
MASTER THESIS
Rico Helmboldt

Evaluating Saliency Map
Methods in Reinforcement
Learning

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Master thesis submitted for examination in Master´s degree
in the study course Master of Science Informatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr.-Ing. Marina Tropmann-Frick
Supervisor: Prof. Dr.-Ing. Stephan Pareigis

Submitted on: 28 Oktober 2022

Rico Helmboldt

Evaluating Saliency Map Methods in Reinforcement
Learning

Rico Helmboldt

Thema der Arbeit

Evaluating Saliency Map Methods in Reinforcement Learning

Stichworte

Erklärbare KI, XAI, Salienzkarten, Pixel Attribution, Deletion, Verstärkendes Lernen,
Atari, DQN, Vanilla Gradients, SmoothGrad, GradCAM, LRP, LIME, RisE

Kurzzusammenfassung

Die Salienzkartenmethoden Vanilla Gradients, SmoothGrad, (guided-) GradCAM, LIME
und RisE werden quatitativ in Bezug auf ihre Korretheit evaluiert. Dies wird in einem
verstärkenden Lernen Setting mit DQN und Atari Breakout umgesetzt. Zur quantita-
tiven Evaluierung wird Deletion verwendet, wobei der Performanceverlust des Agenten
gemessen wird. Es wird gezeigt, dass LRP die Korrekteste Methode ist, aber zusammen
mit RisE verwendet werden sollte, um eine vollständgere Erklärung zu erhalten.

Rico Helmboldt

Title of Thesis

Evaluating Saliency Map Methods in Reinforcement Learning

Keywords

Explainable AI, XAI, Saliency maps, Pixel attribution, Deletion, Reinforcement learning,
Atari, DQN, Vanilla Gradients, SmoothGrad, GradCAM, LRP, LIME, RisE

Abstract

The saliency map methods Vanilla Gradients, SmoothGrad, (guided-) GradCAM, LIME
and RisE are evaluated quantitatively with regards to their correctness. This is done in a
reinforcement learning setting with DQN and Atari Breakout. As means to evaluate them
quantitatively, Deletion is applied to measure how quickly the performance dwindles. It
is shown that LRP is the most correct saliency map method, but should be used together
with RisE for a more complete explanation.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objective . 1
1.3 Related Works . 2

2 Reinforcement Learning 5
2.1 Environment: Atari Breakout . 6
2.2 Reinforcement Learning Structure . 7
2.3 Agent Algorithms . 8

2.3.1 Q-Learning . 9
2.3.2 Deep Q-Network . 10
2.3.3 Double DQN . 16

3 Explainable AI 18
3.1 Explainable AI Categories . 19

3.1.1 Model-Specific Approaches . 19
3.1.2 Model-Agnostic Approaches . 20
3.1.3 Local and Global Explanations . 20

3.2 Saliency Maps . 21
3.2.1 Gradient Based Methods . 23
3.2.2 Perturbation Based Methods . 35

3.3 Deletion . 41

4 Implementation 43
4.1 Components . 43

4.1.1 Environment . 43
4.1.2 Replay Buffer . 45
4.1.3 Agent . 46
4.1.4 Policy . 47

iv

Contents

4.1.5 Training Loop . 47
4.1.6 Saliency Map Methods . 48
4.1.7 Deletion Procedure . 48

4.2 Hardware . 48

5 Experiments 49
5.1 Experiment Setup . 49

5.1.1 Training the Agent . 50
5.1.2 Saliency Map Construction . 54
5.1.3 Saliency Map Evaluation with Deletion 56

5.2 Results . 57
5.2.1 Evaluation: Vanilla Gradients . 58
5.2.2 Evaluation: SmoothGrad . 60
5.2.3 Evaluation: GradCAM . 62
5.2.4 Evaluation: Guided GradCAM . 64
5.2.5 Evaluation: LRP . 66
5.2.6 Evaluation: LIME Quickshift . 68
5.2.7 Evaluation: LIME Felzenszwalb . 70
5.2.8 Evaluation: RisE . 72

5.3 Verdict . 74
5.4 Discussion . 74

6 Conclusion 77
6.1 Summary . 77
6.2 Outlook . 78

Bibliography 80

A Appendix 84
Declaration of Autorship . 86

v

1 Introduction

The introduction starts with a motivation given in 1.1. Then, the research objective and
the research questions are given in 1.2. Related works to this research are presented in
section 1.3.

1.1 Motivation

Machine learning models are deployed effectively in various tasks ranging from classifi-
cation to natural language processing. Many machine learning models are implemented
via neural networks. While their performance and results are satisfactory, they are not
easily interpretable due to their nature and can be seen as black-boxes. Saliency maps
are a way to gain insights into predictive models when images are used as input. They
highlight important parts of the input image with regards to the chosen output of the
model. This methodology is comparable to feature importance with non-image inputs
([1]), but instead of giving important features a high relevance value, the important pix-
els are highlighted. There are many saliency map methods which are based on many
different ideas. Using different saliency map methods may result in different highlighted
areas of the input image resulting in different explanations, but they all aim to high-
light the relevant image areas. The goal of this research is to determine which of these
methods produces the most correct saliency maps. Correctness describes how faithful the
saliency map is with regards to the model ([2]): A highly correct saliency map accurately
highlights the exact pixels which were important for the models decision.

1.2 Research Objective

The goal of this research is to determine quantitatively which of the considered saliency
map methods works best in a reinforcement learning setting with regards to their correct-

1

1 Introduction

ness. Correctness in the domain of explainable AI describes how faithful the explanation
is with respect to the black-box ([2]), with the key idea “nothing but the truth”. The rein-
forcement learning setting is set to be the game Atari Breakout, played by a double DQN
agent, which are explained in chapter 2. The considered saliency map methods include
vanilla gradients, SmoothGrad, GradCAM, Guided GradCAM, LRP, LIME and RisE,
which are explained in section 3.2. To evaluate the saliency map methods quantitatively,
deletion (explained in section 3.3) is applied to them. Furthermore, potential differences
in the highlighted areas between the various saliency map methods are examined. One
saliency map method might highlight different parts of the image than another, then it
necessary to compare their correctness and potentially examine further in case both are
correct. The research objective includes the following questions:

1. Which saliency map method has the highest degree of correctness in a reinforcement
learning setting?

2. Are there differences in the highlighted areas between the saliency map methods?

3. Which saliency map method is recommended to be used?

To answer these questions, an introduction into reinforcement learning (chapter 2) is
given first before the saliency map methods are explained in chapter 3.

1.3 Related Works

A broad introduction into reinforcement learning is given by [3]. The general architecture
of reinforcement learning is explained, but a large emphasis is laid upon the approaches
to tackle the reinforcement learning task. This ranges from temporal difference methods,
which learn after every step with an estimated reward, to monte-carlo methods, which
learn only when all true rewards are received.

Likewise, a broad introduction into explainable AI is given by [1]. Various approaches to
explain machine learning models are described, ranging from interpretable models which
are explainable themselves, to model-agnostic methods which try to give explanations
from the outside. Among other topics, pixel attribution methods as used in this research
are described.

An example of a interpretable model is Hierarchical Actor Critic (HAC) proposed by [4].
HAC works in a reinforcement learning setting, where multiple hierarchical layers divide

2

1 Introduction

the policy into sub-policies. These policy layers have individual (sub-)goals, thus making
it possible to track the strategy of the agent by its sub-goals. HAC is one, but not the
only, approach to learn the policy next to the explanation.

Further methods which aim to have a higher degree of interpretability, but are not in-
terpretable models per se, include State Representation Learning (SRL, [5]). SRL learns
lower dimensionality state representations with high meaningfulness by processing high
dimensionality observations. An example would be the to learn a (x, y) position from
raw pixel values as observation. Now, variations in the environment based on the agents
decision can be captured which allows the extrapolation of explanations.

Next to the saliency map methods used in this research, there are further methods like
DeconvNet [6], Integrated Gradients [7], Feature Ablation [8] or SHAP [9]. DeconvNet
is specialized for explaining convolutional neural networks (CNN) and works by building
a deconvolution network (the DeconvNet), which reverses the convolution and pooling
steps performed by the CNN. After a specialized training, the output of the DeconvNet
highlights the pixels of the image which were striking during the convolution and pooling
of the CNN. Integrated Gradients works by calculating interpolations between the original
input image and an all-black image, resulting in dimmed images. They are subsequently
fed through the neural network classifier and the gradients to each pixel are observed
to calculate the relationship between the changes to a pixels and the predicted output:
The gradient informs how relevant each pixel is with regards to the output, which can
then be colorized to produce a saliency map. With Feature Ablation, the input features
are split into several groups which are perturbed together to determine the importance
of each group. In case of images, several pixels are bundled together to form a group
(more groups lead to a higher computation time). The importance of each group can
then be highlighted as saliency map. SHAP uses a game theoretic approach and is based
on shapley values: Each feature is a player, the machine learning model prediction is
the payout and shapley values are a method from coalitional game theory telling how to
fairly distribute the payout among the players. Each feature gets assigned to a shapley
value indicating how much the feature contributed to the specific outcome. Since SHAP
forms all possible coalitions (permutation of features), it can be very computationally
expensive.

[10] uses the deletion procedure, as used in this research, to evaluate RisE saliency
maps on RGB image classification. The methodology works as follows: Investigate a
saliency map method by iteratively removing the most relevant pixels and observe how

3

1 Introduction

much worse the model performs. This research transfers this idea into the reinforcement
learning setting, where the drop in performance of the agent is observed. Further, 7 more
saliency map methods next to RisE are evaluated.

Other approaches to quantitatively evaluate explainable AI methods include [11], which
focuses on hidden malicious functionalities inside the machine learning model. These
so-called backdoor trigger patterns are the key reason why the machine learning model
misclassifies specific instances, and an explainable AI methods should spot them during
their explanation generation. For this, three metrics are introduced which quantify how
well an explainable AI method covers these backdoor trigger patterns.

There are contributions which focus on the qualitative evaluation of explainable AI meth-
ods. For example, [12] compare rule-based and example-based explainable AI methods
and evaluate them qualitatively on humans. They found that extracting rules give a
small insight into the machine learning model workings, but both approaches persuade
humans into following the advice of the explanation, even if incorrect. This is because
both approaches only give explanation for single specific instances (local explanation, see
section 3.1), but the underlying machine learning model workings.

4

2 Reinforcement Learning

This chapter gives an introduction into the relevant ares of reinforcement learning. For
this, the task is described in section 2.1, followed by the explanation of the reinforcement
learning structure in section 2.2 and the used algorithms in section 2.3. The architecture
of reinforcement learning consists of an environment in which an agent navigates to
accomplish some task. These tasks are modeled as Markov Decision Process (MDP).

Markov Decision Process
The Markov Decision Process (MDP) defines the reinforcement learning environment
and is a 4-tuple with:

S : The state space S contains all the possible states s ∈ S the agent can
be in. The state space is discrete if it is finite, where each state can be
assigned to a number. Otherwise, it is continuous, where the state has
to be modeled as a vector. The game chess has a discrete state space, as
it has a finite set of combinations of the figures. The mountain car task
has a continuous state space, as the car can be at any position (x, y),
where x and y are floating point numbers.

A : The state space A contains all the possible actions a ∈ A the agent can
perform. The action space is discrete if it is finite, where each action can
be assigned to a number. Otherwise, it is continuous, where the action
has to be modeled as a vector. The game chess has a discrete action
space, as it has a finite set of available actions. The continuous mountain
car task has a continuous action space, as the car can be accelerated by
any non-discrete amount (floating point).

Pa(s, s
′) : The probability distribution of reaching the next state s′ from s with

action a.
Ra(s, s

′) : The reward when going from state s to the next state s′ with action a.

This 4-tuple defines the environment of the reinforcement learning task. It is responsible

5

2 Reinforcement Learning

for giving out observations (current states) and rewards based on received actions. The
probability distribution Pa(s, s

′) is the logic of the environment dynamics, be it some
physical system or a video game, and can be stochastic or deterministic.

Policy
The policy π defines the reinforcement learning agent and chooses an action at ∈ A based
on an observation st ∈ S at time step t. This action at is then passed to the environment
which return the next state st+1 ∈ S. The optimal policy π∗ chooses the actions so that
it receives the highest summed reward over the course the MDP.

2.1 Environment: Atari Breakout

The game Breakout is an Atari game from 1976 where the goal is to achieve the highest
possible score by hitting bricks with a ball. The player has to keep the ball on the game
field, which he achieves by controlling a platform to bounce the ball back up. If the ball
flies past the platform, a live is lost and a new ball spawns. The player has 5 lives per
game, loosing all lives means game over.

Figure 2.1: The game Atari Breakout in its beginning phase. The player steers the plat-
form at the bottom left or right to shoot away the bricks at the top with the
bouncing ball.

Here, Breakout is the environment of the reinforcement learning task, with the goal for
the agent to achieve the highest possible score. Since the observations are the frames

6

2 Reinforcement Learning

of the games with pixel values, the state space is continuous while the action space is
discrete with 4 actions: NOOP (do nothing), FIRE (spawn new ball if none on the field),
LEFT, RIGHT. To cope with a continuous state space and a discrete action space, a
suitable algorithm has to be used for the agent.

