data, only the

Fig. 4.12.: Only the shoulder, hip, and knee joints (indicated by red dots) were retained for
further processing. For PE-Side, only the joints on the left side were kept. For
PE-Front, joints on both the left and right sides were kept.

timestamps, labels, and joint velocities and angles of the shoulder, hip, and knee

were retained. The PE-Side data set contained only joint data from the left side of

the body, while the PE-Front data set contained joint data from both the left and

right sides (see Figure 4.12).

4.4 Step 4: Feature Engineering

In this step, relevant features were extracted from the preprocessed, labelled, and

segmented data to create a feature set for subsequent ML.
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4.4.1 Feature Extraction

Table 4.9 shows the number of non-corrupt segments collected per data source (see

Section 4.2.5). Based on these segments, features were computed from each of the

raw IMU, PE-Side, and PE-Front data. For the case study, statistical features were

adopted based on Guo et al. [140]: median, mean, standard deviation (std), kurtosis,

root mean square (rms), skewness, and entropy. These features were computed

using corresponding MATLAB functions. The duration of each segment was also

added.

Tab. 4.9.: Number of non-corrupt segments collected per data source and the corresponding
number of subjects (n).

IMU PE-Side PE-Front
Segments / Samples 3367 3595 3206
n 41 45 41

4.4.2 Feature Normalisation

After calculating the features, the result was a n-dimensional feature vector that

was temporarily stored in memory. Each row represented a sample (observation),

and each column represented a specific feature. Each feature column was then

normalised to a range of 0 to 1 using the minimum and maximum values within the

column. This normalisation allowed each feature to contribute equally during ML

model training.

4.4.3 Feature Selection

The resulting feature vectors contained 14 feature dimensions for IMU data and 42

dimensions for PE-Side and PE-Front data20. Figure 4.10 shows an example of the

features computed for the IMU data. The additional columns “subjectId”, “setId”,

and “segmentId” were not used as features. Instead, they were used for feature

20The data from the left and right joints were combined for PE-Front using the Euclidean norm. As a
result, PE-Front had the same number of features as PE-Side.
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selection and subject-based model training and evaluation, allowing the construction

of subject-specific k-folds. The column “duration” was only used for testing purposes.

The column “label” contained the original RPE, while the columns “2 classes”, “3

classes”, and “4 classes” contained grouped labels as described in Section 4.3.3 –

one of them was used as a target variable for ML.

Tab. 4.10.: Example of truncated feature vectors for the IMU data. Each row represents a
sample (i.e., repetition or segment).
Note: The feature values were rounded for visualisation purposes.

subjectId setId segmentId duration accEntropy gyroEntropy accMedian gyroMedian accMean gyroMean accStd gyroStd accKurtosis gyroKurtosis accRms gyroRms accSkewness gyroSkewness label 2 classes ...
1 1 2 1833 0.029 0.102 0.025 0.080 0.058 0.068 0.054 0.012 0.024 0.085 0.226 0.171 0.225 0.170 8 0 ...
1 1 3 1866 0.034 0.069 0.029 0.061 0.084 0.069 0.077 0.020 0.028 0.069 0.197 0.204 0.197 0.204 8 0 ...
1 1 4 1866 0.025 0.065 0.023 0.040 0.029 0.051 0.061 0.011 0.021 0.045 0.221 0.173 0.220 0.172 8 0 ...
1 1 5 1799 0.027 0.068 0.023 0.027 0.044 0.024 0.048 0.008 0.021 0.025 0.256 0.150 0.255 0.149 8 0 ...
1 1 6 1866 0.028 0.076 0.026 0.024 0.043 0.022 0.056 0.005 0.024 0.022 0.298 0.144 0.297 0.144 8 0 ...
1 1 7 1866 0.027 0.068 0.023 0.047 0.030 0.039 0.039 0.011 0.021 0.047 0.270 0.171 0.270 0.171 8 0 ...
1 1 8 1866 0.025 0.063 0.022 0.085 0.022 0.086 0.047 0.015 0.020 0.095 0.235 0.187 0.234 0.187 9 0 ...
1 1 9 1899 0.034 0.090 0.028 0.071 0.076 0.060 0.048 0.014 0.027 0.074 0.224 0.170 0.224 0.169 9 0 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Although experiments were carried out with different feature selection methods

(see Figure R.1 in the Appendix), including forward and backward selection, these

were not pursued further, which is discussed in Chapter 6.

4.4.4 Class Imbalances and Augmentation

Two SMOTE variants were employed to augment the number of segments for the

minority classes. When enabled, SMOTE was computed in memory before ML for

the selected label (i.e., the selected number of classes). The first technique was the

classical SMOTE algorithm without extensions [117]: For each segment, another

segment of the same class was identified through a k-NN search (k=3) to generate

a new segment. The second technique was a variant of Borderline-SMOTE [165,

279]: For each segment, another segment of the same class and subject was found

via k-NN search (k=3). The latter technique produced samples that were closer to

the original samples by preserving subject-specific characteristics. In contrast, the

classical SMOTE method could create more artificial data samples by combining

data from different subjects.

At the time of the case study, there were no specific recommendations in the

literature for oversampling percentages in small data sets, consequently an arbitrary
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10% of new samples was chosen to create artificial samples for all minority classes.

Figures 4.13 and 4.14 show data distributions with and without the application of

SMOTE.
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Fig. 4.13.: Distribution of segments for different number of classes without SMOTE.
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Fig. 4.14.: Distribution of segments for different number of classes with SMOTE.

In the related works, the number of augmented samples was rarely reported (see

also Section 2.4.2). Wang et al. [346] collected 483 samples and augmented them

to 12558 samples. Albert and Arnrich [9] used a large window overlap of 95% to

generate as much training data as possible. Jiang et al. [176] collected samples from

12 subjects and added data from 50 simulated subjects.

4.5 Step 5: Machine Learning

In this step, the feature vectors were partitioned into folds to train different ML

models to predict fatigue levels.
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4.5.1 Partitioning

MATLAB provides a function cvpartition21 to partition data into k-folds for cross-

validation. However, this function does not take into account the origin of the data,

e.g., to leave one subject out. To address this limitation, a custom partitioning

function was implemented. This function constructed k-folds so that each fold

contained only data from specific subjects, ensuring that there was no overlap

between folds. Due to small data, some subject-based folds did not include all

classes if a subject’s RPE had low variance. These folds were discarded to maintain

data integrity. However, a more ideal partitioning function for subject-based k-fold

cross-validation should generate stratified folds that include all classes and maintain

balanced class distributions across folds. The custom partitioning function was

utilised for T3-LOSO and T4-LMSO evaluation.

4.5.2 Training

Different ML models were trained, with and without oversampled feature vectors, to

predict fatigue for each segment. Although various ML methods were used in the

related works (see Section 2.4.2), there was no clear consensus on the selection of

ML methods. For the case study, the most common ML models were selected, mainly

using the default settings of MATLAB. No hyperparameter tuning was performed.

Table 4.11 provides an overview of the utilised ML models for classification and

their settings. In addition, different regression models with default settings were

Tab. 4.11.: Utilised classification models and their settings.

Support Vector Machine (SVM) k-Nearest Neighbors (k-NN) Naive Bayes (NB) Boosted Trees (BT) Artificial Neural Network (ANN)
kernelFunction: gaussian DistributionNames: kernel DistributionNames: kernel MaxNumSplits: 20 LayerSizes: 100
kernelScale: auto Distance: euclidean NumVariablesToSample: all Activations: relu

DistanceWeight: equal NumLearningCycles: 30 Lambda: 0
k=6 LearnRate: 0.1 IterationLimit: 1000

Standardise: true Standardise: true Standardise: true Standardise: true Standardise: true

used. MATLAB’s built-in hyperparameter optimisation was disabled due to its high

computational cost and limited benefit, according to empirical tests. Given the

21https://de.mathworks.com/help/stats/cvpartition.html
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custom partitioning function, the built-in cross-validation function was also disabled.

Table 4.12 lists the regression models and their applied settings.

Tab. 4.12.: Utilised regression models and their settings.

Support Vector Machine (SVM) Gaussian Tree Ensemble Artificial Neural Network (ANN)
CrossVal: off CrossVal: off CrossVal: off CrossVal: off CrossVal: off
OptimiseHyperparameters: none OptimiseHyperparameters: none OptimiseHyperparameters: none OptimiseHyperparameters: none OptimiseHyperparameters: none
Standardise: true Standardise: true Standardise: true Standardise: true Standardise: true

4.6 Step 6: Evaluation

In this step, each trained model was evaluated using T2-LNSO, T3-LOSO, and T4-

LMSO (see Section 2.4.2). For T2-LNSO, a model is trained on 80% of randomly

selected segments, with the remaining 20% used as a test set for 5-fold cross-

validation. For T3-LOSO, a subject-based k-fold cross-validation was applied, where

k is equal to the number of subjects used for ML. For T4-LMSO, the training set

contained approximately 80% of the subjects, with the remaining subjects forming

the test set. A 10-fold Monte Carlo cross-validation was applied, with subjects

pseudo-randomly selected for the training and test sets, as described in more detail

in Section 5.10. After cross-validation, accuracy and macroF1 scores were computed

and averaged to obtain the classification performance. For regression, averaged

MAE and RMSE were used to assess the prediction accuracy.

4.7 Step 7: Dissemination

The data could not be published due to lack of informed consent from the subjects.

The research results of the case study were published in Jeworutzki et al. [174].
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4.8 Summary

This chapter demonstrated the implementation of the Fatigue Detection Chain

through a case study and showed how this framework can be used as a guide for

conducting similar research. The case study followed a positivist philosophy and

adopted a deductive approach using a multi-method quantitative research design.

Data collection involved a series of experiments conducted in a controlled laboratory

setting at the University of Applied Sciences Hamburg. The case study was based on

48 subjects with similar characteristics.

The experiments for the case study were conducted over several weekdays and

included the collection of RPE as a target variable for supervised ML. Squat repeti-

tions are used as the unit of analysis and to induce fatigue, with data collected from

IMU and PE to capture changes in movement patterns. The experiments consisted

of three sets of squats. RPE were reported every ten seconds during the exercise.

Sensor synchronisation was achieved by manually determined offset values and a

macro recorder for simultaneous sensor activation. Corrupted data sets with missing

data from at least one sensor source were discarded.

Data processing was performed offline. Data transformation included preprocess-

ing steps specific to IMU and PE data. For PE data, faces in the video recordings

were automatically anonymised by blurring. In addition, joint coordinates were

extracted and converted to relative joint velocity and joint angle values to ensure

comparability between segments of subjects with different body proportions. The

IMU data underwent unit conversion and interpolation for missing values to main-

tain a consistent time series. The Euclidean norm was computed to reduce the

dimensionality of the features.

Motion segmentation was based on offline peak detection based on hip joint

coordinates filtered by a Butterworth filter to identify individual squat repetitions.

Segmentation was verified by segment counting. Outliers were removed indirectly

by extracting statistical features from each segment. The features were normalised
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to a common scale so that each feature contributed equally during ML. The number

of labels was reduced to increase the number of data points per label by grouping

RPE. SMOTE oversampling was applied to address class imbalances.

Several ML models were trained and evaluated using different settings and cross-

validation strategies. A custom partitioning function was implemented to divide the

data by subject into folds. Each trained model was evaluated using T2-LNSO, T3-

LOSO, and T4-LMSO. For classification, accuracy and macroF1 scores were computed

and averaged over k-folds to assess predictive performance. For regression models,

averaged MAE and RMSE were computed. The results have been peer-reviewed and

published.
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Results 5
This chapter presents an evaluation of the ML models trained in the case study, as

described in the previous Chapter 4. First, the general structure of how the results

are presented is described. The impact of various factors on model performance

is then examined, including classification methods, RPE thresholds, number of

classes, evaluation types, data sources, oversampling techniques, feature selection,

regression methods, and different number of subjects.

5.1 Result Table Structure

All performance results in this chapter are presented in the form of accuracy, macroF1

score, or confusion matrices (see Section 3.6). Result tables are used to summarise

the performance of specific ML models. The results for accuracy and macroF1-score

are listed in the upper part of each result table. These values are expressed as

normalised percentages ranging from 0 to 1. The “ML Model” column indicates the

ML model used for training. The "n" column indicates the number of subjects from

which the data was used. The “Data Source” column contains the source of the data

signals (IMU, PE-Side, or PE-Front). The “Evaluation Type” column indicates the

applied evaluation type. The “Class Count” column indicates the number of classes,

i.e., the number of classes into which the RPE20 values were grouped. The “RPE

Thresholds” column indicates the thresholds used to group the RPE20 values. The

“Feature Count” column indicates how many features were used for the training. This

number depends on the source, as the number of signals per source was different.

The “Sample Count” column indicates how many samples (observations) were used

for training. The “Smote Count” column indicates the number of generated samples.
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The “Smote Type” column indicates whether the augmented data was based on

each subject separately (intra-subject) or between subjects (inter-subject). The “Test

Ratio” column indicates the percentage of test subjects used as test set. The “Test

Set Count (k)” column indicates how many test sets (k-folds) were used to evaluate

each trained model.

It should be noted that the following results are only comparable to a limited

extent as different data sets were used for training and testing, which will be

discussed further in the following Chapter 6.

5.2 Classification Models

Table 5.1 compares several ML models, all trained with the same configuration. SVM

Tab. 5.1.: Results of different ML models trained with the same configuration.

k-NN Config SVM Config ANN Config DT Config NB Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.77 0.77 0.80 0.73 0.77 0.74 0.80 0.73 0.72 0.73
Min 0.72 0.70 0.73 0.68 0.70 0.68 0.75 0.66 0.61 0.65
Max 0.81 0.78 0.84 0.77 0.83 0.80 0.83 0.77 0.78 0.80
ML Model k-NN SVM ANN Boosted DT Naive Bayes
n 45
Data Source PE-Side
Evaluation Type T4-LMSO
Class Count 2
RPE Thresholds 6–14 / 15–20
Class Distribution 2986 / 609
Feature Count 42
Sample Count 3595
Smote Count 0
Smote Type -
Test Ratio ∼20%
Test Set Count (k) 10

and DT achieved the highest accuracy with 0.80. k-NN achieved the highest macroF1

score with 0.77. SVM achieved a higher overall accuracy compared to k-NN, but

lower macroF1 score. Furthermore, NB achieved slightly higher macroF1 score than

accuracy values.

Figure 5.1 shows the corresponding confusion matrices for SVM and k-NN. SVM

sometimes did not predict class 2 correctly. In comparison, k-NN predicted class 2

more often and more correctly.
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Fig. 5.1.: Confusion matrices based on 10-fold cross-validation.
Note: The white tiles without numbers count as zero instances.

5.3 RPE Thresholds

Table 5.2 shows k-NN models trained with different RPE thresholds and thus different

class distributions. Accuracy and F1 scores decrease continuously with lower RPE

thresholds.

Tab. 5.2.: Results of k-NN models with different RPE thresholds and class distributions.

THRES-15 Config THRES-14 Config THRES-13 Config THRES-12 Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.86 0.83 0.77 0.74 0.64 0.62 0.61 0.60
Min 0.81 0.78 0.72 0.70 0.62 0.59 0.58 0.57
Max 0.88 0.88 0.81 0.78 0.67 0.65 0.64 0.64
RPE Thresholds 6–14 / 15–20 6–13 / 14–20 6–12 / 13–20 6–11 / 12–20
Class Distribution 3223 / 372 2986 / 609 2681 / 914 2315 / 1280
ML Model k-NN
n 45
Data Source PE-Side
Evaluation Type T4-LMSO
Class Count 2
Feature Count 42
Sample Count 3595
Smote Count 0
Smote Type -
Test Ratio ∼20%
Test Set Count (k) 10
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5.4 Number of Classes

Table 5.3 shows k-NN models trained with different number of classes two (C2),

three (C3), or four (C4) classes. Thus, each model had different RPE thresholds and

class distributions. The accuracy values decreased by approximately 15 percentage

Tab. 5.3.: Results of k-NN models with different number of classes.

C2 Config C3 Config C4 Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.86 0.83 0.69 0.52 0.69 0.37
Min 0.81 0.78 0.65 0.48 0.68 0.33
Max 0.88 0.88 0.71 0.59 0.72 0.42
Class Count 2 3 4
RPE Thresholds 6–15 / 16–20 6–9 / 10–15 / 16–20 6–9 / 10–12 / 13–15 / 16–20
Class Distribution 3223 / 372 1140 / 2083 / 372 1140 / 771 / 1312 / 372
ML Model k-NN
n 45
Data Source PE-Side
Evaluation Type T4-LMSO
Feature Count 42
Sample Count 3595
Smote Count 0
Smote Type -
Test Ratio ∼20%
Test Set Count (k) 10

points from C2 to C3 and C4. The accuracy values remained almost the same for C3

and C4. The macroF1 scores decreased by about 30 percentage points from C1 to C2

and by about 30 percentage points from C2 to C3.

5.5 Evaluation Types

Table 5.4 shows k-NN models trained with T2-LNSO (T2), T3-LOSO (T3), or T4-

LMSO (T4) evaluation (see also Section 2.4.2). For T2, the test set contained 20%

(719) of all samples. For T3, each test set contained the data of one subject and

the results were averaged from n test sets (folds). For T4, each test set contained

data from 9 subjects (20% test ratio) and the results were averaged from 10 test sets

(folds). For T2, the accuracy and macroF1 score values for T2 were almost the same

(0.87–0.88). The range between the minimum and maximum values was 0. For T3,

the accuracy and macroF1 score values were lower than for T2. The range between

the minimum and maximum values was: 0.29–0.97 for accuracy and 0.21–0.96 for
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Tab. 5.4.: Results of k-NN models with different evaluation types.

T2 Config T3 Config T4 Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.88 0.87 0.73 0.67 0.77 0.77
Min 0.88 0.87 0.29 0.21 0.72 0.70
Max 0.88 0.87 0.97 0.96 0.81 0.78
Evaluation Type T2-LNSO T3-LOSO T4-LMSO
ML Model k-NN
n 45
Data Source PE-Side
Class Count 2
RPE Thresholds 6–14 / 15–20
Class Distribution 2986 / 609
Feature Count 42
Sample Count 3595
Smote Count 0
Smote Type -
Test Ratio ∼20%
Test Set Count (k) 10

macroF1 score. For T4, the accuracy and macroF1 score values were lower than for T2,

but higher than for T4. In addition, the range between minimum and maximum was

0.09 for accuracy and 0.08 for macroF1 score.

5.6 Data Sources

Table 5.5 shows k-NN models trained with data from IMU, PE-Side, and PE-Front.

IMU achieved similar accuracy values to PE-Front (0.72), but lower average macroF1

scores (0.67 vs 070). PE-Side achieved the highest average accuracy (0.77) and

macroF1 score (0.74).

Tab. 5.5.: Results of k-NN models with different data sources.

IMU Config PE-Side Config PE-Front Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.72 0.67 0.77 0.74 0.72 0.70
Min 0.69 0.60 0.72 0.70 0.62 0.66
Max 0.78 0.77 0.81 0.78 0.78 0.75
Data Source IMU PE-Side PE-Front
n 41 45 41
Feature Count 14 42 42
Sample Count 3367 3595 3206
Class Distribution 2771 / 596 2876 / 719 2617 / 589
ML Model k-NN
Evaluation Type T4-LMSO
Class Count 2
RPE Thresholds 3–14 / 15–20
Smote Count 0
Test Ratio ∼20%
Test Set Count (k) 10
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5.7 Oversampling

Table 5.6 shows k-NN models trained with oversampled data and different over-

sampling techniques (see also Section 4.4.4). All trained models with oversampled

data achieved lower average accuracy and macroF1 scores. SMOTE-INTRA, which

augmented data for each subject separately, achieved the highest average accuracy

and macroF1 score among the oversampled configurations.

Tab. 5.6.: Results of k-NN models with different oversampling settings.

SMOTE-NONE Config SMOTE-INTER Config SMOTE-INTRA Config SMOTE-BOTH Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.77 0.74 0.70 0.64 0.71 0.68 0.62 0.58
Min 0.75 0.70 0.64 0.59 0.66 0.64 0.54 0.51
Max 0.81 0.78 0.74 0.70 0.74 0.74 0.68 0.67
Smote Count 0 360 360 360
Smote Type - Inter-Subject Intra-Subject Inter-/Intra-Subject
Class Distribution 2986 / 609 3285 / 670 3285 / 670 3285 / 670
Sample Count 3595 3955 3955 3955
Smote k-NN 3
ML Model k-NN
n 45
Data Source PE-Side
Evaluation Type T4-LMSO
Feature Count 42
Class Count 2
RPE Thresholds 3–14 / 15–20
Test Ratio ∼20%
Test Set Count (k) 10

5.8 Feature Sets

The following classification results were based on different feature sets and different

data sources (IMU, PE-Side, or PE-Front).

5.8.1 IMU Features

Table 5.7 shows k-NN models trained with different numbers of features based on

IMU data. KINEMATIC was based on features from accelerometer data, ANGLE

was based on the gyroscope data. KINE-ANGLE was a combination of KINEMATIC

and ANGLE. KINEMATIC achieved the lowest average accuracy and macroF1 scores.

ANGLE achieved a slightly higher average accuracy (0.73) than KINE-ANGLE (0.72),

146 Chapter 5 Results



Tab. 5.7.: Results of k-NN models with different IMU feature sets.

KINEMATIC Config ANGLE Config KINE-ANGLE Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.64 0.61 0.73 0.65 0.72 0.67
Min 0.57 0.55 0.68 0.57 0.69 0.60
Max 0.75 0.71 0.82 0.77 0.78 0.77
Feature Count 7 7 14
ML Model k-NN
n 41
Data Source IMU
Evaluation Type T4-LMSO
Class Count 2
RPE Thresholds 3–14 / 15–20
Class Distribution 2771 / 596
Sample Count 3367
Smote Count 0
Test Ratio ∼20%
Test Set Count (k) 10

but a wider minimum and maximum range. KINE-ANGLE achieved the highest

macroF1 scores (0.67).

5.8.2 PE-Side Features

Table 5.8 shows k-NN models trained with different numbers of features based on

data from PE-Side. SHOULDER, HIP and KNEE were each based on the joint velocity

and joint angle velocity from the respective joint. KINEMATIC was based on velocity

data for shoulder, hip, and knee joint combined. ANGLE was based on joint angle

data for shoulder, hip, and knee joint combined. KINE-ANGLE was a combination

of KINEMATIC and ANGLE. Of the three joints, SHOULDER achieved the highest

Tab. 5.8.: Results of k-NN models with different PE-Side feature sets.

SHOULDER Config HIP Config KNEE Config KINEMATIC Config ANGLE Config KINE-ANGLE Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.78 0.74 0.75 0.70 0.75 0.70 0.78 0.74 0.81 0.78 0.77 0.74
Min 0.72 0.70 0.70 0.63 0.67 0.66 0.75 0.69 0.76 0.73 0.72 0.70
Max 0.83 0.79 0.79 0.75 0.80 0.76 0.81 0.78 0.85 0.83 0.81 0.78
Feature Count 14 14 14 21 21 42
ML Model k-NN
n 45
Data Source PE-Side
Evaluation Type T4-LMSO
Class Count 2
RPE Thresholds 3–14 / 15–20
Class Distribution 2876 / 719
Sample Count 3595
Smote Count 0
Test Ratio ∼20%
Test Set Count (k) 10

average accuracy (0.78) and macroF1 score (0.74). HIP and KNEE achieved similar

values. ML models trained with features from KINEMATIC or ANGLE only, performed
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worse than models trained with a combination of both. ANGLE achieved the highest

overall average accuracy (0.81) and macroF1 score (0.78). KINE-ANGLE performed

slightly worse than SHOULDER.

