
MASTER THESIS
Lukas Hettwer

Evaluation of QUIC-Tunneling

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Master thesis submitted for examination in Master´s degree
in the study course Master of Science Informatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Martin Becke
Supervisor: Prof. Dr. Klaus-Peter Kossakowski

Submitted on: 15. September 2022

Lukas Hettwer

Evaluation of QUIC-Tunneling

Lukas Hettwer

Thema der Arbeit

Evaluierung von QUIC-Tunneling

Stichworte

QUIC, QUIC-Tunneling Transportprotokolle, Datagramm, Internetverkehr

Kurzzusammenfassung

Seit 2021 ist QUIC offiziell standardisiert. Aufgrund des zunehmenden Interesse der
führenden IT-Unternehmen wächst der Anteil der Nutzung von QUIC innerhalb des In-
ternetverkehrs. Derzeit werden weitere Anwendungsszenarien, die QUIC einbeziehen,
entwickelt, diskutiert und gegebenenfalls zusätzlich standardisiert. Besondere Aufmerk-
samkeit gilt dabei dem Einsatz von QUIC zusammen mit der Datagramm-Erweiterung
zur Bereitstellung eines IP-Tunnels. Eine der möglichen Anwendungsbereiche ist es, ve-
raltete Software durch QUIC-Tunneling mit moderner Technik zu betreiben.

In dieser Arbeit wird das Verhalten von TCP-Verbindungen innerhalb eines QUIC-
Tunnels untersucht. Zum Aufbau eines QUIC-Tunnels wird eine Client/Server Anwen-
dung entsprechend den RFCs der IETF-Gruppe masque implementiert. Eine experi-
mentelle Umgebung mit drei Containern ist entwickelt, um eine QUIC-Tunnelverbindung
aufzubauen. Unter Verwendung von iPerf3 werden TCP-Streams mit Congestion Con-
trol Algorithmen wie BIC, CUBIC, Vegas, BBR, Reno und Westwood übertragen. Die
Parameter der TCP-Streams sind in dieser Arbeit erfasst und ausgewertet. Des Weiteren
werden mehrere TCP-Streams zeitlich parallel über den QUIC-Tunnel übertragen und
auf Fairness geprüft.

Die Übertragung von TCP durch einen QUIC-Tunnel gelang ohne jegliche Störung. Die
Analyse identifizierte Engpässe wie die TUN-Empfangs-Warteschlange, den Datagramm-
Sendebuffer sowie den UDP-Empfangsbuffer innerhalb der Tunnelanwendung. Es wurden
keine erwähnenswerte Ungleichheiten hinsichtlich Fairness beobachtet.

iii

Lukas Hettwer

Title of Thesis

Evaluation of QUIC-Tunneling

Keywords

QUIC, QUIC-tunneling, transport protocols, datagram, network traffic

Abstract

In 2021, the work on the standardisation of QUIC is completed. Due to the increasing
interest of the leading IT companies, the share of the use of QUIC within the internet
traffic is growing. Currently, further application scenarios that involve QUIC are being
developed, discussed and, if necessary, standardised. Special attention is given to the
use of QUIC together with datagram extension to provide an IP tunnel. One of the
possible implementation is to operate outdated applications by QUIC-tunneling with
modern technology.

This paper investigates the behaviour of TCP connections within a QUIC tunnel. To
establish a QUIC tunnel, a client/server application is implemented according to the
RFCs of the IETF group masque. An experimental environment with three containers
is developed to establish a QUIC tunnel connection. By using iPerf3, TCP streams with
congestion control algorithms as BIC, CUBIC, Vegas, BBR, Reno and Westwood are
transmitted. The parameters of the TCP streams are captured and evaluated in this
paper. Further, investigations of several TCP streams, which are transmitted simultane-
ously via the QUIC tunnel, are assessed for fairness.

The transmission of TCP through a QUIC tunnel succeeded without any interference.
The analysis identified bottle necks such as TUN receive queue, datagram send buffer as
well as UDP receive buffer within the tunnel application. No particular unfairness was
observed.

iv

Contents

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1
1.1 Related Work . 2
1.2 Structure of the Work . 4
1.3 Scope of Work . 5

2 Concept, Implementation and Evaluation of QUIC-Tunneling 6
2.1 Congestion Control and Problem of Stacked TCP Connections 6

2.1.1 TCP Congestion Control . 6
2.1.2 TCP Friendliness . 11
2.1.3 Tunnels and Virtual Private Networks 11
2.1.4 TCP Meltdown, Retransmission Problems and Double Retransmits 11

2.2 Required RFC for QUIC-Tunneling . 12
2.2.1 Unreliable Datagram Extension to QUIC 12
2.2.2 HTTP Datagrams and the Capsule Protocol 14
2.2.3 IP Proxying Support for HTTP . 16

2.3 Implementation Details . 18
2.3.1 Virtual Network Device . 18
2.3.2 QUIC Connection . 21
2.3.3 HTTP/3 Connection . 22
2.3.4 Asynchronous Runtime Environment 23

2.4 Experiment Environment . 23
2.4.1 Design of Experiment Environment 23
2.4.2 Parameters, Traffic and Monitoring 24

v

Contents

2.4.3 Network Monitoring Commands 25
2.4.4 Baseline . 28

2.5 Analysis of Results . 31
2.5.1 UDP Receive Buffer Size . 31
2.5.2 TUN Transmit Queue Length . 36
2.5.3 Impact of Buffer Expansions on the Experiment 42
2.5.4 Fairness . 45

3 Conclusion and Future Work 53
3.1 Conclusion . 53
3.2 Future Work . 54

Bibliography 56

A Appendix 58
A.0.1 Experiment Setup Docker Compose Configuration 58
A.0.2 Monitoring Script . 60

Declaration of Autorship . 63

vi

List of Figures

2.1 Baseline measurement of experiment environment. 30
2.2 Measurement with CUBIC, the data show that the network loses packets . 32
2.3 The extension of the UDP buffer shows reduced congestion 34
2.4 Increment of the UDP buffer shows an increased RTT 35
2.5 Expansion of the buffer reduces retransmission and increases the bitrate . 36
2.6 Expansion of the TUN queue has a negative effect 38
2.7 Expansion of the send buffers reduces retransmission and increases the

bitrate . 39
2.8 Expansion of the buffers lead to longer RTT 40
2.9 Measurement with maximum buffer size 41
2.10 Measurements of sent bytes from two concurrent TCP connections 46
2.11 Measurements of concurrent TCP connections 47
2.12 Bitrate of concurrent TCP connections in the QUIC tunnel 48

vii

List of Tables

2.1 Full factorial experiment for BIC and CUBIC with different buffers sizes . 42
2.2 Full factorial experiment for Vegas and BBR with different buffers sizes . 43
2.3 Full factorial experiment for Reno and Westwood with different buffers sizes 44
2.4 Fairness measurement for BBR and Reno 49
2.5 Fairness measurement for CUBIC and BBR 50
2.6 Fairness measurement for CUBIC and Reno 51

viii

Abbreviations

1-RTT One Round Trip Time.

ACK Acknowledgement.

AIMD Additive increase/multiplicative decrease.

BBR Bottleneck Bandwidth and Round-trip propagation time.

BIC Binary Increase Congestion Control.

cwnd Congestion Window.

DTLS Datagram Transport Layer Security.

DupACK Duplicate Acknowledgment.

ECN Explicit Congestion Notification.

FIFO First In First Out.

HTTP Hypertext Transfer Protocol.

I/O Input/Output.

ID Identifikator.

IETF Internet Engineering Task Force.

IP Internetprotokoll.

IPsec Internet Protocol Security.

IPv4 Internet Protocol Version 4.

IPv6 Internet Protocol Version 6.

L2TP Layer 2 Tunneling Protocol.

ix

Abbreviations

MACsec Media Access Control Security.

masque Multiplexed Application Substrate over QUIC Encryption.

MTU Maximum Transmission Unit.

NAT Network Address Translation.

PCAP Packet Capture.

QoS Quality of Service.

RFC Request for Comments.

RTO Retransmission Timeout.

RTT Round Trip Time.

SACK Selective Acknowledgment.

SCTP Stream Control Transmission Protocol.

ssthresh Slow Start Threshold.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TUN Network TUNnel.

TX Transmit.

UDP User Datagram Protocol.

VPN Virtual Private Network.

WAN Wide Area Network.

x

1 Introduction

In recent years, the focus has been increasingly set on online data transmission. With
that, the need for security in particular has grown and received more attention. In gen-
eral, to transport data network protocols are crucial. In the past, Transmission Control
Protocol (TCP) with Transport Layer Security (TLS) was mainly used for this purpose.
Based on the research of the Stream Control Transmission Protocol (SCTP), first Google
and now the Internet Engineering Task Force (IETF) built the general-purpose trans-
port layer network protocol QUIC. It is defined as a universal application/transport layer
protocol. QUIC is standardised by the IETF since May 2021. This protocol is based on
the User Datagram Protocol (UDP) and is connection-oriented. QUIC is characterised
and dependent of streams in a connection between two endpoints to transmit multi-
ple messages parallel. This structure prevents head-of-line blocking, since packets with
different information are not held up by a blocked packet. It combines the handshake
phase of TCP and TLS, which is defined by two to three Round Trip Time (RTT) into
one (1-RTT). These two features are intended to reduce the number of connections as
well as the transport latency of connection-oriented web applications. QUIC provides
a separate identifier for each connection, which maintains the connection even through
potential network interruption. Thus, QUIC has its benefit in reliability.

Since UDP is usually integrated within the operating system it can be implemented
straight into applications. Due to that fact, no changes are necessary to UDP by QUIC
and it runs in the user space. Each software provides its own QUIC implementation -
therefore there is also no need for any changes to the kernel in case of QUIC updates.
The move of QUIC into the user space enables the fast development of its individual
components.

These ongoing improvements and the strong support from Google, Cloudflare, Facebook
and Akamai lead to 7.6% [12] of all websites already using QUIC (September 2022). It
is a possible scenario that QUIC replaces TCP in the future, and then networks could
move from TCP/IP optimisation to UDP/IP, until there are networks that only support

1

1 Introduction

UDP/IP. Looking at the transition from Internet Protocol Version 4 (IPv4) to Internet
Protocol Version 6 (IPv6), this is not expected to actually happen in near future. On the
other hand, past experience shows that infrequent UDP traffic has led to networks that
still block UDP traffic through Network Address Translation (NAT) and strict firewalls. If
almost only UDP/IP traffic produced by QUIC exists, it may mean that future networks
are less likely to care about supporting TCP/IP traffic. Furthermore, if the resources
invested in TCP development are reduced, older applications that rely on TCP and TLS
will no longer be able to perform secure data transfers. There is, of course, the option of
upgrading these applications to the latest technology. Another possibility is to transport
the TCP/IP packets of the legacy application through incompatible networks with the
help of tunnel software. The latest extension to QUIC also offers a solution for this.

The Request for Comments (RFC) 9221 “An Unreliable Datagram Extension to QUIC”
adds an unreliable datagram extension to QUIC, which allows to receive and send data
over a QUIC connection. The RFC describes the two possible use cases for the datagram:
the first use case is to send real time data and the second use case is to implement an IP
packet tunnel over QUIC. [10]

The working group Multiplexed Application Substrate over QUIC Encryption (masque)
has developed the draft “IP Proxying Support for HTTP”. The methods for proxying IP
packets over HTTP that use the unreliable datagram extension is described.

This paper outlines TCP congestion control and the problem of tunneling TCP connec-
tions, the proposals of the masque group and a possible implementation of these. The
main focus is to evaluate the behaviour of TCP connections transmitted between two
networks using a QUIC connection with the unreliable datagram extension. Therefore,
an experiment with the implementation will be set up to investigate how the TCP con-
nections react. In Summary, the purpose of this paper is to clarify whether QUIC is
capable of tunneling TCP connections.