2.2 Reinforcement Learning Structure

The agent tries to accomplish a task in the given environment with state st by choosing
the actions at at every time step t it deems to be the best.

Figure 2.2: The agent chooses an action based on the current state, passes it to the
environment and receives the next state next.

For this, the agent receives information from the environment (see figure 2.2), including
the new game state st+1 as frame-stack of the last few game frames, a reward rt based
on the performed action at in state st and a terminal flag indicating whether this step
lead to a game over.

Frame-Stack
A frame-stack represents a game state st and includes the last few game frames in
grayscale. More accurately, the frame-stack includes the game frames from time-step
t to t− (k− 1), where k defines how many frames are included. k is chosen to be k = 4,
as the frame-stack then includes enough information to be able to estimate the flight
path of the ball while not providing too much unnecessary information.

7

2 Reinforcement Learning

Figure 2.3: A frame-stack with k = 4 includes the newest frame of size 84x84 as well as
the three previous frames. The resulting tensor has the shape 4x84x84.

The frames are converted to grayscale as shown in figure 2.3 so that convolutional layers
are applicable to work on the frame-stack later (see section 5.1.1).

2.3 Agent Algorithms

The agent has to control the platform in Breakout so that it achieves the highest possible
score by hitting the bricks, if possible without loosing lives. The agent receives continuous
states and outputs one of the 4 discrete actions (do nothing, fire, left, right, see section
2.1). The algorithm used in this work is double DQN (see section 2.3.3), an extension of
Deep Q-Network (DQN, section 2.3.2), which is based on Q-Learning (see next section
2.3.1).

On-policy vs. off-policy
Algorithms can be on-policy or off-policy. Off-policy algorithms use a different policy
for collecting samples from the environment than the one that is actually used when
evaluating or the training is finished. For example, Q-Learning has a greedy policy
(always choose the action with the highest Q-value) but when collecting samples, an ϵ-
greedy policy is used. The ϵ-greedy policy chooses a random action with a given chance
defined by the current value of ϵ and a greedy action otherwise. On-policy algorithms
like SARSA ([13]) use the same policy for both cases.

Online vs. offline
Online algorithms collect samples during training while offline algorithms have a fixed,
static dataset. Online algorithms tend to have access to generally more and more diverse
data as new samples can be collected and added to the dynamic dataset, while offline
algorithms train faster since there is no communication needed with the environment.

8

2 Reinforcement Learning

There are many more categorizations like model-free vs. model-based, value-based vs.
policy based and so on, which are explained in [3] but these categorizations do not matter
for this work.

2.3.1 Q-Learning

Q-Learning is an online off-policy algorithm which aims to learn the optimal policy π∗
by assigning values to state-action pairs, called Q-values, which describe how good an
action a in state s is. For every possible state-action pair, such a Q-value is stored in
the Q-table. The Q-table has all distinct states on one axis and all possible actions on
the other axis. Thus, Q-Learning is only applicable with both a discrete state and action
space. The Q-values in the Q-table are initialized with 0 and then iteratively updated
during training. After the training is finished, the action with the highest Q-value is
taken greedily at each time-step to follow the best learned policy. This policy is optimal
if the Q-values are assigned with appropriately good repressiveness. Q-Learning is online
and off-policy: For collecting samples from the environment, an ϵ-greedy policy is used
and these samples are stored in a replay-buffer, of which mini-batches are sampled later
for training.

Replay Buffer
The replay buffer stores samples as 5-tuple consisting of the state st, the chosen action
at, the resulting next state st+1, the received reward rt and the terminal flag terminal

informing about whether this was the last step terminating an episode in the environment.
Random samples of these 5-tuples st, at, st+1, rt, terminal are samples from the replay
buffer as mini-batch used for training.

Training Loop
The training starts by filling the replay buffer with samples which are generated using
random actions. This is done to have a basis for sampling mini-batches. Then, the
training loop is run for a given amount of episodes, consisting of 2 phases: Collection
and training.

In the collection phase, an action at at time-step t is chosen according to the ϵ-greedy
policy which is delegated to the environment. Then, the next state st+1, the reward rt

and the terminal flag (indicating whether the game is over) are observed. The information
of this sample is stored in the replay buffer as 5-tuple st, at, st+1, rt, terminal.

9

2 Reinforcement Learning

In the training phase, a mini-batch is sampled from the replay-buffer. The size if the
mini-batch is given as hyper-parameter. Then, the Q-values are updated according to
the Bellman equation for each sample of the mini-batch:

Qnew(st, at) = Q(st, at) + λ [rt + γ max
a

Q(st+1, a)−Q(st, at)] (2.1)

where Q(st, at) is the old Q-value regarding state st and and action at, the term is
the braces evaluates to the new target Q-value, λ is the learning rate given as hyper-
parameter, rt is the reward given going from state st to the next state st+1, γ is the
discount factor given as hyper-parameter and max

a
Q(st+1, a) is the highest Q-value of

all possible actions within the next state st+1. The learning rate λ defines how much
the Q-value is updated towards the target Q-value. A higher learning rate may lead to
faster convergence but also to instability while a lower learning rate is more stable but
lets Q-learning converge slower. The discount factor 0 ≤ γ < 1 defines how much the
future states are weighted in the target Q-value estimation. A discount factor of 1 would
lead to an infinite sum, as all future Q-values are included non-discounted. Setting the
discount factor close to 1 means that the future plays a bigger role in the estimation of
the Q-value, while a discount factor of 0 means that the Q-value is sorely based on the
reward given in this sample rt.

After training, the game is played by always choosing the action with the highest Q-value
regarding the current state st. Q-Learning is applicable with discrete state and action
spaces, however, if either space is continuous, the algorithm has to be adapted. In case
of Atari Breakout, the action space is discrete but the state space is continuous. Deep
Q-Network can then be used as explained in the next section 2.3.2.

2.3.2 Deep Q-Network

Deep Q-Network is an online off-policy algorithm, like Q-learning, but adjusts it so that
it can work with continuous state spaces

Q-Network
DQN adjusts Q-Learning by introducing a neural network to approximate the Q-table.
The neural network receives the state as input and outputs the Q-values for every ac-
tion.

10

2 Reinforcement Learning

Figure 2.4: The neural network in DQN takes the continuous state as input and outputs
the Q-values for each possible action.

This architecture allows for a continuous state space, as every feature of a continuous
state is placed at one position of the input vector (see figure 2.4). The output layer of the
Q-network consists of as many neurons as there are actions, where the activation value
at each neuron corresponds to the Q-value of this action. In the Atari Breakout setting,
there have to be 4 output neurons for the actions NOOP, FIRE, LEFT and RIGHT.
Given one state, one forward pass through the Q-network thus estimates the Q-values
for all actions with regard to the input state. However, this architecture also limits the
action space to discrete, since a continuous action space would require an infinite amount
of neurons in the output layer. Using such a Q-network is necessary when the state space
is either continuous or so large that it becomes infeasible to store all the Q-values in a
table like in Q-learning.

Target Network
Next tot he normal Q-network, DQN inducts a target network, which has the exact same
architecture as the Q-network and is used to calculate the target Q-values in the Bellman
equation. The target network itself isn’t trained, instead, the weights are copied from
the Q-network from time to time. This interval is specified as hyper-parameter. This
methodology improves the stability of DQN by keeping the targets stable for a specified
amount of time.

Replay Buffer
DQN uses a replay buffer, in which recorded transitions are stored, which are later
sampled to train the Q-network. One transition at each time-step t is a 5-tuple consisting
of the state st, the chosen action at, the resulting next state st+1, the received reward rt

and the terminal flag terminal informing about whether this was the last step terminating

11

2 Reinforcement Learning

an episode in the environment. The use of a replay buffer further improves the stability
of DQN.

Whenever a task includes a continuous action space which cannot be discretized in a
sensible way, DQN is no longer a suitable choice as reinforcement learning algorithm.
Then, actor-critic architectures can be used, which adjust the algorithm and neural
networks to be able to handle continuous state and action spaces. Since Atari Breakout
has a continuous state space but a discrete action space, DQN is the algorithm of choice.

12

2 Reinforcement Learning

Algorithm

Algorithm 2: Deep Q-Network

Input: θ ▷ Initial network param-
eters

θ̄ ← θ ▷ Initialize target net-
work weights

R ← ∅ ▷ Initialize replay buffer
for each iteration do

at ←

randInt(|A|) if randFloat(0,1) ≤ ϵ

argmax
a

(Qθ(st, a)) otherwise
▷ ϵ-greedy action

ϵ← max(ϵ−∆ϵ, ϵmin) ▷ Reduce ϵ

st+1 ∼ ρ(st+1|st, at) ▷ Sample next state from
environment

R ← R∪ (st, at, st+1, r(st, at), terminal) ▷ Store transition in re-
play buffer

if iteration % train interval = 0 do
(si, ai, ri, si+1, terminali) ∼ R ▷ Sample N transitions
yi = ri + (1− terminal) · γ max(Qθ̄(si+1)) ▷ Calculate targets
L = (yi −Qθ(si)[ai])

2 ▷ Update Q-network
with loss

end if
if iteration % target update interval = 0 do
θ̄ ← θ ▷ Set target network

weights
end if

end for
Output: θ ▷ Optimized parameters

Table 2.3.2 describes how the DQN algorithm works. As setup, the Q-network and tar-
get network are initialized, an empty replay buffer is set up, and the hyper-parameters
are set (see figure 5.3). Then, the training loop begins. The training loop consists of 3
phases: collection, training and target network update.

13

2 Reinforcement Learning

In the collection phase, an ϵ-greedy action is chosen to perform a step in the environment.
The chance of choosing a random action is defined by the current ϵ value, otherwise the
action with the highest Q-value according the Q-network with respect to the current
state st is chosen. The action is passed to the environment and the resulting next state
st+1, the reward rt and the terminal flag are observed. The complete transition is then
added to the replay buffer.

The training phase is entered every few iterations, defined by the train interval hyper-
parameter. In this phase, the Q-network weights are updated. For this, a mini-batch is
sampled from the replay-buffer. The size of the mini-batch is defined by the batch-size
hyper-parameter. For each sample in the mini-batch, the target Q-value is calculated:

yi = ri + (1− terminali) · γ max(Qθ̄(st+1)) (2.2)

where ri denotes the reward for sample i, γ is the discount factor given as hyper-parameter
and max(Qθ̄(st+1)) is the highest Q-value regarding the next state st+1 according to the
target network Qθ̄. The term (1 − terminali) evaluates to 0 if sample i is terminal,
otherwise 1. This ensures that in case of a terminal transition, the reward ri is directly
taken as target, ignoring the discounted highest Q-value of the next state. The target
network or Q-network are able to estimate Q-values based on the next state st+1, however
their values are irrelevant since this next state st+1 is the terminal one from where there
is no need to look further into future states or actions. With the targets, the loss is
calculated:

L =
1

N

N∑
i=0

(yi −Qθ(si, ai))
2 (2.3)

where yi is the target Q-value y of sample i (see equation 2.2) and Qθ(si, ai) is the actual
current Q-value estimate regarding state si and action ai. The Q-network weights can
then be optimized with that loss.

The target update phase is entered every few iterations, defined by the target update
interval hyper-parameter. This phase copies the current Q-network weights into the
target network, thus overwriting the target network weights:

θ̄ ← θ (2.4)

14

2 Reinforcement Learning

where θ are the network weights of the primary Q-network and θ̄ are the weights of the
target network.

After the training loop, the Q-network with its optimized weights is returned as result.
DQN includes features that are essential for its performance and stability like the replay
buffer and the target network, but they can be further improved with later ideas like
double DQN.

15

2 Reinforcement Learning

2.3.3 Double DQN

Algorithm 2: Double DQN

Input: θ ▷ Initial network param-
eters

θ̄ ← θ ▷ Initialize target net-
work weights

R ← ∅ ▷ Initialize replay buffer
for each iteration do

at ←

randInt(|A|) if randFloat(0,1) ≤ ϵ

argmax
a

(Qθ(st, a)) otherwise
▷ ϵ-greedy action

ϵ← max(ϵ−∆ϵ, ϵmin) ▷ Reduce ϵ

st+1 ∼ ρ(st+1|st, at) ▷ Sample next state from
environment

R ← R∪ (st, at, st+1, r(st, at), terminal) ▷ Store transition in re-
play buffer

if iteration % train interval = 0 do
(si, ai, ri, si+1, terminali) ∼ R ▷ Sample N transitions
yi = ri + (1− terminali) · γ (Qθ̄(st+1, a))

|a=max
a′

Qθ(st+1,a′)

▷ Calculate targets as in
figure 2.5

L = (yi −Qθ(si)[ai])
2 ▷ Update Q-network

with loss
end if
if iteration % target update interval = 0 do
θ̄ ← θ ▷ Set target network

weights
end if

end for
Output: θ ▷ Optimized parameters

Vanilla DQN suffers from overestimation of Q-values, which leads to the execution of a
wrongly judged-well strategy before realising that it was in fact not so good based on the
received rewards. Double DQN improves the stability by changing the target Q-value
calculation, the highlighted line in table 2.3.3. It differs from vanilla DQN in the last part

16

2 Reinforcement Learning

of equation 2.2. Vanilla DQN takes the highest Q-value of the next state st+1 according
to the target network Qθ̄ (see equation 2.2), whereas double DQN uses both the primary
Q-network and the target network together to calculate the target.

