
BACHELOR THESIS
Nick Koops

Continuous Integration und
Continuous Delivery - Ein
Vergleich zwischen Jenkins
und Dagger

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of Science Angewandte Informatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Stefan Sarstedt
Supervisor: Prof. Dr. Lars Hamann

Submitted on: 24. März 2023

Nick Koops

Continuous Integration und Continuous Delivery -
Ein Vergleich zwischen Jenkins und Dagger

Nick Koops

Title of Thesis

Continuous Integration and Continuous Delivery - A comparison between Jenkins and
Dagger

Keywords

Continuous Integration, Continuous Delivery, Jenkins, Dagger, Software engeneering sur-
vey

Abstract

Agile practices with continuous integration and continuous delivery (CI/CD) pipeline
approaches have increased the efficiency of projects. There are established (Jenkins) and
newly developed (Dagger) CI/CD tools on the market. Jenkins pipelines are executed in
the environment Jenkins is running in, making it complex to provide a consistent build
environment across multiple machines. Dagger builds a layer on top of the CI/CD plat-
form by running inside a Docker environment and thus decoupling the build environment
from the build machine. This thesis compares Jenkins and Dagger to each other. Dag-
ger improves on Jenkins by unifying and simplifying the process of extending pipelines,
reusing components and making pipelines executable and debuggable locally. Dagger is
deficient in the majority of the functionalities that are available through Jenkins plugins,
the documentation is inadequate, Dagger is not usable in some edge cases and there is
no experience of using Dagger in a large scale commercial application.

iii

Kurzzusammenfassung

Agile Methoden erhöhen mithilfe von Continuous Integration und Continuous Delivery
Pipelines (CI/CD) die Effizienz der Entwicklung von Software Projekten. Auf dem Markt
gibt es etablierte (Jenkins) und neu entwickelte Tools (Dagger). Jenkins Pipelines werden
in derselben Umgebung ausgeführt, in der Jenkins läuft, wodurch es komplex ist, eine
konsistente Build Umgebung über mehrere Maschinen hinweg bereitzustellen. Dagger
bildet eine Schicht oberhalb der CI/CD Plattform, in dem es einer docker Umgebung
läuft, wodurch es die Build Umgebung von der Build Maschine entkoppelt. Dagger
baut auf etablierten CI/CD Tools auf, in dem das Erweitern, Wiederverwenden, und
lokale Ausführen der Pipeline Teil seiner Architektur sind. Im Vergleich zu Jenkins
hat Dagger hat ein Defizit an Funktionen, die Dokumentation ist inadäquat, Dagger
ist in Sonderfällen nicht einsetzbar und es gibt keine Erfahrung mit dem Einsatz in
kommerziellen Großprojekten.

iv

Contents

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the thesis . 1

2 Fundamentals 3
2.1 Concepts of CI/CD . 3

2.1.1 Continuous Integration . 3
2.1.2 Continuous Delivery . 4

2.2 CI/CD pipeline . 4
2.2.1 Code commit . 5
2.2.2 Build . 5
2.2.3 Acceptance test . 5
2.2.4 Performance test . 5
2.2.5 Manual tests . 6
2.2.6 Production . 6

2.3 Docker . 6
2.3.1 Docker images . 6
2.3.2 Dockerfiles . 7
2.3.3 Integration . 7

3 Survey 9
3.1 Definition . 9
3.2 Design . 9

3.2.1 Sampling . 9
3.2.2 Questionnaire design . 11

3.3 Implementation . 11
3.3.1 Development guidelines . 12

v

Contents

3.3.2 Implementing the guidelines . 13
3.4 Survey execution . 14
3.5 Survey analysis . 14

3.5.1 Background information . 14
3.5.2 Past project specific questions . 15
3.5.3 Current project specific questions 16
3.5.4 Is your current CD pipeline sufficient for your needs? 17
3.5.5 New CI/CD specific questions . 17

3.6 Summary . 18

4 Development 19
4.1 Jenkins . 19

4.1.1 Open Source project . 19
4.1.2 Hosting . 19
4.1.3 Pipeline . 21

4.2 Dagger . 28
4.2.1 CUE . 29
4.2.2 Dagger pipeline . 33

4.3 Comparison . 41
4.3.1 Portability . 41
4.3.2 Reusability . 42
4.3.3 Extendability . 45
4.3.4 Scalability . 49

4.4 Summary . 50
4.4.1 Jenkins . 50
4.4.2 Dagger . 50
4.4.3 Comparison . 50

5 Conclusion 52
5.1 Summary of results . 52
5.2 Review of results . 52
5.3 Future work . 53

Bibliography 54

vi

Contents

A Appendix 60
A.1 Survey . 60

A.1.1 Survey section 1 . 60
A.1.2 Survey section 2 . 61
A.1.3 Survey section 3 . 62
A.1.4 Survey section 4 . 65
A.1.5 Survey section 5 . 67

Declaration of Autorship . 68

vii

List of Figures

2.1 An example CI/CD pipeline [33]. Promotion: Advancing the build from
one stage to the next. Quality is ensured by quality gates. 4

3.1 A screenshot of the online editor of Google Forms. It has a graphical user
interface, which allows the creation of forms with predefined modules, such
as questions, text and images. The screenshot shows the introduction and
the first question of the questionnaire found in A.1. 12

3.2 Answers regarding the respondents’ experience in software development
and CI/CD. Each bar represents a respondent’s answer. 15

4.1 Dockerfile to setup Jenkins, download and configure the Android SDK. . . 20
4.2 Jenkins as an orchestration tool . 21
4.3 Jenkins CI/CD pipeline. This pipeline builds an Android app in five

stages. First it checks out the repository, secondly runs a linter [40],
thirdly runs unit tests, fourthly assembles the Android app and finally
publishes the app to Microsoft App Center [28]. 21

4.4 Jenkins pipeline in Groovy DSL . 22
4.5 SCM checkout in the Jenkins build configuration 23
4.6 Jenkins credentials configuration. The upper credentials contain the SSH

username and private key for the GitLab repository. The second creden-
tials are a secret text containing the Microsoft App Center API token, a
unique identifier for the application generated by App Center, needed for
the upload. Both credentials are stored globally inside Jenkins. 24

4.7 Published lint and test report HTML files 25
4.8 Releases of the Foodium Android app in Microsoft App Center 26
4.9 Downloading the application from App Center on an Android phone . . . 27

viii

List of Figures

4.10 A layer model of Dagger. Docker runtime (light blue) can run on any com-
patible platform (orange). This may be a CI platform, such as Jenkins or
CircleCI, an operating system, such as macOS or Linux, or on a container
orchestration system, such as Kubernetes. The Dagger engine (yellow)
runs on the Docker runtime. Dagger plans (dark blue) are executed by
the Dagger engine. A Dagger plan is composed of Dagger actions (white)
(see 4.2.2). 29

4.11 Example of JSON as valid CUE code . 30
4.12 Field Name is defined as a string and Age as int. 30
4.13 No concrete value is given for Age . 31
4.14 An example of a definition #Person constraining the Person object 31
4.15 Unifying the #Person with the Alice object 32
4.16 Dagger Plan . 36
4.17 A screenshot of the software used to evaluate Dagger. This is the blog’s

homepage. 37
4.18 When the user clicks on an article on the homepage, the article opens in

a new detailed page. 37
4.19 Output from command dagger do build. 39
4.20 The CircleCI configuration used for this project. 40
4.21 A global variables’ name must be in camelCase. In this example it is

var/greet.groovy. A global variable must also implemented the method
call() (see line 1). 43

4.22 A pipeline using the global variable var/greet.groovy. 43
4.23 Declaring a package in an external repository 44
4.24 Importing a package from an external GitHub repository 44
4.25 The Jenkins plugins index webpage used to search for plugins. It offers

filter and sort features to enhance the search functionality. 46
4.26 The documentation page of the App Center plugin 47

ix

1 Introduction

This chapter introduces the motivation behind the use of agile methods and CI/CD
pipelines in software development. Additionally it outlines the aim of the thesis by
presenting the research question addressed in this thesis.

1.1 Motivation

Todays software development process is increasingly driven by unpredictably and rapidly
evolving markets, constantly changing customer requirements, and frequent changes in
information technology [45]. Agile methods aim to address these challenges by allowing
a shorter time-to-market, more frequent iterations, and therefore a higher flexibility in
responding to changing requirements and quicker implementation of customer feedback
[36]. The agile manifesto names customer satisfaction "through early and continuous de-
livery of valuable software" [35] its highest priority. The employment of CI/CD pipelines
allows teams to shorten the software delivery cycle by automating integration, delivery
and production deployment [45]. Todays market of CI/CD tools is filled with options
targeting different use cases, platforms and team structures [52]. Some of the tools, like
Jenkins [23] and GitLab [49], have been around for more than a decade, while there are
newer developments like Dagger [29], which has been released in 2022.

1.2 Aim of the thesis

This thesis compares an established CI/CD tool, Jenkins, to a newly developed tool,
Dagger, as well as outline and discuss their advantages and disadvantages to answer the
following question RQ:

Does Dagger satisfy developers’ unmet needs and help to address
issues they have with Jenkins?

1

1 Introduction

First, the fundamental concepts of CI/CD and Docker are introduced. Then a survey
is conducted to get an understanding of what functionalities developers are missing in
established CI/CD tools. Then, a Jenkins and a Dagger pipeline are developed, each
used to build a separate open source software project. The gained experience, as well
as literature, is then used to compare Jenkins and Dagger, outlining each tool’s up- and
downsides. Finally the thesis is summarized and RQ is answered.

2

2 Fundamentals

This chapter introduces and discusses the terms continuous integration (CI) and contin-
uous delivery (CD). Furthermore, an example implementation of CI/CD in the form of a
CI/CD pipeline is shown. It also explains the fundamentals of Docker, which are needed
in order to understand Dagger.