1.1 Related Work

The paper “A Comparative Study on Virtual Private Networks for Future Industrial Com-
munication Systems” examines and compares various Virtual Private Network (VPN)
solutions. The motivation of the authors is to transform old factory networks, developed
and maintained on the concept of perimeter security, into smart factories through VPN

2

1 Introduction

solutions. The connection method should be integrated transparently without the need
to configure the old machines. Gateways with a VPN solution ate to be applied, which
bridges between the legacy layer 2 Ethernet of the machines and the modular layer 3
network of the smart factories. The study examines various software VPN solutions for
their suitability for this task. For this purpose, the non-functional aspects of security,
manageability and usability as well as performance are evaluated. The authors use sev-
eral hardware platforms, ranging from very resource-constrained to very powerful. The
performance parameters measured were throughput and latency over the secure tunnels
provided by the VPN. The throughput measurements produced a single value and the
latency measurements are performed for a variety of different frame sizes up to the stan-
dard Ethernet maximum frame size. The authors give a clear recommendation for the
software VPN solutions Media Access Control Security (MACsec) and WireGuard based
on their results in terms of manageability, security and performance. [7] The demands
made on the connection method by the legacy environment of the old machines serves as
the basis for the motivation of this work. Unlike in the paper, it is not possible to choose
between different solutions based on QUIC. Nevertheless, the referenced paper shows
that old factory with outdated applications and network cannot remain operational in
the future without spending on upgrades. In this case, the cost of a tunnel was chosen
over the cost of updates.

The paper “Performance Evaluation and Analysis of Layer 3 Tunneling between OpenSSH
and OpenVPN in a Wide Area Network Environment” examines performance and effi-
ciency between OpenVPN and OpenSSH VPNs in over Wide Area Network (WAN)
connections. For the investigation of the tunneling software an experiment setup is de-
veloped. This consists of a server which is connected to two clients via the internet.
The client connects to the server with the appropriate VPN software and transfers files
from 1MB to 10MB in size using iPerf3 over UDP. The test records three parameters
-namely: speed, latency and jitter. The authors assume that this real-life scenario will
provide more accurate values to evaluate and analyse the performance. The experiments
conducted in this paper demonstrate that OpenSSH is faster than OpenVPN in a scale
of 1MB to 10MB. Results of the analysis between OpenSSH and OpenVPN show that
OpenSSH utilizes better the link and significantly improves transfer times. [4] The type
of measurement from the paper was adopted for this work along with the measurement
tools used such as iPerf3. However, this work focuses on measurements in a closed system
to avoid errors due to external effects such as on the internet.

3

1 Introduction

The paper “Experimental Performance Comparison between TCP vs. UDP tunnel using
OpenVPN” investigates the performance between TCP and UDP tunneling. The au-
thors assume that tunneling TCP into TCP causes problems due to retransmission, TCP
meltdown and double retransmit and that this causes increased latency and increased
bandwidth consumption. An OpenVPN tunnel is established in an experimental setup
with a client and a server connected via a switch and Ethernet cable. For this, Open-
VPN is configured with a UDP and a TCP tunnel. With iPerf3 TCP and UDP traffic
is generated and measured. The focus is on latency for different message sizes. The
results conclude that UDP tunnel utilizes the link more efficiently and provide a radi-
cally improved transfer times and speed compared with TCP tunnel. The results also
demonstrates that TCP in UDP tunnel provides better latency. [3] This work illustrates
once again why a tunnel based on UDP is so much more relevant than on TCP and
why the implementation must be done with the QUIC datagram extension. According
to the results, an implementation without the extension would probably lead to similar
results.

1.2 Structure of the Work

The section 2.1 describes the congestion control mechanisms of TCP and the importance
of this module for successful transmission. Latter section describes the relevance of
TCP friendliness and the problems of tunneling TCP connections. This chapter provides
a general understanding of the impact on the transport layer by the components and
actors below the transport layer.

The RFCs of the masque IETF group and the RFC of the datagram extension of QUIC
are discussed in the section 2.2. The technologies used, such as the QUIC libraries, and
details of the implementation of the RFCs are explained in the section 2.3. This chapter
describes the preparations and decisions that are taken before a TCP packet could be
transported through a QUIC tunnel.

The description of the experiment setup and the used measurement tools are in the
chapter 2.4. The results of the measurements are presented in the chapter 2.5. The
conclusion and proposals for future works is described in the final chapter 3.

4

1 Introduction

1.3 Scope of Work

This study is unable to encompass the entire behaviour of other types of data flows than
TCP through the QUIC tunnel. The impact of data streams inside the tunnel on those
outside is not investigated. The behaviour of the tunnel with different physical layers is
not part of this research. Further, a comparison between different tunnel software like
WireGuard or OpenVPN is not carried out. However, the source code of the user space
implementation of WireGuard in Rust is used as a template.

The reader should bear in mind that the produced tunneling software is not suitable
for use in productive systems. Due to practical constraints, this paper cannot provide
a comprehensive implementation of the RFCs. The implementation attempts to comply
with the RFCs. If parts have not given an additional value for this explicit measurement,
they have been omitted for this experiment.

5

2 Concept, Implementation and
Evaluation of QUIC-Tunneling

2.1 Congestion Control and Problem of Stacked TCP
Connections

To get an overview of possible issues which can occur in tunnels this chapter discusses the
basics of TCP congestion and flow control. This subchapter will be structured as follows:
The need for congestion control in networks as well as general TCP congestion control is
discussed first. Then, a selection of different variants of congestion control algorithms is
introduced. In the next step, the definition of TCP friendliness is described. Finally, the
details of tunnels and VPN are addressed and an overview of the problems of stacked
TCP connections is provided.

2.1.1 TCP Congestion Control

The term congestion is being used when a resource demand exceeds its capacity. Internet
performance is largely governed by the inevitable natural fluctuations caused by the
coming and going of different data streams. If the capacity is exceeded, packets cannot
be transferred across the link, there are only two options for these packets: buffer them
or drop them. To handle temporary traffic peaks, standard internet routers store excess
packets in a First In First Out (FIFO) queue. Once the queue has reached its maximum,
the packets must be dropped. If the subsequent traffic is reduced, the queue can be
drained. The queue serves an ample device for compensating for short traffic bursts.
In general, however, it is not a good choice to increase the queue to absorb any traffic
peaks. [15]

6

2 Concept, Implementation and Evaluation of QUIC-Tunneling

There are two basic problems:

1. Storing packets in the queue adds a significant delay that increases proportionally
to the length.

2. Internal traffic does not follow a constant average rate independently over a fixed
time interval, so the assumption that there are as many upward as downward
fluctuations may be incorrect.

Therefore, queues should generally be as short as possible. By increasing the queue, the
network takes a higher risk of being congested which is resulting in an increased delay.
Thinking further this scenario, it could lead to a packet loss in the worst case. The
goal of congestion control mechanisms is to use the network as efficiently as possible to
reach the highest possible throughput while maintaining a low loss rate and low delay.
A congestion control mechanism depends on the implicit feedback of the network. It
should not depend on control and/or measurement actions from the network. From the
end-node perspective, there are basically three possibilities for what can happen with the
packet: Either it can be delayed, dropped or changed. [15]

In a congestion network, the queues on the path fill up and are responsible for two
of the three properties. First, the packet is delayed, and when the queue fills up, it
is dropped. A congestion control algorithm can use these factors ‘delay’ and ‘packet
dropped’ to determine when the network is congested. Not every delayed or dropped
packet is a sign of a congested network. If the packet is transmitted to the destination
by a different path, the different RTT can be misinterpreted as a delay. If an error-prone
transmission medium is used, such as wireless, a lost packet can be misinterpreted as a
congestion. [15]

The reliability of TCP is based on the fact that segments are sent and their arrival is
confirmed by an Acknowledgement (ACK). The sender must wait a certain time for the
confirmation by an ACK. The determination of the waiting time is of critical importance.
If the time is too short, a Retransmission Timeout (RTO) will be triggered and cause
packets to be mistakenly resent that are still in flight or the ACK has not yet arrived.
If the time is too long, a packet that has actually been lost is inefficiently not detected
for a long time. Not only is the determination of the RTO crucial, but it must also be
developed dynamically in order to react to what is happening in the network. When
calculating RTO, it is crucial to obtain a good estimate of RTT. [15]

7

2 Concept, Implementation and Evaluation of QUIC-Tunneling

TCP uses two methods based on the end-to-end response to limit the amount of data
that can be sent. The first method is Slow Start, which starts the ACK clock to quickly
reach a reasonable rate. This manages the Congestion Window (cwnd) in addition to the
window maintained by the sender. The minimum of the two windows allows the amount
of data that can be sent. The cwnd is initialised and increased by one segment for each
incoming ACK. The RTO timer detects when a packet is lost. This is interpreted as an
implicit congestion feedback signal and the cwnd is reset to one. [15]

The second algorithm, called congestion avoidance, does not increase cwnd by one for
each ACK, but normally increases by at most one segment per RTT. The algorithms slow
start with the exponential increase and congestion avoidance with the additive increase
are merged by a threshold variable Slow Start Threshold (ssthresh). When receiving
an ACK, cwnd is increased by one segment if cwnd is below the threshold, otherwise
additive at each RTT. Should an RTO occur, then cwnd is set to the minimum value
and the ssthresh is set to half the current window size. [15]

Congestion control is extended by two algorithms on the sender side, which are designed
to correct poor performance in long fat pipes. If a packet does not arrive at the receiver
but the following packets in the sequence, the receiver responds with ACKs containing
the highest sequence number without interruption. These ACKs are called Duplicate Ac-
knowledgment (DupACK) and are an indication of packet loss, reordering or duplication.
Since reordering can happen, the first mechanism should be used when the threshold of
three DupACKs (four identical ACKs) is reached. [15]

The sender does not set cwnd to the minimum value to continue with Slow Start, but
sets ssthresh to half of the packets in transit, usually the half of cwnd, and increases
cwnd by the number of received DupACKs. The cwnd must be increased even though a
loss has been detected, because received packets that have been taken from the network
cannot yet be subtracted from the cwnd, as they have not been explicitly acknowledged.
This allows to send additional packets. [15]

If new packets are acknowledged, fast recovery is replaced by setting cwnd with the new
value of ssthresh by the congestion avoidance mechanism. The new packets need to be
confirmed by another ACK before the RTO is triggered - otherwise the system switches
to the Slow Start mechanism. However, the RTO mechanism is still considered as a
backup mechanism that only invoke when everything else fails. [15]

8

2 Concept, Implementation and Evaluation of QUIC-Tunneling

The four mechanism can be found in TCP Reno and NewReno and are the basic definition
of the standard behavior of TCP. Building up on these four mechanisms, there are
extensions such as Selective Acknowledgment (SACK), Explicit Congestion Notification
(ECN) or Timestamp option, which give more precise information about the (implicit)
signals. [15]

In the following sections additional congestion control algorithms are described that are
based on the four mechanisms.

TCP BIC

There are refined versions that implement other strategies. One of them, called Binary
Increase Congestion Control (BIC), increases its rate like a normal TCP sender up to a
predefined threshold. When this is passed, it continues in steps of a fixed size. As soon
as a typical TCP congestion event such as packet loss occurs, a binary search strategy
is used to find the new size between the maximum (the window where the packet loss
occurred) and the minimum (the new window). The new window is assumed to be the
new minimum window, and if another packet loss occurs, then this window is taken as the
maximum. This process is repeated until the update steps are smaller than a predefined
threshold and the process converges. [15]

TCP CUBIC

The CUBIC versions is a refinement of BIC. The main feature is the used growth function.
This is a cubic function that takes as input parameters the maximum window size (from
normal BIC), a constant scaling factor, a constant multiplicative reduction factor and
the time since the last drop event. This preserves the strengths of BIC, increases TCP-
friendliness, simplifies window control and is not dependent on RTT. The result of the
function depends on the time since the last loss. [15]

TCP Westwood

The TCP Westwood a optimised version changes the response function so that it does
not respond in a fixed way, but in relation to the current state of the system. It does
this by monitoring the rate of incoming ACKs to determine the actual rate of packets

9

2 Concept, Implementation and Evaluation of QUIC-Tunneling

arriving at the receiver. The product of the estimated bandwidth and the minimum RTT
determines the update of ssthresh in the event of a loss. This results in a more drastic
reduction in the case of severe congestion compared to a minor congestion. In the case
of faulty networks, such as wireless networks, this variant works particularly well, since
no drastic reduction follows in the case of a loss due to corruption. [15]

TCP Vegas

The TCP specification does not forbid sending less than the congestion window. The
TCP Vegas variant takes advantage of this. It determines the minimum RTT and uses
cwnd to calculate the expected throughput. The actual throughput is calculated by
counting the segments sent within an RTT. Ideally, both values should match or their
difference should not exceed a threshold. If the difference is greater, the transmission
rate must be adjusted accordingly. This mechanism should converge to a stable operating
point, which is a significant difference between TCP Vegas and TCP Reno. In addition,
Vegas is able to detect and react to incipient congestion at an early stage. [15]