5.8.3 PE-Front Features

Similar to PE-Side, ML models were trained for PE-Front. Table 5.9 shows k-NN

models trained with different numbers of features based on data from PE-Front.

Of the three joint, SHOULDER and HIP achieved the highest average accuracy and

Tab. 5.9.: Results of k-NN models with different PE-Front feature sets.

SHOULDER Config HIP Config KNEE Config KINEMATIC Config ANGLE Config KINE-ANGLE Config
Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1 Accuracy macroF1

Average 0.77 0.71 0.77 0.71 0.74 0.72 0.75 0.71 0.75 0.70 0.72 0.70
Min 0.69 0.61 0.72 0.64 0.64 0.67 0.70 0.64 0.71 0.63 0.62 0.66
Max 0.82 0.79 0.80 0.76 0.81 0.76 0.80 0.76 0.79 0.74 0.78 0.75
Feature Count 14 14 14 21 21 42
ML Model k-NN
n 41
Data Source PE-Front
Evaluation Type T4-LMSO
Class Count 2
RPE Thresholds 3–14 / 15–20
Class Distribution 2617 / 589
Sample Count 3206
Smote Count 0
Test Ratio ∼20%
Test Set Count (k) 10

macroF1 scores with slightly different minimum and maximum values. KINEMATIC

and ANGLE performed almost the same and achieved slightly lower average accuracy

and macroF1 scores than SHOULDER or HIP. KINE-ANGLE achieved the lowest overall

average accuracy and macroF1-score.

5.8.4 Comparison of IMU, PE-Side, and PE-Front

On average, SHOULDER, HIP and KNEE achieved similar average accuracy (0.76)

and macroF1 scores (0.71). ANGLE results for average accuracy (0.81) and macroF1

score (0.78) of PE-Side were notably higher than PE-Front (0.75 and 0.70). Contrary

to IMU, PE did not achieve the best performance with a combination of KINEMATIC

and ANGLE.
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5.10 Incremental Number of Subjects
This section examines the evaluation results of ML models for an increasing number

of subjects. Box-and-whisker diagrams were utilised for visualisation. First, the

construction of the test sets and the diagram are briefly explained.

5.10.1 Test Sets Construction

Table 5.11 shows an example of how the first 4 test sets were constructed with

k = 10 folds for different numbers of subjects (n) to achieve a constant test ratio of

about 20%. The aim was to allow more comparable evaluation of the ML models

for different n by using training and test sets with data from mostly the same

subjects. Experiments also indicated that more folds than k > 10 had little effect on

classification performance.

Tab. 5.11.: Example of constructing 10 test sets for different n. Each row contains the test
sets for a particular n. Each column represents 1 of the 10 test sets (folds). The
values in the cells are the subject IDs from which the test data are taken.

Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5 Test Set 6 Test Set 7 Test Set 8 Test Set 9 Test Set 10
n=5 39 31 21 27 11 - - - - -
n=8 39, 31 31, 21 21, 27 27, 11 11, 13 13, 28 28, 34 - - -
n=13 39, 31, 21 31, 21, 27 21, 27, 11 27, 11, 13 11, 13, 28 13, 28, 34 28, 34, 24 34, 24, 2 24, 2, 46 2, 46, 40
n=18 39, 31, 21, 27 31, 21, 27, 11 21, 27, 11, 13 27, 11, 13, 28 11, 13, 28, 34 13, 28, 34, 24 28, 34, 24, 2 34, 24, 2, 46 24, 2, 46, 40 2, 46, 40, 18

5.10.2 Box-and-Whisker Diagram

The box-and-whisker diagram1 shows the accuracy or macroF1 scores on the y-axis

and the number of subjects used to train the ML model on the x-axis. Each of these

models was tested with 10 test sets (k-folds). The minimum, maximum, mean, and

median for accuracy and macroF1 score were computed based on the results of these

test sets. The metrics are presented as normalised percentages ranging from 0 to 1

in the diagram. Additional summary statistics across all n results are displayed in

the bottom right corner of the diagram. Below this are the constant settings used to

train each model.

The blue boxes in the diagram represent the interquartile range (IQR), which is

the range between the first quartile (Q1, the 25th percentile) and the third quartile
1https://de.mathworks.com/help/stats/boxplot.html
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(Q3, the 75th percentile). This range contains the middle 50% of the data. The red

line within a blue box represents the median (the 50th percentile) of the data set.

The plotted whisker extends to the most extreme accuracy or macroF1 score.

For T4-LMSO evaluation, the vertical grey dotted lines indicate changes in the

number of subjects used for each test set (fold) as described in Section 5.10.1.

The variance coefficients and entropy (min-max normalised) were plotted in the

diagram as dashed curves to assess the variability of the data. These metrics were

divided into "Kinematic", referring to acceleration for IMU or joint velocity for PE,

and "Angle", referring to angular velocity for IMU or joint angles for PE. They were

computed on the entire raw data set based on the current number of subjects.

5.10.3 n Models with T4-LMSO Evaluation

Figure 5.3 shows the box-and-whiskers diagram with macroF1 scores for k-NN mod-

els, all trained with the same settings but with different number of subjects (see

Figure S.1 for the accuracy results in the Appendix). The range of results (height of

boxes and whiskers) decreased as n increased. The range at n=45 is considerably

lower than the range of models with n<38. Furthermore, the range decreased

abruptly when the number of subjects in the test set was increased by one. The

medians (red lines) converged slowly around 0.72 as n increased. The variance

coefficients and entropies increased only slightly with increasing n, except for the

angle entropy which showed erratic values.

5.10.4 n Models with T3-LOSO Evaluation

Figure 5.4 illustrates the macroF1 scores using identical parameters, but with T3-LOSO

evaluation. Unlike T4-LMSO, where the range between the minimum and maximum

scores decreased as n increased, the range remained relatively constant for the

10 test sets in T3-LOSO evaluation. From n=11, however, there was a noticeable

increase in the range, which remained almost unchanged up to n=45.
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5.10.5 n Models with T2-LNSO Evaluation

Figure 5.5 shows the macroF1 scores using T2-LNSO evaluation with 5-fold cross-

validation. The minimum and maximum macroF1 scores are almost identical to the

median, which is why the boxes are only visible as horizontal straight lines. The

performance increases from around 80% at the beginning to 88% at n=16, after

which it fluctuates between 85% and 89%.
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Discussion 6
This chapter analyses the results of the case study presented in Chapter 5. By

addressing key considerations such as evaluation types, imbalanced data, data

augmentation, and model generalisability, this chapter contributes to a deeper

understanding of the complexities inherent in exercise fatigue detection with small

data.

Section 6.1 presents a comparative analysis of ML models trained on either

IMU or PE data. Section 6.2 investigates the generalisability of fatigue detection

ML models in regard to different metrics, evaluation types, imbalanced data sets,

and oversampling techniques. Section 6.3 discusses statements made in related

works about generalisability. Section 6.4 discusses barriers to the development of

generalisable exercise fatigue detection ML models and potential solutions.

6.1 Comparison of IMU and PE

The ML models trained on IMU and PE data sets showed similar classification

performance (see Table 5.5). The identical class distributions in both data sets

facilitated a comparative analysis. However, it is important to note that while

identical class distributions help, they do not guarantee that the data sets are

comparable in all respects. Other factors such as feature space, data quality, or

underlying data transformation processes could still introduce bias.
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Performance in Relation to Data Source

While IMU and PE-Front achieved an average accuracy of 0.72 (macroF1 scores:

IMU 0.67 and PE-Front 0.70), the PE-Side models performed better (accuracy

0.77 and macroF1 score 0.74), probably due to the clearer visibility of joint angle

changes from this perspective during squats. These results suggest that PE is a viable

alternative to IMU, especially where mobility, privacy, and camera limitations are not

critical. PE also offers potential advantages over IMU, including richer information

(e.g., joint angles or interaction detection) and faster setup. While it is possible to

detect interactions or joint angles using multiple IMUs, such systems often require

calibration and more complex setup as the sensors need to be positioned accurately

beforehand (see Figure 6.1).

Fig. 6.1.: Preliminary tests with four IMUs placed on the abdomen, sternum and both
shoulders, plus two marker-based trackers.
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Performance in Relation to Feature Sets

The performance of different feature sets for IMU and PE was investigated.

IMU: In the case of IMU, a model trained with features from both integrated sensors

(accelerometer and gyroscope) achieved an average accuracy of 0.72 and macroF1

score of 0.67 (see Table 5.7). Models trained with gyroscope features alone achieved

a slightly higher average accuracy of 0.73, but with a wider range between the

minimum and maximum values. This suggests that the combined feature set of

accelerometer and gyroscope can provide a more stable performance.

PE: In the case of PE, separate feature sets were examined for the shoulder, hip, and

knee. For PE-Side, the shoulder-based feature set showed the highest classification

performance with an average accuracy of 0.78 and a macroF1 score of 0.74 (see

Table 5.8). Conversely, for PE-Front, the shoulder and hip-based features were

the best, with the hip having a narrower range between minimum and maximum

values, resulting in an average accuracy of 0.77 and a macroF1 score of 0.71 (see

Table 5.9).

It is interesting to note that the features of the knee joints did not produce the best

results, even though they appear to be the most relevant for squats. As far as fatigue

is concerned, the shoulder and hip joints are more supportive for the model, possibly

because the movement in these joints changed more with increasing fatigue.

ML models trained with features derived from the joint angles of the shoulder,

hip, and knee from the PE side achieved the best overall performance. In contrast

to the IMU, a combination of kinematic and angle features resulted in slightly

poorer performance, although the range between the minimum and maximum

values remained consistent. These results suggest that the side view and joint angles

provided the most relevant information for squat fatigue detection.
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Conclusion

The comparative analysis suggests that both IMU and PE data can effectively support

squat fatigue detection. PE-based models, particularly those using side view data,

outperform IMU models in terms of classification accuracy and macroF1 scores. The

difference may be due to the changes in joint angles that are best captured by PE-Side

during squats. While this case study focused on squats, the potential applicability of

PE to other exercises warrants further investigation.

Another possible avenue for further research could be the fusion of IMU and PE

data to potentially improve classification performance or robustness to overcome

their respective limitations. However, it is questionable whether this approach is

feasible in real world scenarios as fixed cameras contradict the mobility of wearable

IMUs.

6.2 Pitfalls of ML with Small Data

The following sections describe the pitfalls of individual-based ML with small data

that have been identified based on the literature and the case study. References to

appropriate strategies described in the Fatigue Recognition Chain are provided at

the end of each pitfall.

6.2.1 Pitfalls based on the Literature

Based on the literature review (see Chapter 2), the following potential pitfalls in ML

with small data have been identified.

Inadequate ML with Small Data

ML often performs poorly on small data sets [115]. ML algorithms and traditional

data mining processes typically require a large amount of data to train the algorithm-
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specific model [226]. ML, especially deep learning, can effectively learn with big

data sets. However, it cannot effectively learn with small data sets due to various

problems such as overfitting, noise, outliers, and sampling bias, which can render

the learned model virtually useless [204]. ML can learn to replicate data bias, and

worse, can sometimes amplify the bias [25] – and a small data set is statistically

more likely to be biased. Since exercise fatigue detection is based on small data sets,

it is an open question whether ML is the right tool at all, especially since it often

lacks explainability.

See also 3.6.8 Sample Complexity, Sample Variability, Sample Size, and Sample Bias.

Inadequate Sample Selection / Complexity

Small data sets may not capture the full range of variation in the data. When the

group of subjects is highly diverse, training a generalisable model can be challenging.

To address this, Kathirgamanathan et al. [191] used clustering to group similar

subjects. This allows comparable ML models to be trained for each group, potentially

improving homogeneity at the cost of smaller training sets per group. Rather than

trying to fix an inhomogeneous group afterwards, it is probably better to define

a clear target group or target application and then estimate the complexity of the

samples and the amount of data required in advance.

See also 3.1.6 Sample Selection and 3.6.8 Sample Complexity and Sample Variability.

Inadequate Research Design

The intensity of the exercise can influence the onset of fatigue. For example, if the

exercise intensity is not appropriate, a timed exercise may end before the subject

begins to feel fatigued [102]; in a heterogeneous group this is likely to lead to

imbalanced data sets.

See also 3.1 Step 1: Foundational Characteristics.
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Inadequate Sensor Selection

Sensor selection and placement can have a considerable impact on model perfor-

mance [247]. The choice of sensors and their placement should be tailored to the

specific exercise being studied.

See also 3.1.5 Sensor Selection.

Inadequate Feature Selection

It is possible to use features that are not relevant, or similar features that do not

extend each other. However, the number of features should generally be reduced to

the most relevant [281, 308].

See also 3.4.1 Feature Dimensionality, 3.4.2 Feature Extraction, 3.4.3 Feature Transfor-

mation, 3.4.4 Feature Selection, and 3.4.6 Feature Normalisation.

Inadequate ML Model Complexity

Some custom ML (deep learning) models proposed in the related works appear to

be complex, lack explanatory power, and generalisability, given that they have been

tested on a small data sets [75].

See also 3.6.8 Model Complexity.

6.2.2 Pitfalls based on the Case Study

Based on the results of the case study (see Chapter 5), the following potential pitfalls

of ML with small data have been identified.

Direct comparisons of ML models trained on different data sets can be challenging.

To facilitate a more reliable assessment of generalisation, the models in the case

study were trained and tested on similar data sets with comparable subjects and

class distributions (see section 5.10.1). This helps to isolate the effects of the ML

methods themselves, minimising the influence of data-related factors. It is important
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to note that this approach is not without limitations. There may still be subtle

differences between the data sets that can affect model performance. Furthermore,

the ML models presented in Chapter 5 are mainly based on k-NN. However, similar

results obtained with other models.

Metrics

Accuracy and macroF1 scores should be taken with caution, as shown for the k-NN

and SVM models in Section 5.2. The SVM model achieved a higher accuracy score

(0.80 vs 0.77), but its macroF1 score was lower (0.73 vs 0.77). The use of accuracy

alone would not provide a sufficient assessment of the generalisability of the ML

model, especially due to the presence of imbalanced classes [355, 204, 25]. 21 of

the 95 related works relied only on accuracy as a measure (see Section 2.4.2).

In contrast, the NB model achieved higher macroF1 scores than accuracy (see

Section 5.2). When a model achieves high precision and recall for the minority class,

it may result in higher macroF1 scores compared to accuracy. This is probably due to

the class imbalance in the data set, with fewer samples in the fatigue class. While

the model may perform well in predicting the majority class, it may struggle with the

minority class, leading to misleading performance results. Accuracy in this case does

not take into account class imbalances and may not reflect the true performance of

the model.

As shown in the confusion matrices in Figure 5.1, the SVM models sometimes

failed to detect the fatigue class for some test sets. This highlights the importance

of confusion matrices in identifying challenges in predicting specific classes for ML

models. To achieve a more comprehensive evaluation, multiple metrics such as

confusion matrix, specificity, precision, and recall should be used1.

Some related works concluded that their trained ML models did not overfit and

thus generalised, but this assumption may be inaccurate, especially if details about

1Multiple metrics were computed and analysed for all models in this thesis, although accuracy and
macroF1 scores are primarily presented.
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the distribution of classes and samples are unknown. In addition, most of the related

works that included confusion matrices presented each class as a percentage rather

than an absolute number of samples, which can be misleading since a score of, e.g.,

83.3% in one class could be based on a total of 6 samples, which is probably not

sufficient for generalisation.

See also 3.1.8 Unit of Analysis, 3.6.1 Classification Metrics, 3.6.2 Regression Metrics,

and 3.6.6 Cross-Validation.

Oversampling

SMOTE was used as an oversampling technique to generate artificial samples for the

minority class(es) to mitigate class imbalances, potentially leading to ML models

that generalise better across classes. However, the oversampling results presented in

Section 5.7 showed reduced average accuracy and macroF1 scores; higher oversam-

pling ratios corresponded to even worse performance of the ML models. This was

observed for all ML methods.

The poorer model performance may be due to the overall scarcity of data for the

minority classes, and the available data may not adequately represent all potential

variations. Another potential problem is that SMOTE artificially augments the data

across all dimensions of the feature vector, potentially creating samples that do

not occur naturally. For example, if only some features vary within the minority

class, SMOTE will still generate samples where all features are altered, resulting

in artificial samples that do not reflect the original data set. This could introduce

additional noise, making it harder for the model to identify patterns reliably.

In addition, it is suspected that the boundary between fatigue and non-fatigue

classes in the data is narrow, implying that even minimal changes may be decisive

and that SMOTE makes too many changes. A priori feature dimensionality reduction

or a more intelligent oversampling algorithm that compares the changes of multiple

samples with respect to features of the same class (feature relevance) and only
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changes relevant features may be worth exploring (see also Pradipta et al. [279] and

Fernández et al. [117]). However, another plausible explanation for the failure of

synthetic samples to accurately represent the underlying data could be the presence

of complex patterns or non-linear relationships within the minority class.

See also 3.3.3 Data Augmentation and 3.4.5 Feature Augmentation.

Intra- vs Inter-Oversampling

The effects of intra-SMOTE (using data from the same subject) versus inter-SMOTE

(using data from different subjects) on model performance was evaluated, as shown

in Section 5.7. Intra-SMOTE achieved better classification performance, with an

average accuracy of 0.71 and a macroF1 score of 0.68, compared with 0.70 and 0.64

for inter-SMOTE. A combined approach yielded the lowest performance with an

accuracy of 0.62 and a macroF1 score of 0.58.

It was hypothesised that intra-SMOTE may produce more realistic samples, as they

originate from the same individual, whereas inter-SMOTE uses data from multiple

subjects and may introduce less realistic synthetic samples. However, due to the

issues described in the previous section, this was not investigated further, although

it may be worth exploring in future research.

See also 3.6.8 Intra- and Inter-class Variability.

k-Fold Cross-Validation

Due to small data, some subject-based folds may not include all classes due to

limited class diversity within individual subjects, which could result in a division by

zero when calculating F1 scores. To achieve a robust evaluation, the partitioning

function should ideally generate stratified folds that include all classes and maintain

a balanced class distribution (see for example Bustos et al. [58]). Such issues were

rarely mentioned in related works, although this is a likely phenomenon when

working with small data.

See also 3.6.6 Cross-Validation.
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Evaluation Types

The chosen evaluation type affects the performance of the ML models, as shown in

Section 5.5. It is therefore important to clearly describe how ML models have been

evaluated, which has not always been the case in the related works (see Table B.4 in

the Appendix). In the case study, the macroF1 score was 0.87 for T2-LNSO, 0.67 for

T3-LOSO, and 0.77 for T4-LMSO.

T2-LNSO T2-LNSO evaluation is not suitable for individual-based ML. Although

a model evaluated with T2-LNSO is tested with unknown data, it is not evaluated

with data from unknown subjects. This means that the trained model has at least

some knowledge of each subject in the test set. In the case study, T2-LNSO achieved

the highest scores with an average accuracy of 0.88 and macroF1 0.87.

T3-LOSO T3-LOSO evaluation is suitable, but the test ratio is often low, especially

the higher the number of subjects in a study (in the related works, a median test ratio

of 15% was used. See Section 2.4.2). In the case study, 48 subjects were recruited,

which corresponds to a test ratio of 2.17% with T3-LOSO. When using T3-LOSO, it is

essential to create a separate test set for each subject (k-fold) and then compute the

average performance across all test sets (folds). The overall performance of an ML

model cannot be fully reflected by using only a single subject for evaluation. Some

related works did not clearly specify whether the reported results were averaged

over all test sets or not.

In the case study, the macroF1 scores for individual subjects ranged from 0.21 to

0.96. The high variability also led to a lower average macroF1 score of T3-LOSO

(0.67) compared to T4-LMSO (0.77). When T3-LOSO is used, the range of results for

individual folds/subjects should also be reported, as high variability may indicate

poor generalisability.

T4-LMSO For T4-LMSO evaluation, test sets should include a sufficient number of

subjects to achieve an appropriate test ratio. As described above for T3-LOSO, it is

recommended to calculate average metrics across multiple test sets (k-folds) and
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to analyse the results of individual test sets for variability. While T4-LMSO offers

advantages in terms of higher test ratios, it does not fully reflect real world scenarios

where predictions are typically made for individual subjects rather than groups.

See also 2.4.2 Evaluation Types, 3.6.7 Evaluation Types, and 6.2.2 Evaluation Types.

Number of Classes

Accuracy and macroF1 score decreased with more classes, as shown in Section 5.4.

The more classes, the less sample data was available for each class. The choice

of how many classes to use depends on how the samples are distributed across

the classes. With limited samples per class, the number of feasible classes for

classification decreases, as there may not be enough samples to adequately train

each individual class. In addition, the ability to discriminate between classes plays

a critical role. In the case study, it appeared to be a challenge for the ML models

to discriminate between multiple classes of fatigue. As shown in Table 5.2), the

macroF1 score decreased as the RPE threshold was shifted downward for the binary

model (15→0.83, 14→0.74, 13→0.62, 12→0.60). This threshold shift also changed

the distribution of the samples by moving more samples from the majority class to

the minority class, but the models still struggled to discriminate the classes. This

difficulty may also be due to the chosen hyperparameters, features, and the study

design. Regarding the study design: Fatigue may accumulate gradually and increase

sharply only towards the end of an exercise, suggesting that there may be only

two practically distinguishable classes in the sample data. A different study design

may be more appropriate for effective multi-class classification, highlighting the

importance of study design to the outcome.

See also 3.6.8 Sample Variability and 3.4.5 Imbalanced Classes and Feature Augmenta-

tion Approaches.
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Regression

Regression could serve as a potential alternative to classification (see also “The

dangers of categorical thinking” by Langhe and Fernbach [221]), bypassing the need

for arbitrary thresholds. Furthermore, determining an exact RPE may not be critical

for certain applications, as RPE are inherently subjective. For example, a model that

predicts values such as 14.3 or 16.1 instead of the actual subjective value of 15 may

still be acceptable. However, regression does not solve the problem of imbalanced

data and generalisability.

Among the evaluated regression models, as shown in Section 5.9, the Gaussian

model achieved the lowest MAE value of 2.57, based on an RPE scale of 6 to

20. However, Figure 5.2 shows notable deviations of the model across all RPE,

particularly at the boundaries – below 9 and above 14 – where the number of

samples is sparse. Consequently, the ability of the model to reliably predict RPE in

these regions may be limited, including its generalisability.

See also 3.2.4 Labelling and 3.6.2 Regression Metrics.

Incremental Number of Subjects

It has been shown that increasing the amount of data can help to improve the

generalisability as well as the overall performance of the model [166]. In order

to assess the generalisability of the ML models, this section discusses how their

performance evolved with increasing n (see Section 5.10). To do this, k-NN models

were trained and tested with different numbers of subjects on PE-Side data – similar

trends were observed for other models. A consistent test rate of about 20% was

maintained (see Section 5.10.1). As n increased, new subjects were gradually

introduced and the overall data distribution changed slightly; the higher the n, the

less change there was. However, complete consistency between data sets was not

possible, so direct comparisons of models should be treated with caution due to

individual data set differences.