2.1 Concepts of CI/CD

2.1.1 Continuous Integration

Continuous software delivery, responding to changing requirements and finally measuring
progress by working software are key principles in the agile manifesto [35]. CI Software
helps an agile development team to integrate their software frequently, usually once or
multiple times per day [48, 37]. Fowler [37] describes the following practices of CI: An in-
tegral part of CI is maintaining a single source repository, containing everything required
for a build including tests, install scripts, third party libraries, etc. The repository should
also contain a mainline branch, on which current development branches are based. A
large coverage with automated tests makes finding and fixing bugs more efficient. Meth-
ods like TDD [34], in which tests are written before the functional code making the tests
pass, support self-testing code. Self testing code is also found under the name "continuous
testing" [51]. The aforementioned aspects are important for build automation, in order
to enable builds on virgin machines with just a single build command. Modern build
tools, like gradle [27], meet those requirements by allowing to manage project dependen-
cies, build and test the project etc. These automated builds on a separate integration
machine are triggered by commits on the mainline, producing a tested and validated
artifact. In order to keep a stable development base, broken builds on the mainline need
to be fixed immediately. Keeping builds short, ideally within ten minutes, helps to get

3

2 Fundamentals

immediate feedback on changes to the repository. The state of the mainline build should
be displayed to every team member.

2.1.2 Continuous Delivery

According to Fowler [38] CD builds on CI by pushing artifacts produced by CI into
"increasingly production-like environments" [38] to ensure compatibility with the pro-
duction environment. This is done by an automated deployment pipeline. The key
benefits are reduced deployment risks, since just small incremental changes are deployed,
which means fewer, easier to fix problems appear. Small increments also means earlier
and more frequent user feedback to find out the value of a given change in software.
Furthermore the development team’s progress can be measured by deployments, giving
them a "believable" [38] metric. The aim of CD is to make the current development
build deployable in production at any time.

2.2 CI/CD pipeline

Software delivery is done by an automated build pipeline, modeling build steps, different
environments and quality gates. Quality gates help to orchestrate the build process by
ensuring, that in case one step fails to execute successfully, the subsequent build steps
are not executed [51]. The pipeline will differ from one project to another in terms of
type and number of stages.

Figure 2.1: An example CI/CD pipeline [33]. Promotion: Advancing the build from one
stage to the next. Quality is ensured by quality gates.

4

2 Fundamentals

2.2.1 Code commit

The commit stage compiles code and runs unit tests. It is triggered automatically, as
soon as code is committed to the repository and therefore provides instant feedback on
the code to the developer. This stage’s quality gate is fulfilled by successful compilation
and execution of unit tests. If gate is fulfilled, the pipeline automatically advances to the
next stage. If not, the developer needs to fix the code [33].

2.2.2 Build

The build stage runs the unit tests again to generate a test code coverage report, runs
integration test, static code analyses and builds artifacts for the release. The artifacts are
uploaded to a repository, which manages the releases for deployment and distribution.
These artifacts are used by all subsequent stages. In case any errors occur, the pipeline
will stop and notify the developer, otherwise the pipeline will continue [33].

2.2.3 Acceptance test

Acceptance tests ensure, that the software meets the specified requirements. A production-
like environment, where the software is deployed to, is automatically created and config-
ured by the pipeline. Then the acceptance tests are run in this environment. In case any
errors occur, the pipeline will stop and notify the developer, otherwise the pipeline will
continue [33].

2.2.4 Performance test

This stage measures the performance impact the code changes have. An environment is
set up by the pipeline, in which the performance tests are run. The results are centrally
monitored by a tool such as Nagios, New Relic, etc. [51]. This stage gives the developer
immediate feedback, whether their code changes harm the software’s performance. Fix-
ing possible performance issues at this early stage in the development process is much
cheaper, than fixing them before a release [33].

5

2 Fundamentals

2.2.5 Manual tests

In some scenarios, i.e. when testers perform explorative tests or a specific feature can
only be tested by humans, manual tests are necessary. The pipeline automatically creates
an artifact in the correct configuration and environment and notifies the testers with the
necessary information to access the application. Once the manual tests are performed
successfully and the artifact has passed all quality gates, the artifacts are considered a
release candidate. They are now ready to be deployed to production [33].

2.2.6 Production

The artifact can now be deployed to production with the click of a button [33].

2.3 Docker

In addition to the basics of CI/CD, basic knowledge of Docker is required to understand
the foundation of Dagger, as well as how Jenkins is hosted. Docker was developed
from the need of "computational reproducibility" [32]. Docker achieves computational
reproducibility by building on technologies from operating system research including
Linux containers (LXC), virtualization of the operating system and a hashed-based git-
like versioning system.

2.3.1 Docker images

Docker images work similarly to virtual machines, since they have all dependencies neces-
sary to run the image already installed, configured and tested. A key difference between
Docker images and virtual machines is that Docker images share the Linux kernel with
the host machine. Consequently any Docker image must be based on a Linux system
with Linux-compatible software. When the host machine is not running Linux, i.e. on
Windows or macOS, Docker runs inside a virtual Linux machine. This makes Docker
more lightweight and higher performing compared to a fully virtualized machine, in case
of running on an Linux OS. This made Docker particularly attractive to commercial
applications, i.e. in a microservices architecture [41].

6

2 Fundamentals

2.3.2 Dockerfiles

Dockerfiles are the blueprint to a Docker image. Dockerfiles are a script defining how to
build an image. Dockerfiles are written in a simple Domain Specific Language (DSL).
Dockerfiles offer multiple advantages:

• Virtual machine images can be many gigabytes large, since they contain a complete
OS. Dockerfiles are just a a small plain text file, which is easily portable.

• Small plain text files are well suited for version control systems such as git, which
makes any changes to the Dockerfile trackable.

• Dockerfiles provide a human readable summary of all dependencies, environment
variable, etc. required to execute the code. This approach also eliminates the need
to separately document all dependencies.

• The Dockerfile contains every dependency down to the OS. When built with docker
build the resulting image will usually not differ from one machine to another, es-
pecially not when every dependencies’ version is set explicitly.

• A Dockerfile can contain checks and tests after the installation and configuration
of software, which verify the successful setup.

• The resulting image can be extended and customized by directly editing the Dock-
erfile.

2.3.3 Integration

Compared to a virtual machine Docker does not replace a user’s existing toolchain, but
is optimized to run a single application. Therefore a developer can continue to use a
local IDE, but execute the code inside a standardized container ensuring an identical
environment and thus portability and reproducibility. This means, that the software
can be easily deployed in the cloud or on another developer’s machine with no more
effort than installing Docker, since Docker manages the packaging and execution in a
way, so that it works identically across different machines, while exposing the required
interfaces for networking, volumes, etc. For example a developer might want to execute
their code on a more powerful server compared to their local machine, in which case

7

2 Fundamentals

the developer can export a snapshot of a running container and thus run a container an
identical environment on a different machine.

8

3 Survey

In order to be able to answer RQ it is necessary to get an understanding of what func-
tionalities developers are missing in established CI/CD tools. Therefore a survey is
performed as proposed by [47] in five steps: Survey definition, survey design, implemen-
tation, execution and analysis. This chapter describes and discusses these steps generally,
as well as in the context of RQ. Finally the survey’s results are presented, analyzed and
summarized.

3.1 Definition

The survey is an online survey interviewing software developers. The survey’s aim is to
get an understanding of what the respondents have used CI/CD tools for in the past,
currently use them for, what advantages and disadvantages they see in the tools they are
experienced with, wether they are familiar with newly developed CI/CD tools and their
suggestions to improve new CI/CD tools compared to tools they currently use.

3.2 Design

For every online survey the respondents have to be selected in a process called sampling.
The selected respondents have to fill in a questionnaire. This section discusses sampling
and designing the questionnaire.

3.2.1 Sampling

Sampling means selecting a set of respondents from the superset under study, which is
called population. Only a subset is selected because of the limited time, and in case of a
large-scale survey money, budget. There are two main methods for sampling.

9

3 Survey

Systematic sampling

Firstly there is probability sampling, where a systematic approach is used to select a
subset of respondents. In systematic sampling the entire population has to be known in
order to select members of the population is such a manner, that every member has sta-
tistically seen an equal chance of being selected. This means, that it is possible to derive
results from the sample that are representative for the whole population with minimal
error. Therefore the sampling error mainly depends on sample size, the population size
and the variety within the population. Hence the sample size has to be selected according
to the tolerated sampling error.

Non-systematic sampling

Secondly there is non-systematic sampling, which is applied when systematic sampling is
not feasible, i.e. when there are unknown individuals in the population or in a small-scale
survey with a too small population. For reference, [47] considered surveys with a sample
size of 102 to 865 samples as small-scale surveys, where they chose a non-systematic ap-
proach. Non-systematic approaches imply, that error between population and the sample
are unknown. Therefore the characteristics of the sample have to evaluated afterwards.
There a number of techniques for non-systematic sampling. One is convenience sampling,
where the researcher chooses the most convenient respondents for the survey. This can
be refined further by characterizing groups of the population and performing convenience
sampling within the groups.

Choice of sampling method

[47] differentiates between two types of online surveys. The first type is a personalized
survey, where every respondent is personally invited. Most of the time there is an access
control (i.e. username and password or a personalized access code), ensuring only invitees
can participate in the survey. It is possible to perform these kinds of surveys with both
systematic and non-systematic approaches.
The second type are self-recruited surveys, where respondents find out about the survey
by themselves, i.e. by popups on a website or e-mail newsletters. These surveys lead to
a non-systematic approach by definition.
This survey uses a personalized non-systematic approach with convenience sampling.

10

3 Survey

Since the scope for this theses is very limited, the small sample size is very small with
three to eight respondents, who will be chosen by availability at the time of writing.

3.2.2 Questionnaire design

Designing a questionnaire is the second important aspect in a survey. As defined by
[47] the order and skip-patterns are just as important as the quality of the questions
themselves. Skip-patterns are possible branching conditions within the questionnaire,
designed to provide different paths through the questionnaire, depending on the answers
the respondent gave. For example, the answer to a question might influence the answer
to a subsequent question or make the respondent leave out an answer. Therefore a clear
definition all possible paths in the questionnaire is necessary.

3.3 Implementation

The survey will be implemented with a tool, that allows the creation of online forms
with different types of questions such as multiple choices or free text answers and rating
statements on scale. Also, the tool needs to be able to provide the data, that has
been filled in by the respondents. There are several tools on the market, which provide
these functionalities [39]. Google Forms [12] and Microsoft Forms [16] offer the required
functionalities for free, which is why the choice is between these two options. Ultimately,
the choice fell on Google Forms, because it allows one to export the form as PDF, which
Microsoft Forms does not. A screenshot of the online editor of Google Forms can be seen
in 3.1.

11

3 Survey

Figure 3.1: A screenshot of the online editor of Google Forms. It has a graphical user
interface, which allows the creation of forms with predefined modules, such
as questions, text and images. The screenshot shows the introduction and
the first question of the questionnaire found in A.1.

