Airport2030_TN_Supercritical_Airfoils_11-12-21

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Aero – Aircraft Design and Systems Group Department of Automotive and Aeronautical Engineering Hamburg University of Applied Sciences Berliner Tor 9 D - 20099 Hamburg

Survey of Experimental Data of Selected Supercritical Airfoils

Daniel Schiktanz Dieter Scholz

2011-12-21

Technical Note

https://doi.org/10.48441/4427.2478

Report Documentation Page

1. Report-Number	2. Project	Fitle	3. ISSN / ISBN		
Airport2030_TN_	Efficient Air	port 2030	N/A		
Superchical_Airons					
4 Title and Cubtitle			E. Donort Data		
4. The and Subtille Survey of Experiment	al Data of Se	elected Supercritical Airfoils	2011-12-21		
			6. Performing Org. Rep. No Airport2030_TN_Supercritical_Airfoils		
7. Author(s) (First N	lame, Last N	Name)	8. Contract Code		
Daniel Schiktanz	(Daniel.So	chiktanz@haw-hamburg.de)	03CL01G		
Dieter Scholz	(info@Pro	ofScholz.de)	9. Project Number AP 2030 WT 4.1		
10. Performing Ager	ncy (Name, J	Address)	11. Report Type		
Hamburg University o	f Applied Sc	iences (HAW)	Technical Note		
Department of Autom Berliner Tor 9	g and Comp otive and Ae	uter Science pronautical Engineering	12. Time Period 2008-12-01 – 2013-11-30		
D - 20099 Hamburg			13. Number of Pages 236		
14. Sponsoring / Mo Bundesministerium fü	nitoring Age ir Bildung un	ency (Name, Address) d Forschung	15. Number of References		
Heinemannstraße 2, I	D - 53175 Bo	onn	16. Number of Tables		
Projektträger Jülich, F	orschungsz	entrum Jülich GmbH	-		
D – 52425 Jülich			17. Number of Figures -		
18. Supplementary N Language: German;	Notes URL: http:// <i>A</i>	Airport2030.ProfScholz.de			
19. Abstract					
This survey was prepared for having a structured compendium about the aerodynamic characteristics of several supercritical airfoils. It may be used within the scope of the design of commercial airliners. The survey is based on published data coming from wind tunnel tests performed at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. All of the referenced reports are published on the NASA Technical Reports Server (NTRS).					
20. Subject Terms					
21. Distribution Department F+F, HAW Hamburg, Berliner Tor 9, D - 20099 Hamburg					
22. Classification / A unclassified - unlimite	vailability d	23.	24. Price		

Dokumentationsblatt nach DIN 1422 Teil 4

Abstract

This survey was prepared for having a structured compendium about the aerodynamic characteristics of several supercritical airfoils. It may be used within the scope of the design of commercial airliners. The survey is based on published data coming from wind tunnel tests performed at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. All of the refe-renced reports are published on the NASA Technical Reports Server (NTRS).

Table of Contents

		Page
	Report Documentation Page	2
	Abstract	3
1	Introduction	5
1.1	Included Data	5
1.2	Boundary Layer Transition	5
2	Overview of Contained Airfoils	7
3	Drag Divergence Mach Number vs. Relative Thickness	8
4	Survey of Supercritical Airfoils	9
	References	234

1 Introduction

This survey of selected supercritical airfoils was collocated in order to provide an easily to access and user-friendly compendium of experimental results of supercritical airfoil tests. Most of the pages are copies of the original publications coming from the NASA Technical Reports Server (**NTRS 2011**) which is open to the public. It has to be noted that, with two exceptions [NACA 65_1 -214 and SC(2)-0714], all tests were conducted under cruise conditions at high Mach and Reynolds numbers.

Most of the tests were performed in the cryogenic tunnel at NASA Langley Research Center.

The use of the survey pages mostly is self-explanatory. Basic knowledge of geometry parameters of airfoils and of aerodynamic coefficients is required.

1.1 Included Data

For keeping the survey as clear as possible the presentation of each airfoil has the same structure. A new airfoil is presented with its name and the institution of its origin. Next there is a small table containing the most important data of the airfoil. The first two rows include the year of the referenced publication and the number of this reference. The following rows contain the maximum relative thickness of the airfoil, its design lift coefficient and Mach number and the type of boundary layer transition. For some airfoils not all of these data were available. A drawing of the airfoil together with its coordinates is presented as well.

On the following pages the lift, drag and pitching moment coefficients depending on the angle of attack are shown for several Reynolds and Mach numbers. Here the way of presentation may differ from airfoil to airfoil. For some airfoils some additional information (e.g. drag divergence Mach number vs. lift coefficient) is given.

1.2 Boundary Layer Transition

For each airfoil in this survey there is a statement included regarding transition. This refers to the position of the transition from laminar to turbulent boundary layer. This transition is either forced by a transition strip placed near the leading edge of the airfoil (fixed transition) or occurs naturally (free transition). The airfoils used for testing mostly have chord lengths between 7 and 20 cm, which is very small. With a free transition a huge portion of the boundary is laminar at low Reynolds numbers (Re ~ $3 \cdot 10^6$) for such small airfoils. This does not reflect

the conditions for a full scale airfoil at the same Reynolds numbers. Here the transition takes usually place close to the leading edge (hence most of the boundary layer is turbulent). Consequently a free transition at small chord lengths would result in lower drag coefficients than for full scale chord lengths. This is why for most of the tests transition strips were placed close to the leading edge of the airfoils for having the same conditions as for full scale airfoils. Note that these effects become more and more negligible for higher Reynolds numbers.

In NACA TN 4279 (published in 1958) it is written about this topic:

"The extrapolation of small-scale test results to conditions that generally represent those of full scale continues to be one of the major problems encountered in properly interpreting wind-tunnel data. A vast majority of all high-speed tests in wind tunnels are conducted at Reynolds numbers below 4 million (based on the wing chord). For Reynolds numbers of this order, a large percent-age of the boundary layer on the model can be laminar and changes in Reynolds number may cause rather large differences in the pressure distribution [...]. Tests at low Reynolds numbers can result in irregular lift and moment characteristics and changes in skin-friction drag with lift coefficient. Under full-scale conditions in flight, on the other hand, where the boundary layer is turbulent over most of the lifting surfaces, few, if any, of these irregular variations in aerodynamic characteristics found near zero lift would be expected."

2 Overview of Contained Airfoils

Airfoil	M _{design}	$C_{I,design}$	(t/c) _{max}	References	Page
BAC 1	n/a	n/a	0,1	NASA TM 87600, NASA TM 81922	10
CAST 7	0,76	0,573	0,118	AGARD AR-138	20
CAST 10-2 / DOA 2	n/a	n/a	0,121	NASA TM 86273	24
Cessna EJ Red. Airfoil	0,735 ¹⁾	0,508 ¹⁾	0,115	NASA TP 3579	40
DFVLR R4	n/a	n/a	0,135	NASA TM 85739	52
NACA 65 ₁ -213 ²⁾	n/a	n/a	0,126	NASA TM 85732	106
NLR 7301	0,747 ³⁾	0,45 ³⁾	0,163	AGARD AR-138	114
NPL 9510	0,75	0,6	0,11	NASA TM 85663	117
SC(2)-0012	n/a	n/a	0,12	NASA TM 89102	171
SC(2)-0710	0,78	0,7	0,1	NASA TM X-72711	177
SC(2)-0714	0,74	0,7	0,14	NASA TM X-72712 (high speed)	196
				NASA TM X-81912 (low speed)	
SC(3)-0712(B)	0,76	0,7	0,12	NASA TM 86371	223
SKF 1.1	0,769	0,532	0,1207	AGARD AR-138	230
Airbus TA11	n/a	n/a	0,111	n/a	233

- ¹⁾ This airfoil has two design points, one for long range cruise and one for high speed cruise. The numbers given in the table are those for high speed cruise. The numbers for long range cruise are: $M_{design} = 0,654$; $C_{l,design} = 0,979$.
- ²⁾ This airfoil was actually developed for laminar flow. However, laminar flow airfoils also showed good characteristics at supercritical Mach numbers. This is why the airfoil NACA 65₁-213 is included in this survey.
- ³⁾ The numbers given in the table are derived from the experimental results. According to the theoretic design point the numbers of this airfoil are: $M_{design} = 0,721$; $C_{l,design} = 0,6$.

3 Drag Divergence Mach Number vs. Relative Thickness

Figure 3.1 shows analytical drag divergence Mach numbers determined for NASA phase 2 supercritical airfoils. Only the graph for a lift coefficient of 0,7 was validated, namely with the help of two experiments with the airfoils SC(2)-0710 and SC(2)-0714. Tests conducted with the phase 3 airfoil SC(3)-0712 showed a drag divergence Mach number of 0,76, which also matches the graph very well.

Figure 3.1 Analytical drag divergence Mach numbers for NASA phase 2 supercritical airfoils (acc. to NASA TP 2969)

4 Survey of Supercritical Airfoils

BAC 1

Boeing Aircraft Company

Year	1985
References	NASA TM-87600 (coordinates) NASA TM-81922 (figures)
t/c	0,1
Transition	fixed at 0,1c

Figure 48.- Characteristic variation of normal-force coefficient with Mach number at drag divergence in Reynolds number range of 14.0×10^6 to 45.0×10^6 . Free transition.

x/c [%]	y _u /c [%]	x/c [%]	yı/c [%]
0,000	0,000	0,000	0,000
0,050	0,242	0,050	-0,235
0,120	0,388	0,120	-0,349
0,200	0,504	0,200	-0,432
0,300	0,619	0,300	-0,508
0,500	0,798	0,500	-0,625
0,800	1,006	0,800	-0,758
1,200	1,229	1,200	-0,903
1,800	1,502	1,800	-1,084
2,400	1,731	2,400	-1,240
3,200	1,993	3,200	-1,424
4,000	2,222	4,000	-1,590
5,000	2,474	5,000	-1,779
6,000	2,697	6,000	-1,954
7,000	2,896	7,000	-2,116
8,000	3,079	8,000	-2,269
10,000	3,401	10,000	-2,548
12,000	3,678	12,000	-2,799
14,000	3,921	14,000	-3,028
16,000	4,134	16,000	-3,236
19,000	4,412	19,000	-3,519
22,000	4,647	22,000	-3,767
26,000	4,907	26,000	-4,048
30,000	5,113	30,000	-4,269
35,000	5,308	35,000	-4,463
40,000	5,436	40,000	-4,548
45,000	5,499	45,000	-4,501
50,000	5,498	50,000	-4,285
55,000	5,424	55,000	-3,875
60,000	5,269	60,000	-3,265
65,000	5,013	65,000	-2,508
70,000	4,638	70,000	-1,704
74,000	4,245	74,000	-1,107
77,000	3,896	77,000	-0,709
80,000	3,501	80,000	-0,379
83,000	3,060	83,000	-0,123
85,000	2,742	85,000	0,005
87,000	2,407	87,000	0,100
89,000	2,060	89,000	0,162
91,000	1,705	91,000	0,190
93,000	1,350	93,000	0,185
95,000	0,994	95,000	0,147
97,000	0,639	97,000	0,075
98,000	0,461	98,000	0,026
99,000	0,283	99,000	-0,030
100,000	0,106	100,000	-0,096

