
BACHELOR THESIS
Marcel Dießner

Model specification for
template-based source code
generation

Faculty of Computer Science and Engineering
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of Science Angewandte Informatik
at the Department Computer Science
at the Faculty of Computer Science and Technology
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Stefan Sarstedt
Supervisor: Prof. Dr. Olaf Zukunft

Submitted on: 29. September 2022

Marcel Dießner

Model specification for template-based source code
generation

Marcel Dießner

Title of Thesis

Model specification for template-based source code generation

Keywords

Meta-Model, Templates, Code-Generation, CobiGen, Pre-Processing

Abstract

Template-based source code generation is used in industrial generator frameworks as a
fully automated process. Varying input data is used to evaluate placeholders in Tem-
plates. When less data is available than is required for template evaluation, many gener-
ators terminate, leading to no generation output. By pre-processing input and template,
missing data can be discovered and manually added by the generator’s user to the input
data, before the actual template evaluation. This ensures that the generation will give
output under any incomplete input, with the downside of falling into a semi-automated
process. In this thesis we will explore this idea in detail, investigating different popular
Template Engines and Frameworks and afterwards applying our solution to advanced
template-based source code generators, to collect problems and future ideas to be ex-
panded on further.

Kurzzusammenfassung

Die Template-basierte Source Code Generierung wird in modernen Generator-
Frameworks als vollautomatischer Prozess eingesetzt. Variierende Eingabedaten werden
verwendet, um Platzhalter in Templates auszuwerten. Wenn weniger Daten zur Verfü-
gung stehen, als für die Evaluation einer Templates benötigt werden, brechen viele Gener-
atoren ab, sodass keine Ausgabe generiert wird. Durch die Vorverarbeitung von Eingabe
und Template können fehlende Daten entdeckt und vom Benutzer des Generators manuell
zu den Eingabedaten hinzugefügt werden, bevor die tatsächliche Template-Evaluierung
durchgeführt wird. Auf diese Weise wird sichergestellt, dass die Generierung auch bei
unvollständigen Eingabedaten eine Ausgabe liefert. In dieser Arbeit wird diese Idee
im Detail erläutert, indem verschiedene populäre Template Engines sowie Frameworks
analysiert werden und anschließend unser Lösungsansatz auf komplexe Template-basierte
Source Code Generatoren angewandt wird. Entstehende Probleme und potentielle Weit-
erentwicklungsansätze können so gesammelt und künftig weiter vorangetrieben werden.

iii

Contents

List of Figures vi

List of Tables vii

Acronyms viii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Outline . 5

2 Related Work 7
2.1 Repleo . 7
2.2 SafeGen . 9
2.3 CobiGen . 10
2.4 Built-in expressions for missing values . 14

3 Template Pre-Processing for semi-automated Code Generation 15
3.1 The Template Meta Model . 19

3.1.1 The Foundation . 19
3.1.2 Variables . 21
3.1.3 Iteration . 24
3.1.4 Conditionals . 27
3.1.5 Functions and Macros . 34
3.1.6 Include and Import . 37
3.1.7 Appliance of Mapping and Reduction Transformation Rules 39

3.2 The Template Pre-Processor . 43
3.2.1 The Model Comparator . 45
3.2.2 The Data Enricher . 47

iv

Contents

4 Template Pre-Processing in Advanced Code Generation 50
4.1 Pre-processing with CobiGen . 50
4.2 Pre-processing with Repleo . 53
4.3 Pre-processing with SafeGen . 57
4.4 Automatic Creation of the Template Meta Model 58

5 Conclusion & Future Work 60

Bibliography 62

Declaration of Authorship 64

v

List of Figures

1.1 Template Evaluator . 2

2.1 Syntax-safe architecture of Repleo [2] . 8
2.2 Main CobiGen Components with inputs and outputs[5][6, Fig.3 (translated)] 11
2.3 CobiGen extension points [5, Figure 4.6] 12
2.4 CobiGen Directory Structure . 13

3.1 Variable shifting in a list . 27
3.3 Branch-Collapsing Examples . 33
3.4 Template Engine specifics accessible over Facade 44
3.5 Code Generator with Template Pre-Processor 45
3.6 Code Generator with Template Pre-Processor(Whitebox) 46
3.7 Zoo example flow . 49

4.1 CobiGen User Interface . 51
4.2 CobiGen with integrated Template Pre-Processing 54
4.3 CobiGen extension with Template Pre-Processing 54
4.4 Repleo with Template Pre-Processing . 55
4.5 Template Pre-Processor (TPP) with syntax-safe Input 56
4.6 Repleo with syntax-safe TPP . 57
4.7 Automation of Template to TMM Transformation 59

vi

List of Tables

1.1 Possible deviations between template and data 3

3.1 Identifying Top-Level context . 41
3.2 Identifying expanded include context . 41
3.3 Identifying expanded list context . 42

vii

Acronyms

CobiGen Code-based incremental Generator.

CRUD Create, Read, Update, Delete.

DI Dependency Injection.

IDE Integrated Development Environment.

ISP Interface Segregation Principle.

SoC Separation of Concerns.

TMM Template Meta Model.

TPP Template Pre-Processor.

UML Unified Modeling Language.

viii

1 Introduction

In the era of agile[1] software development, where faster deliveries and smaller code
increments lead to continuous changes, Code Generation grants the developer more utility
than ever before. Commonly used to avoid creating boilerplate code manually, such as
getter and setter methods, there is an ever-increasing range of possibilities, offered by
complex code generator frameworks[10]. Not only can initial skeletons be generated,
but also an existing code base can be modified, in the context of incremental Code
Generation[7].

There are multiple kinds of template generators, which differ on fundamental approaches.
The most commons are abstract syntax tree based, printf based, term rewriting and
text-template based Code Generators[2]. While they all have their advantages and dis-
advantages, this thesis will operate exclusively in the context of template-based code
generation.

According to Arnoldus, a template is a text document, which can include so-called place-
holders. Placeholders contain some action, or expression, declaring how to obtain a piece
of text to replace it [2, p.20] and can be described by the regular expression (text | place-
holder)+. While text is the static content of a template, which is directly copied to the
output, placeholders are dynamically replaced on generation. This is done by a Template
Evaluator (see Figure 1.1). The Template Evaluator fills the templates, for which it
needs the target template and data to fill it with. This process is managed by a Code
Generator, a meta program, which creates a data model and initializes the evaluator to
fill the template with the data model. When templates are evaluated, they result in a
document only consisting of text.

Template Engine is a term often synonymously used for a Template Evaluator. While
the term Template Evaluator is repeatedly used by Arnoldus for the core component
of template processing, the term Template Engine is mainly used in correlation with

1

1 Introduction

an actual system and product, such as FreeMarker1, Velocity2 or Mustache3, which use
different implementations. Therefore, we will use Template Evaluator, when referring to
the abstract component used in every template-based code generator, while referring to
the actual implementations, such as FreeMarker as Template Engines.

Figure 1.1: Template Evaluator

In this context, the terms object language and meta language are of great relevance.
Meta language is the program language used for the placeholders, while object language
is the programming language used in the non-placeholder part of a template and in the
generated output. This implies that templates non-placeholders are not just seen as
text, but as code of a programming language. See Listing 1.1 for example, which uses
FreeMarker as a fixed meta language, while the object language can be chosen freely,
though here it is intended to output Java code.

There are many code generation tools and frameworks that can help a developer in his
daily work, like CobiGen or JHipster4. Additional to including one or multiple Template
Engines, they also support different input and output options. From small input data,
whole architectures can be generated, where only the business logic needs to be added
to. Not only can they be used for creating new projects from scratch, but also for
enriching existing projects with smaller code generation fragments. Next to the obvious
reduction of work, this also helps to establish and maintain standards, both general
coding standards, but also corporate specific standards.

1https://freemarker.apache.org/
2https://velocity.apache.org/
3https://mustache.github.io/
4https://www.jhipster.tech/

2

https://freemarker.apache.org/
https://velocity.apache.org/
https://mustache.github.io/
https://www.jhipster.tech/

1 Introduction

1.1 Problem Statement

In industrial applications, source code generation is often a fully automated process.
While templates have to be created by a developer beforehand, the data model is created
in most applications automatically, based on a different input source, such as an Entity
class. This may lead to a deviation between the set of given data DG and the set of
required data DR. While there is no problem, when DR ⊆ DG, there is one that needs
to be addressed by Template Engines, if DG ⊂ DR, meaning the given data contains less
information than required.

An example template is shown in Listing 1.1. This template uses the FreeMarker syntax
and is evaluated with an example FreeMarker data model depicted in Listing 1.2. List-
ing 1.3 shows the result of this generation. While in this case the generation is successful,
because there is no deviation, Table 1.1 lists examples where DG misses required data.

Substitute line by creating problem
A 1.1 line 1 class ${nam} { nam is no valid key in the model 1.2
B 1.2 line 3 name = null name has no value

Table 1.1: Possible deviations between template and data

Even though A and B have a different origin, Template Evaluators treat them as if
they were the same. There are two possibilities on how null values can be handled on
evaluation.

There are Template Engines, which always generate a result, such as Mustache or Ve-
locity. Placeholders that can’t be substituted simply end up blank. Both examples of
Table 1.1 would result in class {...}. On the other hand, some Template Engines throw
exceptions if a placeholder can’t be substituted. By default, FreeMarker is interrupting
on null values, though it can be configured otherwise.

Currently, starting a generation process with an interrupting evaluator does not offer any
kind of guarantee, that the generation will build an output. This is especially important
if a batch of dependent templates is rendered in a generation process. Missing one value
in one template corrupts the whole generation, which would be very inefficient, when
the exception occurs almost at the end of the generation process. If an entire class isn’t
available in the generated context, it’s very likely that at least one other class is related
to it, which would definitely result in a compilation error.

3

1 Introduction

1 class ${name} {
2 ${vis} ${name}() {}
3 <#list fields as field>
4 private ${field.type} ${field.name};
5 ${field.type} ${"get" + field.type}() {
6 <#if log>
7 System.out.println("get" + ${"\""+ field.

name +"\""}+"() is called.");
8 </#if>
9 return ${field.name};

10 }
11 </#list>
12 }

Listing 1.1: Java Template Example

1 (root)
2 |
3 +- name = "Customer"
4 |
5 +- vis = "public"
6 |
7 +- log = true
8 |
9 +- fields

10 |
11 +- (1st)
12 | |
13 | +- name = "firstName"
14 | |
15 | +- type = "String"
16 |
17 +- (2nd)
18 |
19 +- name = "lastName"
20 |
21 +- type = "String"

Listing 1.2: Freemarker Data Model Example

1 class Customer {
2 public Customer (){}
3 private String firstName ;
4 String getfirstName (){
5 System.out.println("get" +"firstName"+"() is

called.");
6 return firstName ;
7 }
8 private String lastName ;
9 String getlastName (){

10 System.out.println("get" +"lastName"+"() is called
.");

11 return lastName ;
12 }
13 }

Listing 1.3: Generation Result Example
4

1 Introduction

While this may seem as a disadvantage at first, specifying cases where interruptions
are allowed to happen, establishes quality requirements for the output. Completing a
generation without interruption, but with the drawback that there is no guarantee that
the output is as desired, is a big issue for the developers relying on generated code. This
is especially important for syntax and type safe Template Engines (more in Chapter 2)
to deny any output which is not syntax or type safe.

Still, for some Use-Cases, it might be acceptable for the input data to be incomplete.
Many Code Generators allow different input sources, such as Entity Classes, UML di-
agrams, or OpenAPI5, and differ in the information DG, they can deliver. OpenAPI
is good at documenting external interfaces, but in general does not have knowledge of
internal components. Though, this data might be important to generate useful out-
put. Giving the opportunity to add further data, i.e., through manual input, when the
generation would be interrupted otherwise, not only increases the chance of successful
generation, but also increases the usefulness of those code generators. Instead of deciding
between full output or no output at all with a fully automated process, the main idea is
to use a semi-automated backup process, when it can’t be guaranteed that all required
data is available at evaluation time. Therefore, the code generator needs to know before
evaluating any template of a predefined set, if it has the required data to evaluate all of
them without interruption, due to missing data and giving feedback as soon as possible,
following the Fail Fast Principle[14]. If a comparison of templates and data model found
required data is missing, the code generator has to go into the semi-automated process
to get the missing data from the user through manual input or by other means. If all
required values are available, the process stays fully automated.

1.2 Outline

The aim of this thesis will be to establish the described semi-automated backup process
for template-based source code generation.