3.3.1 Development guidelines

[47] present guidelines they learned from their experiences in designing online surveys.
Most of their guidelines do still apply to designing online surveys, for example the amount
and type of questions. Others like readability, instructions on how to fill in an online
survey and recovery of lost data in case a respondent’s browser crashes are no longer a
concern for the developer of the survey, since these guidelines are handled by the tool
that is used to design and execute the survey.

12

3 Survey

Number of questions

One important aspect is the amount of questions asked. When there are too many
questions, answering them takes more time. When the respondents feel, that the time is
not well invested, they will not answer the questionnaire. To keep the questionnaire as
short as possible, the questions should be restricted to the topic defined in 3.1. Restricting
the amount of questions also helps to keep the complexity in the analysis down. In order
to add variation to the answers, some personal questions should be added. [47] conducted
multiple surveys with approximately 30 to 90 questions. They found, that respondents
answered the surveys despite them having about 90 questions, because the respondents
felt, they were learning enough to justify the time invested.

Type of questions

Also, the type of questions has to be considered. While closed questions with fixed an-
swers, i.e. multiple choice questions, are easier to analyze, one also has to integrate open
questions with empty text boxes in order to obtain important background information
from the respondent. These open questions support the interpretation and quantitative
results of the closed questions.

Order of questions

The order of questions is important to keep the respondent motivated, while answering
the questions. Questions should be grouped by topic, to maintain a flow through the
questionnaire. It is a good practice to start with questions, which engage the respondent
to participate in the survey.

3.3.2 Implementing the guidelines

Since the aim of this survey, in the context of a bachelor thesis, is to get a general
understanding of what a small set of respondents miss in established CI/CD tools, not a
large scale quantitative analysis, the questionnaire will have 21 questions. This way, the
complexity in designing and analyzing the results will be kept within the scope of the
thesis. The questionnaire can be found at A.1.

13

3 Survey

3.4 Survey execution

To execute the survey it was given to six coworkers of mine. Three of them participated
in the survey leading to a response rate of 50%. The respondents were provided with a
link to the survey in Google Forms, where they filled out the survey. Google Forms also
provides an overview of the given answers as well as an option to export the results to
a spreadsheet. The number of answers per questions varies, since not every respondent
answered every question.

3.5 Survey analysis

The overview and the spreadsheet are used to analyze the answers. The results are
visualized and interpreted by deriving graphs, diagrams and quotes from the answers.

3.5.1 Background information

A color is assigned to each respondent: respondent 1 (blue), respondent 2 (yellow) and
respondent 3 (orange).

14

3 Survey

Figure 3.2: Answers regarding the respondents’ experience in software development and
CI/CD. Each bar represents a respondent’s answer.

These answers imply two things: Firstly, respondent 2 did not use CI/CD for the first
13 years of development. Respondent 3 only has experience in software development
using CI/CD. Secondly, all respondents use CI and CD in combination with each other,
but not independently. Since major companies such as Facebook and Flickr started
using CD (and therefore CI) in 2005 and 2009 respectively [48] and influential computer
scientists [37] defined CD in 2013, many small and medium sized companies have adopted
CI/CD in the last decade. Consequently all respondents use CI/CD in combination. Less
experienced developers, such as respondent 3, use CI/CD for all of their career.

3.5.2 Past project specific questions

All of the respondents have worked with CI/CD in previous projects in the context of
mobile application development. Respondents 1 and 2 only have experience with Jenkins.
Respondent 3 has experience with Jenkins, as well as GitLab and GitHub.

15

3 Survey

What did you like about the tool(s)?

The respondents mentioned the following upsides of Jenkins: "large community", "big
number of plugins", available at no cost and versatility. Participant 3 highlighted the
benefits of the Jenkins pipeline compared to a traditional Jenkins job. Participant 3
mentioned GitHub’s and GitLab’s "everything in one application approach" for Devops,
i.e. both GitHub and GitLab include a tool to review pull requests.

What didn’t you like about the tool(s)?

Concerning Jenkins, all respondents mentioned the unintuitive web interface, which lacks
behind the competition. Respondent 3 also mentioned the lack of tools to debug a Jenkins
pipeline.

In which way did the tool(s) make your work more efficient?

All respondents highlighted the instant availability of test results, which in return im-
proves code quality. Participant 2 also mentioned centralized builds. Although the
respondents only referred to Jenkins, GitHub and GitLab, the mentioned improvements
to their workflows apply to all CI/CD tools as mentioned in 2.1.1.

Did the tool(s) hinder you in any way?

All of the respondents answered, that maintenance can take a lot of time. Respondent
3’s reason is time consuming debugging, since in the case of Jenkins it cannot be done
locally.

3.5.3 Current project specific questions

All of the respondents currently use CI/CD tools in the context of mobile application
development. They also use Jenkins exclusively, since its the default a the respondents’
company and they are already familiar with Jenkins.

16

3 Survey

Why did you choose to use CI/CD for this application?

All of the respondents agreed that they chose to use CI/CD to deploy more frequently,
increase confidence in build quality and results and create more visibility for the team.
Respondents 1 and 2 also answered to reduce the time spent on setting up how to build
and push artifacts by automating these steps using CI/CD. Furthermore respondent 2
added, that CI/CD tools help to document tests and archive old builds.

In case you use more than one CI/CD tool at a time, why do you use more
than one?

None of the respondents see a benefit in using more than one CI/CD tool at a time, other
than having a backup.

3.5.4 Is your current CD pipeline sufficient for your needs?

All respondents answered, that Jenkins is sufficient for their current workflows.

Respondent 1 answered, that an improved Xcode [24] integration would improve the
workflow for building iOS applications.

3.5.5 New CI/CD specific questions

These questions are specifically aimed at the respondents interest in newly developed
CI/CD tools and their suggestions for improvement compared to CI/CD tools they are
experienced in.

Have you read about or do you have any experience with recently developed
CI/CD tools, i.e. Dagger?

Only respondent 3 answered this question with yes, therefore respondents 1 and 2 never
looked into new CI/CD tools.

17

3 Survey

In which way can newly developed CI/CD tools help you improve the pain
points you have in your current workflow, if at all?

Respondent 3 suggested, that new tools should be able to execute builds in the cloud,
eliminating the need for a local server. Cloud execution is already available for products
like CircleCI [6]. Respondent 1 suggested, that newly developed CI/CD tools should
reduce the need to script yourself in order to reduce the complexity of the pipeline.
Approaches with pipelines consisting of customizable building blocks, such Buddy [2],
promise to reduce the pipeline’s complexity already exist, although they are not covered
in this thesis because of time constraints.

3.6 Summary

This section set out to get an understanding of how experienced software developers have
used and still use CI/CD tools in their workflows and what suggestions they have to be
improved in newly developed CI/CD tools. Therefore a survey with a questionnaire was
constructed as proposed by [47]. The survey was sampled with the population in mind,
then designed according to [47] and [54], implemented using Google Forms and finally
executed. The survey was answered by three coworkers with an average experience of
six years in using CI/CD in their workflows. All of the respondents have experience
using Jenkins, one also has experience using GitHub and GitLab. On the one hand,
the respondents emphasized Jenkins large community, large selection of plugins and
its versatility while being available for free. One respondent also mentioned GitLab’s
and GitHub’s additional devops functionalities. The respondents answered, that CI/CD
helps them to improve their code quality, deploy more frequently, create visibility for the
entire development team, document tests and archive old builds. On the other hand, the
respondents criticized Jenkins’ unintuitive web interface and difficult to debug pipelines.
The respondents agree, that maintaining CI/CD can be time consuming. Generally,
the respondents agree that Jenkins is sufficient for their current workflows. Only one
respondent has looked into newly developed CI/CD tools, although another respondent
suggested, that new tools should be able to execute builds in the cloud.

18

4 Development

This chapter is the mainstay of this thesis. It compares Jenkins and Dagger to another
by using each CI/CD tool build a suitable software project. Each section introduces the
tool, a software project, which is built by CI/CD tool and the CI/CD pipeline including
its language used to build the project. Finally, Jenkins and Dagger are compared to each
other.

4.1 Jenkins

Jenkins is an open source platform, initially created to automate the build and test-
ing process. The Jenkins build system is written in Java and highly extensible and
customizable due to its plugin architecture. Therefore Jenkins is able to cover many
possible scenarios and requirements, enabled by thousands of plugins developed by its
open source community [31].

4.1.1 Open Source project

To evaluate Jenkins the open source Android app Foodium [46] is used. The Android app
is built using Kotlin and uses modern Android development tools, such as Coroutines and
Flow [19]. It is built upon Android architecture components in an MVVM architecture
style [8].

4.1.2 Hosting

In order to run any build using Jenkins there has to be a running Jenkins instance. To
provide a consistent and portable environment with all necessary Android build tools,
Jenkins runs inside of a Docker container, which was introduced in 2.3. There are official

19

4 Development

Jenkins Docker images available on Docker hub [17], which already include the required
JDK to run Jenkins. In addition to a JDK an Android application requires an Android
SDK to be built. The Android SDK has to be downloaded and configured manually.
This is done inside of the Dockerfile:

1 FROM jenkins/jenkins:jdk11
2 USER root
3
4 # Download Android SDK
5 ENV SDK_URL="https://dl.google.com/android/repository
6 /commandlinetools-linux-8512546_latest.zip" \
7 ANDROID_HOME="/usr/local/android-sdk" \
8 ANDROID_VERSION=30 \
9 ANDROID_BUILD_TOOLS_VERSION=30.0.2

10
11 RUN mkdir "$ANDROID_HOME" .android \
12 && cd "$ANDROID_HOME" \
13 && curl -o sdk.zip $SDK_URL \
14 && unzip sdk.zip \
15 && rm sdk.zip \
16 && mkdir "$ANDROID_HOME/licenses" || true \
17 && echo "24333f8a63b6825ea9c5514f83c2829b004d1fee" >

"$ANDROID_HOME/licenses/android-sdk-license"
18 # Install Android Build Tool and Libraries
19 RUN $ANDROID_HOME/cmdline-tools/bin/sdkmanager --update

--sdk_root="$ANDROID_HOME"
20 RUN $ANDROID_HOME/cmdline-tools/bin/sdkmanager

--sdk_root="$ANDROID_HOME"
"build-tools;${ANDROID_BUILD_TOOLS_VERSION}" \

21 "platforms;android-${ANDROID_VERSION}" \
22 "platform-tools"

Figure 4.1: Dockerfile to setup Jenkins, download and configure the Android SDK.