Airfoil Coordinates (in % chord)

പ

പ്

95

പ്

പ്

പ

99

പ്

CAST 7

Versuchsanstalt für Luft- und Raumfahrt e.V. (DFVLR)

Year	1979
Reference	AGARD-AR-138
t/c	0,118
Cl,design	0,573
M _{design}	0,76
α_{design}	0°
Transition	fixed at 0,05c

Airfoil according to coordinates given in AGARD-AR-138

Airfoil according to drawing given in AGARD-AR-138

Airfoil Coordinates (in % chord)

(do not agree with drawing in AGARD-AR-138)

x/c [%]	y _u /c [%]	x/c [%]	y_l/c [%]
0,000	0,000	0,000	0,000
0,017	0,214	0,109	-0,526
0,356	1,021	0,867	-1,337
0,576	1,327	2,055	-1,743
1,001	1,791	4,508	-2,310
1,796	2,407	6,874	-2,781
3,131	3,110	12,533	-3,662
4,526	3,687	16,323	-4,135
6,839	4,394	20,122	-4,517
8,707	4,818	23,930	-4,799
12,485	5,443	27,744	-4,972
16,288	5,891	31,562	-5,036
20,106	6,217	35,381	-4,993
23,929	6,455	39,197	-4,851
27,756	6,626	43,008	-4,622
31,584	6,744	46,815	-4,317
35,414	6,817	48,716	-4,140
41,160	6,852	52,513	-3,743
44,990	6,823	56,306	-3,300
48,820	6,752	60,095	-2,821
52,649	6,637	63,880	-2,321
56,476	6,470	67,665	-1,812
60,300	6,245	69,557	-1,559
64,119	5,956	73,345	-1,070
69,836	5,384	75,240	-0,841
73,637	4,904	79,036	-0,429
77,426	4,344	80,937	-0,256
81,205	3,714	84,747	0,005
83,090	3,376	86,655	0,082
86,854	2,666	88,564	0,119
90,613	1,927	90,473	0,114
94,369	1,177	92,382	0,065
96,247	0,799	94,289	-0,022
98,124	0,419	96,195	-0,143
100.000	0.036	100.000	-0.466

Aerodynamic Coefficients

NR.	MACH	E- 6*RE	AL PHA	CA	CM	CW
2493	.697	5.80	-2.00	.1083	10867	.009632
2495	.701	6.96	-1-88	2478	11050	.009341
2496	.783	5.90	.00	.3910	11076	.009554
2497	.781	5.97	1.00	. 5422	11077	.010476
2495	. 701	5.94	2.00	.7056	10979	+012468
2499	.702	5.96	3.00	.9057	11369	.021677
2500	• 699	5.95	4.00	1.0637	12300	·Ø39833
2501	.700	5.91	4 - 50	1.8297	11697	. 8 689 49
2502	+ 699	5.90	5.00	1.0187	11890	
2490	• 761	5.98	-2.00	.1067	11769	.010196
2484	.761	5.97	-1-00	.2627	11974	.010101
2485	• 759	5.98	• 00	• 42 68	12195	.010441
2486	.761	6.00	+ 50	.5164	- +15535	.011146
2491	.769	5.99	.75	.5709	12591	.011030
2487	•768	5.92	1+00	. 6297	13114	.013638
2488	.759	6.00	1.50	.7187	14159	.819940
2489	.760	5.94	2.00	.7258	13538	.041963
2492	- 761	5+99	3.00	.7384	12548	.061552
2511	. 487	5.40	. 50	.3618	09001	.009730
2512	+ 499	5+76	- 50	.3997	09495	.008745
2514	.602	5.86	+ 58	.4272	10208	.008973
2515	.650	5+80	• 5Ø	.4448	10659	.009466
2516	. 702	5+88	+ 50	- 4674	-+11216	.010174
2517	.717	5.81	- 50	- 4801	11450	.009983
2518	.739	5.87	. 50	. 4965	11774	.018352
2519	.751	5,96	- 50	.5126	12174	.011314
2520	.759	5.97	- 58	. 5228	12355	.810731
2524	.765	5.68	- 50	. 52 70	~.12508	+811194
2521	. 770	5.99	• 50	.5470	13383	+012007
2522	.779	5.89	- 58	. 5340	13716	.016398
2523	.801	5.92	. 50	.4506	13460	.022780
0000						
2594	.759	4.11	. 50	.5160	12851	.012377
8505	.761	5.10	+ 50	- 5228	12249	.011555
2506	.768	5+81	- 56	. 5863	12340	.#18599
2547	-763	7.63	.50	. 5387	12652	.010580
2548	. 762	18.87	. 50	. 5426	12923	.889927
2589	.758	11.77	. 50	. 5488	12904	+010398
8516	.760	13.41	. 50	. 5413	12921	.010124
0010						
2525	.760	4.09	2.00	.7116	13192	.042354
2526	.769	5.03	2.00	.7279	13535	· # 38 59 4
8527	.760	5.94	2.00	.7387	13966	.#36199
2531	762	7.81	8.66	. 7462	14236	.839436
8536	759	9.96	2.00	+7710	14771	.031793
2529	.758	11.78	2.00	.7736	14793	-832559
2528	.759	13.49	2.00	. 7779	1 49 57	.031563
0000						

CAST 10-2/

DOA 2

Versuchsanstalt für Luft- und Raumfahrt e.V. (DFVLR)

Year	1984
Reference	NASA TM-86273
t/c	0,121
Transition	free

Figure 9.- "Usable" two-dimensional normal force data from tests of the CAST $10-2/DOA \ 2$ airfoil in the 0.3-m TCT.

Airfoil Coordinates

Upper Surface				
	z/c			
x/C	Design	Measured+		
0.0 .0009 .0026 .0076 .0126 .0176 .0251 .0351 .0476 .0651	Design .0034 .0080 .0114 .0170 .0208 .0239 .0281 .0329 .0378 .0431	Measured+ .0035 .0080 .0114 .0170 .0207 .0239 .0280 .0327 .0375 .0429		
.0876 .1151 .1551 .2151 .2751 .3351 .3950 .4550 .5150 .5750	.0484 .0532 .0583 .0634 .0665 .0682 .0689 .0686 .0672 .0645	.0483 .0532 .0584 .0635 .0664 .0681 .0688 .0688 .0685 .0670 .0644		
.6350 .6950 .7550 .8150 .8750 .9200 .9500 .9775 1.0000	.0603 .0539 .0451 .0338 .0206 .0099 .0027 0040 0095	.0602 .0538 .0450 .0336 .0202 .0096 .0025 0039 0089		

Lower Surface					
	z/c				
x/c	Design	Measured			
.0011	0016	0018			
.0026	0038	0039			
.0076	0073	0072			
.0126	0091	0090			
.0176	0105	0105			
.0251	0122	0123			
.0351	0144	0144			
.0476	0170	0169			
.0651	0201	0200			
.0876	0238	0237			
.1151	0277	0276			
.1551	0327	0326			
.2151	0392	0391			
.2751	0447	0445			
.3351	0491	0490			
.3950	0521	0520			
.4550	0532	0531			
.5150	0520	0519			
.5750	0486	0485			
.6350	0435	0433			
.6950	0375	0374			
.7550	0313	0312			
.8150	0255	0254			
.8750	0206	0204			
.9200	0176	0175			
.9500	0161	0161			
.9775	0150	0153			
1.0000	0145	0145			

+ Measurements made by DFVLR.

CAST 10-2/ DOA 2

Lower Mach Numbers (M = 0.6; M = 0.7)

с<mark>н</mark>

ŗ

Figure 11.- Continued.

(b) M = 0.70

4 :

°,

4;

Figure 12.- Continued.

(b) M = 0.70

31

сп С

Figure 13.- Force and moment characteristics of CAST 10-2/DOA 2 airfoil. R $_{
m c}$ = 10.0 x 10 $^{
m 6}$, transition free.

л С

5 3

Figure 13.- Continued.

(b) M = 0.70

39

ч с

ч С

46

.

Figure 14.- Continued.

(b) M = 0.70

CAST 10-2/ DOA 2

Higher Mach Numbers (M = 0.73; M = 0.75; M = 0.765; M = 0.78)

Transition free. Figure 21.- Effect of Reynolds number on force and moment characteristics of CAST 10-2/DOA 2 airfoil.

58

ч С

Fig. 21.- Continued.

70

л С

Fig. 21.- Continued.

÷-

2

÷

5 :

ч С

. هر.

Fig. 21.- Concluded.

72

5;

ч С

Cessna Executive Jet Modified Airfoil (2 point design)

NASA and Cessna Aircraft Company

Year	1996
Reference	NASA TP-3579
t/c	0,115
$\mathbf{c}_{l,design}$	long range: 0,979 high speed: 0,508
M_{design}	long range: 0,654 high speed: 0,735
Transition	fixed at 0,05c

0,10000	1	1	1	1		1			1			1						1			1
0.05000																					
0,05000																					
0,00000		-																			4
0,0	0000-0.0	000 0,1	000 0,1	5000 0,20	000 0,25	000 0,30	000 0,35	000 0,4	000 0,45	000 0,50	000 0,55	5000 0,60	000 0,65	000_0-76	000 0,75	000 0,80	000 0,85	000 0,90	1000 0,95	000 1,0	0000
-0.05000																			<u> </u>		-
-0,10000				1					1			1	1			1					