TCP BBR

The Bottleneck Bandwidth and Round-trip propagation time (BBR) variant developed by
Google is similar to TCP Vegas in that it also attempts to sustainably relieve the queue.
It relies on all RTT measurements within a time window to determine the minimum
RTT and on congestion capacity measurement using the correlation of the data stream
with the ACK stream. Unlike Vegas, BBR actively defends displacement by conventional
Additive increase/multiplicative decrease (AIMD) protocols. However, the behaviour of
flow matching in BBR differs significantly from TCP Vegas. [5]

BBR’s approach is based on increasing the flow by a factor of 0.25 at regular intervals,
leading to the formation of a queue at the bottleneck. Through the RTT and bottleneck
capacity measurement, BBR determines this effect. To empty the buffers again, it over-
corrects to a reduced transmission rate. If the testing increases the available bandwidth,
BBR corrects exponentially, unlike Vegas’ linear correction. [5]

10

2 Concept, Implementation and Evaluation of QUIC-Tunneling

2.1.2 TCP Friendliness

The complex definition of fairness is followed by a more pragmatic approach in the net-
work. Most streams are TCP streams that are controlled by the same rules of congestion
control. Flows that do not react similarly cause great damage by pushing the TCP flows
away. Therefore, the common definition of fairness are TCP friendliness flows or TCP
compatible flows if they do not displace TCP flows. [5]

“A TCP-compatible flow is responsive to congestion notification, and in steady-
state it uses no more bandwidth than a conformant TCP running under com-
parable conditions (drop rate, RTT, MTU, etc.)” [2]

2.1.3 Tunnels and Virtual Private Networks

Tunnels are a method of transmitting data with incompatible address spaces or even
incompatible protocols over a network. The tunnel carries the traffic data in the payload
of a protocol supported by the underlying network. Normally, the tunneling protocol
operates at the same layer or higher than the payload protocol. Example of Tunnels
are L2TP (Protocol 115): Layer 2 Tunneling Protocol and IP in IP (Protocol 4): IP in
IPv4/IPv6.

The VPNs using encrypted tunnels, which means that within the tunnel the payload
is encrypted. This connects private networks via a public network and enables private
network communication from one network to another. It creates a secure connection
between two machines, a machine and a network or two networks. Example of VPN
software are IPsec, WireGuard, OpenVPN and OpenSSH.

2.1.4 TCP Meltdown, Retransmission Problems and Double
Retransmits

Sending TCP traffic over a TCP tunnel will force the algorithms of both TCP connections
to work in parallel. The designers of the TCP protocol did not address the problem of
TCP running within itself. TCP was not designed to work this way and problems are
likely to occur in different situations. The protocol is meant to be reliable and uses
adaptive timeouts to decide when a resend should occur. The retransmission problems,
network slowdown is known as a TCP meltdown and double retransmit, are problems

11

2 Concept, Implementation and Evaluation of QUIC-Tunneling

caused by having two TCP connections stacked together. These problems can occur
when the stacked connections have to retransmitting packets. TCP as a tunnel should
only be used when restricted networks prevent other solutions.

Instead of TCP as tunnel protocol UDP is more recommended. UDP is not reliable and
does not use timeouts to start a retransmission. The data protocol is solely responsible
for the loss. In the case of a TCP connection, a loss triggers a timeout in the TCP
connection at the sender side. For data such as real time traffic that does not rely on
TCP but on UDP, retransmission through a TCP tunnel is unnecessary and consumes
bandwidth that may be needed. In this case a UDP tunnel is more appropriate than a
TCP tunnel.

2.2 Required RFC for QUIC-Tunneling

In this thesis, three IETF RFC are implemented to establish a tunnel with QUIC. The
following subchapter discusses the RFC 9221 with the title of “Unreliable Datagram
Extension to QUIC”. Further also the “HTTP Datagrams and the Capsule Protocol’ and
“IP Proxying Support for HTTP” drafts of the working group masque are elaborated.

2.2.1 Unreliable Datagram Extension to QUIC

QUIC provides a secure, multiplexed connection for transmitting reliable streams of
application data. The RFC 9221 “Unreliable Datagram Extension to QUIC” provides
support of sending and receiving unreliable datagrams. The methodology of the QUIC
extension contains different types of frames than in the original RFC to transmit data.
Each frame type determines whether this should be retransmitted or not. If the frame
type is a unreliable datagrams it must not be retransmitted. [10]

Most applications that need to transmit real-time data prefer unreliable data transmis-
sion. These applications are built directly on UDP and use Datagram Transport Layer
Security (DTLS) for a secure transport. If reliable data should be transmitted, often an-
other connection with TCP/TLS is used to transmit the data. The unreliable datagram
extension provides another option for secure datagrams where the benefit of sharing the
cryptographic and authentication is within one connection. [10]

12

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Using unreliable data via QUIC, it offers advantages over existing solutions. Through
a single QUIC connection there is a possibility that a reliable stream and an unreliable
flow are transmitted. In this case a single handshake and authentication context is
shared. This can reduce the latency required for handshakes compared to opening both
a TLS connection and a DTLS connection. Compared to the DTLS handshake, QUIC
implements a more nuanced loss recovery mechanism, that allows faster loss recovery. A
shared connection also allows a single congestion control to be used for both reliable and
unreliable data - which is more effective and efficient. [10]

The unreliable datagram extension along with the benefits can be helpful to optimise au-
dio/video streaming, gaming or other real-time networking applications. This extension
can also be used to implement an IP packet tunnel over QUIC. Internet-layer tunneling
protocols often require a reliable and authenticated handshake followed by unreliable se-
cure transmission of IP packets. This can require a TLS connection for the control data
and DTLS for tunneling IP packets. QUIC connection with the unreliable datagrams
could support both parts. [10]

The extension introduces two new datagram QUIC frame types that carry application
data without requiring retransmissions. The frame types are described in the Listing 2.1.
The difference between the types is the presence of the length field. [10]

Listing 2.1: Datagram Frame Format

DATAGRAM Frame {

Type (i) = 0x30..0x31,

[Length (i)],

Datagram Data (..),

}

When the application sends a datagram over a QUIC connection, QUIC must create a
datagram frame and sends it with the first available packet. The QUIC endpoint should
immediately forward a received valid datagram to the application, if it is able to process
the frame and can store the contents in memory. Datagram frames may be dropped by
the receiver if it cannot process them due to lack of memory. If datagram frames are lost,
they are not sent again. However, the loss of this is recognisable, because the frames are
ack-eliciting. The datagram is not affected by explicit flow control signaling and do not
contribute to any per-flow or connection-wide data limit. This also means that there is
a risk that the receiver does not have enough resources to process the frame. Within

13

2 Concept, Implementation and Evaluation of QUIC-Tunneling

the process there is possibility that a connection is unable to send a datagram frame
until the congestion controller allows it. The datagrams are also affected by this. As a
consequence, the sender must either delay or drop the packet. [10]

2.2.2 HTTP Datagrams and the Capsule Protocol

The Internet draft “HTTP Datagrams and the Capsule Protocol” specifies the HTTP
datagrams format. This allows the transfer of multiplexed, unreliable datagrams inside an
HTTP connection. The draft is compatible with all versions of HTTP. The main focus is
the natively use of this format in HTTP/3, together with the QUIC datagram extension.
If QUIC datagram extension is unavailable, the document describes the Capsule Protocol,
which can be implemented in all versions. This protocol allows a more general convention
for transmitting data in HTTP connections. [13]

The HTTP datagram format is intended for use by HTTP extensions (such as the CON-
NECT method). It is associated with HTTP requests and not part of message content.
In HTTP/3, the datagram data field of QUIC datagrams frames uses the format in the
Listing 2.2. The endpoint indicates to its peer that it is ready to receive HTTP/3 data-
grams with the SETTINGS_H3_DATAGRAM (0x33) setting entry. In cases where the
HTTP version uses a transport protocol that only allows reliable delivery, the datagrams
should be sent using the Capsule Protocol. [13]

Listing 2.2: HTTP/3 Datagram Format

HTTP/3 Datagram {

Quarter Stream ID (i),

HTTP Datagram Payload (..),

}

The Capsule Protocol is a sequence of type-length-value tuples which allows endpoints
to reliably exchange request-related information. In the draft its mainly described to
exchange HTTP datagrams on end-to-end HTTP request streams when HTTP does
not support the QUIC datagrams frame. It can also be used to exchange reliable and
bidirectional control messages. This protocol can be transmitted in all versions of HTTP
in the data stream. In HTTP/1.x, the data stream consists of all bytes on the connection
that follow the blank line that concludes either the request header section, or the response
header section. In HTTP/2 and HTTP/3, the data stream of a given HTTP request

14

2 Concept, Implementation and Evaluation of QUIC-Tunneling

consists of all bytes sent in data frames with the corresponding stream Identifikator
(ID). [13]

The endpoint uses a Capsule Protocol header field with a true value to signal that it is
being used on a data stream. The contents of the associated request’s data stream uses
the format in the Listings 2.3 and 2.4. [13]

Listing 2.3: Capsule Protocol Stream Format

Capsule Protocol {

Capsule (..) ...,

}

Listing 2.4: Capsule Format

Capsule {

Capsule Type (i),

Capsule Length (i),

Capsule Value (..),

}

The Capsule Protocol is not used unless the response contains a 2xx status code which
stands for successful. Since the approach of the Capsule Protocol is to transmit the
capsule over the data stream, the associated HTTP request and response do not carry
HTTP content. [13]

To send datagrams using the Capsule Protocol the draft defines the first Capsule type
Datagram (0x00). The Listing 2.5 contains the mentioned format. This allows HTTP
datagrams to be sent on a stream using the Capsule Protocol. Through this extension
an unreliable version of the CONNECT method can be implemented. [13]

Listing 2.5: Datagram Capsule Format

Datagram Capsule {

Type (i) = 0x00,

Length (i),

HTTP Datagram Payload (..),

}

15

2 Concept, Implementation and Evaluation of QUIC-Tunneling

2.2.3 IP Proxying Support for HTTP

The draft paper “IP Proxying Support for HTTP” describes the CONNECT-IP protocol
which allows endpoints to create a tunnel to forward IP packets through an HTTP
proxy. To perform this it relies on the HTTP datagram support for efficient sending IP
packets. CONNECT-IP can be used for general-purpose packet tunnelling, such as for a
point-to-point or point-to-network VPN, or for limited forwarding of packets to specific
hosts. [11]

To allow endpoints to exchange IP configuration information with each other, the draft
defines multiple new capsule types. [11]

The Address Assign capsule type described in the Listing 2.6, allows an endpoint to assign
an IP address or prefix to its peer. By that, the endpoint can indicate a preference for
the IP address or prefix from its peer. Multiple Address Assign capsules can be sent,
especially necessary when assigning both IPv4 and IPv6 addresses. [11]

Listing 2.6: Address Assign Capsule Format

Address Assign Capsule {

Type (i) = 0xfff100,

Length (i),

IP Version (8),

IP Address (32..128),

IP Prefix Length (8),

}

The Address Request capsule type described in the Listing 2.7 allows an endpoint to
request an IP address or prefix from its peer. This allows the endpoint to indicate a pref-
erence for the IP address or prefix from its peer. For simple client/proxy communication
this type is not necessary. [11]

16

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.7: Address Request Capsule Format

Address Request Capsule {

Type (i) = 0xfff101,

Length (i),

IP Version (8),

IP Address (32..128),

IP Prefix Length (8),

}

The Route Advertisement capsule type, described in the Listings 2.8 and 2.9, allows an
endpoint to announce to its peer which route will be used to route traffic. The packet
has a set of IP address ranges which indicates that the sender has existing routes. The
Route Advertisement capsule type receiver sends its IP packets for one of these ranges
to its peer, which forwards them along its routes. [11]

Listing 2.8: Route Advertisement Capsule Format

Route Advertisement Capsule {

Type (i) = 0xfff102,

Length (i),

IP Address Range (..) ...,

}

Listing 2.9: IP Address Range Format

IP Address Range {

IP Version (8),

Start IP Address (32..128),

End IP Address (32..128),

IP Protocol (8),

}

The HTTP Datagram Payload field has the format defined in Listing 2.10. The draft
allows different semantics of IP packets in the payload and identifies them by the context
ID. If the context ID is set to zero, it means that the payload field contains a full IP
packet. [11]

17

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.10: IP Proxying HTTP Datagram Format

IP Proxying HTTP Datagram Payload {

Context ID (i),

Payload (..),

}

The endpoint that receives an HTTP datagram containing an IP packet checks the IP
header and performs any local policy checks. It then checks its routing table to send the
IP packet over the correct outbound interface. [11]

An endpoint that receives an IP packet checks that the packet matches the advertisement
routes. If a route exists, then the IP packet is transmitted within an HTTP datagram
through the forwarding tunnel. To prevent an infinite loop due to the existence of routing
loop, the endpoint reduces the hop count beforehand. [11]

2.3 Implementation Details

This chapter covers key elements of the implementation of a client/server application
that connects two private networks with a QUIC connection using the unreliable data-
gram extension. First, the communication between the application and the operating
system network stack is discussed. This is followed by a general description of the QUIC
implementation used together with the unreliable datagram extension. To exchange con-
trol data between server and client, the HTTP/3 implementation is described in the
section 2.3.3. The section 2.3.4 covers informations about the used concurrent program-
ming model.