168 Chapter 6 Discussion



Variability Figure 5.3 illustrates the evaluation with T4-LMSO. It shows how the

IQR as well as the minimum and maximum range of macroF1 scores across the 10 test

sets gradually decreased as n increased. This convergence resulted in a narrower

range of macroF1 scores as n increased. One factor contributing to this trend was the

gradual increase in the number of subjects per test set. For test sets consisting of

only a few subjects (less than 8 subjects), the macroF1 scores showed fluctuations,

sometimes exceeding 10 to 25 percentage points. This variability highlights the

strong dependence of fatigue detection performance on individual subjects and the

distribution of their respective samples. Moreover, some subjects’ samples appear to

be more distinct, leading to sometimes large variations in model performance when

a new subject is added.

Conversely, as the number of subjects in the test sets increased (in this case to

at least 8), the consistency of the performance of the trained models improved.

However, for T3-LOSO evaluation (see Table 5.4), even with a larger sample size

(n=45), the range of IQR and min-max performance of the trained ML models

remained substantially large. This raises questions about the practical generalisability

of a model trained with n=45 when applied to individual predictions. These

observations underscore the importance of examining the possible range across k

test sets, rather than relying on an accumulated result from multiple test sets, or

even from one specific test set (e.g., by cherry-picking the best performing test set).

Such details should be documented to improve the reproducibility and transparency

of research results.

Overall, the more subjects are used as a test set, the lower the variability of the

predictions, as shown in Figure 5.3, because outliers in the test set become less

significant. For this reason, the test ratio is important and should not be too small,

as is typically the case with T3-LOSO evaluation, leading to models that are sensitive

to particular subjects. Unfortunately, T4-LMSO evaluation is not easily transferable

into practice, because usually only the fatigue of one person needs to be predicted,

not that of a group of people. The dilemma for individual fatigue detection is that
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T3-LOSO evaluation is required, but inevitably has a low test ratio, leading to high

variability with small data. It remains an open question whether this variability will

decrease with a very large number of subjects (and thus a very large training set),

and how large it needs to be.

In contrast, for T2-LNSO evaluation (see Table 5.5), the minimum and maximum

macroF1 scores (variability) were almost identical to the median, while performance

increased from around 80% at n=5 to 88% at n=16, after which it fluctuated

between 85% and 89%. This shows that even small amounts of data are sufficient

to achieve relatively high scores with T2-LNSO evaluation.

Homogeneity The variance coefficient and entropy were also computed from the

raw data for each incremental n (see Section 5.10). These metrics generally in-

creased slightly with increasing n, but were relatively stable without major fluctua-

tions. An exception was the entropy of the joint angles, which fluctuated to some

extent up to n=30, until it appeared to stabilise around n=45. Since the variance

coefficient of the joint angles remained relatively constant, it is assumed that the

noise in the raw data was the reason for the increased entropy.

These metrics can be useful in estimating how homogeneous the subjects were as

a group: the more consistent they are for each increment of n, the more likely the

subjects are homogeneous. Homogeneous groups can also increase the likelihood

that all possible variation can be captured with small data sets. Inhomogeneous

groups are more likely to lead to greater variation in model performance, which will

then depend on the individual subject(s).

Closely related to homogeneous groups is the study design, which includes sample

and exercise selection. The quality of exercise performance can vary from person to

person and often deteriorates due to fatigue (see also Appendix O). Individuals may

compensate for difficult exercises with avoidance movements. To achieve comparable

exercise performance, changes in technique and form should be monitored and

corrected if necessary. In general, it is important to make sure that the exercises are
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challenging but not too difficult. If subjects can be divided into subgroups, such as

slow and fast fatiguing, this may indicate that the target group has not been well

specified or that a larger data collection is required. Defining clear limitations is

necessary to carefully balance sample variability, exercise complexity and sample

size while minimising bias (see also Section 3.6.8).

See also 3.6.3 Visualisation and 3.6.8 Underfitting and Overfitting, Sample Variability,

and Sample Size.

ML Tailoring

Overfitting is a common problem with small data sets, since most ML models can

memorise most of the data set. Tuning ML models on small data sets should be

done carefully: While hyperparameter tuning and feature engineering can improve

performance and generalisation through regularisation, they can also be counterpro-

ductive if the data is biased or unrepresentative. Excessive tuning on small data can

also lead to fragile models that do not overfit and perform well on the training and

test data but struggle to generalise to new data. This is particularly likely for models

trained in controlled laboratory environments or on unrepresentative test subjects,

which may not fully represent real world conditions.

See also 3.4.1 Feature Dimensionality, 3.5.3 ML Training, 3.6.4 Optimisation, and

3.6.8 Model Complexity, Sample Complexity, Sample Size, and Sample Bias.

6.3 Generalisability Myths

This section discusses statements found in the related works about generalisability

of trained ML models (see also Table B.7 in the Appendix). The following statements

are sorted by frequency, with the most frequently mentioned first.

Myth 1: Cross-validation reduces overfitting and/or assesses generalisability. Cross-

validation by itself does not reduce overfitting, but it can help to identify overfitting.
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To reduce overfitting, regularisation techniques (such as L1 or L2), dropout (for

neural networks), or pruning (in decision trees) are typically used. Cross-validation

does not guarantee generalisation to new data distributions. If the training data

doesn’t adequately represent real world scenarios, cross-validation results can still

be misleading. If there is a systematic bias in the data set, cross-validation won’t nec-

essarily detect it. While cross-validation can help to identify overfitting, it does not

inherently diagnose the cause of overfitting, e.g., data quality and model complexity.

Cross-validation can also introduce bias in small data sets due to a low number of

test samples, affecting the stability of the performance estimates.

See also 3.6.6 Cross-Validation and 3.6.8 Generalisation.

Myth 2: Leave-one-subject-out evaluation assesses or ensures overfitting and/or

generalisation. T3-LOSO can assess overfitting and provide an estimate of model

generalisation, but it does not prevent or guarantee it. If the model is too complex

or overparameterised, it may still overfit. T3-LOSO often has a low test ratio and

high variance in its estimates, especially with small data sets, which can lead to an

unstable measure of generalisability.

See also 3.6.7 Evaluation Types, 3.6.8 Generalisation, and 6.2.2 Evaluation Types.

Myth 3: Feature selection/reduction prevents overfitting and/or improves generalis-

ability. While feature selection can help mitigate overfitting by reducing model

complexity and dimensionality, it does not prevent overfitting. The degree to which

overfitting is prevented depends on several factors, including model architecture,

regularisation techniques, and the size and quality of the training data. Feature

selection can improve generalisation by focusing on the most relevant features, but

it can also reduce generalisation if the selected features are overly tailored to a

small or biased data set, leading to poor performance on unseen data. Furthermore,

the impact of feature selection varies between different ML models. For example,

linear models (e.g., linear regression) are particularly sensitive to irrelevant or noisy

features, making feature selection more important. On the other hand, tree-based
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models (e.g., random forests) tend to be more robust due to their inherent ability

to rank and ignore less important features through splitting criteria and feature

importance measures.

See also 3.4 Feature Engineering and 3.6.8 Generalisation.

Myth 4: The use of ML method XYZ would improve generalisation. Generalisation

is influenced by several factors, including the architecture of the model, the size, bal-

ance, and quality of the training data, regularisation techniques, data augmentation,

and cross-validation. While some ML methods, such as RF and SVMs, have built-in

mechanisms to mitigate overfitting, these methods are not infallible. Overfitting can

still occur, especially if the training data is small or unrepresentative.

See also 3.5.1 ML Method Selection and 3.6.8 Generalisation.

Myth 5: RF provides robustness to small data sets. RF benefits from a large amount

of data to build many different trees, and with small data sets the randomness in

bootstrapping can lead to instability or redundant trees that do not improve model

performance. Moreover, RF can struggle with small data sets because the DT are

constructed by splitting data recursively, which requires sufficient data to avoid

overfitting at each split – the similar problem exists with k-fold cross-validation.

Therefore, RF performance can be sensitive to hyperparameters, such as the number

of trees, maximum depth, minimum samples per split, minimum samples per leaf,

maximum features, and splitting criterion. RF can be effective on small data sets if

the hyperparameters are carefully tuned.

See also 3.5.1 ML Method Selection and 3.6.8 Generalisation.

Myth 6: Bagging reduces amount of variation in a data set and reduce the amount

of overfitting. Bagging creates multiple models by training them on different boot-

strapped subsets of the original data set, where each subset is sampled with replace-

ment. This can increase model diversity, especially for high variance models such

as DT, because each model is trained on a slightly different data set. By averaging

the predictions of multiple models, bagging can reduce overfitting by reducing the
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variance of individual predictions and improve overall generalisation performance.

However, while bagging does not reduce the variation in the data set itself, it does

use variation of multiple models to increase the robustness of the ensemble.

See also 3.6.5 Bootstrapping and 3.6.8 Generalisation.

Myth 7: Splitting data into training and test set prevents overfitting problems and

improves generalisability. Splitting the data into training and test sets allows over-

fitting to be detected and provides a way to assess the generalisability of a model.

However, it does not inherently prevent overfitting or improve generalisation.

See also 3.5.2 ML Strategy and 3.6.8 Generalisation.

Myth 8: A minority fatigue class was removed to improve generalisability. Remov-

ing a minority fatigue class is unlikely to improve generalisation and may lead to

bias and reduced model robustness. Instead, methods for handling imbalanced data

should be used to increase the ability of the model to generalise across all classes,

including minority cases.

See also 3.4.5 Imbalanced Classes and 3.6.8 Generalisation.

Myth 9: The model can be improved even more by including more features. Adding

more features to a model does not necessarily improve its performance and can lead

to overfitting, redundancy, and inefficiency. The quality and relevance of features,

rather than their quantity, are more critical to improving model performance and

generalisability. Feature selection or dimensionality reduction techniques should be

used to avoid adding unnecessary complexity.

See also 3.4 Feature Engineering and 3.6.8 Generalisation.

Myth 10: The training set provided to the model was representative of the entire

space of interest, so that the trained model had the ability to generalise. Ensuring

that a training set fully represents the "entire space of interest" is challenging,

especially for small data sets and complex domains such as fatigue. Training data

typically covers a limited portion of the possible input space. Generalisation depends

on factors beyond the data itself. Model complexity, regularisation techniques, and
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the presence of noise play an important role. Systematic biases in the data can also

hinder generalisation, even if the data appears to be representative. Distribution

shifts can occur if the training data differs from real-world inputs. For example, a

model trained on one age group may underperform on another. Changes in the

underlying conditions (e.g. athletes changing their training routines) can also lead

to distribution shifts. For this reason, it is important to clearly define the target

group or application for a trained ML model.

See also 3.6.8 Generalisation.

6.4 Potential Causes and Strategies

This section explores potential causes and strategies for generalisable exercise

fatigue detection with small data. Understanding the causes is a critical first step

in developing strategies for more generalisable ML models for exercise fatigue

detection.

No Big Data

Achieving a balanced data set is a challenge in fatigue research. Unlike other fields,

the nature of fatigue limits the collection of large amounts of data from fatigued

subjects, even though prolonged training sessions in a fatigued state are impractical.

Given the variation between classes, it is challenging to find an optimal balance

between recording time and inducing fatigue in most subjects, while ensuring a

gradual onset of fatigue. In addition, obtaining fatigue data requires complex and

time-consuming studies with real subjects, as opposed to big data settings where

data collection, such as logging orders from a web shop, can be done passively.

This difference highlights the complexities and limitations associated with obtaining

sufficient and representative data for fatigue research.
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Imbalances

Imbalances between classes pose an additional challenge for fatigue detection, as

there is little data available for the minority classes. In fatigue detection research,

there are often not enough samples from the minority class to adequately train the

model. For example, in a data set with one million samples and a class imbalance of

10:1, 100000 samples would still be available to train the minority class. However, if

the data set contains only 1000 samples with the same class imbalance, 100 samples

would be available to train the minority class. The number of samples is further

reduced by applying k-fold cross-validation. 15.8% of the related works treated

imbalanced data through the use of oversampling or undersampling techniques.

44,2% of the related works did not report if classes were balanced or imbalanced.

Details of sample and class distribution were also rarely provided. The following

section may explain this.

Powerful ML Tools

Fatigue is a complex concept with different definitions in different scientific fields.

To achieve that ML models for fatigue detection are developed and evaluated

effectively, collaboration between experts from different disciplines is essential. This

interdisciplinary approach can help to gain a comprehensive understanding of both

the technical and practical aspects of fatigue detection.

The widespread accessibility of ML methods allows them to be used by people

with limited experience or expertise in data science (including ML) [194, 355].

ML in human-centred computing can be performed by researchers (from unrelated

disciplines) without knowledge of the underlying data science principles [96, 148,

197]. In addition, the development of automated ML further simplifies the process

of using ML by automating many of the tasks involved, making it more accessible

to practitioners with less technical expertise [205, 11, 290]. The focus on ML in

recent years may also overshadow the importance of the underlying data science
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34.0% of the related works used T3-LOSO evaluation. However, these studies

rarely examined the generalisability of the trained models, nor did they address

the challenges posed by low test ratios or report how results varied across different

folds. The reasons for this can only be speculated, perhaps it is simply a replication

of research methods from other studies, including the lack of further investigation.

6.3% of the related works used T4-LMSO evaluation, often for the reason of a higher

test ratio.

The Game of Publications

Another contributing factor could be the constraints of publication page limits (e.g.,

in short papers), so that some researchers may prioritise literature review, results,

or discussion over a comprehensive view of the research method and evaluation.

Another reason could be that most trained ML models probably do not leave the

scientific field and may never be used in real applications, as experiments are mainly

conducted for scientific or publication purposes. From 1980 to 2014, the number of

all publications increased from one million to more than seven million per year (see

Figure 6.3). However, 72% of publications are not even cited once five years after

publication [120] and the pressure to publish leads to quantity rather than quality

[312]. In addition, studies that fail to find meaningful associations or negative

Fig. 6.3.: The total number of publications has surged exponentially over the years.
Source: Fire and Guestrin [120].
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results may be less likely to be published, leading to a potential overestimation of

the effectiveness of fatigue detection methods in the literature.

Reproducibility

Another critical issue (and cause) is the lack of reproducibility in most of the related

works; an issue generally highlighted by Peng [271] and Baker [27]. For this

reason, dissemination is promoted as a separate step in the Fatigue Recognition

Chain (see Section 3.7). Reproducibility is a critical step, as it can lead to more

robust and effective ML models by continuously questioning and validating the

underlying assumptions and methodologies. The general scientific method is based

on falsification which involves actively seeking to disprove existing hypotheses

and theories, leading to a more robust understanding of a model. In the context

of exercise fatigue detection, this means continually testing and challenging the

assumptions underlying the reported models, refining them based on empirical

evidence, and being open to revising or rejecting theories that do not withstand

scrutiny. According to Yarin [359], there is a need for a hypothesis-driven approach to

understand and improve ML tools. A fundamental question is how many publications

are needed to demonstrate the ability of ML to accurately detect fatigue patterns.

Vague Methods The research method, algorithms and/or evaluations are often

incompletely described, missing essential information. In a literature review, Hus-

sain et al. [162] identified a common problem of missing details in various papers,

including essential information such as time and space complexity, latency, classifier

used, and clarification on the real-time or offline nature of the proposed techniques,

highlighting the importance for authors to provide comprehensive discussions cov-

ering these aspects in their approaches. Lin et al. [233] found that the majority of

segmentation algorithms reviewed do not explicitly report segmentation accuracy,

and they recommended algorithm testing against comprehensive publicly available

data sets.
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Inaccessible Data Without access to the original data and algorithms used for ML,

it is impossible to verify reported results – however, even with all the data and

resources available, there remains a high probability that the results will not be

reproducible upon review, as highlighted in Peng [271] and Baker [27]. While

peer review is a form of quality control, it is not infallible and cannot catch every

discrepancy; its effectiveness is also highly dependent on the reviewer [182].

Public databases or benchmarks would allow researchers to test and compare their

models, as demonstrated by the online ML platform Kaggle2, which has coined the

“Kaggle Effect”, referring to the phenomenon of data scientists and ML practitioners

improving and optimising their models by participating in competitions. The Kaggle

Effect involves rapid learning, skill building, and cross-pollination of ideas. However,

it can also have the opposite effect, where ML models are tailored to a specific data

set at the expense of generalisability (as discussed in Section 6.2.2).

Another challenge to the establishment of open data and open sources is the

considerable extra effort required, especially to document and provide sufficient

metadata to properly describe the semantics of the data [75], which would also

require standards.

Lack of Standards Fatigue is a multifaceted phenomenon influenced by various

physiological, psychological, and environmental factors (see Chapter 2.2.1). Ac-

curate modelling of fatigue requires capturing these complex interactions, which

can be challenging given the limited understanding of fatigue mechanisms and

the variability of fatigue experience among individuals. The lack of standardised

protocols or benchmarks for evaluating fatigue detection models appears to lead to

inconsistencies in performance assessment. Without agreed standards, researchers

may use different methods or data sets, making it difficult to compare and validate

the effectiveness of different approaches.

2Kaggle is an online platform that hosts data science competitions where participants collaborate and
compete to create the best solutions.
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With standardised protocols in place, a systematic collection of annotated data

could be established. This would allow for the accumulation and combination of

data sets, as well as the preservation of data over time for trend analysis. This

sharing strategy could further promote collaboration, ideas, skills and data quality

[198].

6.5 Summary

This chapter presented an analysis of ML for exercise fatigue detection based on

the results of the conducted literature review and case study. It focused on the

challenges of achieving generalisable ML models. Although the focus of this thesis

is on fatigue detection during exercise, many of the challenges described are likely

to be applicable to other domains where individual-based ML is used with small

data.

Firstly, the performance of models trained on either IMU or PE data was compared.

PE-based models achieved better prediction results than IMU models. This may be

because they can capture additional information from joint angle changes. While

IMUs offer mobility, PE’s ease of setup and richer information make it a promising

alternative. The analysis also included different feature sets and showed that a

combination of accelerometer and gyroscope features gave the best performance for

IMU, while shoulder-based side-view features were most effective for PE in detecting

squat fatigue.

Secondly, statements found in the related works about the generalisability of

trained ML models with small data were discussed.

Thirdly, the possible pitfalls and their causes were explored. Misuse of ML tools:

The ease of use of modern ML methods makes it possible to train models that achieve

high performance without in-depth expertise. However, not all models that do not

overfit to the training data will generalise [363]. Model tailoring: Models tailored to
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small data sets from controlled environments, such as laboratories, may not gener-

alise well to real world scenarios. Publication pressure: The emphasis on producing

large volumes of research may lead to studies that lack detail and are difficult to

replicate, undermining the quality and reliability of the evidence. Research design

and subject homogeneity: Building generalisable models requires careful research

design and attention to subject homogeneity and sample selection. Small data sets

need to capture all possible variation, while still providing sufficient data to avoid

class imbalances. Data scarcity: The lack of large, annotated and balanced data

sets poses a significant challenge to effective model training and limits the ability of

ML models to generalise, leading to the open question of whether ML is the right

tool for small data analysis. Inadequate metrics: Accuracy alone is an inadequate

metric for evaluating the performance of ML models trained on imbalanced data sets.

Additional metrics, such as F1 score or confusion matrices, are necessary to assess

the performance of individual classes and provide a more comprehensive evaluation.

Imbalanced data: The presence of many classes combined with small data sets in

individual-based ML exacerbates the challenges of minority classes. Details such

as sample distribution among the classes are important. Regression could be an

alternative to classification to avoid thresholds for classes. Undersampling is usually

not feasible, and oversampling can introduce noise. In addition, cross-validation

can lead to imbalanced and undersampled folds. Evaluation methods: The choice

of evaluation method has a significant impact on model performance. T2-LNSO

evaluation, which is commonly used as the default method, does not adequately

represent unseen test data in individual-based ML. T3-LOSO suffers from low test

ratios and is highly dependent on the specific subject chosen for testing. T4-LMSO

mitigates the problem of low test ratios but does not accurately represent how the

model would be used in real world scenarios to predict individual fatigue.

The following strategies have been proposed to address these challenges, although

they are unlikely to be exhaustive. Future research should build on the findings and

explore further strategies.
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• Interdisciplinary research: Conduct exercise fatigue detection in collaboration

with experts from different disciplines.

• Standardised protocols: Develop consistent methodologies and evaluation

benchmarks for exercise fatigue research.

• Rigorous research practices: Prioritise quality, reproducibility, and transparency

in research.

• Open mind: Give equal weight to statistics and data science [268, 148]

• Generalisability too: Emphasise generalisability as well as model performance.

• Open science: Share open data, sources, and publications.

6.5 Summary 183





Conclusion 7
This chapter concludes this thesis. The following sections reflect on the research aim

and questions (Section 7.1), research objectives (Section 7.2), findings (Section 7.3),

limitations (Section 7.4), recommendations for future research (Section 7.5), and

conclude with a summary (Section 7.6).

7.1 Revisiting the Research Aim and Questions

The aim of this thesis is to identify and address the strategies and pitfalls of sensor-

based exercise fatigue detection using ML with small data sets for physical activities

such as exercise training in terms of generalisability (see Section 1.1). This section

revisits the research questions introduced in Section 1.1.1.

1. How to conduct research on exercise fatigue detection with ML? The Fatigue

Recognition Chain is a framework designed to provide a general guide for inter-

disciplinary researchers to conduct sensor-based exercise fatigue detection (see

Chapter 3). The framework covers an incremental process consisting of seven

adaptable steps, including fundamental characteristics, raw data collection, data

transformation, feature engineering, ML, evaluation, and sharing. Each step consid-

ers fatigue, small data, and generalisability where appropriate. To demonstrate the

applicability of the framework, a case study of squat fatigue detection based on RPE,

IMU and PE data was conducted (see Chapter 4).

2. What are common strategies and pitfalls of ML with small data? Section 6.2 and

Section 6.3 discuss several identified pitfalls, each referring to specific strategies

described in the Fatigue Recognition Chain in Chapter 3. Typical pitfalls include in-
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adequate ML with small data, sample selection, sample complexity, sensor selection,

feature selection, model complexity, metrics, oversampling, k-fold cross-validation,

evaluation types, number of classes, regression and ML tailoring, as well as various

myths, stated by related works, that certain ML techniques ensure generalisation.

3. How do small data, evaluation methods, and augmentation effect ML? Section 6.2.2

describes the various results from Chapter 5 based on the case study conducted for

this thesis. In general, the impact on model training can be substantial. Small data

sets are likely to be biased or not cover all variations, potentially leading to swingy

predictions.

Augmentation techniques (e.g. SMOTE) can address class imbalances in data sets.

By creating synthetic data for minority classes, they improve model performance

and generalisation. Oversampling also helps to maintain balanced folds in k-fold

cross-validation. However, indiscriminate oversampling can introduce noise. It’s

important to account for the complex patterns and non-linear relationships within

the minority class. Oversampling based on specific subjects promises synthetic

samples that more closely match the original data, but this needs further research.

The evaluation method has a major impact on generalisability and may be useful

for predicting fatigue in individuals (see the following question).