The FROM keyword in 4.1 line 1 defines an official Jenkins image with JDK version 11
as the basis for this Docker image. 4.1 lines 5-9 define environment variables, required
for the download and installation of the Android SDK. First, the directory structure is
created (see 4.1 line 11-12). Subsequently, the Android SDK is downloaded (see 4.1 line
13) as a ZIP file. After the file is unzipped (see 4.1 line 14), the ZIP file is no longer
needed and therefore deleted (see 4.1 line 15). For legal reasons a license has to be
accepted by creating an android-sdk-license file containing a license key (see 4.1 line 17).
Subsequently, the Android SDK tools are updated (see 4.1 line 19) and finally installed
(see 4.1 line 20-22). The Docker build command docker build Dockerfile builds a Docker

20

4 Development

image from the Dockerfile 4.1. Once the Docker image is built, it can be run using docker
run. The Jenkins instance is now up and running.

4.1.3 Pipeline

Figure 4.2: Jenkins as an orchestration tool

Figure 4.3: Jenkins CI/CD pipeline. This pipeline builds an Android app in five stages.
First it checks out the repository, secondly runs a linter [40], thirdly runs unit
tests, fourthly assembles the Android app and finally publishes the app to
Microsoft App Center [28].

In this project Jenkins orchestrates ktlint [42], build and test process using Gradle [27].
Finally the Android application is published to Microsoft App Center [28] (see 4.2).

21

4 Development

1 pipeline {
2 agent any
3

4 stages {
5 stage(’Lint’) {
6 steps {
7 sh ’./gradlew lint’
8

9 archive(includes: ’*/lint*.html’)
10

11 publishHTML(target: [
12 allowMissing : false,
13 alwaysLinkToLastBuild: false,
14 keepAll : true,
15 reportDir : ’app/build/reports’,
16 reportFiles : ’lint-results.html’,
17 reportName : "Lint Report"
18])
19 }
20 }
21

22 stage(’Test’) {
23 steps {
24 sh ’./gradlew test’
25

26 archive(includes: ’*/index.html’)
27

28 publishHTML(target: [
29 allowMissing : false,
30 alwaysLinkToLastBuild: false,
31 keepAll : true,
32 reportDir :

’app/build/reports/tests/testReleaseUnitTest’,
33 reportFiles : ’index.html’,
34 reportName : ’Test Report’
35])
36 }
37 }
38

39 stage(’Assemble’) {
40 steps {
41 sh ’./gradlew assembleRelease’
42 }
43 }
44

45 stage(’Publish’) {
46 environment {
47 APPCENTER_API_TOKEN = credentials(’APPCENTER_API_TOKEN’)
48 }
49 steps {
50 appCenter apiToken: APPCENTER_API_TOKEN,
51 ownerName: ’Nick.Koops-haw-hamburg.de’,
52 appName: ’Foodium’,
53 pathToApp: ’*/app-release-unsigned.apk’,
54 distributionGroups: ’Collaborators’
55 }
56 }
57 }
58 }

Figure 4.4: Jenkins pipeline in Groovy DSL

22

4 Development

The CI/CD phases are chained using a pipeline (see 4.3) within a single workflow defini-
tion. The pipeline is defined in a Jenkinsfile using the Groovy DSL as seen in 4.4. The
stages are enclosed in a pipeline block (see line 1), defining the beginning and ending of
the pipeline. Line 2 executes the pipeline on any available Jenkins agent.

SCM checkout

Figure 4.5: SCM checkout in the Jenkins build configuration

As seen in 4.3, the first stage is the Source Control Management (SCM) checkout. The
repository URL points to the GitLab repository1 in which a fork of the Foodium app is

1https://git.haw-hamburg.de/acr813/Foodium

23

4 Development

located. The URL to the GitLab repository and the credentials for authentication are
configured inside the web UI (see 4.5). The SSH username and private key are stored in
Jenkins using Jenkins credentials plugin (see 4.6) [18]. Jenkins credentials can be used
to store

• Secret text - a token such as an API token (e.g. a GitHub personal access token),

• Username and password,

• Secret file - which is secret content in a file,

• SSH Username with private key - an SSH public/private key pair,

• Certificate - a PKCS#12 certificate file and optional password, or

• Docker Host Certificate Authentication credentials.

Figure 4.6: Jenkins credentials configuration. The upper credentials contain the SSH
username and private key for the GitLab repository. The second credentials
are a secret text containing the Microsoft App Center API token, a unique
identifier for the application generated by App Center, needed for the upload.
Both credentials are stored globally inside Jenkins.

Lint

The stages of the pipeline are defined within the stages block (see 4.4 line 4). Each
individual stage contains the steps to be executed (see 4.4 line 6-18). After the SCM

24

4 Development

checkout, as defined in 2.2, the pipeline performs a static code analysis using ktlint (see
4.4 line 7). The linter is executed via a Gradle task. The linter puts out a HTML file
containing the resulting report. In line 9 the lint report is saved permanently using the
archive plugin, so they can be viewed and downloaded later. Archived build artifacts are
kept as long as the build itself [18]. Once the report HTML file is archived, it is published
to the pipeline’s overview page, making it accessible to the development team (see 4.7).
The HTML is published with the HTML Publisher plugin (see 4.4 line 11-18) [13].

Figure 4.7: Published lint and test report HTML files

Test

The test stage (see 4.4 line 22-37) is equivalent to 4.1.3 apart from the Gradle task being
executed and the HTML file being uploaded. The Gradle task test in line 24 runs all
unit tests and results in an index.html containing the test report. The test report HTML
is published (see 4.7) and archived in the same way as the lint report.

Assemble

Once the lint and test quality gates are fulfilled the Foodium application itself is build
using the Gradle command in 4.4 line 41. The Gradle command assembleRelease

assembles the release variant of the Android Application. Its artifact is an Android
package (APK), which is an archive containing the contents of an Android app that are
required at runtime. This is the file, wich can be installed on Android devices [8].

25

4 Development

Publish

Figure 4.8: Releases of the Foodium Android app in Microsoft App Center

Subsequently the APK file has to be published to a platform where testers can down-
load it for possible manual tests, as defined in 2.2. Microsoft App Center is a platform
built for distributing mobile applications, such as Android and iOS apps, to selected
groups of internal and external testers. Testers are invited by email and can be assigned
to one ore more groups, as seen in 4.8 [28]. In order to upload an application to App
Center, App Center generates unique API tokens, which are used to identify the ap-
plication in App Center. The API token is stored in Jenkins as a secret text with the
aforementioned Jenkins credentials plugin. As seen in 4.4 line 46-48 the App Center
API token is retrieved from credentials and assigned to an environment variable called
APPCENTER_API_TOKEN. To upload the application via Jenkins there is an App Center
Jenkins plugin [26], which is used in 4.4 line 50-55. Its arguments are

• the apiToken,

• ownerName - owner of the application,

• pathToApp - path of the artifact to be uploaded and

26

4 Development

• distributionGroups - groups to which the application is distributed.

In this case the previously assembled APK is uploaded and distributed to a default
distribution group called Collaborators, although more specific groups of testers can be
added, i.e. internal and external testers.

Figure 4.9: Downloading the application from App Center on an Android phone

27

4 Development

App Center provides a web UI with all available builds for the requested application.
The application can be downloaded by testers and installed on an Android device (see
4.9).

4.2 Dagger

Dagger is a portable development kit for CI/CD with the objective to create CI/CD
pipelines running in any Docker-compatible runtime. Dagger achieves this by unifying
development and CI environments into a pipeline, that is independent from a CI envi-
ronment and can therefore be ported any CI environment and even be run locally. This
independence is made possible by two technologies:

• CUE - a configuration language developed as the result of Borg Configuration
Language (BCL) [53].

• The configuration is executed in BuildKit [4]. BuildKit is the backend building
images from Docker files [10].

Dagger does not replace a CI platform, but rather adds a portable layer on top of
it. Therefore Dagger runs on all Docker capable CI products, such as GitHub actions,
TravisCI, CircleCI, GitLab and Jenkins [7]. This sections first introduces the core con-
cepts of the CUE language, then explains how a Dagger pipeline is used to build a
sample project on a local machine and how the Dagger pipeline is executed in a CI/CD
environment.

28

4 Development

Further details can be found in the Dagger documentation [7].

CUE is a superset of JSON

This means, that every JSON can be expressed in CUE, but not everything in CUE can
be expressed in JSON. As a consequence every valid JSON is valid CUE.

1 {
2 "Alice": {
3 "Name": "Alice Miller",
4 "Age": 42
5 }
6 }
7

8 Alice: Name: "Alice Miller"

Figure 4.11: Example of JSON as valid CUE code

The example given in 4.11 declares the top-level key Alice twice: First in a more verbose
JSON style and secondly in the shorthand CUE style. The shorthand style can be used,
when the declaration only targets one key within the object.

Types are values

In the context of Dagger fields and their values will be passed as output to other CI/CD
platforms and within the Dagger plan from one action as output to another action as
input. Since most CI/CD platforms expect these values to conform to a certain schema
where a field has a type and is potentially constrained by functions such as min, max,
enums, regular expressions, etc.

1 Alice: {
2 Name: string // type as value
3 Age: int // type as value
4 }
5

6 Alice: {
7 Name: "Alice Miller"
8 Age: 42
9 }

Figure 4.12: Field Name is defined as a string and Age as int.

30

4 Development

4.12 defines the fields Name as a string and Age as an int. Since string and int are not
within quotes, they are not concrete values. CUE now enforces these values to conform
to the defined type, i.e. an int value cannot be assigned to the field Name.

Concrete values

In CUE fields are validated against a well-defined schema. In case defined fields are not
optional and do not have a concrete value, CUE throws an error.

1 Alice: {
2 Name: string
3 Age: int
4 }
5

6 Alice: {
7 Name: "Alice Miller"
8 // Age is incomplete, since no concrete value is defined
9 }

Figure 4.13: No concrete value is given for Age

Definitions

Definitions ensure that each object implementing the definition satisfies the defined
schema.