First, in Chapter 2, we will investigate template-based source code generation approaches
and applications, where our process might be applied to. We will look at CobiGen
exemplary for a full framework, as well as current approaches in syntax- and type-safe
code generation on the example of Repleo and SafeGen. Also, we will look at current
possibilities for missing value checking.

5https://www.openapis.org/

5

https://www.openapis.org/

1 Introduction

Chapter 3, will describe the process for recognizing and fixing missing data, from the
input, that is required for generation. We will set the requirements for this process.
Templates can differentiate a lot between template languages and hold much data not
required in this process. Therefore, we will define a model specification as an abstraction
for template meta language, with general rules, to transform a template to this abstract
model.

Afterwards, Chapter 4, will apply the specified process of Chapter 3 to the template-
based source code generator examples presented in Chapter 2, to discuss the usefulness
and possible problems or difficulties in an advanced and industrial context.

At last, we will summarize our process, scientific findings and issues that have to be
addressed in future work.

6

2 Related Work

This chapter will discuss related technologies in this area. Before going into detail,
it is important to mention that currently there exist no approach targeting a semi-
automated process or any kind of manual intervention before evaluation time. Therefore,
the following three sections will present popular tools or frameworks based on template-
based source code generation. The goal is to find out, if they use built-in error handling,
and to gather additional requirements our solution has to address. Repleo, SafeGen and
CobiGen are those technologies that we will investigate. At last, we discuss built-in
expressions of some Template Engines that target null values.

2.1 Repleo

Arnoldus, Bijpost and van den Brand introduced Repleo[4], a system to build configurable
syntax-safe Template Evaluators.

Arnoldus defines three classes of safety for code generators:

• no-safety

• syntax-safety

• type-safety

Syntax-safety guarantees that the output code of the generator is syntactically correct.
This means that every output sentence is a valid sentence of the object language and can
be parsed.

Type-safety, additionally, guarantees that the output is semantically correct. This means
that duplicate variable declarations or type errors are detected, which is not detected by
a syntax check. Therefore, every output sentence can be parsed and compiled success-
fully.

7

2 Related Work

Figure 2.1: Syntax-safe architecture of Repleo [2]

If neither can be guaranteed, the evaluator is classified with no-safety. Most engines are
classified with this, such as FreeMarker, Velocity or Mustache.

To guarantee syntax-safety, Repleo extends the one-phase model shown in Figure 1.1 to a
two-phase model, shown in Figure 2.1, by processing templates internally as a parse tree.
With this approach, templates are forced to follow a defined template grammar. This
template grammar is a combination of object and meta grammar and production rules
to connect them, which need to be configured manually[2, chapter 5.1]. After parsing in
phase one, the syntax-safe parse tree can be evaluated with the input data to generate
code in phase two. Important for us are the two shown errors in the figure. The first
error occurs, when the template can’t be parsed with the template grammar. The second
error occurs, if the evaluator is not able to evaluate a placeholder of the parse tree to
generate code that follows the defined object language grammar. This is either because
the concrete value of the input data is not leading to syntax safe code or because the
value is missing.

Repleo handles missing values, like the mentioned non-safe evaluator FreeMarker, by
throwing an exception. Our solution should ideally be applicable to all Template En-
gines, which include syntax-safe evaluators. To support Repleo and similar approaches,
the architecture of our solution should not be constricted by the internal processing of
the templates by the evaluator. Therefore, our approach will only tackle the second men-
tioned error by Repleo and only if it’s because of missing values. Anything else would
harm the soundness of the system based on syntax-safety.

8

2 Related Work

2.2 SafeGen

Next, we will look at SafeGen, a meta-programming tool that claims to be the only one
that guarantees the type-correctness of the generated program at the compile time of
the generator[9]. There might be certain bugs within a generator that occur only under
certain input, which stays undetected for a long time. This is why SafeGen uses static
checks, which do not try to find errors in the generated code or the input data, but in the
generator directly. Therefore, if a generator written in SafeGen passes its compilers tests,
it guarantees to only generate type-safe Java programs, not only for the given input, but
for all possible inputs.

While Repleo allows the use of different programming languages and customizability for
the developer by introducing new components, SafeGen is only applicable for generating
Java programs. Errors are not handled differently as in previous approaches, though
there are more cases in which an error occurs, so that the type-safety can be guaranteed.
Important terms mentioned by Huang u. a. are Soundness and Usefulness[9]. Soundness
in this case means that any output is correct depending on a given criterion. If the
generator’s goal is to be syntax-safe, then every output generated has to be syntax-safe
for it to be sound. Therefore, if not syntax-safe code might be generated, it has to
be rejected. This implies that rejecting everything and generating no output achieves
soundness. This leads to Usefulness, which can’t be measured and is based on personal
judgement. But seeing the previous statement, it should be easy to agree that no output
is not useful at all for a developer. By decreasing the chance for an interruption with
our approach, we aim to increase the usefulness of any Template Engine adapted to
it. The level of soundness, on the other hand, should be not meddled with. Each
engine sets different quality requirements to their generated output, therefore me must
guarantee that our pre-processing does not decrease the quality requirements defined by
the Template Engine in use.

SafeGen templates use a special meta language syntax. Listing 2.1 shows an SafeGen
example, which can generate an Interface including all method signatures for an input
class. Firstly, SafeGen allows the use of a type based system in templates, which is used
by the so-called Theorem Prover to statically check the syntax. Therefore, one can use
types such as Class, Method, Field, Interface, etc. and use specific functions on them. A
SafeGen template consists of two parts, the Generator definition(#defgen ...) and the
body inside {...}. The Generator definition has an identifying name and can have an

9

2 Related Work

1 #defgen makeInterface (Class c) {
2 interface I {
3 #foreach(Method m : MethodOf(m,c)) { void #[m]

(); }
4 }
5 }

Listing 2.1: SafeGen: Generate an Interface for any Input class

input inside the brackets, which are either cursors or predicates describing constraints
on the inputs. Cursors are a SafeGen concept to specify a type declaration, such as:

Method m : MethodOf(m,c) & Public(m) & !Abstract(m)

Here the Method m is specified as being a method of a class c, has to be public and
non-abstract. In the generator definition, it may be used to specify to accept a single
input class, such as:

#defgen myGen (Class c : !Abstract(c)) { ... }

A generator can also get a set as an input and generate for each element of that set by
using a predicate, such as:

#defgen myGen (input(Class c) => !Abstract(c)) { ... }

Inside the body one can use three SafeGen constructs, which are #[...], to access vari-
ables, #foreach and #when, similar to other template languages.

2.3 CobiGen

CobiGen1 is an incremental source code generation framework, introduced by Brunnlieb
and developed by Capgemini and available in open-source.

The term incremental refers to the process of code generation on an existing code base.
Generated code can create a conflict with the existing code base, therefore requiring
structural merging to resolve them. The source code is incrementally enriched according

1https://github.com/devonfw/cobigen

10

https://github.com/devonfw/cobigen

2 Related Work

Figure 2.2: Main CobiGen Components with inputs and outputs[5][6, Fig.3 (translated)]

to the wishes of the user and encourages him to work towards small increments. In-
crements are a collection of templates, and define a unit within a use-case. Figure 2.2
depicts the main components of the CobiGen architecture, with its inputs and outputs.
The Compilation unit consists of the input files selected by the user and defines the first
constraint of generateable increments, that are possible based on the input files. In a
second step, the user is prompted to select one of those increment options. The selected
increment defines which templates have to be generated.

CobiGen can generate code from templates on every layer of a chosen target applica-
tion. For example, it allows generating a whole CRUD application from a single Entity
class. In this case the single Entity class is taken as input, converted internally into a
data model, which is then used to fill the required templates needed for a full CRUD
application, such as DAOs, Transfer Objects and simple CRUD use cases with REST
services. While the whole CRUD application is the use-case, DAO’s, REST services, etc.
define each an incremental unit. The filled templates are referred to as patches, which
are then merged with the code base, allowing multiple merging strategies. The main
strength of CobiGen is its wide area of application, due to its many extensions, which
are shown in Figure 2.3. Input Reader implementation allow files to be parsed and the
data converted to an input model, that can be used for template evaluation. CobiGen
can be extended to work with different Template Engines as well. It mainly uses either
FreeMarker and Velocity, but also offers syntax-safe code generation with the Syntax
Safe Java FreeMarker Template Engine. Evaluated templates result in a patch, which
is already a valid output. However, CobiGen can work on an existing source code base,
where the generated file, can lead to merge conflicts with an existing base file. Structural

11

2 Related Work

Figure 2.3: CobiGen extension points [5, Figure 4.6]

Merger implementations define which file formats can be merged and define the strategy
to do so. Some might be as simple as to override the base file completely, while others
allow complex merge strategies.

Each component defines a set(S) that includes all of its implementations. Every com-
bination of the component’s implementations is theoretically possible, resulting in the
Cartesian product:

SInputReader × STemplateEngine × SStructuralMerger (2.1)

And still, if a specific Template Engine or input type is not yet supported, it can be
adapted as well. It offers great help for the developers due to Eclipse IDE integration
and by improving the source code with small increments on the user’s needs. Through
a User interface, the developer is prompted to select what he wants to generate. The
options are pre-filtered by the type of input, called Compilation Unit in the CobiGen
context.

12

2 Related Work

CobiGen uses a directory structure for relating templates, exemplary shown in Figure 2.4.
There are two important types of configuration files, that define which templates have
to be generated. These are the context configuration and the template configuration.

CobiGen_Templates

|- templateFolder1

|- templates.xml

|- templateFolder2

|- templates.xml

|- context.xml

Figure 2.4: CobiGen Directory Structure

The Context Configuration2 is defined within a file called context.xml in the root direc-
tory of a template directory. Based on the input compilation unit, the context configura-
tion selects which template folders are worth generating and therefore defines the input
based pre-filtering of generateable use-cases mentioned earlier.

The Template Configuration3 is defined within a file called templates.xml, which needs
to be in the according template directory (i.e., templateFolder1 or templateFolder2

). It defines the available increments that can be generated. As mentioned, the user is
prompted to select one or multiple increments. The user selection defines which templates
need to be generated.

Because of the different input and output options, there are a lot of combinations that
can occur. Each has a different amount of data available(DG) and required(DR) and
therefore results in a varied-sized difference of missing data DM , where DM = DR−DG.
Currently, there is no automatic prediction of the size of DM for each combination, which
is why the context configuration has to be defined manually to set which combinations
are allowed and based on their likeliness to succeed. With our, approach, we might be
able to support more options.

2https://github.com/devonfw/cobigen/wiki/cobigen-core_configuration#context-
configuration

3https://github.com/devonfw/cobigen/wiki/cobigen-core_configuration#
templates-configuration

13

https://github.com/devonfw/cobigen/wiki/cobigen-core_configuration##context-configuration
https://github.com/devonfw/cobigen/wiki/cobigen-core_configuration##context-configuration
https://github.com/devonfw/cobigen/wiki/cobigen-core_configuration##templates-configuration
https://github.com/devonfw/cobigen/wiki/cobigen-core_configuration##templates-configuration

2 Related Work

2.4 Built-in expressions for missing values

Some Template Engines offer options for the handling of missing values. FreeMarker has
expressions to define default values and expressions to check, if a placeholder is missing,
shown in Listing 2.2. While this is a good way to handle those errors, it still has some
issues.

For once, it needs to be offered by the engine of use, while we try to find a process which
works on every Template Engine. Also, these options mean extra work for the developers
for every template there is, so that each placeholder would need to be checked before
use. This would increase the complexity of the templates, while not directly solving our
problem. If the value name would be missing, the whole section would just be left out,
which depending on the context can be crucial, like in the example (Listing 2.2), where
there would be no class declaration in the context of a Java class.

Our approach should not rely on the developers having to redesign templates with those
mechanisms. Of course, if a placeholder is not seen as necessary in the context of the
template, such techniques can be applied. Though, this introduces another issue in the
context of conditional directives for our approach, which is how to handle the condition
statement.

It can either ignore the condition and its result on evaluation and make sure to cover
every placeholder in any branch, or pre-evaluate the condition before template evaluation
time and only cover the needed branch. More to that in Section 3.1.4.

The expression to set default values, i.e.,${name!"DefaultName"}, on the other hand, does
not need pre-evaluation and should be easy to parse as well. In this context, name always
has backup value, so it’s never seen as a potentially missing value for evaluation. This
has to be defined as a rule on template parsing.

In any other case, each placeholder should be seen as necessary for the evaluation, and
our approach should guarantee that they are available at evaluation time.