4. How generalisable are ML models trained on small data sets? As discussed in

Section 6.2.2, the majority of related works are based on models trained with small

data and T2-LNSO evaluation, these models are unlikely to generalise properly,

because no data from unknown subjects are used for model testing. T3-LOSO

evaluation is the second most used evaluation type, which is based on a low test

ratio and can therefore lead to unstable results depending on the subject to be

predicted, especially if the training set is based on a small data set that does not

cover all variations. For this reason, T2-LNSO models may generalise for certain

unknown subjects but not for others. The variation of model predictions for each

subject is not usually published, but this should be common practice. T4-LMSO
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evaluation can be tested with an appropriate test ratio, reducing the effect of an

individual subject on the prediction, but such models are best used to predict fatigue

in groups of people rather than in individuals.

There is an exception for T2-LNSO and T3-LOSO evaluation, where models trained

on small data can generalise well if the target group is narrowly selected, resulting

in a homogeneous target group for model training; such models can generalise to

unknown subjects if the unknown subject fits into this homogeneous training group,

i.e., the target group is defined in such a way that only certain people are eligible

for this model.

7.2 Revisiting the Research Objectives

This section briefly revisits the research objectives introduced in Section 1.1.2.

1. To review the literature on exercise fatigue detection based on sensors and ML.

Chapter 2 introduced the key concepts in this thesis: small data in Section 2.1,

fatigue detection in Section 2.2, and human activity recognition in Section 2.3. The

concepts of generalisation were provided in Section 3.6.8. A literature survey was

presented in Section 2.4 including a total of 95 related works.

2. To create a framework for sensor-based fatigue detection research with ML. The

Fatigue Recognition Chain framework consists of seven incremental steps and was

described in Chapter 3.

3. To conduct a case study with squat exercises by implementing the framework.

A case study for fatigue detection based on squat exercises was conducted with a

total of n=48 subjects (see Chapter 4).

4. To collect RPE-labelled sensor data from IMU and PE for ML analyses. The case

study collected RPE, IMU and PE data (see Chapter 4) which was used to train and

analyse various ML models (see Chapter 5).

7.2 Revisiting the Research Objectives 187



5. To investigate the ML fatigue predictions with an increasing data set. Section 5.10

presents an analysis of different models with increasing number of subjects.

6. To compare evaluation types and their effect on generalisability. Based on the

results presented in Section 5.5, the effects of each evaluation type were discussed

in Section 6.2.2.

7. To explore data augmentation techniques to improve generalisability. The pre-

diction results for models trained with oversampled data was presented in Section 5.6

and discussed in Section 6.2.2.

7.3 Findings

Various strategies and pitfalls have been discussed throughout this thesis. This

section summarises and integrates the findings of the literature review (Chapter 2),

the Fatigue Recognition Chain (Chapter 3), the case study (Chapter 4), its results

(Chapter 5), and the discussion (see Chapter 6).

IMU vs PE Both IMU and PE data are effective in supporting the detection of squat

fatigue. PE-based models, particularly those using side view data, outperformed

IMU models in terms of classification accuracy and macroF1 scores, probably due to

their ability to capture joint additional data such as joint angle changes. Although

the case study focused on squats, the potential applicability of PE to other physical

activities merits further investigation.

Limited Metrics Accuracy as the sole metric for evaluating ML models can be

misleading, especially in the presence of class imbalances. A model may show high

accuracy by correctly predicting the majority class, but fail to effectively predict the

minority class(es). Instead of relying on accuracy, a range of performance metrics

should be considered, such as F1 score (micro, macro, weighted), confusion matrices,

and other means of visualisation. This approach provides a more comprehensive
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assessment of model performance, especially when working with small data and

imbalanced data sets.

High Variability The performance of ML models can vary considerably depending

on the data distribution and individual subjects. Small data sets may not adequately

represent the full range of variation, resulting in non-overfitting models that still

struggle to generalise to data from new subjects.

Homogeneous Subjects Small data sets carry a high risk of under-representing

relevant and potential variation in the data, which can make it difficult to generalise

models to unseen data or subjects. To address this, researchers should aim for clear

target groups, which requires research designs with specific homogeneous groups to

capture as much of the range of variability as possible, even with small data sets.

For effective ML, homogeneity should be considered from the earliest stages of re-

search design. This includes careful sample selection, experimental protocol, ground

truth, as well as time and experimental conditions to control the potential variability

captured within a small data set during data collection. However, determining the

optimal balance between homogeneity, variability, and sample size is challenging,

as the resulting model should be representative of its intended application in real

world scenarios. The latter should exist and also be used to assess generalisability.

Incremental Training Data A non-overfitting ML model may not generalise beyond

the research project. Other factors, such as sample and model complexity, data

quality, bias, and representativeness also affect generalisation. Individual-based ML

models should be trained on increasing amounts of data to assess their evolving

performance. Visualising changes in performance through plots can help identify

model stability and weaknesses.

Tailored to the Data Hyperparameters and feature engineering are important factors

influencing generalisability. However, if these are not carefully tuned for small data

sets, there is a risk that models will be overly tailored to the specific data set, making

their predictions less reliable for unseen data.
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Evaluation Type Different evaluation methods lead to different results in terms of

performance. In individual-based ML, T2-LNSO often yields the highest scores, but

the generalisability is questionable because the models are trained on data from

each subject. For this reason, T3-LOSO or T4-LMSO should be preferred. However,

T3-LOSO shows a high degree of variation depending on which subject is chosen

as the test person. In addition, the test ratio for T3-LOSO is only 1/n. Averaged

results from all subjects (folds) should be used, but the variability of the folds should

also be reported. T4-LMSO uses a higher test ratio and is less prone to performance

variability, but T4-LMSO does not reflect the way an application is used: fatigue

detection in a single person.

Imbalanced Classes Small data sets often have imbalanced class distributions,

especially in fatigue research. ML models may perform well on majority classes

but poorly on minority classes, skewing overall performance metrics. In addition,

partitioning the data into k-folds for cross-validation can lead to further skewed

distributions. It is also important to verify that there are sufficient samples in each

fold.

Oversampling Oversampling techniques, such as SMOTE, can be used to balance

minority classes by creating artificial data, which can lead to better performance

and generalisation of ML models across all classes. In addition, oversampling can

help to avoid class imbalances when generating k-folds for training and testing.

However, if not applied carefully, oversampling can generate samples that may

not accurately reflect realistic data, essentially adding noise, for example, if all

dimensions are changed indiscriminately. The presence of complex patterns or

non-linear relationships within the minority class should be considered. Rather than

using a generic oversampling approach, feature reduction or oversampling methods

that modify only relevant features should be considered. Focusing on the relevant

features that actually vary within the minority class could provide more realistic

synthetic samples.
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Another consideration is whether to use data from the same subject (intra-SMOTE)

or from multiple subjects (inter-SMOTE). The intra-SMOTE approach has shown

better performance, probably because it produces more realistic data that is closer

to the original samples from the same individual. In contrast, inter-SMOTE can

introduce greater variability that may not accurately represent realistic data (i.e.,

noise).

Regression vs Classification For tasks, such as predicting RPE in sports, regression

may be a suitable alternative. If there are a large number of classes and approximate

predictions are sufficient, regression could remove the need for arbitrary thresholds.

However, regression does not solve the problems of small data, imbalanced data, or

poor generalisation.

Interdisciplinary Collaboration Fatigue is a complex concept with many different

definitions. To effectively develop and evaluate ML models for fatigue detection,

collaboration between experts from different disciplines is essential. This interdis-

ciplinary approach can help to gain a comprehensive understanding of both the

technical and practical aspects of fatigue detection.

Open Science and Benchmarks Where possible, data sets, algorithms, and pub-

lications should be made openly available to facilitate testing and comparison of

ML models across studies, thereby promoting reproducibility and open science. A

description of the semantics of the shared data and algorithms must also be included.

Creating and contributing to shared databases can advance the field by encouraging

collaboration and knowledge sharing, as well as the accumulation of data over time.

This requires ethical approval and participant consent at the start of the study to

address privacy concerns.

Rigorous Research Method Research should provide detailed information about

the method. This transparency is crucial for reproducibility and meaningful compar-

isons between studies. The following questions briefly summarise key elements of

this thesis that should be considered in similar studies:
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• Homogeneity: What are the characteristics of the subjects? What is sample

selection and complexity? Are there biases?

• Representativeness: What is the experimental protocol? What is the time and

space of the experiments? Do the experiment and subjects reflect the intended

application?

• Data Collection: What sensors are used? Where are they located? What are

the sensor settings? What are the sensor characteristics? What is the ground

truth?

• Data Transformation: What data has been transformed and how? What are

the parameters? What thresholds are used? How is the data segmented? Does

data transformation introduce noise or bias? Does the transformation alter the

distribution? Is the order of the transformation steps important?

• Algorithms: What algorithms are used? What are the parameters? What are

the characteristics of the input data? What is the intention of each algorithm

used?

• Distribution: How many samples per class or fold exist?

• Augmentation: What techniques are used, including parameters? How many

samples are generated (per class)? Are the generated samples based on one or

more subjects, one or more features?

• Validation: Has the data been validated? Are constraints or visualisation

techniques used? Can the validation be automated?

• Features: What features are used? How many (dimensionality)? Which

features are relevant? Are the features comparable, weighted, normalised?

• ML: What ML methods are used? Is the model complexity appropriate? Are

hyperparameters adjusted for small data (e.g., regularisation, fold size)? What

settings are used for the hyperparameters?
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• Evaluation: What metrics are used? Are multiple metrics used? What types of

evaluation are used? How is the data partitioned in terms of subjects? How

well are individual classes predicted?

• Generalisability: Can the results or the trained model(s) be transferred to real

applications? Is the model being evaluated in a real application? How does

performance evolve with increasing number of subjects?

• Sharing: How can the data, algorithms, and findings be made openly available?

Standards Standardisation can help to compare results between studies and im-

prove the reproducibility of results. Standardised protocols should therefore be

developed and integrated into the Fatigue Recognition Chain.

7.4 Limitations

This work is not without limitations, stemming from a combination of trade-offs,

practical constraints, and unforeseen challenges.

Open Data The case study aimed to respect privacy concerns. For this reason,

consent from subjects to publish their data was not considered at the outset, and it

was not feasible to obtain it retrospectively from all 48 subjects, although open data

is promoted in this thesis.

Small Data The case study was conducted with a relatively small number of subject

(n=48), which may limit the depth of insight gained from the ML models. Further

data collection could provide a broader understanding of how model performance

and generalisability evolve across different contexts and subjects. It is likely that the

current data set does not fully capture all relevant variation, potentially limiting the

analysis.

Synthetic Data This thesis started with a literature review and the case study on

fatigue detection – the question of generalisability arose after analysing the results of

the case study. Instead of data collection, a purely synthetic data set with controlled
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characteristics would be an alternative approach to systematically explore how ML

models perform and generalise under different scenarios and conditions (see also

[363]).

Laboratory Environment The case study was conducted in a laboratory environ-

ment under ideal conditions, which is likely to have influenced the subjects’ be-

haviour and data collection. As noted by Morris et al. [255], a laboratory environ-

ment that does not simulate a gym may produce different data than a real world

environment. Moreover, the experiments were conducted under special circum-

stances during the COVID-19 pandemic. Nevertheless, the controlled laboratory

environment helped to reduce variables and minimise external factors, allowing for

a focused study of generalisability.

Single Exercise The case study was limited to the analysis of squats. Investigat-

ing a wider range of exercises could provide valuable comparative insights and

demonstrate the transferability of the findings to other exercises. Squats primarily

target the lower body muscles and do not induce the same level of overall fatigue

as a more cardio-intensive exercise. This, combined with the gradual build-up and

rapid intensification of fatigue during squats, is likely to have contributed to the

class imbalances. Collecting data from a lighter, but longer, cardio exercise could

potentially provide more balanced data due to the slower progression of fatigue.

Homogenous Subjects The recruited subjects of young healthy students may not

be as homogeneous as intended. The requirement for the subjects was that they

exercised sporadically – there was concern that additional requirements might

discourage potential (voluntary) subjects. In retrospect, the requirement was too

unspecific. In the case of squats, for example, it is important what kind of sport a

subject does on a regular basis. Presumably, experiments with non-athletes are more

likely to result in greater data variability than a group of professional athletes in a

particular sport. Another limitation is the imbalance in the ratio of male to female
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subjects (2:1), which may affect the ability of the trained ML models to accurately

detect fatigue levels in female subjects.

Personalised ML T1-SOLO evaluation was excluded from this research because it

was assumed that personalised ML would generalise better than ML models trained

on multiple subjects due to the inherent lower variability in the data. Kathirga-

manathan et al. [191] and Dimmick et al. [102] showed that personalised ML

models performed better, however, personalised ML models may still face challenges

in generalisation due to intra-subject variability and should be further investigated.

Ground Truth Although RPE is widely used in sports science, it has limitations

as ground truth. Non-athletes may struggle to accurately assess their RPE due to

unfamiliarity with the scale, which starts at 6 instead of 0. This may affect the

reliability of RPE as a measure of fatigue. Additional ground truth measures, such

as blood samples, could have provided additional verification. However, preliminary

tests showed that these methods were not practical for the case study due to the cost

and frequency of sampling.

Limited Sensors The choice of sensors for fatigue detection was limited to IMUs

and PE, which does not capture all the factors relevant to fatigue. This suggests

that the current approach provides an estimate rather than a definitive assessment

of fatigue. However, this limitation is intentional, as sensor-based, unobtrusive

fatigue detection may be valuable in certain applications, such as unsupervised

home exercise or rehabilitation scenarios.

Limited Feature Engineering and Hyperparameters Another limitation of the case

study is that ML was limited to statistical features based on features commonly

used in related work. Although feature engineering and hyperparameter tuning

(regularisation) can improve model performance and generalisability, these strategies

were kept to a minimum in the case study to reduce the number of variables. Further

investigation in combination with models trained with different numbers of subjects

may provide additional insights.
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Limited ML Models While the case study used several ML methods that are com-

monly used in the related works, other ML methods exist. For example, recurrent

neural networks and temporal convolutional neural networks are specifically de-

signed for sequential data and could potentially provide better performance when

applied to time series data. However, in the case study, a repetition was used as the

unit of analysis, allowing comparisons of repetitions regardless of time. Another

approach could be to develop custom ML methods for the small data set [154],

but verifying the generalisability of these models remains a challenge. Conserva-

tive generalisation could also be a viable approach, as it prioritises reliability and

generalisation [204]. Another possible approach could be transfer learning [204].

Limited Oversampling The case study examined SMOTE for balancing minority

classes, as it is a widely used oversampling technique in the related works. Further

research is needed to evaluate the performance of SMOTE when applied selectively

to relevant features. In addition to SMOTE, other oversampling techniques could

be applied, such as virtual sample generation, which was not applied in the related

works, but has been used in other studies on small data [347] and may be worth

investigating.

Basic k-fold Partitioning The custom function for partitioning subject data into

k-folds was rather basic and could be improved to produce more balanced, stratified

folds by evenly distributing the data in terms of subject and class distribution.

Explainability, Fairness, and Privacy ML models should meet the requirements of

explainability, fairness, and privacy [75], which are beyond the scope of this thesis.

Fatigue Recognition Chain Evaluation The Fatigue Recognition Chain, although

helpful in the implementation of the case study, was only tested by the author

who gave it a firm thumbs up – independent testing and evaluation could identify

weaknesses and gaps. In addition, the case study focused exclusively on supervised

ML. Investigating the applicability of the framework to other approaches, such as

deep learning, would be a valuable next step.
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Grounded Theory The method used to analyse the related works on small data,

imbalanced data, variability, and generalisability was based on categorising and

clustering the found statements. More sophisticated techniques, such such as those

of grounded theory [86], would probably provide further insights. In addition,

several of the related works were rather vague in describing their research method,

sometimes requiring indirect derivation of the samples collected, class distribution,

and data imbalances, as well as the used evaluation type(s), hyperparameters, data

augmentation, and ground truth.

7.5 Recommendations for Future Research

The following steps are proposed to advance research in the field of exercise fatigue

detection with individual-based ML:

Open Data, Source, and Science Openly accessible data, sources, and publications

for specific fatigue exercise tasks is a crucial first step (see for example [360, 190,

183]). It would enable the reproducibility of published results. It would also allow

comparisons between new and existing solutions by testing them under identical

conditions [75]. In addition, by storing data over time, it is possible to track trends

and patterns, and the longer the record, the greater the ability to build models and

have confidence in the conclusions drawn [198].

Comparability can lead to the development of more robust models and a more

rapid accumulation of knowledge. Over time, the cumulative value of such infras-

tructures can increase as data become more readily and widely available. Such a

sharing strategy is also more likely to stimulate new interdisciplinary collaborations

between researchers and teams, and to foster improved skills through access to new

types of data. Data sharing and the adoption of infrastructure standards, protocols

and policies can improve data quality and enable third-party verification of data

and research. The economies of scale of such infrastructure can also bring financial

benefits [198].
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In addition, establishing common benchmarks could encourage scientists to share

their results and test different approaches. This practice, as well as transfer learning

[245], is already well established in other ML fields such as image recognition1 and

large language models2.

Standardised Frameworks and Protocols The development of standardised frame-

works, protocols and semantics for ML in exercise fatigue detection would further

streamline research efforts by improving comparability and communication. This

would promote consistency and facilitate collaboration between research teams.

Realistic Conditions If research begins in the laboratory, it should not end there.

More ML models should be tested in real settings, beyond controlled experimental

conditions. Evaluating such models could provide a better understanding of the

generalisability and amount of the required training data. The subjects for training

the ML models should reflect the target group as closely as possible.

AutoML Automated ML (AutoML) is increasingly being used for ML tasks such as

preprocessing, data analysis, algorithm selection, or hyperparameter tuning (see

[205, 11, 290]). AutoML could be an additional tool to support scientists and

practitioners to apply best ML practices and avoid common pitfalls.

Personalised ML Models Compared to models trained on data from multiple indi-

viduals, research in personalised ML, which takes into account individual character-

istics [63, 237], is under-represented and tends to perform better [191, 102, 331],

as the data is probably more homogeneous (see also T1-SOLO evaluation).

Adaptive ML Models ML models that continue to learn and adapt after initial

training could be a next step [146]. If initially trained on small data sets, these

models could accumulate and integrate more data over time, mitigating the small

data problem. Sharing accumulated data between deployed models can further

improve their accuracy and generalisability. Continuous learning would also allow

ML models to adapt to the specific characteristics of individual users and changing
1https://image-net.org
2https://www.swebench.com/
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conditions, including factors such as demographics, environmental factors, training

routines, and sensor variations.

Compounded ML Models Another approach could be to develop compounded

models that combine several specialised ML models, each analysing specific fatigue

factors. This approach may more accurately reflect the multifaceted nature of

fatigue. The individual results could then be aggregated into a comprehensive

fatigue prediction.

Subject-based Oversampling Oversampling algorithms that augment individual-

based (i.e., human-centred) data should be further explored. These algorithms

should generate realistic synthetic samples by carefully modifying only relevant

features and preserving the original data distribution. Research should focus on

class imbalances in small data sets through different oversampling and feature

selection techniques to identify the most effective approaches to improve model

generalisability.

Furthermore, the optimal level of data augmentation and feature augmentation

for specific small data sets needs to be investigated. Determining the appropriate

level of augmentation can help to maximise its benefits while minimising potential

drawbacks.

Advanced Sensors Advances in physics, electronics, and other fundamental fields

are leading to the development of novel sensors and devices that provide more

efficient signal patterns for detecting human activity [39]. The development of

unobtrusive wearable fatigue sensors capable of measuring biosignals in real time

would allow a wider range of fatigue factors to be included, potentially leading to

more comprehensive fatigue detection models.

Segmentation The motion segmentation in this thesis is based on a semi-automatic

process consisting of an off-line analysis using the coordinates from pose estimation,

resulting in a perfect segmentation without erroneous segments (see Section 4.3.2).
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However, further research should investigate how to train models based on less

robust segmentation techniques (see also Lin et al. [233]).

Interdisciplinary Collaboration Collaboration between experts in fields, such as

healthcare, sport, psychology, and computer science is essential to develop more

holistic fatigue detection models. Such interdisciplinary research could lead to a

deeper understanding of the complex factors associated with fatigue.

7.6 Research Summary

The field of exercise fatigue detection faces two major challenges: The multifaceted

nature of fatigue and the scarcity of large, high-quality, annotated data sets. Human-

centred experiments are often time-consuming and require controlled environments.

The diverse factors of fatigue lead to countless approaches to fatigue detection, while

the scarcity of data makes it difficult to compare ML models. Overcoming these

challenges requires a comprehensive approach.

For this reason, the Fatigue Recognition Chain framework was introduced in

Chapter 3 as a guide for conducting interdisciplinary research on exercise fatigue

detection with ML and sensor data. The implementation of the framework was

demonstrated in a case study with 48 subjects for squat exercises in Chapter 4.

Supervised ML was utilised to train different ML models with data from RPE, IMU,

and PE. The results were presented in Chapter 5. A comparison between PE and the

commonly used IMU showed that an ML model trained on PE data can outperform a

model trained on IMU data, suggesting that PE may be suitable for real time fatigue

detection.

The key findings of this thesis are based on a literature survey and a case study.

They were discussed in Chapter 6. The literature highlights common pitfalls for ML

such as inadequate small data, sample selection, sample complexity, sensor selection,

feature selection, and model complexity. Building on this, this thesis provided an
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in-depth analysis of the pitfalls that occur in individual-based ML with small data

sets. Strategies to avoid the pitfalls were presented. These strategies depend on the

particular step in the Fatigue Recognition Chain. Therefore, multiple strategies are

often needed – depending on the step – to improve the overall generalisability of

trained ML models.

A common misconception is that generalisability is ensured if an ML model

avoids underfitting and overfitting. However, generalisability requires consider-

ation of many parameters, as discussed in this thesis, such as model complexity,

hyperparameters, sample variability, sample complexity, sample size, sample bias,

class distribution, feature selection, and representativeness and homogeneity of the

collected data.

These parameters must be clearly defined in advance as they determine the total

number of variables and therefore the amount of data required. As data in fatigue

research is usually small, the number of variables should be minimised, for example,

by restricting the people in the target group and by limiting the fatigue-inducing

exercise through explicit rules and standards.

The analysis of ML models trained on small data sets requires several metrics, for

example, accuracy, F1 score, and confusion matrices. In addition, the performance of

the model should be thoroughly analysed for each class in order to comprehensively

cover its predictive capabilities and to identify its weaknesses. In addition to

performance, data distribution should be considered – a ML model may achieve 90%

accuracy in predicting a particular class, but if only 10 samples were available for

that class, the generalisability of the model for that particular class is questionable.

Such imbalanced data can be avoided in advance by a study design that ensures

equal samples for each class, e.g., with time-based training exercises and different

training weights to label each class. However, this is not always possible, especially

as the fatigue class is usually the minority class. A general strategy is to keep the

number of classes and (stratified) k-folds to a minimum, so that more samples can

be allocated to each class or fold.
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Another strategy is oversampling to overcome problems of imbalanced classes and

k-folds. However, common techniques such as SMOTE do not take into account the

relevance of features and can add more noise to the data set. Oversampling should

generate samples that are as close as possible to the existing samples, otherwise they

will have too much influence in a small data set.