Upper surface		Lower	surface	Upper	surface	Lower surface		
x/c	ylc	x/c	ylc	x/c	ylc	x/c	ylc	
0.00000	0.00000	0.00000	0.00000	0.44557	0.06434	0.44557	-0.04819	
.00099	.00620	.00099	00602	.46597	.06391	.46597	04692	
.00301	.01045	.00301	00987	.48646	.06330	.48646	04541	
.00604	.01431	.00604	01314	.50699	.06248	.50699	04369	
.01005	.01788	.01005	01595	.52756	.06143	.52756	04178	
.01500	.02122	.01500	01833	.54812	.06014	.54812	03971	
.02088	.02438	.02088	02033	.56865	.05862	.56865	03749	
.02764	.02740	.02764	02203	.58912	.05686	.58912	03514	
.03528	.03030	.03528	02351	.60950	.05489	.60950	03268	
.04374	.03308	.04374	02485	.62977	.05274	.62977	03014	
.05302	.03570	.05302	02609	.64990	.05043	.64990	02754	
.06308	.03816	.06308	02730	.66986	.04803	.66986	02491	
.07389	.04048	.07389	02853	.68962	.04555	.68962	02231	
.08543	.04269	.08543	02980	.70915	.04304	.70915	01976	
.09766	.04481	.09766	03113	.72843	.04050	.72843	01730	
.11056	.04685	.11056	03253	.74742	.03794	.74742	01498	
.12411	.04881	.12411	03400	. 766 11	.03538	.76611	01284	
.13826	.05068	.13826	03553	.78445	.03283	.78445	01090	
.15300	.05247	.15300	03713	.80243	.03029	.80243	00919	
.16830	.05420	.16830	03878	.82002	.02775	.82002	00773	
.18413	.05585	.18413	04047	.83718	.02521	.83718	00650	
.20045	.05743	.20045	04215	.85389	.02269	.85389	00551	
.21725	.05891	.21725	04376	.87013	.02019	.87013	00475	
.23450	.06025	.23450	04526	.88585	.01775	.88585	00420	
.25216	.06143	.25216	04662	.90105	.01539	.90105	00384	
.27021	.06244	.27021	04780	.91568	.01312	.91568	00365	
.28863	.06326	.28863	04880	.92972	.01096	.92972	00360	
.30737	.06390	.30737	04960	.94314	.00890	.94314	00367	
.32642	.06436	.32642	05018	.95592	.00694	.95592	00383	
.34575	.06466	.34575	05052	.96802	.00507	.96802	00405	
.36533	.06481	.36533	05060	.97942	.00329	.97942	00432	
.38513	.06485	.38513	05042	.99009	.00160	.99009	00460	
.40512	.06478	.40512	04995	1.00000	.00000	1.00000	00489	
.42527	.06462	.42527	04920	· · · · · · · · · · · · · · · · · · ·	·			

Table 2. Design Coordinates for Modified Airfoil

Figure 13. Effect of free-stream Mach number on force and moment coefficients at constant Reynolds number for modified airfoil.

с^ц

Figure 13. Continued.

(b) Drag coefficient. $R_c = 3.0 \times 10^6$.

рэ

(c) Normal-force and pitching-moment coefficients. $R_c = 4.5 \times 10^6$.

(d) Drag coefficient. $R_c = 4.5 \times 10^6$.

(e) Normal-force and pitching-moment coefficients. $R_c = 6.5 \times 10^6$.

.040 .042 .044 Ŷ þ .038 .036 .034 0.655 .700 .734 .760 M .032 .030 0 🗆 🔷 🕁 .024 .026 .028 .022 .018 .020 þ S δ .016 .014 .012 র વે .008 .010 С П О $\overline{\circ}$ 44 ¢₽¢ 5 900. 1.0 1.2 1.1 6. ø. 9. Ś 5 4 ij 9 Ξ. 0

с^ис

Figure 13. Continued.

(f) Drag coefficient. $R_c = 6.5 \times 10^6$.

 c^{q}

(h) Drag coefficient. $R_c = 9.0 \times 10^6$.

рэ

(i) Normal-force and pitching-moment coefficients. $R_c = 13.5 \times 10^6$.

Figure 13. Concluded.

(j) Drag coefficient. $R_c = 13.5 \times 10^6$.

Po

DFVLR R4

Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt (DFVLR)

Year	1984					
Reference	NASA TM-85739					
t/c	0,135					
Transition	n/a					

Note that UIUC Airfoil Data Site contains wrong coordinates

Proper Coordinates	from Origin	al Publication	n NASA TM-8	5739
x_u/c	z _u /c	$\frac{x_l}{c}$	z_l/c	
0,0001	0,0043	0,0005	-0,0019	
0,0005	0,0063	0,0011	-0,0033	
0,0011	0,0079	0,0023	-0,0056	
0,0016	0,0093	0,0045	-0,0084	
0,0021	0,0103	0,0095	-0,0126	
0.0095	0.0197	0.0195	-0.0184	
0,0145	0,024	0,0245	-0,0207	
0,0195	0,0276	0,0295	-0,0227	
0,0245	0,0305	0,0345	-0,0245	
0,0295	0,0332	0,0395	-0,0262	
0,0345	0,0335	0,0445	-0,0278	
0,0445	0.0393	0,0545	-0,0306	
0,0495	0,0409	0,0595	-0,0319	
0,0545	0,0423	0,0645	-0,0331	
0,0595	0,0436	0,0695	-0,0343	
0,0645	0,0449	0,0745	-0,0354	
0,0095	0.048	0,0795	-0.0404	
0,0995	0,0515	0,1195	-0,0439	
0,1195	0,0545	0,1395	-0,047	
0,1395	0,057	0,1596	-0,0499	
0,1596	0,0592	0,1796	-0,0525	
0,1796	0,0611	0,1996	-0,0548	
0,1990	0,0643	0,2396	-0.0587	
0,2396	0,0655	0,2596	-0,0603	
0,2596	0,0666	0,2796	-0,0616	
0,2796	0,0675	0,2996	-0,0627	
0,2996	0,0683	0,3196	-0,0634	
0,3190	0,0688	0,3597	-0,0639	
0.3597	0.0695	0.3797	-0.0642	
0,3797	0,0696	0,3997	-0,064	
0,3887	0,0696	0,4197	-0,0635	
0,3997	0,0696	0,4397	-0,0629	
0,4197	0,0695	0,4597	-0,0621	
0,4597	0.0688	0.4897	-0.0605	
0,4797	0,0683	0,5047	-0,0596	
0,4997	0,0676	0,5248	-0,0581	
0,5197	0,0668	0,5448	-0,0564	
0,5398	0,0659	0,5648	-0,0545	
0,5598	0,0648	0,5848	-0,0524	
0,5998	0.0622	0.6248	-0.0473	
0,6198	0,0606	0,6448	-0,0444	
0,6398	0,0588	0,6648	-0,0412	
0,6598	0,0568	0,6848	-0,0377	
0,6798	0,0545	0,7048	-0,0339	
0,7199	0.049	0 7449	-0.0264	
0,7399	0,0459	0,7649	-0,0227	
0,7599	0,0426	0,7849	-0,0192	
0,7799	0,0391	0,8049	-0,0159	
0,7999	0,0354	0,8249	-0,0131	
0,8199	0,0315	0,8449	-0,0107	
0.8599	0,0231	0,8849	-0,0079	
0,8799	0,0186	0,905	-0,0074	
0,8999	0,014	0,925	-0,0076	
0,92	0,0093	0,945	-0,0085	
0,94	0,0043	0,965	-0,0105	
0,90	-0,0008	0,985	-0,0138	
0,985	-0,0076	0,995	-0,0161	
0,99	-0,009	1	-0,0172	
0,995	-0,0104			
1	-0,0121			

Figure 3.- Section characteristics at Reynolds numbers of 4×10^{6} .

ပ်

- 8

Figure 3.- Continued.

ບ້

307

7 :

ပ်

308

7;

309

310

Figure 3.- Concluded.

ပ်

Figure 4.- Section characteristics at Reynolds numbers of 6 x 10⁶.

ပ်

312

÷.

Figure 4.- Continued.

ບ້

314

315

*

•

ပ်

317

8 :

Figure 4.- Concluded.

(g) $R = 6.07 \times 10^{6}$; M = 0.7773

ບ້

318

4

(a) $R = 10.07 \times 10^{6}$; M = 0.6000

ပ်

ပ်

320

Figure 5.- Continued.

Figure 5.- Continued.

ບ້

322

Ł

¢

Figure 5.- Continued.

(g) $R = 10.07 \times 10^6$; M = 0.7498

325

Figure 5.- Continued.

s

÷,

326

J

Figure 5.- Continued.

327

ບ້

328

(a) $R = 14.95 \times 10^6$; M = 0.5996.

ပ်

¥

4

ပ်

330

Figure 6.- Continued.

(c) $R = 15.12 \times 10^6$; M = 0.7002.

331

332

ပ်

F

ບ້

Figure 6.- Continued.

J

ບ້

Figure 6.– Continued.

335

ບ້

: 9

~

1

۶,

(i) $R = 14.89 \times 10^6$; M = 0.7684.

: :

ပ်

Figure 6.- Concluded.

Ĵ

į٤

338 :.;

J.

1

.')

Figure 7.- Section characteristics at Reynolds numbers of 30 x 10⁶.

ပ်

339

J

×

ပ်

340

ţ

7

•)

(c) $R = 30.16 \times 10^6$; M = 0.7007

ပ်

Figure 7.- Continued.

X.

,ε

342

3

Figure 7.- Continued.

343

Figure 7.- Continued.

?

đ,

ပ်

; 7

¥

L

3,

Figure 7.- Continued.

ပ်

345

J

Ķ

346

đ

1

3

2,

Figure 7.- Continued.

; :

£

ţ,

ບ້

348

; ;

]

5

ŕ

ບ້

350

1

4

Figure 8.- Continued.

r

351

Figure 8.- Continued.

]

Ļ

r

ပ်

352

Ī

2

Figure 8.– Continued.

(e) $R = 39.75 \times 10^6$; M = 0.7605,

ບ້

353

Figure 8.– Concluded.

ì

]

٤

é

NACA 651-213

tests conducted by NASA

Year	1984				
Reference	NASA TM-85732				
t/c	0,126				
Transition	if fixed at 0,043c				

0,1	-																				
· ·					1	1			1			1									1 1
1					1																1 1
1									1			1									1 1
0,05	+				T															<u> </u>	<u> </u>
·					1				1			1									1 1
1					1	1			1			1									1 1
1					1	1			1			1									
0	+					+								L							
1			- 0	1 0	<u>ا</u> ر ا		h- (hr 0		- o	c 0.	<u>ل</u> ہ م		75	0	PF 0	0 0	
1	Ϋ́	-	5 0	1 0	,10	0/2 0	,¥5 (13 U,	po u	1 ⁴ 0,	45 U	,s 0,	po U	, o 0,	6 5 0	/ 0.		10 0,	စာပ	19 0,	P5 +
1									1												1 1
-0,05	+																				
1					1	1			1			1									1 1
1					1	1			1			1									1 1
1					1	1			1			1									1 1
-0,1						1															

x/c	y _u /c	x/c	y_l/c
0	0	0	0
0,001678	0,007443	0,001838	-0,004839
0,00341	0,009994	0,003322	-0,006681
0,00503	0,011758	0,005031	-0,008288
0,0067	0,013252	0,00677	-0,009546
0,008386	0,014567	0,008257	-0,010597
0,011059	0,016381	0,01163	-0,012409
0,033239	0,027097	0,016498	-0,014435
0,043164	0,030862	0,026656	-0,017705
0,050622	0,033447	0,034238	-0,019749
0,060583	0,036629	0,041802	-0,021587
0,073052	0,040277	0,051865	-0,023792
0,083039	0,042983	0,061909	-0,025764
0,095534	0,046135	0,071938	-0,02756
0,108041	0,049058	0,084459	-0,029618
0,138096	0,055279	0,096966	-0,031501
0,16819	0,060579	0,111959	-0,03356
0,248574	0,071175	0,141904	-0,037127
0,329093	0,077504	0,17181	-0,040115
0,409721	0,079916	0,251426	-0,045921
0,510809	0,076324	0,330907	-0,049166
0,591318	0,067696	0,390446	-0,050093
0,671361	0,055594	0,489491	-0,048105
0,751123	0,041353	0,588682	-0,041596
0,790936	0,033806	0,668639	-0,0339
0,840669	0,024292	0,748877	-0,024841
0,88045	0,016869	0,789064	-0,020046
0,920247	0,00991	0,839331	-0,014024
0,960084	0,003893	0,87955	-0,009375
0,970053	0,002644	0,919753	-0,005108
0,980028	0,001537	0,959916	-0,001631
0,99001	0,000619	0,969947	-0,00098
1	0	0,979972	-0,000453
		0,98999	-0,000091
		1	0

NACA 651-213

free transition

ပ်

ບໍ່.