1 #Person: {
2 Name: string
3 LastName: string
4 Email: string
5 Age?: int
6 }
7

8 Alice: #Person & {
9 Name: "Alice"

10 LastName: "Miller"
11 Email: "alice@miller.com"
12 // Age ist optional
13 }

Figure 4.14: An example of a definition #Person constraining the Person object

4.14 defines a #Person definition, as indicated by the #. This constrains the Person
object to a set of specific fields and their values. By default objects conforming to a

31

4 Development

definition are closed, so they only contain fields specified in the definition. Fields can
also be optional, denoted by the ? after the name of the field. Definitions are not
exported to the final output. In order to get concrete output, an object (in this case
Alice) has to conform to a definition (#Person). The definition is then unified with the
object using the & operator.

Unification

Unification allows CUE to simultaneously define constraints and compute concrete val-
ues.

1 import (
2 "strings" // import builtin package
3)
4

5 #Person: {
6 // further constrain to a min and max length
7 Name: string & strings.MinRunes(3) & strings.MaxRunes(22)
8

9 // basic regex testing the correct syntax for an e-mail
10 Email: =~"^([a-zA-Z0-9]*)@([a-zA-Z0-9]*).([a-zA-Z0-9]*)$"
11

12 // constrain to natural ages
13 Age?: int & >0 & <140
14 }
15

16 Alice: #Person & {
17 Name: "Alice Miller"
18 Email: "alice@miller.com"
19 Age: 42
20 }
21

22 // output in YAML:
23 Alice:
24 Name: Alice Miller
25 Email: alice@miller.com
26 Age: 42

Figure 4.15: Unifying the #Person with the Alice object

The output of the unification is the product of unifying the constraints and types of
#Person definition with the concrete values of the Alice object. The unified object can
the be output into several formats, i.e. YAML (see 4.15 lines 23-26).

32

4 Development

4.2.2 Dagger pipeline

A Dagger pipeline is built using CUE and its features explained in 4.2.1. Every Dagger
configuration starts with a plan, which is derived from dagger.#Plan [7] (see 4.16 line
11). Consider this plan 4.16 for the evaluation of Dagger.

33

4 Development

1 package main
2

3 import (
4 "dagger.io/dagger"
5 "dagger.io/dagger/core"
6 "universe.dagger.io/alpine"
7 "universe.dagger.io/bash"
8 "universe.dagger.io/docker"
9)

10

11 dagger.#Plan & {
12 //Write the output of the gradle build to the client dev

machine
13 client: {
14 filesystem: {
15 "./build": write: contents:

actions.build.gradle.export.directories."/build"
16 }
17 env: PAT: dagger.#Secret
18 }
19

20 actions: {
21 build: {
22 // core.#Source lets you access a file system tree

(dagger.#FS)
23 // using a path at "." or deeper (e.g. "./foo" or

"./foo/bar") with
24 // optional include/exclude of specific

files/directories/globs
25 checkoutCode: core.#Source & {
26 path: "."
27 }
28 // Build an alpine image with gradle and bash

installed
29 base: alpine.#Build & {
30 packages: {
31 "gradle": _
32 "bash": _
33 }
34 }
35 // Pull image with OpenJDK from Docker Hub
36 jdk: docker.#Pull & {
37 source: "eclipse-temurin:11"
38 }
39 // User docker.#Run to export openjdk dir from jdk

container
40 javaHome: docker.#Run & {
41 input: jdk.output
42 export: {
43 directories: "/opt/java/openjdk": _
44 }
45 }
46 // Copy the openjdk contents to the alpine gradle

image
47 copyJava: docker.#Copy & {
48 input: base.output
49 contents: javaHome.export.directories
50 ."/opt/java/openjdk"
51 }

34

4 Development

52 // Finally copy the source code into the image
53 image: docker.#Copy & {
54 input: copyJava.output
55 contents: checkoutCode.output
56 }
57 // Runs a bash script in the input container
58 // in this case ‘gradlew‘
59 // export the /build directory to write to client

machine
60 gradle: bash.#Run & {
61 input: image.output
62 script: contents: """
63 ./gradlew build
64 """
65 export: directories: "/build": _
66 }
67 }
68

69 test: {
70 test: bash.#Run & {
71 input: build.gradle.output
72 script: contents: """
73 ./gradlew test
74 """
75 export: directories: "/build/test-results": _
76 }
77 }
78

79 push: {
80 // pull docker image with JRE
81 base: docker.#Pull & {
82 source: "eclipse-temurin:11.0.16.1_1-jre"
83 }
84 // copy artifacts into the docker container
85 baseWithArtifacts: docker.#Copy & {
86 // copy artifacts
87 _artifacts: core.#Source & {
88 path: "."
89 include: ["*.jar"]
90 }
91 input: base.output
92 contents: _artifacts.output
93 }
94 // set docker config
95 imageToPush: docker.#Set & {
96 input: baseWithArtifacts.output
97 config: {
98 workdir: "/"
99 expose: "8080" : _

100 entrypoint: ["java", "-jar",
"blog-0.0.1-SNAPSHOT.jar"]

101 }
102 }

35

4 Development

103 // push docker image to GitHub
104 push: docker.#Push & {
105 image: imageToPush.output
106 dest:
107 "ghcr.io/nickkoops/spring-boot-kotlin:latest"
108 auth: {
109 username: "nickkoops"
110 secret: client.env.PAT
111 }
112 }
113 }
114 }
115 }

Figure 4.16: Dagger Plan

In general, a plan can:

• read from and write to the clients filesystem (see 4.16 line 14),

• read env variables (see 4.16 line 17) and

• declare actions, such as build (4.16 line 21), test (4.16 line 69) and push (4.16 line
79).

This plan writes the output of gradle build from the docker image to the client machine
(see 4.16 line 14). Additionally an environment variable PAT (Personal Access Token) is
read from the client machine (see 4.16 line 17). The content of the environment variable
is used to authorize pushing a Docker image to GitHub (see 4.16 line 110). Actions are
declared inside of the action block (4.16 line 20). The plan declares three actions: build
(4.16 line 21), test (4.16 line 69) and push (4.16 line 79). The aim of this plan is to build
a web application using Gradle, run its tests and finally build a deployable Docker image
containing the application and the required environment.

Build action

The build action builds the demo project, which is a simple web application [22], using
gradle.

36

4 Development

Figure 4.17: A screenshot of the software used to evaluate Dagger. This is the blog’s
homepage.

Figure 4.18: When the user clicks on an article on the homepage, the article opens in a
new detailed page.

37

4 Development

The application is a basic Spring Boot web application based on an open source project
[22] written in Kotlin and built using Gradle. The application is a blog containing blog
entries. The blog itself has a title, subtitle and two blog entries (see 4.17). As seen in
4.18 each blog entry has a title, headline, content and an author. The content of the
blog is for demonstration purposes only and chosen freely. To build a Gradle project
inside a docker container, the container needs to include a Java development kit (JDK),
a Bash command line and Gradle itself. The Dagger Alpine package contains a definition
alpine.#Build (4.16 line 29), which takes packages (in this case Gradle and Bash). Alpine
is minimal Linux distribution, which is typically used as a base image for utilities and
production application [1]. Through unification the base object now contains an Alpine
docker image with Gradle and Bash already installed. The docker.#Pull definition (4.16
line 36) pulls an eclipse-temurin docker image. This image contains a JDK [11], which
is subsequently exported from its container (4.16 line 40) and copied into the Alpine
container (4.16 line 47). Finally the source code is copied from the host machine into the
Alpine container using docker.#Copy (4.16 line 53). The source code is then compiled
using Gradle via a Bash command (4.16 line 60). This step also exports the resulting
build artifacts back onto the host machine (4.16 line 65).

Test action

The test action (see 4.16 line 69) gets the output from the build.gradle action as input
(4.16 line 71) to execute the Gradle test task in the same environment as the code has
been compiled in. Therefore Gradle does not have to recompile the code which in return
shortens the test task’s execution time.

Push action

The push action builds a Docker image containing a Java runtime environment (JRE)
and the artifacts from the previous build action. Subsequently the image is pushed
to a remote GitHub Container registry. The web application requires a JRE to be
executed. Therefore the push action pulls a Docker image containing a JRE [11] (4.16
line 82). Subsequently the application artifact is copied from the build machine into the
docker container. To achieve this, an _artifacts object implementing core.#Source is
defined inside of the baseWithArtifacts object (4.16 line 87), to make object containing
the source only visible inside of the object requiring the source code. The source code

38

4 Development

is then copied into the container using docker.#Copy (4.16 line 85). To execute the
application on container start, the path to the application inside of the container is set
as an entrypoint using docker.#Set (4.16 line 95). Since the web application uses port
8080, this port of the container gets exposed. Finally the Docker image is pushed to a
remote GitHub Container registry using docker.#Push (4.16 line 104). The destination
URL consists of ghcr.io/OWNER/IMAGE_NAME:latest, where OWNER is substituted
with the name of the repository’s owner, in this case myself, and IMAGE_NAME is
substituted with the name of the Docker image, in this case spring-boot-kotlin (4.16 line
106). Authentication is done via the username and previously generated PAT (4.16 line
109 and 110), which is saved as an environment variable on the local machine. The PAT
is a dagger.#Secret. Secrets are used to pass confidential information, such as passwords,
API keys, SSH keys, etc. within the plan. Secrets are managed by the Dagger runtime
and are never exposed as plaintext in logs, written into the filesystem or cached [7].

Local plan execution

To execute the plan locally, docker has to be installed and running [7]. The plan is
executed via the command line with dagger do followed by the name of the action, in
this case build.

1 $ dagger do build
2 [x] actions.build.gradle.script 0.0s
3 [x] actions.build.jdk 1.7s
4 [x] actions.build.checkoutCode 6.6s
5 [x] actions.build.base 2.0s
6 [x] actions.build.javaHome 0.0s
7 [x] actions.build.javaHome.export 0.0s
8 [x] actions.build.copyJava 0.0s
9 [x] actions.build.image 0.6s

10 [x] actions.build.gradle 102.7s
11 [x] actions.build.gradle.export 0.4s
12 [x] client.filesystem."./build".write 0.8s

Figure 4.19: Output from command dagger do build.

The output 4.19 lists the executed steps. The [x] to the left of the executed steps denotes,
that is has been executed successfully. The time in seconds to the right of the executed

39

4 Development

step is the execution time. Some steps have a 0.0s execution time, since they have been
cached in prior executions.

Plan execution in a CI/CD environment

Dagger depends on a Docker environment. Therefore the CI/CD environment has to
support Docker. There is a list of currently supported CI/CD environments on the Dag-
ger website [7]. CircleCI was chosen, since it is listed as Dagger compatible, offers free
execution in the cloud and a configurable built in Docker environment [6]. The config-
uration is contained in a .circleci/config.yml file within the repository. This CircleCI
configuration is based on the configuration on the Dagger website.