Figure 2.5: The calculation of target Q-values with double DQN. The Q-value of the
next state is estimated by the target network with the action regarding that
Q-value given by the highest Q-value of the primary network.

The Q-value of the next state in the last part of the equation seen in figure 2.5 is put
together from the Q-value estimate from the target network regarding the next state st+1,
like in vanilla DQN, but instead of taking the highest Q-value, the Q-value of action a

is taken, where a is the action with the highest Q-value according to the primary Q-
network argmax

a
Qθ(st+1). The Q-value estimate still comes from the target network, but

the action regarding the Q-value to take is chosen by the primary Q-network.

17

3 Explainable AI

With the relevant reinforcement learning descriptions given in chapter 2, an introduction
into explainable AI is given: Various categories are described in section 3.1 before the
actual saliency map methods are explained in section 3.2.

Black Boxes
Explainable AI (XAI) includes a set of methods and tools to explain the decision-making
of machine learning models such as neural networks, which are by nature not directly
interpretable. They can be considered as black-box, where only input and output can
be observed, but the internal mechanisms of the black-box remain hidden. XAI tries to
give explanations for the behaviour of the black-box model. There are a few machine
learning methods that are interpretable by nature like regression trees, which circumvent
the need for an additional XAI system by not being a black-box in the first place. Also,
there exist machine learning algorithms which give explanations by themselves ([4], [14]),
but they are developed with explanations in mind and fall in the category of intrinsic
XAI methods.

Human Demands
Machine learning is used in many domains to support or replace human labour. While it
might be sufficient to just apply some machine learning model in some domains, others
require more than just a good performing machine learning model. A model that predicts
upcoming electronic malfunctions of cloud server parts has to have a good performance as
its only requirement. Meanwhile, a model that suggests medical treatments for patients
also has to be trustworthy. A doctor is trustworthy by explaining his reasoning and being
empathetic. A machine learning model is probably not empathetic and thus has to give
excellent reasoning. The more severe a machine learning model influences peoples lives,
the higher the need for explanations is [15]. Patients will hardly accept a life-dependent
decision without good reasoning, especially if the decision is suggested by a machine
learning model.

18

3 Explainable AI

Political Demands
Not only does the human demand motivate the use of XAI systems, but also some
legal authorities start to look at it. The European General Data Protection Regulation
(GDPR; see https://gdpr.eu/) dictates that the use of black-box models (in relevant
domains) must come with reasonable explanations.

XAI in the Future
The scientific interest in XAI went up in the past and will probably do so in the future
[16]. One reason is that machine learning models are assigned to more and more tasks,
which include more and more where human or political demands require XAI. Another
reason is that the need for XAI persists even when the tools used for AI change: The X
is independent from AI. The writing X-AI would make more sense if it weren’t so clumsy.
DeepMind introduced their new “Generalist Agent” [17], which solves a variety of tasks,
from text completion over physics simulation to Atari games, based on a transformer (also
known as Attention [18]). However, this powerful and flexible AI is still, or precisely for
this reason, not interpretable. Regardless of the used technique to train an AI, the need
for XAI persists.

XAI provides methods and tools to understand black-box models. The various methods
fall into a few categories, which are described in section 3.1.

3.1 Explainable AI Categories

While all XAI methods aim to explain the behaviour of a black-box model, they can differ
greatly in their philosophy. The main differentiation comes from whether they are model-
specific or model-agnostic and whether they give local or global explanations. Some of the
investigated saliency map methods are model-specific (gradient-based methods in section
3.2.1) while others are model-agnostic (perturbation-based in section 3.2.2), however all
of them provide local explanations.

3.1.1 Model-Specific Approaches

Model-specific XAI approaches make use of knowledge of the internals of the black-box
model. Thus, they peek inside the black-box and utilize information within it. In this
case, the assumed black-box is actually a white-box from the perspective of the XAI

19

https://gdpr.eu/

3 Explainable AI

approach. Using this kind of XAI, the explainer has to suit the model, as not all model-
specific methods work with every type of model. For example, a model-specific XAI
method may only work with neural networks, and might further restrict the types of layers
the neural networks contains. Some model-specific approaches are part of the model itself,
known as intrinsic methods or interpretable models [1], thus they have to be incorporated
during the deployment of the model and can’t be added later on. Nevertheless, using the
internals of the black-box model gives model-specific XAI approaches more information
to work with than model-agnostic approaches.

3.1.2 Model-Agnostic Approaches

Model-agnostic XAI approaches make statements about the black-box model by carefully
observing the outputs with regards to the inputs. They can thus be applied to all
black-box models, since the functionality of the black-box is irrelevant. The black-box
could even be a human classifying an input to some output classes, it wouldn’t matter
for model-agnostic approaches. The model-agnostic XAI method estimates the actual
model workings as best as possible and then generates an explanation for this estimation.
Making estimations of the actual model workings and not using some internal information
leads to a discrepancy between the estimation and the actual model, which is also known
as model soundness. The goal is to keep the model soundness as low as possible. Model-
agnostic XAI approaches can be added post-hoc to any machine learning system: Since
they only require input-output pairs of the black-box, they work with any kind of model
and the model-agnostic XAI method can be added later.

3.1.3 Local and Global Explanations

A local explanation explains exactly one instance: A single input-output pair is investi-
gated, the local explanation gives insights into why this output came about with regards
to these specific inputs. Local explanations are favored whenever a specific decision
should be explained. For every instance which should be explained, the XAI method has
to construct a specific and only for this instance valid explanation.

A global explanation explains all instances in a given dataset. It captures the general
relationship between inputs and outputs, which is favored whenever the general func-
tionality of the model should be explained. However, a global explanation may be too

20

3 Explainable AI

imprecise when a single specific instance should be explained. An adequate amount of
local explanations can also be aggregated into a global explanation.

3.2 Saliency Maps

A saliency map has a slightly different meaning depending on the application domain.
In computer vision, a saliency map is an image that highlights the regions on which
people’s eyes focus first. These regions can be highlighted in various ways, for example
by masking them or overlaying a heatmap over the original image. These artificially
engineered saliency maps are not the same as the ones constructed by biological or
natural vision. The V1 Saliency Hypothesis [19] proposes, that the primary visual cortex
(V1) in the brain of primates constructs a saliency map which helps to guide the attention
towards interesting elements in their visual field. In deep learning, there exists no unified
definition for saliency maps (also known as sensitivity map or pixel attribution map).
However, the understanding of this concept is very consistent throughout the literature
([1], [20], [21], [22]), which makes it possible to condense a definition.

Definition 3.2.1. A saliency map highlights the areas of an input image, which were
decisive regarding the output/decision of the model. The saliency map layers highlights
on top of the input image, so that relevant image regions can be identified.

Feature attribution gives explanations by attributing a relevance to each input feature
regarding the neural network output. Features which were decisive for the output of
the model get assigned a high relevance, while features which didn’t have an impact
get assigned a low relevance. The feature relevances are calculated with respect to one
desired output class, which is also referred to as target class. Pixel attribution (=saliency
map) translates this idea into the image setting with CNNs, where each input-pixel or
image regions receive a relevance. Saliency maps either have the same size as the input
image or can be meaningfully projected onto it, such as by scaling and overlaying the
saliency map onto the input image. Figure 3.1 shows one example of such a saliency
map.

21

3 Explainable AI

Figure 3.1: A saliency map in the Atari game Breakout in its beginning phase. The
relevant image areas regarding the decision of the agent are red, while the
uninteresting areas are blue.

The concept of saliency maps has its origins in neuroscience [23] in 1998, and were first
witnessed in deep learning in [24] in 2013, where it was one of various visualization
techniques to compute images. From there, the idea gained traction and many different
methods to construct them were proposed. These methods can be categorized into two
main approaches: Gradient based methods (chapter 3.2.1) and perturbation based meth-
ods (chapter 3.2.2). Some common techniques are used in both of these approaches.

Choosing a target class
The calculation of the relevance of pixels or image areas is typically done with respect to
one class of interest. The class of interest can be chosen arbitrarily, which makes sense
in many domains as it might be interesting to understand which pixels or image regions
contribute to another class. For example when classifying MNIST1 numbers, the class
of interest could be the number “3” would make sense for an input image containing this
actual number. However, it is also possible to pick “6” as class of interest to visualize the
pixels or image areas which contribute towards the class “6” instead of “3”. The chosen
class “3” or “6” is also referred to as target class (target when constructing the saliency
map). When working with probabilities in the output layer like in the MNIST domain,
it is beneficial to modify the actual output of the neural network before constructing the

1http://yann.lecun.com/exdb/mnist/

22

http://yann.lecun.com/exdb/mnist/

3 Explainable AI

saliency map. The output is transformed into a one-hot array so that the target class has
a value (=̂ probability) of 1 and all other classes a value of 0. This is done to explicitly
isolate the pixel relevances or image areas towards the desired target class.

In the DQN setting with Breakout, the actual class/action is unknown, since there are
no definitive labels as in MNIST. Here, the class with the highest score (meaning the
action with the highest Q-value) is picked as target class.

3.2.1 Gradient Based Methods

Gradient based methods calculate the saliency map based on the gradient of the predic-
tion with respect to the input image. The image of interest is fed to the neural network,
and for some desired output (for example the output class of interest) the gradient gets
calculated. The gradient is used to assign each pixel a value, which can be interpreted
as the relevance of that pixel. Gradient based methods are thereby mandatory model-
specific, since the internal neural network architecture has to be known to calculate the
gradient. Gradient based methods mainly differ from one another in how the gradient is
calculated.

23

3 Explainable AI

Vanilla Gradients

Algorithm 3: Vanilla Gradients

Input: network, image ▷ Neural net and input
frame-stack

pred = network(image) ▷ Forward pass
pred = setActivations(pred) ▷ Set class activations ex-

cept target class to zero
according to 3.1

grads = gradient(pred, image) ▷ Gradients w.r.t. input
image using 3.2

grads = abs(grads) ▷ Take absolute from gra-
dients

salMap = reduceSum(grads) ▷ Sum up frame gradients
salMap = normalize(salMap) ▷ Normalize gradients
salMap = colorMap(salMap · 255) ▷ Colorize gradients

Output: salMap ▷ Saliency map

The Vanilla Gradients technique [24] (2013) was the first saliency map method in deep
learning (called “Image-Specific Class Saliency” in the original paper). The technique
works by first forward-passing the input image through the neural network and then
choosing a target class (=class of interest), which means setting all other output values
to zero while keeping the original value of the target class (see chapter 3.2):

S′
c(x) =

x if x = arg max

c∈C
(Sc(x))

0 otherwise
(3.1)

where S′
c(x) is the class activation function for class c given input x. This manipulates

the original class activation function so that it only outputs the original value in case of
the target class, and zero otherwise. Then, the gradient with respect to the input pixels
is calculated:

Mc(I) =
∆S′

c(I)

∆I
(3.2)

24

3 Explainable AI

Where I is the input image and S′
c is the adjusted class activation function from equation

3.1. The result is a matrix with the same shape as the input image, where each (gradient-
)value corresponds to the relevance of that pixel regarding the target class. Then, the
absolutes of the gradients are taken, as a negative gradient of some value −g indicates the
same relevance as a positive gradient g = | − g|. The absolute gradients of the different
channels (3 RGB channels) are then summed up, so that the summed gradient value at
one pixel includes the relevance of all RGB channels at that pixel gRGB = gR + gG + gB.
The last step to construct the saliency map is to normalize the positive-only values and
colorize them with some color map.

Adjusted Vanilla Gradients
The only adjustment to use vanilla gradients in the presented Breakout task (2.1) lies in
the interpretation of the variables. Instead of one input image with 3 RGB channels, a
frame-stack of 4 grayscale images is supplied. Thus the gradient values now indicate the
relevance of a pixel of one of these frames, instead of a RGB channel value. The gradient
values of the frames (previously RGB channels) can still be summed up in the same way.
The mathematical computations are the same as in the non-adjusted version: Instead
of summing up the gradients for each channel at one pixel, the gradients for each frame
at that pixel are summed. An example saliency map of the adjusted vanilla gradients
method is shown in figure 3.2.

Figure 3.2: An example of a saliency map constructed by the adjusted vanilla gradients
method.

The saliency maps produced by vanilla gradients can be very noisy. SmoothGrad (section
3.2.1) introduces an idea to combat this issue.