83

ပ်

84

NACA 651-213

fixed transition at 0,043c

ပ်

85

3 3 4

86

NLR 7301 (NLR HT 73108210)

National Aerospace Laboratory NLR (The Netherlands)

	Year	1979
	Reference	AGARD-AR-138
	t/c	0,163
	C _{l,design}	0,6 (theory) 0,45 (exp)
_	M _{design}	0,721 (theory) 0,747 (exp)
	Transition	if fixed at 0,3c

Coordinates from UIUC Airfoil Data Site

x/c	y _u /c	x/c	y _l /c
0 0005	0 0073	0 0005	0 00748
0,0005	0,0075	0,0005	-0,00748
0,001	0.01518	0,001	-0.01373
0,002	0.0203	0,002	-0.01735
0.005	0.02424	0.005	-0.02016
0,0065	0.02756	0.0065	-0.02252
0.008	0.03043	0.008	-0.02455
0.01	0.03375	0.01	-0.02688
0.0125	0.03729	0.0125	-0.02935
0.016	0.0414	0.016	-0.03225
0.02	0.04514	0.02	-0.03502
0.025	0.04873	0.025	-0.03794
0.035	0.05372	0.035	-0.04264
0.05	0.0592	0.05	-0.04806
0.065	0.06321	0.065	-0.05229
0,08	0,06636	0,08	-0,05576
0,1	0,06985	0,1	-0,05962
0,125	0,07347	0,125	-0,06358
0,15	0,07648	0,15	-0,06689
0,2	0,08115	0,2	-0,07194
0,25	0,08441	0,25	-0,07527
0,3	0,08649	0,3	-0,07713
0,35	0,08755	0,35	-0,07763
0,4	0,08764	0,4	-0,07672
0,45	0,08678	0,45	-0,07412
0,5	0,08495	0,5	-0,06934
0,55	0,08206	0,55	-0,06237
0,6	0,07789	0,6	-0,05386
0,65	0,07212	0,65	-0,04397
0,7	0,06458	0,7	-0,03316
0,75	0,05551	0,75	-0,02227
0,8	0,04523	0,8	-0,01221
0,85	0,03415	0,85	-0,00409
0,9	0,02269	0,9	0,00108
0,925	0,01696	0,925	0,00228
0,95	0,01129	0,95	0,00246
0,975	0,00577	0,975	0,00153
0,99	0,00258	0,99	0,00042
1	0,00055	1	-0,00055

UPPER PART

LOWER PART

x	Z	X	Z	X	Z	x z
0.0000012	0004162	0.4297667	+.0880434	0.000012	0004162	0,45944750725326
0.0002895	+.0052191	0+4366049	+.0478457	0.0002395	005623/	0.46881570717156
0.0008861	+.0095965	0.4552911	+ 0874805	0.0007164	0040430	0.48563320700267
0.0011758	+.0112217	0.4651193	+.0872324	0.0009431	0102206	0.49339710691512
0.0017468	+.0125337 +.0138934	0.4906030	+.0267235	0.0014054	0121076	0.50670210675138
0.0020176	+.0150413	0.4993450	+.0864327	U+0016514 U-0017766	0129293	0.51334930666367
0.0022988	+.0160878	0.5026310	++0858307	0.0018974	- 0137103	0.52745530646685
0.0028314	+.0179878	0.5091759	+.0855260	0.0021635	0144608	0.53512720635414
0.0042209	+.0220523	0.5157191	+.0852025	0.0024397	0169040	0.55165790609873
0.0069239	+.0281722	0.5302975	+.0844136	0.0039110	0184354	0.55454990605234
0.0091862	+.0305312	0.5393317	+.0835020	0.0052785	0209290	0.5035167 4.0590373
0.0107530	+.0346503	0.5525071	+.0P30196	0.0054313	0219726	0.58215580558514
0.0119867	+.0363594	0.5613251	+.0423475	0.005246	- 0230063	0.59162800541483 0.60110520523934
0.0141918	+.0391576	0.5759893	+.0812713	4.00B2J48	- 0251336	0.61058220505882
0.0153049	+.0404096 +.0416006	0.5922243	++0007557	0.0044363	0271185	0.62886620469661
0.0175319	+.0476834	0.5938567	+.0797321	6155-010+0	-+0280247	0.63762250451694
0.0195343	+.0435157	0.5992541	++0792297	0.0117280	02989408	0.64637860433366 0.65505350414889
0.0202255	+.0450753	0.4047491	+.0782972	0.0134978	0309575	0.66372830396149
0.0211270	++0457913	0.6130854	++0779517	0.0170910	032141/	0.6810488 +.03563/3
0.0240550	+.0476651	0.5254040	+ 0765152	0.0179506	0339548	0.69159390334759
0.0255447	+.0488004 +.0493759	0+6329247	+.0755459 +.0747768	0.0189101	034530/	0.70133890313082 0.71184490289698
0.0274908	+.0499059	0.6470765	+.0739003	0.0207325	- 0357755	0.72235080266371
0.0276023	+.0499651 + 0499666	0.6539319	+.0730023	0.0214376	0365060	0.72792850254030
0-0279647	+.0501553	0.6674601	+.0711319	U.0245498	0379864	0.73408390229494
0.0291700	+.0502615	0.6742447	+.0701454	u-0259567 U-0268947	0387330	U.74466160217J22 U.75062330204404
0.0291330	+.0507471	0.6441543	+.0680253	0.0296142	0405379	0.75658310191598
0.0296602	+.0510052	0.6951093	+.0669196	0.0323335	0417721	0.76254390178924
0.0304510	+.0513850	0.7093750	+.0645558	0.0350010	- 0432701	0.77526480152405
0.0310492	+.0516694	0.7166857	+.0632973	0.0376546	- 0439771	0.78203490138661
0.0331276	+.0526347	0.7313074	+.0606892	0.0423271	0457248	0.79556530112058
0.0378375	+.0546577	0.7390044	++0592694	0.0452260	0467344	0.80404800096069
0.0472590	+.0581064	0.7543987	+.0563396	0.0510232	0486058	0.82101390065919
0.0519705	+.0595825	0.7520959	+.0548323	0-0565381	0502310	0.82949720051840
0.0613945	+.0421505	0.7785216	+.0515298	0.0675667	0531110	0.84979290021236
0.0661071	+.0632814	0.7867346	+.0498392	0.0730805	0544013	0.85994130007717
0.0764002	+.0654949	0.8038922	+.0462276	0.0811312	0561467	0.8763318 +.0011324
0.0808444	+.0663708	0.4129369	+.0443096	U.Dd51564	0569652	0.8864812 +.0021265
0.0988097	+.0678502	0.4307263	+.0404059	0+0424394	- 0584584	0.9067813 +.0029712
0+0926554	+.0685253	0.8406234	++0382174	0.0966982	0591412	0.9169321 +.0041886
0.1028790	+.0702150	0,8604179	++0337440	0,1042147	0604391	U.9372351 +.0047413
0.1090235	+.0711645	0,4703152	+.0315545	0.1115683	0610431	0.9473873 +.0047565
0.1225001	+.0730979	0.9906331	+.0269475	0.1152451	- 0621901	0.9515401 +.0045451
0.129A374	+.0740738	0,9007920	+.0246399	0.1189218	0627340	U.9748111 +.0038900
0.1451619	+.0759587	0.9239238	+.0193996	0.1340040	0648412	U.9884890 +.0029450
0.1531492	++0768671	0.9340827	+.0171138	0_1417023	0658428	0.9930485 +.0025507
0.1709103	+.0787225	0.9442414	+.0116237	0.1581394	- 0677937	0.9999096 +.0018774
0.1757516	+.0791914 +.0798669	0,9636815	+.0105616	0.1665782	0687354	
0.1902757	+.0805103	0.9734055	+.0084610	0.1843551	0704393	1.0073270 +.0010317
0.1956374	+=0809654	0.9782680	+.0074251	0.1895240	0708995	1.0106277 +.0006148
0.2063603	+.0818267	0.9479921	+.0053944	0.1998615	0717630	1.0152284 +.0000000
0.2117225	+.0822338	0.9928541	+.0043901	0.2050302	0721684	
0.2234714	+.0830729	0.9499052	+.0029695	0.2170428	0730405	
0.2293459	+.0834659	1.00426942	+.0025354	0.2230491	0734416	ম চ
0.2417117	+.0842377	1.0064723	+.0016772	0.2363154	0742476	N • D •
0.2482030	+=0846135 +=0849698	1.0056614	+.0012530	0.2435754	0746437	redefined coordinate
0.2611858	+.0853068	1.0130394	+.0004144	0.2580952	0753426	system for which
0.2683650	+.0856577 +.0859859	1+0152284	+.0000001	0.2673729 0.2766505	0757257	$a_{1} = -0.194^{\circ}$
0.2827236	+.0862918			0.2959280	0763472	design
0.2899029	+.0865757 +.0863622			0.2452053 0.3053582	0767940	
0.3056476	+.0871229			0.3155109	0769414	
0.32139200	+.0875690			0.3358159	07700445	
0.3300467	+.0877723			0.3460392	- 0770716	
0+3473554	+.0880910			0,3663432	0768720	
0.3560099	+.0982071			0.3764950	0766837	
0+3742734	+.0883584			0.3967979	07611d6	
0.1034053	+.0883867			0.4069491	0757362	
0.4018445	+.0883435			0.4171001 0.4272508	0747544	
0.4111518	+.0882789			0.4374014	0741469	
	・ そうちょう しょう ちょう			V		

TABLE 4.2 Co -ordinates of aerofoil NLR HT 7310810

NPL 9510

British National Physics Laboratory

Year	1983
Reference	NASA TM-85663
t/c	0,11
C _{l,design}	0,6
$\mathbf{M}_{\text{design}}$	0,75
Transition	if fixed: 0,04c upper surface 0,06c lower surface

TABLE I .- AIRFOIL COORDINATES

Upper Surface

33:

_			
	x/c	z/c	
	.0000	00002	
	.0004	.00392	
	.0016	.00760	
	.0025	.00942	
	.0050	.01277	
	,0100	.01670	
	.0150	.01922	
	.0200	.02100	
	.0250	.02238	
	.0300	.02357	
	.0400	.02553	
	.0500	.02722	
	.0600	.02871	
	.0700	.03007	
	.0800	.03129	
	.0900	.03241	
	.1000	.03343	
	.1200	.03530	
	.1400	.03694	
	.1600	.03839	
ļ	.1800	.03970	
	.2000	.04090	
I	.2200	.04205	
	.2400	.04315	
	.2600	.04417	
	.2800	.04507	
	.3000	.04592	1
	.3200	.04669	
	.3400	.04741	
	.3600	.04805	
	.3800	.04867	
		L	

F

 $\mathbf{\bullet}$

x/c	z/c
.4000	.04917
.4200	.04959
.4400	.04990
.4600	.05013
.4800	.05027
.5000	.05031
.5200	.05028
.5400	.05016
.5600	.04995
.5800	.049/0
.6000	.04930
.6200	.048/9
.6400	.04010
.0000	04655
.0000	04543
.7000	04415
7400	04%63
7600	.04093
7800	.03902
.8000	.03688
.8200	.03459
.8400	.03205
.8600	.02933
.8800	.02642
.9000	.02337
.9200	.02009
.9400	.01655
.9600	.01278
.9800	88800.
1.0000	.00490

٢

•

TABLE I.- AIRFOIL COORDINATES - Concluded

x/c	z/c
.0000	00002
.0004	00397
.0016	00795
.0025	00976
.0050	01353
.0100	01846
.0150	02201
.0200	02498
.0250	02753
.0300	02984
.0400	03388
.0500	03738
.0600	04043
.0700	04310
.0800	04547
.0900	04753
.1000	04940
.1200	05265
.1600	05759
.2000	06114
.2400	06340
.2800	06438
.3200	06408
.3007	06247
.4000	05962
.4400	05036
5200	03030
5600	- 03762
6000	- 03087
.6400	02373

Lower	Surface

x/c	z/c
.6800	01705
.7199	01064
.7600	00503
.8000	00047
.8400	.00299
.8800	.00475
.9200	.00485
.9600	.00322
1.0000	.00002
	1

♦)

12

 (\bullet)

(

 \bullet

+

 $(\mathbf{+})$

Figure 4.- Continued.

•)

20

(+

 \bullet

3 4 4

Œ

 (\mathbf{f})

•

 $\mathbf{ \mathbf{ \bullet }}$

٢

22

 (\mathbf{f})

•

23

346

 (\mathbf{f})

24

Ð

(-)

3 4 8

E

3 4 9

 $\widehat{}$

E

 (\bullet)

27

 \bullet

3 4 :

•

34;

•

 $R = 3.38 \times 10^6; M = 0.6974.$ (q)

28

(.

29

E

Ð

30

 (\bullet)

Ð

3 5 3

Œ

(+

31

 $(\mathbf{ })$

(+

P

33

 (\mathbf{A})

3 5 6

Figure 6.- Concluded.

۲

•

34

Œ

 $(\mathbf{+})$

 \bullet

Ð

 (\bullet)

Figure 7.- Continued.

E

(P)

Ð

(+)

37

D)

()

•

38

E

()

 $\mathbf{\mathbf{\overline{+}}}$

Œ

39

 (\mathbf{f})

()

40

Ð

 $\mathbf{\mathbf{\widehat{+}}}$

ŧ

Figure 7.- Continued.

()

Figure 7.- Continued.

•

C

 $(\mathbf{+})$

43

 (\mathbf{A})

•

•

(ب

•)

Ð

Ð

3 6 9

 \bullet

Ð

47

•

 $\mathbf{\widehat{t}}$

36:

Figure 8.- Continued.

 $\mathbf)$

Œ

 \bullet

(1

373

 \bullet

(

 (\bullet)

3 7 5

Figure 8.- Continued.

●)

 (\bullet)

E

•

(+)

Đ

•)

٠

 \mathbf{E}

 \bullet

 $\mathbf{\bullet}$

 ${ }$

(\$

 $\mathbf{ }$

56

E

(+)

(+

Figure 9.- Continued.

 $\mathbf{ }$

•

 $\mathbf{\bullet}$

đ

58

 (\mathbf{f})

 (\bullet)

59

 $\mathbf{\bullet}$

(+)

Figure 9.- Continued.

()

60

Đ

 (\bullet)

 $\mathbf{\cdot}$

Ŧ

٢

7)

D)

(··

 (\bullet)

 (\bullet)

E

۲

(•)

E

(+)

38:

6

 $\mathbf{\mathbf{E}}$

(

 (\mathbf{A})

(ب

E

•

SC(2)-0012

NASA

x/c	y _u /c	x/c	yı/c
0	0	0	0
0,002	0,00912	0,002	-0,00912
0,005	0,01392	0,005	-0,01392
0,01	0,0186	0,01	-0,0186
0,02	0,02484	0,02	-0,02484
0,03	0,02916	0,03	-0,02916
0,04	0,0324	0,04	-0,0324
0,05	0,03504	0,05	-0,03504
0,06	0,03732	0,06	-0,03732
0,08	0,04119	0,08	-0,04119
0,1	0,04428	0,1	-0,04428
0,12	0,0468	0,12	-0,0468
0,14	0,04908	0,14	-0,04908
0,16	0,051	0,16	-0,051
0,18	0,05268	0,18	-0,05268
0,2	0,05412	0,2	-0,05412
0,22	0,05532	0,22	-0,05532
0,24	0,0564	0,24	-0,0564
0,26	0,05736	0,26	-0,05736
0,28	0,05808	0,28	-0,05808
0,3	0,0588	0,3	-0,0588
0.32	0,05928	0,32	-0,05928
0,34	0,05964	0,34	-0,05964
0.36	0.05988	0.36	-0.05988
0,38	0,06	0,38	-0,06
0.4	0.06	0.4	-0.06
0.42	0.05988	0.42	-0.05988
0.44	0.05964	0.44	-0.05964
0.46	0.05928	0.46	-0.05928
0.48	0.0588	0.48	-0.0588
0.5	0.05808	0.5	-0.05808
0.52	0.05736	0.52	-0.05736
0.54	0.0564	0.54	-0.0564
0,56	0.0552	1	-0.0552
1	0.05388	0.58	-0.05388
0.6	0.05232	0.6	-0.05232
0.62	0.0504	0.62	-0.0504
0.64	0.04824	0.64	-0.04824
0.66	0.04584	0.66	-0.04584
0.68	0.04332	0.68	-0.04332
0.7	0.0408	07	-0.0408
0.72	0.03828	0.72	-0.03828
0.74	0.03576	0.74	-0.03576
0.76	0.03324	0.76	-0.03324
0.78	0.03072	0.78	-0.03072
0.8	0.0282	0.8	-0.0282
0.82	0.02568	0.82	-0.02568
0.84	0.02316	0.84	-0.02316
0.86	0.02064	0.86	-0.02064
0.88	0.01812	0.88	-0.01812
0.9	0.0156	0.9	-0.0156
0.92	0.01308	0.92	-0.01308
0.94	0.01056	0.94	-0.01056
0.96	0.00804	0.96	-0.00804
0 983	0.0051	0.98	-0.00552
1	0.003	1	-0.003
-	-,	-	-,

Figure 10.- Effect of Mach number on integrated force and moment coefficients.

Figure 10.- Continued.

22

Figure 10.- Continued.

Figure 10.- Continued.

(d) $R_c = 30 \times 10^6$.

SC(2)-0710 (Supercritical Airfoil 33)

NASA

Year	1975	
Reference	NASA TM X-72711	
t/c	0,10	
$c_{l,design}$	0,7	
M_{design}	0,78	
Transition	fixed at 0,28c	

Sketch of T.E.at expanded scale

x/c	y _u /c	yı/c
0,0000	0,0000	0,0000
0,0020	0,0075	-0,0075
0,0050	0,0116	-0,0116
0,0100	0,0156	-0,0156
0,0200	0,0206	-0,0203
0,0300	0,0240	-0,0235
0,0400	0,0267	-0,0262
0,0500	0,0289	-0,0284
0,0600	0,0308	-0,0303
0,0700	0,0325	-0,0320
0,0800	0,0340	-0,0335
0,0900	0,0354	-0,0349
0,1000	0,0367	-0,0362
0,1100	0,0379	-0,0374
0,1200	0,0389	-0,0385
0,1300	0,0399	-0,0395
0,1400	0,0408	-0,0405
0,1500	0,0417	-0,0414
0,1600	0,0425	-0,0422
0,1700	0,0432	-0,0430
0,1800	0,0439	-0,0437
0,1900	0,0446	-0,0444
0,2000	0,0452	-0,0450
0,2100	0,0457	-0,0456
0,2200	0,0462	-0,0462
0,2300	0,0467	-0,0467
0,2400	0,0472	-0,0472
0,2500	0,0476	-0,0476
0,2600	0,0480	-0,0480
0,2700	0,0483	-0,0484
0,2800	0,0486	-0,0487
0,2900	0,0489	-0,0490
0,3000	0,0491	-0,0493

0,3100	0,0493	-0,0495
0,3200	0,0495	-0,0497
0,3300	0,0496	-0,0499
0,3400	0,0497	-0,0500
0,3500	0,0498	-0,0501
0,3600	0,0499	-0,0502
0,3700	0,0500	-0,0502
0,3800	0,0500	-0,0502
0,3900	0,0500	-0,0502
0,4000	0,0500	-0,0501
0,4100	0,0499	-0,0500
0,4200	0,0498	-0,0499
0,4300	0,0497	-0,0497
0,4400	0,0496	-0,0495
0,4500	0,0495	-0,0492
0,4000	0,0495	-0,0488
0,4700	0,0491	-0,0484
0,4800	0,0489	-0,0480
0,4900	0,0487	-0,0473
0,5000	0,0484	-0,0470
0,5100	0,0431	-0,0404
0,5200	0,0478	-0,0457
0,5400	0.0472	-0,0430
0,5500	0.0468	-0.0434
0,5600	0.0464	-0.0425
0,5700	0.0460	-0.0415
0.5800	0.0456	-0.0405
0.5900	0.0451	-0.0394
0,6000	0,0446	-0,0382
0,6100	0,0441	-0,0370
0,6200	0,0436	-0,0357
0,6300	0,0430	-0,0343
0,6400	0,0424	-0,0329
0,6500	0,0418	-0,0315
0,6600	0,0412	-0,0300
0,6700	0,0405	-0,0285
0,6800	0,0398	-0,0270
0,6900	0,0391	-0,0255
0,7000	0,0383	-0,0239
0,7100	0,0375	-0,0223
0,7200	0,0367	-0,0207
0,7300	0,0338	-0,0191
0,7500	0,0349	-0,0173
0,7600	0,0330	-0,0133
0,7700	0.0320	-0.0128
0.7800	0.0309	-0.0113
0.7900	0.0298	-0.0099
0.8000	0,0287	-0,0085
0,8100	0,0275	-0,0072
0,8200	0,0262	-0,0060
0,8300	0,0248	-0,0049
0,8400	0,0234	-0,0038
0,8500	0,0219	-0,0029
0,8600	0,0204	-0,0022
0,8700	0,0188	-0,0017
0,8800	0,0171	-0,0014
0,8900	0,0153	-0,0013
0,9000	0,0135	-0,0013
0,9100	0,0116	-0,0016
0,9200	0,0096	-0,0021
0,9300	0,0075	-0,0028
0,9400	0,0034	-0,0059
0,9500	0,0032	-0,0033
0,9000	-0.0017	-0,0009
0,9800	-0 0044	-0.0110
0,9900	-0,0074	-0.0135
1,0000	,	-0,0163

39;

7

-

3 : 2

- - -

* * **

Figure 7. - Continued.

