"FixtureCheck":

Methode zum Vergleich der Farbwiedergabe-Qualität von Weißlicht bei LED-Scheinwerfern

Master-Thesis

zur Erlangung des akademischen Grades M.A.

Matthias Held

Hochschule für Angewandte Wissenschaften Hamburg Fakultät Design, Medien und Information Department Medientechnik

Erstprüfer: Prof. Dr.-Ing. Carolin Liedtke Zweitprüfer: Prof. Dr.-Ing. Roland Greule

Hamburg, 18.08.2022

Inhaltsverzeichnis

1	Gru	ndlagei	n	6
	1.1	Farbrä	iume	6
		1.1.1	CIE-XYZ-Farbraum	6
		1.1.2	CIE-USC-Farbtafel	8
		1.1.3	CIE-L*U*V*-Farbraum	9
	1.2	Farbw	iedergabewerte	10
		1.2.1	CIE: Color Redendering Index (CRI)	10
		1.2.2	EBU: Television Lighting Consistency Index (TLCI)	14
		1.2.3	ANSI/IES: Method for Evaluting Light Source Color Rendition	10
		104	(1 M-30-20)	10
		1.2.4	SMPTE Standart: Spectral Similarity Index (SSI)	22
		1.2.5	Full Spectrum Index (FSI) & Full Spectrum Color Index (FSCI)	24
		1.2.6	Feeling of Contrast Color Rendering Index (FCI)	25
		1.2.7	Gamut Area Index (GAI)	26
		1.2.8	Memory Color Quality Metric (MCQM)	28
	1.3	Nutzw	<i>r</i> ertanalyse	29
		1.3.1	Verfahren einer Nutzwertanalyse	29
		1.3.2	Gewichtung	32
		1.3.3	Skalenniveau	33
2	Sch	einwerf	ermessung	35
	2.1	Ziel de	er Messung	35
	2.2	Auswa	ahl der Scheinwerfer	35
	2.3	Messa	ufbau und Durchführung	37
	2.4	Messw	verte und Auswertung	38
2	Era	hoitun	g dar FixturaChack Mathada	/1
J	2 1		der FixtureCheck-Methode	
	3.2		vandte Nutzwertanalvse	41 //1
	0.2	3.9.1		41
		0.2.1 3.9.9	Bestimmung der Kriterien	42
		0.2.2 3.9.3	Skalierung der Kriterien	42
		3.2.3	Cowichtung der Kriterion	40 51
		0.2.4 2.9.5	Bestimmung des Cesemtnutzwerte (Ähnlichkeitefekter")	54
	22	5.2.0	iorung der Cowichtungen	55
	ე.ე	15vaitti 2 2 1	Fall 1: Cloiche Convictung aller Kriterien	55
		ა.ა.⊥ ეეეე	Fall 2. Stophy Considering des gestrumgenehen Kriterier	00 56
		5.5.2	ran 2: Starke Gewichtung der spektrumsnanen Kriterien	00

Inhaltsverzeichnis

Literaturverzeichnis 14						
Ta	belle	nverzei	chnis	143		
At	bildu	ingsver	zeichnis	141		
	5.4	Gemes	sene Spektren als Tabelle	98		
	5.3	Gemes	sene Spektren als Grafiken	75		
	r 0	5.2.10	JETI Spectraval 1511 (scv1511) \ldots	74		
		5.2.9	ETC Source 4 LED Series 3	73		
		5.2.8	ETC Source 4 LED Series 2 Lustr	73		
		5.2.7	Clay Paky K-Eye K10 HCR	73		
		5.2.6	Arri L-7C	73		
		5.2.5	Expolite TourLED Pr0 28 Zoom IP33	72		
		5.2.4	JB-Lighting VaryScan P7	72		
		5.2.3	JB-Lighting VaryScan P7	72		
		5.2.2	JB-Lighting P12 Profile	72		
		5.2.1	Robe Robin Viva CMY	71		
	5.2	Schein	werfer Informationen	71		
Э	Ann 5.1	ang Materi	alliste	7 1		
E	۸.al-			71		
	4.2	Ausbli	ck	68		
	4.1	Ergebr	$nisse \dots $	67		
4	Erge	ebnisse	und Ausblick	67		
	3.5	Ablauf	f der FixtureCheck-Methode	63		
	3.4	Redun	danzüberprüfung der spektrumsnahen Kriterien	62		
			Methode	61		
		3.3.6	Nativer Fall: Angewandte Gewichtung für die FixtureCheck-	01		
		3.3.5	Nativer Fall: Gleiche Gewichtung aller Kriterien	61		
		3.3.3	Fall 4: Angewandte Gewichtung für die FixtureCheck-Methode	50 50		
		333	Fall 3. Schwache Gewichtung der spektrumsnahen Kriterien	58		

Abstract

The basic idea of the "FixtureCheck-method" lies in the comparison of white light under various criteria. For a long time, the CRI was considered by lighting fixture manufacturers to be the benchmark of light quality and is still presented today as an important argument for buying a lighting fixture. Increasingly often an "Ra+" value is stated in the datasheet, which declares that every requirement for color rendering quality is met. This makes a comparison of light quality obsolete; any lighting fixture can supposedly produce equally good color rendering values. However, as is known in practice, two lighting fixtures with the same "Ra+" value can emit quite different light. Other color rendering values are too complex (TM-30) or are not considered trustworthy. Lighting designers therefore prefer to rely on their own white light experience. The FixtureCheck-method deals with current color rendering values in detail and has made its task to make this information usable for a white light comparison. With the methodology of a weighted sum model, the various criteria such as SSI, FSI, Rf are brought into a complex context. The result helps the user to compare the white light of two lighting fixtures and supports him with the calculated "similarity factor" to find a proper decision. For Instance, this can be helpful in the planning of theatrical lighting and in the lighting design of catwalks. Often a fixture model is not available in a higher quantity, so that several models have to be used in combination, or for monetary reasons a fixture has to be substituted - there are many possible cases when the FixtureCheck-method can be used. The program should be simple for the user. The white light spectra of the fixtures measured with a spectrometer (with an adjusted CCT or native) are inserted into the FixtureCheck Microsoft Excel file and the comparison is made automatically. With the FixtureCheck-method the lighting designer has a meaningful tool at hand, which is a good alternative to the rather meager data sheets of the lighting fixture manufacturers and should facilitate the daily work for him. In developing this method, the following key questions are to be answered:

- Which parameters should be included in the FixtureCheck-method without creating redundancy?
- How can these various parameters be brought into a context together to produce a single result value?
- Does the FixtureCheck method produce predictable results?

Inhaltsverzeichnis

Zusammenfassung

Der Grundgedanke der hier neu eingeführten "FixtureCheck-Methode" liegt im Vergleich von Weißlicht unter verschiedenen Kriterien. Für lange Zeit galt der CRI bei Scheinwerferherstellern als Maßstab der Lichtqualität und wird bis heute ähnlich wie die Pferdestärke bei Fahrzeugen als Aushängeschild eines Scheinwerfermodells präsentiert. Immer öfter wird auch ein " R_a +"-Wert angegeben, der aussagt, dass jedem Anspruch an Farbwiedergabequalität genüge getan wird. Dadurch wird ein Lichtqualitätsvergleich obsolet, jeder Scheinwerfer kann angeblich gleich gute Farbwiedergabewerte erzeugen. Zwei Scheinwerfer mit demselben " R_a +"-Wert können jedoch ganz unterschiedliches Licht emittieren, wie in der Praxis bekannt ist. Andere Farbwiedergabewerte sind zu komplex (TM-30) oder werden als nicht vertrauenswürdig eingestuft. Die Lichtdesigner bzw. Lichtplaner verlassen sich daher lieber auf ihre eigenen Erfahrungswerte.