25

3 Explainable AI

SmoothGrad

Algorithm 4: SmoothGrad

Input: network, image, n, σ ▷ Neural net, frame-
stack, noise params

pred = network(image) ▷ Forward pass
expected = setActivations(pred) ▷ Set class activations ac-

cording to 3.1
gradArr = []

for i=1 to n do

noisyImage = image + noise(σ)

noisyPred = network(noisyImage) ▷ Vanilla Gradients start
loss = loss(expected, noisyPred)

grad = gradient(loss, noisyImage)

grad = abs(noisyGrad) ▷ Vanilla Gradients end
gradArr.add(grad)

end

grads = reduceAvg(gradArr) ▷ Average gradient matri-
ces

salMap = reduceSum(grads) ▷ Sum up frame gradients
salMap = normalize(salMap) ▷ Normalize gradients
salMap = colorMap(salMap · 255) ▷ Colorize gradients

Output: salMap ▷ Saliency map

The problem with many gradient based saliency map methods is that, to a human eye,
they seem very noisy, as some seemingly random individual pixels are highlighted. The
motivation of SmoothGrad [25] is “removing noise by adding noise” (in the title of the
paper). In particular, Gaussian noise is added to the input image before it is fed to the
neural network. Of course, the result should be clipped to stay within the range of valid
pixel values. This is done n times, and the resulting gradient maps are then averaged:

M̂c(I) =
1

n

n∑
1

Mc(I +N (0, σ2)) (3.3)

26

3 Explainable AI

where M̂c(I) is the smoothed gradient map with input image I regarding target class c,
Mc is the gradient map method SmoothGrad is coupled with (or based on) and N

Adjusted SmoothGrad
As with vanilla gradients, the only adjustment lies within the interpretation of the vari-
ables. Instead of a RGB image, a frame-stack of 4 grayscale frames is supplied. The
shapes of the matrices differ in comparison to RGB images, but the methodology is the
same. The same applies when summing up the gradients: Instead of summing up the
gradients of the 3 RGB channels at each pixel, the gradients of the 4 frames at each
pixel are summed up instead. An example saliency map with the adjusted SmoothGrad
method is shown in figure 3.3.

Figure 3.3: An example of a saliency map constructed by the adjusted SmoothGrad
method.

The concept of SmoothGrad can be applied to all gradient based saliency map methods,
as it does nothing more than observing n gradient maps produced by some method (e.g.
vanilla gradients), and then averaging them.

27

3 Explainable AI

GradCAM

Algorithm 5: GradCAM

Input: network, image ▷ Neural net, frame-stack
pred = network(image) ▷ Forward pass
activation = network

.lastConvActivation()

▷ Get activations of last
convolutional layer w.r.t.
the input image

expected = setActivations(pred) ▷ Set class activations ac-
cording to 3.1

loss = loss(expected, pred)

grads = gradient(loss, activation) ▷ Gradients w.r.t. last
convolutional layer

avgGrads = avg(grads) ▷ Average gradients of
each feature map

heatmap = avgGrads ◦ activation ▷ Multiply averaged gra-
dients with activations of
last convolutional layer

heatmap = avg(heatmap) ▷ Average values of each
feature map pixel

heatmap = normalize(heatmap) ▷ Normalize values
salMap = resize(

heatmap, image.size())

▷ Scale up to input image

salMap = colorMap(salMap · 255) ▷ Colorize values
salMap = salMap · 0.5 + image ▷ Overlay with input im-

age
Output: salMap ▷ Saliency map

GradCAM [CITEHERE] stands for Gradient-weighted Class Activation Map and as the
name suggests provides visual explanations via saliency maps, based on the gradient of
the neural network. While other methods like Vanilla Gradients (section 3.2.1) work for
all neural network architectures, GradCAM is specialized for CNNs. Vanilla Gradients
computes the gradients up to the input image and thus making the internal neural net-
work architecture irrelevant. GradCAM on the other hand calculates the gradients up
to the last convolutional layer. Thus, a CNN is required. It extends the class activation

28

3 Explainable AI

mapping idea (CAM, [26]) to weigh the activations of the last convolutional layer by their
gradients. The last convolutional layer is used for that because it captures high-level se-
mantics being further back in the CNN while still containing spatial information which
are lost in the subsequent fully connected layers. The idea behind this approach is to
visualize which areas of the input image are focused by the convolutional layer. The first
convolutional layer receives the image of size (x, y) as input and outputs feature maps
that encode learned features (activations), where x and y are the width and height of
the input image. The convolutional layers thereafter do the same but receive the feature
maps of the previous convolutional layer as input, instead of the input image. The last
convolutional layer outputs its activations of size xL, yL, nL, where nL are the number of
filters and xL and yL are the width and height of the resulting feature maps. Afterwards,
the forward pass through the remaining fully connected layers is completed to receive
the prediction. With this, a target class is chosen according to equation 3.1 and the loss
is calculated. Then, the gradients are calculated with respect to the last convolutional
layer, thus having the size xL, yL, nL. These gradients are then averaged for each feature
map, resulting in the size nL. The averaged gradients get multiplied with the activations
of the last convolutional layer over the last axis, so that the resulting size is xL, yL, nL

again. Now, the values on the feature map axis are condensed (averaged), so the result
is a value matrix with size xL, yL. This matrix is then upscaled to the size of the input
image x, y and colorized. Upscaling the relatively small feature map to the larger input
image makes the resulting saliency map rather coarse, as the resolution of the feature
map is much lower.. The colorized matrix shows the areas whose are focused by the
CNN. As final step, the matrix is overlayed with the input image to see these highlighted
areas and the actual content of the image.

Adjusted GradCAM
In the experiment setting, the RGB image is replaced with a grayscale frame-stack. The
convolutional layers are configured to slide over the last two axes, the x- and y-axis of
the frame-stack, since the “channels” are now in the first dimension (for more details
see section 5.1.1). This change runs through all steps: The last convolutional layer now
outputs activations of size nL, xL, yL, thus the gradients also have the size nL, xL, yL and
the multiplication of the averaged gradients with the activations of the last convolutional
layer as well nL, xL, yL. During the averaging and multiplications, it is important that
the correct axes are used. Furthermore, the colorized matrix is overlayed with only the
first frame of the frame-stack, as it is infeasible to overlay it with the complete input

29

3 Explainable AI

frame-stack. An example saliency map with the adjusted GradCAM method is shown in
figure 3.4.

Figure 3.4: An example of a saliency map constructed by the adjusted GradCAM method.

GradCAM can be combined with another gradient-based method to focus the coarse
saliency map to finer regions of the image, as is explained in section 3.2.1.

30

3 Explainable AI

Guided GradCAM

Algorithm 6: Guided GradCAM

Input: network, image ▷ Neural net, frame-stack
pred = network(image) ▷ Forward pass
activation = network

.lastConvActivation()

▷ Get activations of last
convolutional layer w.r.t.
the input image

expected = setActivations(pred) ▷ Set class activations ac-
cording to 3.1

loss = loss(expected, pred)

grads = gradient(loss, activation) ▷ Gradients w.r.t. last
convolutional layer

avgGrads = avg(grads) ▷ Average gradients of
each feature map

heatmap = avgGrads ◦ activation ▷ Multiply averaged gra-
dients with activations of
last convolutional layer

heatmap = avg(heatmap) ▷ Average values of each
feature map pixel

heatmap = normalize(heatmap) ▷ Normalize values
salMap = resize(

heatmap, image.size())

▷ Scale up to input image

vGrads = gradient(pred, image) ▷ Vanilla gradients start
vGrads = abs(vGrads)

vMap = reduceSum(vGrads)

vMap = normalize(vMap) ▷ Vanilla gradients end
salMap = salMap ◦ vMap ▷ GradCAM fusion with

Vanilla Gradients
salMap = colorMap(salMap · 255) ▷ Colorize values

Output: salMap ▷ Saliency map

Guided GradCAM [27] fuses GradCAM with a gradient-based method which calculates
the gradients all the way up to the input image to produce finer saliency maps. This
is done by multiplying the GradCAM heatmap with the heatmap of the other method

31

3 Explainable AI

as shown in table 3.2.1 with Vanilla Gradients as example. GradCAM functions like a
lense focusing Vanilla Gradients towards the coarse areas which GradCAM chooses as
relevant. The fused heatmap is then colored and returned as saliency map. In contrast to
GradCAM, an overlay with the original input image is unnecessary, as Vanilla Gradients
already includes enough content of the input image.

Adjusted Guided GradCAM
Guided GradCAM consists of GradCAM and another method, for example Vanilla Gra-
dients, which both have to be adjusted for the experiment setting as explained in 3.2.1
and 3.2.1 respectively. No further adjustments are necessary. An example saliency map
with the adjusted Guided GradCAM method is shown in figure 3.5.

Figure 3.5: An example of a saliency map constructed by the adjusted Guided GradCAM
method.

In Guided GradCAM, GradCAM can be combined with any other gradient-based method
which calculates the gradients all the way up to the input image.

32

3 Explainable AI

LRP

Algorithm 7: LRP

Input: network, image, ϵ ▷ Neural net, frame-
stack, fraction uplift

activations = [] ▷ Initialize activations
layerWeights = [] ▷ Initialize weights
layerBiases = [] ▷ Initialize biases
output = image ▷ Input for first layer
for each l in network.layers() do ▷ Forward pass
output = l.forward(output) ▷ Input for next layer
activations.add(output) ▷ Save activations
weights.add(l.weights()) ▷ Save layer weights
biases.add(l.biases()) ▷ Save layer biases

end

R = [0, ..., 0] ▷ Initialize array with the
same length as output

R[argmax(output)] = max(output) ▷ Target class value
for i=types.length()-1 to 0 do ▷ Relevance backprop.
type = network.layers[i].type() ▷ Layer type
w = weights[i] ▷ Layer weights
b = biases[i] ▷ Layer biases
if i == 0 do ▷ At first layer...
a = [1, ..., 1] ▷ set activations to 1

else ▷ At deep layers...
a = activations[i-1] ▷ of previous layer

end

R = lrp-ϵ(R,a,w,b,type) ▷ Relevance calculation
according to equation 3.4

end

salMap = normalize(R) ▷ Normalize relevances
salMap = colorMap(salMap · 255) ▷ Colorize values

Output: salMap ▷ Saliency map

Layer-wise relevance propagation (LRP, [28]) doesn’t compute gradients but backpropa-

33

3 Explainable AI

gates a relevance score from the output to the input image. It uses the weights, biases
and activations at each layer during the forward pass to propagate the output back up
until the input layer. For this, the activations at each layer are stored during the forward
pass. Then, the relevance is initialized: The output of the neural network is overwritten
with 0 except for the location of the highest value (target class). Thereby, the relevance
of the target class is isolated. Now, the relevance is backpropagated through the layers
according to the LRP-ϵ rule:

Rj =
∑
k

aj wjk∑j
0[aj wjk + bk] + ϵ

Rk (3.4)

where j and k are neurons of two consecutive layers, aj is the activation of neuron j in the
former layer, wjk is the weight of the connection between neuron j and k, bk is the bias
of neuron k and Rk is the relevance of neuron k. The addition of a very small ϵ ensures
that the bottom part of the fraction is not or close to 0. ϵ is typically set to ϵ = 1e−9.
For the first layer, the activations are set to be 1, as otherwise, the pixel values would be
used. This is nonsensical since the relevance should not be dependent on the pixel value:
A white pixel (value 255, normalized 1.0) would then be naturally more relevant than a
black one (value 0). The biases are ignored in convolutional layers. There are other rules
than LRP-ϵ, like LRP-0 or LRP-γ, which can even be used in combination based on the
depth of the layer. The highlights of saliency maps constructed by LRP are the result of
these relevance backpropagation rules.

Adjusted LRP
The relevance backpropagation steps for the convolutional layers are adjusted to cope
with the frame-stack input. The “channels” are at the first axis of the frame-stack, which
has to be kept in mind when backpropagating the relevance. Handling the frame-stack
like a RGB image would lead to shape mismatches. An example saliency map with the
adjusted LRP method is shown in figure 3.6.

34

3 Explainable AI

Figure 3.6: An example of a saliency map constructed by the LRP method.

Gradient-based methods require access to the interior of the neural network, as they all
use the networks weights during backpropagation. Perturbation-based methods construct
saliency maps in a model-agnostic style.

3.2.2 Perturbation Based Methods

Perturbation based methods alter the input in some form and carefully watch how the
outputs of the model change with the perturbed input. Based on these changes, the
XAI method then derives explanations. Perturbation based methods are usually model-
agnostic, since only input-output tuples of the models are required to generate expla-
nations. The actual workings of the model are irrelevant. On the one hand, this is
very handy since these methods can be applied to any type of model, not just machine
learning based neural networks like gradient based methods (section 3.2.1). On the other
hand, model-agnostic methods only estimate the actual model as best as possible, but
the estimation might still have some amount of distance to the actual model (known as
model soundness, section 3.1.2).

35

3 Explainable AI

LIME

Algorithm 8: LIME

Input: network, image, nSamples ▷ Neural net, frame-
stack, number of samples

pred = network(image) ▷ Forward pass
expected = setActivations(pred) ▷ Set class activations ac-

cording to 3.1
segments = segmentation(image) ▷ Superpixel segments
segImgs = [] ▷ Segmented images
for i=0 to nSamples do Draw samples
segImg = random(segments) ▷ Random combination

of superpixels
segImgs.add(segImg) ▷ Add perturbed image

end

labels = network(segImgs) ▷ Predictions of per-
turbed images

linear = LR(segImgs, labels) ▷ Linear regression model
heatmap = linear.explain(image) ▷ Calculate superpixel

influence
salMap = normalize(heatmap) ▷ Normalize influence

values
salMap = colorMap(salMap · 255) ▷ Colorize values

Output: salMap ▷ Saliency map

LIME [29] stands for Local Interpretable Model-Agnostic Explanations and does exactly
what the name implies: As a model-agnostic method, it estimates a model locally (for
one instance) where it is interpretable and gives an explanation there. It draws samples
around the to-explain-instance (original instance) by slightly changing the input, feeds
them to the model and observes the changes in the output. The number of samples is
given as parameter (1000 in this work).