. ور

а. Э

-

<u>^-</u>

— .

3 : 4

..

. .

ь р

Figure 7. - Continued.

÷

Ξ

Ð

3:6

:--

ין . ז ז. גע

Figure 7. - Continued,

5.

Figure 7. - Continued.

3

3:8

ə

3:9

ني. د م

1

30

0

. .

- 9

ß

.

- -

1 = 1 |],1.

: .. ; →:

Figure 7. - Continued.

Figure 8. - Variation of measured section drag coefficient with Mach number of 10-percent-thick supercritical airfolls 31 and 33.

ς :

J

··· 3.; 2

Figure 8. - Continued,

•

•

and a freedom

÷

` **x**

ŧ

(d) $c_n = 0.75$ and 0.80.

3;5

i) R

Figure 8. - Concluded.

3;6

:-

;

.

3;7

SC(2)-0714

NASA

Year	1975		
Reference	high speed: NASA TM X-72712 low speed: NASA TM-81912		
t/c	0,14		
C _{l,max}	2,2		
$c_{l,design}$	0,7		
$\mathbf{M}_{\text{design}}$	0,74		
Transition	high speed: fixed at 0,28c low speed: fixed at 0,05c		

NASA TP 2890

TABLE I .- SECTION COORDINATES FOR

14-PERCENT-THICK SUPERCRITICAL AIRFOIL

[c = 63.5 cm (25 in.); leading-edge radius = 0.030c]

,

ж/с	(y/c) _u	(y/c) ₁	x/c	(y/c) _u	(y/c) ₁
0.0	0.0	0.0	.240	.0659	0661
.002	.0108	0108	.250	.0665	0667
.005	.0167	0165	.260	.0670	0672
.010	.0225	0223	.270	.0675	0677
.020	.0297	0295	.280	.0679	0681
.030	.0346	0343	.290	.0683	0685
.040	.0383	0381	.300	.0686	0688
.050	.0414	0411	.310	.0689	0691
.060	.0440	0438	.320	.0692	0693
.070	.0463	0461	.330	.0694	0695
.080	.0484	0481	.340	.0696	0696
.090	.0502	0500	.350	.0698	0697
.100	.0519	0517	.360	.0699	0697
.110	.0535	0533	.370	.0700	~.0697
.120	.0549	0547	.380	.0700	0696
.130	.0562	0561	.390	.0700	0695
.140	.0574	0574	.400	.0700	0693
.150	.0585	0585	.410	.0699	0691
.160	.0596	0596	.420	.0698	0689
.170	.0606	0606	.430	.0697	0686
.180	.0615	0616	.440	.0696	0682
.190	.0624	0625	.450	.0694	0678
.200	.0632	0633	.460	.0692	0673
.210	.0640	0641	.470	.0689	0667
.220	.0647	0648	.480	.0686	0661
.230	.0653	0655	.490	.0683	0654

3;9

•

TABLE I.- SECTION COORDINATES FOR

14-PERCENT-THICK SUPERCRITICAL AIRFOIL - Concluded

	the second s	and the second se	and the second		and the second
x/c	(y/c) _u	(y/c) ₁	x/c	(y/c) _u	(y/c) ₁
.500	.0680	0646	.760	.0457	0173
.510	.0676	0637	.770	.0442	0152
.520	.0672	0627	.780	.0426	0132
.530	.0668	0616	.790	.0409	0113
.540	.0663	0604	.800	.0392	0095
.550	.0658	0591	.810	.0374	0079
.560	.0652	0577	.820	.0356	0064
.570	.0646	0562	.830	.0337	0050
.580	.0640	0546	.840	.0317	0038
.590	.0634	0529	.850	.0297	0028
.600	.0627	0511	.860	.0276	0020
.610	.0620	0493	.870	.0255	0014
.620	.0613	0474	.880	.0233	0010
.630	.0605	0454	.890	.0210	0008
.640	.0596	0434	.900	.0186	0008
.650	.0587	0413	.910	.0162	0011
.660	.0578	0392	.920	.0137	0016
.670	.0568	0371	.930	.0111	0024
.680	.0558	0349	.940	.0084	0035
.690	.0547	0327	.950	.0057	0049
.700	.0536	0305	.960	.0029	0066
.710	.0524	0283	.970	0.0	0086
.720	.0512	0261	.980	0030	0109
.730	.0499	0239	.990	0062	0136
.740	.0486	0217	1.000		0165
.750	.0472	0195			
	a particular a second	1. A. A. A.	1) .	

3;:

SC(2)-0714

High Mach Numbers (M = 0.5 to M = 0.78) - NASA TM X-72712 -

(a) M = 0.50.

4 2 2

(d) M = 0.70.

Figure 74- Continued.

......

Figure 7. - Continued.

4 2 9

Figure 7. - Continued.

4 3 3

A State of the second

(b) $c_n = 0.50$ and 0.55.

Figure 8. - Continued.

(c) $c_n = 0.60$ and 0.65.

Figure 8. - Continued.

(d) $c_n = 0.70$ and 0.75.

(e) $c_n = 0.80$ and 0.85.

Figure 8. - Concluded.

4 3 7

Figure 9. - Drag increment due to shock-wave losses of I4-percent-thick supercritical airfoil.
ORIGINAL PAGE IS OF POOR QUALITY

いって あいちん ちいち 「「うち」う

e.

...

Figure 9. - Concluded.

SC(2)-0714

Low Mach Numbers (M = 0,1 to M = 0,32) - NASA TM-81912 -

ЯŊ .0 SO E ğ <u>.</u> <u>.</u>0 Figure 18.- Effect of Mach number on section characteristics; $R = 6.0 \times 10^6$, transition fixed. 4 <u>+</u> <u>n</u> 2 ŝ a, deg Ω. t S. 0 မှ ţ 0.10 .15 .28 .328 ٤ φ 1111 000040 .φ 1111111111 -1.005.ul 2.50F -.75 1.25 -.25.1 . تۇ بىر 1.75 754 .5°. 52. 2.25<u></u> 1.00 2.00-1.50 6 ىر

Original page is OF POOR QUALITY

91

4 4 2

ORIGINAL PAGE 13 OF POOR QUALITY

OF POOR QUALITY

SC(3)-0712(B)

NASA

Year	1985
Reference	NASA TM-86371
t/c	0,12
C _{l,design}	0,7
Transition	fixed at 0,05c

TABLE II. DESIGN AND MEASURED AIRFOIL COORDINATES

	Upper surface		
$\frac{x/c}{x/c}$	$\frac{z_{\rm design}}{c}$	$z_{\rm meas}/c$	
0.002	0.0092	0.0074	
.005	.0141	.0131	
.010	.0190	.0181	
.020	.0252	.0247	
.030	.0294	.0291	
.040	.0327	.0325	
.050	.0354	.0352	
.070	.0397	.0397	
.080	.0415	.0415	
.100	.0446	.0445	
.120	.0471	.0471	
.150	.0504	.0504	
.180	.0530	.0529	
.200	.0544	.0544	
.220	.0557	.0556	
250	0572	.0572	
280	0584	.0584	
300	0590	.0589	
330	0596	.0596	
350	0599	0599	•
370	0601	0600	
400	0601	0601	
420	0600	0600	
450	0596	0596	
480	0590	0589	1
500	0584	0583	
530	0573	.0572	
550	0564	0563	
580	0549	0548	
600	0537	.0536	
630	0516	0515	
650	.0500	.0499	
670	0482	.0481	
700	0451	.0450	
.730	.0416	.0415	
.750	.0390	.0389	
770	.0362	.0360	
.800	.0316	.0315	
.830	.0266	.0264	
.850	.0230	.0228	
.870	.0192	.0190	
.900	.0131	.0129	
.920	.0088	.0086	
.940	.0042	.0040	
.950	.0018	.0016	
.960	0007	0009	
.970	0033	0035	
.980	0060	0062	
.990	0088	0090	
1.000	0117	0118	