Für die FixtureCheck-Methode wird sich ausführlich mit aktuellen Farbwiedergabewerten befasst und sie hat es sich zur Aufgabe gemacht, diese Informationen für einen Weißlichtvergleich nutzbar zu machen. Mit der Methodik einer Nutzwertanalyse sollen die verschiedenen Kriterien wie zum Beispiel SSI, FSI, R_f in einen komplexen Gesamtzusammenhang gebracht werden. Das Ergebnis hilft dem Anwender das Weißlicht zweier Scheinwerfer zu vergleichen und sich durch den errechneten "Ähnlichkeitsfaktor" eine Tendenz zu erschließen. Dies ist zum Beispiel hilfreich bei der Planung im Theaterlichtbereich sowie bei der Lichtplanung von Laufstegen. Oft ist ein Scheinwerfermodell in einer höheren Stückzahl nicht verfügbar, so dass man mehrere Modelle kombiniert benutzen muss oder aus monetären Gründen soll ein Scheinwerfer substituiert werden - es gibt viele mögliche Fälle, wann die FixtureCheck-Methode gebraucht werden kann. Dabei soll das Programm für den Anwender simpel gestaltet sein. Mit dem Spektrometer gemessene Weißlichtspektren der Scheinwerfer (bei einer angepassten CCT oder nativ) werden in die FixtureCheck-Microsoft-Excel-Datei eingefügt und damit ergibt sich der Vergleich ganz automatisch. Auf diese Weise hat der Lichtplaner ein aussagekräftiges Tool zur Hand, das eine gute Alternative zu den eher dürftigen Datenblättern der Scheinwerferhersteller darstellt und den Arbeitsalltag der Lichtplanung erleichtern soll. Bei der Erschließung dieser Methode sollen folgende Leitfragen beantwortet werden:

- Welche Parameter müssen in die FixtureCheck-Methode einbezogen werden, ohne dass Redundanz entsteht?
- Wie kann man diese verschiedenen Parameter in einen Gesamtzusammenhang zu einem einzelnen Ergebniswert führen?
- Erzeugt die FixtureCheck-Methode vorhersehbare Ergebnisse?

1.1 Farbräume

Um die Lichtfarben eines Scheinwerfers kategorisieren zu können, werden diesen Koordinaten in Farbräumen zugeteilt. Die für diese Arbeit relevanten Farbräume sollen an dieser Stelle kurz erläutert werden.

1.1.1 CIE-XYZ-Farbraum

Die Internationale Beleuchtungskommission (CIE) hat 1931 mit drei virtuellen Primärvalenzen einen neuen Farbraum erklärt, da im RGB-Farbraum nicht alle reellen Farben dargestellt werden konnten¹. Aus den Untersuchungen von Wright und Guild² wird ein "farbmetrischer Normalbetrachter CIE 1931" definiert, für den bei einer 2° Gesichtsfeldgröße die drei XYZ-Spektralwertfunktionen gelten³ (s. Abbildung 1.1).

Abbildung 1.1: XYZ Spektralwertfunktionen des 2°-Normalbetrachters⁴

³ (Gigahertz-Optik 2022)

¹ (Greule 2021:85)

² (Service 2016)

⁴ https://www.gigahertz-optik.com/assets/Uploads/Abb.-II.21-neu.png[letzter Zugriff: 08.08.2022]

Die Funktion \overline{y} entspricht dabei der spektralen Empfindlichkeitskurve $V(\lambda)$ für das photopische Sehen. Die XYZ-Tristimulus-Werte eines Spektrums $\varphi(\lambda)$ der Wellenlängen λ_2 bis λ_1 werden anhand der XYZ-Spektralwertfunktionen ermittelt⁵ (s. Gleichung 1.1 bis 1.3). Die Konstante k kann dabei beispielsweise so gewählt werden, das Y=100 entspricht.

$$X = k \int_{\lambda_2}^{\lambda_1} \varphi(\lambda) \cdot \overline{x}(\lambda) \cdot d(\lambda)$$
(1.1)

$$Y = k \int_{\lambda_2}^{\lambda_1} \varphi(\lambda) \cdot \overline{y}(\lambda) \cdot d(\lambda)$$
(1.2)

$$Z = k \int_{\lambda_2}^{\lambda_1} \varphi(\lambda) \cdot \overline{z}(\lambda) \cdot d(\lambda)$$
(1.3)

Aus den XYZ-Tristimulus-Werten werden die xy-Farbkoordinaten eines Spektrums bestimmt, die dann im zweidimensionalen Raum dargestellt werden (s. Gleichung 1.4 und 1.5).

$$x = \frac{X}{X + Y + Z} \tag{1.4}$$

$$y = \frac{Y}{X + Y + Z} \tag{1.5}$$

Der xy-Farbraum erstreckt sich über den gesamten sichtbaren Wellenlängenbereich 380 nm $< \lambda < 780$ nm und wird umgangssprachlich "Farbschuh" genannt (s. Abbildung 1.2).

Abbildung 1.2: Darstellung des xy-Farbraums mit eingezeichneter Koordinate⁶

 $[\]frac{1}{5}$ (Greule 2021:87)

Auf Abbildung 1.2 ist außerdem der Plank'sche Kurvenzug eingezeichnet. Anhand dieser Kurve wird die korrelierte Farbtemperatur (CCT) eines xy-Farborts verortet.

1.1.2 CIE-USC-Farbtafel

Eines der größten Probleme des CIE-XYZ-Farbraums ist, dass die Farbabstände im xy-Diagramm nicht so dargestellt werden, wie sie in der Realität sind. Der Rotbereich ist stark gestaucht, wohingegen der Grünbereich sehr gestreckt ist. Um diesem Phänomen entgegenzuwirken hat die CIE 1960 und 1967 die USC-Farbtafel definiert. Dafür werden die xy-Koordinaten in u'v'-Koordinaten umgewandelt⁷ (s. Gleichung 1.6 und 1.7).

$$u' = \frac{4x}{(-2x + 12y + 3)}\tag{1.6}$$

$$u' = \frac{9y}{(-2x + 12y + 3)}\tag{1.7}$$

Die xy-Farbtafel wird speziell gestaucht und gestreckt, sodass die u'v'-Koordinaten auf der neu entstandenen Farbtafel die Farbabstände der Farborte deutlich präziser aufzeigen (s. Abbildung 1.3).

Abbildung 1.3: Darstellung des u'v'-Farbraums mit Plank'schem Kurvenzug⁸

⁶ https://www.gigahertz-optik.com/assets/Uploads/Abb.-II.22-a-neu.png[letzter Aufruf: 08.08.2022]

⁷ (Greule 2021:90)

⁸ https://www.gigahertz-optik.com/assets/Uploads/Abb.-II.22-b-neu.png[letzter Aufruf: 08.08.2022]

Auf der u'v'-Farbtafel wird auch der $\Delta u'v'$ berechnet, der anzeigt wie sehr ein Farbort mit zugeteilter CCT von der Plank'schen Kurve abweicht. Ein $\Delta u'v' > 0$ beschreibt einen grünstichiges Weißlicht, ein $\Delta u'v' < 0$ dagegen ein magentastichiges⁹. Der $\Delta u'v'$ wird im nativen Vergleich bei der FixtureCheck-Methode benötigt, um den Farbortsabstand der gemessenen Spektren zur Plank'schen Kurve zu vergleichen. Bei einem angepassten Vergleich ist der $\Delta u'v'$ so minimal wie möglich zu halten und daher nicht von Belang.

1.1.3 CIE-L*U*V*-Farbraum

Der Nachteil der zweidimensionalen Farbräume besteht darin, dass nur Farben gleicher Helligkeit miteinander verglichen werden können. Daher hat die CIE 1976 den dreidimensionalen $L^*U^*V^*$ -Farbraum entwickelt. Mithilfe der XYZ-Tristimuluswerte und u'v'-Farbkoordinaten einer Standardlichtart (z. B. D65) können die Helligkeit L^* und die Farbwerte u^* und v^* errechnet werden. L^* ist dabei abschnittsweise definiert¹⁰ (s. Gleichung 1.8 bis 1.10).

$$L^* = \begin{cases} 116\sqrt[3]{\frac{Y}{Y_{D65}}} - 16 & \text{für} & \frac{216}{24389} \le \frac{Y}{Y_{D65}} \le 1\\ \frac{24389}{27} \cdot \frac{Y}{Y_{D65}} & \text{für} & 0 \le \frac{Y}{Y_{D65}} \le \frac{216}{24389} \end{cases}$$
(1.8)

$$u^* = 13L^*(u' - u'_{D65}) \tag{1.9}$$

$$v^* = 13L^*(v' - v'_{D65}) \tag{1.10}$$

Farbkoordinaten in einem dreidimensionalen Raum darzustellen ist nicht trivial und erweist sich nur als schwer praktikabel (s. Abbildung 1.4).

Abbildung 1.4: Darstellung des dreidimensionalen L*U*V*-Farbraums¹¹

⁹ (Ohno 2011) ¹⁰ (Croule 2021: 0

¹⁰ (Greule 2021:91)

Im $L^*U^*V^*$ -Farbraum kann der $\Delta E^*_{u^*v*}$ berechnet werden. ΔE^*_{uv} wird als Schreibweise des $\Delta E^*_{u^*v*}$ deklariert, um Verwechslungen mit den u'v'-Koordinaten vorzubeugen. Der ΔE^*_{uv} steht für den empfindungsgemäßen Abstand zweier Farborte¹² (s. Gleichung 1.11).

$$\Delta E_{uv}^* = \sqrt{(\Delta L^*)^2 + (\Delta u^*)^2 + (\Delta v^*)^2}$$
(1.11)

Ein $\Delta E_{uv}^* < 1$ zeigt an, dass sich die Lichtfarben optisch nicht voneinander unterscheiden. Dieser Wert wird bei der FixtureCheck-Methode als Farbortsvergleicher im angepassten Fall genutzt werden. Beim nativen Spektrumsvergleich stellt der ΔE_{uv}^* zum $\Delta u'v'$ redundante Ergebnisse dar und wird also dabei nicht mit betrachtet.