1 <#if name??>

2 class ${name}

3 </#if>

Listing 2.2: FreeMarker value checking

14

3 Template Pre-Processing for
semi-automated Code Generation

As described in the problem statement in Section 1.1, the goal is to implement a semi-
automated backup process to deny interruptions that break the whole generation process,
caused by missing input data. Thus, increasing the usefulness of code generators, while
maintaining the soundness. To achieve that, we need a process that compares the data
we have in the current instantiation with the data we require for all selected templates
through a target/actual-comparison, followed by requesting missing data found in the
comparison. The requested data then needs to be added to the data model, which we
will refer to as enriching the data model. The actual side is already available in the
form of the data model at runtime. Though different Template Engines often work with
slightly different internal representations of this model, fundamentally they are all tree-
based. The initialization of it can be done with basic data types, such as lists or arrays,
maps and strings or numerics, which will then be transformed into the internal structure
through object wrapping. FreeMarker classifies the objects into scalars and containers,
terms we will use too.

Scalars are non-compound data types, which means the data type only contains a single
value[13]. This can be numeric values, boolean, strings and temporal data such as dates.
The opposite are compound data types.

Compound data types are allowed to store multiple values [12]. Containers are a form
of compound data types, that are allowed to store different typed values, compared to
arrays that only allow the same type of values. In the context of template processing,
the important distinction is between the abstract data types of sequences and maps.
Both associate a unique identifier to each of its values. Sequences use an integer value
referred to as index as identifier, starting with 0 and increasing for each value, while
maps associate a string to each value. Some Template Engines such as FreeMarker allow
custom objects as containers, if they follow certain requirements.

15

3 Template Pre-Processing for semi-automated Code Generation

For the target side, we have to rely on the information the templates offer. Though
templates differ much more in their structure and design between different Template
Engines than the data model, they contain information we don’t actually need for a
comparison. We only require the used meta language of the templates, which although
differs in syntax, are quite similar in their semantics, which we can represent in a model.
This model should hold the required data in a simple, human-readable form, including all
used variables in a template and the context they appear in, such as loops or conditionals.
We will refer to this model as Template Meta Model (TMM).

Requirements for the Template Meta Model

Most importantly, the TMM shall be derivable from a template. Therefore, common
directives used in templates can be translated to the TMM. Directives covered in Sec-
tion 3.1 are:

1. variables (local and global)

2. iterations over sequences and maps.

3. conditionals (if, else if, else)

4. functions

5. macros

6. references to other files through imports and sub-templates

ReqF1 : The translation from template to TMM is defined unambiguously by Transfor-
mation rules.

ReqF2 : Transformation rules should have an appropriate complexity to enable simple
manual creation of TMM.

ReqF3 : Each template shall be associated with exactly one TMM.

The TMM lays the foundation for the request of missing values and enrichment of the
data model, in case variables are missing. At the same time, it should be possible to
depict relations for these variables and special contexts, defined in a template. For
example, a template can reference a nested variable, such as field.name in FreeMarker,
where field is a reference to a container, such as map or sequence and name is a variable
defined in what is called the local scope of field. Therefore, name is dependent on the

16

3 Template Pre-Processing for semi-automated Code Generation

existence of a container field. However, there are also template directives that do not
or not necessarily create a scope. Conditionals do not create a scope, while functions
allow to create a scope based on their arguments, which will be covered in more detail
in Section 3.1.4 and Section 3.1.5. They are primarily used for structuring the meta
code in a template. Therefore, TMM elements can be categorized into data elements
and elements that are primarily used to structure the meta code and will not be used
to compare and request data, such as conditionals, which we will refer to as structure
elements. Structure elements create a special context, not to be confused with a scope.
While scopes define the region in which a variable is valid, the structure context defines
where a variable is used and therefore required within a template. The FreeMarker
example, shown in Listing 3.1, should demonstrate the difference. field defines a local
scope in which name is valid, while the if branch defines the context in which field and
therefore name are used and required. Thus, given print is true, field and field.name

need to be available in the data model in that context.

1 <#if print>

2 print ${field.name};

3 </#if>

Listing 3.1: Context vs. Scope example

ReqF4 : TMM data elements should be modelled based on their expected abstract type:
scalar, sequence or map.

ReqF5 : TMM structure elements should be modelled based on the contexts they create:
conditional branches, iterations, and references to functions or different template
files.

ReqNF1 : Readability: Structure and data elements should be reduced to a flatter repre-
sentation, given that it does not change the meaning.

By transforming a template engine specific template into a general representation, the
TMM can be used in the later process without requiring template engine specific knowl-
edge.

ReqF6 : The TMM uses an abstract representation, independent of Template Engine
specifications.

The last requirement for the TMM targets the organization within a template directory.
Multiple TMMs should be allowed to be stored in one file. This allows the user to define

17

3 Template Pre-Processing for semi-automated Code Generation

one file per TMM on the same directory level as the according template, or to create one
file per directory level or for all subdirectories.

ReqNF1 : Usability: TMM’s can be defined in one or separate files to allow a diverse
usage.

Pre-Processing System Requirements

With the TMM we can implement a process, which runs before the evaluation of any
template, that includes the comparison of a TMM and a data model, as well as the
enrichment of the data model, referring to the process of adding the missing data to it.

ReqF7 : The comparison delivers a set of missing values DM with their respective type,
according to ReqF4 .

The missing data needs to be requested from the user i.e, via a command line interface.
Only scalars should be requested. If a whole container is missing, all nested scalars
should be requested and be arranged in to the according container by the system.

ReqF8 : The user has to be prompted for all missing scalar values.

A missing sequence is allowed to request multiple elements, even though one would be
enough for a successful check. If an entire sequence is undefined, it is likely that the user
wants to define more than one element. For example, if the sequence fields is undefined,
when the template in Listing 1.1 is supposed to be generated, the user might want to
add more than one field.

ReqNF2 : Usability: If a sequence is missing, multiple elements can be requested.

The data model should only be enriched with the user-requested data, meaning values
can be added to it, but none should be removed or reorganized, because that could lead
to unwanted consequences.

ReqF9 : The data-model is only be allowed to be queried and enriched.

The pre-processing system should be expandable to different Template Engines, therefore
should work with different engine architectures such as Repleo’s two-phase model. Given
the TMM follows ReqF6 , the following process can be template engine independent as
well, relying on interfaces for template engine specific tasks. This reduces the coding work

18

3 Template Pre-Processing for semi-automated Code Generation

needed to extend the process for other template engines, because only the interfaces have
to be specified.

ReqNF3 : Extensibility: Decoupling of template engine specific behavior from the core
components through extension points.

3.1 The Template Meta Model

A Template Meta Model is a short representation of a template reduced to the place-
holders and the context they occur in. It is used as the basis for the later comparison.
To create the TMM, according to ReqF1 , it is important to establish transformation
rules(TR) from template to TMM. This makes sure that a TMM can be unambiguously
created from a template manually. Formally, this means:

f : template −−→
TR

tmm (3.1)

Thus, we can’t require information in the TMM, that is not available within a template.

This may seem as a simple mapping process, where template directives are mapped one-
to-one. However, following ReqNF1 in the transformation process, we can differentiate
another type of transformation rules. In addition to mappings, we need rules that simplify
the result of mappings based on the context they are mapped to by removing unnecessary
structures. We will refer to those rules as mapping transformation rules and reduction
transformation rules. The reduction transformation rules can be applied repetitively,
until none are applicable, and the final TMM is created. The following sections, will
describe transformation rules mostly in abstract form, explained mainly on FreeMarker
examples. These abstract transformation rules need to be specified for a Template Engine,
considering the engine specifics. It will be described how these rules should be prioritized
to guarantee an unambiguous transformation.

3.1.1 The Foundation

First, a data format had to be determined. After looking at the many popular options,
like YAML, JSON and XML, it would not be much of a functional difference to use any
of them. We decided to use XML, due to the compact structure. XML Nodes allow the
human reader to easily distinguish the kind of model element, and attributes reduce the

19

3 Template Pre-Processing for semi-automated Code Generation

1 {
2 "tmm": {
3 "file": "templates/Template2.ftl",
4 "templatEngine": "FreeMarker",
5 "scalars": [
6 {
7 "key": "name"
8 },
9 {

10 "key": "vis"
11 }
12],
13 "sequences": [
14 {
15 "key": "fields",
16 "element": "field",
17 "scalars": [
18 {
19 "key": "type"
20 },
21 {
22 "key": "name"
23 }
24]
25 }
26]
27 }
28 }

Listing 3.2: TMM JSON Example

number of lines and nesting. Compare Listing 3.2 and Listing 3.3, which store the same
information. The JSON example needs thrice the lines as the XML example.

Therefore, we will model a TMM, as shown in Listing 3.3 with the tmm node. To uniquely
identify the related template, the tmm node requires the relative PATH from the XML file to
the template in the file attribute, according to ReqF3 . Optionally, the templateEngine

attribute allows specifying the Template Engine which is being used. Although the
structure of the TMM is general, keeping track of the Template Engine is helpful, mainly
for engine specific configuration. Specific rules for the TMM, such as determining fast,
which features the Template Engine is supposed to support and checking if the TMM
includes some that are not supported, might be configured. Additionally, it could be
used to load the right context of classes, for example with Dependency Injection (DI).

20

3 Template Pre-Processing for semi-automated Code Generation

1 <tmm file="templates/Template2.ftl" templateEngine="
FreeMarker">

2 <scalar key="name"/>
3 <scalar key="vis"/>
4 <sequence key="fields" elementKey="field">
5 <scalar key="type"/>
6 <scalar key="name"/>
7 </sequence>
8 </tmm>

Listing 3.3: TMM XML Example

1 <tmmConfiguration version="VERSION_NUMBER">
2 <tmm file=PATH [templateEngine=ENGINE]>
3 ...
4 </tmm>
5 ...
6 </tmm>

Listing 3.4: TMM XML Frame

XML only allows one root node, so to manage multiple TMMs in one file, to ful-
fill ReqNF1 , each XML file including at least one tmm node has to be organized in a
tmmConfiguration node, as shown in Listing 3.4.

Because there are currently no similar approaches, we had to start from scratch and
develop the model exploratively by increasing the complexity of the TMM with each
directive. The next subsections will cover each of these directives, showing how we
modeled those features and describing the transformation rules as required by ReqF1 , as
well as describing issues that occurred while exploring. We will mainly use the FreeMarker
Template Engine syntax for examples.

3.1.2 Variables

The core of every template are variables. They only have an identifying string, which
when evaluated should match a key of the data model and is then replaced with the
assigned value. In FreeMarker they are used as ${identifier}. The identifier can refer
to a key in the global and local namespace.

21

3 Template Pre-Processing for semi-automated Code Generation

The global namespace is only implied by a template, because it refers to keys that need
to be defined outside the template in the data model. Global variables can be used
anywhere in a template, given the key-value pair exist in the data model.

Local namespaces are defined within a template. FreeMarker for example allows the
directive <#assign key=value>, where a local variable can be declared and assigned to a
value. Also, local variables can be declared in an iteration directive, where the elements
of a sequence can be referred to over a locally defined name. Local variables are only
accessible within the scope they are declared in. Thus, sequence element variables can
only be accessed within the iteration directive scope and not outside of it.

The variable itself, in general, does not give information about the expected type. There-
fore, the type of the expected value is derived from the context it appears in, which is
why variables cannot be modelled in a unified way, but need to be distinguished, based
on the context. The variable identifier can be used as the key for the data elements.
Those are scalars, maps, and sequences.

Scalars

Scalars are modeled via the scalar node <scalar key=IDENTIFIER/>, as shown in List-
ing 3.5.

1 <tmm file=PATH [templateEngine=ENGINE]>

2 <scalar key="name"/>

3 </tmm>

Listing 3.5: Scalar node

It only has a key attribute, which equals the key used in the template. Scalars have to
be unique through their key in the same scope, for instance it’s not allowed to have two
scalar nodes with the same key in the global scope. Additionally, this means, that we
only need one representation of the same variable reference in the TMM, even though it
might be used multiple times within a template.

Containers

Maps are always implied in templates. FreeMarker uses unescaped dots ’.’ in the vari-
able identifier, i.e., book.title, which implies that the identifier book refers to a map

22

3 Template Pre-Processing for semi-automated Code Generation

including the variable title. Repleo uses a ’/’ instead of a dot, while Mustache chooses
a different approach. Listing 3.6 shows a Mustache template. Mustache does not use
a dotted notation for referencing local scopes, instead uses a notation that has a start-
and endpoint, here declared with the namespace author. Every variable in between is
used in the scope of that namespace. name and age are therefore only valid in the scope
of author, which is therefore implied to be a container, specifically a map. Listing 3.7
shows an example data model, to evaluate the template fully.