x/c z_{design}/c z_{meas}/c 0.002 -0.0051 0039 0.05 0081 0077 0.10 01165 0162 0.30 0204 0202 0.40 0238 0235 0.50 0266 0264 0.70 0316 0314 0.80 0338 0336 0.10 0377 0375 1.20 0412 0410 1.50 0458 0456 1.80 0498 0496 2.00 0521 0520 2.30 0555 0549 2.50 0566 0565 2.80 0585 0584 3.00 0595 0594 3.30 0609 0608 $.380$ 0610 0609 $.400$ 0573 0572 $.500$ 0558		Lower surface	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Zinim /C	Zmons/C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	-0.0051	-0.039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.002	- 0081	-0077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.005	_ 0116	-0113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.010	- 0165	0110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.020	0105	-0.0102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.030	0204	0235
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.040	0236	0255
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.050	0200	0204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.070	0310	0314
.100 0377 0373 $.120$ 0412 0410 $.150$ 0458 0456 $.180$ 0498 0496 $.200$ 0521 0520 $.230$ 0550 0549 $.250$ 0566 0565 $.280$ 0585 0584 $.300$ 0595 0594 $.330$ 0605 0604 $.350$ 0609 0608 $.380$ 0610 0609 $.400$ 0608 0607 $.430$ 0600 0591 $.450$ 0573 0572 $.500$ 0558 0557 $.530$ 0509 0508 $.580$ 0472 04711 $.600$ 0446 0445 $.620$ 0419 0471 $.600$ 0229 0229 $.700$ 0299 0298 $.720$ 0267 0266 $.750$ 0221 0220 $.770$ 0191 0190 $.800$ 0149 0147 $.820$ 0123 0121 $.850$ 0088 0086 $.880$ 0059 0057 $.900$ 0049 0046 $.930$ 0055 0051 $.950$ 0074 0069 $.960$ 0126 0120 $.970$ 0105 0099 $.980$ 0126 0120 <t< td=""><td>.080</td><td>0338</td><td>0330</td></t<>	.080	0338	0330
.120 0412 0410 .150 0458 0456 .180 0498 0496 .200 0521 0520 .230 0550 0549 .250 0566 0565 .280 0585 0584 .300 0595 0594 .330 0605 0604 .350 0609 0608 .380 0610 0609 .400 0608 0607 .430 0600 0591 .450 0573 0572 .500 0558 0577 .530 0509 0508 .580 0472 0471 .600 0446 0445 .620 0419 0471 .600 0299 0298 .720 0267 0266 .750 0221 0220 .770 0191 0190 .800 0149 0147 .820 0123 0121 .850 0088 0086 .880 0059 0057 .900 0049 0046 .930 0055 0051 .950 0074 0069 .960 0126 0120 .970 0105 0099 .980 0126 0120 .990 0150 0143 .900 0167 0167	.100	0377	0375
.150 0438 0436 $.180$ 0498 0496 $.200$ 0521 0520 $.230$ 0550 0549 $.250$ 0566 0565 $.280$ 0585 0584 $.300$ 0595 0594 $.330$ 0605 0604 $.350$ 0609 0608 $.380$ 0610 0609 $.400$ 0608 0607 $.430$ 0600 0591 $.450$ 0591 0591 $.480$ 0573 0572 $.500$ 0558 0557 $.530$ 0509 0508 $.580$ 0472 0471 $.600$ 0446 0445 $.620$ 0419 0418 $.650$ 0376 0375 $.680$ 0331 0329 $.700$ 0299 0298 $.720$ 0267 0266 $.750$ 0221 0220 $.770$ 0191 0190 $.800$ 0149 0147 $.820$ 0123 0121 $.850$ 0088 0086 $.880$ 0059 0057 $.900$ 0049 0046 $.930$ 0074 0069 $.960$ 0088 0082 $.970$ 0126 0120 $.990$ 0126 0120 $.990$ 0150 0143 <td< td=""><td>.120</td><td>0412</td><td>0410</td></td<>	.120	0412	0410
.180 0498 0496 $.200$ 0521 0520 $.230$ 0550 0549 $.250$ 0566 0565 $.280$ 0585 0584 $.300$ 0595 0594 $.330$ 0605 0604 $.350$ 0609 0608 $.380$ 0610 0609 $.400$ 0608 0607 $.430$ 0600 0599 $.450$ 0591 0591 $.480$ 0573 0572 $.500$ 0558 0557 $.530$ 0530 0529 $.550$ 0509 0508 $.580$ 0472 04711 $.600$ 0446 0445 $.620$ 0419 0418 $.650$ 0376 0375 $.680$ 0331 0329 $.700$ 0299 0298 $.720$ 0267 0266 $.750$ 0221 0220 $.770$ 0191 0190 $.800$ 0149 0147 $.820$ 0123 0121 $.930$ 0059 0057 $.900$ 0049 0046 $.930$ 0074 0069 $.960$ 0088 0082 $.970$ 0105 0120 $.990$ 0126 0120 $.990$ 0150 0143	.150	0458	0456
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.180	0498	0496
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.200	0521	0520
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.230	0550	0549
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.250	0566	0565
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.280	0585	0584
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.300	0595	0594
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.330	0605	0604
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.350	0609	0608
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.380	0610	0609
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.400	0608	0607
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.430	0600	0599
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.450	0591	0591
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.480	0573	0572
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.500	0558	0557
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.530	0530	0529
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.550	0509	0508
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.580	0472	0471
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.600	0446	0445
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.620	0419	0418
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.650	0376	0375
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.680	0331	0329
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.700	0299	0298
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.720	0267	0266
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.750	0221	0220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.770	0191	0190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.800	0149	0147
$\begin{array}{c ccccc}$.820	0123	0121
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.850	0088	0086
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.880	0059	0057
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.900	0049	0046
$\begin{array}{c ccccc} .0000 &0074 &0069 \\ .950 &0088 &0082 \\ .970 &0105 &0099 \\ .980 &0126 &0120 \\ .990 &0150 &0143 \\ 1.000 &0177 &0167 \end{array}$.930	0055	0051
$\begin{array}{c cccccc} .000 &0088 &0082 \\ .970 &0105 &0099 \\ .980 &0126 &0120 \\ .990 &0150 &0143 \\ 1.000 &0177 &0167 \end{array}$.950	0074	0069
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.960	0088	0082
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	970	0105	0099
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	980	- 0126	0120
1.00001770167	990	0150	0143
	1.000	0177	0167

Figure 40. Effect of Mach number on aerodynamic characteristics of airfoil with fixed transition at $R\approx 7.0 \times 10^6$.

.

Figure 41. Effect of Mach number on aerodynamic characteristics of airfoil with fixed transition at $R \approx 10.0 \times 10^6$.

പ്

Figure 42. Effect of Mach number on aerodynamic characteristics of airfoil with fixed transition at $R\approx 15.0 \times 10^6$.

-

പ്

Figure 43. Effect of Mach number on aerodynamic characteristics of airfoil with fixed transition at $R \approx 30.0 \times 10^6$.

о^с

-

່ ບັ

SKF 1.1

Versuchsanstalt für Luft- und Raumfahrt e.V. (DFVLR)

Year	1979
Reference	AGARD-AR-138
t/c	0,1207
$\mathbf{c}_{l,design}$	0,532
M_{design}	0,769
Tronsition	if fixed:
Transition	0,3c upper surface 0,25c lower surface

Table 5.1 Design coordinates for the airfoil SKF 1.1 Basic airfoil - Upper surface

Note	For actua	l model co	ordina	es see Tat	ole 5.2			
No.	x (mm)	z (mm)	No.	·x (mm)	z (mm)	No.	x (mm)	z (mm)
1	0.000	0,179	91	115 022	12,994			
2	0.001	0.348	92	116.738	12.899	53	83.033 81.033	- 10,254
3	0.011	0,517	93	118,453	12.794	55	79.033	- 10.396
5	0,053	0,852	94	121,881	12,558	56	77.319	- 10.444
6	0,094	1.051	96	123,595	12.427	58	73,892	- 10, 484
8	0,145	1.247	97 0R	125.307	12,287	59	72,178	- 10,538
9	0.279	1.630	99	129.021	11.954	60 61	70.464 68 749	- 10.552
10	0.361	1.815	100	131 022	11 759	62	67.035	- 10.554
12	0.553	2,171	101	135.022	11, 337	63	65.321	- 10.542
13	0.693	2,386	103	137.019	11.112	65	63.607 61.893	-10.521 -10.492
14	0.845	2.593	104	139.016	10,877	66	60.179	- 10,453
16	1,182	2.981	105	141.015	10,378	67	58.465	- 10,407
17	1.364	3.164	107	145.020	10,115	69	55.039	- 10, 351
18	1, 553	3,539 3,612	108	147,019	9.844 Į	70	53.038	- 10.205
20	2,210	3.870	1109	149.016	9.268	71	51.038 49.038	- 10, 111
21	2,553	4.117	111	153.016	8.966	73	47.039	- 9.894
23	3,553	4.768	112	155,017	8.693 8 332	74	45.040	- 9.771
24	4.046	5.063	114	159,017	8.001	76	41.325	- 9.516
25	4.546	5.346 5.618	115	161.014	7.662	77	39.610	- 9.386
27	5.545	5,868		165.412	6.886	78	37,895	- 9,246
28	6.043	6.109	118	167.813	6.447	80	34,468	- 8.938
30	7,052	6.564	119	170.212	5.999 5.543	81	32,756	- 8,767
31	7.670	6,823	120	175.006	5.081	82	31.045 29.444	- 8.586
32	8.293	7.073	122	179,506	4,198	84	27,843	- 8.219
34	9.551	7.539	123	184.004	3.304	85	26.244	- 8.023
35	10.243	7.777	125	195,501	0,989	87	24.645	- 7.606
36	10.940 11.640	8,003 8,217	126	200,000	0.071	88	21.671	- 7,417
38	12.344	8.421				89	20,296	- 7,220
39 40	13.050	8.615				91	17.549	- 6,801
41	14,842	0,040 9,068	Lo	wer sur	face	92	16.047	- 6.554
42	15.742	9.276	I, ,	200.000	0 945 l	93	14,548 13,050	- 6.295
43	16.644	9,473	2	197.751	- 0.847	95	12,173	- 5.855
45	18.645	9,874	3	195.501	- 0.762	96	11.297	- 5,681
46	19.742	10.076	4 5	193.668	- 0,656	98	9,550	- 5.307
47	20,842	10.266	6	190.003	- 0.620	99	8,714	- 5.110
48 49	21.944 23.048	10,466	7	188.503	- 0,600	100	7.881	- 4.900
50	24.377	10.810	9	185, 503	- 0,587	102	6,381	- 4,481
51	25.709	10,993	10	184.004	- 0,595	103	5.714	- 4.275
53	28.375	11, 328	12	182.718	- 0,600	105	4.549	- 3.879
54	29.710	11,482	13	180.146	_ 0 861	106	4.049	- 3.693
56	31.045	11,628	14	178.861	0 699	107	3,553	- 3.498
57	34.468	11,967	16	176.291	- 0, BOO	109	2.553	- 3,060
58 59	36.181 37 895	12,119	17	175.006	- 0.864	110	2.296	- 2,933
60	39.610	12, 394	18	173.504	- 1 046	112	1.795	- 2,656
61	41.325	12.517	20	170, 502	- 1 155	113	1.553	- 2,502
63	43.041	12 632	21	169.002	- 1,273	114	1.364	- 2,367
64	47,039	12.870	23	167.003	1 539	116	1.008	- 2,069
65 66	49.038	12.975	24	164.507	- 1.683	117	0,844	- 1.905
67	53,038	13,159	25	163,010	- 1,835	119	0.553	- 1.548
68	55.039	13.239	27	158.208	- 2, 356	120	0.461	- 1,408
70	57,438 59.837	13.325	28	155.809	- 2.633	121	0.376	- 1,264
71	62,236	13.469	30	153,410	- 2,916	123	0,232	- 0,964
72	64.635 67.035	13.526	31	145,014	- 3,944	124	0.173	- 0.808
74	70,034	13 624	32	139.016	- 4.698	126	0,081	- 0,487
75	73,034	13.660	34	124,021	- 6, 598	127	0,048	- 0.322
76	76,033	13.683	35	121.023	- 6.971	128	0,023	- 0,156
78	82.032	13.696	36	118.023 115 023	- 7.336 - 7 688	<u> </u>	0,001	0.014
79	85.031	13,687	38	113.025	- 7.915			
80 81	88,030 91.029	13,669	39	111.027	8 134			
82	94,028	13,608	41	105.028	- 8.345 - 8.548			
83 84	97.027	13 564	42	105.027	- 8.743			
85	103.025	13,444	43	103.025	- 8,925			
86	105.026	13,392	45	99.029	- 9,272			
87 88	107,026 109 026	13.331 13.262	46	97,030	- 9.430			
89	111.025	13, 184	47	95.031 93.030	- 9,578			
90	113.024	13,095	49	91.029	- 9,844			
			50	89.031 87 033	- 9,962			
			52	85.033	- 10, 167			