36

3 Explainable AI

Figure 3.7: An illustration of LIME with 2 classes: The model classifies some samples
as positive (red plus) and some as negative (blue circle). They are weighted
by their proximity to the original sample (drawn bigger). LIME calculates
a locally faithful linear model (dotted line) to the model function (red/blue
background). Image source: [29].

The drawn samples produce different outcomes than the original instance. The difference
of the sample output to the original depends on how relevant the changed input feature
is for every given sample. The samples are then weighted by their proximity to the
original sample as shown in figure 3.7. With that, LIME approximates the model locally
with linear regression. Of course, the linear function doesn’t capture the complete model
prediction function, but it is locally faithful. LIME then estimates the importance of
each feature: A feature that was only slightly changed but resulted in a very different
outcome has a high influence. An explanation is given showing the magnitudes of positive
and negative influences of each feature. Originally, LIME was intended to be used for
feature vector inputs (not images), but can be applied to images with a few changes. [29]
proposes to segment the images into superpixels, which subsequently can be handles like
individual features. For example, a random combination of segments may be deleted by
setting the pixel values to 0. The explanation then gives influence scores to each of these
superpixels and can be visualized as saliency map.

Adjusted LIME
LIME has to be adjusted at the segmentation part to cope with the frame-stack input.
Originally, the single RGB image is segmented into superpixels. However, the frame-
stack consists of 4 grayscale images, therefore the segmentation is done on the first
image and then applied to the rest, hence the superpixels capture the same pixel areas
in all frames. Alternatively, the frames could be segmented separately, but this increases

37

3 Explainable AI

the number of features by the number of frames, which in turn increases the number
of samples needed to calculate a faithful linear model. Since the required computation
time is already very high (see section 5.1.2) and the frames are only marginally different,
it is assumed to be sufficient to apply the segments of the first frame to the remaining
3. Two different algorithms are used to segment the image, resulting in two different
saliency maps: LIME with the Quickshift segmentation algorithm and LIME with the
Felzenszwalb segmentation algorithm.

(a) LIME Quickshift (b) LIME Felzenszwalb

Figure 3.8: An example of saliency maps constructed by LIME Quickshift (a) and LIME
Felzenszwalb (b).

As shown in figure 3.8, the saliency maps constructed by LIME heavily depend on
the used segmentation algorithm, as the superpixels (feature areas) are determined by
them.

38

3 Explainable AI

RisE

Algorithm 9: RisE

Input: network, image, nMasks, h, w, p ▷ Neural net, frame-
stack, RisE params

pred = network(image) ▷ Forward pass
targetClass = argmax(pred) ▷ Choose target class
H = image.height() ▷ Image pixel height
W = image.width() ▷ Image pixel width
masks = [] ▷ Masks
for n=0 to nMasks do ▷ Generate masks
cell = [h][w] ▷ Matrix of size h x w
for i=0 to h do

for j=0 to w do ▷ For each cell pixel
cell[i][j] = randFloat() < p ▷ Mask pixel

end

end

mask = resize(cell, H/h+1, W/w+1) ▷ Upscale mask
mask = crop(mask, H, W) ▷ Crop random area
masks.add(mask) ▷ Store mask
end

end

maskImgs = [] ▷ Masked images
for n=0 to nMasks do ▷ For every mask
maskImg = image ◦ mask ▷ Mask image
maskImgs.add(maskImg) ▷ Store masked image

end

labels = network(maskImgs) ▷ Masked images labels
heatmaps = labels.T() · masks /

nMasks / p

▷ Weighted relevances

heatmap = heatmap[targetClass] ▷ Target class heatmap
salMap = normalize(heatmap) ▷ Normalize values
salMap = colorMap(salMap · 255) ▷ Colorize values

Output: salMap ▷ Saliency map

39

3 Explainable AI

Randomized input sampling for explanation of black-box models (RisE, [10]) works by
altering the input and observing the changes in the prediction of the model. The image
is perturbed by multiplying it with various masks (amount given as parameter, in this
work: 8000). The mask creation process starts with initializing a cell matrix with width
w < W smaller than the image width W and height h < H smaller than the image height
H. In this work, the cell size is set to be 8x smaller than the image size. The values in
this cell are then set to 1.0 with probability p (given as parameter, here: 0.5) and 0.0

otherwise. The cell is then upscaled 8x+1 = 9x with bi-linear interpolation. The cell is
now larger than the image, hence it is cropped to fit the size of the image. Upscaling to a
size larger than the image and then cropping a random frame is done in order to ensure
a high diversity of masks. Afterwards, the individual masks are multiplied element wise
with the input image to produce the perturbed images. These perturbed images are fed
through the neural network to receive the outputs. Then, the heatmaps are calculated as
weighted sum of the random masks, with the weights representing the probability scores
that the masks produce, which is then adjusted for the distribution of the random masks.
The resulting tensor includes the heatmap matrices for each output class of the neural
network, of which the one with regards to the target class is taken and further processed
into a saliency map.

Adjusted RisE
Like with LIME, the random masks of RisE are applied in the same way to each frame of
the frame-stack: With an RGB image, the masks can simply be multiplied element-wise
with the image. With a frame-stack, a mask is multiplied element-wise with each of the
four frames of the frame-stack. This implies that the exact same image region is observed
for all frames, which is reasonable as the content only changes marginally between four
subsequent frames. An example saliency map with the adjusted RisE method is shown
in figure 3.9.

40

3 Explainable AI

Figure 3.9: An example of a saliency map constructed by RisE.

RisE highlights the image areas which have a high influence on the decision of the
model.

3.3 Deletion

The idea of deletion first appeared in [30] in 2015 and was first called so by [10], who
also introduced RisE (see section 3.2.2), in 2019. Deletion works by removing the most
relevant pixels/areas from the input image according to some saliency map and measuring
how much the accuracy of the neural network suffers. If only a few of the most important
pixels according to some saliency map have to be deleted in order to drastically reduce
the accuracy of the neural network, then the saliency map has a high degree of correctness
as it highlights the important pixels precisely.

Deletion in Reinforcement Learning
The idea of deletion can be transferred to the reinforcement learning setting as shown
in [10]. Instead of measuring how much worse the neural network performs, the drop
in performance of the reinforcement learning agent is measured. If important pixels of
the input frame(-stack) are deleted, the agent should be less successful in accomplishing
the given task. As an example in this case, 10% of the most relevant pixels according to
SmoothGrad are deleted from the frame-stack (overwritten with background color black:
pixel value 0) through which the agent should perform worse. This drop in performance
in contrast to not deleting any pixels is recorded and can lead to statements about how

41

3 Explainable AI

correct the saliency map is. If the agent performance drops off rapidly with a small
amount of deletion, the degree of correctness is high as it correctly highlights pixels
which were important for the agent.

42

4 Implementation

This chapter provides details to the implementation which is used for the experiments
in chapter 5. As programming language, python 3.9 is used. The components of the
implementation are described in section 4.1 and the used hardware in section 4.2. Each
experiment has its own folder with its own JSON configuration file containing all hyper-
parameters and the description of the agent and environment, which are used to train
the agent and save the model and logs in this folder. Afterwards, saliency maps and their
evaluation are constructed whose results are also stored in this folder.

4.1 Components

The implementation is divided into components with high cohesiveness: The environ-
ment, described in section 4.1.1, comprises any tasks associated with the Atari Breakout
reinforcement learning environment. The replay buffer 4.1.2 independently stores and
samples transitions. The agent component (4.1.3) implements the double DQN agent.
The policy is a small component which is responsible for choosing actions, hence it
communicates with the agent component (4.1.4). The training loop integrates all other
components to train the agent 4.1.5. Saliency maps and the deletion evaluation are done
separately as described in section 4.1.6 and 4.1.7.

4.1.1 Environment

The library Gym (version 0.23.0) is used as basis for the Atari Breakout environment.
Gym has to be installed with the Atari and its license extensions gym[atari,accept-
rom-license]==0.23.0. The Environment class which is defined in
training/src/environment.py wraps the actual Gym Breakout environment to
return frame-stacks instead of just the current frame. Therefore, the frame-stack size
k = 4 and its width and height of 84 are adjustable parameters in the initialization.

43

4 Implementation

Performing Steps in the Environment
The step method receives an action (whose datatype is integer). This action is passed
to the Gym environment, except for when a live was lost in the last step, which happens
when the ball misses the platform and falls into the ground. In this case, whichever
action was passed as argument is ignored and overwritten by the FIRE action, because
this action is required to spawn a new ball. If this is not done, the agent might get stuck
doing nothing after loosing one life to avoid further negative rewards. After passing
the action to the Gym environment, the new frame, the reward, the terminal flag and
further information are received. The new frame is preprocessed and the frame-stack is
adjusted to contain the new preprocessed frame. The reward is clipped to [−1; 1]. The
terminal flag is True if the game is over, however the game is over one step after the last
live was lost. The frame-stack, the reward, the terminal flag and the extra information
are returned. The step method is called every time a collection or evaluation step is
performed, as well as when just playing the game. The time quantization between two
steps in the game is 4 frames.

Preprocessing Frames
The frames received from the Gym environment are of size 160x210 and are firstly con-
verted into grayscale. Then the grayscale image is cropped to 160x160 by cropping the
top of the frame. The score and the game field above the blocks are lost but contain
no useful information anyway. After that, the frame is down-scaled to 84x84 with near-
est neighbor interpolation. Lastly, the grayscale values of [0; 255] are normalized to the
interval [0; 1]. For all these steps, TensorFlow operations are used, which is why the re-
sulting Tensor is converted to a Numpy array before being returned. This preprocessing
is done for every frame which ends up in the frame-stack.

Resetting the Environment
The reset method firstly resets the Gym environment and puts the resulting frame in
the frame-stack. Then, to fill up the frame-stack, further environment steps with FIRE
actions are done, depending on the size of the frame-stack. The game is started and the
ball is spawned in this process due to the FIRE actions. The reset method is called
every time the game is over due to all live lost or before evaluating the agent.

44

4 Implementation

4.1.2 Replay Buffer

The replay buffer (located in training/src/replay_buffer.py) stores the trajec-
tories and samples mini-batches. No additional library is used for that except Numpy.
The replay buffer is initialized with a size (number of transitions to store), a (mini-)batch-
size, the size of the frame-stack k and the frame width and height. Typically, the replay
buffer stores complete transitions as tuples (st, at, st+1, r, terminal).

Optimizing for Memory Usage
While storing the complete transitions as tuples is the easiest strategy, it wastes a lot
of memory since the frame-stack at time-step t contains the current game frames from t

to t − k, thus the same frame would exist k times in the replay memory. And because
not just the frame-stacks at every time step st would be stored but also the frame-
stack of the next state st+1, the same frame actually exists 2 · k times in the frame-
stack. A replay buffer with 1 million transitions (which is quite common) with a frame
size of 84x84 of floats (4bytes) and a frame-stack size of k = 4 would thus require
1000000 · 4 · 84 · 84 · 2 · 4bytes = 225.792.000.000bytes ≈ 226GB without the actions,
rewards and terminal flags, which I and probably you don’t have. This is the reason why
instead, just the current game frames are stored, which reduces the memory usage to
1000000 · 84 · 84 · 4bytes = 28.224.000.000bytes ≈ 28GB, a reduction of 8x. Of course,
this requires to re-create the correct frame-stacks for st and st+1 when sampling a mini-
batch.

Adding Experience
The add method adds a sample (transition) consisting of an action, the current game
frame, the reward and terminal flag to the replay buffer. The current game frames,
actions, rewards and terminal flags are stored in separate Numpy arrays, which are
connected via their indices, where the the same index i correlates to the same time step
t. The replay buffer is implemented as rotating list, meaning that every new sample
(transition) is stored at index i+ 1, and after reaching the size of the replay buffer, the
index to store this new sample at is reset to 0, from where the old samples are overwritten.
The resulting Numpy arrays are chronologically ordered to the current index i and from
the current index i.

Sampling a Mini-Batch
With the memory usage optimizations, it is required to re-create the correct frame-
stacks when sampling a random mini-batch. A frame-stack for some index i can be

45

4 Implementation

re-constructed by slicing the frames array from i− k to i. The sample method chooses
a random index i and validates it by checking whether a re-constructed frame-stack
contains no terminal frames, since having a terminal frame at any position in the frame-
stack would mean that the agent plays after the game is over. With enough valid indices
found, the mini-batch of actions, rewards and terminal flags can simply be sliced out of
the corresponding Numpy arrays. For the states and next states, the frame-stacks for
each index i and i+1 are re-created respectively. Of course, the frame-stack of the next
state may have a terminal frame at the newest position, this transition would correlate
to the last step before a game over. The mini-batch is then returned.

4.1.3 Agent

The library TensorFlow (version 2.9.0.) is used as basis for the DQN agent. The DQN
agent is implemented as DQN class in training/src/dqn.py. It is initialized with all
the required parameters: Two Q-networks (one of which is the target network), a loss
function, an optimizer, the gamma value and an integer as interval to update the target
network.