As the onset of fatigue can cause a shift in the collected samples, poorly chosen

fatigue class thresholds can confuse an ML model during training. Class thresholds

should also be chosen carefully as they have a large impact on the class distribution

and model prediction. Regression may be used to avoid the problem of defining

class thresholds.

Tailoring ML models to a small data set should be kept to a minimum: this may

produce high prediction results, but is likely to make the models more sensitive to

unseen data – even if the trained models do not overfit – because the small training

set is unlikely to cover all possible variations. For this reason, the predictions of ML

models should be analysed with increasing numbers of subjects (data) to examine

how performance evolves, which can potentially be used as an indicator of data

saturation.

A crucial choice is the evaluation type, which determines the performance of an

ML model and its generalisability. T2-LNSO evaluation yields high prediction results,

but is unlikely to be generalisable as no unknown subjects are used for testing.

Predictions from models trained with T3-LOSO evaluation can vary widely from

subject to subject due to low test ratios. For this reason, the performance of the

model should be analysed for each subject to determine how sensitive the model

is to different subjects. The aim should be to reduce the sensitivity of the model,

possibly at the expense of accuracy, in order to improve its overall generalisability.

T4-LMSO evaluation can be used with appropriate test ratios, but should be used to

predict fatigue in groups rather than individuals.

Based on the findings, future recommendations were proposed, including the

exploration of more supportive, adaptive, and personalised ML; the investigation of
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the generalisability of ML models with imperfect segmentation; the development of

advanced wearable sensors that can detect biomarkers in real time; the promotion

of standards, open data, open science, and interdisciplinary collaboration to ensure

reproducibility and comparability of research results.
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Fin.
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Fin stands for Finally.
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Contributions A
The following Table A.1 illustrates the contributions of this thesis compared to

related works. The column "Generalisation & Evaluation" highlights works that have

contributed an overview or analysis of ML generalisation and evaluation methods for

fatigue detection with small data. The column "Fatigue Framework" highlights works

that have contributed a framework for exercise fatigue detection with ML and small

data. The column "2D PE Fatigue Detection" highlights works that have used PE based

on 2D cameras for fatigue detection. The column "IMU vs. PE Comparison" highlights

works that have compared PE and IMU sensors for exercise fatigue detection. The

column "Increasing n" highlights works that have investigated ML performance for

an increasing number of subjects. The column "Small Data Augmentation" highlights

related works that have applied data augmentation techniques to small data. The

column "Multiple Evaluation Types" highlights related works that have used multiple

evaluation types for ML.
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Ma and Guo [240] 2024 30 - - - - - N/A N/A

Mu et al. [256] 2024 32 - - - - - - -
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Jiang et al. [175] 2021 14 - - - - - x -

Karvekar et al. [189] 2021 24 - - - - - - -
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Kuschan and Krüger [212] 2021 9 - - - - - - N/A

Lambay et al. [216] 2021 24 - - - - - - -

Wang and He [341] 2021 12 - - - - - - x

Davidson et al. [95] 2020 12 - - - - - x -

Luo et al. [238] 2020 27 - - - - - - -

Umer et al. [331] 2020 10 - - - - - - x

Wang et al. [345] 2020 20 - - - - - - -

Guaitolini et al. [137] 2020 13 - - - - - - -

Maman et al. [242] 2020 15 - - - - - - -

Nasirzadeh et al. [261] 2020 8 - - - - - - -

Sani et al. [293] 2020 8 - - - - - - N/A

Zhang and Wang [364] 2020 20 - - - - - - -

Chowdhury et al. [77] 2019 22 - - - - - - -

Geurkink et al. [129] 2019 46 - - - - - - -

Jebelli et al. [171] 2019 10 - - - - - - -

Karvekar et al. [188] 2019 24 - - - - - - N/A

Papakostas et al. [265] 2019 10 - - - - - - x

Yang and Ren [357] 2019 20 - - - - - - -

Wu et al. [353] 2018 N/A - - - - - - N/A

Baghdadi et al. [26] 2018 20 - - - - - - -

Beéck et al. [33] 2018 29 - - - - - - x

Gordienko et al. [135] 2018 N/A - - - - - - N/A

Jamaluddin et al. [169] 2018 20 - - - - - - N/A

Karthick et al. [187] 2018 52 - - - - - - N/A

Aryal et al. [22] 2017 12 - - - - - - -

Lopez et al. [237] 2017 19 - - - - - - -

Shahmoradi et al. [302] 2017 6 - - - - - - N/A

Vandewiele et al. [336] 2017 45 - - - - - - x

Buckley et al. [55] 2017 21 - - - - - - x

Maman et al. [243] 2017 8 - - - - - x -

Carey et al. [65] 2016 45 - - - - - - -

Kupschick et al. [211] 2016 22 - - - - - - -

Pernek et al. [274] 2015 11 - - - - x - x

Bilgin et al. [41] 2015 31 - - - - - - -

Karg et al. [186] 2014 7 - - - - - - x

Zhang et al. [367] 2013 17 - - - - - - -

Janssen et al. [170] 2011 9 - - - - - - -

Subasi and Kiymik [319] 2009 14 - - - - - - -

Karg et al. [185] 2008 14 - - - - - - x

This thesis 2024 48 x x x x x x x
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Related Works Details B
Tab. B.1.: Overview of sensors utilised in the related works.

Authors Exercise Sensor Sampling Rate

Albert and Arnrich [9] Squats Kinect, ECG, IMU, kMeter 30 Hz

Gan et al. [126] Squats ECG N/A

Huang et al. [161] Static sEMG N/A

Ma and Guo [240] Yoga N/A N/A

Mu et al. [256] Running ECG N/A

Wang et al. [342] Bicep Curls sEMG, Fabric sensor, Goniometer 2 kHz, 1 kHz, 1 kHz

Wang et al. [346] Material Handling EEG 500 Hz

Yao [358] N/A Muscle tone signal 500 Hz

Zhang et al. [365] Running IMU, Plantar force 110 Hz

Adapa et al. [1] Bicep Curls sEMG 4 kHz

Antwi-Afari et al. [20] Material Handling Plantar pressure, IMU 50 Hz

Anwer et al. [21] Material Handling ECG, RESP, ST (EQ02 system) 256 Hz

Biró et al. [45] Cycling, Running, Football Radar, IMU, ECG 24 GHz, 100 Hz, 9 Hz

Biró et al. [44] Running IMU 30 Hz

Bouteraa et al. [52] Wrist Torque sEMG 100 kHz

Cañellas et al. [63] N/A Thermal 8.7 Hz

Concha-Pérez et al. [83] Squeeze/Release (Arm) sEMG, IMU 500 Hz

Dang et al. [92] Dynamometer sEMG 2 kHz

De Vito et al. [97] Material Handling sEMG 1 kHz

Dimmick et al. [102] Running IMU, Garmin devices 1125 Hz

Feng et al. [116] Rope-Skipping ECG 512 Hz

Kathirgamanathan et al. [191] Running IMU 256 Hz

Liu et al. [235] Elbow sEMG 1 kHz

Marena et al. [246] Material Handling ECG, Spiroergometria N/A

Perpetuini et al. [275] Squats sEMG, Thermal 250 Hz, 10 Hz

Pirscoveanu and Oliveira [278] Running ECG (Smartwatch) 1 Hz

Pravin et al. [280] Bicep Curls sEMG 2 kHz

Smiley et al. [313] Cycling ECG, PPG, RESP 1024 Hz

Valla et al. [335] Archimedean Spiral Test IMU (Smartphone) N/A

Albert et al. [10] Squats IMU, ECG, Azure Kinect, kMeter 128 Hz, 1 kHz, 30 Hz

Bustos et al. [58] Running ECG, ST, RESP N/A

Jaiswal et al. [168] Walking ECG, EDA, EMG N/A

Umer et al. [332] Material Handling ECG N/A

Cheah et al. [69] Sit-Ups sEMG, (IMU) 2 kHz

Escobar-Linero et al. [112] Material Handling IMUs 51.2 Hz

Guo et al. [139] Bicep Curls Blood, ECG N/A

Jiang et al. [176] Squats IMUs N/A

Li and Chen [225] Pilates ECG, sEMG 2 kHz, 2 kHz

Shi et al. [306] Walking Angle, ECG, VO2 100 Hz

Triantafyllopoulos et al. [327] Running Audio 16 kHz

Wang et al. [343] Running IMUs 200 Hz

Zhu et al. [374] Walking, Cycling, Running ECG 8 kHz

Chen et al. [71] Material Handling ECG, sEMG, PPG 2 kHz

Chen et al. [70] Material Handling sEMG, ECG 2 kHz
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Table B.1 continued from the previous page

Authors Exercise Sensor Sampling Rate

K et al. [181] Bicep Curls sEMG 10 kHz

Sadat-Mohammadi et al. [288] Material Handling RESP, IMU 1 kHz

Wang et al. [344] Cycling sEMG, RESP 2 kHz

Zhang et al. [370] Shoulder sEMG 4 kHz, 1962 Hz

Aguirre et al. [4] Sit-to-Stand Kinect, ECG 30 Hz, 1 Hz

Balaskas and Siozios [28] Running IMUs 200 Hz

Chalitsios et al. [67] Running IMUs, FP, RESP 218 Hz, 516 Hz

Chen et al. [72] Dumbbell (pick-up) sEMGs 1 kHz

Elshafei et al. [108] Bicep Curls IMU, PPG 50 Hz

Guan et al. [138] Running IMU, ECG 50 Hz, 500 Hz

Jiang et al. [175] Squats, Jacks, Touch IMUs, FP, MoCap 240 Hz, 100 Hz, 100 Hz

Karvekar et al. [189] Squats, Walking IMU 100 Hz

Kuschan and Krüger [212] Material Handling IMUs 20 Hz

Lambay et al. [216] Material Handling IMU, ECG N/A

Wang and He [341] Running Kinect 30 Hz

Davidson et al. [95] Running ECG, GPS, VO2 peak 1 Hz

Luo et al. [238] Daily Activities EDA, PPG, ST, IMU, Barometer 1 Hz

Umer et al. [331] Material Handling RESP, ST, ECG 25.6 Hz, 0.25 Hz

Wang et al. [345] Cycling sEMG, RESP 2 kHz

Guaitolini et al. [137] Walking, Running IMUs, MoCap 100 Hz

Maman et al. [242] Material Handling IMUs, ECG 25 Hz, 1 kHz

Nasirzadeh et al. [261] Material Handling ECG 25 Hz, 50 Hz, 125 Hz

Sani et al. [293] Material Handling ECG N/A

Zhang and Wang [364] Ball Sports Camera (eye lid) N/A

Chowdhury et al. [77] Walking, Running ECG , EDA, ST 1 Hz, 4 Hz, 4 Hz

Geurkink et al. [129] Football ECG, GPS, IMU 20 Hz, 10 Hz, 100 Hz

Jebelli et al. [171] Material Handling PPG, EDA, ST 64 Hz, 4 Hz, 4 Hz

Karvekar et al. [188] Squats, Walking IMU 100 Hz

Papakostas et al. [265] Shoulder EMG 1926 Hz

Yang and Ren [357] Muscle Chair EEG 128 Hz

Wu et al. [353] Running, Walking, Pedalling ECG 0.5 Hz

Baghdadi et al. [26] Material Handling IMU 51.2 Hz

Beéck et al. [33] Running IMUs, ECG 1024 Hz, 1 Hz

Gordienko et al. [135] Walking, Running, Skiing IMU, ECG, EEG, GPS N/A

Jamaluddin et al. [169] Running sEMG, ECG 1000 Hz

Karthick et al. [187] Bicep Curls sEMG 10 kHz

Aryal et al. [22] Material Handling ST, ECG, EEG N/A

Lopez et al. [237] Running (stairs) Thermal 8.7 Hz

Shahmoradi et al. [302] Reaching (arm) sEMG, (Kinect) 1 kHz, (30 Hz)

Vandewiele et al. [336] Football IMU, GPS, ECG N/A

Buckley et al. [55] Running IMU 256 Hz

Maman et al. [243] Material Handling IMUs, ECG 51.2 Hz

Carey et al. [65] Football IMU, GPS, ECG 100 Hz, 10 Hz

Kupschick et al. [211] Material Handling ECG, ST N/A

Pernek et al. [274] Dumbbell (upper body) IMU 30 Hz

Bilgin et al. [41] Running sEMG, MMG, ACC 254–313 Hz, 173–234 Hz

Karg et al. [186] Squats MoCap 100 Hz

Zhang et al. [367] Squats, Walking IMUs, FP, MoCap 120 Hz, 1200 Hz

Janssen et al. [170] Leg, Walking FP, Light barrier 1 kHz

Subasi and Kiymik [319] Dumbbell sEMG 1 kHz

Karg et al. [185] Rowing, Walking MoCap 240 Hz

This thesis Squats IMU, PE 200 Hz, 30 Hz
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Tab. B.2.: Overview of the ground truth used in the related works.

Authors Exercise Ground Truth GT Frequency (every ...)

Albert and Arnrich [9] Squats RPE20 12 reps

Gan et al. [126] Squats RPE10 30/15 reps

Huang et al. [161] Static RPE10 N/A

Ma and Guo [240] Yoga Blood samples N/A

Mu et al. [256] Running Visual Analog Scale Session

Wang et al. [342] Bicep Curls K-means clustering -

Wang et al. [346] Material Handling Questionnaire Session (approx. 3 min)

Yao [358] N/A K-means clustering -

Zhang et al. [365] Running First vs last 5 min -

Adapa et al. [1] Bicep Curls Activity Intensity Activity

Antwi-Afari et al. [20] Material Handling RPE20 2 min

Anwer et al. [21] Material Handling RPE20 15 min

Biró et al. [45] Cycling, Running, Football RPE20, Heart Rate N/A

Biró et al. [44] Running Activity Intensity (Beep test) -

Bouteraa et al. [52] Wrist Torque Uncertainty algorithm -

Cañellas et al. [63] N/A Linearly annotated Session

Concha-Pérez et al. [83] Squeeze/Release (Arm) Activity Intensity -

Dang et al. [92] Dynamometer Activity Intensity -

De Vito et al. [97] Material Handling N/A N/A

Dimmick et al. [102] Running RPE, MLSS, first and last km 5 min

Feng et al. [116] Rope-Skipping Activity Intensity -

Kathirgamanathan et al. [191] Running Activity Intensity (Beep test) -

Liu et al. [235] Elbow RPE20 N/A

Marena et al. [246] Material Handling Metabolic rate -

Perpetuini et al. [275] Squats Activity Intensity -

Pirscoveanu and Oliveira [278] Running RPE20 400 m

Pravin et al. [280] Bicep Curls Activity Intensity N/A

Smiley et al. [313] Cycling RPE10 1 min

Valla et al. [335] Archimedean Spiral Test Questionnaire N/A

Albert et al. [10] Squats RPE20, lactate 12 reps

Bustos et al. [58] Running RPE20 4 min

Jaiswal et al. [168] Walking First sets vs last two sets -

Umer et al. [332] Material Handling RPE20 5 min

Cheah et al. [69] Sit-Ups First vs last 20% reps -

Escobar-Linero et al. [112] Material Handling RPE20 10 min

Guo et al. [139] Bicep Curls RPE N/A

Jiang et al. [176] Squats RPE10 5 reps

Li and Chen [225] Pilates RPE 30 s

Shi et al. [306] Walking Activity Intensity -

Triantafyllopoulos et al. [327] Running RPE20 3–5 min

Wang et al. [343] Running RPE20 100/400 m

Zhu et al. [374] Walking, Cycling, Running Activity Intensity -

Chen et al. [71] Material Handling Control group Session

Chen et al. [70] Material Handling Control group -

K et al. [181] Bicep Curls First vs last rep -

Sadat-Mohammadi et al. [288] Material Handling Activity Intensity, NASA-TLX Activity

Wang et al. [344] Cycling Ventilation Threshold Session

Zhang et al. [370] Shoulder 10 s after exhaustion Set

Aguirre et al. [4] Sit-to-Stand RPE10 30 s

Balaskas and Siozios [28] Running Clustering -

Chalitsios et al. [67] Running Ventilatory Threshold -
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Table B.2 continued from previous page

Authors Exercise Ground Truth GT Frequency (every ...)

Chen et al. [72] Dumbbell (pick-up) Manually labelled N/A

Elshafei et al. [108] Bicep Curls RPE20 15 reps

Guan et al. [138] Running RPE20 N/A

Jiang et al. [175] Squats, Jacks, Touch RPE10 5 reps

Karvekar et al. [189] Squats, Walking RPE20 2 min

Kuschan and Krüger [212] Material Handling RPE10 Set

Lambay et al. [216] Material Handling RPE 10 min

Wang and He [341] Running RPE20 2 min

Davidson et al. [95] Running RPE20 400/1000 m

Luo et al. [238] Daily Life Fatigue Assessment Scale 24 h

Umer et al. [331] Material Handling RPE20, SWAT 5 min

Wang et al. [345] Cycling Ventilation Threshold Session

Guaitolini et al. [137] Walking, Running First vs other reps -

Maman et al. [242] Material Handling RPE 10 min

Nasirzadeh et al. [261] Material Handling RPE20 60 min

Sani et al. [293] Material Handling RPE 10 min

Zhang and Wang [364] Ball Sports PERCLOS P80 -

Chowdhury et al. [77] Walking, Running RPE20 Activity

Geurkink et al. [129] Football RPE10 Session

Jebelli et al. [171] Material Handling Activity Intensity -

Karvekar et al. [188] Squats, Walking RPE20 2 min

Papakostas et al. [265] Shoulder Exhaustion plus 10 s Set

Yang and Ren [357] Muscle Chair RPE10 Set

Wu et al. [353] Running, Walking, Pedalling Exercise intensity -

Baghdadi et al. [26] Material Handling RPE20 1/10 min

Beéck et al. [33] Running RPE20 400 m

Gordienko et al. [135] Walking, Running, Skiing Clustering -

Jamaluddin et al. [169] Running Questionnaire 24 h

Karthick et al. [187] Bicep Curls First segments vs last segment -

Aryal et al. [22] Material Handling RPE20 10 m

Lopez et al. [237] Running (stairs) Activity Intensity -

Shahmoradi et al. [302] Reaching (arm) Maximum Voluntary Contractions Set

Vandewiele et al. [336] Football RPE10 Session

Buckley et al. [55] Running Last 400 m -

Maman et al. [243] Material Handling RPE20 10 min

Carey et al. [65] Football RPE10 Session

Kupschick et al. [211] Material Handling RPE20 5 min

Pernek et al. [274] Dumbbell (upper body) RPE20 10 reps

Bilgin et al. [41] Running Bruce protocol -

Karg et al. [186] Squats Questionnaire 5 reps

Zhang et al. [367] Squats, Walking Until 60% maximal exertion Set

Janssen et al. [170] Leg, Walking Activity Intensity -

Subasi and Kiymik [319] Dumbbell N/A N/A

Karg et al. [185] Rowing, Walking Activity Intensity -

This thesis Squats RPE20 10 s
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Tab. B.3.: Overview of the applied ML models in the related works.

Authors SVM RF ANN LR k-NN NB CNN LSTM DT LDA RNN Other # Models

Albert and Arnrich [9] - - - - - - - - - - - x 4

Gan et al. [126] x - - - - - - - - - - - 1

Huang et al. [161] x x - - x - x - - - - - 4

Ma and Guo [240] - - x - - - - - - - - x 1

Mu et al. [256] x - - x x x x x - - x x 4

Wang et al. [342] x - x x x - - - - - - - 4

Wang et al. [346] - - - - - - x - - - - x 9

Yao [358] x x - x x - - - - - - - 5

Zhang et al. [365] x - - - x x - - x - - - 4

Adapa et al. [1] x x - x - - - - - - - x 5

Antwi-Afari et al. [20] x x x - x - - - x - - - 5

Anwer et al. [21] x x x - x - - - x - - - 5

Biró et al. [45] - - - x - - - - - - - - 1

Biró et al. [44] x x - x x x - x x x - x 14

Bouteraa et al. [52] x - - - - - - - - - - - 1

Cañellas et al. [63] - - - - - - x - - - - x 7

Concha-Pérez et al. [83] - - - - - - - - - - - x 1

Dang et al. [92] - - - - x - - x - - - x 4

De Vito et al. [97] - - - - - - - - x - - x 1

Dimmick et al. [102] - x - - - - - - - - - - 1

Feng et al. [116] - x - - x - - - - - - x 6

Kathirgamanathan et al. [191] - - - - x - - - - - - x 2

Liu et al. [235] - x - - - - x x - - - x 4

Marena et al. [246] x - x x - - - - x - - x 6

Perpetuini et al. [275] - - - x - - - - - - - x 5

Pirscoveanu and Oliveira [278] x - x x - - - - x - - x 6

Pravin et al. [280] x x - x - - - - - - - - 3

Smiley et al. [313] x - x - - x - - x - - x 5

Valla et al. [335] x x - x x - - - x - - x 6

Albert et al. [10] - x - - - - - - - - - x 4

Bustos et al. [58] x x x - x - - - - - - x 6

Jaiswal et al. [168] x x - x - - - x - - x - 4

Umer et al. [332] - - x - - - - - x - - x 6

Cheah et al. [69] - - - - - - - - - - - x 1

Escobar-Linero et al. [112] x - x - - - - x - - x - 4

Guo et al. [139] x - x - - - - - x - - - 3

Jiang et al. [176] - - - - - - x x - - - x 3

Li and Chen [225] x - x - x - - - - x - - 4

Shi et al. [306] x x - x - - - - x - - x 5

Triantafyllopoulos et al. [327] - - - - - - x - - - - - 1

Wang et al. [343] x x - - - - - - - - - - 2

Zhu et al. [374] - - - - - - x - - - - - 1

Chen et al. [71] x x - - - - - - - - - - 2

Chen et al. [70] x x - - - - - - - - - x 3

K et al. [181] - - - - - - - - - - - x 1

Sadat-Mohammadi et al. [288] x x x - x - - - - - - - 4

Wang et al. [344] x - - - - - x x - - - - 3

Zhang et al. [370] x x - - x - x x - - - x 1

Aguirre et al. [4] x x x x x - - - - - - - 5

Balaskas and Siozios [28] x - x - - - - x - - - - 3

Chalitsios et al. [67] - x - - - - - - - - - - 1
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Table B.3 continued from previous page

Authors SVM RF ANN LR k-NN NB CNN LSTM DT LDA RNN Other # Models

Chen et al. [72] - 0 - - - - - x - - - - 1

Elshafei et al. [108] - x x x - - - - x - - x 5

Guan et al. [138] x x x - - - - x - - - - 4

Jiang et al. [175] - x - - - - x - - - - - 2

Karvekar et al. [189] x - - - - - - - - - - - 1

Kuschan and Krüger [212] x - - - - - - - - - - - 1

Lambay et al. [216] - - - - - - - x - - x - 2

Wang and He [341] x x - - - - x - - - - x 4

Davidson et al. [95] x - - - x - x - - - - x 5

Luo et al. [238] - x - - - - x - - - - x 2

Umer et al. [331] x - - - x - - - x - - x 5

Wang et al. [345] x - - - - - x - - - - x 4

Guaitolini et al. [137] x x - - x x - - x - - - 5

Maman et al. [242] x x - x - - - - - - - - 3

Nasirzadeh et al. [261] - x x x x x - - x x - x 8

Sani et al. [293] - - - - x - - - - - - - 1

Zhang and Wang [364] x - - - - - x - - - - - 2

Chowdhury et al. [77] x x x - - - - - - - - - 3

Geurkink et al. [129] - x - x - - - - x - - x 6

Jebelli et al. [171] x - - - - - - - - - - - 1

Karvekar et al. [188] x - - - - - - - - - - - 1

Papakostas et al. [265] x x - - - - - - - - - x 3

Yang and Ren [357] x - - - - - - - - - - x 2

Wu et al. [353] x - x - x x - - x - - - 5

Baghdadi et al. [26] x - - - - - - - - - - - 1

Beéck et al. [33] - - x x - - - - - - - x 3

Gordienko et al. [135] - - x x - - - - - - - - 2

Jamaluddin et al. [169] - - - - - x - - - - - - 1

Karthick et al. [187] x x - - - x - - - - - x 4

Aryal et al. [22] x - - - - - - - x - - x 10

Lopez et al. [237] x - - - - - x - - - - x 2

Shahmoradi et al. [302] - - x - - - - - - - - x 2

Vandewiele et al. [336] - x - x - - - - x - - x 5

Buckley et al. [55] x x - - x x - - - - - - 4

Maman et al. [243] - - - x - - - - - - - - 1

Carey et al. [65] x x x x - x - - - - - x 8

Kupschick et al. [211] x - - - - - - - - - - x 2

Pernek et al. [274] x - - - - - - - - - - x 1

Bilgin et al. [41] - - x - - - - - - - - - 1

Karg et al. [186] - - - x - - - - - - - x 2

Zhang et al. [367] x - - - - - - - - - - - 1

Janssen et al. [170] x - - - - - - - - - - x 2

Subasi and Kiymik [319] - - x - - - - - - - - - 1

Karg et al. [185] x - - - x x - - - x - - 4

This thesis x x x x x - - - - - - x 6
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Tab. B.4.: Overview of the number of classes, features, and samples as well as what
evaluation types and whether cross-evaluation (CV) was applied in the related
works.