1 {{#author}}

2 {{name}}

3 {{age}}

4 {{/author}}

Listing 3.6: Mustache Template

1 {

2 "author":{

3 "name": "Marcel",

4 "age": 24

5 }

6 }

Listing 3.7: Mustache Data Model

Maps have to be modeled as a separate node, in which dependent scalar nodes have to
be nested, as shown in Listing 3.8. For the book.title example, book is the SCOPE

_IDENTIFIER and title is the NESTED_IDENTIFIER. This also allows multiple nested
maps.

1 <map key=SCOPE_IDENTIFIER>

2 <scalar key=NESTED_IDENTFIER/>

3 ...

4 </map>

Listing 3.8: Map node

This also means that if a key-value pair in a map is missing in the data model, it has to
be checked as well, if a map has to be initialized first or if this map is existing but misses
just this pair.

Each key in the TMM must be able to be addressed uniquely, by a list of keys from
root to the selected key. In the example, the scalar-key is title the full unique path is
[book, title].

Sequences are mainly used for iteration in templates, therefore they will be modelled in
Section 3.1.3.

23

3 Template Pre-Processing for semi-automated Code Generation

3.1.3 Iteration

The second directive type, we will transform to the TMM are iterations. They require a
sequence or in fewer cases a map as input. Listing 3.9 shows the use of iterations over a
sequence in FreeMarker.

1 <#list fields as field>

2 private ${field.type} ${field.name};

3 </#list>

Listing 3.9: FreeMarker list directive

It also allows iterating maps with <\#list persons as id, person> or ranges such as
<\#list 1..10 as x>. These templates introduce variables that are only locally available
inside the list directive scope.

For the TMM we are mainly interested in the data element that is iterated, rather than
the iteration itself. However, with a variable size that is only determined on runtime
when the data model is created, the TMM has to work for any size of sequence. To
guarantee that, the sequence node has to establish a pattern that all elements of that
sequence need to follow.

1 <sequence key=KEY [elementKey=ELEMENT_KEY]>

2 ...

3 </sequence>

Listing 3.10: Sequence node

We will map iterations over lists or similar collections to the sequence node, as shown
in Listing 3.10. It needs a key attribute like the scalar node, but also allows an element
attribute, which is needed depending on the Template Engine. The elementKey attribute
defines the local namespace under which dependent variables can be addressed with. For
the previous FreeMarker template example, the TMM needs to include the sequence
node, shown in Listing 3.11.

1 <sequence key="fields" elementKey="field">

2 <scalar key="type"/>

3 <scalar key="name"/>

4 </sequence>

Listing 3.11: Sequence node example

24

3 Template Pre-Processing for semi-automated Code Generation

fields is the name of the list and is set as the key, while field is the local namespace
under which nested variables will be addressed in the template. So the nested variable
name in the list is addressed in the template as field.name. Some Template Engines
don’t use this kind of local addressing, but instead would address similar to Mustache,
as shown in Listing 3.12. In contrast to FreeMarker, the Mustache template itself does
not imply a sequence or map uniquely, but instead the type is determined based on the
data model. Listing 3.13 shows an according data model including a sequence called
fields.

1 {{#fields}}

2 private {{type}} {{name}}

3 {{/fields}}

Listing 3.12: Mustache Sequence Template

1 {

2 "fields":[

3 {

4 "type": "String",

5 "name": "firstName"

6 },

7 {

8 "type": "String",

9 "name": "lastName"

10 }

11]

12 }

Listing 3.13: Mustache Sequence Data Model

Special Cases

Maps are iterable in some engines as well, an example template is shown in Listing 3.14.
However, this is only an abbreviation by skipping the local namespace definition, when
there are only two needed nested variables. The extended version is shown in List-
ing 3.15.

1 <#list products as name, price>

2 <p>${name}: ${price}

3 </#list>

Listing 3.14: Map Iteration FreeMarker Template

25

3 Template Pre-Processing for semi-automated Code Generation

1 <#list products as product>

2 <p>${product.name}: ${product.price}

3 </#list>

Listing 3.15: Map Iteration FreeMarker Template

Therefore, we can do the same to model this, which means leaving out the local names-
pace, which is defined by the elementKey, and including only two sub data elements,
resulting in Listing 3.16.

1 <sequence key="products">

2 <scalar key="name"/>

3 <scalar key="price"/>

4 </sequence>

Listing 3.16: Modeling Map Iteration

Locally defined sequences, such as <#list 1..10 as x> don’t need to be mapped. They
do not hold any placeholder that needs external data, therefore we can ignore anything
related to x.

Up-shifting

Still, there may be further directives or global variables inside the iteration directive,
that are not in the iteration scope. This allows the mapped element to shift level up-
wards, meaning outside the sequence element within the TMM. The variable fieldvis

in Listing 3.17 is global and thus not related to field. Figure 3.1a would create the
impression, that fieldvis would be dependent on field, because the TMM does not use
the full dotted path as the key. Therefore, the variable has to be shifted upwards outside
the sequence node, as shown in Figure 3.1b. This process might be repeated, if there
is multiple nesting, shifting the variable upwards multiple times. Because fieldvis is a
global variable, it has to end up on top-level. Up-shifiting is a reduction transformation
rule that needs to be applied after mapping an element. The same can be applied for
sequences and maps. The purpose of nesting is to show dependencies between directives.
After applying the mapping transformation rules there might be cases, where there is a
nesting that does not express a dependency. Up-shifting is a means to achieve the true
purpose of nesting.

26

3 Template Pre-Processing for semi-automated Code Generation

1 <#list fields as field>

2 ${fieldvis} ${field.type} ${field.name};

3 </list>

Listing 3.17: List directive including a global variable

1 <sequence key="fields"
elementKey="field">

2 <scalar key="fieldvis"/>
3 <scalar key="type"/>
4 <scalar key="name"/>
5 </sequence>

(a) Without variable up-shifting

1 <sequence key="fields"
elementKey="field">

2 <scalar key="fieldvis"/>
3 <scalar key="type"/>
4 <scalar key="name"/>
5 </sequence>

(b) After variable up-shifting

Figure 3.1: Variable shifting in a list

3.1.4 Conditionals

Conditionals allow multiple branches depending on the evaluation of a condition. Con-
ditionals are structure elements, which are different to iteration and have to be modeled
directly. As mentioned, they establish a special context, unlike a scope. Placeholders
used uniquely within a templates branch have to be nested within the according TMM
branch as well. The context denies elements to be shifted upwards, unless certain crite-
ria are fulfilled, which will be covered in the Subsection Further Branch-Collapsing
Rules. There are four cases that need to be modelled:

• if

• if-else

• if-(elseif)+

• if-(elseif)+-else

Combined they result in the regular expression: if − (elseif)∗ − (else)0,1, which the
TMM needs to depict. If and else can only occur once in a conditional context, while
elseif can occur any number of times with different conditions.

Listing 3.18 shows, how Freemarker implements conditionals. Each if or elseif directive
has a condition, that is also should be mapped into the TMM.

27

3 Template Pre-Processing for semi-automated Code Generation

1 <#if condition1>

2 ...

3 <#elseif condition2>

4 ...

5 <#else>

6 ...

7 </#if>

Listing 3.18: FreeMarker Conditional structure

Conditional structures are mapped to a conditional node, as shown in Listing 3.19, that
allows three subnode types: if, elseif and else. As always, the square brackets symbolize
optionality, which means that every conditional node needs at least a nested if node.

1 <conditional>

2 <if condition=CONDITION1>

3 ...

4 </if>

5 [<elseif condition=CONDITION2>

6 ...

7 </elseif>

8 ...

9 [<elseif condition=CONDITIONn>

10 ...

11 </elseif>]...]

12 [<else>

13 ...

14 </else>]

15 </conditional>

Listing 3.19: Conditional Node Structure

The condition will be simply copied from the template as a string, as an identifier to
link the conditional branch with its origin. However, the condition can include place-
holders too, which need to be stored as scalar nodes outside the conditional node.
See Listing 3.20 for example, which uses a conditional part depending on the value
of createGetterAndSetter within a list-directive. If excluding line 2, field.type and
field.name would only be used within the if-branch and not outside of it. So the ac-
cording TMM part could look as depicted in Listing 3.21. This means the condition
createGetterAndSetter needs to be evaluated for each element of the sequence fields.
The condition is a variable itself, to be precise a scalar, and therefore need to be mapped

28

3 Template Pre-Processing for semi-automated Code Generation

to a scalar node. Because it is not dependent on the local scope of field it can be shifted
upwards, outside of the sequence node, resulting in in line 1 of Listing 3.21.

1 <#list fields as field>

2 private ${field.type} ${field.name};

3 <#if createGetterAndSetter>

4 public ${field.type} ${"get" + field.name?

cap_first}() {

5 return ${field.name};

6 }

7
8 public void ${"set" + field.name?cap_first}(${

field.type} ${field.name}) {

9 this.${field.name} = ${field.name};

10 }

11 </#if>

12 </#list>

Listing 3.20: FreeMarker Template example with conditional context

1 <scalar key="createGetterAndSetter"/>

2 <sequence key="fields" elementKey="field">

3 <conditional>

4 <if condition="createGetterAndSetter">

5 <scalar key="type"/>

6 <scalar key="name"/>

7 </if>

8 </conditional>

9 </sequence>

Listing 3.21: TMM of conditional structure within sequence

However, this leads to an issue when conditional and sequence nodes are combined. type

and name are related to field, which is not cleary recognisable in Listing 3.21. Those
variables are not allowed to shift outwards, due to the special context the conditonal
structure introduces. Global variables might be nested on the same level inside this
conditional branch. Therefore, the variables defined in a local scope need to be distin-
guishable from the global ones. Nesting them in a map node with the key equal to the
elementKey attribute of the sequence node, allows local variables to be uniquely identified
in this special case, such as shown in Listing 3.22 from line 4-6.

1 <sequence key="fields" elementKey="field">

2 <conditional>

3 <if condition="createGetterAndSetter">

29

3 Template Pre-Processing for semi-automated Code Generation

4 <map key="field">

5 <scalar key="type"/>

6 <scalar key="name"/>

7 </map>

8 </if>

9 </conditional>

10 </sequence>

Listing 3.22: TMM of conditional structure within sequence (fixed)

With line 2 in Listing 3.20 however, this would look a lot different, because the two
variables are used outside of a conditional branch as well, therefore making it unnecessary
to cover them inside the if-branch node. This means that before mapping, it needs to
be checked, if the variable in focus was already mapped in the same context on a higher
level. If already mapped, such as in this case field.type, it does not need to be mapped
a second time. Therefore, the map and its nested scalars in line 4-7 of Listing 3.22 do not
need to be mapped. Having no nested elements, the if-branch loses its purpose, which is
why it can be removed. Still the condition in this example refers to global variable, which
we can’t ignore. Therefore the scalar node with the condition variable has to remain.
We refer to this reduction transformation rule as branch-collapsing, the result shown in
Listing 3.23.

1 <scalar key="createGetterAndSetter"/>

2 <sequence key="fields" elementKey="field">

3 <scalar key="type"/>

4 <scalar key="name"/>

5 </sequence>

Listing 3.23: TMM with collapsed branch

The conditional nodes main purpose is to depict variables or directives that only exist
within a condition-based context. Ideally, only the required context needs to be pre-
processed. Unfortunately, this proves to be difficult to implement, because this would
mean the condition has to be pre-evaluated the same way as the actual template eval-
uation to find the right branch. Otherwise, on comparison, every branch needs to be
covered, which might require values to be requested, that aren’t actually needed.

An idea is to create a temporary template only consisting of the conditionals, where at
the end of each path lies a unique result, such as a numeric value for unique identification.
The temporary template is then to be evaluated by the same Template Evaluator that
is used for the original template and based on the output, it can be determined which

30

3 Template Pre-Processing for semi-automated Code Generation

path has to be compared. Though, the actual solution is to be future work, because it
would mainly improve the user experience, which has a lower priority at this point, while
adding a lot of complexity to the process.

Further Branch-Collapsing Rules

To this point we only addressed, what has to happen, if only an if-branch exist, that does
not include new variables. When dealing with multiple branches, new cases come up. If
multiple branches exist, completely collapsing the conditional structure is only allowed,
if every branch is empty. If more than one branch exists, where at least one includes
previously unused variables, there are two distinguishable cases.