Andere Farbräume wie der CIE-L*A*B*-Farbraum sind für die FixtureCheck-Methode nicht relevant und werden daher an dieser Stelle nicht weiter erwähnt.

1.2 Farbwiedergabewerte

Farbwiedergabewerte versuchen mit verschiedenen Ansätzen eine Aussage über die Lichtqualität zu treffen. In diesem Kapitel sollen alle für diese Arbeit relevanten Themen vorgestellt werden.

1.2.1 CIE: Color Redendering Index (CRI)

Um die Farbqualität eines Scheinwerfers einschätzen zu können, hat die Internationale Beleuchtungskommission (CIE) 1974 die von D. Nickerson und C. W. Jerome entwickelte Methode standardisiert¹³. Bei der Color Rendering Index-Berechnung werden acht verschiedene Farbdifferenzwerte ΔE_i aus Farbsamplevergleichen gebildet. Dazu wird das Referenzspektrum abhängig von der gemessenen Farbtemperatur des Testspektrums entweder als ein schwarzer Strahler (< 5000 K) oder als ein Tageslichtspektrum (> 5000 K) bestimmt¹⁴. Die dann berechneten acht Farbdifferenzwerte der Test- und Referenzleuchte werden auf einer Skala von 0 bis 100 aufgespannt und speziell gewichtet, sodass eine Standardleuchtstoffröhre (CIE-Normlichtart F4) mit einem CRI Ergebniswert von $R_a = 51$ die Mitte der Skala darstellt (Gleichung 1.12).

$$R_i = 100 - 4, 6\Delta E_i \tag{1.12}$$

Die ausgerechneten Indizes R_i werden arithmetisch gemittelt und es entsteht der R_a -Wert, mit dem Wertebereich $0 < R_a < 100^{15}$ (Gleichung 1.13).

¹¹ https://www.spiedigitallibrary.org/ContentImages/ebooks/FG42/Images/FG42_ ch046.jpg[letzter Aufruf: 08.08.2022]

 $^{^{12}}$ (academic.com 2022)

¹³ (Smet & Ryckaert & Pointer & Deconinck & Hanselaer 2011:8153)

¹⁴ (Davis & Ohno 2006)

 $^{^{15}}$ (Bernstädt 2018)

$$R_a = \sum_{i=1}^{8} R_i \tag{1.13}$$

Ein R_a -Wert von 100 bedeutet eine exakte Übereinstimmung von der Farbwiedergabequalität von Test- und Referenzlichtquelle. Andere CRI-Ergebnisse können wie folgt eingeschätzt werden (Tabelle 1.1):

Stufen des CRI R_a						
1A	$R_a \ge 90$	sehr hohe Anforderung				
$1\mathrm{B}$	$90 > R_a \ge 80$	sehr hohe Anforderung				
2A	$80 > R_a \ge 70$	hohe Anforderung				
2B	$70 > R_a \ge 60$	hohe Anforderung				
3	$60 > R_a \ge 40$	mittlere Anforderung				
4	$40 > R_a \ge 20$	geringe Anforderung				

Tabelle 1.1: Einschätzung der CRI R_a-Werte¹⁶

Das Ergebnis des CRI wird meist in einem Balkendiagramm mit den acht Referenzfarben und dem Gesamtwert R_a dargestellt (s. Abbildung 1.5).

Abbildung 1.5: Die acht Color Test Samples (CTS) des CRI von gemessenem Sonnenlicht¹⁷

¹⁶ (Hentschel 1994:111)

¹⁷ https://www.premiumbeat.com/blog/color-rendering-index-leds/[letzter Aufruf: 08.06.2022]

Der CRI hat sich im Laufe der Zeit als Standardwert für Farbwiedergabe etabliert. Seit der Einführung von LED-Scheinwerfern häufen sich jedoch die Probleme mit diesem Wert:

- Alle acht Munsell Referenzfarben sind Pastelltöne. Speziell LED-Scheinwerfer können dies mit ihren peakigen Spektren ausnutzen und hohe CRI-Werte erzielen, ohne gute saturierte Farben aufzuweisen. Später hat die CIE daher vollsaturierte Referenzfarben hinzugefügt¹⁸ (s. Abbildung 1.6) und den CRI auf 15 Werte erweitert.
- Der Farbabstand der ΔE_i -Werte wird im CIE 1964 U*V*W* Farbraum berechnet. Dieser Farbraum ist so veraltet und uneinheitlich, dass die CIE nicht mehr empfiehlt, diesen Farbraum überhaupt zu benutzen¹⁸.
- Der R_a -Wert wird arithmetisch gemittelt. Dadurch fallen einzelne sehr schlechte R_i -Werte kaum ins Gewicht des CRIs mit ein. Ein Scheinwerfer mit beispielsweise einem sehr schlechten Rotanteil kann so trotzdem einen guten R_a -Wert erzielen¹⁸.
- Die Grenzen des CRI sind schwer zu interpretieren. Eine Leuchte mit einer korrelierten Farbtemperatur (CCT) von ca. 5000 K kann je nach Messungenauigkeit entweder den schwarzen Strahler als Referenzlichtquelle zugeteilt bekommen oder das Tageslichtspektrum. Je nachdem würde ein unterschiedlicher CRI-Wert entstehen. Außerdem kann eine Leuchte mit einer CCT von 2000 K bzw. 20000 K Farbtemperatur einen R_a -Wert von 100 erreichen. Jedoch werden die Farben bei solchen extremen Farbtemperaturen nicht mehr realistisch dargestellt¹⁸.
- Auch negative R_i -Werte sind möglich. Es ist fraglich, wie so ein Teilergebnis zu interpretieren ist.
- Der CRI betrachtet nur die Natürlichkeit der Farben. Farbsättigung und visuelle Klarheit der Farben werden außer Acht gelassen¹⁹.

¹⁸ (Davis & Ohno 2006)

¹⁹ (Rea & Freyssinier 2008: 199)

TCS01	TCS02	TCS03	TCS04	TCS05
7.5R6/4	5Y6/4	5GY6/8	2.5G6/6	10BG6/4
Light grayish red	Dark grayish yellow	Strong yellow green	Moderate yellowish green	Light bluish green
TCS06	TCS07	TCS08	TCS09	T <u>CS10</u>
5PB6/8	2.5P6/8	10P6/8	4.5R4/13	5Y8/10
Light blue	Light violet	Light reddish purple	Strong red	Strong yellow
TCS11	TCS12	TCS13	TCS14	(<u>TCS15)</u>
4.5G5/8	3PB3/11	5YR8/4	5GY4/4	1YR6/4
Strong green	Strong blue	Light yellowish pink	Moderate olive green	Asian skin

Abbildung 1.6: Die verschiedenen R_i Farbreferenzen²⁰

Aus den genannten Gründen wird bei der Fixture
Check-Methode, die speziell auf LED-Scheinwerfer ausgerichtet ist, der CRI nicht mit
einbezogen. Mit seinen 99 Referenzfarben ist der TM-30 deutlich besser dafür ge
eignet, eine Aussage über die Qualität von LED-Spektren zu treffen (s. Kapitel 1.2.3). Der CRI
 R_a -Wert würde höchstens eine Tendenz liefern, die zum TM-30
 R_f -Wert redundant wäre.

²⁰ https://www.waveformlighting.com/d_waveform/wp-content/uploads/2018/01/tcs. png[letzter Aufruf: 08.06.2022]

1.2.2 EBU: Television Lighting Consistency Index (TLCI)

Da Farbwiedergabewerte bisher keinen Bezug zum Kameralicht hatten, hat die European Broadcast Union (EBU) 2012 den Television Lighting Consistency Index bestimmt. Dazu werden 24 Farben auf einer mit dem Referenzlicht beleuchteten Testtafel von einer "Standardkamera" abgefilmt. Dieselbe Testtafel wird dann von dem zu testenden Scheinwerfer beleuchtet und erneut abgefilmt. Die daraus gewonnenen Daten werden miteinander verglichen. Auch hier gibt es für verschiedene Farbtemperaturen entsprechende Referenzlichtquellen. Von den 24 Referenzwerten werden die letzten sechs nicht in die Gesamtauswertung miteinbezogen werden, weil sie nur verschiedene Graustufen von weiß bis schwarz darstellen²¹ (Gleichung 1.14).

$$\Delta E_a^* = \left(\sum_{i=1}^{18} (\Delta E_i^*)^4\right)^{\frac{1}{4}}$$
(1.14)

Diese Zwischenwerte ΔE_a^* werden so skaliert, dass sie nicht negativ werden können und auf diese Weise erhält man den Ergebniswert des TLCI Q_a (Gleichung 1.15).

$$Q_a = \frac{100}{1 + (\frac{\Delta E^*}{k})p}$$
(1.15)

Auch der Q_a -Wert variiert im Wertebereich $0 < Q_a < 100$. Die Parameter k und p werden beim TLCI so angepasst, dass eine Standard Tageslichtleuchtstoffröhre einen Q_a -Wert von 50 erreicht und ein ausgewogenes Verhältnis zwischen hohen und niedrigen TLCI-Werten entsteht²². Ähnlich wie beim CRI wird der Q_a -Wert in verschiedene Größenordnungen unterschiedlich interpretiert (s. Tabelle 1.2).