2.3.1 Virtual Network Device

The TUN (derived from TUNnel) devices of the Linux kernel is used as the virtual
network device. This network device is completely supported in software and simulates a
network layer device which is then mainly used for tunnelling purposes. It works on layer
3 and transports IP packets. Packets sent by the operating system via the TUN device
are read by a user space program which attaches itself to the device. Vice versa, this

18

2 Concept, Implementation and Evaluation of QUIC-Tunneling

means that packets written to the TUN device by the user-space program are delivered
to the operating system’s network stack. [6]

The virtual network device is used by the client and server to read and write IP pack-
ets. The TUN devices are configured to cover the IP namespace range of the virtual
private network. This means that the network stack of the operating system routes all
connections with the IP address from this range via the TUN devices.

The Listing 2.11 shows how the application creates the TUN device. The clone device
is opened and due to its support of the system call ioctl(2) and the request object Ifreq
the TUN device is created. With the raw file descriptor the application can read and
write IP packets. But the TUN device is down and the IP address and routing must be
configured.

19

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.11: Creation of a Virtual Network Device

1 const TUNSETIFF: u64 = 0x4004_54ca;

2 const CLONE_DEVICE_PATH: &[u8] = b"/dev/net/tun\0";

3

4 let name = b"tun";

5

6 // construct request struct

7 let mut req = Ifreq {

8 name: [0u8; libc::IFNAMSIZ],

9 flags: (libc::IFF_TUN | libc::IFF_NO_PI) as c_short,

10 _pad: [0u8; 64],

11 };

12 req.name[..name.len()].copy_from_slice(name);

13

14 // open clone device

15 let fd: RawFd = match unsafe {

16 libc::open(CLONE_DEVICE_PATH.as_ptr() as _, libc::O_RDWR)

17 } {

18 -1 => return Err(TunError(

19 "Failed to obtain fd for clone device",

20)),

21 fd => fd,

22 };

23 assert!(fd >= 0);

24

25 // create TUN device

26 if unsafe { libc::ioctl(fd, TUNSETIFF as _, &req) } < 0 {

27 return Err(TunError(

28 "set_iff ioctl failed (insufficient permissions?)",

29));

30 }

31

32 let file = unsafe { File::from_raw_fd(fd) };

20

2 Concept, Implementation and Evaluation of QUIC-Tunneling

The Netlink socket, a Linux kernel interface used for inter-process communication be-
tween the kernel and user space, is used to configure the TUN device with IP addresses
and routes. In this paper it is used to configure the TUN devices with the data from the
Capsule protocol.

Once the TUN device is created and configured, the user space program can read and
write IP packets from the device. The Listing 2.12 shows how to read/receive and
write/send IP packets in three lines.

Listing 2.12: Read and write from TUN device

1 let mut f = tokio::fs::File::from_std(file);

2

3 let mut buffer = [0; 1500];

4 let n = f.read(&mut buf).await? == 0 {

5 println!("The bytes: {:?}", &buffer[..n]);

6

7 let n = f.write(&payload).await?;

2.3.2 QUIC Connection

The QUIC connection between client and server is handled by the crate Quinn. Quinn
is a pure-rust, async-compatible implementation of the QUIC transport protocol. The
main reason Quinn was used is that it contains the unreliable datagram extension. Quinn
offers the possibility to skip the verification of the server certification, which reduces the
complexity of the local experiment setup. [9]

21

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.13: Build a Quinn endpoint connection

1 let conn = endpoint.connect(server_addr(), SERVER_NAME)?;

2 let quinn::NewConnection {

3 connection,

4 mut datagrams,

5 ..

6 } = conn.await?;

7

8 while let Some(payload) = datagrams.next().await {

9 println!("The bytes: {:?}", payload?);

10 }

11

12 connection.send_datagram(payload).unwrap();

The Listing 2.13 shows a while loop in which datagrams are received from a previously
initialised connection and represents how datagram packets can be sent on the same
connection.

2.3.3 HTTP/3 Connection

The specification Using Datagrams with HTTP introduces the Capsule Protocol. This
protocol is a sequence of type-length-value tuples that new HTTP Upgrade Tokens can
choose to use. It provides endpoints with reliable end-to-end delivery of request-related
information over HTTP request streams. [13]

In order to exchange IP addresses and routes, information needs to be exchanged via a
bidirectional stream control. For this purpose the crate H3 [1] is used which provides
an HTTP/3 implementation. A request is sent by the client via this control stream.
The server checks this request and if the validation is successful, the server sends a
responds code which identifies the success. Once the request is successful, the Capsule
Control protocol is used with the packet types address assignment, address request and
route indication. This exchanges all the necessary information about the stream. This
information is used with the help of the Netlink socket to configure the TUN device.

The crate H3 must be extended to support the Capsule Control protocol for this appli-
cation. In addition, the QUIC datagram extension must be implemented in the crate.

22

2 Concept, Implementation and Evaluation of QUIC-Tunneling

2.3.4 Asynchronous Runtime Environment

Tokio is an asynchronous runtime environment for the Rust programming language.
It was explicitly designed for writing network applications and it is used for running
asynchronous applications. Asynchronous programming is a concurrent programming
model. It allows the execution of a large number of concurrent tasks on a small number
of operating system threads. [8]

The application mainly consists of reading, writing, encrypting, receiving and sending
IP packets. These are Input/Output (I/O) intensive tasks that block the thread. The
use of the asynchronous runtime environment shifts the numerous blocking tasks into a
relatively few operating system threads.

2.4 Experiment Environment

This chapter describes the setup of the experiment environment that was configured to
investigate the properties and network performance of the QUIC tunnel application. The
tools used to generate and record traffic are described and obtain the network statistics.
Finally, a baseline measurement is given to determine the maximum of the network.

2.4.1 Design of Experiment Environment

The experiment setup contains three containers (client, emulator, server), which are
connected by two networks (left, right). The Docker Compose Configuration is included
in the Appendix A.1. The network traffic of the two networks is routed through the
emulator container. The client and server are connected via the emulator. This one-to-
one design allows as much control over the testbed network as possible without external
unwanted influences.

In the server container, the QUIC tunnel application runs in server mode and waits for
a QUIC initial packet. The client container starts the QUIC tunnel application in client
mode together with the IP:Port of the server and tries to establish a QUIC connection to
the server. The emulator container is used for routing and to emulate different network
conditions by using the network tools tc and netem. The network tools provide certain
Quality of Service (QoS) characteristics: bandwidth limitation, delay, bit errors and

23

2 Concept, Implementation and Evaluation of QUIC-Tunneling

packet losses. The tools are provided by the traffic control infrastructure of the Linux
kernel. Additionally the network traffic is recorded by tcpdump in the emulator container.
Furthermore, the traffic in the client and server between origin and the TUN devices is
recorded. The Listing 2.14 shows an image of the experiment setup.

Listing 2.14: Experiment setup with three containers

+--------+ IP A IP B +--------+ IP C IP D +--------+

| |-----------------| |-----------------| |

| Client | IP Subnet Left |Emulator| IP Subnet Right | Server |

| |-----------------| |-----------------| |

+--------+ <-> +--------+ <-> +--------+

The measurement tool iPerf3 is used to generate TCP traffic. In the server container
iPerf3 is started in server mode listing on the TUN link. In the client container the tool
is started together with the IP of the server TUN link. The traffic is transmitted through
the QUIC tunnel. The tool measures the maximum achievable bandwidth, packet loss,
delay and jitter.

2.4.2 Parameters, Traffic and Monitoring

The network emulation tool iPerf3 allows to measure the parameters as already men-
tioned such as latency, jitter and throughput in a network. The tool generates unidirec-
tional or bidirectional UDP and TCP data streams between the two ends. This tool is
used to investigate the behaviour of TCP data streams within the QUIC tunnel.

The default setting is 10 s per run for iPerf3, which is configurable. The time for mea-
surement with exceptions is set to 180 s. The Linux kernel was extended by further
congestion control modules so that iPerf3 can be extended by the algorithms from the
chapter 2.1.1.

The congestion control algorithms are BIC, CUBIC, Vegas, BBR, New Reno and West-
wood as mentioned in chapter 2.1.1. CUBIC and BBR were selected because they are
currently the most widely used. New Reno was included because it is an older algorithm
that was widely used. The algorithm has found applications especially in older systems.
Within this work also the transferability of older systems in the future is investigated.
Thus, New Reno is also applied. BIC is the predecessor of CUBIC, Vegas works similarly

24

2 Concept, Implementation and Evaluation of QUIC-Tunneling

to BBR and Westwood has similar characteristics to New Reno. Therefore, the three
were contrasted as a direct comparison.

The open source packet Wireshark, which is responsible for trace capturing and analysis,
is highly used during this work. It is allowed to capture the data in real time from a
network interface or read it from a Packet Capture (PCAP) file. Wireshark contains
dissectors with which packets can be decoded. This allows fields of selected packets to be
analysed. Furthermore, it is possible to use Wireshark packet trace analysis to examine
the behaviour of the used protocols.

A characteristic of QUIC is that the communication is encrypted. This accounts also
when using TCP/TLS. Wireshark allows to decrypt the packet together with a file con-
taining the used TLS secrets. The encrypted payload is then displayed as on the wire
and additionally the decrypted payload.

The RFCs described in the chapter 2.2 are not yet supported by Wireshark, so the
decrypted payloads of the QUIC packets are not decoded. Therefore Wireshark has also
been equipped with dissectors for this Protocols. The dissectors of these protocols will
be taken up again in the chapter future works.

2.4.3 Network Monitoring Commands

The network monitoring command ss is used in the client as well as in the server to read
out flow control and congestion control values from the TCP sockets. It is a command to
dump socket statistics. In this paper, the cwnd, RTT and ssthresh are of special interest.
The Listing 2.15 contains a line of output from ss. This shows a TCP connection with
the congestion control algorithm Reno from the client to the server together with the
mentioned values.

25

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.15: ss output of TCP flow and congestion control values

root@client:/# ss --no-header -ein 10.8.0.1

tcp ESTAB 0 298680 10.8.0.3:41766 10.8.0.1:5201

timer:(on,049ms,0) ino:91548 sk:100b cgroup:/ <->

ts sack reno wscale:7,7 rto:231 rtt:30.234/2.161 mss:1048

pmtu:1162 rcvmss:536 advmss:1110 cwnd:72 bytes_sent:140469

bytes_acked:65014 segs_out:137 segs_in:56 data_segs_out:135

send 19965866bps lastsnd:14 lastrcv:96 lastack:14

pacing_rate 39930576bps delivery_rate 9226800bps delivered:64

busy:73ms unacked:72 rcv_space:11100 rcv_ssthresh:64426

notsent:223224 minrtt:4.499

The command does not offer the possibility to give a new output when the value changes.
Therefore, a shell script A.2 was used in the experiment, which periodically polls the
current values with ss.

The network monitoring command netstat is the predecessor of ss and also allows to dis-
play network connections, routing tables, masquerade connections, and multicast mem-
berships. It also enables to show interface statistics as well as buffer errors. The List-
ing 2.16 shows such an output. In this paper it was used to debug unwanted retransmis-
sions.