First, when the if-branch node or elseif-branch nodes have nested data or structure
elements, any empty branch might be allowed to be collapsed. The else-branch, if empty,
can be completely ignored. This is shown in Figure 3.3a and b, where the second elseif
branch and the else branch are collapsed.

When an else-branch node or elseif-branch node has nested elements. Every empty branch
node before that has to be transformed to a one-line node, such as <if condition="

CONDITION"/>. This is necessary for the case that conditions are pre-evaluated, so that it
is defined under which condition the else- or elseif-branch is used, where for elseif-branches
the order of conditions is important. This is shown in an example in Figure 3.3c and d,
where the if-branch of line 4-5 and the elseif-branch of line 6-7 are reduced to a one-line
node each in line 4 and 5 of Figure 3.3d.

1 <conditional>
2 <if condition="condA">
3 </if>
4 <elseif condition="condB">
5 </elseif>
6 <elseif condition="condC">
7 <scalar key="x"/>
8 </elseif>
9 <else>

10 </else>
11 </conditional>

Listing (3.24) TMM representation of
multiple branches
before Collapsing

1 <conditional>
2 <if condition="condA"/>
3 <elseif condition="condB

"/>
4 <elseif condition="condC">
5 <scalar key="x"/>
6 </elseif>
7 </conditional>

Listing (3.25) TMM representation of
multiple branches after
Collapsing

31

3 Template Pre-Processing for semi-automated Code Generation

Listing 3.24 shows multiple branches, where only the elseif-branch with the condition
condC has a nested element. According to the branch collapsing rule, previous empty
branches need to be converted to one-line node, while following empty branches to the
last branch with an element can be collapsed completly, therefore resulting in Listing 3.25,
where the if- and the first elseif-branch nodes(lines 2-5) are changed to one-line nodes
and the else-branch(line 9-10) node is collapsed completly.

There is a special case, such as the one shown in Listing 2.2, where the template uses
built-in null checking. In this case the template already makes sure that the variable
name is only used when not null.

Given name is available in the data model the condition evaluates to true and the place-
holder always has a value and never needs to be requested from the user. Given name

is not available in the data model the condition evaluates to false and the placeholder
never has a value and never needs to be requested from the user, because the branch is
ignored. So no matter the actual evaluation result, the placeholder is guaranteed to never
be requested, thus we can ignore name and the conditional statement, for this specific
case and collapse it.

As mentioned, conditionals create a context where variables and other directives are only
allowed to be shifted upwards under one condition. This is only if the same element is
used within every branch of a conditional node. So the actual branch on evaluation does
not matter, because the placeholder is needed in any case. If the upshifting leads to
empty branches, they need to be collapsed following previous branch-collapsing rules.
This full collapsing is shown in Figure 3.3e and f, where lines 3-10 of Figure 3.3e are
reduced to line 3 of Figure 3.3f.

32

3 Template Pre-Processing for semi-automated Code Generation

(a) Pre Branch-Collapsing (Else
empty)

(b) Post Branch-Collapsing (Else
empty)

(c) Pre Branch-Collapsing (Else not
empty)

(d) Post Branch-Collapsing (Else not
empty)

(e) Pre Branch-Collapsing (Full Col-
lapse)

(f) Post Branch-Collapsing (Full Col-
lapse)

Figure 3.3: Branch-Collapsing Examples

33

3 Template Pre-Processing for semi-automated Code Generation

3.1.5 Functions and Macros

Functions and Macros are directives, that allow to fix redundancies in a template. They
work similar with the difference that functions can return a value and that object code
within them is ignored and not end up in the output, whereas macros do the opposite.
Both have an identifying name and allow input parameters, that define a new namespace.
Still, global variables can be accessed within, if there is no need for an abstract use.

Functions

Listing 3.26 show the usage of Functions in Freemarker. Allowing any number of pa-
rameters and multiple return statements anywhere within the nesting. If there is no
<#return ...> statement, then an undefined value is returned. As mentioned, object
language, such as line 3, will be ignored. Functions can be called in a template with
${FunctionName(Parameter1, ..., ParameterN)}, where the FunctionName equals the
name of the function definition, i.e., in line 1 of Listing 3.26.

1 <#function FunctionName Parameter1 ... ParameterN>

2 ...

3 This text will not be printed out

4 ...

5 <#return ReturnValue>

6 ...

7 </#function>

Listing 3.26: FreeMarker Functions

Functions can contain any type of directives, such as lists, conditionals, or variables from
the global namespace. Therefore, it is not sufficient enough to only cover the signature,
which means that the full functions content needs to be mapped to a TMM.

Macros

The Freemarker signature for macros is almost the same as for functions. Also, there
can be any number of return statements, but with the difference, that they can’t return
a value and only work as a breakpoint, as the example in Listing 3.27 shows. <#return>

will end the flow of the content of this macro, therefore will not print line 5. Object code
can be used and will be printed to output.

34

3 Template Pre-Processing for semi-automated Code Generation

1 <#macro printError errorcode message>

2 Error ${errorcode}:

3 ${message}

4 <#return>

5 Will not be printed.

6 </#macro>

Listing 3.27: Freemarker Macro Example

This macro can be called with <@printError errorcode message/>, which differs from
the function call. Freemarker Macros also allow a nested subdirective within the macro,
which we will not go into detail, because it does not introduce a new problem for us, so
it will still be transformable with the presented rules.

Macros also support default values, either in definition or call, shown in Listing 3.28.
So if neither a or b have a value in the data model, the template fragment would still
evaluate, resulting in 1 + 10. This allows us in theory to ignore those variables in the
TMM transformation. However, we did not focus enough on the consequences, this
decision may have, which is why we ignore defined default values of macros for now.

1 <#macro test x=1 y>

2 ${x} + ${y}

3 </#macro>

4
5 <@test a b=10/>

Listing 3.28: Freemarker Macro Default Values

Usage in Template Meta Model

Because they are similar, and their distinctive behavior is not relevant for us, we might
model functions and macros the same way. Still, we require the distinction between
function and macro, simply because they might have the same identifying name. Also, we
gave an outlook, that a configuration can define which directives are allowed, therefore
adopting the distinction from the template is necessary. Velocity, for example, only
supports the macro directives but does not feature functions. There are two approaches
to model this. Either, it can be orientated at the original template, giving the function
or macro a defined space and whenever it is called within the template, we need a node
that references the function node. Or else, the mapped meta code inside the function can
be directly integrated where it would be called otherwise. This implies, that there is no

35

3 Template Pre-Processing for semi-automated Code Generation

separate namespace dependent on the parameters. Both offer advantages over the other.
The second option allows it, to use reduction transformation rules on the content of the
function when inserted, which is not possible with the first approach. However, when
a function is used multiple times in a template, this can result in more lines than in a
separate non-redundant space. Mainly, it leads to a more complex transformation, that
require many iterations of the reduction rules, which is an error-prone task for manual
creation, conflicting with ReqF2 . Therefore, we will use the first approach, outsourcing
the function, like it is done in the template itself, exemplary shown in Listing 3.29. Here
ARG1 and ARG2 are scalar variables defined in the local function scope, while GLOBAL_VAR

is defined in the global scope.

1 <function key=FUNCTION_NAME args="ARG1, ARG2 ...">

2 <scalar key=ARG1/>

3 <map key=ARG2>

4 ...

5 </map>

6 <scalar key=GLOBAL_VAR/>

7 </function>

Listing 3.29: Function Representation in a TMM

It’s necessary that each argument, separated by a comma, needs to match exactly one
key of a nested directive (scalar, map, or sequence). If there are no arguments for a
function, the args attribute can be spared. The call in the TMM will be done with <

function key=FUNCTION_NAME args="ARG1_ACTUAL, ARG2_ACTUAL"/> The args names do
not need to match between call and function, only the FUNCTION_NAME needs to match
uniquely.

For Macros, the only difference is that function will be replaced by macro in the definition-
and the calling-node.

Reduction transformation rules can only be applied within the context of the function.
This can lead to redundancies, that need to be cleared when using the TMM in the further
process, which is when a global variable used in the function as well as in the context
of the call. An example is shown in Listing 3.30. The scalar with the key GLOBAL_VAR

would be a duplicate in the context of the function call <function key=FUNCTION_NAME/>,
therefore needs to be sorted out when processing the TMM.

1 <tmm ...>

2 <scalar key=GLOBAL_VAR/>

3 <function key=FUNCTION_NAME/>

36

3 Template Pre-Processing for semi-automated Code Generation

4
5 <function key=FUNCTION_NAME>

6 <scalar key=GLOBAL_VAR/>

7 </function>

8 </tmm>

Listing 3.30: TMM Function with redundant Variable in context

Because functions or macros hold a unique name inside a template and are available
everywhere inside of it, they should be nested directly inside the tmm node.

3.1.6 Include and Import

Include and Import are the last directives we will cover in the TMM.

The include directive takes a relative or absolute path and allows inserting another
template at the point where the directive is used. Therefore, allowing outsourcing of
redundant template fragments to different files. The Freemarker syntax for that is <#

include path>. An included sub-template uses the scope of where it is inserted, all
variables used in the sub-template have to be available in the source template.

The import directive is used to import macros and functions outsourced to a different
file, which then can be used as a library in multiple templates. Different to the include
directive, it does not matter as much where it is placed in the template, but preferably as
early as possible, because functions can only be used after import. It is used in Freemarker
as <#import path as lib>, where path is used same as with include and lib is defining
the namespace under which the macros and functions can be accessed. Given the macro
printError of Listing 3.27 is defined in lib, it can be called in Freemarker by <@lib.

printError errorcode message"/>. Imported libraries work with the same namespace
as macros or functions defined in the actual template, therefore using local namespaces
defined by the parameters and the global namespace.

Both allow the outsourcing of redundant structures, to different files, so they can be used
in multiple template, with the difference that imports allow parameterized used, while
includes are static. For transforming them into the TMM, it is not as much of a problem
how to model them, because we can use everything we already introduced. Sub-templates
are not different in their structure than normal templates, therefore we can model their
content to a separate tmm node. The reference in a template to a subtemplate, could be

37

3 Template Pre-Processing for semi-automated Code Generation

done with <include path=SUB_TEMPLATE_PATH/>. Multiple calls to the same subtemplate,
should not result in duplicate TMMs. Listing 3.31 shows a tmmConfiguration with two
tmm nodes. The first tmm node(line 3-4) references the second tmm node(line 5-7) with
<include...>. Thus, when the first TMM is pre-processed, the second one needs to be
pre-processed as well.

1 <tmmConfiguration ...>

2 <tmm path=TEMPLATE_PATH templateEngine="FreeMarker

">

3 <include path=SUB_TEMPLATE_PATH/>

4 </tmm>

5 <tmm path=SUB_TEMPLATE_PATH templateEngine="

FreeMarker">

6 <scalar key="test"/>

7 </tmm>

8 </tmm>

Listing 3.31: Referencing a Subtemplate in a TMM

Handling imports is not as much of a problem either. Declaring macros or functions
global is done by nesting them not inside the tmm node, such as in Listing 3.30, but
instead directly inside the tmmConfiguration node, as shown in Listing 3.32. The scalar
GLOBAL_VAR is modelled three times, in the function context, the macro context and
the TMM context. We defined function and macro contexts as an absolute boundary,
meaning elements aren’t allowed to up-shift outside of them, in contrast to conditional
nodes, where up-shifing is allowed, if every branch includes the same element.

1 <tmmConfiguration ...>

2 <tmm path=TEMPLATE_PATH templateEngine="FreeMarker

">

3 <scalar key=GLOBAL_VAR/>

4 <function key=FUNCTION_NAME/>

5 <macro key=MACRO_NAME/>

6 </tmm>

7 <function key=FUNCTION_NAME>

8 <scalar key=GLOBAL_VAR/>

9 </function>

10 <macro key=MACRO_NAME>

11 <scalar key=GLOBAL_VAR/>

12 </macro>

13 </tmmConfiguration>

Listing 3.32: TMM Representation of Imports

38

3 Template Pre-Processing for semi-automated Code Generation

Comparing this with Velocity, some differences can be noticed. It, too, supports an
include directive, but with the difference, that this does not evaluate the file specified,
but simply inserts it as it is, which is primarily used to insert text files, pictures, et cetera.
To insert other templates that are evaluated, Velocity offers the parse directive. Macros
can be defined within a template, but also in a global macro environment, which is defined
in Velocity configuration and is always loaded. Macros defined in a template used can
be treated as previously described, while global macros need a special transformation
rule. In the mapping phase, all global macros should be loaded into memory and when
they are used anywhere within the target template network, they need to be mapped
as a macro element nested in the top-level tmm node. Therefore, guaranteeing that all
required macros are available in the TMM.