Stufen des	TLCI	Q_a
------------	------	-------

$100 \ge Q_a \ge 85$	Farben korrigierbar bzw. Korrektur nicht notwendig
$85 > Q_a \ge 75$	nach Korrektur noch akzeptabel
$75 > Q_a \ge 50$	Aufarbeitung sehr zeitaufwendig
$50 > Q_a \ge 25$	verbesserbar - nicht mehr zu retten
$25 > Q_a \ge 0$	ist und bleibt nicht akzeptierbar

Tabelle 1.2: Einschätzung der TLCI Q_a-Werte²³

Der TLCI erzeugt folglich aus dem Vergleich zwischen Referenzlichtquelle und Licht des zu testenden Scheinwerfers ein Aufwands-(bzw. Kosten-)äquivalent für den Coloristen in der Bildnachbearbeitung. Die Ergebnisse werden nebeneinander dargestellt (s. Abbildung 1.7). Links ist die Farbtafel mit den 24 Farben illustriert. In den farbigen Quadraten ist ein kleines Farbquadrat erkennbar. Das innere Farbquadrat stellt

 $^{^{21}}$ (Roberts 2015)

 $^{^{22}}$ (Roberts 2015: 22)

 $^{^{23}}$ (Bernstädt 2018)

die Referenzfarbe bei einer CCT von 7754 K dar. Das äußere Quadrat zeigt die Farbe unter dem Testspektrum an. Je weniger die Übergänge beider Quadrate sichtbar sind, desto näher reicht der getestete Scheinwerfer an die Referenzlichtquelle heran. Bei einem Q_a -Wert von 49 erkennt man teils starke Unterschiede auf der Farbtafel. Der High End SolaWash Pro 2000 wird als "verbesserbar - nicht mehr zu retten" eingestuft. Auch rechts im Empfehlungsdiagramm für den Coloristen sind diese Diskrepanzen deutlich zu erkennen. Für zwölf Farbtöne wird mit "+" oder "-" dargestellt wie stark dieser Farbton in seiner "Lightness" "Chroma" oder "Hue" anzupassen ist. Rechts unten wird das zugeordnete Referenzspektrum mit dem Testspektrum verglichen.

Der TLCI bezieht sich auf eine Farbwiedergabe in der Kamera. Da jeder Kamerasensor das Licht deutlich unterschiedlich zum Auge bzw. Spektrometer wahrnimmt, funktioniert der TLCI in seiner "eigene" Messumgebung. Daher wird der TLCI bei der FixtureCheck-Methode keine weitere Rolle spielen.

Abbildung 1.7: Ergbnisprotokoll der TLCI-Messung eines High End Systems SolaWash Pro 2000 LED-Scheinwerfers²⁴

²⁴ https://tech.ebu.ch/tlci-2012 [letzter Aufruf: 06.06.2022]

1.2.3 ANSI/IES: Method for Evaluting Light Source Color Rendition (TM-30-20)

Die Illuminating Engineering Society (IES) hat 2015 eine Alternative zum CRI veröffentlicht. Der Ermittlung der TM-30 Ergebniswerte werden im Wesentlichen drei Komponenten zuteil²⁵:

- 1. Angepasster Übergang der Referenzlichtquelle: Beim TM-30 wird bei der Auswahl der Referenzlichtquelle zwischen drei Fällen unterschieden. Falls die korrelierte Farbtemperatur des gemessenen Scheinwerfers unter 4000 K liegt, wird ein Plank'scher Strahler als Referenz gewählt. Liegt die CCT in einem Wertebereich von 4001 K < CCT < 4999 K, wird die Referenz proportional zwischen dem Plank'schen Strahler und der CIE Tageslichtreferenz überblendet. In jedem anderen Fall, wenn die gemessene korrelierte Farbtemperatur über 5000 K liegt, wird stets eine entsprechende CIE Tageslichtreferenz als Vergleich genommen.
- 99 Referenzfarben: Der TM-30 nutzt 99 Referenzfarben, die aus 105.000 Farbtönen realer Objekte statistisch ermittelt wurden. Die Spektren der Farben stammen größtenteils aus der Datenbank der Universtät Leeds, die auch die "Standard Object Colour Spectra"- (SOCS) Datenbank beinhaltet (s. Abbildung 1.8).
- 3. Nutzung des CAM02-UCS-Farbraums: Der CAM02-UCS-Farbraum hat eine bessere Farbabstandsgleichheit als der CIELAB-Farbraum und wird beim TM-30 zusammen mit dem CIE 1964 10°-Normalbeobachter in die Rechnungen mit einbezogen. Dadurch wird sichergestellt, dass aufkommende Farbunterschiede entsprechend skaliert sind. Nur bei Bestimmung der CCT (s. Punkt 1) wird der CIE 1931 2°-Normalbeobachter angewandt, da er in der Definition der CCT-Berechnung festgelegt ist.

²⁵ (IES 2020: 1)

CES 1	CES 2	CES 3	CES 4	CES 5	CES 6	CES 7	CES 8	CES 9
Type C	Type C	Type A	Type A	Type D	Type C	Type E	Type D	Type F
CES 10	CES 11	CES 12	CES 13	CES 14	CES 15	CES 16	CES 17	CES 18
Type G	Type C	Type A	Type F	Type E	Type B	Type C	Type C	Type B
CES 19	CES 20	CES 21	CES 22	CES 23	CES 24	CES 25	CES 26	CES 27
Type E	Type F	Type D	Type D	Type G	Type E	Type A	Type C	Type A
CES 28	CES 29	CES 30	CES 31	CES 32	CES 33	CES 34	CES 35	CES 36
Type G	Type C	Type A	Type D	Type C	Type D	Type G	Type G	Type A
CES 37	CES 38	CES 39	CES 40	CES 41	CES 42	CES 43	CES 44	CES 45
Type A	Type A	Type F	Type F	Type C	Type F	Type C	Type F	Type G
CES 46	CES 47	CES 48	CES 49	CES 50	CES 51	CES 52	CES 53	CES 54
Type E	Type C	Type D	Type D	Type F	Type F	Type F	Type E	Type F
CES 55	CES 56	CES 57	CES 58	CES 59	CES 60	CES 61	CES 62	CES 63
Type G	Type G	Type C	Type D	Type E	Type G	Type F	Type C	Type F
CES 64	CES 65	CES 66	CES 67	CES 68	CES 69	CES 70	CES 71	CES 72
Type E	Type F	Type E	Type E	Type F	Type F	Type F	Type F	Type F
CES 73	CES 74	CES 75	CES 76	CES 77	CES 78	CES 79	CES 80	CES 81
Type F	Type C	Type F	Type F	Type A	Type F	Type C	Type G	Type A
CES 82	СЕЅ 83	CES 84	CES 85	CES 86	CES 87	CES 88	CES 89	CES 90
Type C	Туре С	Type F	Type A	Type C	Type F	Type F	Type A	Type E
CES 91	CES 92	CES 93	CES 94	CES 95	CES 96	CES 97	CES 98	CES 99
Type A	Type A	Type D	Type C	Type A	Type A	Type F	Type A	Type E
	A = Nature	B = Skin C	= Textiles	D = Paints	E = Plastic	F = Printed	G = Color S	ystem

IES TM-30-15 Color Evaluation Samples (CES)

Abbildung 1.8: Alle neunundneunzig Referenzfarben des TM-30²⁶

²⁶ https://agustos.com/wp-content/uploads/2017/10/TM30-color-samples-image.png
[letzter Aufruf: 08.06.2022]

Der TM-30 berechnet zuerst die Tristimulus-Werte $X_{10,t}$, $Y_{10,t}$ und $Z_{10,t}$ des gemessenen Lichts²⁷ (Gleichung 1.16 - 1.19).