26

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.16: netstat output of interface statistics

root@server:/# netstat -s

Ip:

Forwarding: 1

1098281 total packets received

0 forwarded

0 incoming packets discarded

1098281 incoming packets delivered

510998 requests sent out

Tcp:

0 active connection openings

2 passive connection openings

0 failed connection attempts

0 connection resets received

0 connections established

514230 segments received

255502 segments sent out

0 segments retransmitted

0 bad segments received

110 resets sent

Udp:

582619 packets received

0 packets to unknown port received

1432 packet receive errors

255496 packets sent

1432 receive buffer errors

0 send buffer errors

TcpExt:

504588 packet headers predicted

4 acknowledgments not containing data payload received

7 predicted acknowledgments

1 connections reset due to unexpected data

TCPRcvCoalesce: 2

TCPOFOQueue: 7725

TCPOrigDataSent: 10

TCPDelivered: 9

TCPAckCompressed: 6748

27

2 Concept, Implementation and Evaluation of QUIC-Tunneling

2.4.4 Baseline

In this chapter, the maximum achievable capacity of the experiment setup for each con-
gestion control algorithm is determined. This serves to identify the limits of the exper-
iment setup and to exclude performance losses caused by the arrangement. For each
congestion control algorithm in chapter 2.1.1, iPerf3 is used to exchange data between
client and server for 180 s. The experiment setup is not artificially limited by tc-netem.
For each measurement, the data from iPerf3 and the information from the TCP socket
are captured by ss. The Figure 2.1 contains the data of the congestion control algorithms
of the baseline measurement.

The Figure 2.1a and Figure 2.1b contain the data for the cwnd and the RTT. It is
noticeable that both algorithms jump to a fixed value after 50 s seconds and hold it.
There are no signs of congestion in the system. This is also confirmed by the output
of iPerf3, which shows that there is no retransmission. BIC transmits at a bitrate of
6.87Gbit s−1 and transfers 144GB during the measurement. The bitrate of CUBIC is
6.77Gbit s−1 and the total amount of 142GB. Although BIC has a cwnd twice as large,
this has no advantage in the total amount and bitrate. The system does not show any
congestion symptoms such as packet loss. It can be assumed that either the transmitter
limits the rate by a lower receiver window or the transmitter is not able to increase the
bitrate.

The measurement of the Vegas congestion control algorithm can be inspected in the
Figure 2.1c. In this Figure the y-axis is scaled by 106. The cwnd increases linearly
without any change on RTT. Especially in the case of such high cwnd it can be assumed
that a smaller value like the receiver window determines the bitrate. The evaluation
shows that there was no retransmission and the bitrate is 6.99Gbit s−1 and the total
amount is 146GB.

Measurements with BBR is graphically represented in the Figure 2.1d. Compared to the
other Figures, the RTT has regular, strongly deviating peaks. This corresponds to the
method used by the algorithm to determine the cwnd by examining the network with
peaks in irregular intervals. Once again, no losses due to retransmission were measured.
The bitrate is 6.06Gbit s−1 and a total of 127GB was transmitted.

The Figure 2.1e shows the typical spikes of Reno. It is notable that the RTT rises in the
immediate proximity of the peaks of the spikes. The y-axis of the RTT is multiplied by

28

2 Concept, Implementation and Evaluation of QUIC-Tunneling

102, so Reno has the most extreme RTT in this experiment. Reno has a bitrate of only
2.73Gbit s−1 and transmits 57.20GB.

Westwood in the Figure 2.1f is very similar to the BIC measurement. Incremental in-
crease, high constant cwnd value, the bitrate is 6.74Gbit s−1 and the total amount of
transfer is 141GB.

29

2 Concept, Implementation and Evaluation of QUIC-Tunneling

0

2

4

6

·103
C

W
N

D
[B

]

cwnd

0

5
0

1
0
0

1
5
0

0

2

4

6

Time [s]
R
T

T
[m

s]

cwnd
RTT

(a) BIC

0

2

4

6

·103

C
W

N
D

[B
]

cwnd

0

5
0

1
0
0

1
5
0

0

2

4

6

Time [s]

R
T

T
[m

s]

cwnd
RTT

(b) CUBIC

0

2

4

6

·106

C
W

N
D

[B
]

cwnd

0

5
0

1
0
0

1
5
0

0

2

4

6

Time [s]

R
T

T
[m

s]

cwnd
RTT

(c) Vegas

0

2

4

6

·103

C
W

N
D

[B
]

cwnd
0

5
0

1
0
0

1
5
0

−2

0

2

4

Time [s]
R
T

T
[m

s]

cwnd
RTT

(d) BBR

2

4

6

8

·102

C
W

N
D

&
S
S
T

H
R

E
S
H

[B
] cwnd

ssthresh

0

5
0

1
0
0

1
5
0

0

2

4

6

·102

Time [s]

R
T

T
[m

s]

cwnd
ssthresh
RTT

(e) Reno

0

2

4

6

·103

C
W

N
D

[B
]

cwnd

0

5
0

1
0
0

1
5
0

0

2

4

6

Time [s]

R
T

T
[m

s]

cwnd
RTT

(f) Westwood

Figure 2.1: Baseline measurement of experiment environment.

30

2 Concept, Implementation and Evaluation of QUIC-Tunneling

2.5 Analysis of Results

2.5.1 UDP Receive Buffer Size

For the investigation, a TCP connection was established with iPerf3 using the congestion
control algorithm CUBIC between client and server via the QUIC connection and random
bytes were transmitted from the client to the server for 60 s. A total of 595MB were
transferred at a bitrate of 83.10Mbit s−1. These results are from the output of iPerf3
shown in the Listing 2.17. Noticeable in this measurement are the 579 retransmitted
TCP packets and indicates the number of TCP packets that had to be retransmitted.
But the experimental setup was configured without artificial losses from the network
tools tc and netem. The Figures 2.2 shows the values of the cwnd and the ssthresh.

Listing 2.17: An iPerf3 measurement shows an increased number of retransmissions

root@client:/# iperf3 -c 10.8.0.1 -t 60 -C cubic

[ID] Interval Transfer Bitrate Retr

[5] 0.00-60.00 sec 595 MBytes 83.1 Mbits/sec 579 sender

[5] 0.00-60.02 sec 593 MBytes 82.8 Mbits/sec receiver

The Figure 2.2 shows the TCP standard startup phase at the beginning. The first losses
reduce the cwnd and the window starts to increase again to the maximum value. In the
long term, there are so many losses that the cwnd falls to a value below 200B. Except
for the first 20 s, the concave portion of the cubic function is not noticeable.

31

2 Concept, Implementation and Evaluation of QUIC-Tunneling

−
5 0 5 10 15 20 25 30 35 40 45 50 55 60 65

0

50

100

150

200

250

300

350

400

450

500

550

600

Time [s]

C
W

N
D

&
SS

T
H
R
E
SH

[B
]

cwnd
ssthresh

Figure 2.2: Measurement with CUBIC, the data show that the network loses packets

The netstat tool is used to examine the links in all three containers. The Listing 2.18
shows the statistics of the servers. Here it can be seen that the receive buffer for UDP
packets shows errors. This buffer filled up during the measurement and did not forward
the UDP to the QUIC application.

32

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.18: The network information shows that the receive buffer drops UDP packets

root@server:/# netstat -s

Ip:

Forwarding: 1

1292263 total packets received

0 forwarded

0 incoming packets discarded

1292263 incoming packets delivered

599983 requests sent out

Udp:

688538 packets received

0 packets to unknown port received

579 packet receive errors

298735 packets sent

579 receive buffer errors

0 send buffer errors

The Listing 2.19 shows a section of the necessary terminal commands to read the buffer
size and replace it with a larger value. Since the config file is not part of the namespace
it must be changed in the host system. The change of this value was not straight-forward
since the host system is a virtual machine within the Docker Desktop application, which
is not intended to be modified. The Listing 2.19 also describes the command used to
break out of the container to change the value in the host system.

Listing 2.19: Container breakout to increase UDP receive buffer size

$ docker run -it --rm --privileged --pid=host alpine:edge \

nsenter -t 1 -m -u -n -i sh

sysctl net.core.rmem_max

net.core.rmem_max = 212992

sysctl net.core.rmem_default

net.core.rmem_default = 212992

sysctl -w net.core.rmem_max=26214400

net.core.rmem_max = 26214400

sysctl -w net.core.rmem_default=26214400

net.core.rmem_default = 26214400

33

2 Concept, Implementation and Evaluation of QUIC-Tunneling

The measurement in the Listing 2.20, shows that the number of retransmissions has
reduced. The Figures 2.3 show that the congestion control algorithm CUBIC has to
react to fewer losses and the cubic function is clearly visible.

Listing 2.20: A measurement with the extended buffer shows reduced retransmissions

root@client:/# iperf3 -c 10.8.0.1 -t 60 -C cubic

[ID] Interval Transfer Bitrate Retr

[5] 0.00-60.00 sec 597 MBytes 83.4 Mbits/sec 50 sender

[5] 0.00-60.03 sec 596 MBytes 83.2 Mbits/sec receiver

−
5 0 5

10 15 20 25 30 35 40 45 50 55 60 65

0

50

100

150

200

250

300

350

400

450

500

550

600

Time [s]

C
W

N
D

&
SS

T
H
R
E
SH

[B
]

cwnd
ssthresh

Figure 2.3: The extension of the UDP buffer shows reduced congestion

34

2 Concept, Implementation and Evaluation of QUIC-Tunneling

The Figure 2.4 shows the RTT of a measurement with and without the buffer extension.
It can be seen that the RTT increases with an increased buffer. Due to that, the buffer is
able to store more packets in the FIFO queue before they are processed and acknowledged.
Before the increase, these packets were lost and sent at a later time.

0

20 40 60

0

50

100

Time [s]

R
ou

nd
-T
ri
p
T
im

e
[m

s]

0

20 40 60

0

50

100

Time [s]

R
ou

nd
-T
ri
p
T
im

e
[m

s]

Figure 2.4: Increment of the UDP buffer shows an increased RTT

Part of this investigation is to assess whether the extended buffer leads to an improve-
ment in the transmission of data via the QUIC connection. To measure this, data was
transferred for at least ten times with iPerf3 for 60 seconds via a TCP connection from
the client to the server. The congestion control algorithms CUBIC and Reno were used.
The buffer was initialised with the default values of the Linux kernel and increased by
the value from Listing 2.19 in the second measurement. Figure 2.5 shows the results
of this measurement. The left side shows that with both Reno and CUBIC the bitrate
increased by about 4-6%. The retransmissions are reduced with both congestion control
algorithms.

35

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Default Increased
80

85

90

95

100

84.8

90.9

84.2

88.2

B
it
ra
te

[M
b
it
s−

1
]

CUBIC
Reno

Default Increased

200

400

600

800

1,000

455

64

805

399

R
et
ra
ns
m
is
si
on

s
[m

in
−
1
] CUBIC

Reno

Figure 2.5: Expansion of the buffer reduces retransmission and increases the bitrate

After the above described issue was identified, an internet search revealed that the de-
velopers of the QUIC reference implementation also found this problem.

“Experiments have shown that QUIC transfers on high-bandwidth connec-
tions can be limited by the size of the UDP receive buffer. This buffer holds
packets that have been received by the kernel, but not yet read by the appli-
cation[...]. Once this buffer fills up, the kernel will drop any new incoming
packet.” [14]

2.5.2 TUN Transmit Queue Length

The measurements 2.5 show retransmission even after extending the UDP receive buffer.
In the Listing 2.21 a measurement for 20 s is shown. It results in 198 retransmission and
as before, losses were not artificially added.

To find out why this retransmission exists, the packets are recorded during a measurement
within the server and client container with tcpdump at the TUN interface as well as at
the eth0 interface.

36

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.21: iPerf3 still reports retransmissions

root@client:/# iperf3 -c 10.8.0.1 -t 20 -C cubic

Connecting to host 10.8.0.1, port 5201

local 10.8.0.2 port 50418 connected to 10.8.0.1 port 5201

Interval Transfer Bitrate Retr Cwnd

0.00-1.00 sec 12.6 MBytes 106 Mbits/sec 0 563 KBytes

1.00-2.00 sec 7.37 MBytes 61.8 Mbits/sec 123 490 KBytes

2.00-3.00 sec 6.56 MBytes 55.0 Mbits/sec 2 374 KBytes

...