3.1.7 Appliance of Mapping and Reduction Transformation Rules

Now that we described both Mapping and Reduction Transformation Rules, the only
aspect we did not cover is in which order they have to be applied. A prioritization is
important to guarantee an unambiguous result.

Generally, templates will be parsed and mapped from top to bottom. However, the meta
code and its defined context need to be mapped as a whole. To demonstrate the transfor-
mation, we will use the example FreeMarker template in Listing 3.33, which references a
header.ftl, shown in Listing 3.34 and imports macros.ftl, shown in Listing 3.35. The
Template generates a simple Java class with getter and setter methods for a dynamical
amount of fields. The header.ftl file includes a header description for a class, that can
be customized, given description is not null, otherwise inserts a generic description.

1 <#include "header.ftl">

2 <#import "macros.ftl" as macros>

3
4 class ${name} {

5 ${vis} ${name}() {}

6
7 <#list fields as field>

8 private ${field.type} ${field.name};

9 <@macros.getterAndSetter field/>

10 </#list>

11 }

Listing 3.33: Advanced Template Example

39

3 Template Pre-Processing for semi-automated Code Generation

1 <#if description??>

2 /**
3 ${description}

4 */

5 <#else>

6 /**
7 This class represents a ${name}.

8 */

9 </#if>

Listing 3.34: Content of header.ftl

1 #macro getterAndSetter field>

2 public ${field.type} ${"get" + field.name?cap_first}()

{

3 return ${field.name};

4 <#if log>

5 System.out.println("get" + ${"\""+ field.name

+"\""}+"() is called.");

6 </#if>

7 }

8
9 public void ${"set" + field.name?cap_first}(${field.

type} ${field.name}) {

10 this.${field.name} = ${field.name};

11 <#if log>

12 System.out.println("set" + ${"\""+ field.name +

"\""} + "("+ ${field.name} +") is called.");

13 </#if>

14 }

15 </#macro>

Listing 3.35: Content of macros.ftl

We can enumerate all the use of meta language, ignoring the content of directives for
now, such as the list, only interested in the area it encloses, in this case line 7 to 10 in
Listing 3.33 and ignoring duplicates on the same context level, such as the duplicate use
of name in line 4 and 5. This enumeration is shown in Table 3.1, listing five identified
uses of meta language. The next step will be to check, if each element can be expanded.
M1 references another template, therefore we will investigate this next. M1.X references
an element in the context of M1, followed by M1.X.X referencing an element in the
context of M1.X and so forth. Before M2 is transformed M1 has to be fully transformed,
therefore requiring for every element X in M1.X to be transformed before. Simple variable

40

3 Template Pre-Processing for semi-automated Code Generation

references such as M3 cannot be expanded, therefore continuing with the next element
in the same context, which in the example is M4. Table 3.2 already includes all fully
expandend elements of the header.ftl file. Note that we defined M1.1a and M1.1b, to
express that M1.1 is to be mapped as whole but creates two seperate contexts for each
branch.

meta code area of definition
M1 <#include "header.ftl"> line 1
M2 <#import "macros.ftl" as macros> line 2
M3 ${name} line 4
M4 ${vis} line 5
M5 <#list fields as field>...</#list> line 7-10

Table 3.1: Identifying Top-Level context

meta code area of context
M1.1a <#if description??>...<#else> 3.34 line 1-5
M1.1a.1 ${description} 3.34 line 3
M1.1b <#else>...</#if> 3.34 line 5-9
M1.1b.1 ${name} 3.34 line 7

Table 3.2: Identifying expanded include context

M2 is the import of a macro library, we do not need to expand, because unless an actual
macro is called from this library, we do not need to map any macro. For the mapping
we only need to consider the scope and file specified. As mentioned, M3 and M4 can
be skipped aswell, because they cannot be expanded, therefore only requiring M5 to
be expanded. Note that field.type and field.name are listed multiple times, however
always in a different context. Those duplicates have to be removed by transformation.
After full expansion, the order in those tables defines the order in which those elements
are transformed, therefore always preferring nested elements over neighboring elements.
So the order starts with M1 → M1.1a → M1.1a.1 → M1.1b · · · → M5.3.4.2.

Now that we defined the order in which templates need to be transformed, we need to
define the order in which transformation rules are applied. Generally speaking, Mapping
Transformation Rules are always applied first on an element. Reduction Transformation
Rules however, are neither applied after mapping all elements, nor directly after mapping
each element, but whenever a context is left. For example, see the result of mapping
M1.1a.1 in Listing 3.36. M1.1 was mapped beforehand, therefore already creating the if
and else branch node in the TMM. The mapping of M1.1b.1 however was not done yet.

41

3 Template Pre-Processing for semi-automated Code Generation

meta code area of context
M5.1 ${field.type} line 8
M5.2 ${field.name} line 8
M5.3 <@macros.getterAndSetter field/> line 9, ref. 3.35 line 1-15
M5.3.1 ${field.type} line 2
M5.3.2 ${field.name} line 2
M5.3.3 <#if log>...</#if> line 4-6
M5.3.3.1 ${field.type} line 5
M5.3.3.2 ${field.name} line 5
M5.3.4 <#if log>...</#if> line 11-13
M5.3.4.1 ${field.type} line 12
M5.3.4.2 ${field.name} line 12

Table 3.3: Identifying expanded list context

1 ...

2 <conditional>

3 <if condition="description??">

4 <scalar key="description">

5 </if>

6 <else>

7 </else>

8 </conditional>

9 ...

Listing 3.36: Mapping M1.1a.1

Note, that there is no <scalar key="description"> outside the conditional node, because
the condition uses the special value checking syntax described in Section 2.4, which is
the only case where no scalar has to be created for the condition, as mentioned in Sec-
tion 3.1.4. Because there is no such element identified as M1.1a.1.1 or M1.1a.2, meaning
a nested or neighbor element, the workflow returns to the context of M1.1. Before map-
ping M1.1b.1 however, Reduction Transformation Rules have to be applied to M1.1a,
if possible. As specified, this branch needs to be collapsed, resulting in <if condition

="description??"/>. Only then the mapping of M1.1b.1 is allowed, which result in
<scalar key="name"/> inside the else branch. Reduction rules could be applied on the
else branch after that, however in this case, none can be applied. In conditionals, we
might apply branch collapsing reduction on a branch, as with the if branch. After map-
ping and reducing every branch separately, the whole conditional structure might apply
reduction rules, for example removing empty branches, up-shifting elements available in

42

3 Template Pre-Processing for semi-automated Code Generation

every branch or collapsing the full conditional structure, if no branch has any nested
elements.

Following this order of Mapping and Reduction Transformation Rules, the example tem-
plate of Listing 3.33 will result in Listing 3.37.

1 <tmmConfiguration version="1.0">

2 <tmm file="..." templateEngine="FreeMarker">

3 <include path="header.ftl"/>

4 <scalar key="name"/>

5 <scalar key="vis"/>

6 <sequence key="fields" elementKey="field">

7 <scalar key="type"/>

8 <scalar key="name"/>

9 <macro key="getterAndSetter" args="field"/>

10 </sequence>

11 </tmm>

12 <tmm file="header.ftl" templateEngine="FreeMarker">

13 <conditional>

14 <if condition="description??"/>

15 <else>

16 <scalar key="name"/>

17 </else>

18 </conditional>

19 </tmm>

20 <macro key="getterAndSetter" args="field">

21 <map key="field">

22 <scalar key="type"/>

23 <scalar key="name"/>

24 </map>

25 <scalar key="log"/>

26 </macro>

27 </tmmConfiguration>

Listing 3.37: Result of Transformation

3.2 The Template Pre-Processor

Now that we defined an initial version of the TMM and the rules to create it, we can
use it to achieve our actual goal, which is the comparison of the TMM and the input
data, to find missing values and add them manually, before evaluation of the template.
To achieve that, we introduce a new component, the Template Pre-Processor (TPP).

43

3 Template Pre-Processing for semi-automated Code Generation

Following the Separation of Concerns (SoC)[8] principle, we need multiple subcomponents
in the TPP. One for the comparison, one for the user interaction handling the requests
of missing values, and one for the enrichment of the original data model.

To achieve ReqF6 and ReqNF3 , those subcomponents should be decoupled from Template
Engine specifics. We can use small interfaces instead, following the Interface Segregation
Principle (ISP)[11], that can be adapted to access the Template Engine specific behav-
iors, such as the data model access or the engine’s configuration. As declared in ReqF9 ,
it should only be possible to add data to or query data from the data-model, not remove
or reorganize existing data, the process can work with a facade for each Template En-
gine, which combines controlled access to each adapter. Figure 3.4 shows an exemplary
combination of adapter and facade patterns, with implementations for FreeMarker.

Figure 3.4: Template Engine specifics accessible over Facade

From this concept, we can add the pre-processing component to the basic model of
Figure 1.1. As shown in Figure 3.5 this component takes the input data and all TMMs
of the templates, that should be evaluated and creates an updated version of the input
data structure which is given instead of the base input data to the Template Evaluator.
Ideally, the Enriched Input Data should include all data necessary to deny the generator
from failing, because a placeholder can’t be replaced. Though, this will not ensure that
the generation with any Template Evaluator will never interrupt, because there are can be
other reasons in which a Template Engine can interrupt the generation. The Input Data
artifact here refers to the abstract data model, accessed through the Template Engine
facade of Figure 3.4. The TMMs have to be available at the start of the process. Because
they have to be created manually for now, they need to be available before starting the
application.

44

3 Template Pre-Processing for semi-automated Code Generation

Figure 3.5: Code Generator with Template Pre-Processor

In White box view (see Figure 3.6) the TPP includes multiple subcomponents. The figure
shows the flow of data in the process. The core components are the Model Comparator
and the Data Enricher.

3.2.1 The Model Comparator

The Model Comparator takes the TMM and the input data model as input and compares
them to find missing values. The TMM defines the required values, the data model defines
the given values of the current instantiation, and the model comparator matches them,
resulting in a collection of mismatches, if any are found.

The comparison searches for the keys of the TMM in the data model top-down. Because
of up-shifting, those keys can be found on the same level, given that there are no condi-
tionals. With conditionals, there can be boundaries on certain levels, in which case the
key in the TMM is on a lower level than in the data model. Because the data model only
has key-value pairs on lower levels if they are dependent on a different key and there are
no other context defining structures such as conditionals, it is safe to say that the level
of a key in the data model is always equal or higher than the level of the same key in the
TMM.

45

3 Template Pre-Processing for semi-automated Code Generation

Figure 3.6: Code Generator with Template Pre-Processor(Whitebox)

In the problem statement, we listed an example template generation with an example
data model (Listing 1.1, Listing 1.2 & Listing 1.3). The according TMM is shown in
Listing 3.38

1 <tmm file="..." templateEngine="FreeMarker">

2 <scalar key="name"/>

3 <scalar key="vis"/>

4 <scalar key="log"/>

5 <sequence key="fields" elementKey="field">

6 <scalar key="type"/>

7 <scalar key="name"/>

8 </sequence>

9 </tmm>

Listing 3.38: TMM example

There is no conditional node, due to branch-collapsing all that remains is the condition
log as a scalar node. Because of that, the two models are very similar in terms of their
key placement. The comparison is relatively straight-forward. The order is as listed in
the TMM, name → vis → log → fields.

Because name is on top level in the TMM, this exact key has to be looked up in the data
model. The same works for the next two scalars. fields is supposed to be a sequence

46

3 Template Pre-Processing for semi-automated Code Generation

however, where each element needs to follow the same pattern, in this case the scalars
type and name. To compare sequence, first the key fields will be looked up in the
data model. It contains two elements. Each element is compared to the pattern. Both
elements match the pattern, therefore the check is successful, and no value is missing for
generation.

When the Model Comparator finds missing data, it is important to store the essential
information for the later enrichment. This includes the full path along the data model
to the position where the value is missing, as well as the type of value missing. The
full path is needed mainly to remember the sequence index, where there is a missing
value. Though, it is unlikely that a value is missing only in one element. Currently, there
is no complex type system implemented, we still can differentiate between the abstract
data types sequences, maps, or scalars. Maps or sequences should always be requested
as a whole. Therefore, only the highest missing element structure should be in missing
values set DM . Given a sequence named fields that includes a map with the keys
field.type and field.name. When fields is missing, then only fields should be in the
set of missing values DM , but not transitive objects such as field or field.type and
field.name, because they are missing anyway.