$$X_{10,t} = k_t \int_{380}^{780} S_t(\lambda) \bar{x_{10}}(\lambda) d\lambda$$
 (1.16)

$$Y_{10,t} = k_t \int_{380}^{780} S_t(\lambda) \bar{y_{10}}(\lambda) d\lambda$$
(1.17)

$$Z_{10,t} = k_t \int_{380}^{780} S_t(\lambda) \bar{z_{10}}(\lambda) d\lambda$$
 (1.18)

mit:

$$k_t = \frac{100}{\int_{380}^{780} S_t(\lambda) \bar{y_{10}}(\lambda) d\lambda}$$
(1.19)

Dabei ist k_t so gewählt, dass stets $Y_{10,t} = 100$ gilt. Aus diesen Werten wird die korrelierte Farbtemperatur des Testscheinwerfers ausgerechnet und entsprechend das Referenzlicht bestimmt (s. Punkt 1). Anschließend werden für jeden der 99 Referenzfarben R_i jeweils die Tristimuluswerte unter dem Testlicht $X_{10,t,i}$, $Y_{10,t,i}$ und $Z_{10,t,i}$ und dem Referenzlicht $X_{10,r,i}$, $Y_{10,r,i}$ und $Z_{10,r,i}$ bestimmt (Gleichung 1.20 - 1.23).

$$X_{10,t/r,i} = k_t \int_{380}^{780} S_{t/r}(\lambda) R_i(\lambda) \bar{x_{10}}(\lambda) d\lambda$$
 (1.20)

$$Y_{10,t/r,i} = k_t \int_{380}^{780} S_{t/r}(\lambda) R_i(\lambda) \bar{y_{10}}(\lambda) d\lambda$$
(1.21)

$$Z_{10,t/r,i} = k_t \int_{380}^{780} S_{t/r}(\lambda) R_i(\lambda) \bar{z_{10}}(\lambda) d\lambda$$
 (1.22)

mit:

$$k_{t/r} = \frac{100}{\int_{380}^{780} S_{t/r}(\lambda) \bar{y_{10}}(\lambda) d\lambda}$$
(1.23)

27 (IES 2020:3)

Damit die 99 Differenzwerte im CAM02-UCS Farbraum berechnet werden können, gelten folgende Parameter als festgelegt²⁸:

- $Y_b = 20 \ cd/m^2$: Leuchtdichte des Hintergrunds
- F = 1: Umgebungsparameter
- $N_c = 1$: Umgebungsparameter
- c = 0,69: Umgebungsparameter
- $L_A = 100 \ cd/m^2$: Leuchtdichte des Adaptionsfelds
- D = 1: Adaptionsgrad

Diese Parameter sind für alle TM-30-Berechnungen gleich. Der Lichtreflexionsfaktor von Test- und Referenzlicht wird auf $Y_w = 100$ festgelegt. Aus den vorhandenen Parametern berechnen sich die Zwischenwerte des CAM02-USC Farbraums wie folgt (Gleichung 1.24 - 1.28):

$$k = \frac{1}{5L_A + 1} = 0,0020 \tag{1.24}$$

$$F_L = \frac{1}{5}k^4(5L_A) + \frac{1}{10}(1-k^4)^2(5L_A)^{\frac{1}{3}} = 0,7937$$
(1.25)

$$n = \frac{Y_b}{Y_w} = 0,2000 \tag{1.26}$$

$$N_{bb} = N_{cb} = 0,725n^{-0,2} = 1,0003 \tag{1.27}$$

$$z = 1,48 + \sqrt{n} = 1,9272 \tag{1.28}$$

Mithilfe dieser Werte und der Nutzung der chromatischen Adaption Transformation des CAM02-USC Farbraums werden die Farbkoordinaten $CES_{t/r,i} = (J'_{t/r,i}, a'_{t/r,i}, b'_{t/r,i})$ der 99 CES für Test- und Referenzspektren bestimmt. Von diesen Werten wird dann der euklidische Abstand für jeden CES bestimmt²⁹ (Gleichung 1.29):

$$\Delta E_{Jab,i} = \sqrt{(J'_{t,i} - J'_{r,i})^2 + (a'_{t,i} - a'_{r,i})^2 + (b'_{t,i} - b'_{r,i})^2}$$
(1.29)

 $^{^{28}}$ (IES 2020:5)

²⁹ (IES 2020: 6-7)

Schließlich werden alle errechneten euklidischen Abstände arithmetisch gemittelt, mit 6,73 skaliert und von 100 abgezogen³⁰ (Gleichung 1.30).

$$R'_{f} = 100 - 6,73 \left[\frac{1}{99} \sum_{i=1}^{99} (\Delta E_{Jab,i}) \right]$$
(1.30)

Der R'_f -Wert wird nun so skaliert, dass der kleinstmögliche Wert 0 ist und somit keine negativen Ergebnisse erreicht werden können (Gleichung 1.31)

$$R_f = 10ln[e^{(\frac{R'_f}{10})} + 1]$$
(1.31)

Der auf diese Weise errechnete R_f -Wert ist das erste Ergebnis der 50 numerischen TM-30-Ausgabewerte. Zusätzlich gibt es auch eine graphische Ausgabe. Neben dem Farbwiedergabewert aller 99 Referenzfarben R_f wird ebenso das Farbgamut aller Referenzfarben R_g , 16 lokale Farbwiedergabewerte $R_{f,hj}$, 16 lokale Farbwertunterschiedswerte $R_{cs,hj}$ und 16 lokale Farbwinkelunterschiedswerte $R_{hs,hj}$ berechnet. Letztere werden genutzt, um die vektorielle Darstellung der Farbverschiebung des Farbgamuts im Verhältnis zum Referenzwert zu ermöglichen (s. Abbildung 1.9).

Die Hauptaussagen einer TM-30-Messung ergeben den R_f und R_g -Wert, die auch in einem zweidimensionalen Graphen dargestellt werden können. Der R_g -Wert zeigt ähnlich wie der GAI (s. Kapitel 1.2.7) das Farbgamut auf und kann zwischen 60 und 140 variieren. Werte $R_g < 100$ stellen dabei eine Farbuntersaturierung und Werte $R_g > 100$ eine Farbübersättigung dar. Daraus folgt ein optimaler TM-30-Wert von $R_f=100$ und $R_g=100$. Je nach Anwendungsfall kann eine Farbübersättigung aber auch gewollt sein. Die farblichen Abweichungen des R_g -Werts werden in 16 Farbbereichen mit jeweils einem Vektorpfeil aufgezeigt (s. Abbildung 1.9). Der TM-30 ist der aktuell umfangreichste Farbwiedergabewert und mit dem genutzten CAM02-UCS-Farbraum am besten dafür geeignet, eine Aussage über die Farbwiedergabequalität eines LED-Scheinwerfers zu treffen. Auf der anderen Seite ist selbst für einen erfahrenen Lichtplaner eine Einschätzung der 50 Ergebniswerte des TM-30 nicht trivial. Die FixtureCheck-Methode bezieht den R_f und R_g mit ein, da diese Werte die größten Aussagen des TM-30 treffen.

 $[\]overline{30}$ (IES 2020:8)

ANSI/IES TM-30-18 Color Rendition Report

Colors are for visual orientation purposes only. Created with the ANSI/IES TM-30-18 Calculator Version 2.00.

Abbildung 1.9: Ergebnisprotokoll einer TM-30 Messung eines Robe Robin Viva CMY mit allen 50 Ergebnissen. Der Report wurde mit dem ANSI/IES TM-30-18 Calculator Version 2.00 erstellt.

1.2.4 SMPTE Standart: Spectral Similarity Index (SSI)

Im Jahre 2020 hat die Society of Motion Picture and Television Engineers (SMPTE) einen Spektralen Vergleichswert standardisiert, den SSI. Dieser Wert wurde von der Academy of Motion Picture Arts and Sciences entwickelt und soll speziell bei der Filmbeleuchtung helfen, eine Scheinwerferauswahl zu treffen. Da der CRI und ähnliche Werte nur eine Aussage über das vom menschlichen Auge wahrgenommene Licht machen und es keinen Standard für die spektrale Empfindlichkeit von Filmkameras gibt, vergleicht der SSI das Weißlicht-Spektrum eines gemessenen Scheinwerfers mit dem einer Tageslicht- bzw. Glühlichtreferenzquelle. Das Ergebnis wird von 0-100 dargestellt, wobei 100 die max. Ähnlichkeit zweier Spektren feststellt. Auf diese Weise kann ohne Bewertung der Kamera bzw. Auge überprüft werden, ob ein Scheinwerfer zur Referenz passt³¹. Bei der Messung des SSI wird nur der Filmkamera relevante spektrale Anteil des Lichts von 375 nm bis 675 nm betrachtet. Das Spektrum wird in 10 nm Intervalle aufgeteilt³² (Gleichung 1.32).

$$T_R(\lambda) = 0, 5T_I[n-5] + T_I[n-4] + T_I[n-3] + T_I[n-2] + T_I[n-1] + T_I[n] + T_I[n+1] + T_I[n+2] + T_I[n+3] + T_I[n+4] + T_I[n+5]$$
(1.32)

Danach werden diese 30 10 nm-Intervalle normiert $(T_N(\lambda))$. Dasselbe Prozedere wird auf das Referenzspektrum angewandt $(R_N(\lambda))$. Aus $T_N(\lambda)$ und $R_N(\lambda)$ wird daraufhin ein Differenzvektor gebildet³³ (Gleichung 1.33).

$$D = \frac{(T_N(\lambda) - R_N(\lambda))}{(R_N(\lambda) + \frac{1}{30})}$$
(1.33)

Der Differenzvektor D wird anschließend mit dem Vektor V gewichtet (Gleichung 1.34) und danach wird ein Nullvektor als erstes und letztes Element angefügt.