1 version: 2.1
2
3 jobs:
4 install-and-run-dagger:
5 docker:
6 - image: cimg/base:stable
7 steps:
8 - checkout
9 - setup_remote_docker:

10 version: "20.10.14"
11 - run:
12 name: "Install Dagger"
13 command: |
14 cd /usr/local
15 wget -O - https://dl.dagger.io/dagger/install.sh | sudo sh
16 cd -
17 - run:
18 name: "Run Dagger"
19 environment:
20 PAT: ghp_sasjlvb820qpzher234chvhi34b5b3kbn225
21 command: |
22 dagger do push --log-format plain
23
24 workflows:
25 dagger-workflow:
26 jobs:
27 - install-and-run-dagger

Figure 4.20: The CircleCI configuration used for this project.

40

4 Development

This configuration contains one job install-and-run-dagger (4.20 line 4). This job is
executed inside a cimg/base:stable Docker environment, which is an Ubuntu based Docker
image, created to serve as the base for CI/CD builds (4.20 line 6). It has a minimum set of
required tools, such as Git and Docker [5]. After the repository checkout (4.20 line 8), the
setup_remote_docker step (4.20 line 9) creates a remote Docker environment in which
subsequent docker run commands are executed. The Install Dagger step downloads and
executes the Dagger installation script via a docker run command (4.20 line 13). The
next Run Dagger (4.20 line 18) step runs the Dagger plan the same way as on a local
machine (4.20). The –log-format plain option prints the log in a verbose format. The
PAT environment variable (4.20 line 20) is required for pushing the final Docker image
into the GitHub Container registry as explained in 4.2.2. PAT’s value is altered to not
expose the actual value publicly.

4.3 Comparison

As mentioned in the introduction to this chapter, the Jenkins and Dagger are compared
two each other by these criteria in order to answer RQ:

• portability,

• reusability,

• extendability and,

• scalability.

The criteria are derived from each tool’s strength promoted by their developers: Dagger
particularly emphasizes its portability and reusability [7]. Jenkins emphasizes its extend-
ability due to its plugin architecture [31]. Scalability is included to highlight the lack of
developer experience and literature with Dagger compared to Jenkins.

4.3.1 Portability

[44, 25] define portability as an ability of a software to run on different computing sys-
tems, such as hardware, software or a combination of the two. In the context of CI/CD
systems its the ability to execute the pipeline on different machines being built on dif-
ferent hardware and operating systems. Jenkins itself can be executed on any system,

41

4 Development

which has a Java runtime [31]. However, Jenkins relies on the system it is executed
on to provide the tools necessary for the pipeline build, i.e. build tools. The Jenkins
pipeline syntax offers a tools section, which can automatically install a specified version
of maven, jdk and gradle [18]. Since the syntax is limited to these three tools, any other
tool, such as the Android SDK Platform-Tools required to build the Android app without
Android Studio installed [8] as explained in 4.1, has to be installed separately. To provide
a consistent environment for Jenkins, Jenkins can be run inside a Docker container, as
explained in 4.1.2. This way, the necessary build tools, environment variables, etc. are
held consistent when switching systems.
Dagger solves the issue of inconsistent build environment in two ways: Firstly, every
Dagger plan is executed inside of a Docker environment. Consequently this environment
stays consistent, even when switching systems, although dependencies on the local ma-
chine declared inside of the client field, i.e. environment variables, (see 4.2.2) have to
be provided by the system. Secondly, since Dagger does not replace a CI/CD platform,
but rather builds on top of it, a Dagger plan can be ported from a Docker compatible
CI/CD platform A to another Docker compatible platform B, without rewriting any of
the plans’ code. Relying on Docker also means being limited to software, which can be
executed inside a Docker container. This brings inherent limitations, such as not being
able to build with proprietary and platform specific build systems, i.e. Xcode on macOS
[24]. Consequently macOS and iOS applications cannot be build using Dagger.

4.3.2 Reusability

In the general context of software development reusability means using existing software
to develop new software and thereby copying a module to be used in other projects
than the one it was initially developed for [43]. This section focuses on the use case of
reusing code, by moving it out of the pipeline and into a separate repository. Jenkins has
a technology called Shared Libraries. Shared Libraries are designed to share common
parts and patterns of pipelines between them, in order to reduce redundant code. The
Jenkins documentation [18] outlines how to use Shared Libraries. Shared Libraries can
run any methods in Java, Groovy, Jenkins internal APIs, Jenkins plugins or third-party
libraries. To put it briefly, the purpose of Shared Libraries is to enhance the Jenkinsfile, by
reducing its’ complexity and encapsulate data into separate files, classes, etc., that would
otherwise be part of it. A Shared Libraries’ functionality is limited to the Jenkinsfile,
which means a Shared Library cannot do anything, that the Jenkinsfile cannot do on its

42

4 Development

own. Shared Libraries are usually in a separate source code repository from the main
Jenkinsfile using the Shared Library. A Shared Library can be retrieved using the SCM
plugin and then be used in the main Jenkins pipeline. Shared Libraries are accessible
as global variables to the pipeline. Therefore every global variable must be in a vars/
directory.

1 def call(String name = ’human’) {
2 echo "Hello, ${name}!"
3 }

Figure 4.21: A global variables’ name must be in camelCase. In this example it is var/-
greet.groovy. A global variable must also implemented the method call()
(see line 1).

This global variable is now exposed to the pipeline.

1 @Library(’greet’) _
2
3 pipeline {
4 agent any
5
6 stages {
7 stage(’Example’) {
8 steps {
9 greet(’Nick’)

10 }
11 }
12 }
13 }

Figure 4.22: A pipeline using the global variable var/greet.groovy.

This method can now be called in the Jenkinsfile (see 4.22 line 9). Examples beyond this
use case can be found in the Jenkins documentation [18].
Dagger uses modules containing packages to encapsulate code from a plan. An exam-
ple of packages can be seen at 4.16 line 8, where universe.dagger.io is the module and
universe.dagger.io/docker is one of the packages contained in the module. Imported
definitions can then be used in the plan (see 4.16 line 40). Consider this exemplary
package:

43

4 Development

1 package personal
2
3 import(
4 "universe.dagger.io/alpine"
5 "universe.dagger.io/bash"
6)
7
8 #Run: {
9 _img: alpine.#Build & {

10 packages: bash: _
11 }
12
13 bash.#Run & {
14 always: true
15 input: _img.output
16 }
17 }

Figure 4.23: Declaring a package in an external repository

1 package main
2
3 import (
4 "dagger.io/dagger"
5 "github.com/your-username/personal" // import personal package
6)
7
8 dagger.#Plan & {
9 actions: {

10 // reference #Run definition from personal package imported
above

11 hello: personal.#Run & {
12 script: contents: "echo \"Hello!\""
13 }
14 }
15 }

Figure 4.24: Importing a package from an external GitHub repository

Packages can also be retrieved from external repositories (4.24 line 5). In this example
a package called personal contains a #Run definition (see 4.23), which is referenced in
4.24 line 11. When running the command dagger project update inside of the root project
directory, Dagger checks out the package from the remote repository and copies the files

44

4 Development

into the rootProject/cue.mod/pkg/github.com/your-username/personal folder. Once the
package is imported, it can be used in the plan. This way, details of the implementation
in the personal package stay hidden from the plan 4.24. Ultimately, both Jenkins Shared
Libraries and Dagger packages achieve the same encapsulation of shared code from their
pipelines, just adapted for the Groovy and CUE languages respectively.

4.3.3 Extendability

[25] defines extendability as the ease at which a system or component can be modified
to increase its functionality. In the context of CI/CD this definition is only part of the
equation, since its not only question of how extendable a CI/CD tool is, but also how to
discover existing extensions and how to integrate them into a pipeline. Hence, Jenkins
and Dagger are compared by the following aspects:

• Discovery of extensions - what are the steps to find an existing extension?

• Integration of extensions - how do you integrate an existing extensions into your
own pipeline?

• Creation and distribution - how do you create an extension and how do you dis-
tribute it to be reused in other projects?

Although Shared Libraries and plugins have overlapping functionality, plugins are not
limited to what the Jenkinsfile can do: Plugins can affect nearly every aspect of Jenkins’
behavior, even core functionalities such as Job types, build queues, node monitors, etc.
The most common use case of plugins is to offer a specific functionality with a well
designed interface, which can be used to integrate the plugin into a Jenkinsfile, such as
SCM implementations, i.e. Git and Subversion, or build steps, i.e. providing a convenient
UI to view test results or send emails. Dagger does not differentiate between libraries and
plugins, but rather uses CUE Modules, which contain CUE Packages, to share common
parts between plans and actions [7].

Discovery of extensions

Jenkins plugins are hosted in a repository in the jenkinsci GitHub organization and can
be publicly accessed through the plugins index [21].

45

4 Development

Figure 4.25: The Jenkins plugins index webpage used to search for plugins. It offers filter
and sort features to enhance the search functionality.

46

4 Development

Figure 4.26: The documentation page of the App Center plugin

4.25 shows an exemplary search for the App Center plugin used in 4.1.3. Every plugin
has a documentation page (see 4.26), which is built after a template from the Jenkins
documentation, containing maintainer information, changelogs, contributor documen-
tation and usage instructions [18]. There is no standardized way to discover Shared
Libraries, since they are typically kept privately, rather than being open source. The
same is true for packages in Dagger. There is no standardized way in Dagger on how to
discover existing packages, although you should start your search in the dagger.io and
universe.dagger.io modules. The dagger.io contains the core Dagger functionalities, such
as plans and git. The universe.dagger.io module contains community developed pack-
ages, such as Docker and Bash. Compared to Jenkins, there is only a package coding
style [7], but no documentation template for packages, leading to very poorly, if at all,
documented packages, i.e. the Bash and Alpine packages. In these cases the only way to
understand the packages’ interface and its functionality is to study the source code.