3.2.2 The Data Enricher

The Data Enricher is the component with the responsibility to request all items of the
missing value collection from the user and put those retroactively added values to the
data model at the designated spot.

The actual requests should be outsourced to a user interface component. Offering an
interface, i.e., MissingValueRequestInterface, enables multiple implementations for user
interactions. Requesting missing variables is not much of an issue, because they represent
a scalar, which is easy to parse from manual input, and can be requested and added to
the model one after one. Maps and sequences however are a bit more complex, because
as mentioned, they have to be requested as a whole. The complexity is even higher the
deeper they are nested.

Listing 3.39 shows an Example TMM with multiple nested maps and sequences. Given
that the input data model, does not include the map zoo, the whole structure has to be
requested from the user. Enriching the data model with the map zoo is only possible
after requesting all sub elements. Figure 3.7 shows the order of requests and creation of

47

3 Template Pre-Processing for semi-automated Code Generation

the full data structure. The scalar with the key name can be requested directly, while the
sequence with the key animals first needs to request nested elements, such as name and
description in the scope of animals, as well as another nested sequence inhabitants,
which needs to follow the same steps, therefore request name and age in the scope of
inhabitants. After all scalars of a local scope have been requested and added to the
respective container, it can return and continue with the next element. Only at the last
step, when zoo is fully constructed, it can be added to the data model. Note, that this
integrates the option to request multiple items for newly created sequences, as defined in
ReqNF1 , by using loops, that should ask the user on every iteration if he wants to add
another item. As shown, only scalars need to be requested, which then can be organized
into the right container type.

1 <map key="zoo">

2 <scalar key="name"/>

3 <sequence key="animals" elementKey="animal">

4 <scalar key="name"/>

5 <scalar key="description"/>

6 <sequence key="inhabitants" elementKey="

inhabitant">

7 <scalar key="name"/>

8 <scalar key="age"/>

9 </sequence>

10 </sequence>

11 </map>

Listing 3.39: TMM Zoo Example

48

3 Template Pre-Processing for semi-automated Code Generation

Figure 3.7: Zoo example flow

49

4 Template Pre-Processing in Advanced
Code Generation

In this chapter, we will discuss the use of pre-processing in an advanced and industrial
context, with focus on the systems, previously presented in Chapter 2. We are motivated
to find problems or difficulties that might occur in practical application of our approach.

4.1 Pre-processing with CobiGen

In Section 2.3, we presented and explained the important terms and features of CobiGen.
These need to be addressed and possibly adapted, so we will discuss the extensibility of
the CobiGen framework, the two configurations and the whole generation process itself.
The main question we try to answer is, if pre-processing is achievable in CobiGen despite
dynamic template selection.

The most important issue, originates from the architecture of CobiGen (see Figure 2.2)
and its workflow. CobiGen runs as a mostly isolated process, which means after selecting
a compilation unit, the process runs from reading the input and creating an internal
model, over evaluating templates, to merging the generated code to the source code
base, as one process, with the only interruption being the user prompt to select the
increments to generate. Figure 4.1 shows an example of the CobiGen User Interface from
the Eclipse IDE integration. On the left there are all possible use-cases, which can be
generated based on the input, listed on root level (i.e., CRUD devon4ng Angular App),
which can hold nested increments (i.e., Angular devon4ng Component). Based on the
selection, the files that will be generated are shown on the right side. If the file has no
conflicting file in the source code base, they will be marked as (new).

The problem is, that we can’t just build the TPP to run before the CobiGen process,
because it requires a data model, which is only created by the Input Reader, therefore

50

4 Template Pre-Processing in Advanced Code Generation

Figure 4.1: CobiGen User Interface

the TPP needs to run at least after the Input Reader. Furthermore, we require the target
templates, not directly, but as a list of template paths, so it is clear which TMMs need
to be checked. However, the required templates are only selected by the user, therefore
the TPP needs to be set after user selection and before template evaluation. There are
two ways, how the TPP might be integrated into CobiGen.

The first idea is to give the responsibility to CobiGen, which means pre-processing needs
to be actively integrated into the Framework. This means, the TPP is added to the
CobiGen Framework (Figure 2.2), as shown in Figure 4.2.

The second possibility is to add the TPP externally as an extension to CobiGen, therefore
not relying on a CobiGen integration and shifting the responsibility to the Framework
consumer instead. This can be done through the Template Engine extension point.
For example, instead of using the FreeMarker Template Engine, one could implement
a FreeMarker Pre-Processing Template Engine, which can utilize the existing Template
Engine implementation but with upstream pre-processing, such as shown in Figure 4.3.

The second approach has the benefit of practicability. All components needed can be
used as they are, without requiring many changes, while the first approach requires the

51

4 Template Pre-Processing in Advanced Code Generation

CobiGen framework to be changed a lot more internally. The first approach would require
that each supported Template Engine had to be adapted by the TPP as well, or at least
requires a setting to enable or disable pre-processing.

There are actually not many advantages the first approach has over the other, except
that it could access information that is only used internally and that implementations,
such as the facade of Figure 3.4 could be reused. The fact that CobiGen developers
would be in debt to implement and adapt the TPP to work with its components, is a
major inconvenience.

In contrast, the second option does not suffer from these issues. Firstly, the pre-processing
can be used if needed by the consumer and is not fundamentally integrated into the pro-
cess. CobiGen developers could still be involved and offer pre-processing Template Engine
implementations for the currently implemented Template Engines. CobiGen values ex-
tensibility most, which ideology we can adopt. Using the extension point does not change
the level of abstraction used within the CobiGen framework, but allows the consumer
to add pre-processing when it is actually needed instead of offering it based only on the
assumption that it may be used. Therefore, the second approach utilizing the Template
Engine extension should be preferred.

In Section 2.3, we also presented context and template configurations and their usage
within template directories. From this, we can derive, where to best place TMM defi-
nitions in a CobiGen directory. While it is of course possible to define one tmm.xml per
template, a centralized solution, would be more comprehensible and would give a better
overview over required data.

The context configuration defines which template root directories are generally generate-
able and defines triggers which work as filters, to define which use-cases are allowed in
the user selection afterwards. Therefore, it might be possible to define one TMM con-
figuration per use-case, directly in the root template directory on the same level as the
template configuration file. This has the advantage, that only one file per template root
directory includes all required data for the whole directory and outsourced subdirectories
and allows a simple lookup. Additionally, function libraries and sub-templates are defined
once in the same configuration as the TMM that uses them. Having multiple files, would
mean that those libraries or outsourced sub-templates might be defined multiple times,
if they are referenced in more than one TMM configuration. It is important to note that
the context configuration can assign further variables, specific to the use-case, while the
Input Reader defines variables that are generally available. We have to pay attention

52

4 Template Pre-Processing in Advanced Code Generation

to that distinction when creating the TMM. Foremost, variable assignments, which are
defined as <variableAssignment type="" key="" value="" /> are stored in the names-
pace variables.<key>, therefore requiring a special mapping. Those mappings can be
based on the given type attribute. One might be a constant, which defines a fixed value.
Those can actually be ignored the same as default values in templates, as described in
Section 2.4, while others such as regex types need to be checked as well.

The second option can be derived from the template configurations. As mentioned, they
define all increments that can be generated within a template root directory. Increments
are the smallest fraction that can be chosen as a generation unit. By separating TMM
configurations based on increments, one would not run into the problem that unnecessary
TMM’s are loaded into program memory. This means that instead of creating one TMM
configuration per use-case, we create one for each increment, which can either be located
on the same level as the template configuration file and then be named according to
the increment, or be located within the according subdirectory of each increment with a
generic name. However, this can lead to the described redundancies.

Most importantly, this approach allows going even one step further, in terms of increasing
the usability of CobiGen. By arranging TMMs based on increments, it can be possible
to pre-process all available increments instead, so that it can be displayed dynamically,
i.e, in the user interface (Figure 4.1), how many and which variables are missing for
successful generation of each increment. Pre-filtering can still be applied, for example,
based on a percentage threshold of missing data that needs to be exceeded.

From this we can conclude that, given that the presented theoretical solutions can be
implemented, pre-processing is achievable in CobiGen despite dynamic template selec-
tion.

4.2 Pre-processing with Repleo

Next, we will discuss the application of pre-processing for Repleo. As we introduced in
Section 2.1, Repleo is a system to build syntax-safe template generators. First, we can
determine the major difference between CobiGen and Repleo.

While CobiGen is a full Framework, which implements the entire process from creating an
input model to generating and merging the output to the source base, allowing multiple
Template Engines, Repleo is only one Template Engine implementation. It expects a

53

4 Template Pre-Processing in Advanced Code Generation

Figure 4.2: CobiGen with integrated Template Pre-Processing

Figure 4.3: CobiGen extension with Template Pre-Processing

54

4 Template Pre-Processing in Advanced Code Generation

created input model, and only outputs the generated file, which needs to be managed by
the consumer. Therefore, we do not have the same problems as with CobiGen and can
extend Repleo with the TPP relatively straightforward. Figure 4.4 shows the interaction
between the TPP and the Repleo process shown in Figure 2.1. To achieve this, it only
requires few adaptations that are similar to any other Template Engine. We need to
implement the data model facade (Figure 3.4) for Repleo to handle the access, and
specify the abstract transformation rules for the Repleo template language to a TMM.
For example, Repleo uses ’/’ instead of ’.’ for nested namespaces.

Figure 4.4: Repleo with Template Pre-Processing

The main issue, when applying pre-processing on Repleo originates from the aspect of
syntax-safety. The manual input of missing values might lead to a syntax error in the
generated output, therefore an exception will be thrown by the Evaluator, terminating
the generation. The TPP has no knowledge over the object language grammar and can’t
guarantee that every manual input does not conflict with the object syntax. However, this
is not a problem regarding the soundness of the Template Engine, but rather a usability
issue. Syntax errors will still be detected when evaluating, including those caused by
manual input, and then terminate the generation.

Instead of creating the TMM from a template, one could try to transform it from the
parse tree of the template. This has the advantage that placeholders are assigned a type
based on the given syntax. This specific type system can then be used in the TPP for
enrichment to guarantee that the manual input is in compliance with the output syntax
and does not lead to an error in the evaluator.

However, according to ReqF6 and therefore ReqF4 , this data should not be used directly
in the TMM. A TMM should be created only once per template, but the template could
be used by multiple engines. For example, a template written in FreeMarker can be used
both by the normal FreeMarker Template Engine and the Syntax Safe Java FreeMarker
Template Engine (Section 2.3). This can be bypassed by outsourcing the type system

55

4 Template Pre-Processing in Advanced Code Generation

to a separate file, which can be as simple as just mapping the template variables to the
types assigned by the template parser, such as {"key": "type"}. Where for each key in
the TMM there is a key-type pair in this separate file. These files can then be uniquely
used for Repleo pre-processing.

Though, it can’t be used in the TPP directly, because the components also should work
on a non-engine-specific level. The only extension point is offered by the data enricher,
which we called MissingValueRequestInterface. This can be implemented to connect
requested scalars with the defined type, based on their matching key. Figure 4.5 depicts,
how this process can work around the TPP. The manual input can then try to be parsed
to the required type and then be returned to the Data Enricher.

Figure 4.5: TPP with syntax-safe Input

There are some requirements that need to be fulfilled, to allow this second more complex
approach to work. First, it needs access to the internally processed parse tree of a
template. Because Repleo is mainly a theoretical work[3][4], it is not specified enough of
how the engine can be configured. Nevertheless, it can be stated, that the transformation
does not work manually, because the parse tree is internally processed, meaning it does
not result in a file, that can be accessed by a human and therefore the TMM can’t
be manually created. Given that it can be automatically transformed, which will be
addressed in Section 4.4, the last requirement is that the transformation from the parse
tree results in the same TMM as created by the original template. Analogous to the

56

4 Template Pre-Processing in Advanced Code Generation

Equation (3.1), we define g as:

g : parseTree −−→
TR

tmm (4.1)

We use the parse function defined by Arnoldus as h to describe the relation between
template and parse tree as:

h : template −−−→
parse

parseTree (4.2)

Given Equation (3.1) and Equation (4.1) and parseTree = h(template), we require Equa-
tion (4.3) to be valid for this approach to work. This means that the TMM transformed
from a template and from its parse tree have to be equal to each other for pre-processing
to be used from a parse tree.

f(template) = g(parseTree) (4.3)

Given all these requirements can be fulfilled, the TPP integration can be changed from
the non-syntax-safe input version, shown in Figure 4.4 to a process that guarantees
syntax-safe manual user input, shown in Figure 4.6.