Der 32-elementige Vektor Z wird mit einem dreielementigen Vektor gefaltet³⁴ (Gleichung 1.35).

$$F_i = 0, 22Z_i + 0, 56Z_{i+1} + 0, 22Z_{i+2}, \text{ mit } i = 1, ..., 30$$
(1.35)

³¹ (SMPTE 2020: 2) ³² (SMPTE 2020: 6)

 $^{^{33}}$ (SMPTE 2020:7)

³⁴ (SMPTE 2020: 7)

Schließlich wird der Vektor F quadratisch aufsummiert um aus dessen Wurzel ein Ergebniswert e zu bekommen³⁴ (Gleichung 1.36).

$$e = \sqrt{\sum_{i}^{30} F_i^2}$$
 (1.36)

Der Ergebniswert e wird auf 0 bis 100 skaliert und ganzzahlig gerundet. Der daraus resultierende Wert s ist der Ausgabewert des SSI^{35} (Gleichung 1.37).

$$s = round(100 - 32e)$$
 (1.37)

Der SSI Wert wird dann als " $SSI[spd_r]s$ " ausgegeben. Dabei gibt spd_r die Referenz an, wie zum Beispiel "P3225" für einen Plank'schen Schwarzstrahler bei einer korrelierten Farbtemperatur von 3225 K spricht³⁵. Der SSI wird für die FixtureCheck-Methode erweitert. Das ganze Spektrum wird benötigt, um auch eine Aussage über die (tiefen) Rottöne $\lambda = 675nm - 780nm$ treffen zu können. Dafür wird die Rechnung des SSI soweit angepasst, dass das gesamte Spektrum in 41 10 nm Intervalle aufgeteilt wird. Der SSI-Berechung wird dann Schritt für Schritt mit den neuen Eingangswerten Folge geleistet (s. Gleichung 1.32 und folgende) und dementsprechend an die neue Anzahl der 10 nm-Intervalle angepasst. Dieser abgeänderte SSI wird dann bei der FixtureCheck-Methode mit jeweils einem Testscheinwerfer- und Referenzscheinwerferspektrum als Spektrumsvergleicher genutzt.

Abbildung 1.10: Ergebnisprotokoll einer SSI-Messung mit zusätzlicher Darstellung der spektralen Differenzen³⁶

 $^{^{35}}$ (SMPTE 2020:8)

³⁶ (Academy of Motion Picture Arts and Sciences 2020: 4)

1.2.5 Full Spectrum Index (FSI) & Full Spectrum Color Index (FSCI)

Der Full Spectrum Index ist der zweite Farbwiedergabewert, der als Spektrumsvergleich dient. Im Gegensatz zum SSI wird beim FSI das gemessene Spektrum mit dem "idealen" Spektrum verglichen, das auf allen Wellenlängen des sichtbaren Spektrums gleich verteilt ist. Bei diesem Vergleich kommen besonders die Lücken im Spektrum zum Vorschein. Zuerst wird das gemessene Spektrum normiert³⁷ (Gleichung 1.38).

$$SPD(\lambda)_{normalized} = \frac{SPD(\lambda)}{\int_{380}^{730} SPD(\lambda)d\lambda}$$
(1.38)

Danach wird die spektrale Gesamtleistung berechnet (Gleichung 1.39).

$$C(\lambda_c) = \int_{380}^{\lambda_c} SPD(\lambda) d\lambda$$
 (1.39)

Als Nächstes werden die quadrierten Differenzen der Gesamtleistungen zwischen dem Testspektrum und dem idealen Spektrum bestimmt (Gleichung 1.40).

$$D(\lambda_c) = (C(\lambda_c) - C_{EE}(\lambda_c))^2$$
(1.40)

Das ideale Spektrum C_{EE} wird wie folgt berechnet :

$$EE(\lambda) = k \text{,mit } k = \frac{1}{\int_{380}^{730} d\lambda} = \frac{1}{350}$$
 (1.41)

$$C_{EE}(\lambda_c) = \int_{380}^{\lambda_c} EE(\lambda) d\lambda = \frac{\lambda_c - 380}{730 - 380}$$
(1.42)

Diese Differenz D wird integriert :

$$I = \int_{380}^{730} D(\lambda) d\lambda \tag{1.43}$$

Nun wird für jeden Schritt $\omega = 1nm$ des gemessenen Spektrums der Differenz I berechnet, aufeinander addiert und durch die Gesamtzahl der Schritte dividiert. Im Gesamten ergibt sich folgende Berechnung für den FSI³⁸:

$$FSI = \frac{\int_{0}^{730-380} \int_{380+\omega}^{730+\omega} \left[\int_{380+\omega}^{\lambda_{c}} SDP_{p}(\lambda) d\lambda - C_{EE}(\lambda_{c}-\omega) \right]^{2} d\lambda_{c} d\omega}{730-380}$$
(1.44)

³⁷ (Rea & Deng & Lei 2004: 28)

³⁸ (Rea & Deng & Lei 2004: 29)

Aus dem FSI berechnet sich der Full Spectrum Color Index (FSCI) durch eine Skalierung von 0-100 vom FSI (Gleichung 1.45).

$$FSCI = 100 - 5, 1 \cdot FSI$$
 (1.45)

Der FSCI ist so skaliert, dass eine fluroszierende warmweiße Lampe einen FSCI-Wert von 50 erhält. Bei der FixtureCheck-Methode soll der FSI bzw. FSCI helfen, Ähnlichkeiten der Spektren kenntlich zu machen. Mit der Interpretation des FSI ist jedoch Vorsicht geboten, da aus dem Ergebnis nur bestimmt werden kann, dass es Löcher in den Spektren gibt, nicht wo diese liegen.

1.2.6 Feeling of Contrast Color Rendering Index (FCI)

Mit dem Feeling of Contrast Index aus dem Jahre 2007 wird versucht einzuschätzen wie gut sich Farben unter einer Testlichtquelle unterscheiden lassen unter der Annahme, dass hohe Farbkontraste eine hohe Farbsättigung bunter Objekte zur Folge haben³⁹. Die visuelle Klarheit eines Scheinwerfers lässt sich wie folgt in sechs Schritten bestimmen⁴⁰:

- 1. Auswahl der Vierfarben-Kombination: Vier speziell ausgewählte Munsell-Farbtöne Rot (5R 4/12), Grün (5.5G 5/8), Blau (4.5PB 3.2/6) und Gelb (5Y 8.2/10) reichen aus, um die Farbkontraste eines Scheinwerfers darzustellen.
- 2. Bestimmung der Tristimulus X-,Y- und Z-Werte dieser vier Farbkomponenten unter dem Licht der Testleuchte bei einer Beleuchtungsstärke von 1000 lx.
- 3. Die Tristimulus X-,Y- und Z-Werte der entsprechenden Farben unter der Referenzlichtquelle D65 werden gebildet (1000 lx).
- 4. Das Farbgamut der Testleuchte wird aus der Summe zweier Dreiecke (Rot Gelb Grün und Rot Blau Grün) im CIELAB-Farbraum berechnet.
- 5. Das Farbgamut der Referenzlichtquelle D65 wird berechnet.
- 6. Der FCI wird aus beiden Farbgamuts bestimmt:

$$FCI = \left[\frac{G(T, E_t = 1000lx)}{G(D65, E_t = 1000lx)}\right]^{1,5} \cdot 100$$
(1.46)

³⁹ (Smet & Ryckaert & Pointer & Deconinck & Hanselaer 2011: 8155)

⁴⁰ (Hashimoto& Yano& Shimizu& Nayatni 2006: 364-365)

Der FCI gibt an, wie gut Farbkontraste unter einer bestimmten Leuchte sichtbar sind. Dieser Farbwiedergabewert fließt nicht mit in die FixtureCheck-Methode mit ein, da sich der FCI hauptsächlich an Körperfarben orientiert. Zum einen betrachtet die visuelle Klarheit einer Lichtquelle nicht in welcher physischen Konstellation farbliche Objekte zueinander betrachtet werden. So werden beispielsweise optische Phänomene wie der Crispening-Effekt⁴¹ oder ein Simultankontrast beim FCI nicht mit eingerechnet. Zum anderen nutzt der FCI den CIELAB-Farbraum, der vorwiegend Körperfarben behandelt. Diese große Thematik der Körperfarben würde den Rahmen dieser Arbeit sprengen und wird daher im Folgenden vernachlässigt.