Q-Value Estimation
The DQN can be called with a frame-stack, which simply returns the Q-values for each
possible action as Numpy array. The DQN is called every time the actual Q-value estima-
tion is needed. This is needed when i) performing a collection step in the environment
on the actual policy ii) evaluating the current DQN agent on the actual policy or playing
Atari Breakout with the finished trained agent or iii) during training of the DQN agent.

Training
The train method receives a mini-batch and trains the Q-network as explained in
2.3.2. The gradient is calculated with the TensorFlow GradientTape and the weight
updated are performed by the optimizer given in the initialization. Every now and then,
the weights of the Q-network are copied to overwrite those of the target network. The
train method is called after every collection step during training, and the mini-batch
is extracted from the replay buffer.

46

4 Implementation

4.1.4 Policy

The policy chooses an action based on the current state. In DQN, an ϵ-greedy policy
is used. When evaluating the current performance of the agent, the ϵ-greedy policy
is bypassed and the action with the highest Q-value is used instead. The policy is
implemented as class in training/src/e_greedy_policy.py and is initialized with
the Q-network, the number of possible actions, the initial ϵ probability, the final minimum
ϵ probability and an annealing time which defines after how many iterations the final
minimum ϵ probability is reached.

Choosing an Action
The EGreedyPolicy can be called to choose an ϵ-greedy based on the state (frame-
stack). With a specific probability ϵ, a random action is chosen, otherwise the action
with the highest Q-value determined by the Q-network is used. At the beginning, this
probability is ϵ = 1.0 and is decreased linearly over time defined by the annealing time,
until the final ϵ probability is reached.

4.1.5 Training Loop

The training is started with training/train_agent.py. Here, all hyper-parameters
are loaded from a configuration JSON file and the agent, environment, replay buffer and
policy are instantiated. Before the actual training loop, a defined amount of collections
is done with random actions. The training loop is run through defined by the iterations
hyper-parameter and does the following:

1. Collect a sample from the environment according to the ϵ-greedy policy.

2. Sample a mini-batch from the replay-buffer and train the DQN agent.

3. If the evaluation interval is reached, reset the environment and record the perfor-
mance of the DQN agent according to a greedy policy (always choose the action
with the highest Q-value).

Hereby, the loss of the training steps and the episode rewards of the evaluation steps
are recorded with TensorBoard. In the evaluation phase, the Q-network is saved if it
achieved the highest episode reward so far.

47

4 Implementation

4.1.6 Saliency Map Methods

The saliency map methods presented in chapter 3 are implemented as utility functions
in saliency_maps/heatmaps.py. They expect the neural network model and the
frame-stack, process the saliency map and return it with normalized values in the same
size as the frame-size. All saliency map methods are specifically implemented to cope
with frame-stacks and to be comparable with regards to their computation time. The
linear regression model and explanation calculation of LIME is delegated to the lime

library1. For starting the construction of the saliency maps for one episode, saliency_-
maps/create_saliency.py is invoked, which calls each saliency map method for
each time-step of one episode, converts the normalized heatmaps into colored saliency
maps and saves them into the corresponding experiment directory.

4.1.7 Deletion Procedure

The deletion procedure is implemented in saliency_maps/deletion.py and com-
putes the deletion graphs for each saliency map method, which are saved into the cor-
responding experiment directory. For each method with each deletion percentage, one
episode is played with the agent. Multiple instances with different saliency map methods
may be invoked to parallelize the otherwise sequential workload.

4.2 Hardware

The experiments are performed on Windows 10. The machine is fitted with a AMD
Ryzen 7 3700X paired with a NVIDIA GTX 1080 Ti and 32GB 3200Mhz memory. All
subsequent computation time measurements and graphs are obtained using this machine.
The relative relations within these measurements are universally valid and can be com-
pared with other works, but the absolute magnitudes are tied to this specific machine
and implementation.

1https://github.com/marcotcr/lime

48

https://github.com/marcotcr/lime

5 Experiments

To answer research question 1 and 2 as accurate as possible, a wide variety of saliency
map methods as described in section 3.2 are used, and are applied to two DQN agents
in Atari Breakout. The experiment setup is explained in section 5.1, followed by the the
training of the two agents in section 5.1.1. The construction of saliency maps is described
in section 5.1.2 and the methodology of evaluating them in section 5.1.3. Then, the results
are presented in section 5.2.

5.1 Experiment Setup

The saliency map methods are quantitatively evaluated with deletion (see section 3.3).
For this, two DQN agents are trained for which the saliency maps are created. The
details of the agent training are provided in section 5.1.1. Then, a complete episode is
played with each deletion percentage per method to create a deletion graph (see section
5.1.2 and 5.1.3).

49

5 Experiments

Figure 5.1: The number of episode rewards when playing 1000 episodes in Atari Breakout
with random actions. The most common reward is 0 and declines for higher
rewards. 99% of times the reward is 5 or lower. A reward of 8 was never
achieved.

A threshold of the achieved game score (=average reward) is defined, at which so many
important pixels are removed, that the agent isn’t able to play the game adequately
anymore. This performance threshold is defined to be at 5% of its original performance
without deletion. The less pixels have to be deleted to fall under this 5% threshold, the
higher the correctness of the saliency map. An agent which scores a episode reward of 5
is no better than a random acting agent 99% of the time, as can be seen in figure 5.1. The
episode reward of 5 aligns with the threshold of 5% since the trained high performing
agent scores a clipped episode reward of exactly 100 (see next section 5.1.1).

5.1.1 Training the Agent

Two DQN agents with different performance are trained, one with lower performance
and one with higher performance regarding the achieved game score in Breakout. The
difference in performance results from one agent receiving the terminal flag from the
environment when a life is lost, which helps the agent in learning that loosing a life is
bad. Without the terminal flag, the target Q-value y, when training with the equation
as shown in figure 2.5, still depends on the Q-value estimate of the next state st+1, which

50

5 Experiments

might raise the target Q-value y of state s to a value that is way too high for that a life
was lost. With the terminal flag, the target Q-value y directly depends on the reward
r, which is 0 in that case (see section 4.1.1).

Figure 5.2: The architecture of the Q-network. The 4x84x84 frame-stack is fed through
3 convolutional layers followed by one fully connected layer before the four
output neurons.

The Q-network architecture is the same for both agents and is based on the original
from [31] and receives a stack of 4 grayscale images as input, each being 84x84 pixels,
resulting in an input shape of 4x84x84. The top of the network consists of 3 convolutional
layers with ReLU activations, they have increasingly more feature maps and decreasing
kernel size and strides. They are connected directly without pooling layers in between,
instead, the relatively high stride values ensure that the feature map size decreases. The
filters glide over the last two dimensions (x- and y-axis of the grayscale images) instead
of the first two dimensions, as the “channels” of the input frame-stack are in the first
dimension.

51

5 Experiments

Figure 5.3: The hyper-parameters for the experiments. They are based on the original
from [31] and are the same for both agents.

The hyper-parameters are the same for both agents and are based on the ones from [31].
Note that a higher replay-buffer size would be beneficial but is set to 1 million, as a
larger value would surpass the memory of the machine (see section 4.1.2 for details of
the replay-buffer and section 4.2 for details of the machine).

Agent 1
The low performing agent doesn’t receive the terminal flag from the environment when

52

5 Experiments

a life is lost. The agent achieves a score of 38 after 30 million iterations, to which it
converged after 15 million iterations.

Figure 5.4: The average reward of agent 1 over 25 million iterations. The average reward
converges to 38 after 15 million iterations.

The loss and the clipped episode reward during training can be seen in the appendix A.1
and A.2 respectively.

Agent 2
The high performing agent, which receives the terminal flag when a life is lost, achieves
a score of 380 after 30 million iterations, to which it converged after 15 million iterations
as well.

Figure 5.5: The average reward of agent 2 over 30 million iterations. The average reward
converges to 380 after 15 million iterations.

The loss and the clipped episode reward of agent 2 during training can be seen in the
appendix A.3 and A.4.

53

5 Experiments

Passing the terminal flag when a live is lost doesn’t change how fast the agent converges
to its peak performance, but the performance increases from a game score of 38 to 380,
a performance increase of 10x. The average reward curve until 15 million iterations of
agent 2 is much steeper than the one from agent 1.

5.1.2 Saliency Map Construction

The saliency maps are created with the trained DQN agent from section 5.1.1.

Figure 5.6: At each time-step, the state and agent action are intercepted to construct
saliency maps on them. The state and action are identical for all saliency
map methods.

The agent plays an episode and the saliency maps for each method described in 3.2
are calculated at each time-step as shown in figure 5.6. Thus, the saliency maps can be
compared very well, because the basis is the same for all the saliency map methods: They
have the same DQN agent in the same environment with the same gameplay, because all
saliency map methods receive the exact same game states/frame-stacks.

54

5 Experiments

The computation time for the gradient-based methods (see section 3.2.1) is much lower
than of the perturbation-based methods (see section 3.2.2) as can be seen in figure 5.7.

Figure 5.7: The calculation times for one saliency map for each method. The gradient-
based methods are much faster with SmoothGrad taking the longest due
to passing multiple frame-stacks through the Q-network. The perturbation-
based methods LIME and RisE are much slower.

The computation time depends on the amount of Q-value estimations for input frame-
stacks (passes through the Q-network), which is why SmoothGrad takes longer than
for example vanilla gradients. The perturbation-based methods take so much longer
because they pass significantly more (perturbed) frame-stacks through the Q-network,
as the information to create a saliency map are pulled from the input-output tuples of
the Q-network only, while the gradient-based methods make use of the model weights.
Vanilla gradients, GradCAM, guided GradCAM and LRP run through the Q-network
only one time, SmoothGrad 50 times (adjustable as parameter), but RisE passes 8000
(adjustable as parameter) perturbed frame-stacks through the Q-network, and LIME
includes an image segmentation and linear regressions. The ∼30x faster computation
of the gradient-based methods makes them more attractive and, furthermore, real-time

55

5 Experiments

capable, as the time to create a saliency map with those methods is lower than 1
24seconds,

which is the framerate of the game.

The saliency map methods can be evaluated quantitatively by investigating them with
the deletion procedure (see next section 5.1.3).

5.1.3 Saliency Map Evaluation with Deletion

Figure 5.8: The deletion process. The most important pixels according to some saliency
map method are deleted. The agent chooses one action based on the actual
frame-stack for the saliency map creation only and one action based on the
deleted frame-stack for the environment. The process is done at each time-
step per episode for each deletion percentage for each method.

The deletion procedure (explained in section 3.3) is used to quantitatively evaluate the
saliency maps as produced in section 5.1.2 and to answer research question 1. This is
done by removing the most relevant information of the input frame-stack according to
the saliency map and measuring how much worse the DQN agent plays. The agent needs
to play one episode for each saliency map method for each deletion amount as shown in
figure 5.8. Thus, the computation time to create the deletion graphs scales linearly with

56

5 Experiments

the computation time to create the saliency maps (figure 5.7) and the interval between
the deletion amounts. Especially for the perturbation-based methods LIME and RisE,
this can become a lengthy matter.

Figure 5.9: The degree of correctness of a saliency map depends on how much has to be
deleted to reach the performance threshold, percentage-wise.

The degree of correctness for a saliency map method can then be quantitatively evaluated
by how many important pixels (according to the saliency map) have to be deleted in order
to reach the performance threshold. The relationship of deleted pixels versus the degree
of correctness is shown in figure 5.9.

5.2 Results

In this section, the results of the saliency map method evaluation with deletion are
presented. For each method, two agents are used. Agent 1 has a lower performance
with an average reward of 38, while agent 2 has a higher performance with an average
reward of 380. The performance threshold when enough important pixels are successfully
removed lies at 5% of the initial agent performance, as explained in section 5.1.

57

5 Experiments

5.2.1 Evaluation: Vanilla Gradients

(a) Agent 1 (b) Agent 2

Figure 5.10: The deletion graphs for vanilla gradients with agent 1 (a) and agent 2 (b).
The threshold performance is reached at 1.4% deletion with agent 1 and
1.5% deletion with agent 2.

Observation
With vanilla gradients, agent 1 dropped under the 5% performance threshold with a
deletion percentage of 1.4% and then oscillates around this threshold.

The performance of agent 2 first dropped under the performance threshold with 1.5%
deletion. The performance then oscillates around the performance threshold before stay-
ing under it at 4% deletion. The oscillations are not as significant in comparison with
agent 1. Between 6% and 8% deletion, the performance peaked above 5% a few times.
As can be seen in figure 5.10, vanilla gradients deletes a few pixels of the lower bricks
and the ball. Some frames, the ball is visible, which results in the ball “flickering“.

58

5 Experiments

(a) Agent 1, deletion: 1.4% (b) Agent 2, deletion: 1.5%

Figure 5.11: Examples of deleted frames for vanilla gradients at performance threshold
with agent 1 (a) and agent 2 (b). In both cases, the ball and a few other
pixels are deleted.

Assessment
Vanilla gradients has a high degree of correctness for agent 1 and 2, only deleting 1.4%
and 1.5% of the most important pixels to let the agent drop under the 5% performance
threshold. The deletion curve is very smooth with only marginal oscillations, indicating
a very high consistency. However, the curve with agent 2 is smoother than with agent
1, probably because vanilla gradients finds the relevant pixels more consistently when
the neural network weights are more fine-tuned. Vanilla gradients intuitively deletes the
ball, however not in every frame, which leads to the conclusion that the agent does track
the ball, however not continuously at every frame, but only at specific ones. The deleted
pixels at the lower bricks lead to believe that the agent has specific points of reference
there.