Authors Classes Features Samples T1-SOLO T2-LNSO T3-LOSO T4-LMSO CV Test Ratio (%)

Albert and Arnrich [9] 16 50, 100 2304 - - x - x 6.3

Gan et al. [126] 3 18 31 N/A N/A N/A N/A 10 N/A

Huang et al. [161] 2 18 N/A - x - - N/A 20

Ma and Guo [240] N/A N/A N/A N/A N/A N/A N/A N/A N/A

Mu et al. [256] 2 12 2560 - x - - 5 15

Wang et al. [342] 3 4 580 - x - - x 30

Wang et al. [346] 4 (5) 73728 483 (12558) - x - - N/A 15

Yao [358] 2 (3) N/A N/A N/A N/A N/A N/A N/A N/A

Zhang et al. [365] 2 10 5400 - - x - 5 5.5

Adapa et al. [1] 2 30 N/A - - x - N/A 35

Antwi-Afari et al. [20] 2, 3, 4 38 1289 - x - - 10 10

Anwer et al. [21] 4 25 1425 - x - - 10 15

Biró et al. [45] N/A N/A N/A - - x - x N/A

Biró et al. [44] 2 N/A 1201 N/A N/A N/A N/A N/A 10

Bouteraa et al. [52] 2 2 N/A N/A N/A N/A N/A N/A N/A

Cañellas et al. [63] 101 N/A 418813 N/A N/A N/A N/A 5 N/A

Concha-Pérez et al. [83] 2 126 N/A - - x x x N/A

Dang et al. [92] 3 Raw Data N/A - x - - 3 33.3

De Vito et al. [97] 2 22 5634 - x - - 5 10

Dimmick et al. [102] 2 39, 6 N/A x - x - x 11.1

Feng et al. [116] 2 28 N/A - x - - 10 10

Kathirgamanathan et al. [191] 2 1 5510 x - x - x 33.3, 5.3

Liu et al. [235] 4 2 7560 - x - - 10 30

Marena et al. [246] N/A 2 N/A - - x - 5 20

Perpetuini et al. [275] 2 9 N/A - - x - x 10

Pirscoveanu and Oliveira [278] 14 about 9 N/A x - x - 5 12

Pravin et al. [280] 2 6 24 N/A N/A N/A N/A N/A N/A

Smiley et al. [313] 2 68 150 - x - - N/A 20

Valla et al. [335] 2 60 33 - x - - 5 33.3

Albert et al. [10] 14 8 N/A - - x - x 8,3

Bustos et al. [58] 4 21 750 - x x - 10 10

Jaiswal et al. [168] 2 169 N/A - - - x (5) 5 15

Umer et al. [332] 14, 4 >20 1286 - x - - 10 15

Cheah et al. [69] 2 6 1092 - x - - N/A 20

Escobar-Linero et al. [112] 4 40 360 - x - - N/A 20

Guo et al. [139] 3 162 800 - x - - N/A 20

Jiang et al. [176] 10 32 N/A - - x - x 1, 6

Li and Chen [225] 3 11 1200 - x - - x N/A

Shi et al. [306] 5 12 N/A - - - - x N/A

Triantafyllopoulos et al. [327] 14 5 N/A - - x - N/A 21

Wang et al. [343] 3 11 N/A - x - - x 10

Zhu et al. [374] 6 N/A 14400 - x - - N/A 10

Chen et al. [71] 2 16 80 - x - - 5 25

Chen et al. [70] 2 24 94 - x - - 10 10

K et al. [181] 2 7 116 - x - - 10 10

Sadat-Mohammadi et al. [288] 3 10 N/A - x - - 5 20

Wang et al. [344] 2 4 8872 - x - - N/A 20–40

Zhang et al. [370] 2 32 18740, 93998 - x x - x 10

Aguirre et al. [4] 3 33 660 - - x - 6 16, 7
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Table B.4 continued from previous page

Authors Classes Features Samples T1-SOLO T2-LNSO T3-LOSO T4-LMSO CV Test Ratio (%)

Balaskas and Siozios [28] 2 18 N/A - - - - - N/A

Chalitsios et al. [67] 2 10 29650 - x - - N/A 30

Chen et al. [72] 2 N/A 5000 - x - - N/A 30

Elshafei et al. [108] 2 22 3000 x - x - 10 5

Guan et al. [138] 3 88 N/A - - x - N/A 7, 2

Jiang et al. [175] 10 10 1790, 1240, 1140 - - x - 5, 6 15

Karvekar et al. [189] 2, 3, 4 42 1240, 1800, 2400 - x - - 5 N/A

Kuschan and Krüger [212] 3, 5 7 282 N/A N/A N/A N/A 5 N/A

Lambay et al. [216] 2 23 N/A - - x - x 30

Wang and He [341] 4 117 6624 x x x - 5 25

Davidson et al. [95] 2 3 (Raw Data) 112 - - - x (2) 5, 6 20

Luo et al. [238] 2 254 N/A - x - - x 10

Umer et al. [331] 14 7 1286 x x - - 10 10

Wang et al. [345] 2 6 100 - - - x (4) 10 20

Guaitolini et al. [137] 2 6 26 - - x - x N/A

Maman et al. [242] 2 7 234 (46800) - - - x (2) 10 13

Nasirzadeh et al. [261] 2 10 3456, 1728, 691 - x - - 10 10

Sani et al. [293] 2 6 N/A N/A N/A N/A N/A N/A N/A

Zhang and Wang [364] 2 128 8000 - - x - 5 N/A

Chowdhury et al. [77] 3 15 615 - - x - x 4.6

Geurkink et al. [129] 10 70 913 - x - - 5 20.6

Jebelli et al. [171] 2, 3 57 N/A - - x - 10 10

Karvekar et al. [188] 2, 4 12 N/A N/A N/A N/A N/A - N/A

Papakostas et al. [265] 2 26 90 x - x - N/A N/A

Yang and Ren [357] 2 Variable 220 - x - - 5, 10 20

Wu et al. [353] 2 >5 148 N/A N/A N/A N/A N/A N/A

Baghdadi et al. [26] 2 2 1000 - x - - 5 20

Beéck et al. [33] 14 15 7607 x x x - N/A N/A

Gordienko et al. [135] N/A 5 N/A N/A N/A N/A N/A N/A N/A

Jamaluddin et al. [169] 2 4 N/A N/A N/A N/A N/A N/A N/A

Karthick et al. [187] 2 12 N/A N/A N/A N/A N/A N/A N/A

Aryal et al. [22] 4 21 253 - x - - 10 10

Lopez et al. [237] 2 4096 5700 - - x - x 5.3

Shahmoradi et al. [302] 3 8 N/A N/A N/A N/A N/A N/A N/A

Vandewiele et al. [336] 10 28 913 - x x - 5 N/A

Buckley et al. [55] 2 15 584 x - x - 10 N/A

Maman et al. [243] 2 16 144 - - - x (2) N/A N/A

Carey et al. [65] 10, 15 23 3398 - x - - 5 N/A

Kupschick et al. [211] 2 4, 6 533 - - x - x N/A

Pernek et al. [274] 14 7 264 - x x - 10 25, 9.1

Bilgin et al. [41] 2 2 N/A - x - - N/A 35.5

Karg et al. [186] 5 17 445 - x x - x N/A

Zhang et al. [367] 2 11 340 - x - - 5 30

Janssen et al. [170] 2, 3 6 162 - x - - x N/A

Subasi and Kiymik [319] 2 150–175 1100 - x - - N/A 45

Karg et al. [185] 2 531 N/A - x x - N/A N/A

This thesis 3 212 3595 - x x x (2–7) 5 2–15

Note: In column T4-LMSO, the number in parenthesis represents the number of subjects that were left out for testing.

252 Appendix B Related Works Details



Tab. B.5.: Mean results (rounded) of the best performing of ML model in the related works.

Authors Acc (%) Spec (%) Recall (%) Prec (%) F1 (%) CM RMSE MAE MAPE R2 Other

Albert and Arnrich [9] - - - - - - 1.5 1.3 8.1 0.2 x

Gan et al. [126] 80.7 - 77.6 76.2 71.9 [sic!] - - - - - x

Huang et al. [161] 86.1 - - - 84.6 - - - - - -

Ma and Guo [240] N/A N/A N/A N/A N/A - N/A N/A N/A N/A x

Mu et al. [256] 94 - 89.3 99 93.7 x - - - - x

Wang et al. [342] 83.3 - 90 - 95 x - - - - x

Wang et al. [346] 94.7 - 94.4 95 94.7 x - - - - x

Yao [358] 83.1 - 89.8 - 94.3 - - - - - x

Zhang et al. [365] 99 - - - - - - - - - -

Adapa et al. [1] 86.5 - - - - - - - - - -

Antwi-Afari et al. [20] 96.9 94.73 98.6 96 97.3 x - - - - -

Anwer et al. [21] 93.5 - 93.5 93.6 93.5 x - - - - x

Biró et al. [45] >90 - - - - - - - - - x

Biró et al. [44] 59 - 59 59 59 x - - - - x

Bouteraa et al. [52] 92.6 89.5 82.1 - - - - - - - -

Cañellas et al. [63] - - - - - - 13.6 16.5 - - x

Concha-Pérez et al. [83] 95.7 - 95.7 91.1 93.3 x - - - - -

Dang et al. [92] 93.5 - 44.3 98.8 64.3 - - - - - -

De Vito et al. [97] 83.9 - - - 77.7 x - - - - -

Dimmick et al. [102] 68.9 - - - - - - - - - x

Feng et al. [116] - - - - - - 0.3 - 11.5 0.89 x

Kathirgamanathan et al. [191] 97, 59 - - - - x - - - - -

Liu et al. [235] 96.7 - 96.7 96.7 96.7 x - - - - -

Marena et al. [246] - - - - - - 0.5 0.6 - 0.9 -

Perpetuini et al. [275] - - - - - - 0.5 - - - x

Pirscoveanu and Oliveira [278] - - - - - - 0.5, 1.8 - - - x

Pravin et al. [280] 87.5 92 81.8 - - x - - - - -

Smiley et al. [313] 80 - - - 79 - - - - - -

Valla et al. [335] 78.8 25 96 80 87.3 x - - - - -

Albert et al. [10] - - - - - x 2.2 - 7.7 0.5 x

Bustos et al. [58] 88 - 88 89 88 x - - - - -

Jaiswal et al. [168] 80.5 - 88 - - - - - - - -

Umer et al. [332] 64.2, 75.7 - - - - x 1.7 - - - x

Cheah et al. [69] 65.3 - - - - - - - - - -

Escobar-Linero et al. [112] 91 - - - - x - - - - -

Guo et al. [139] 92 - - - - x - - - - -

Jiang et al. [176] 83.7 - - - 82 - - - - - -

Li and Chen [225] 94.3 - - - - - - - - - -

Shi et al. [306] 88.9 - - - - - - - - - -

Triantafyllopoulos et al. [327] - - - - - - - 2.4 - - -

Wang et al. [343] 91.1 - - - - x - - - - -

Zhu et al. [374] 97.7 - - - - x - - - - -

Chen et al. [71] 72 90.9 88.9 88.9 88.9 - - - - - x

Chen et al. [70] 89.47 100 100 80 88.9 - - - - - x

K et al. [181] 94 95 93.3 - 93.8 - - - - - x

Sadat-Mohammadi et al. [288] 93.4 - - - - x - - - - x

Wang et al. [344] 95.2 96.4 94.1 96.7 - x - - - - -

Zhang et al. [370] 96.5, 78.3 - - 96.4, 78.6 96.5, 77 - - - - - -

Aguirre et al. [4] 83.2 - - - 82.7 - - - - - -

Balaskas and Siozios [28] 43 - - - - - - - - - -

Chalitsios et al. [67] 91.4 89 93 - - - - - - - x
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Table B.5 continued from the previous page

Authors Acc (%) Spec (%) Recall (%) Prec (%) F1 (%) CM RMSE MAE MAPE R2 Other

Chen et al. [72] 90.4 - - - - - - - - - -

Elshafei et al. [108] 18–95 - - - 34–87 - - - - - -

Guan et al. [138] 80.6 - - - 76.9 - - - - - -

Jiang et al. [175] - - - - - - - - - - x

Karvekar et al. [189] 91, 78, 64 - - - - x - - - - -

Kuschan and Krüger [212] 83.8, 80.9 - - - - x - - - - -

Lambay et al. [216] 65 - - - - x - - - - -

Wang and He [341] 87.7 - - - - - - - - - -

Davidson et al. [95] 84.8 - 84.8 85.1 84.9 x - - - - x

Luo et al. [238] 71.4 - 73 70 71 - - - - - x

Umer et al. [331] 98.5, 95.3 - - - - x - - - - x

Wang et al. [345] 83.5 - - - - - - - - - -

Guaitolini et al. [137] 84.6 - - - - x - - - - -

Maman et al. [242] >85 - - - - x - - - - -

Nasirzadeh et al. [261] 90.36 - - - - - - - - - -

Sani et al. [293] 78.2 - - - - - - - - - -

Zhang and Wang [364] 90 - - - - - - - - - -

Chowdhury et al. [77] - - - - 85.2 x - - - - -

Geurkink et al. [129] 91.7 - - - - x 0.9 0.7 - - -

Jebelli et al. [171] 90, 87 - - - - x - - - - x

Karvekar et al. [188] 91, 61 - - - - x - - - - -

Papakostas et al. [265] - - - - 77.8, 70.4 - - - - - -

Yang and Ren [357] 90 - - - - - - - - - -

Wu et al. [353] 98.7 - - - - - - - - - -

Baghdadi et al. [26] 90 - - - - - - - - - -

Beéck et al. [33] - - - - - - - 1.7–1.9 - - -

Gordienko et al. [135] - - - - - - - 0.2 - - -

Jamaluddin et al. [169] 98 100 96 - - - - - - - -

Karthick et al. [187] 91.5 93.9 89.1 - - - - - - - -

Aryal et al. [22] 82.6 - - - - x - - - - -

Lopez et al. [237] 81.5 - - - - - - - - - x

Shahmoradi et al. [302] 95.3 - - - - x - - - - -

Vandewiele et al. [336] - - - - - - 0.7, 0.9 - - - x

Buckley et al. [55] 75 77 73 - 74.9 - - - - - -

Maman et al. [243] - 88, 89 96, 95 - - - - - - - -

Carey et al. [65] - - - - - - 1.0 - - - -

Kupschick et al. [211] 85.8 - - - - - - - - - -

Pernek et al. [274] - - - - - - - - - - x

Bilgin et al. [41] 92 - - - - - - - - - -

Karg et al. [186] 81 - - - - - 0.6 - - - -

Zhang et al. [367] 90 - - - - - - - - - -

Janssen et al. [170] 98.1 - - - - - - - - - -

Subasi and Kiymik [319] 91 87 90 - - - - - - - x

Karg et al. [185] 100 - - - - - - - - - -

This thesis 78.4 80.4 76.3 - 78.3 x 1.1 2.6 - - x

Note: CM stands for confusion matrix.
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Tab. B.6.: Overview of the balance of classes in the related works.
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Albert and Arnrich [9] - Yes x - -

Gan et al. [126] - No - - -

Huang et al. [161] - N/A N/A N/A -

Ma and Guo [240] - N/A N/A N/A -

Mu et al. [256] - N/A - - -

Wang et al. [342] - No - - -

Wang et al. [346] - Nearly x x The number of samples for level 5 was lower due to individual differences

Yao [358] - N/A - - -

Zhang et al. [365] - Yes - - -

Adapa et al. [1] - No - 25% Different duration of reps

Antwi-Afari et al. [20] - Nearly - - -

Anwer et al. [21] - N/A - - -

Biró et al. [45] - N/A x - -

Biró et al. [44] - Yes - - -

Bouteraa et al. [52] - N/A - - -

Cañellas et al. [63] - Yes x - -

Concha-Pérez et al. [83] - N/A - - -

Dang et al. [92] - Yes - - Fatigue class is in majority

De Vito et al. [97] - No - x -

Dimmick et al. [102] - No, Yes - - Experiment 1 and 2

Feng et al. [116] - N/A - - -

Kathirgamanathan et al. [191] - Yes - - -

Liu et al. [235] - Yes - - -

Marena et al. [246] - N/A - - -

Perpetuini et al. [275] - N/A - - -

Pirscoveanu and Oliveira [278] - N/A - - -

Pravin et al. [280] - N/A - - -

Smiley et al. [313] - N/A - - -

Valla et al. [335] - No - - -

Albert et al. [10] - No - - -

Bustos et al. [58] x No - - -

Jaiswal et al. [168] x No - - -

Umer et al. [332] - No - - -

Cheah et al. [69] - N/A - - -

Escobar-Linero et al. [112] - No - - RPE deltas used to reduce and balance classes but still fewer samples for edge classes

Guo et al. [139] - N/A - - -

Jiang et al. [176] - N/A - - -

Li and Chen [225] - No - - -

Shi et al. [306] - N/A - - -

Triantafyllopoulos et al. [327] - No - - Fewer samples for low and high fatigue classes

Wang et al. [343] - N/A - - -

Zhu et al. [374] - Yes - x Poor quality data discarded

Chen et al. [71] - N/A - - -

Chen et al. [70] - N/A - - "Skewed values"

K et al. [181] - Yes - - -

Sadat-Mohammadi et al. [288] - N/A - - -

Wang et al. [344] - Nearly - - -

Zhang et al. [370] - N/A - - -
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Aguirre et al. [4] - Yes - - Different number of samples per subject

Balaskas and Siozios [28] - N/A - - -

Chalitsios et al. [67] - Yes - - Backward data selection

Chen et al. [72] - N/A - - -

Elshafei et al. [108] - No - - Later sets have a longer duration

Guan et al. [138] - Yes SMOTE - Fatigue is the minority class

Jiang et al. [175] - Yes Duplicates - Number of sets vary between subjects

Karvekar et al. [189] - N/A - - -

Kuschan and Krüger [212] - No - - Fatigue class in minority

Lambay et al. [216] - N/A - - -

Wang and He [341] - No - - Large gap between fatigue classes proportions. One subject was acquired 4 times

Davidson et al. [95] - N/A x - -

Luo et al. [238] - No - - -

Umer et al. [331] - No - - -

Wang et al. [345] - N/A - - -

Guaitolini et al. [137] - N/A - - -

Maman et al. [242] - Yes - 20% Subjects varied in age and experience.

Nasirzadeh et al. [261] - Yes - - -

Sani et al. [293] - N/A - - -

Zhang and Wang [364] - Yes - 66.7% -

Chowdhury et al. [77] - No - - -

Geurkink et al. [129] - No - - -

Jebelli et al. [171] - N/A - - -

Karvekar et al. [188] - N/A - - -

Papakostas et al. [265] - N/A - - -

Yang and Ren [357] - N/A - - -

Wu et al. [353] - N/A - - Normal distribution

Baghdadi et al. [26] - Yes - - 25 strides of each set. Subject included if RPE greater than 10

Beéck et al. [33] - No - - Different number of samples per subject

Gordienko et al. [135] - N/A - - -

Jamaluddin et al. [169] - N/A - - -

Karthick et al. [187] - Yes - - First and last curl

Aryal et al. [22] - N/A - - -

Lopez et al. [237] - N/A - - -

Shahmoradi et al. [302] - N/A - - -

Vandewiele et al. [336] - No - - Normal distribution

Buckley et al. [55] - Yes - - -

Maman et al. [243] - Yes SMOTE x Accuracy is inappropriate due to class imbalances. Random Under Sampling

Carey et al. [65] - N/A - - -

Kupschick et al. [211] - N/A - - -

Pernek et al. [274] x N/A - - -

Bilgin et al. [41] - N/A - - -

Karg et al. [186] - Yes - x Fewer samples for low and high fatigue classes

Zhang et al. [367] - Yes - - -

Janssen et al. [170] - No - - Different number of samples per subject

Subasi and Kiymik [319] - Yes - - -

Karg et al. [185] - N/A - - -

This thesis - Yes SMOTE - Fatigue class is minority. More male subjects (2:1)
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Tab. B.7.: Generalisation in the related works.

Authors Generalisation / Variance / Small Data / Limitations

Albert and Arnrich [9] Large window overlap of 95%. Small dataset limits the generalisation of the results. Weak outcomes for 5 of 16 subjects.

RPE labels grouped for oversampling and to balance the distribution.

Gan et al. [126] Larger sample population to assess stability.

Huang et al. [161] N/A

Ma and Guo [240] Expand sample size for different groups and environmental conditions to enhance generalisability. Feature selection

improve performance and generalisability. Splitting data into training and test set prevent overfitting problems and

improves generalisability.

Mu et al. [256] Develop hierarchical transformer for learning small time series

Wang et al. [342] Vague boundary between non-fatigue and fatigue. SVM can be effective for small datasets with strong generalisation ability.

Cross-validation to access how well the model generalise.

Wang et al. [346] Less observations for level 5 due to individual differences among participants. Level 5 fatigue was removed to improve

generalisability. Due to small dataset, augmentation was applied to enhance the model’s ability to generalise to new data.

Yao [358] Universality of the model needs to be strengthened. More comprehensive data needed to ensure the adequacy and

representativeness of the training set.

Zhang et al. [365] SVM is the most widely used model due to its suitability for small samples. Generalisability accessed by using T3-LOSO.

Adapa et al. [1] N/A

Antwi-Afari et al. [20] There are differences in human characteristics between students and construction workers. Huge samples of data would

help to generalise the findings.