15.00-16.00 sec 8.55 MBytes 71.7 Mbits/sec 56 443 KBytes

16.00-17.00 sec 12.1 MBytes 101 Mbits/sec 0 493 KBytes

17.00-18.00 sec 8.48 MBytes 71.1 Mbits/sec 17 370 KBytes

...

- -

Interval Transfer Bitrate Retr

0.00-20.00 sec 186 MBytes 78.0 Mbits/sec 198

The TCP congestion control algorithm is required to respond with a DupACK when a
gap exists between the received packets. DupACKis the name for an ACK that contains
a sequence number that has already been confirmed. This DupACK is intended to trigger
the fast retransmission part of the congestion control algorithm.

These DupACKs can be found in the records. The TCP data packets with these sequence
numbers are also present, but only in the client network records and not in the server
records. The decrypted QUIC traffic shows that the TCP packets are not in the datagram
frames of the QUIC packet. This indicates that the TCP packet between the TUN device
and the first Ethernet interface has been lost.

After examining the logs of the application, it appears that the reader of the TUN device
was never able to read this packet and therefore could not process it further. This leads
to the conclusion that either the TUN device has lost the packet, or there might have
been problems with the reading by the TUN reader.

The Linux ifconfig command in the Listing 2.22 shows in the line of the transmitted TX
198 packets were dropped, which is the same number from the measurement 2.21. In
addition, the output shows that the txqueuelen can contain 500 packets.

37

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.22: TUN Configuration shows that the size of the transmit queue is 500

root@client:/# ifconfig quic-vpn

flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 1162

inet 10.8.0.2 netmask 255.255.255.0 destination 10.8.0.2

unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

txqueuelen 500 (UNSPEC)

RX packets 92197 bytes 4808348 (4.5 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 184416 bytes 202807184 (193.4 MiB)

TX errors 0 dropped 198 overruns 0 carrier 0 collisions 0

With the same Linux command, this queue can be extended, in this case from 500 to
1000 packets. The measurements for this change are shown in Figure 2.6. The data
shows a reduction in the bitrate and the number of retransmissions has increased. The
TX queue itself shows no drops. The Wireshark output confirm again that TCP packets
are being lost between the TUN interface and the Ethernet interface. The application
logs in Listing 2.23 show the reason for the packet loss. The send buffer of the QUIC
implementation fills up faster than the content can be sent.

Default Increased
80

85

90

95

100

90.9
91.9

88.2

81.45

B
it
ra
te

[M
b
it
s−

1
]

CUBIC
Reno

Default Increased

200

400

600

800

1,000

64

690

399
441

R
et
ra
ns
m
is
si
on

s
[m

in
−
1
] CUBIC

Reno

Figure 2.6: Expansion of the TUN queue has a negative effect

38

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Listing 2.23: Logs warns that datagrams are dropping

WARN quinn_proto: dropping outgoing datagram len=1100

WARN quinn_proto: dropping outgoing datagram len=1100

WARN quinn_proto: dropping outgoing datagram len=1100

The datagram send buffer is increased to a ratio of 1.2 and the measurement is performed
again. The Figure 2.7 shows the data of this measurement, it can be seen that the bitrate
has increased again and there is no retransmission. In Figure 2.8 shows a measurement
of the RTT of a TCP stream with the congestion control algorithm CUBIC. Within this
measurement, both the TX queue and the datagram send buffer of the QUIC application
are increased. The measurement clearly shows high latency and jitter, the increase of
the values leads to a Bufferbloat.

Default Increased
80

90

100

110

90.9

98.7

88.2

96.74

B
it
ra
te

[M
b
it
s−

1
]

CUBIC
Reno

Default Increased

200

400

600

800

1,000

64
0

399

0

R
et
ra
ns
m
is
si
on

s
[m

in
−
1
] CUBIC

Reno

Figure 2.7: Expansion of the send buffers reduces retransmission and increases the bitrate

The expansion of the queue and the datagram send buffer does not lead to the intended
success of improving the speed of the tunneling application, but rather to an increase in
latency and jitter. The packets are in the queue longer and the loss-dependent congestion
control algorithms are not informed that they are sending too fast.

Figure 2.8 shows a measurement with the CUBIC congestion control algorithm and all
three buffers have been increased. Comparing this Figure with the Figure 2.4 from the
last experiments, it is clear that the RTT has doubled and jitter is developing.

39

2 Concept, Implementation and Evaluation of QUIC-Tunneling

0

20 40 60 80 10
0

12
0

14
0

16
0

18
0

0

50

100

150

200

250

300

350

Time [s]

R
ou

nd
-T
ri
p
T
im

e
[m

s]

Figure 2.8: Expansion of the buffers lead to longer RTT

This excessive buffering of packets leads to an increase in latency and jitter, which is
called bufferbloat. The Figure 2.9 impressively shows how the various congestion con-
trol algorithms behave when the network caches an excessive number of packets. The
algorithms receive a congestion signal less often and assume for longer that the network
can handle more packets. Figure 2.9e shows the Reno corrected only twice within three
minutes and has an extended RTT time. The same is true for Westwood. BIC does not
correct at all. Only Vegas and BBR, which include the RTTs in the feedback loop, are
able to keep the RTT low.

The understanding that the three buffers exist and that emptying them too late will
result in retransmission was achieved. Expanding the buffers is not necessarily a complete
solution.

40

2 Concept, Implementation and Evaluation of QUIC-Tunneling

500

1,000

1,500

2,000

2,500

C
W

N
D

[B
]

cwnd

0

5
0

1
0
0

1
5
0

0

100

200

Time [s]

R
T

T
[m

s]

cwnd
RTT

(a) BIC

0

500

1,000

1,500

C
W

N
D

&
S
S
T

H
R

E
S
H

[B
] cwnd

ssthresh

0

5
0

1
0
0

1
5
0

0

200

400

600

Time [s]

R
T

T
[m

s]

cwnd
ssthresh
RTT

(b) CUBIC

2

4

6

8

C
W

N
D

[B
]

cwnd

0

5
0

1
0
0

1
5
0

0

10

20

30

Time [s]

R
T

T
[m

s]

cwnd
RTT

(c) Vegas

0

200

400

600

C
W

N
D

[B
]

cwnd

0

5
0

1
0
0

1
5
0

0

50

100

Time [s]

R
T

T
[m

s]

cwnd
RTT

(d) BBR

800

1,000

1,200

1,400

C
W

N
D

&
S
S
T

H
R

E
S
H

[B
] cwnd

ssthresh

0

5
0

1
0
0

1
5
0

0

100

200

Time [s]

R
T

T
[m

s]

cwnd
ssthresh
RTT

(e) Reno

0

500

1,000

1,500

C
W

N
D

&
S
S
T

H
R

E
S
H

[B
] cwnd

ssthresh

0

5
0

1
0
0

1
5
0

0

100

200

300

Time [s]

R
T

T
[m

s]
cwnd
ssthresh
RTT

(f) Westwood

Figure 2.9: Measurement with maximum buffer size

41

2 Concept, Implementation and Evaluation of QUIC-Tunneling

2.5.3 Impact of Buffer Expansions on the Experiment

Three different queues/buffers were examined within the experiment. To determine their
impact, this section uses a 2k full factorial experimental design with the different conges-
tion control algorithms in the experimental system. The intention is to determine which
combinations have an effect on the RTT and bitrate. The following inputs are used:

• Congestion control: Vegas / BBR / BIC / CUBIC / Westwood / Reno

• Transmit queue: 500 / 1000

• Datagram send buffer [B]: 1048576 / 2097152

• Receive buffer [B]: 212992 / 26214400

The experiment is set up with each combination. For 180 s, a TCP stream from the
client to the server is established and analysed. The Tables 2.1, 2.2 and 2.3 contains all
combinations as well as the results of the experiments.

Table 2.1: Full factorial experiment for BIC and CUBIC with different buffers sizes

Congestion Transmit Queue Datagram Send UDP Receive RTT Bitrate
ms Mbit s−1

BIC

-1 -1 -1 18.19 105
-1 -1 1 28.45 99.9
-1 1 -1 35.26 59.5
-1 1 1 55.36 53.7
1 -1 -1 19.59 110
1 -1 1 62.89 109
1 1 -1 28.41 71.6
1 1 1 83.22 129

CUBIC

-1 -1 -1 10.16 101
-1 -1 1 24.41 110
-1 1 -1 17.82 55.2
-1 1 1 35.18 79.7
1 -1 -1 9.37 102
1 -1 1 73.89 90.8
1 1 -1 18.47 55.7
1 1 1 72.03 136

42

2 Concept, Implementation and Evaluation of QUIC-Tunneling

The Table 2.1 shows all possible combinations of input parameters. Clearly, almost all
increases in the size of the queues and buffers will result in a longer RTT. Increasing the
datagram send buffer has the effect of significantly increase RTT. One assumption for this
behaviour is that the implementation only empties the buffer when a timer has expired
or the buffer is full and starts dropping packets. It therefore results that a larger buffer
is emptying itself less often. This needs to be checked. If only the transmit queue of the
TUN device is increased, this has no negative effect on RTT and bitrate. As observed in
the previous chapter, increasing the size of all buffers/queues will increase the bitrate the
most. The disadvantage is that the RTT increases significantly. This examination of the
two congestion algorithms shows that an increase in buffers/queues does not necessarily
lead to an improvement.

Table 2.2: Full factorial experiment for Vegas and BBR with different buffers sizes

Congestion Transmit Queue Datagram Send UDP Receive RTT Bitrate
ms Mbit s−1

Vegas

-1 -1 -1 1.25 60.9
-1 -1 1 1.08 64.7
-1 1 -1 2.19 28
-1 1 1 0.95 76.1
1 -1 -1 1.31 60.9
1 -1 1 1.7 50.1
1 1 -1 1.8 36.4
1 1 1 0.91 73.5

BBR

-1 -1 -1 19.1 77.7
-1 -1 1 18.2 98.5
-1 1 -1 24.51 47.6
-1 1 1 15.93 117
1 -1 -1 15.78 88.9
1 -1 1 25.56 76.1
1 1 -1 23.73 54.9
1 1 1 15.50 118

The Table 2.2 shows the full factorial experiment with the Vegas and BBR algorithms.
As already described in the chapter 2.1.1, these two congestion control algorithms change
the cwnd based on the RTT time. In this way they try to keep the RTT as low as possible.

43

2 Concept, Implementation and Evaluation of QUIC-Tunneling

This can also be observed in the measurements. In this series of experiments it can be
observed that an increase of the datagram send buffer has a negative effect, as already
observed in 2.1. In the case where all buffers and queues are increased, both algorithms
are able to maintain a minimum RTT as well as increase the bitrate. They may find the
sweet spot that buffers are felt to such an extent that they are immediately flushed again
in the next step without the packets having to stay there for a long time. By increasing
the size of the buffers, additional packets are not lost, which can also be processed in
the next step. While CUBIC and BIC are not able to recognise a bufferbloat, Vegas and
BBR are.

Table 2.3: Full factorial experiment for Reno and Westwood with different buffers sizes

Congestion Transmit Queue Datagram Send UDP Receive RTT Bitrate
ms Mbit s−1

Reno

-1 -1 -1 9.95 102
-1 -1 1 23.77 102
-1 1 -1 18.12 52.2
-1 1 1 18.79 134
1 -1 -1 9.45 97.9
1 -1 1 63.01 91.4
1 1 -1 18.83 50.6
1 1 1 60.58 135

Westwood

-1 -1 -1 8.5 103
-1 -1 1 30.42 71.1
-1 1 -1 14.31 64.5
-1 1 1 16.73 133
1 -1 -1 8.9 100
1 -1 1 63.09 75.4
1 1 -1 17.59 47.4
1 1 1 52.88 139

The Table 2.3 shows the results for Reno and Westwood. In this series of experiments, it
is noticeable that when only the datagram send buffer is increased, the bitrate is reduced
and the RTT increases, but as soon as the UDP receive buffer is also increased, the
bitrate increases above the standard value. This effect can also be observed with BBR.
Unlike the other algorithms, increasing the transmit queue has no particular effect.