1.2.7 Gamut Area Index (GAI)

Der Gamut Area Index versucht dem CRI eine zusätzliche Aussage über die Farbsättigung hinzuzufügen. Der einzelne R_a -Wert ist nicht ausreichend, um die Farbwiedergabequalität eines Scheinwerfers zu bestimmen, denn die Farbwiedergabe einer Lichtquelle setzt sich aus der Natürlichkeit der Farben, der Sättigung der Farben und der guten Unterscheidbarkeit der Farbnuancen zusammen⁴². Der R_a -Wert gibt nur eine Aussage über die Natürlichkeit der Farben an (s. Kapitel 1.2.1). Mit dem GAI wird eine Fläche GA_{EES} über die acht Munsell TCS des CRI im CIE 1976 u',v'-Farbraum aufgespannt. Eine zweite Fläche $GA_{testsource}$ wird aus den gemessenen $R_1 - R_8$ -Werten gebildet und der gemessene Oktaeder wird durch den Referenzoktaeder dividiert⁴³ (Gleichung 1.47):

$$GAI = 100 \frac{GA_{testsource}}{GA_{EES}} \tag{1.47}$$

Ein R_a - und GAI-Wert im Wertebreich $80 < R_a$ bzw. GAI < 100 einer Testlampe verspricht eine natürliche und lebendige Farbwiedergabe⁴⁴. Diese Wertekombination kann quasi als Vorreiter des TM-30 mit seinem R_f -Wert und R_g -Wert angesehen werden. Ein anderer Interpretationsansatz liegt darin, den R_a -Wert mit dem GAI-Wert zu kombinieren⁴⁵ (s. Gleichung 1.48).

$$GAI_R_a = \frac{GAI + R_a}{2} \tag{1.48}$$

⁴¹ (Takasaki 1967)

⁴² (Rea & Freyssinier 2008: 199)

⁴³ (Smet & Ryckaert & Pointer & Deconinck & Hanselaer 2011:8155)

⁴⁴ (Smet & Ryckaert & Pointer & Deconinck & Hanselaer 2011: 8155)

⁴⁵ (Smet & Ryckaert & Pointer & Deconinck & Hanselaer 2011: 8156)

Abbildung 1.11: Darstellung der R_{1-8} -Werte eines Testscheinwerfers (orange Kurve) und Referenzlichtquelle (blaue Kurve) im x,y-Farbraum

Der GAI hilft eine Einschätzung über die Farbsättigung einer Leuchte zu treffen und soll bei der FixtureCheck-Methode mit einbezogen werden. Leider wird in der Literatur nicht die explizite Rechenvorschrift für den GAI erwähnt und ohne diese lässt sich der GAI nicht in der FixtureCheck-Methode umsetzen⁴⁶. Alternativ wird dafür der R_g -Wert des TM-30 genutzt, der als aktuellere Variante des GAI angesehen werden kann.

⁴⁶ (Rea & Freyssinier 2008: 192-202)

1.2.8 Memory Color Quality Metric (MCQM)

Bei der Memory Color Quality Metric werden zehn Alltagsgegenstände mit einer Testlichtquelle beleuchtet. Es wird gemessen wie sehr sich diese Objekte unter der Testlicht zu ihrer normalen Farberscheinung unterscheiden.

- 1. Zuerst werden die 10°-Normalbeobachter Tristimulus X-,Y- und Z-Werte für alle Objekte berechnet.
- 2. Die 10°-Normalbeobachter Tristimulus X-,Y- und Z-Werte der entsprechenden Objekte unter der Referenzlichtquelle D65 werden gebildet. Der IPT Weißpunkt wird mit der chromatischen Adaptionstransformation CAT02 errechnet.
- 3. Die 10°-Normalbeobachter Tristimulus X-,Y- und Z-Werte werden in IPT-Koordinaten $X_i = (P_i, T_i)$ umgerechnet.
- 4. Zehn $S_i(X_i)$ -Werte werden gebildet, die angeben, wie sehr sich die Objektfarben an den originalen Farben orientieren (Gleichung 1.49):

$$S_i(X_i) = e^{-\frac{1}{2}[(X_i - a_{i,1})^T] \begin{pmatrix} a_{i,3} & a_{i,5} \\ a_{i,5} & a_{i,4} \end{pmatrix} (X_i - a_{i,2})]}$$
(1.49)

5. Berechnung des Ergebnisses S_a (Gleichung 1.50):

$$S_a = \sqrt[n]{\prod_{i=1}^n S_i} \tag{1.50}$$

Ein S_a -Wert von 1 sagt aus, dass alle zehn Objekte unter dem Testlicht genauso wie erwartet aussehen.

Da die MCQM sich auch stark an den Körperfarben orientiert wie der FCI (s. Kapitel 1.2.6), eignet sich auch der MCQM nicht dafür mit in die FixtureCheck-Methode einbezogen zu werden.

Weitere Werte, die auf dem CRI basieren wie der CAM02USC CRI⁴⁷, Judd's Flattery Index⁴⁸, Thornton's Color Prefernce Index⁴⁹ und Rank order Color Rendering Index⁵⁰ und andere Werte wie der Color Quality Scale⁵¹, Color Discrimination Capability⁵² und der Colour Harmony Rendering Index⁵³ werden nicht weiter in dieser Arbeit behandelt, da sie entweder zu redundanten Ergebnissen führen oder nicht für diesen Anwendungsfall geeignet sind.

⁴⁷ (Luo 2011: 75-87)

 $^{^{48}}$ (Judd 1967: 593-598)

⁴⁹ (Thornton 1972: 593-598)

⁵⁰ (Bodrogi & Brückner & Khanh 2010: 272-285)

⁵¹ (Davis & Ohno 2006)

 $^{^{52}}$ (Royer & Houser & Wilkerson 2012)

⁵³ (Szabó & Bodrogi & Schanda 2009)

1.3 Nutzwertanalyse

Um die genannten Farbwiedergabewerte in ein Verhältnis zueinander zu bringen wird für die FixtureCheck-Methode eine Nutzwertanalyse angewandt. Diese qualitative Bewertungsmethode hilft bei einer Auswahl verschiedener Entscheidungsalternativen unter Berücksichtigung selbstgewählter Parameter eine Lösung zu finden. Für jede Entscheidungsmöglichkeit wird ein Gesamtnutzwert berechnet, der dann in einem Ranking verordnet wird. Der höchste Gesamtnutzwert zeigt die bestmögliche Alternative für die Entscheidungsfindung auf. Typische Anwendungsfälle sind zum Beispiel Kaufentscheidungen, im Projektmanagement oder beim Vergaberecht. Das Verfahren der Nutzwertanalyse kann in verschiedene Schritte unterteilt werden, die im Folgenden erörtert werden sollen.

1.3.1 Verfahren einer Nutzwertanalyse

- Zieldefinition: Zu Beginn sollte genauestens definiert werden, welche Fragestellung geklärt werden soll und welche Umstände dazugehören⁵⁴. Bei einer Kaufentscheidung ist ein mögliches Ziel zum Beispiel die Wirtschaftlichkeit, die sich aus Kriterien wie Einkaufspreis, laufende Kosten und Nutzungsdauer zusammensetzt.
- Bestimmung und Gewichtung der Kriterien: Zuerst müssen die Kriterien bestimmt werden, aufgrund derer eine Entscheidung getroffen werden soll. Dafür ist wichtig, dass die gewählten Kriterien unabhängig voneinander sind, um das Ergebnis der Nutzwertanalyse nicht zu verfälschen. Es werden zwei Kategorien gebildet: Muss- und Kann-Ziele⁵⁵. Muss-Ziele sind unabdingbar für die Entscheidung. Wenn sie nicht erfüllt sind, fällt die Alternative weg. Daher stehen diese Kriterien außen vor. Kann-Ziele hingegen werden unterschiedlich stark gewichtet und fließen in die Entscheidungsfindung mit ein. Jedes Kann-Ziel erhält somit einen Gewichtungsfaktor (Gf), der prozentual angibt, wie viel Einfluss es auf die Entscheidung hat. Um den Gf-Wert zu bestimmen, können beispielsweise jedes Mal zwei Kann-Ziele miteinander vergleichen und daraus bestimmen, welcher Wert für die Nutzwertanalyse eine größere Rolle spielt oder gleich wichtig ist (s. Tabelle 1.3).