Anwer et al. [21] Duration of the experiments was not a typical half-day of construction work. Compared to many strong learners which

tend to remember data and overfit, bagging reduces amount of variation in a dataset and reduce the amount of overfitting.

Biró et al. [45] N/A

Biró et al. [44] More variability in fatigue state. Fluctuation in stamina values across strides varies between participants. Individual

profiles mean that models must be personalised being data-intensive and time-consuming. There is a risk of overfitting.

LSTM or Gated Recurrent Units would improve generalisability.

Bouteraa et al. [52] N/A

Cañellas et al. [63] N/A

Concha-Pérez et al. [83] N/A

Dang et al. [92] N/A

De Vito et al. [97] Bootstrap and bagging helps to reduce overfitting and improve generalisation of the ensemble model.

Dimmick et al. [102] Random Forest allows for robustness to small datasets. Subject-specific models were more accurate than group-based

models. Different feature importance ranking were observed between different subjects. Differences in fitness/experience

could explain the high variability in subject-specific model accuracies. Risk of overfitting due to small sample size, although

cross-validation was applied to reduce the risk.

Feng et al. [116] Small sample size is a general limitation due to high cost of hiring subjects.

Kathirgamanathan et al. [191] Personalised classifiers perform up to 40% better than group-based models. For this reason, similar subjects are clustered

into groups. The clustered groups perform up to 20% better than random clusters. T1-SOLO achieved 97% and T3-LOSO

59%.

Liu et al. [235] Adjacent data samples of fatigue were prone to confusion during classification. For this reason, neighbouring samples were

removed.

Marena et al. [246] All subjects were college-aged individuals and self-reported fit. To enhance generalisability, broader range of subjects with

various age and fitness levels is needed. Activities with greater physical demand are more predictable.

Perpetuini et al. [275] Larger sample size for more generalisable estimation. Cross-validation was applied to assess generalisability. A larger data

set would provide more generalisable estimation.

Pirscoveanu and Oliveira [278] Low-quality predictions may reach high errors due to extended periods of identical RPE during measurements.

Pravin et al. [280] N/A

Smiley et al. [313] Larger sample size for additional validations.

Valla et al. [335] Low specificity is due to fatigued subjects exhibiting less variation. In future, we intend to develop personalised models.

Bias may lead to overfitting which is avoided by cross-validation.

Albert et al. [10] Small sample size is a limitation. Only male subjects for a homogenous population.

Bustos et al. [58] Varying accuracy for the four classes from 69 to 93% with T3-LOSO. 6% difference between T2-LNSO and T3-LOSO

indicates potential overfitting when randomising the data.

Jaiswal et al. [168] N/A
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Table B.7 continued from the previous page

Authors Generalisation / Variance / Small Data / Limitations

Umer et al. [332] Varying perceived physical exertion and responses. Combining multiple levels of exertion lead to better accuracy. Variability

of perceived exertion and physiological responses might limit accuracy. Multi-class multi-task models could learn generalised

and individualised features for better predictions despite inter-personal variability.

Cheah et al. [69] Feature space reduction to reduce number of required samples.

Escobar-Linero et al. [112] N/A

Guo et al. [139] N/A

Jiang et al. [176] Subjects are divided into fast-tiring and slow-tiring subgroups. No significant difference was observed.

Li and Chen [225] N/A

Shi et al. [306] Deep learning usually requires a large amount of data. SVM requires a large amount of data. It is difficult to predict fatigue

using a small amount of data.

Triantafyllopoulos et al. [327] Under-represented group (by age range) has lower MAE than well-represented group in the data. Model perform almost

the same despite a bias towards female subjects (27:21).

Wang et al. [343] Min-max normalisation is applied to deal with inter-individual variation.

Zhu et al. [374] N/A

Chen et al. [71] Small sample size. Due to the small sample size, 5-fold cross-validation is more appropriate (than 10). Feature optimisation

can reduce variance of the model and thus prevent overfitting.

Chen et al. [70] Sample size was relatively small. Cross-validation was applied to avoid overfitting.

K et al. [181] N/A

Sadat-Mohammadi et al. [288] Larger number of subjects to include respiration signals from broader age ranges to increase generalisability of the results.

Wang et al. [344] Dropout layer can make the model more generalisable to prevent overfitting. Splitting the data into training, validation,

and test set ensures generalisability.

Zhang et al. [370] The lack of a uniform measure of muscle fatigue affects data collection.

Aguirre et al. [4] Cross-validation addresses the problem of overfitting.

Balaskas and Siozios [28] Classification varies widely among subjects. Fatigue detected at 43% that proves the model’s ability to generalise to unseen

running patterns, overcoming the constraint of limited training samples.

Chalitsios et al. [67] Random Forest is robust against overfitting.

Chen et al. [72] N/A

Elshafei et al. [108] Medium-weight dumbbells are the best compromise between recording time and momentum changes as subjects reached

fatigue more gradually. The more fatigue data is added to the data, the steeper the decline in ML model performance.

Guan et al. [138] N/A

Jiang et al. [175] N/A

Karvekar et al. [189] Larger number of classes led to a weakening of the ML model performance as more regions with common boundaries to

the RPE levels led to more confusion between groups.

Kuschan and Krüger [212] Results show that SVM classification of fatigue is possible with a small data set.

Lambay et al. [216] Small size data set does not provide a convincing sample for fatigue prediction. T3-LOSO was used as generalised analysis.

Wang and He [341] N/A

Davidson et al. [95] Some ML techniques need more input data. CNN require fewer trainable parameters and are more likely to learn useful

features from small datasets. Cross-validation to identify a generalisable model. Batch normalisation assists CNN to

converge more quickly and improve generalisation.

Luo et al. [238] Relatively small dataset. Fatigue scores converted to binary labels to reduce intra- and -inter-subject variabilities.

Umer et al. [331] ML models with larger training set could lead to greater performance. Lower RPEs were harder to predict. Inter-individual

variability could be observed under different physical exertion levels. Subjects were only students. Short duration for a

single task. Controlled environment.

Wang et al. [345] SVM based on statistical theory and structural risk minimisation can solve the problems of small samples and overfitting.

Guaitolini et al. [137] Classifier trained on lower amount of data, having less subjects. Misclassification error could be due to subjects of different

ages and training levels. Larger sample size necessary to provide more complete validation.

Maman et al. [242] Small sample size due to time. Cross-validation is not suitable since the train and test data sets are not independent, for

this reason, about 10% of subjects should be left out for cross-validation. 10-fold cross-validation may reduce variation

between training and test performance. Bootstrap was applied to reduce bias from model training. Feature reduction was

applied to increase generalisability.

Nasirzadeh et al. [261] Small sample size due to time. Individual variation between participants can skew the results.

Sani et al. [293] More data sources can lead to more accurate results.
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Table B.7 continued from the previous page

Authors Generalisation / Variance / Small Data / Limitations

Zhang and Wang [364] Individual differences limit detection results but for the same individual the fatigue characteristics show considerable

self-stability.

Chowdhury et al. [77] The F1 scores for all folds/users for all classifiers were pooled to increase the statistical power and generalisability of the

results.

Geurkink et al. [129] Low MAE and RMSE results despite small dataset. The relatively small dataset can be used to predict session RPE quite

accurately.

Jebelli et al. [171] Extensive database with a larger number of subjects with more diverse personal characteristics required for future research.

Cross-validation was used to confirm that the model generalises.

Karvekar et al. [188] N/A

Papakostas et al. [265] Fluctuating model performance for some users. Fatigue detection is challenging due to great variability between self-reports

and EMG measurements across subjects and scenarios.

Yang and Ren [357] N/A

Wu et al. [353] N/A

Baghdadi et al. [26] Model performance is assessed with less training data by changing the ratio of training to test sets.

Beéck et al. [33] 29 subjects is a larger data set in sports science than usual. Data collection is time-consuming.

Gordienko et al. [135] Potential improvement with much bigger data set.

Jamaluddin et al. [169] N/A

Karthick et al. [187] sEMG signals have large inter-subject variations.

Aryal et al. [22] Different environmental factors should be investigated. Task does not reflect actual conditions at work.

Lopez et al. [237] Transfer learning has the advantage of using much less training data than training the network from scratch. T3-LOSO

ensures generalisation.

Shahmoradi et al. [302] The model has difficulty in classifying the fatigue transition state. Subject-independent fatigue recognition should be

investigated.

Vandewiele et al. [336] Rather small data set. Model performance on each of the samples fluctuates a lot. The model can be improved even more

by including more variables. Results need to be checked for generalisability for other subjects.

Buckley et al. [55] N/A

Maman et al. [243] Models should be investigated, if they are still valid when applied to a larger sample. Fatigue class samples are smaller

than non-fatigue samples which is important with small datasets. The data must cover a variety of conditions and should

be recorded over an extended period of time for different individuals. Consistent activity conditions for subjects performing

the same activity would help avoid variation in the predictive fatigue model.

Carey et al. [65] A larger dataset would enable a better assessment of the model accuracy. Generalisability for a new player joining the team

was not investigated. Cross-validation was not stratified by player identity to ensure out-of-sample predictions, giving a

realistic estimation how well the model generalise to new data.

Kupschick et al. [211] RPE 12 (non-fatigue) and 13 (fatigue) are the classes with the most misclassification. Cross-validation was applied to

prevent overfitting.

Pernek et al. [274] T3-LOSO makes model very robust to overfitting problems. Model with different number of subjects was investigated since

the model needs a large number of data to scale to real world setting with a variety of different subjects. Prediction error

converges after adding the 6th subject.

Bilgin et al. [41] N/A

Karg et al. [186] Models are trained individually as the variation in movement changes is large between subjects. No consistent increase in

variance and subject fatigue was found. To avoid overfitting caused by a small data set, a filter-based feature selection

and removal of highly correlated features is proposed. Few training samples for low and high fatigue for each subject

complicate person-dependent ML, so regression is preferred for fatigue detection. Even though model is trained on a small

data set, it generalises with unseen data.

Zhang et al. [367] N/A

Janssen et al. [170] Relatively homogeneous group. Fundamental movement pattern of walking is not only individual, but also highly

situation-dependent, as the characteristics of gait patterns depend on fatigue states.

Subasi and Kiymik [319] The training set provided to the model was representative of the entire space of interest, so that the trained model had the

ability to generalise.

Karg et al. [185] The modality of expression for several predefined parameters differs among subjects. Significant inter- and intra-individual

changes in specific parameters between normal and exhausted human gait.

This thesis Models do not generalise due to small data. Target group is composed of non-athletes which probably results in a wider

variance in the collected data compared to a group of (professional) athletes.
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Fatigue Factors Details C
This section looks in more detail at some of the factors contributing to fatigue that

are frequently mentioned in the literature.

Homeostatic factors: Body homeostasis is a self-regulating process by which an

organism can maintain internal stability while adapting to changing external condi-

tions [42]. This is achieved by engaging feedback and feedforward pathways that

limit variation in one or more control variables [199]. In this context, perceptions

of fatigue are likely to contribute to homeostasis by regulating energy expenditure

and protecting against overuse injury [199]. Fatigue gradually pushes the body to

its limit, breaking the state of homeostasis due to the difference between metabolic

energy production or consumption and the accumulation of metabolic waste at the

cellular level [108]. Several metabolic stimuli have been proposed to induce muscle

fatigue, including muscle glycogen depletion, phosphocreatine, lactate accumulation,

low pH, Pi, K1, ammonia, and adenosine triphosphate [199].

Mental factors: Baumeister et al. [30] coined the term ego depletion to refer to a

temporary reduction in the self’s capacity or willingness to engage in volitional action

caused by the prior exercise of volition. However, there is evidence for the metaphor

of the human mind as a battery that can be depleted and recharged [114]. However,

ego depletion is controversial, Pattyn et al. [269] argue that energy depletion cannot

currently be taken as an explanation for fatigue except as a metaphor.

Noakes [263] propose that there must be a central nervous system mechanism, a

central governor, that limits further effort to prevent a breakdown in homeostasis.

This theory suggests that the brain dynamically and unconsciously modulates the

number of active motor units based on a pacing strategy that allows a given task to be
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completed in the most efficient manner while maintaining internal homeostasis and a

metabolic and physiological reserve [114]. Based on feedback from multiple afferent

signals regarding factors such as metabolic rate, fuel reserves, and rate of heat

production, a central governor determines subjective feelings of fatigue that increase

as the estimated limits of homeostatic stability are approached, ultimately leading

to a reduction in motor recruitment and cessation of exercise [114]. Overriding the

central governor can lead to physical injury, such as torn muscles, ruptured tendons,

and broken teeth [114].

Psychological factors: Psychological factors that contribute to the perception of

fatigue include perceptions of effort, expectations, familiarity, motivation, temporal

and performance feedback, arousal, and mood [199]. Individuals must continu-

ously self-regulate different affective states induced by different perceptions (e.g.,

effort perception, exercise-induced pain perception), thoughts (e.g., related to task-

termination or distractors), and behaviours (e.g., stopping the task or increasing the

effort), with consequences for their motor performance [34]. For example, muscle

fatigue from brief anaerobic exertion, such as sprinting, can be moderated by several

psychological factors, including hypnosis, sudden noise, music, and deception about

workload, suggesting control by central mechanisms rather than, or in addition to,

peripheral energy stores [114].

Studies have shown that orally swishing glucose without ingestion leads to im-

provements in exercise performance and activation of brain areas associated with

reward and motivation. The extent of fatigue is determined by the expected levels

of glucose relative to the estimate of its anticipated need, combined with the ex-

pected levels and needs of other resources that may be required for successful goal

completion. Muscle fatigue begins almost immediately after the onset of exercise;

it is highly unlikely that any substrate could be depleted so quickly. These studies

suggest that fatigue and performance limits are mediated by the central nervous

system [114].
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The ability of psychological factors such as beliefs and motivation to overcome

self-regulatory fatigue may be due to a the expectation of a disturbance in homeosta-

sis, the lack of expected benefit to the desired goal, or both. In laboratory studies

of self-regulatory fatigue, the motivation to perform a task is usually extrinsic: an

experimenter asks participants to do their best at a task that is irrelevant to the par-

ticipant. In these cases, even seemingly simple tasks can cause considerable fatigue

due to low levels of motivation and perceived benefit. Tasks that are intrinsically

motivated may produce less self-regulatory fatigue [114].

Central factors: Fatigue during both motor and cognitive tasks is additionally

driven by central nervous system mechanisms. Neurophysiological studies in healthy

human subjects show changes in motor cortex and spinal excitability associated with

fatigue during motor tasks and suggest that deficits in central drive account for a

significant percentage of fatigue depending on task demands [199].

Signals such as the level of muscle recruitment are transmitted through the spinal

cord to the thalamus, a kind of relay station for sensory and motor signals from

the periphery to the cerebral cortex. Other signals to the brain probably travel a

different route. The vagus nerve, which is 80-90% afferent fibres, carries a vast

amount of information from the body to the brain, including the state of the heart,

lungs, gut, and immune system [114].

Peripheral factors: Peripheral nerves and physiological changes in muscle con-

tribute to fatigue in healthy humans and can be referred to as peripheral factors,

based on anatomical distinctions between the peripheral nervous system and the

central nervous system. Alternatively, the terms “contractile factors” and “activating

factors” can be used to distinguish between peripheral mechanisms within the mus-

cle and those that provide the activating signal [199]. However, the mechanisms of

physical (motor) performance fatigue are not fully understood: data suggest that

changes in the nervous system and muscle during motor tasks contribute to the

decline in motor performance [34]. Other contributors may include the type, amount
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and intensity of physical work and effort, as well as neuromuscular characteristics,

metabolite storage and buffering capacity [269].

The degree of motor fatigue may differ between women and men during fatiguing

isometric and dynamic tasks. Males usually show greater motor fatigue than females

during single-joint isometric and slow to moderate velocity muscle actions and

whole-body exercise. The sex difference in motor fatigue is reduced in fast-paced

muscle actions and is highly dependent on the muscle(s) tested. Motor function

declines with age due to structural and functional changes within the neuromuscular

system: Age-related differences are specific to the muscle group studied [34].

One of the most important and studied factors influencing the extent of motor

performance fatigue is the characteristics of the motor task, which determine the

stress imposed on the involved physiological subsystems. The magnitude of the

decline in maximal voluntary force and the relative contribution of changes in

muscle activation and contractile function are strongly dependent on the duration

and intensity of the exercise, the mode and velocity of muscle action, and the

engaged muscle mass [34].

Pathological factors: Pathological changes in the peripheral nervous system and

muscle may also influence fatigue [199]. For example, illnesses and diseases such as

myasthenia gravis, a chronic autoimmune disease, impair neuromuscular connectiv-

ity and result in decreased muscle strength and endurance during repetitive muscle

activity [108]. However, the degree of actual physical fatigue is sometimes difficult

to measure, especially in cases where a pathology is present [50].

Age factors: Fatigue is a common condition affecting people of all ages, but it

appears to be particularly prevalent in older people. While demographic factors play

a role, the exact causes and effects of fatigue are still being investigated [217].

Sleep factors: Sleep deprivation can severely affect performance, motivation, per-

ception of exertion, cognition and many physiological functions [143]. Elsais et al.

[107] report strong correlations between fatigue and thermoregulation, as well as
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sleep quality and orthostatism (a condition caused by low blood pressure). A related

effect is circadian rhythms, which can also influence fatigue levels [248].

Time factors: Perceived fatigue can be measured at rest or during physical activity,

whereas performance fatigue is quantified as the rate of change in a criterion

outcome due the adjustments made during a fatiguing task [110].

Domain factors: Accurate assessment of fatigability or momentary perception of

fatigue requires specification of the performance domain and task. Performance

domains include sustained contractions, repetitive movements, skilled sequences,

cognitive functions (such as working memory and attention) and verbal abilities.

While some factors, such as arousal, affect performance across domains, many

factors are domain-specific. For example, motor and cognitive tasks induce fatigue at

different rates and stress different physiological factors, but even within well-defined

motor tasks, subtle differences in performance strategy may influence the rate of

fatigability [199].
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Fatigue Exercise Load D
A concept related to fatigue is exercise load, which can be interpreted in three ways:

Firstly, by physical measures such as power, work and energy, torque or velocity.

Secondly, physiologically in absolute terms such as VO2max or by relative values

such as heart rate. Thirdly, in terms of ratings of subjective intensity as perceived by

the subject [50].

Fatigue is an inevitable consequence of incremental tasks such as training exercises

[108]. Exercise-induced fatigue occurs when the effort required by the exercise task

equals the maximum effort the subject is willing to exert to succeed in the task, or

when the subject believes they have exerted a true maximum effort and continuation

of the exercise is perceived as impossible [269]. To explain the variance between

subjects and workloads, different physiological variables, and their interactions need

to be measured and weighted to develop a model for prediction [50].

Muscle power output decreases as exercise duration increases, following a hyper-

bolic relationship characterised by critical power. This is the maximum sustainable

power output without fatigue accumulation. Above critical power, a limited amount

of additional work can be performed before exhaustion, typically within 30 minutes.

Critical power marks the transition from heavy to severe exercise intensity where

physiological adaptations can no longer maintain homeostasis [110].

Halson [143] distinguishes between external and internal load. External load

is defined as the task performed by the subject, measured independently of their

internal characteristics (e.g., power output, speed, acceleration, time movement,

neuromuscular function). Internal load, or the relative physiological and psycho-

logical stress imposed, is also critical in determining training load and subsequent

adaptation (e.g., heart rate to RPE ratio, heart rate variability, heart rate recov-
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ery, TRIMP, lactate concentration, lactate to RPE ratio, biochemical assessment,

questionnaires, psychomotor speed, and sleep).

In addition, the validity of a measure of a load indicator depends on the context.

For example, heart rate is a valid measure of internal load for endurance training

but not for resistance training. Even within the same context, a single measure of

exertion may not have the same level of validity. Heart rate is a less valid indicator of

internal load for short duration, intermittent high intensity efforts compared to long

distance or interval training. Measures of external load are specific to the type of

training performed. Muscle fatigue increases both heart rate and perceived exertion,

whereas mental fatigue increases only perceived exertion [164].

The problem is finding the right level of exercise intensity: when designing an

experiment, researchers need to find a compromise between recording time and

fatigue-inducing task momentum, so that the majority of subjects reach fatigue more

gradually. Moreover, it is important to ensure that factors causally related to fatigue

can be distinguished from compensatory or other associated factors, which may

also change over the course of task performance [199]. Causal factors should show

correlations with performance decline rather than change over time [199].
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Fatigue in the Context of

Stress

E

Attention is drawn to the field of stress in the context of sports, its relation to fatigue,

and how studies have attempted to measure it during exercises. There is a long

debate across multidisciplinary fields about the concept of stress [111]. Since each

discipline has its own concepts on stress, a common definition is unlikely [23, 125].

A common understanding exists, but the meaning depends on one’s concept [125]:

• Stimulus (1939) by Cannon (physiologist): Stress is associated with main-

taining homeostasis and induced by the environment “stressors”, e.g., heat,

diseases, exhaustion, demands, or submission dead-lines [64].

• Response (1956) by Selye (endocrinologist): Stress is how an individual or

organism reacts to events or conditions, e.g., anxiety or fatigue [298].

• Transactional (1984) by Lazarus (psychologist): Stress is an imbalance be-

tween demands placed on a person, and opportunities as well as resources

available to meet those demands (“coping”) [223].

Stress can be classified as acute or chronic [111, 151]. While chronic stress is

pathological and psychological in nature, acute stress is the immediate response

of the body to a stimulus (stressor) [151, 298]. The acute response triggers alert-

ness, energy release, physiological regulation, and immunological activation to

compensate for the effects of the stressor [151]. During training exercises, the

body experiences an acute stress response in which more oxygen and energy are

required. The heart rate increases so that more blood is pumped through the body

and thus oxygen is transported to improve cardiorespiratory function [29]. Stress

could be understood as a response to a disturbance of homeostatic balance by events
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or conditions (stressors) [298]. For example, untrained people suffer from more

stress due to higher demand for oxygen and energy, while trained people become

accustomed to use less oxygen; their body will eventually feel the stress over a

longer period [29, 87]. The physiological reactions are summarised as follows:

• Sympathoadrenal system (SAM axis): Sympathetic activation and parasympa-

thetic withdrawal cause increased heart rate and respiratory rate, bronchial

and pupil dilation, sweaty skin, and other symptoms. The body is rapidly

prepared for a physical “fight or flight” stress response [29].

• Hypothalamic-pituitary-adrenal axis (HPA axis): Slowly activated by the se-

cretion of cortisol leading to increased catabolism, anabolism inhibition, and

depression of the immune system. Typically activated by mental tasks [133].

As stress has different physiological sources and effects, a single stress marker

cannot holistically assess the stress response of a person [11]. A method that con-

siders multiple stress response reactions is needed. For example, skin conductance

can be an indicator of sympathetic nervous system activation (SAM axis), while

electrocardiogram can detect the activation of the HPA axis and SAM axis [3].

In addition, stress is highly subjective and individual in all aspects [130, 132].

There is a lack of research on methodological and measurement standards to de-

termine stress during challenging contexts such as training exercises [23, 3, 130,

213, 299], for which stress is a natural physiological response [29, 317, 18, 141].

In principle, there are countless stimuli that are associated with stress [132, 264].