59

5 Experiments

5.2.2 Evaluation: SmoothGrad

(a) Agent 1 (b) Agent 2

Figure 5.12: The deletion graphs for SmoothGrad with agent 1 (a) and agent 2 (b). The
threshold performance is not reached with both agents.

Observation
Agent 1 never touched the performance threshold within the tested deletion range be-
tween 0% and 10%, the lowest performance of 55% was reached with 3.2% deletion.
There are major oscillations in the deletion curve, within those there are peaks at 200%
of the original performance. SmoothGrad deletes pixels from anywhere in the frame,
which sometimes includes the ball or the platform (see figure 5.13).

Agent 2 also never touched the performance threshold, the lowest performance (still 13%)
was reached with 9.3% deletion. The deletion graph does have a decreasing tendency
with major oscillations. SmoothGrad deletes areas which were background in the first
place and deletes the ball occasionally (see figure 5.13).

60

5 Experiments

(a) Agent 1, deletion: 9.9% (b) Agent 2, deletion: 9.9%

Figure 5.13: Examples of deleted frames for SmoothGrad with agent 1 (a) and agent 2
(b). The area below the bricks is deleted, so that the resulting frame is not
changed.

Assessment
SmoothGrad has a very low degree of correctness, as the performance of the agent never
dropped under 5% within the tested deletion range between 0% and 10%. SmoothGrad
furthermore has a very low consistency, as can bee seen by the many major oscillations
in the deletion curve. This is not surprising considering SmoothGrad mainly deletes
patches where there is background to begin with, so there is no change compared to the
non-deleted frame. Occasionally, the ball is deleted too, so the ball disappears from time
to time for one frame. Interestingly, the performance of agent 1 even went up drastically
multiple times within the oscillations. This is probably because agent 1 is not trained
well and the low correctness of SmoothGrad might lead to deleting pixels that change
the behaviour of the agent so that it plays better by accident. The results are surprising
as SmoothGrad should be less noisy and more consistent compared to vanilla gradients,
which is not the case in these measurements. That might be because the methodology of
adding noise to the input image and then averaging the gradients later isn’t applicable
to the Breakout reinforcement learning setting: The noise is applied to the whole image,
including the empty area below the bricks. This empty area, where normally only the
ball exists, may suddenly be filled with color so that the agent focuses on these new
colored pixels. Now there may be considerable gradients to these pixels according to the
DQN gradient calculation, which are then highlighted in the saliency map. Deletion then
deletes these supposedly important pixels, leading to the described phenomenon.

61

5 Experiments

5.2.3 Evaluation: GradCAM

(a) Agent 1 (b) Agent 2

Figure 5.14: The deletion graphs for GradCAM with agent 1 (a) and agent 2 (b). The
performance threshold is reached with agent 2 but not with agent 1.

Observation
Agent 1 never touched the performance threshold, the lowest performance is 32% at 8.3%
deletion. The performance fluctuates strongly between 32% and 200% and no downward
trend is recognizable. GradCAM only deletes a horizontal stripe at the very top of the
frame as can be seen in figure 5.15.

Agent 2 fell under the performance threshold at 2.7% deletion and stayed there. The
oscillations are minor in this case, except for a well identifiable peak at 0.2% deletion.
Within these oscillations, the performance peaks a little above the performance thresh-
old from time to time. GradCAM deletes large patches anywhere in the frame, which
sometimes includes the ball or the controlled platform (see figure 5.15).

62

5 Experiments

(a) Agent 1, deletion: 9.9% (b) Agent 2, deletion: 2.7%

Figure 5.15: Examples of deleted frames for GradCAM at performance threshold with
agent 1 (a) and agent 2 (b). With agent 1, the top pixel rows are deleted.
With agent 2, large patches are deleted, which might sometimes include the
ball or the platform.

Assessment
With agent 1, GradCAM always deletes the same top few pixel rows of the frame, which
are not relevant for the game. Thus, the degree of correctness is very low and the deletion
curve indicates no downward trend regarding the performance. Since agent 1 plays very
imprecise, small changes in (even seemingly irrelevant parts of) the input frame-stack
can lead to the agent suddenly performing a lot better or worse, which probably causes
the strong oscillations in the deletion curve.

The deletion curve with agent 2 is a lot smoother, ignoring the spike at 0.2% deletion. The
performance threshold is reached at 2.7% deletion, thus GradCAM has a medium degree
of correctness in this case. The large patches which are deleted are in the neighborhood
of the ball and the platform, sometimes including them and making them completely
invisible from time to time. GradCAM seems to roughly target the correct areas of the
frame, but isn’t very precise in its doing.

63

5 Experiments

5.2.4 Evaluation: Guided GradCAM

(a) Agent 1 (b) Agent 2

Figure 5.16: The deletion graphs for Guided GradCAM with agent 1 (a) and agent 2 (b).
The performance threshold is reached at 1.6% deletion with agent 1 and at
2.4% deletion with agent 2.

Observation
The performance threshold with agent 1 is reached at 1.6% deletion, however, the dele-
tion curve is afflicted with oscillations and most data points are above the performance
threshold from there on. The downward peaks of the oscillations come under the perfor-
mance threshold. Adjacent pixels in various areas are deleted, sometimes including parts
of the ball or the platform.

Agent 2 reaches the threshold performance at 2.4% deletion, but the deletion curve is a
lot smoother and the performance stays below the threshold from there on. There is one
exception between 3% and 4% deletion, where 3 data points reach a tiny bit above the
performance threshold. Afterwards, the graph stays very flat at nearly 0% performance.
Like with agent 1, adjacent pixels in various areas are deleted, however more focused.

64

5 Experiments

(a) Agent 1, deletion: 1.6% (b) Agent 2, deletion: 2.4%

Figure 5.17: Examples of deleted frames for Guided GradCAM at performance threshold
with agent 1 (a) and agent 2 (b). Pixels in a coherent area are deleted,
sometimes including the ball or the platform.

Assessment
Guided GradCAM (with vanilla gradients as guide) lenses vanilla gradients towards the
GradCAM focus, which helps agent 1 to now reach the threshold performance in contrast
to GradCAM with agent 1 (see section 5.2.3). Reaching the performance threshold at
1.6% deletion indicates a high degree of correctness, however this result is only achieved
due to a downward peak in the oscillations and even with that is not as good as just
using vanilla gradients (see section 5.2.1). If the deletion curve would be smoothed, the
threshold performance would not be reached at all. As indicated by the oscillations,
Guided GradCAM is not very consistent too.

With agent 2, the degree of correctness is rated as medium, but the deletion curve is much
smoother and the performance stays below the performance threshold, thus indicating
a higher consistency. Nevertheless, just using vanilla gradients is superior in both the
correctness and the consistency. The saliency maps of Guided GradCAM look nicer to
the human eye because there are seemingly less randomly highlighted pixels, but vanilla
gradients is in fact more accurate.

65

5 Experiments

5.2.5 Evaluation: LRP

(a) Agent 1 (b) Agent 2

Figure 5.18: The deletion graphs for LRP with agent 1 (a) and agent 2 (b). The deletion
threshold is reached at 0.3% deletion with agent 1 and at 0.5% deletion with
agent 2.

Observation
Agent 1 reaches the performance threshold at 0.3% deletion, but this is during a down-
ward spike of oscillations. In general, the deletion curve is oscillating between 0% per-
formance and 35% performance. LRP deletes the ball, though sometimes a few pixels of
the ball are leftover.

With agent 2, the threshold performance is reached at 0.5% deletion. The deletion curve
is extremely smooth and very flat after falling below the performance threshold, never
touching the threshold again. LRP deletes the ball completely and furthermore a few
pixels of the platform.

66

5 Experiments

(a) Agent 1, deletion: 0.3% (b) Agent 2, deletion: 0.5%

Figure 5.19: Examples of deleted frames for LRP at performance threshold with agent 1
(a) and agent 2 (b). The ball is always deleted, together with some pixels
of the platform.

Assessment
LRP has a very high degree of correctness in both cases. With agent 1, LRP is not precise
enough to always delete the ball completely, resulting in the measured oscillations. With
agent 2, LRP shows an almost perfect consistency as the deletion curve falls below the
performance threshold almost immediately and stays there without any oscillations. LRP
is able to delete the ball completely at every frame. The higher accuracy to delete the
ball might be higher with agent 2 because the agent itself is more fine-tuned and focuses
on the ball more precisely.

67

5 Experiments

5.2.6 Evaluation: LIME Quickshift

(a) Agent 1 (b) Agent 2

Figure 5.20: The deletion graphs for LIME Quickshift with agent 1 (a) and agent 2 (b).
With agent 1, the performance threshold is never reached while with agent
2, it is reached at 1.4% deletion.

Observation
LIME Quickshift with agent 1 never reaches the performance threshold but comes close
to it multiple times after 6% deletion with the lowest performance being 7%. The dele-
tion curve has major oscillations from 0% deletion to 2% deletion, from where on the
oscillations get weaker. The performance drops until 2% deletion, from where on it stays
at around 20% performance. LIME Quickshift deletes a large chuck of bricks on the
upper right corner, as well as a few bricks below that.

With agent 2, the performance threshold is reached at 1.4% deletion. The deletion
curve then oscillates strongly until 4% deletion, from where on it stays fairly flat at just
under the performance threshold. LIME Quickshift deletes a horizontal stripe of middle
bricks.

68

5 Experiments

(a) Agent 1, deletion: 9.9% (b) Agent 2, deletion: 1.4%

Figure 5.21: Examples of deleted frames for LIME Quickshift at performance threshold
with agent 1 (a) and agent 2 (b). With agent 1, most of the upper right
bricks are deleted, with agent 2 just a row of the upper bricks.

Assessment
The degree of correctness is very low with agent 1, as the performance threshold is never
reached. With agent 2, the degree of correctness is high according to the presented
categorization (see figure 5.9). Both deletion curves indicate a medium to high degree of
consistency. Much more interestingly, LIME Quickshift deletes chunks of bricks which
are intuitively not important to keep playing the game at the same performance, but in
fact the agents do play a lot worse. This is especially visible with agent 2 as shown in
figure 5.21: A horizontal stripe of middle bricks is deleted while the ball and the platform
are completely visible, still the agent only reaches 5% of its original performance. The
expectation was that LIME Quickshift is highly incorrect due to the seemingly randomly
segmented superpixels as shown in section 3.2.2. It seems that the agents have important
reference points in these frame areas.

69

5 Experiments

5.2.7 Evaluation: LIME Felzenszwalb

(a) Agent 1 (b) Agent 2

Figure 5.22: The deletion graphs for LIME Felzenszwalb with agent 1 (a) and agent 2
(b). With agent 1, the performance threshold is reached at 2.0% deletion,
with agent 2 at 4.6% deletion.

Observation
With agent 1, the performance threshold is reached at 2.0% deletion. Until there, the
deletion curve fluctuates strongly. After 2.0% deletion, the deletion curve oscillates
around the performance threshold, but not by much. LIME Felzenszwalb deletes hori-
zontal stripes of the upper brick rows.

With agent 2, the performance threshold is reached at 4.6% deletion. The deletion curve
oscillates strongly until 8% deletion, after which the performance stays well below the
performance threshold. LIME Felzenszwalb deletes horizontal stripes of the middle and
upper brick rows.

70

5 Experiments

(a) Agent 1, deletion: 2.0% (b) Agent 2, deletion: 4.6%

Figure 5.23: Examples of deleted frames for LIME Felzenszwalb at performance threshold
with agent 1 (a) and agent 2 (b). Stripes in the upper bricks are always
deleted.

Assessment
With agent 1, LIME Felzenszwalb has a high degree of correctness and seems fairly
consistent according to the smoothness of the deletion curve. LIME Felzenszwalb deletes
horizontal stripes of pixels in the upper bricks and nothing else, which is interesting
considering the performance of a human would not suffer at all but those of the agent
does. One would assume that LIME Felzenszwalb is highly inaccurate due to LIME
weighting the upper bricks of the Felzenszwalb segmentation as most important and
deleting them, but it seems the agent has important points of reference there.

The same applies to agent 2, where the LIME Felzenszwalb has a very low degree of cor-
rectness and is inconsistent according to the strong oscillations, but the deletion curve
shows a downward trend and performance threshold is still reached. The deletion of
horizontal pixel rows in the middle and upper bricks does greatly harm the agent perfor-
mance.

71

5 Experiments

5.2.8 Evaluation: RisE

(a) Agent 1 (b) Agent 2

Figure 5.24: The deletion graphs for RisE with agent 1 (a) and agent 2 (b). With agent
1, the performance threshold is reached at 1.2% deletion and with agent 2
at 1.4% deletion.

Observation
The deletion graph with agent 1 strongly oscillates until 1.2% deletion where the per-
formance threshold is reached. It then hovers around the performance threshold before
peaking upward once at 3.4% deletion. The performance then falls below the performance
threshold again where it stays very flat until 8.7% deletion, where it starts oscillating a
bit again. RisE deletes a contiguous patch of pixels of the upper right bricks.