Figure 4.6: Repleo with syntax-safe TPP

4.3 Pre-processing with SafeGen

The integration of pre-processing into SafeGen has similar difficulties as with Repleo.
We can choose an analogue approach to Repleo, either ignoring type-safety of manual
input, or using a system as specified in the previous chapter, where the type system is
transformed to a separate file and the combination of the type system and missing values
is applied in a request interface implementation. However, the TMM has to be created

57

4 Template Pre-Processing in Advanced Code Generation

as originally defined through Equation (3.1), because in contrast to Repleo where types
are assigned only in the parse tree, SafeGen defines types in the template directly.

The main problem and biggest difference to Repleo is the data with which the template is
filled. SafeGen templates use only what is given to them as input in #defgen declaration,
which might be a Java class, interface or method. The TMM only depicts abstract types:
sequences, maps and scalars. Transforming a java class to a TMM might be possible,
but it is far too complex to be covered in this thesis and to be applied for general
use. For SafeGen it may be a better approach to create SafeGen specific TMM, which
instead of using a combination of sequences, maps and scalars, uses the java structure of
classes, methods, field, etc. and is built specific for that. SafeGen is specifically built for
Java, creating templates based on Java syntax. Trying to forcefully apply our abstract
approach to SafeGen is simply far from reality, because we did not collect requirements
from SafeGen specifically and the fundamental usage of SafeGen and classic template-
based code generators is too different.

We can conclude that our approach for template pre-processing on SafeGen is practically
not applicable under its current specification. However, SafeGen specific pre-processing
should be implementable using our approach as a basis. Although, it is a question of the
actual necessity. SafeGen inputs are limited to legal Java programs and its application
is also limited to specific cases, such as generating an interface, wrapper, or delegator
from class. The differences to other Template Engines are simply too different for our
approach to work.

4.4 Automatic Creation of the Template Meta Model

For the most part, we described transformation rules abstracted from any template lan-
guage, which have to be specified for each template language. While some Template
Engines aren’t very complex and the transformation should be relatively straightfor-
ward, there are other languages or templates that can lead to complex transformation
scenarios.

Especially the reduction rules are the biggest source for that. Complex templates with
deep nesting, results in a complex transformation with multiple iterations of applying
reductions, that can be too extensive and error-prone for a human doing manual trans-
formation. Considering that one TMM for each template has to be created, CobiGen

58

4 Template Pre-Processing in Advanced Code Generation

for example has template root directories which include dozens of templates, resulting in
much manual work.

Another big issue would be the maintenance of templates and their TMMs. If a template
is changed, that will make the according TMM outdated, unless it is updated correctly
as well.

Combining these to problems regarding complex template structures, such as CobiGen’s,
will prove to be unusable in industrial applications. This can be solved by automation.
Currently, the pre-processing relies on two asynchronous separate steps: the creation of
the TMMs and the actual pre-processing using the TMMs. For the TPP to work, it has to
be ensured that the required TMMs are available at run-time. When the transformation
is automated, this results in one synchronous process, where the TMMs can be created
and processed in one continuous flow. In Figure 4.7 the manual creation is replaced by
a new component, referred to as Template Transformer, which need to be specified for
each Template Engine that needs to be supported. This will specify all transformation
rules, and if implemented will result in the correct TMM under any input, no matter
how complex. This can be optimized by caching the TMMs. This means that TMMs
will be transformed on the first execution, and then reused in following executions. This,
requires that certain conditions are fulfilled. Most importantly, the original template
wasn’t changed, which would require the TMM to be updated.

Therefore, we can conclude, that the automation of creating a TMM is essential for
appliance in industrial applications, however leaving the exact specification for future
work.

Figure 4.7: Automation of Template to TMM Transformation

59

5 Conclusion & Future Work

In conclusion, this thesis focused on creating a process that enables to find missing data
in an input data model by comparing it to the required data of selected templates. In
industrial applications, such as CobiGen, template-based source code generation is used
in a fully automated process. Currently, if an exception is caused by missing input data
which is required in a template, the process will terminate, given an interrupting Template
Engine such as FreeMarker is used. While this guarantees that only desired output is
produced, therefore guaranteeing soundness, the usefulness suffers from it. Instead of
starting the generation on the off chance of success, we aim to check given and required
data before evaluation time, to find causes for interruption.

We introduced the Template Meta Model, a representation of a templates meta language.
It derives from a Template through transformation rules, which define abstract instruc-
tions, that need to be specified for a Template Engine. We described transformation rules
for the most common template directives, such as conditionals and iteration. Manual
TMM creation has to happen asynchronously before the TMM processing. We discussed
the problems caused by manual creation regarding the industrial context, where many
complex templates imply too much manual work and high error probability to be used.
However, developing an automatic process for template transformation, will increase the
usability by removing the repetitive work of creating and updating a TMM for each new
or changed template. The TMM grants the ability to do a comparison of templates and
the input data model, to collect missing values. These values can be requested from
the user, and are then sorted into the original data model, therefore resulting in a data
model which is guaranteed to include any data required for template evaluation, given
that the original data model can be processed. By applying general software engineering
principles and architecture patterns, we suggested an internal abstract design for the
Template Pre-Processor component. Then, only an initial work is required to adapt the
TPP for a specific Template Engine and template language in use.

60

5 Conclusion & Future Work

While keeping the TPP and TMM mostly Template Engine independent and only requir-
ing engine specifications of certain interfaces, therefore reducing the amount of adaptions
needed for extending the process to different engines, we discovered that in context of syn-
tax and type-safe Template Engines, we are not able to request the required object from
the user only by the TMM data. Data models that include custom objects, for example
Java classes, can’t be processed with the current TMM version. Only a combination of
sequences, maps and primitive types is allowed. However, we described a workaround for
the syntax-safe Template Engine Repleo and our presented approach, by collecting type
information in a separate file used in the enrichment process. While a similar process
might work for the type-safe code generator SafeGen, we found a conflicting problem in
its fundamental use. While most Template Engines work with a tree-like data model,
which can be created from an input, such as through CobiGen’s Input Reader and do
not imply a fixed object language, SafeGen only works for Java and uses Java objects as
input directly. Therefore, it would be more effective to let this information be used in
a TMM as well. The SafeGen templates and input is simply too different to what our
approach is designed for.

Another issue that we determined is how to handle meta language conditionals, while
comparing. We included conditionals in the TMM to establish different contexts, based
on how the conditions are evaluated. However, evaluating the condition before the actual
template evaluation is a process that we did not focus on in detail. Unless a solution is
specified on how to evaluate template language specific conditions in a Template Engine
independent context, all possible cases have to be covered in comparison and enrichment.
This means that there are cases, where values are requested from the user, that will not
be used in template evaluation.

Lastly, it is important to note that at the time of writing, the TPP is only implemented
as a prototype, lacking many features presented in this thesis.

61

Bibliography

[1] What is Agile?. – URL https://www.atlassian.com/agile#:~:

text=Agile%20is%20an%20iterative%20approach,small%2C%20but%

20consumable%2C%20increments.. – last accessed 28.09.2022

[2] Arnoldus, B.J.: An illumination of the template enigma : software code generation
with templates, Mathematics and Computer Science, Dissertation, 2011

[3] Arnoldus, J. ; Brand, M. van den ; Serebrenik, A. ; Brunekreef, J.J.: Code
Generation with Templates. Atlantis Press, 2012 (Atlantis Studies in Computing).
– URL https://books.google.com/books?id=UvC0MJHSqjkC. – ISBN
9789491216565

[4] Arnoldus, Jeroen ; Bijpost, Jeanot ; Brand, Mark van den: Repleo: A
Syntax-Safe Template Engine. In: Proceedings of the 6th International Confer-
ence on Generative Programming and Component Engineering. New York, NY,
USA : Association for Computing Machinery, 2007 (GPCE ’07), S. 25–32. – URL
https://doi.org/10.1145/1289971.1289977. – ISBN 9781595938558

[5] Brunnlieb, Malte: Source Code Transformation based on Architecture Implemen-
tation Patterns, Technische Universität Kaiserslautern, Dissertation, 2018

[6] Brunnlieb, Malte: Codegenerierung mit CobiGen. In: JavaMagazin (2021).
– URL https://www.capgemini.com/de-de/wp-content/uploads/

sites/5/2021/03/JavaMagazin-03-CobiGen.pdf

[7] Brunnlieb, Malte ; Poetzsch-Heffter, Arnd: Architecture-driven incremen-
tal code generation for increased developer efficiency. In: Hasselbring, Wilhelm
(Hrsg.) ; Ehmke, Nils C. (Hrsg.): Software Engineering 2014. Bonn : Gesellschaft
für Informatik, 2014, S. 143–148

[8] Dijkstra, Edsger W.: Selected writings on computing: a personal perspective. New
York, NY, USA : Springer-Verlag New York, Inc., 1982. – ISBN 0-387-90652-5

62

https://www.atlassian.com/agile#:~:text=Agile%20is%20an%20iterative%20approach,small%2C%20but%20consumable%2C%20increments.
https://www.atlassian.com/agile#:~:text=Agile%20is%20an%20iterative%20approach,small%2C%20but%20consumable%2C%20increments.
https://www.atlassian.com/agile#:~:text=Agile%20is%20an%20iterative%20approach,small%2C%20but%20consumable%2C%20increments.
https://books.google.com/books?id=UvC0MJHSqjkC
https://doi.org/10.1145/1289971.1289977
https://www.capgemini.com/de-de/wp-content/uploads/sites/5/2021/03/JavaMagazin-03-CobiGen.pdf
https://www.capgemini.com/de-de/wp-content/uploads/sites/5/2021/03/JavaMagazin-03-CobiGen.pdf

Bibliography

[9] Huang, Shan S. ; Zook, David ; Smaragdakis, Yannis: Statically Safe Program
Generation with SafeGen. In: Glück, Robert (Hrsg.) ; Lowry, Michael (Hrsg.):
Generative Programming and Component Engineering. Berlin, Heidelberg : Springer
Berlin Heidelberg, 2005, S. 309–326. – ISBN 978-3-540-31977-1

[10] Johner, Christian: Code Generation: The Magic Formula for Faster and
Better Code? (2021). – URL https://www.johner-institute.com/

articles/software-iec-62304/and-more/code-generation-the-

magic-formula-for-faster-and-better-code/

[11] Martin, Robert C.: Agile software development: principles, patterns, and practices.
Prentice Hall PTR, 2003. – URL http://dl.acm.org/citation.cfm?id=

515230

[12] Renze, Matthew: Composite Data Types in Data Science. (2019). –
URL https://matthewrenze.com/articles/composite-data-types-

in-data-science/

[13] Renze, Matthew: Scalar Data Types in Data Science. (2019). –
URL https://matthewrenze.com/articles/scalar-data-types-in-

data-science/

[14] Shore, Jim: Fail Fast. (2004). – URL https://www.martinfowler.com/

ieeeSoftware/failFast.pdf

63

https://www.johner-institute.com/articles/software-iec-62304/and-more/code-generation-the-magic-formula-for-faster-and-better-code/
https://www.johner-institute.com/articles/software-iec-62304/and-more/code-generation-the-magic-formula-for-faster-and-better-code/
https://www.johner-institute.com/articles/software-iec-62304/and-more/code-generation-the-magic-formula-for-faster-and-better-code/
http://dl.acm.org/citation.cfm?id=515230
http://dl.acm.org/citation.cfm?id=515230
https://matthewrenze.com/articles/composite-data-types-in-data-science/
https://matthewrenze.com/articles/composite-data-types-in-data-science/
https://matthewrenze.com/articles/scalar-data-types-in-data-science/
https://matthewrenze.com/articles/scalar-data-types-in-data-science/
https://www.martinfowler.com/ieeeSoftware/failFast.pdf
https://www.martinfowler.com/ieeeSoftware/failFast.pdf

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

64

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Statement
	Outline

	Related Work
	Repleo
	SafeGen
	CobiGen
	Built-in expressions for missing values

	Template Pre-Processing for semi-automated Code Generation
	The Template Meta Model
	The Foundation
	Variables
	Iteration
	Conditionals
	Functions and Macros
	Include and Import
	Appliance of Mapping and Reduction Transformation Rules

	The Template Pre-Processor
	The Model Comparator
	The Data Enricher

	Template Pre-Processing in Advanced Code Generation
	Pre-processing with CobiGen
	Pre-processing with Repleo
	Pre-processing with SafeGen
	Automatic Creation of the Template Meta Model

	Conclusion & Future Work
	Bibliography
	Declaration of Authorship