47

4 Development

Integration of extensions

Jenkins plugins can either be installed through the plugin manager in the web UI or the
Jenkins CLI. Once a plugin is installed, it can be used. An exemplary use of a plugin
can be seen in 4.4 line 50 - 54, where the aforementioned App Center plugin is used in
a pipeline step. Another example is the HTML Publisher plugin (see 4.4 line 11 - 18),
publishing the build artifacts as seen in 4.7 to the web UI. Since there are very strict
guidelines for documenting plugins in the jenkinsci GitHub repository, the integration
of most plugins is straight forward. Since Dagger does not differentiate between plugins
and libraries, an exemplary integration of packages is already documented in 4.3.2. As
mentioned in 4.3.3, there are no guidelines on how to document Dagger packages, making
it equally time consuming and complex to understand the code of a package before
integrating it. Most of the time, taking a look at examples of other projects integrating
the package helped to understand its interface and functionality. Once it is clear how to
use a package, a package can be integrated into a plan as seen in 4.3.2.

Creation and distribution

The basis for a Jenkins plugin is generated from Maven Archetypes [15]. Maven Archetypes
are templates from which other Maven projects are generated. Jenkins currently offers
three plugin archetypes, an empty plugin skeleton, a plugin skeleton with an example
configuration and a plugin with an exemplary build step. Once the basis is generated,
the plugin can be extended. Like Jenkins itself, plugins are written in Java. A detailed
description of how to extend the templates is given in the Jenkins documentation [18].
As mentioned in 4.3.3, Jenkins plugins are published in the jenkinsci GitHub repository.
Every plugin in this repository has to be free and open source under an OSI-approved
license [20] to ensure source code access and project continuity in case of changing main-
tainers. To distribute the plugin on GitHub, one has to have a GitHub user account.
In order to release a plugin, you have to have a Jenkins community account, which will
give you access to Jira issue tracker and the Maven repository. A plugin can either be
released via CD in GitHub or manually.
In order to extend Dagger by adding packages to the universe.dagger.io module, one has
to fork the Dagger GitHub project. From there on, one can perform the desired changes
and finally create a pull request back into the Dagger GitHub repository. These pull
requests should be small incremental changes, to ensure quick feedback. Additionally,

48

4 Development

the pull request and its commits have to follow guidelines to ensure a consistent Git
history [7]. This process is the same when contributing to Dagger itself, rather than just
adding a package. This process also implies, that everyone, who installs Dagger locally,
installs a copy of every package, even the ones not required for the project. Compared
to Jenkins’ process of creating plugins, Daggers’ involves fewer barriers, i.e. it does not
require a dedicated release process. This is, since the tools are in two different stages
of their development: On the one hand Jenkins is a mature platform with over 2000
plugins available [14], which creates a necessity for well documented publish and release
process for plugins. On the other hand, Dagger is in a very early development stage,
which requires rapid development and quick feedback, in order to grow the platform.

4.3.4 Scalability

[41] use a CI/CD pipeline at Otto.de for every microservice to frequently and automat-
ically deploy their applications in parallel. Otto.de is one of the largest online shops in
Europe, with up to 1 million visitors per day. They chose a microservice architecture
mostly for non-functional requirements, such as scalability, performance and fault tol-
erance. Their pipelines check out every commit and compile, package, deploy and test
every commit in an integration stage. Subsequently, the container is deployed to the next
stage, called testing, which runs load and integration tests. Before going live there is the
pre-live stage, where all services are tested against each other in a suite of manual and
automatic tests. In their experiences traditional CI servers, such as Jenkins, reach their
limits due to the high number of deployments, since all pipelines across the microservices
have to be kept up to date and configured similarly. Therefore, they developed an inter-
nal domain-specific language LambdaCD [3]. LambdaCD has a similar infrastructure as
code approach compared to Dagger. LambdaCD pipelines are microservices responsible
for building, testing and deploying an application. The pipeline runs in the same envi-
ronment as the other microservices. The pipeline can also be run, tested and debugged
locally without a CI platform, just as dagger. Unfortunately, as of the time of writing,
Dagger is at such an early stage of development that there is no experience yet in terms
of large-scale projects, such as described in [41]. Consequently, due to time constraints,
this thesis does not cover Dagger in the context of large scale projects, although this is
definitely a starting point for future work.

49

4 Development

4.4 Summary

4.4.1 Jenkins

This chapter compared Jenkins to Dagger, by using each tool to build a open source
software project. Jenkins is an open source CI/CD tool designed to be extendable and
customizable. Jenkins can run on any machine with a Java runtime. Jenkins is operated
via a web interface. In this chapter, Jenkins was used to build an Android application
with a pipeline consisting of five stages Git checkout, linter, unit tests, application as-
sembly and publishing. Each of the stages is a quality gate. The pipeline itself is written
in Groovy DSL. Jenkins itself, as well as a pipeline, can be extended using plugins.

4.4.2 Dagger

Dagger is a portable development kit for CI/CD running in any Docker-compatible en-
vironment. Therefore Dagger’s pipeline is independent from a CI environment and can
be ported to any CI environment, such Jenkins, CircleCI, GitHub, etc., and can even be
run locally without a CI environment. Dagger does not replace a CI environment, but
rather builds a portable layer on top of it. Dagger’s pipelines are called plans. A plan is
written in CUE DSL. CUE allows developers to specify data of a type as concrete values
satisfying set constraints. CUE also allows to both define and enforce a schema. In this
case, Dagger was used to build a web application using Gradle. The proposed Dagger
plan builds the application, runs unit tests and publishes a Docker image containing the
application into a GitHub repository.

4.4.3 Comparison

When comparing Jenkins to Dagger, Jenkins uses the environment it is running in to
execute the pipeline, which can be directly on the machine, in a virtual machine, in a
Docker container, etc. This means it is more complex to keep the environment consistent
locally and on a build machine, but also makes it possible to use build systems, which
cannot be run inside a Docker container. In contrast to Jenkins, Dagger always exe-
cutes its builds inside a Docker environment, keeping the build environment consistent
regardless of the machine it is running on. A Jenkinsfile’s complexity can be reduced
by encapsulating code into Shared Libraries, which can be made accessible via SCM to

50

4 Development

multiple pipelines. Jenkins can also be extended by using plugins. Plugins can not only
be used in a Pipeline, but every part of Jenkins, such as the web interface. Plugins are
published under strict guidelines into a shared GitHub repository. They are discovered
and downloaded from the plugins index. Dagger has a less complex approach to extend
a plan and make actions reusable, due to its early stage of development: Dagger uses
modules containing packages, which can either be in a local or remote repository. Dagger
modules can also be made accessible publicly by becoming part of the Dagger universe.
There are no guidelines for documentation, making it complex and time consuming to
understand and integrate third party modules. Although Jenkins is used in large scale
systems [30], Jenkins can reach its limits, especially in microservice applications with a
large number of parallel deployments. There are no large scale projects using Dagger
yet, although there is a comparable tool (LambdaCD), which is used to frequently build,
test and deploy multiple microservice applications in parallel.

51

5 Conclusion

This chapter summarizes the prior chapters as well as reviewing and answering the initial
question RQ. Finally, it gives a prospect into possible future work.

5.1 Summary of results

A survey was conducted to get an understanding of what functionalities developers are
missing in established CI/CD tools. The survey shows that developers like that Jenkins
is available for free, has a large community and an extensive list of available plugins,
but miss an intuitive interface, local debugging functionality and find maintenance time
consuming. Furthermore, new CI/CD tools should require less scripting and should be
executable in the cloud. Two CI/CD pipelines using Jenkins and Dagger were developed.
Jenkins is a well established open source CI/CD tool living from its highly customizable
and extendable plugin architecture and is widely adopted, but is not up to date in terms
of portability, usability and reaches its limits in complex applications. Dagger builds a
layer on top of the CI/CD platform, runs in a Docker environment and can therefore be
executed independently on any CI/CD platform as well as locally. Dagger learns from
established tools by unifying and simplifying the process of extending plans, reusing
components and making pipelines executable and debuggable locally. Being in an early
stage of development, Dagger lacks most of the functionality available as plugins, is
poorly documented in many places, is not usable in some edge cases and there is no
experience of using Dagger in a large scale, commercial application.

5.2 Review of results

Dagger does not satisfy all unmet needs, but addresses issues found in Jenkins. Since
Dagger in an early development stage, the number of available modules, compared to

52

5 Conclusion

Jenkins’ large selection of plugins, is very limited, forcing developers to implement the
needed functionality themselves and increasing, rather than decreasing the need to script.
By building a layer on top of a CI/CD platform, Dagger is decoupled from the environ-
ment it is executed in. Thus, the web interface and the ability to be executed in the
cloud depends on the CI/CD platform Dagger is run on, rather than Dagger itself. Being
portable to any Docker environment, Dagger is also debuggable locally. Dagger reduces
the required maintenance by streamlining the process of moving individual components
of a plan into modules. The modules itself can be tested and reused in other plans.
Therefore, the overall complexity and hence the required maintenance is reduced. On
these grounds, Dagger is not yet ready to be used in large scale commercial applications.
Although, this does not mean Dagger is not going to succeed. There are examples, i.e.
Docker, which started as a niche product with very limited feature set and compatibility.
Once there was demand for containerization in the industry, Docker’s rate of develop-
ment became rapid [50, 9]. Dagger has the best prerequisites for a similar course, since it
builds on the already established Docker platform and can be run on established CI/CD
platforms.

5.3 Future work

There are several starting points for future work in this thesis. One could be to conduct
the survey with a significantly larger sample size, i.e. 1000 people from the target pop-
ulation [54], since the number of respondents is currently limited to three. This would
increase the variety of respondents, their answers and the aspects they miss in estab-
lished CI/CD tools, thus making the outcome of the survey more significant. Another
starting point could be to include other CI/CD tools into the comparison, such as Cir-
cleCI, Buddy, TravisCI, etc., to provide a broader comparison between available CI/CD
tools. Finally, Dagger has been developed extensively since the time of finishing this
thesis: In addition to the CUE SDK, Dagger now offers SDKs in Go, Node.js, Python
and GraphQL, which could be evaluated and compared to established CI/CD tools in
the same way it was done for the CUE SDK.