44

2 Concept, Implementation and Evaluation of QUIC-Tunneling

The reason for the deviation can be assumed to be due to the special nature of the
algorithms. These cause an overload of the network by a linear growth of the cwnd and
then overcorrect the cwnd. This leads to a sharp increase in RTT at the peak, which
is followed by a sharp reduction in transmission and the emptying of the larger buffers.
This leads to an increased average bitrate.

2.5.4 Fairness

As in subchapter 2.1.2 defined, TCP friendliness plays a crucial role when when monitor-
ing multiple simultaneous streams within the QUIC tunnel. The latter section observes
the handling of different connections within the QUIC tunnel given with limited band-
width. The main focus lies on the distribution and the assessment of whether this is
done fairly.

At first, two TCP connection with CUBIC congestion controls are compared and anal-
ysed. After that gained knowledge a more sophisticated comparison is done: one stream
agains two with different congestion controls. These results are analysed in Table 2.4,
2.5 and 2.6.

The first measurement has two TCP connections established simultaneously from the
client to the server, transmitting data for 60 s. Both connections use the CUBIC con-
gestion control algorithm. The sent bytes of both connections are recorded and the
established measurement sequence for this approach was carried out several times. The
Figure 2.10 shows one of these measurements. The analysis shows that the two streams
share the connection equally. It can be observed that both streams react in a similar
manner to events in the connection. It can be concluded that both connections are
capable of sending data.

45

2 Concept, Implementation and Evaluation of QUIC-Tunneling

−
5 0 5 10 15 20 25 30 35 40 45 50 55 60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Time [s]

B
yt
es

Se
nt

[k
B
]

Figure 2.10: Measurements of sent bytes from two concurrent TCP connections

As measured before, the congestion window size and the slow start threshold of both
TCP connections are recorded and shown in the Figure 2.11. The start phase of both
connections can be identified through the represented peaks at the beginning. It can
be evaluated that the first connection (left upper subfigure) represents a more severe
starting phase than measured in the second connection (left lower subfigure). The reason
for this differences is likely due to the fact that iPerf3 starts the connection sequentially.
Therefore, the second connection has less time to increase the congestion window between
the start and the first losses packet.

46

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Regardless of the referenced Figure 2.2 it was observed that the window is reduced less
and looses less packets by a single connection. Additionally, it can be concluded that the
slow start threshold is reduced by half when observing a single connection compared to
two streams. The algorithm is not able to find a constant value.

0

20 40 60

0

100

200

300

Time [s]

C
on

ge
st
io
n
W

in
do

w
Si
ze

[B
]

0

20 40 60

0

100

200

300

Time [s]

Sl
ow

St
ar
t
T
hr
es
ho

ld
[B
]

0 20 40 60

0

100

200

300

Time [s]

C
on

ge
st
io
n
W

in
do

w
Si
ze

[B
]

0 20 40 60
0

100

200

300

Time [s]

Sl
ow

St
ar
t
T
hr
es
ho

ld
[B
]

Figure 2.11: Measurements of concurrent TCP connections

For further visualisation the Figure 2.12 represents several connections. Each TCP
stream is shown in a different color code. The numbering along the y-axis stands for
the amount of indicated TCP streams which are parallel. Generally, it can be deter-
mined that within the QUIC tunnel, the TCP connections shares the bandwidth fairly.
It can be concluded that the connections represents almost the same bitrate. Especially
noticeable is that a single stream is able to get the most out of the connection.

47

2 Concept, Implementation and Evaluation of QUIC-Tunneling

0 20 40 60 80 100

5

3

2

1

15.9315.0615.62

25.46

15.17

25.44

40.54

15.15

25.25

39.32

90.9

Bitrate
[
Mbit s−1

]

T
C
P

C
on

ne
ct
io
ns

Figure 2.12: Bitrate of concurrent TCP connections in the QUIC tunnel

As mentioned in the beginning of this subchapter, the latter description is based on
two different congestion controls. The Table 2.4 shows the results of a measurement
series which contains several TCP connections simultaneously in the QUIC tunnels. The
connections use the congestion control algorithms BBR and Reno. The left side describes
the number of connections used per congestion control algorithm. The RTT values of
the individual congestion controls show that all connections results in similar RTT per
measurement. This is to be expected, as the connection uses the same path and the
tunnel does not prioritise any connection. This does not apply to the bitrate. The
first three lines show a BBR connection that has to share the tunnel with 1-3 Reno
connections. In case there is a Reno connection, the bandwidth is shared fairly between
BBR and Reno. The bitrate of the BBR connection with three Reno connections is then
not fairly divided. In this case, the BBR connection is able to secure the double of a
Reno connection. BBR connections are more aggressively in securing its own part of
the tunnel’s bandwidth. The same behaviour cannot be observed when a second BBR
connection is added. Then, the measured values are not representing that the BBR
connections secure more of the bandwidth. Presumably, the more aggressive behaviour
of the BBR connections means that neither connection can secure more of the tunnel’s
bandwidth. This goes so far that in the measurement with three BBR and one Reno
connection, the Reno connection has the largest part of the bitrate. The RTT increase
depends on how many Reno connections are available. It has already been observed in

48

2 Concept, Implementation and Evaluation of QUIC-Tunneling

the previous measurements that the Reno algorithm cannot maintain a low RTT. It can
be concluded that the bandwidth was not always fairly distributed, but no connection
was left out.

Table 2.4: Fairness measurement for BBR and Reno

BBR Reno BBR RTT Reno RTT BBR Bitrate Reno Bitrate
ms ms Mbit s−1 Mbit s−1

1 1 18.29 20.35 49.5 43.2

1 2 24.06
25.55

31.2
24.2

25.73 23.3

1 3 30.15
31.1

40.3
20.2

31.04 18.9
30.72 18.2

2 1
21.56

22.15
27.5

36.2
21.4 36.9

2 2
27.63 28.19 13.9 21.6
27.43 27.78 17.1 22.9

2 3
40.28 40.48

12.5
12.6

40.62
40.22 12.4
40.15 15.7 12.4

3 1
26.03

26.81
13.5

2926.53 16.4
26.32 21.5

3 2
30.13 30.57 13.6

21.8
30.32

30.48
11.7

30.28 14.1 21.7

3 3
34.85 34.93 13 14.2
34.75 35.01 11.2 15.3
34.59 35.3 11.5 13.9

Further, the Table 2.5 shows the measurement series for the congestion control algorithms
BBR and CUBIC. Here it was measured that by using a ratio of 1 to 3, the single
algorithm is capable of occupying more than twice of the bandwidth. This behaviour for
both algorithms could not be observed in earlier experiments with BBR and Reno (see

49

2 Concept, Implementation and Evaluation of QUIC-Tunneling

Table 2.2). It might be that the algorithms are developed in such a way that they are
particularly good at sharing the bandwidth among their equals, but less good with other
algorithms. The RTT is particularly reduced when there are more BBR connections
than CUBIC connections. BBR cannot keep the RTT low if the connections have to be
shared with more CUBIC streams. This was also observed with Reno. In conclusion, the
bandwidth of the QUIC tunnel is almost fully consumed by BBR and CUBIC.

Table 2.5: Fairness measurement for CUBIC and BBR

CUBIC BBR CUBIC RTT BBR RTT CUBIC Bitrate BBR Bitrate
ms ms Mbit s−1 Mbit s−1

1 1 20.71 18.57 38.6 48.1

1 2 25.77
25.14

25.7
28.4

24.95 33

1 3 25.71
24.93

31.9
14.7

24.84 14.2
24.88 15.2

2 1
24.05

23.26
25.9

39.8
23.9 24.4

2 2
30.77 30.2 19.0 16.3
30.22 30.44 21.4 24.5

2 3
25.19 25.83

22.7
19.1

26.1
25.78 13.3
25.82 22.7 18.4

3 1
31.25

30.65
17.5

35.631.18 17.8
31.11 18.3

3 2
31.92 31.92 16.2

20.2
31.84

32.1
15.8

31.95 16.3 16.1

3 3
37.24 36.59 12.3 12.9
37.38 36.47 12.2 13.2
37.2 36.39 12.7 15.2

50

2 Concept, Implementation and Evaluation of QUIC-Tunneling

At last, the congestion control algorithms CUBIC and Reno are compared against each
other as shown in the Table 2.6.

Table 2.6: Fairness measurement for CUBIC and Reno

Reno CUBIC Reno RTT CUBIC RTT Reno Bitrate CUBIC Bitrate
ms ms Mbit s−1 Mbit s−1

1 1 11.88 11.87 58.6 59.4

1 2 15.95
15.99

37.7
36.1

15.79 36

1 3 20.9
20.8

29.4
26.5

20.79 26.7
20.82 28.4

2 1
17.81

17.61
35.4

35.2
17.79 35.2

2 2
21.38 21.32 27.5 26.8
21.23 21.39 27.9 26.2

2 3
24.4 24.51

23.8
22.1

24.32
24.35 23.4
24.26 23.7 21

3 1
23.53

23.87
26

24.923.45 25.6
23.75 27.9

3 2
24.66 24.74 21.7

20.7
24.54

24.64
22.4

24.64 22.7 20.1

3 3
25.97 26.03 22.1 20.3
26.05 26.13 21.6 19.8
26.17 26.15 20.9 18.8

The number of connections used per algorithm is shown on the left side. It is noticeable
that the RTTs in all combinations are lower than in the Tables 2.4 and 2.5 which
represents the measurements with BBR. Based on the evaluation done before, this was not
expected. BBR shows lower RTT in the other experiments. Apparently Reno and CUBIC
are better matched than with BBR. A transmission in the QUIC tunnel shows no negative

51

2 Concept, Implementation and Evaluation of QUIC-Tunneling

effect on the connections. The measurement results from the QUIC tunnel confirm that
the Reno and CUBIC algorithms can keep the RTT lower than in a combination with
BBR. In this measurement sequence, there is no such effect that a single connection takes
up twice the bitrate of the other connection.

Finally, this subchapter shows that there are differences of the fairness when comparing
several congestion control algorithms. Even though some differences are observed and
discussed it can be concluded by applying the QUIC tunneling there is no major impact
on the stream distribution. It in fact could be of interest to check further protocols
within this QUIC tunnel for fairness.

52

3 Conclusion and Future Work

3.1 Conclusion

This work focus on TCP applied within QUIC tunneling and analysis its characteristics
by using it in an experimental environment. The implementation of the QUIC tunnel,
as presented in this paper, is based on the published draft of the masque IETF group.
This mentioned draft is investigated with the datagram extension of QUIC. Through
that, it was possible to prove that TCP streams can be successfully transmitted through
a QUIC tunnel. The major benefit of using the datagram extension compared to the
default QUIC protocol, as described in subchapter 2.1.4 and 2.2.1, is the reduction of
overhead risk. Thus, the application is developed in Rust, since useful libraries are already
available. Specifically the libraries Quinn, which provides the datagram extension, and
h3 are integrated in the client server application. The runtime environment Tokio was
used in combination with the asynchronous programming model. It is to mention that
the implementation of the interface between the network stack of the operation system
and the developed application, TUN is applied. By that, the possibility of reading and
writing of IP packets is given. The combination of the above mentioned together with
three containers is then declared as the experiment environment in this paper.

The focus of the investigation of the results obtained through the experimental environ-
ment lies mainly on the two buffers and the identified queue. These components are
received during the development and the first analysis of the results. On closer inspec-
tion, it could be verified in particular that increased size of the buffer and queue is not
resulting in any advantage. This statement is correct unless it is a short burst that can
be processed immediately.

The buffers and queues should be prevented from dropping packets. But not by enlarging
them, but by enabling the responsible functions to empty these buffers in a short period

53

3 Conclusion and Future Work

of time. The measurement series confirm that increasing the transmit queue has no
negative effect on RTT as well as on the bitrate.

Considering the fairness it is focused on the behaviour of the congestion control algo-
rithms CUBIC, Reno and BBR. The algorithms are executed concurrently with different
numbers of streams in the tunnels. The achievable bitrates and RTT of the individual
connections are logged and documented. In the series of measurements with CUBIC and
Reno, the previously determined maximum bitrate, as described in subchapter 2.5.3, is
achieved without one specific stream receiving significantly more than the others. The
series of measurements with BBR shows that this algorithm consumes way more of the
bandwidth. Only when several BBR connections use the bandwidth, it is divided fairly.

As mentioned in the subchapter 2.1.1, BBR is supposed to use the RTT as a feedback
signal in the decision making process. Interestingly, during the fairness review it turned
out that BBR together with Reno and CUBIC in the same connection is not able to
keep the RTT low. However, it was observed that all three algorithms within the QUIC
tunnel did not prevent other connections from sending data.