One of them is the performed quality of a training exercise [8, 156]. Fatigue is

another stimulus for stress [200, 119]. Physical activity could be viewed as providing

stimuli that promote specific and varied adaptations of the body depending on the

type, intensity, and duration of exercise performed [87, 141, 142]. Chronic exercise

training does not eliminate the acute exercise response, but it can attenuate the

overall effect of the response as the body adapts to the training stimulus in a positive

way. An excessive intensity and/or volume of training may lead to maladaptation
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[141, 142]. Hence, a stress response is dependent on the athlete and the exer-

cise. An unfamiliar exercise is likely to elicit a higher metabolic stress response

than a familiar, routine exercise, e.g., a long-distance runner will probably have a

different stress response profile for a given exercise than a weightlifter. Exercises

represent an effective methodological tool to study the body’s response to metabolic

stress, and from a clinical perspective, offers an alternative treatment choice to drug

intervention strategies [29].

Thus far, only a few studies have attempted to investigate physiological stress

during training exercises. For example, [241] focused on the effect of physical

and mental stress on the heart rate as well as cortisol and lactate concentrations.

They found that the heart rate is most sensitive to physical and mental stress.

[156] investigated the influence of physical activity on stress recognition with

physiological responses. The authors used different stressors to induce stress and

found that, among others, stress models for each physical activity should be built

due to variations in physiological changes caused by physical activity. Alamudun

et al. [8] introduced two multivariate signal processing algorithms to cope with the

differences in physiology between participants and changes in physical activity. They

found that these two algorithms can bring noticeable improvements for the process

of stress prediction. Wong et al. [351] used IMU data to distinguish stress and high

intensity activity in daily life.

Tab. E.1.: An overview of commonly used stress markers.

Subjective Stress Markers Objective Stress Markers
E.g., interviews, self-reports,

and questionnaires.
Obtrusive Unobtrusive (real-time)

Salvia, hair, and blood samples
(e.g., cortisol or lactate).

Wearables (e.g., heart rate),
contextual (e.g., air quality),

video-based (e.g., thermal imaging),
behavioral (e.g., physical activity).

Based on our literature work, we created a tabular overview of existing stress

markers (see Table E.1). Stress (and fatigue) markers can be classified as subjective

or objective depending on the measurement technique [136]. Subjective stress

markers, on the one hand, are traditionally used by psychologists in the form of ques-
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tionnaires, interviews, or self-reports, which are usually conducted retrospectively.

Subjective markers are not suitable to continuously monitor stress during training

exercises but can be used to determine stress levels before and after an exercise.

Objective stress markers, on the other hand, are quantifiable and cover physiological,

physical, behavioural responses, and other contextual data. They can reduce the

possibility of self-deception, falsification, fabrication, attention, or recall bias, which

is usually present in subjective markers [307]. Objective markers are measured

either obtrusively or unobtrusively [23]. Biomedical researchers rely on obtrusive

biochemical markers, typically hormones, to measure stress [23, 317]. One of these

hormones is cortisol, which is commonly used in studies on stress [130]. Another

less expensive marker is lactate [80, 153] which was once incorrectly attributed to

muscle fatigue [80]. Such obtrusive biochemical markers provide accurate quanti-

tative data [23]. However, they are not suitable for real-time monitoring systems

due to their inherent nature and that they, at times, necessitate analysing data in

a laboratory. Unobtrusive stress markers, such as heart rate or muscle activity, are

measured by sensors that are attached to the body. They provide continuous data in

real-time and do not require analysis in a laboratory [130]. Yet, unobtrusive markers

are susceptible to noise or artefacts due to individual’s body parts movements or

activities [130]; however, studies show that they can provide relevant indicators to

determine stress [23, 3, 130, 132, 136, 159, 299, 351, 362].

Regardless of the stress marker, Arza et al. [23] state that a single stress marker

cannot globally assess an individual’s stress response, because stress causes different

physiological reactions, and a multi-variable approach is therefore suggested. Due

to the multifaceted characteristics of stress, determining a ground truth is a difficult

process [130]. Some studies use subjective measures of perceived stress. Other

studies rely on biosignals or biomarkers that they consider reliable for determining

stress. In many studies, ground truth is established by placing a subject in a neutral

and in a stressful situation to label the collected data accordingly. Others use the
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amount of workload and cognitive demand that is being applied as the stressor [23,

130, 144].

In summary, stress cannot be objectively and unobtrusively monitored in real-time

[132]. Determining stress is challenging because of the subjectivity and individual

nature of stress [132]. Moreover, the start, the duration, and the intensity of a stress

event is often not clearly identifiable [132]. There is also no commonly agreed

methodological or measurement standard for unobtrusive markers [23, 130]. The

relationship between the body’s activation of biochemical stress markers and the

intensity of the stress perceived is both complex and understudied [23]. However, it

has been shown that unobtrusive stress markers can be used to approximate stress

(and implicitly fatigue) in real-time [23, 130].
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RPE Scale Instructions F

Fig. F.1.: BORG Scale instructions by Borg [50].
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RPE Principles G
Studies using RPE should consider the following principles in its application [50].

The first principle is to explain to the subject the purpose of the study. While

the subject may naturally expect the investigator to ask questions about perceived

exertion during a test, a brief rationale for the need for such questions should be

given. The explanation need not be elaborate; a simple statement can convey the

meaning.

The second principle is to provide clear instructions as to what is to be assessed

(see also Figure F.1 in the Appendix). It is essential to provide comprehensive

instructions and explanations on how to assess perceived effort. The subject should

understand that the focus is on their subjective perception. It is essential that the

subject focuses their attention inward, concentrating on their internal subjective

feelings, rather than dwelling on the physical tasks or physiological cues and re-

sponses. The aim is for the subject to approach the assessment with spontaneity

and a ’naive’ attitude, taking an introspective rather than a stimulus-orientated

approach. The subject should refrain from considering external opinions or hypo-

thetical responses in similar situations and rely on their own feelings. To ensure

accurate and reliable results, a clear and concise scale instruction for the rating

process is necessary. This instruction should strike a balance between simplicity and

comprehensiveness, avoiding unnecessary brevity or complexity. It should include

an explanation of the aspects to be rated, how the scale works and the importance

of verbal anchors. In addition, the instructions should outline the expectations of

the respondent and emphasise the importance of being a conscientious rater. The

exclusivity of the anchors specified in the instructions and the verbal descriptors on
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the scale is crucial. After the instructions have been given, it is important that the

experimenter encourages the subject to ask questions.

The third principle considers the contextual elements of ’where and when’ Control

of the physical environment can be challenging, with social factors introducing po-

tential confounds. Variables such as unfamiliar equipment, intimidating instruments,

ambient music or noise, temperature fluctuations and the presence of other people

engaged in other activities can all have a significant impact on both performance

and subjective scoring. In cases where control is not possible, it is imperative that

these elements are recognised and taken into account in the interpretation of results.

Although many laboratory settings allow for strict control of confounding factors, it

is important to maintain optimal conditions for RPE testing when assessing work

capacity. Individuals undergoing testing should be well rested, alert and following

their typical daily routine. Testing immediately after eating or taking medication

(unless necessary) is discouraged. In addition, psychological factors play a role

in the perception of exertion, emphasising the importance of choosing a time for

testing when the individual is calm, relaxed and ideally feels a sense of control over

their situation.

The fourth principle is about how to assess and evaluate. A positive relationship

and co-operation should be established between the investigator and the subject.

The study should not only be objectively controlled, but also standardised to en-

sure consistent understanding and responses across subjects. Whilst objectivity is

maintained through standardisation, the experimenter must have the skills to be

flexible and accommodate potential changes due to individual personality factors

and unexpected situational elements. If necessary, interruptions during the test,

accompanied by clarification of instructions, may be required. Appropriate manage-

ment of emotional factors and health problems should be addressed as necessary.

Athletes, in particular, may tend to underestimate their perceived exertion, driven

by a desire to demonstrate high levels of fitness. Conversely, people with low moti-

vation may either exaggerate or downplay their exertion levels based on personal
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motivations. In cases where collaboration is hindered by misunderstanding, fear or

low motivation, it is essential to conduct a detailed interview. The purpose of this

interview is to emphasise the importance of following instructions, to promote a

more cooperative testing environment and to ensure the reliability of the results.

The fifth principle is to establish a robust protocol for systematically documenting

responses during the test. Particular attention should be paid to comprehensive

observations, covering both behavioural and physiological aspects, as these may

prove crucial in subsequent evaluations. To reduce the risk of data entry errors, a

verification protocol should be followed for recording responses and other reactions

during a test.
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RPE Interpolation H
In the case study, RPE were collected as labels at 10 second intervals, resulting in

multiple squat repetitions within each interval sharing the same RPE. As RPE is

known to change linearly with exercise intensity [33, 113, 51], the RPE for each

repetition can be interpolated by calculating an overall slope via linear regression

[4]. To do this, all RPE collected for each set must be normalised so that they start

from a common baseline (e.g., zero). A linear regression model, such as the MATLAB

function fitlm1, can then be used to analyse the baseline RPE and compute an overall

slope value.

Figure H.1 illustrates how the slope of 9.6528 was determined across all subjects.

The slope obtained from the linear regression was then used to interpolate RPE

labels for each individual squat repetition based on either the first or last RPE in a

set. It was also necessary to constrain the interpolated values within the upper and

lower limits of the RPE scale to ensure their validity. Table H.1 shows an example of

how interpolated RPE values are stored in a segment file.

1https://de.mathworks.com/help/stats/fitlm.html
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Fig. H.1.: The RPE for each set were normalised to establish a common zero-baseline,
facilitating the computation of linear regression to determine the overall slope
(thick red line).

Tab. H.1.: Example of segments including raw and interpolated RPE.

SegmentNumber Exercise Set SegmentStart_ms SegmentEnd_ms Label Interpolated
1 Squats 1 7753.3 9753.3 11 10
2 Squats 1 9753.3 11853.3 11 10
3 Squats 1 11853.3 13920.0 11 11
4 Squats 1 13920.0 15920.0 11 11
5 Squats 1 15920.0 17953.3 11 11
6 Squats 1 17953.3 20086.6 12 11
7 Squats 1 20086.6 22120.0 12 11
8 Squats 1 22120.0 24153.3 12 12
9 Squats 1 24153.3 26086.6 12 12
10 Squats 1 26086.6 28086.6 12 12
11 Squats 1 28086.6 30220.0 13 12
12 Squats 1 30220.0 32320.0 13 12
13 Squats 1 32320.0 34353.3 13 13
14 Squats 1 34353.3 36386.6 13 13
15 Squats 1 36386.6 38486.6 13 13
16 Squats 1 38486.6 40553.3 14 13
17 Squats 1 40553.3 42553.3 14 13
18 Squats 1 42553.3 44553.3 14 13
19 Squats 1 44553.3 46553.3 14 13
20 Squats 1 46553.3 48586.6 14 14
21 Squats 1 48586.6 50653.3 14 14
22 Squats 1 50653.3 52720.0 14 14
23 Squats 1 52720.0 54753.3 14 14
24 Squats 1 54753.3 56753.3 14 14
25 Squats 1 56753.3 58786.6 14 14
26 Squats 1 58786.6 60853.3 13 14
27 Squats 1 60853.3 62786.6 13 14
28 Squats 1 62786.6 64753.3 13 13
29 Squats 1 64753.3 66753.3 13 13
30 Squats 1 66753.3 68820.0 13 13
1 Squats 2 137386.6 139253.3 11 10

282 Appendix H RPE Interpolation



RPE vs Heart Rate I
There is a strong correlation between heart rate and RPE [45, 50]. However,

preliminary tests with the heart rate sensor have shown that heart rate is highly

dependent on the order of the exercises and therefore does not always correlate

with RPE. Figure I.1 shows the recorded heart rate as a blue line during six different

training exercises. The blue numbers represent the RPE.

Fig. I.1.: RPE compared to heart rate progression during six consecutive training exercises.
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Figure I.2 shows a sketch of the general trend of heart rate progression during the

six consecutive training exercises for all subjects.

Fig. I.2.: Sketch of the general trend of heart rate progression during six consecutive
training exercises for 20 subjects.
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HAR Sensing Techniques J
HAR sensing techniques by Bian et al. [39] based on [349, 124].

Field Sensing The field is a concept in physics that refers to an area in which

any point is affected by gravitational, magnetic, or electrical force. Gravitational

field-based HAR tasks mainly use the pressure sensed by pressure sensors caused by

the weight of the body. Magnetic field strength can be sensed by magnetometers

and is often included in IMUs. Electric field-based HAR applications can be active or

passive. An active electric field-based HAR application delivers the field variation as

a signal source when the field is emitted by the environment and the human acts as

an intruder. A passive one provides the field variation when considering the electric

field emitted from the body itself to the ground, as the human body is a conductor

and can store the charges.

Physiological Sensing Physiological sensing refers to natural physiological and

kinematic signals activated by an organism. Physiological sensing can include

blood sampling, blood pressure, heart rate, respiration, phonation, muscle and

joint movement, or facial expression. A subfield is electrophysiology, which focuses

on the electrical properties of neurons, molecular and cellular substances. These

can be monitored using various (wearable) sensors, such as electromyography,

electrocardiogram, electroencephalogram, and electrooculography. A more detailed

description of human bioelectric signals can be found in Shen et al. [305].

Mechanical Kinematic Sensing Mechanical sensing refers to the mechanical mobil-

ity and deformation when a force is applied to or from the target. The mobility and

deformation are sensed by mechanical sensors, which convert the mechanical change

into electrical signals. Mechanical sensors are widely used to monitor body activity,

285



such as kinematic sensors, which measure motion characteristics such as velocity,

acceleration and rotation. Kinematic sensors, such as inertial measurement units

(IMUs), have become a prominent sensing approach in industrial applications and

scientific research. IMUs typically contain multiple sensors such as accelerometers,

gyroscopes, and magnetometers.

Wave Sensing Wave sensing is a non-contact sensing technique based on the

propagation properties of waves. Three types of wave sensing approaches are mainly

used for HAR tasks: The first is radio frequency, with frequencies ranging from

3 kHz to 300 GHz, such as WiFi, Bluetooth, mmWave or ultra-wideband. The

second is acoustic, a mechanical wave including vibration, sound, ultrasound and

infrasound. The third is optical, an electromagnetic signal with the typical extremely

high frequency in the THz range (e.g. image or video).

Hybrid / Others Other techniques are human body capacitance and infrared. Hu-

man body capacitance is a biological variable that describes the capacitance between

the human body and the environment. Infrared is electromagnetic radiation with

wavelengths longer than visible light and manifests as heat energy from objects with

temperatures above absolute zero, commonly measured by passive infrared sensors

or thermographic cameras. Finally, there are hybrid techniques, which can be any

combination of the above.
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Markerless vs Marker-based

Motion Tracking

K

Marker-based infrared tracking (AR tracking) was used to verify the accuracy of the

PE data. Figure K.1 shows both markerless PE and marker-based AR tracking signals

during squats for the y-axis. The AR tracking signals were normalised to match the

range of the PE. Both signals are quite similar and synchronised.

Fig. K.1.: Comparison of PE and normalised AR tracking signals for the y-axis during squats.
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Filter Methods and Phase

Shift

L

A Butterworth filter is a IIR filter designed to have a maximum flat frequency

response in the passband, i.e., it does not introduce waves or distortion. It is

commonly used in applications where smooth filtering is required, such as audio

processing or control systems. The key characteristic of a Butterworth filter is that

it provides a smooth transition between the passband (where the signal passes

through) and the stopband (where the signal is attenuated). Unlike some filters,

which can oscillate or have waves, a Butterworth filter is designed to be flat and

non-oscillating in the passband, which reduces distortion of the filtered signal [76,

106, 314, 266]. A Butterworth filter uses poles in the complex plane, arranged to

give the smoothest possible transition. The filter’s transfer function defines how

the frequency components of the input signal are modified, with lower frequencies

passing through and higher frequencies being attenuated, depending on the filter’s

design. The order of the Butterworth filter affects the sharpness of the roll-off. A

higher order filter will have a steeper slope after the cut-off frequency, but will

require more complex design and implementation [106, 266, 314].

The general Butterworth filter formula for a low-pass filter is:

|H(ω)| = 1

1 +
(

ω
ωc

)2n

Where:

• |H(ω)| represents the magnitude of the frequency response at a given frequency

(normalised gain),
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• ω is the frequency (of the input signal),

• ωc is the cut-off frequency,

• n is the filter order.

The higher the order n, the steeper the transition between the passband and stop-

band.

The discrete-time Butterworth filter transfer function is:

H(z) = b1 + b2z−1 + b3z−2 + · · · + brz(r−1)

a1 + a2z−1 + a3z−2 + · · · + arz(r−1)

Where:

• b1, b2, ..., br are the numerator (feedforward) coefficients,

• a1, a2, ..., ar are the denominator (feedback) coefficients,

• z represents a delay operator in discrete-time.

Given the filter order n, the function returns b and a with r samples, where r = n + 1

for low-pass and high-pass filters and r = 2 ∗ n + 1 for bandpass and bandstop

filters.

Figure L.1 compares IMU signals filtered by different filtering methods. Some

filters caused a phase shift, i.e., the signal was shifted to the right (delayed) [76].

Fig. L.1.: Comparison of different filtering methods in regard to phase shift.
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Research Onion M
The research onion by Saunders [295] which is part of defining the research de-

sign.

Fig. M.1.: The research onion by Saunders [295].
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MediaPipe Pose N
MediaPipe Pose leverages a CNN architecture similar to MobileNetV2 [292], tailored

for on-device, real-time fitness applications. A CNN for pose estimation typically

consists of two parts: an off-the-shelf generic pre-trained network such as ResNet,

AlexNet, Cascaded Pyramid, Hourglass, HRNet, or MobileNetV2 to extract features

(also known as the backbone network), and the prediction head that predicts human

poses with the extracted features.

Rather than using backbones designed for classification tasks directly, it’s important

to refine them specifically for human PE. Regarding prediction heads, there are

mainly two representative solutions: directly predicting joint coordinates, which

is considered as the regression paradigm, or generating an intermediate heatmap

representation before computing joint coordinates. In the regression paradigm, fully

connected layers are typically employed to determine precise key point coordinates.

In the heatmap prediction paradigm, the process of upsampling is commonly used

to produce higher resolution heatmaps [220].

The CNN in MediaPipe Pose is a variation of the open-source BlazePose model,

which utilises heatmaps and regression to key point coordinates. The heatmaps are

generated by running an image through multiple resolution banks in parallel to

capture features at different scales simultaneously. It’s worth noting that heatmaps

and offset loss are only used during the training phase and are then removed from

the model before inference. The heatmaps monitor the lightweight embedding,

which is then used by the regression encoder network [31] (see Figure N.1).

This approach is partly inspired by the design of stacked hourglass networks,

where multiple hourglass networks are stacked end-to-end, with the output of one

serving as the input to the next. This provides the network with a mechanism
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for repeated bottom-up (low resolution) and top-down inference, allowing initial

estimates and features to be re-evaluated across the entire image. Each hourglass

module integrates both local and global cues. Asking the network to produce early

predictions requires a high level of understanding of the image even before the

full network has been traversed. Subsequent stages of bottom-up and top-down

processing allow for a more thorough reconsideration of these features [262].

Fig. N.1.: Network architecture of BlazePose [31].

This back and forth between scales is particularly important because preserving

the spatial location of features is essential for the final localisation step. The precise

position serves as a critical cue for other decisions made by the network. In a

structured problem like pose estimation, the output results from the interplay of

many features that should converge to form a coherent understanding of the scene.

Any conflicting evidence or anatomical impossibilities act as significant indicators

that an error may have occurred somewhere along the way. By iterating through

these scales, the network can retain accurate local information while continually

assessing and reassessing the overall coherence of the features [262].

In addition, skip-connections are incorporated across all stages of the network

to achieve a balance between high and low-level features. The gradients from the

regression encoder are not propagated back to the heatmap trained features. The

model is trained to predict body pose in relative coordinates of a metric space with

origin at the centre of the subject’s hips [31].

294 Appendix N MediaPipe Pose



IMU Signals O
In the following, IMU signals from different subjects are highlighted where a no-

ticeable change in the signal took place during the squat exercise. All IMU signals

were filtered using a Butterworth filter. Signal signature refers to the number of

local minima and maxima for a repetition.

Figure O.1 shows the IMU signals of a subject where the signal signature of the

performed squat training changes within the same set.

Fig. O.1.: Same subject, but the IMU signal signature changes within the same set.
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Figure O.2 shows the IMU signals of a subject where the signal signature of the

performed squat training changes between the first and third sets.

Fig. O.2.: Same subject, but the IMU signal signature changes between the first and third
sets.
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Figure O.3 shows the IMU signals of a subject where the signal amplitude of the

performed squat training changes within the same set.

Fig. O.3.: Same subject, but the IMU signal amplitude changes within the same set.

Figure O.4 shows the IMU signals of a subject where the signal signature and

amplitude of the performed squat training changes within the same set.

Fig. O.4.: Same subject, but the IMU signal signature and amplitude changes within the
same set.
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ROC and PR Curves P
ROC curves plot the true positive rate T P

T P +F N against the false positive rate F P
F P +T N .

Determining the optimal decision threshold for a model can be challenging. A

common approach is to evaluate thresholds for each class individually (one-vs-all)

and analyse their performance using ROC curves [57]. ROC curves are particularly

useful when class distributions are balanced and false positives and false negatives

have similar consequences. They can provide a comprehensive overview of a model’s

performance across different decision thresholds and facilitate the comparison of

classification models by illustrating how well each model discriminates between

classes, regardless of class weighting [149, 12, 259].

ROC curves, traditionally used for binary classification, can be adapted for multi-

class problems through techniques like one-vs-rest, one-vs-one, micro-averaging,

or macro-averaging. However, due to their limitations in multi-class scenarios,

alternative visualisation methods (e.g., confusion matrices) and metrics (e.g., F1

score) often provide more comprehensive insights [2].

In contrast, PR graph plots precision T P
T P +F P on the y-axis and recall T P

T P +F N on

the x-axis. Ideally, both high precision and high recall should be achieved, although

there is often a trade-off between the two. PR curves are particularly useful for

evaluating models in information retrieval scenarios, such as searching a document

pool for relevance to a query. They are also preferable for imbalanced data sets, as

they focus specifically on the performance of the model with respect to the positive

class. In addition, PR curves provide valuable insight into a model’s ability to

accurately classify positive instances [84, 259].
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For both ROC and PR curves, a larger area under the curve (AUC) indicates

better performance (see Figure P.1). In addition, several measures can be used to

summarise the ROC and PR curves into a single comparable metric. For example, the

Equal Error Rate (EER) is the point on the PR curve where precision equals recall; a

lower EER indicates better model performance. Another useful metric can be the

Average Precision (AP) [57].

Fig. P.1.: A comparison of ROC and PR curves with two models: x1/y1 and x2/y2. The
baseline represents a random classifier.
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Data Augmentation Taxonomy Q

Fig. Q.1.: Taxonomy of time series data augmentation by Iwana and Uchida [166].
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Forward and Backward

Feature Selection

R

Figure R.1 and Figure R.2 show forward and backward feature selection.
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Additional Results S
Figure S.1 shows a box-and-whiskers diagram with accuracy results for k-NN models

trained with the same settings but an incremental number of subjects as training

set.
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