Table 5.6 DFVLR 1x1 Meter tests. Aerodynamic coefficients¹⁾

Run	M _{co}	a o g	Re 10 ⁻⁶	°L	с _т	°D	Transition	Configuration
60	0.760	2,5	2,31	0.5687	-0.0935	0.0106	Free	Basic airfoil
63	0,760	5.0	2.31	0.8048	-0.0971	0.0296	Free 30	
84	0.760	2.5	2,33	0.5605	-0.0868	0.0121	220K, 30/25Ľ″	
87	0.760	5.0	2.33	0.7803	-0.0899	0.0316	220K, 30/25L	
157	0.760	2.5	3.61	0.5772	-0.0922	0.0121	Free	
160	0.760	5.0	3.59	0.7879	-0.0986	0,0384	Free	Basic airfoil
234	0,70	0.0	2,22	0,7605	-0.2599	0.0141	Free	52)
235	0,701	3.0	2,22	1,1806	-0.2552	0.0183		
236	0.700	5.0	2,22	1.4795	-0.2667	0.0407		
237	0.700	7.0	2,22	1,4795	-0.2409	0.0993		
240	0,760	0.0	2,32	0,8085	-0.2917	0,0197		
241	0.760	3,0	2.31	1. 2230	-0.3150	0.0412		
242	0.759	5.0	2, 31	1.3241	-0.2930	0.0578		
243	0.761	7.0	2.31	1.3811	-0.2741	0,1088		
223	0,500	3.0	2,01	1,0543	-0,2333	0,0139		
229	0,650	3.0	2.12	1.1154	-0.2419	0.0150		
230	0,650	6.0	2.12	1.4738	-0.2211	0,0362	Free	5
271	0,600	3.0	2.03	0,8430	-0.1563	0,0141	Free	42)
277	0,650	3.0	2.13	0, 8976	-0.1615	0.0149		
278	0,650	6.0	2.12	1,2941	-0.1550	0.0321	Free	4

Table 5.7 ONERA S3MA tests. Aerodynamic coefficients¹⁾

Run	Ma	a o	Re 10 ⁻⁶	е _Ļ	° m	° D	Transition	Configuration
96 17	0.703	2.07	7,34	1.149	-0.2517	0,0224	Free	5 ²⁾
	0.703	4.08	7.25	1.446	-0.2604	0,0401		
9618	0.702	6.03	7.28	1,461	+0.2525	0.1079		
9621	0.760	2,05	7.73	1.206	-0.3031	0.0354		
	0,761	4.07	7.73	1.253	<u>-0.</u> 2728	0.0681		
9606	0.499	2.05	5,55	0,997	-0.2286	0.0107		
9610	0,600	2.06	6,61	1.038	-0.2390	0.0122		
9612	0.649	2.06	6.97	1.076	-0.2442	0.0128		
96254)	0.702	2.11	7.52	1.398	-0.3126	0.0756		
	0,702	4.06	7.51	1,300	<u>-0.</u> 2691	0.1404	Free	5
9573	0,760	2.04	3.50	0.5037	-0.0965	0.0127	Free	Basic arifoil
9589	0,760	2.10	7.60	0,6180	<u>-0.</u> 0935	0.0128		

Airbus TA11 Airfoil

 $(\eta = 0,55)$

Year	1992
t/c	0,111

	_									 		
\square			 						_			
		_				_	_					╞

x/c	y _u /c	x/c	yı/c
0,000000	0,000000	0,000000	0,000000
0,000967	0,005744	0,000967	-0,005606
0,003943	0,010954	0,003943	-0,010579
0,008856	0,015671	0,008856	-0,015030
0,015708	0,019992	0,015706	-0,019006
0,024472	0,023980	0,024472	-0,022574
0,035112	0,027670	0,035112	-0,025824
0,047586	0,031138	0,047586	-0,028792
0,061847	0,034391	0,061647	-0,031563
0,077836	0,037450	0,077836	-0,034182
0,095492	0,040313	0,095492	-0,036695
0,114743	0,043012	0,114743	-0,039101
0,135516	0,045539	0,135516	-0,041376
0,157726	0,047883	0,157726	-0,043504
0,181288	0,050025	0,181268	-0,045467
0,206107	0,051965	0,206107	-0,047235
0,232087	0,053692	0,232087	-0,048770
0,259123	0,055193	0,259123	-0,050038
0,287110	0,056463	0,287110	-0,051007
0,315938	0,057493	0,315938	-0,051639
0,345492	0,058279	0,345492	-0,051860
0,375655	0,058814	0,375655	-0,051567
0,383842	0,058912	0,406309	-0,050677
0,406309	0,059066	0,437333	-0,049135
0,437333	0,059089	0,468605	-0,046897
0,468605	0,058818	0,500000	-0,043962
0,500000	0,058267	0,531395	-0,040343
0,531395	0,057426	0,562667	-0,036056
0,562667	0,056291	0,593691	-0,031127
0,593691	0,054852	0,624345	-0,025692
0,624345	0,053045	0,654508	-0,020005
0,654508	0,050800	0,684062	-0,014414
0,684062	0,048115	0,712690	-0,009227
0,712890	0,045051	0,740877	-0,004658
0,740877	0,041687	0,767913	-0,000838
0,767913	0,038108	0,793893	0,002175
0,793893	0,034399	0,818712	0,004374
0,818712	0,030653	0,842274	0,005795
0,842274	0,026957	0,864484	0,006511
0,864464	0,023390	0,885257	0,006625
0,885257	0,020020	0,904508	0,006250
0,904508	0,016693	0,922164	0,005507
0,922164	0,014037	0,938153	0,004518
0,938153	0,011465	0,952414	0,003396
0,952414	0,009184	0,964888	0,002246
0,964868	0,007197	0,975528	0,001154
0,975528	0,005510	0,984292	0,000190
0,984292	0,004122	0,991144	-0,000596
0,991144	0,003038	0,996057	-0,001172
0,996057	0,002261	0,999013	-0,001521
0,999013	0,001794	1,000000	-0,001638
1.000000	0.001638		

References

- AGARD-AR-138 ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT; NORTH ATLANTIC TREATY ORGANIZATION: Experimental Data Base for Computer Program Assessment : Report of the Fluid Dynamics Panel Working Group 04. Neuilly sur Seine : NATO, 1979 (AGARD-AR-138)
- NACA TN 4279 HUNTON, Lynn W.; National Advisory Committee for Aeronautics: *Effects of Fixing Transition on the Transonic Aerodynamic Characte ristics of a Wing-Body Configuration at Reynolds Numbers from 2.4 to 12 Million.* Washington : NACA, 1958 (NACA TN 4279). – Technical Note
- NASA TM-81912 HARRIS, Charles D.; MCGHEE, Robert J., ALLISON, Dennis O., National Aeronautics and Space Administration: Low Speed Aerodynamic Characteristics of a 14-Percent-Thick NASA Phase 2 Supercritical Airfoil Designed for a Lift Coefficient of 0.7. Washington : NASA, 1980 (NASA TM X-72712). – Technical Memorandum
- NASA TM-81922 JOHNSON, JR., William G.; HILL, Acquilla S.; RAY, Edward J; et. al.; National Aeronautics and Space Administration: *High Reynolds Number Tests of a Boeing BAC I Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel*. Washington : NASA, 1982 (NASA TM-81922, L-15011). – Technical Memorandum
- NASA TM-85663 JENKINS, Renaldo V.; National Aeronautics and Space Administration: Reynolds Number Tests of an NPL 9510 Airfoil in the Langley 0.3-Meter Transonic Tunnel. Washington : NASA, 1983 (NASA TM-85663). – Technical Memorandum
- NASA TM-85732 PLENTOVICH, E. B.; LADSON, Charles L.; HILL, Acquila S.; National Aeronautics and Space Administration: Tests of a NACA 65₁-213 Airfoil in the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Washington : NASA, 1984 (NASA TM-85732). Technical Memorandum

- NASA TM-85739 JENKINS, Renaldo V.; JOHNSON, JR., William G.; HILL, Acquila S.; et. al.; National Aeronautics and Space Administration: Data from Tests of a R4 Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Washington : NASA, 1984 (NASA TM-85739). Technical Memorandum
- NASA TM-86273 DRESS, David A.; STANEWSKY, Egon; MCGUIRE, Peggy; et. al.; National Aeronautics and Space Administration: High Reynolds Number Tests of the CAST 10-2/DOA 2 Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel Phase II. Washington : NASA, 1984 (NASA TM-86273). Technical Memorandum
- NASA TM-86371 JOHNSON, JR, William G.; HILL, Acquila S.; EICHMANN, Otto; National Aeronautics and Space Administration: *High Reynolds Number Tests of a NASA SC(3)-0712(B) Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel*. Washington : NASA, 1985 (NASA TM-86371, L-15909). – Technical Memorandum
- NASA TM-87600 JOHNSON, JR, William G.; HILL, Acquila S.; National Aeronautics and Space Administration: *Pressure Distributions From High Reynolds Number Tests of a Boeing BAC I Airfoil in the 0.3-Meter Transonic Cryogenic Tunnel.* Washington : NASA, 1985 (NASA TM-87600, L-16010). – Technical Memorandum
- NASA TM-89102 MINECK, Raymond E.; LAWING, Pierre L.; National Aeronautics and Space Administration: High Reynolds Number Tests of the NASA SC(2)-0012 Airfoil in the 0.3-Meter Transonic Cryogenic Tunnel. Washington : NASA, 1987 (NASA TM-89102, L-16259). Technical Memorandum
- NASA TM X-72711 HARRIS, Charles D.; National Aeronautics and Space Administration: Aerodynamic Characteristics of the 10-Percent-Thick NASA Supercritical Airfoil 33 Designed for a Normal-Force Coefficient of 0.7. Washington : NASA, 1975 (NASA TM X-72711). – Technical Memorandum
- NASA TM X-72712 HARRIS, Charles D.; National Aeronautics and Space Administration: Aerodynamic Characteristics of a 14-Percent-Thick NASA Supercritical Airfoil Designed for a Normal-Force Coefficient of 0.7. Washington : NASA, 1975 (NASA TM X-72712). – Technical Memorandum

- NASA TP-2969HARRIS, Charles D.; National Aeronautics and Space Administration:
NASA Supercritical Airfoils : A Matrix of Family-Related Airfoils.
Washington : NASA, 1975 (NASA TP-2969, L-16625). Technical
Paper
- NASA TP 3579 ALLISON, Dennis O.; MINECK, Raymond E.; National Aeronautics and Space Administration: Assessment of Dual-Point Drag Reduction for an Executive-Jet Modified Airfoil Section. Washington : NASA, 1996 (NASA TP-3579, L-17500). – Technical Paper
- NTRS 2011 NASA Technical Reports Server (NTRS). URL: http://ntrs.nasa.gov (2011-12-19)