53

Bibliography

[1] : alpine. – URL https://hub.docker.com/_/alpine. – Zugriffsdatum: 2022-
10-02

[2] : Buddy Docks. – URL https://buddy.works/docs. – Zugriffsdatum: 2022-
11-23

[3] : BUILD PIPELINES AS CODE. – URL www.lambda.cd. – Zugriffsdatum:
2022-11-07

[4] : BuildKit. – URL https://github.com/moby/buildkit. – Zugriffsdatum:
2022-10-20

[5] : cimg/base. – URL https://circleci.com/developer/images/image/

cimg/base. – Zugriffsdatum: 2022-10-10

[6] : CircleCI Docs. – URL https://circleci.com/docs/. – Zugriffsdatum:
2022-10-10

[7] : Dagger vs. Other Software. – URL https://docs.dagger.io/. – Zugriffsda-
tum: 2022-09-05

[8] : developers. – URL https://developer.android.com/. – Zugriffsdatum:
2022-10-15

[9] : Docker Blog. – URL https://www.docker.com/blog/tag/docker/. –
Zugriffsdatum: 2022-11-30

[10] : docker docks. – URL https://docs.docker.com/. – Zugriffsdatum: 2022-12-
12

[11] : eclipse-temurin. – URL https://hub.docker.com/_/eclipse-temurin.
– Zugriffsdatum: 2022-10-03

54

Bibliography

[12] : Get insights quickly, with Google Forms. – URL https://www.google.com/

intl/en/forms/about/. – Zugriffsdatum: 2022-06-27

[13] : HTML Publisher. – URL https://plugins.jenkins.io/

htmlpublisher/. – Zugriffsdatum: 2022-08-09

[14] : Installation Trends JSON. – URL https://stats.jenkins.io/plugin-

installation-trend/. – Zugriffsdatum: 2022-11-05

[15] : Introduction to Archetypes. – URL https://maven.apache.org/

guides/introduction/introduction-to-archetypes.html. – Zugriffs-
datum: 2022-10-31

[16] : Introduction to Microsoft Forms. – URL https://support.microsoft.

com/en-us/office/introduction-to-microsoft-forms-bb1dd261-

260f-49aa-9af0-d3dddcea6d69. – Zugriffsdatum: 2022-06-21

[17] : Jenkins Continuous Integration and Delivery server. – URL https://hub.

docker.com/r/jenkins/jenkins. – Zugriffsdatum: 2022-10-03

[18] : Jenkins User Documentation. – URL https://www.jenkins.io/doc/book/.
– Zugriffsdatum: 2022-10-15

[19] : Kotlin. – URL https://kotlinlang.org/. – Zugriffsdatum: 2022-10-20

[20] : Licenses and Standards. – URL https://opensource.org/licenses. –
Zugriffsdatum: 2022-11-05

[21] : Plugins Index. – URL https://plugins.jenkins.io/. – Zugriffsdatum:
2022-10-29

[22] : Tutorial Spring Boot Kotlin. – URL https://github.com/spring-guides/

tut-spring-boot-kotlin. – Zugriffsdatum: 2022-11-16

[23] : What is Jenkins?. – URL https://www.cloudbees.com/jenkins/what-

is-jenkins. – Zugriffsdatum: 2022-05-24

[24] : Xcode. – URL https://developer.apple.com/xcode/. – Zugriffsdatum:
2022-10-20

[25] IEEE Standard Glossary of Software Engineering Terminology. In: IEEE Std 610.12-
1990 (1990), S. 1–84

55

Bibliography

[26] : App Center Plugin. 2021. – URL https://github.com/jenkinsci/

appcenter-plugin. – Zugriffsdatum: 2022-08-15

[27] : What is Gradle? 2021. – URL https://docs.gradle.org/current/

userguide/what_is_gradle.html. – Zugriffsdatum: 2022-05-27

[28] : Build-Test-Distribute Mobile Apps using App Center. 2022. – URL
https://www.azuredevopslabs.com/labs/vstsextend/appcenter/#:

~:text=Visual%20Studio%20App%20Center%20is,one%20single%

20integrated%20cloud%20solution.. – Zugriffsdatum: 2022-08-01

[29] : INTRODUCING DAGGER: A NEW WAY TO CREATE CI/CD PIPELINES.
2022. – URL https://dagger.io/blog/public-launch-announcement.
– Zugriffsdatum: 2022-05-25

[30] Arachchi, S.A.I.B.S. ; Perera, Indika: Continuous Integration and Continuous
Delivery Pipeline Automation for Agile Software Project Management. In: 2018
Moratuwa Engineering Research Conference (MERCon), 2018, S. 156–161

[31] Armenise, Valentina: Continuous Delivery with Jenkins: Jenkins Solutions to Im-
plement Continuous Delivery. In: Proceedings of the Third International Workshop
on Release Engineering, IEEE Press, 2015 (RELENG ’15), S. 24–27

[32] Boettiger, Carl: An Introduction to Docker for Reproducible Research. In:
SIGOPS Oper. Syst. Rev. 49 (2015), jan, Nr. 1, S. 71–79. – URL https://doi.

org/10.1145/2723872.2723882. – ISSN 0163-5980

[33] Chen, Lianping: Continuous Delivery: Huge Benefits, but Challenges Too. In:
IEEE Software 32 (2015), Nr. 2, S. 50–54

[34] Crispin, Lisa: Driving Software Quality: How Test-Driven Development Impacts
Software Quality. In: IEEE Software 23 (2006), Nr. 6, S. 70–71

[35] Cunningham, Ward: Principles behind the Agile Manifesto. 2001. – URL http:

//agilemanifesto.org/principles.html. – Zugriffsdatum: 2022-05-10

[36] Dzamashvili Fogelström, Nina ; Gorschek, Tony ; Svahnberg, Mikael ;
Olsson, Peo: The impact of agile principles on market-driven software product
development. In: Journal of Software Maintenance and Evolution: Research and
Practice 22 (2010), Nr. 1, S. 53–80. – URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/spip.420

56

Bibliography

[37] Fowler, Martin: Continuous Integration. 2006. – URL https://

martinfowler.com/articles/continuousIntegration.html. – Zugriffs-
datum: 2022-05-24

[38] Fowler, Martin: ContinuousDelivery. 2013. – URL https://martinfowler.

com/bliki/ContinuousDelivery.html#footnote-when. – Zugriffsdatum:
2022-05-27

[39] Guay, Matthew: The 8 best online form builder apps. 2022. – URL https://

zapier.com/blog/best-online-form-builder-software/. – Zugriffsda-
tum: 2022-06-27

[40] Habchi, Sarra ; Blanc, Xavier ; Rouvoy, Romain: On Adopting Linters to Deal
with Performance Concerns in Android Apps. S. 6–16. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. New
York, NY, USA : Association for Computing Machinery, 2018. – URL https:

//doi.org/10.1145/3238147.3238197. – ISBN 9781450359375

[41] Hasselbring, Wilhelm ; Steinacker, Guido: Microservice Architectures for Scal-
ability, Agility and Reliability in E-Commerce. In: 2017 IEEE International Con-
ference on Software Architecture Workshops (ICSAW), 2017, S. 243–246

[42] Leitschuh, Jonathan: Ktlint Gradle. 2022. – URL https://github.com/

JLLeitschuh/ktlint-gradle. – Zugriffsdatum: 2022-08-04

[43] Luer, Chris: Assessing Module Reusability. In: First International Workshop on
Assessment of Contemporary Modularization Techniques (ACoM ’07), 2007, S. 7–7

[44] Matinlassi, M.: Evaluating the portability and maintainability of software product
family architecture: terminal software case study. In: Proceedings. Fourth Working
IEEE/IFIP Conference on Software Architecture (WICSA 2004), 2004, S. 295–298

[45] Olsson, Helena H. ; Alahyari, Hiva ; Bosch, Jan: Climbing the "Stairway to
Heaven" – A Mulitiple-Case Study Exploring Barriers in the Transition from Agile
Development towards Continuous Deployment of Software. In: 2012 38th Euromicro
Conference on Software Engineering and Advanced Applications, 2012, S. 392–399

[46] Patil, Shreyas: Foodium. 2021. – URL https://github.com/PatilShreyas/

Foodium. – Zugriffsdatum: 2022-08-04

57

Bibliography

[47] Punter, T. ; Ciolkowski, M. ; Freimut, B. ; John, I.: Conducting on-line
surveys in software engineering. In: 2003 International Symposium on Empirical
Software Engineering, 2003. ISESE 2003. Proceedings., 2003, S. 80–88

[48] Savor, Tony ; Douglas, Mitchell ; Gentili, Michael ; Williams, Laurie ; Beck,
Kent ; Stumm, Michael: Continuous Deployment at Facebook and OANDA. In:
Proceedings of the 38th International Conference on Software Engineering Compan-
ion. New York, NY, USA : Association for Computing Machinery, 2016 (ICSE ’16),
S. 21–30. – URL https://doi.org/10.1145/2889160.2889223. – ISBN
9781450342056

[49] Sijbrandij, Sid: A brief history of GitLab. – URL https://about.gitlab.

com/company/history/. – Zugriffsdatum: 2022-05-24

[50] Singh, Sachchidanand ; Singh, Nirmala: Containers & Docker: Emerging roles &
future of Cloud technology. In: 2016 2nd International Conference on Applied and
Theoretical Computing and Communication Technology (iCATccT), 2016, S. 804–
807

[51] Soni, Mitesh: End to End Automation on Cloud with Build Pipeline: The Case
for DevOps in Insurance Industry, Continuous Integration, Continuous Testing, and
Continuous Delivery. In: 2015 IEEE International Conference on Cloud Computing
in Emerging Markets (CCEM), 2015, S. 85–89

[52] Taylor, David: 20 Best Continuous Integration(CI/CD) Tools in 2022. 2022.
– URL https://www.guru99.com/top-20-continuous-integration-

tools.html. – Zugriffsdatum: 2022-05-24

[53] Verma, Abhishek ; Pedrosa, Luis ; Korupolu, Madhukar ; Oppenheimer,
David ; Tune, Eric ; Wilkes, John: Large-Scale Cluster Management at Google
with Borg. New York, NY, USA : Association for Computing Machinery, 2015 (Eu-
roSys ’15). – URL https://doi.org/10.1145/2741948.2741964. – ISBN
9781450332385

[54] Zhang, Yang ; Vasilescu, Bogdan ; Wang, Huaimin ; Filkov, Vladimir: One
Size Does Not Fit All: An Empirical Study of Containerized Continuous Deployment
Workflows. In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. New York, NY, USA : Association for Computing Machinery, 2018

58

Bibliography

(ESEC/FSE 2018), S. 295–306. – URL https://doi.org/10.1145/3236024.

3236033. – ISBN 9781450355735

59

A Appendix

A.1 Survey

A.1.1 Survey section 1

60

A Appendix

A.1.2 Survey section 2

61

A Appendix

A.1.3 Survey section 3

62

A Appendix

63

A Appendix

64

A Appendix

A.1.4 Survey section 4

65

A Appendix

66

A Appendix

A.1.5 Survey section 5

67

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

68