The deletion graph with agent 2 also strongly oscillates until the performance thresh-
old is reached at 1.4% deletion. From there it oscillates lightly above the performance
threshold before falling below it at 4.6% deletion. From there on, the performance stays
evenly below the threshold. RisE deletes a contiguous patch of pixels of the middle right
bricks.

72

5 Experiments

(a) Agent 1, deletion: 1.2% (b) Agent 2, deletion: 1.4%

Figure 5.25: Examples of deleted frames for RisE at performance threshold with agent
1 (a) and agent 2 (b). A large patch of the upper right bricks is always
deleted.

Assessment
RisE has a high degree of correctness with both agents. In both cases, the deletion curve
indicates a low consistency until the performance threshold is reached, from where on the
graphs are quite smooth, signifying a high consistency. RisE deletes a chunk of pixels in
the bricks only, leaving the ball and the platform untouched, whereby the performance
of a human player would not change but those of the agent does. This shows that the
pixels in these patches are important for the agent.

73

5 Experiments

5.3 Verdict

Figure 5.26: The degree of correctness for each saliency map method with agent 1 and
agent 2. The verdict is based on the results of section 5.2.

With every saliency map methods except SmoothGrad, the performance threshold (5% of
the original performance) is reached when applying deletion to them. All saliency map
methods thus identify important pixels in principle (except SmoothGrad), be it more
or less accurate. The amount of deletion required to reduce the agent performance to
5% varies and the degree of correctness may vary whether considering agent 1 or agent
2. SmoothGrad and Guided GradCAM are built upon vanilla gradients, but vanilla
gradients is superior to both. The best perturbation-based saliency map method is RisE
with a high correctness rating with both agents. The best gradient-based and overall
saliency map method is LRP as it has a very high degree of correctness with both agents,
no other method has a very high correctness rating in either case.

5.4 Discussion

Discussion Regarding Research Question 1
The idea of SmoothGrad to produce cleaner saliency maps by adding noise seems to
be infeasible in the domain of reinforcement learning with Atari Breakout, probably

74

5 Experiments

because the noise leads to higher gradients towards the noised pixels in the DQN gradient
calculation. The gradient-based saliency map is thus based on a false assumption.

GradCAM or guided GradCAM are less correct than other gradient-based methods (ex-
cept SmoothGrad). This may be because GradCAM and guided GradCAM look at the
gradients with respect to the last convolutional layer in contrast to the input layer, mak-
ing the saliency map coarser. The other saliency map methods are superior maybe due
to the additional fineness gained by looking at the gradients with respect to the input
layer.

LRP may be more accurate than the other gradient-based methods because it is not based
on the actual gradients but rather backpropagates a relevance, which is more meaningful
and valid: A high gradient at a pixel indicates a high relevance, yet the gradient might
also be high at locations which were not important for the models decision, rather bigger
weight adjustments just had to be made for this instance. LRP refines the gradient-based
approach by backpropagating a relevance score.

RisE has a higher degree of correctness than the other perturbation-based methods LIME
Quickshift and LIME Felzenszwalb. This is likely RisE looks at different areas in many
different combinations, while LIME is dependent on the image segmentation calculated
by Quickshift or Felzenszwalb. Quickshift and Felzenszwalb segment the image into
superpixels, but those occupy a fixed area which LIME has to work with. LIME is thus
reliant on the sensible-ness of the image segmentation algorithm. RisE on the other hand
considers various areas determined by a huge number of random masks and therefore
investigates the image more diversely.

Discussion Regarding Research Question 2
All gradient-based methods focus the ball, platform and lower rows of bricks, however
they do it with varying precision. Since all of these methods construct their saliency
map based on the gradient, it is traceable that they all focus on the same aspects of the
frames.

All perturbation-based methods identify the upper right bricks as most important aspect
of the frames. They all construct their saliency maps according to the same principle:
Alter areas of the input-frames and observe which influence the model the most. It is
thus traceable that they identify the same areas as most important, be it with small
deviations.

75

5 Experiments

The perturbation-based methods identify other relevant frame areas than the gradient-
based methods, but both are correct. The focus of the gradient-based methods on the
ball, platform and lower rows of bricks follows human intuition, while the focus on the
upper right bricks of the perturbation-based methods gives incentives for further investi-
gations. A human player would not be irritated by the removal of the upper right bricks,
but the agents do in fact play a lot worse. The agents “think” in a different way than
human intuition would suggest, even a high performing one, and humans are well advised
not to blindly trust them. This insight is especially important for critical domains like
healthcare.

Discussion Regarding Research Question 3
The highlighted areas between the gradient-based and perturbation-based methods differ,
while both approaches can produce correct saliency maps (see section 5.3). Thus, only
using the most correct saliency map methods doesn’t capture all relevant areas of the
image. Therefore, it is beneficial to use a gradient-based method and a perturbation-
based method in order to retrieve as many relevant image areas as possible. Since in
each category (gradient-/perturbation-based), one saliency map method is sufficient to
capture all relevant image areas as possible by this category, it is sensible to use the most
correct saliency map method of each category. The concluding recommendation is thus
to use LRP and RisE.

76

6 Conclusion

In this chapter, a summary is given in section 6.1, which concludes the findings of this
research and answers the research questions. Afterwards, an outlook for future work is
given in section 6.2.

6.1 Summary

Various saliency map methods were evaluated quantitatively with regards to their cor-
rectness. The considered methods include vanilla gradients, SmoothGrad, GradCAM,
guided GradCAM, LRP, LIME Quickshift, LIME Felzenszwalb and RisE. It is shown
that perturbation-based methods take ∼30 times longer to calculate than gradient-based
methods due to the amount of passes which were needed through the model. They were
applied in a reinforcement learning setting, where a DQN agent plays Atari Breakout with
the game frames as input. The quantitative evaluation was done by applying deletion to
the observations with each saliency map method and measuring the drop in performance
of the agent. This was done with two different agents to compare the results between a
low performing a high performing agent.

Research Question 1: Highest Degree of Correctness
Research question 1 is answered as follows:

• The correctness of a saliency map not only depends on the method but also on the
model and setting.

• The most correct saliency map method is LRP.

The results show that the degree of correctness does depend on the saliency map method
and also on the model (agent) and the setting where it is used. In general, LRP has the
highest degree of correctness.

77

6 Conclusion

Research Question 2: Differences in Highlights
Research question 2 includes the following findings:

• The gradient-based methods all find the same features as most important.

• The perturbation-based methods all find the same features as most important, but
others than those oft he gradients-based methods.

• Investigating saliency maps from multiple methods gives more insights than just
using one.

All the gradient-based methods find the same features as most important: The ball,
platform and lower rows of bricks, however the precision in highlighting them varies.
Likewise, all the perturbation-based methods find the same feature as most important:
The upper right bricks. While these bricks are of little relevance for a human player, both
agents rely on them to perform. This insight is only gained by investigating multiple
saliency map methods with different approaches instead of just one. Machine learning
models may not work by the system of rules that a human would expect, which makes
XAI important and necessary.

Research Question 3: Recommendation
Research question 3 is condensed as follows:

• The recommendation is to use LRP and RisE.

With the findings related to research question 2, it becomes clear that it is insufficient
to only use the most correct saliency map method: One saliency map method of one
approach, gradient-based and perturbation-based, indeed makes another method from
this approach obsolete, but should be combined with another method from another ap-
proach. Therefore, it is recommended to use LRP (as per the findings of research question
1) together with RisE, the most correct perturbation-based saliency map method.

6.2 Outlook

Further saliency map methods can be included to enlarge the scope of evaluated methods,
such as DeconvNet [6] or Integrated Gradients [7]. In addition, SmoothGrad and guided
GradCAM can be combined with other methods than Vanilla Gradients. Also, other
environments than Atari Breakout can be used to confirm the findings or discover new

78

6 Conclusion

insights. Likewise, it can be investigated how the findings stack up against other agents
than double DQN, for example SAC [32], DDPG [33] or TRPO [34]. Another idea is
to try and use a model-based reinforcement learning algorithm by directly implementing
the Atari Breakout logic into the algorithm, like with AlphaZero ([35]). Apart from
that, the trained weights and biases can be examined to match these insights with the
gradient-based methods. Another point to expand is to further investigate the different
focus of gradient-based methods versus perturbation based methods. Different saliency
map methods produce different results, of which multiple might be correct, therefore it
might be possible to fuse all correct explanations together or and form an explanation
which captures the complete workings of the machine learning model.

79

Bibliography

[1] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.

[2] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin
Schmitt, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert. From anecdotal
evidence to quantitative evaluation methods: A systematic review on evaluating
explainable ai. arXiv preprint arXiv:2201.08164, 2022.

[3] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[4] Andrew Levy, Robert Platt, George Konidaris, and Kate Saenko. Learning multi-
level hierarchies with hindsight. 7th International Conference on Learning Repre-
sentations, ICLR 2019, pages 1–16, 2019.

[5] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat.
State representation learning for control: An overview. Neural Networks, 108:379–
392, 2018.

[6] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[7] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In International conference on machine learning, pages 3319–3328. PMLR,
2017.

[8] Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias Meisen.
Ablation studies in artificial neural networks. arXiv preprint arXiv:1901.08644,
2019.

[9] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. Advances in neural information processing systems, 30, 2017.

80

Bibliography

[10] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for
explanation of black-box models. British Machine Vision Conference 2018, BMVC
2018, 1, 2019.

[11] Yi-Shan Lin, Wen-Chuan Lee, and Z Berkay Celik. What do you see? evaluation
of explainable artificial intelligence (xai) interpretability through neural backdoors.
arXiv preprint arXiv:2009.10639, 2020.

[12] Jasper van der Waa, Elisabeth Nieuwburg, Anita Cremers, and Mark Neerincx. Eval-
uating xai: A comparison of rule-based and example-based explanations. Artificial
Intelligence, 291:103404, 2021.

[13] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. Citeseer, 1994.

[14] Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and interpretable
skill acquisition in multi-task reinforcement learning. 6th International Conference
on Learning Representations, ICLR 2018 - Conference Track Proceedings, 3:1–14,
2018.

[15] Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable
machine learning in healthcare. pages 559–560, 2018.

[16] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on
explainable artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018.

[17] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess,
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas.
A generalist agent. pages 1–40, 2022.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 6
2017.

[19] Zhaoping Li. A saliency map in primary visual cortex. Trends in cognitive sciences,
6(1):9–16, 2002.

[20] Lindsay Wells and Tomasz Bednarz. Explainable ai and reinforcement learning—a
systematic review of current approaches and trends. Frontiers in Artificial Intelli-
gence, 4:1–15, 2021.

81

Bibliography

[21] Linus Nilsson and Linus Nilsson. Explainable artificial intelligence for reinforcement
learning agents explainable artificial intelligence for reinforcement learning agents.
2021.

[22] Arun Das and Paul Rad. Opportunities and challenges in explainable artificial
intelligence (xai): A survey. pages 1–24, 2020.

[23] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual at-
tention for rapid scene analysis. IEEE Transactions on pattern analysis and machine
intelligence, 20(11):1254–1259, 1998.

[24] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. 12 2013.

[25] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Watten-
berg. Smoothgrad: removing noise by adding noise. 2017.

[26] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2921–2929, 2016.

[27] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017.

[28] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140,
2015.

[29] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?"
explaining the predictions of any classifier. Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 13-17-Augu:1135–
1144, 2016.

[30] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Bach, and Klaus-
Robert Müller. Evaluating the visualization of what a deep neural network has
learned. 9 2015.

82

Bibliography

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 2015.

[32] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In International conference on machine learning, pages 1861–1870. PMLR, 2018.

[33] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[34] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[35] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv preprint arXiv:1712.01815, 2017.

83

A Appendix

Figure A.1: The loss of agent 1 during training.

Figure A.2: The summed episode reward during training of agent 1. After each episode,
the environment is reset.

84

A Appendix

Figure A.3: The loss of agent 2 during training.

Figure A.4: The summed episode reward during training of agent 2. After each episode,
the environment is reset.

85

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

86

	Introduction
	Motivation
	Research Objective
	Related Works

	Reinforcement Learning
	Environment: Atari Breakout
	Reinforcement Learning Structure
	Agent Algorithms
	Q-Learning
	Deep Q-Network
	Double DQN

	Explainable AI
	Explainable AI Categories
	Model-Specific Approaches
	Model-Agnostic Approaches
	Local and Global Explanations

	Saliency Maps
	Gradient Based Methods
	Perturbation Based Methods

	Deletion

	Implementation
	Components
	Environment
	Replay Buffer
	Agent
	Policy
	Training Loop
	Saliency Map Methods
	Deletion Procedure

	Hardware

	Experiments
	Experiment Setup
	Training the Agent
	Saliency Map Construction
	Saliency Map Evaluation with Deletion

	Results
	Evaluation: Vanilla Gradients
	Evaluation: SmoothGrad
	Evaluation: GradCAM
	Evaluation: Guided GradCAM
	Evaluation: LRP
	Evaluation: LIME Quickshift
	Evaluation: LIME Felzenszwalb
	Evaluation: RisE

	Verdict
	Discussion

	Conclusion
	Summary
	Outlook

	Bibliography
	Appendix
	Declaration of Autorship