In conclusion it can be said that the experiments show that a transmission is possible
without the core elements having a negative effect on the congestion control and friend-
liness of TCP. Furthermore, the intention of this work was to investigate the possibility
of the application of QUIC for outdated application. Along the development of this work
there are no issues identified and therefore it is claimed as an alternative approach to
update existing software.

3.2 Future Work

Within this work, a research framework was set at the beginning which is described in
subchapter 2.4. Nevertheless, there are further opportunities to investigate this subject.
One main focus is to be set on the implementation and the use of buffers. Specifically
the size and appropriate emptying is crucial for further improvements. The fact that
increasing the size of the datagram-send buffer results in the negative effect, that less
data is sent, should be part of future work. This phenomenon is discussed by the used
measurement series and presented in the Tables 2.1, 2.3 and 2.2. When finding a sufficient
solution, this can lead to changes in the applied Quinn implementation. This also applies
to the UDP receiver buffers. The Quinn implementation must be able to empty it faster

54

3 Conclusion and Future Work

or on a more regular basis. In both of these cases, the library is the slowest element
in the system. Increasing the size of the TUN queue has no negative effect, but the
implementation in the prototype can still be optimised. The queue is then flushed more
effectively, and avoids the current case of the default configuration, where the queue fills
up and drops packets.

The presented experiment environment can be also further extended by a more complex
network topology. Especially the implementation of a topology which is characterised by
a more heterogen network.

Further, a recommendation can be given to investigate other protocol tunneling concepts
with the same/similar methodology. Then, a comparison to the presented results within
this work is interesting.

Whilst looking for the lost packets in the chapter 2.5.2 it was discovered following: al-
though the QUIC packets were decrypted by Wireshark, there was no dissector that
extracted the packets type of the RFCs similarly as the tunnelled TCP. In order to sim-
plify the research of QUIC tunnels, a dissector for Wireshark should be implemented in
the future work.

55

Bibliography

[1] Begue, Jean-Christophe: H3. – URL https://github.com/hyperium/h3. –
Zugriffsdatum: 2022-03-08. – original-date: 2016-09-09T22:31:36Z

[2] Clark, David D. ; Minshall, Greg ; Zhang, Lixia ; Peterson, Larry ; Ra-

makrishnan, K. K. ; Wroclawski, John T. ; Shenker, Scott ; Partridge,
Craig ; Crowcroft, Jon ; Braden, Robert T. ; Deering, Steve E. ; Floyd,
Sally ; Davie, Bruce S. ; Jacobson, Van ; Estrin, Deborah: Recommenda-
tions on Queue Management and Congestion Avoidance in the Internet. – URL
https://datatracker.ietf.org/doc/rfc2309. – Zugriffsdatum: 2022-08-
14. – Num Pages: 17

[3] Coonjah, Irfaan ; Catherine, Pierre C. ; Soyjaudah, K. M. S.: Experimental
performance comparison between TCP vs UDP tunnel using OpenVPN. In: 2015
International Conference on Computing, Communication and Security (ICCCS),
S. 1–5

[4] Coonjah, Irfaan ; Catherine, Pierre C. ; Soyjaudah, K. M. S.: Performance
evaluation and analysis of layer 3 tunneling between OpenSSH and OpenVPN in a
wide area network environment. In: 2015 International Conference on Computing,
Communication and Security (ICCCS), S. 1–4

[5] Huston, Geoff: BBR, the new kid on the TCP block. – URL https:

//blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/. – Zugriffsda-
tum: 2022-08-13

[6] Krasnyansky, Maxim: Universal TUN/TAP device driver. – URL https://

www.kernel.org/doc/Documentation/networking/tuntap.txt. – Zu-
griffsdatum: 2022-03-08

[7] Lackorzynski, Tim ; Köpsell, Stefan ; Strufe, Thorsten: A Comparative
Study on Virtual Private Networks for Future Industrial Communication Systems.

56

https://github.com/hyperium/h3
https://datatracker.ietf.org/doc/rfc2309
https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.kernel.org/doc/Documentation/networking/tuntap.txt

Bibliography

In: 2019 15th IEEE International Workshop on Factory Communication Systems
(WFCS), S. 1–8

[8] Lerche, Carl: Tokio. – URL https://github.com/tokio-rs/tokio. – Zu-
griffsdatum: 2022-03-08. – original-date: 2016-09-09T22:31:36Z

[9] Ochtman, Dirkjan: quinn-rs/quinn. – URL https://github.com/quinn-

rs/quinn. – Zugriffsdatum: 2022-03-08. – original-date: 2018-04-03T07:47:41Z

[10] Pauly, Tommy ; Kinnear, Eric ; Schinazi, David: An Unreliable Datagram
Extension to QUIC. – URL https://datatracker.ietf.org/doc/rfc9221.
– Zugriffsdatum: 2022-05-11. – Num Pages: 9

[11] Pauly, Tommy ; Schinazi, David ; Chernyakhovsky, Alex ; Kühlewind,
Mirja ; Westerlund, Magnus: IP Proxying Support for HTTP. – URL https:

//datatracker.ietf.org/doc/draft-ietf-masque-connect-ip. – Zu-
griffsdatum: 2022-05-12. – Num Pages: 20

[12] Q-Success: Usage Statistics of QUIC for Websites, September 2022

[13] Schinazi, David ; Pardue, Lucas: HTTP Datagrams and the Capsule Protocol.
– URL https://datatracker.ietf.org/doc/draft-ietf-masque-h3-

datagram. – Zugriffsdatum: 2022-05-12. – Num Pages: 16

[14] Seemann, Marten: UDP Receive Buffer Size · lucas-clemente/quic-go Wiki. – URL
https://github.com/lucas-clemente/quic-go. – Zugriffsdatum: 2022-
07-07

[15] Welzl, Michael: Network Congestion Control: Managing Internet Traffic. 1. edi-
tion. Wiley. – ISBN 978-0-470-02528-4

57

https://github.com/tokio-rs/tokio
https://github.com/quinn-rs/quinn
https://github.com/quinn-rs/quinn
https://datatracker.ietf.org/doc/rfc9221
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip
https://datatracker.ietf.org/doc/draft-ietf-masque-h3-datagram
https://datatracker.ietf.org/doc/draft-ietf-masque-h3-datagram
https://github.com/lucas-clemente/quic-go

A Appendix

A.0.1 Experiment Setup Docker Compose Configuration

The Listing A.1 represents the Docker Compose file that is used to create the three
containers for the experiment environment. The document additionally describes the
two networks which connect the client and server via the emulator. In order to create an
TUN device, more capabilities had to be added to the containers.

Listing A.1: Experiment Docker Compose configuration

1 version: "3.9"

2 services:

3 emulator:

4 build:

5 dockerfile: Dockerfile.emulator

6 context: .

7 command: /bin/sh -c "while sleep 1000; do :; done"

8 cap_add:

9 - NET_ADMIN

10 networks:

11 leftnet:

12 ipv4_address: 193.167.0.2

13 rightnet:

14 ipv4_address: 193.167.100.2

15 client:

16 build:

17 context: .

18 dockerfile: Dockerfile

19 target: client

20 depends_on:

58

A Appendix

21 - server

22 - emulator

23 command: >

24 sh -c "ip route add 193.167.100.0/24 via 193.167.0.2

25 && RUST_LOG=warn,connect-ip::client=debug

26 connect-ip https://server4:4433/vpn"

27 cap_add:

28 - NET_ADMIN

29 - SYS_PTRACE

30 - CAP_SYS_ADMIN

31 privileged: true

32 security_opt:

33 - seccomp:unconfined

34 devices:

35 - /dev/net/tun:/dev/net/tun

36 networks:

37 leftnet:

38 ipv4_address: 193.167.0.100

39 extra_hosts:

40 - "server4:193.167.100.100"

41 server:

42 build:

43 context: .

44 dockerfile: Dockerfile

45 target: server

46 command: >

47 sh -c "ip route add 193.167.0.0/24 via 193.167.100.2

48 && RUST_LOG=warn connect-ip -s"

49 environment:

50 - SSLKEYLOGFILE=/var/log/connect-ip/sslkeylogfile.txt

51 cap_add:

52 - NET_ADMIN

53 - SYS_PTRACE

54 security_opt:

55 - seccomp:unconfined

56 devices:

59

A Appendix

57 - /dev/net/tun:/dev/net/tun

58 networks:

59 rightnet:

60 ipv4_address: 193.167.100.100

61 networks:

62 leftnet:

63 driver: bridge

64 driver_opts:

65 com.docker.network.bridge.enable_ip_masquerade: ’false’

66 ipam:

67 config:

68 - subnet: 193.167.0.0/24

69 rightnet:

70 driver: bridge

71 driver_opts:

72 com.docker.network.bridge.enable_ip_masquerade: ’false’

73 ipam:

74 config:

75 - subnet: 193.167.100.0/24

A.0.2 Monitoring Script

The shell script in Listing A.2 is used to read the TCP congestion control data. To
do this, an infinite loop is executed which gets the data at regular frequencies using
the command line tool ss. This data is written to a file together with a timestamp.
If the script is terminated by a kill signal, a shutdown process is executed. The se-
quence parses the relevant data from the collected information and writes it to a csv file.

60

A Appendix

Listing A.2: Monitoring script to read congestion control values

1 #!/bin/bash

2 trap cleanup SIGINT SIGTERM

3 rm -f sender-ss.txt && touch sender-ss.txt

4

5 cleanup () {

6 echo "time,cwnd,ssthresh,rtt,rttvar,b_sent,b_acked"\

7 > sender-ss.csv

8 ts=$(cat sender-ss.txt | grep "unacked" \

9 | awk ’NR == 1 {D = $1} {$1 = ($1 - D); print $1}’)

10 cwn=$(cat sender-ss.txt | grep "unacked" \

11 | grep -oP ’\bcwnd:\d*\sssthresh:\d*\b’ \

12 | awk -F ’[:]’ ’{print $2","$4}’)

13 rtt=$(cat sender-ss.txt | grep "unacked" \

14 | grep -oP ’\brtt:\d*\.\d*/\d*\.\d*\b’ \

15 | sed "s/rtt://g" \

16 | awk -F ’[/]’ ’{print $1","$2}’)

17 bytes_sent=$(cat sender-ss.txt | grep "unacked" \

18 | grep -oP ’\bbytes_sent:\d*\b’ \

19 | awk -F ’[:]’ ’{print $2}’)

20 bytes_acked=$(cat sender-ss.txt | grep "unacked" \

21 | grep -oP ’\bbytes_acked:\d*\b’ \

22 | awk -F ’[:]’ ’{print $2}’)

23 paste -d ’,’ <(printf %s "$ts") <(printf %s "$cwn") \

24 <(printf %s "$rtt") <(printf %s "$bytes_sent") \

25 <(printf %s "$bytes_acked") >> sender-ss.csv

26 exit 0

27 }

28

29 while [1]; do

30 ss --no-header -ein dst $1 \

31 | awk ’/<->$/ { printf("%s\t", $0); next } 1’ \

32 | ts ’%.s’ >> sender-ss.txt

33 done

61

A Appendix

62

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

63

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Related Work
	Structure of the Work
	Scope of Work

	Concept, Implementation and Evaluation of QUIC-Tunneling
	Congestion Control and Problem of Stacked ac:tcp Connections
	ac:tcp Congestion Control
	ac:tcp Friendliness
	Tunnels and Virtual Private Networks
	ac:tcp Meltdown, Retransmission Problems and Double Retransmits

	Required ac:rfc for QUIC-Tunneling
	Unreliable Datagram Extension to QUIC
	ac:http Datagrams and the Capsule Protocol
	ac:ip Proxying Support for ac:http

	Implementation Details
	Virtual Network Device
	QUIC Connection
	ac:http/3 Connection
	Asynchronous Runtime Environment

	Experiment Environment
	Design of Experiment Environment
	Parameters, Traffic and Monitoring
	Network Monitoring Commands
	Baseline

	Analysis of Results
	ac:udp Receive Buffer Size
	ac:tun Transmit Queue Length
	Impact of Buffer Expansions on the Experiment
	Fairness

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Experiment Setup Docker Compose Configuration
	Monitoring Script
	Declaration of Autorship