 $^{^{54}}$ (LeXWARE 2022)

 $^{^{55}}$ (Bundesministerium des Innern und für Heimat 2007)

 $^{^{56}}$ (Bundesministerium des Innern und für Heimat 2007)

Kriterien	\mathbf{A}	В	\mathbf{C}	D	Summe je Kriterium	Gewichtungsfaktor Gf $(\%)$
Α	Х	2	2	2	6	50,0
В	0	Х	2	2	4	33,3
\mathbf{C}	0	0	Х	1	1	8,3
D	0	0	1	Х	1	8,3
Summe					12	100

Tabelle 1.3: Gewichtung der Beispiel Kann-Ziele A,B,C und D⁵⁶

• Beurteilung der Alternativen: Im nächsten Schritt wird beobachtet wie gut ein Kriterium die Anforderung der Lösung der Entscheidungsfrage erfüllt. Dazu wird zum Beispiel eine 10 Punkte Skala genutzt und so die Abstufungen des Zielerfüllungsfaktors Zf festgelegt⁵⁷. Eine 10 steht also für eine überragende Übereinstimmung bei der Entscheidungsfindung, dagegen eine 0 für ein nicht erfülltes Kriterium (s. Tabelle 1.4). Für jedes Kriterium werden die Werte individuell auf die Skala transformiert (s. Kapitel 1.3.3).

Erfüllung des Kriteriums	Zielerfüllungsfaktor
nicht erfüllt	0
gerade noch ausreichend	1
ausreichend	2
ausreichend - befriedigend	3
befriedigend	4
befriedigend - gut	5
gut	6
gut - sehr gut	7
sehr gut	8
sehr gut - überragend	9
überragend	10

Tabelle 1.4: Abstufungen einer 10 Punkte Skala zur Einschätzung des Zielerfüllungsfaktors Zf⁵⁸

• **Teilnutzwerte:** Die Teilnutzwerte einer Nutzwertanalyse ergeben sich aus der Multiplikation der Gewichtungsfaktoren mit den Zielerfüllungsfaktoren⁵⁸ (s. Gleichung 1.51).

$$TN = Gf \cdot Zf \tag{1.51}$$

⁵⁷ (LeXWARE 2022)

⁵⁸ (Bundesministerium des Innern und für Heimat 2007)

 Gesamtnutzwert: Aus der Summe der Teilnutzwerte ergibt sich dann der Gesamtnutzwert eines Kriteriums, das Ergebnis einer Nutzwertanalyse⁵⁸ (s. Gleichung 1.52). Die verschiedenen Gesamtnutzwerte werden schließlich in eine Rangfolge gebracht. Das Kriterium mit dem Größten GN sollte als Entscheidungsergebnis herangezogen werden.

$$GN = \sum TN \tag{1.52}$$

• Sensitivitätsanalyse: Die Sensitivitätsanalyse untersucht die Auswirkungen von Änderungen der Eingangsvariablen auf den Gesamtnutzwert. Dies wird zum Beispiel bei Werten angewandt, die von Marktschwankungen beeinflusst werden. Sie kann ebenso zur Risikobewertung dienen. Durch geringe Varianzen der Eingangsvariablen der Nutzwertanalyse entstehen Varianzen des Gesamtnutzwerts. Als Ergebnis der Sensitivitätsanalyse wird der prozentuale Anteil des Einflusses der Eingangswerte auf die Varianz dargestellt.

Abbildung 1.12: Vorgang einer Sensitivitätsanalyse⁵⁹

Der größte Vorteil einer Nutzwertanalyse liegt bei der Entscheidungshilfe, auch komplexe Sachverhalte nachvollziehbar einordnen zu können. Man sollte das Ergebnis jedoch differenziert betrachten, da die mathematische Einordnung der einzelnen Kriterien dem Ergebnis eine Objektivität anhaftet, die durch die subjektiven Gewichtung der Werte (s. Kapitel 1.3.1 unter "Bestimmung und Gewichtung der Kriterien") so nicht gegeben ist.

⁵⁹ https://de.wikipedia.org/wiki/Sensitivit%C3%A4tsanalyse/media/Datei: GlobaleSensitivit%C3%A4tsanalyse.png, letzter Zugriff: 27.06.2022

1.3.2 Gewichtung

Das zentrale Element einer Nutzwertanalyse stellt die Gewichtung der einzelnen Kriterien dar. Folgende Methoden können dafür genutzt werden:

Bei einer "Swing-Gewichtung" wird beobachtet wie weit die einzelnen Werte der Kriterien auseinanderliegen. Das Kriterium mit dem größten Werteabstand zwischen dem besten Wert und dem schlechtesten Wert erhält die größte Gewichtung⁶⁰.

Die "Direct Ranking" Methode wird oft wegen ihrer simplen Berechnungsweise praktisch genutzt. Der Anwender teilt dabei die Kriterien in ein Ranking nach der Wichtigkeit der Werte ein (z. B. von 0 bis 10). Nach der Zuordnung aller Kriterien werden die Rohgewichte r auf 1 normiert und durch die Summe der Gewichte geteilt, um die Gewichtung w zu berechnen⁶¹ (s. Gleichung 1.53). Ein großer Nachteil dieser Methodik ist, dass die einzelnen Kriterien meist zusammenhangslos eingeordnet werden und dadurch keine Plausibilitätsüberprüfung möglich ist.

$$w_j = \frac{r_j}{\sum_{j=1}^n r_j}$$
(1.53)

Bei der Präferenzanalyse werden die Kriterien paarweise verglichen, um eine Gewichtung zu etablieren. Dabei wird nach jedem Vergleich das Kriterium, dass mehr Gewicht erhalten soll, notiert. Es wird festgehalten, wie oft ein Kriterium notiert wird. Danach wird der Rang des Kriteriums und der umgekehrte Rang (umgekehrte Reihenfolge) festgelegt (s. Abbildung 1.13). Zusätzlich wird die Summe der vergebenen Ränge und die festgelegte Summe aller Gewichtungen (z. B. 100) benötigt. Aus diesen Werten wird die Gewichtung berechnet (s. Gleichung 1.54).

$$Gewicht = \frac{\sum Gewichte}{\sum R\ddot{a}nge} \cdot umgedrehter Rang$$
(1.54)

 $^{^{60}}$ (Voß & Höveler 2017)

 $^{^{61}}$ (DeWiki 2022)

⁶² https://de.wikipedia.org/wiki/Nutzwertanalyse/media/Datei:Pr%C3% A4ferenzanalyseExcel.JPG [letzter Aufruf: 06.06.2022]

Abbildung 1.13: Tabelle einer Präferenzanalyse mit 28 von 91 Schritten⁶²

1.3.3 Skalenniveau

Da die Werte der Kriterien bei der Nutzwertanalyse zu den entsprechenden Skalenwerten transformiert werden, werden im Folgenden mögliche relevante Skalen aufgelistet (s. Abbildung 1.14):

- 1. Nominalskala: Eine Nominalskala gibt nur die Gleichheit bzw. Ungleichheit eines Merkmals an und ist somit die niedrigste Messstufe. Sie kann daher nicht unterscheiden wie gut ein Merkmal zutrifft⁶³.
- Ordinalskala: Auch die Ordinalskala trifft eine Aussage über die Gleichheit bzw. Ungleichheit eines Merkmals. Zusätzlich zeigt sie eine gewisse Rangfolge auf, die Abstände zwischen den einzelnen Rängen sind jedoch unterschiedlich groß⁶⁴.
- Intervallskala: Bei der Intervallskala sind die Abstände zwischen verschieden Stufen gleich gro
 ß, es gibt aber keinen definierten Nullpunkt⁶⁵.
- 4. **Verhältnisskala:** Eine Verhältnisskala vereint alle bis hierher genannten Skalen und verfügt über einen bestimmten Nullpunkt⁶⁶.

⁶³ (Methodenportal Universität Leipzig 2021)

⁶⁴ (Journalistik.Eichstätt 2017)

⁶⁵ (Methodenportal Universität Leipzig 2021)

⁶⁶ (Journalistik.Eichstätt 2017)

5. Absolutskala: Die Absoultskala hat den höchsten Informationsgehalt und hat im Gegensatz zu einer Verhältnisskala noch eine vordefinierte natürliche Einheit⁶⁷.

Die Nominalskala eignet sich am ehesten dafür, Muss-Ziele zu erkennen, ist aber ansonsten kaum für eine Nutzwertanalyse geeignet, da nur oberflächliche Aussagen getroffen werden können. Die Ordinalskala zeigt zwar eine Rangfolge auf, kann aber nicht den Abstand zwischen den Rängen beurteilen und daher eignen sich am besten Kardinalskalen (Intervallskala, Verhältnisskala oder Absolutskala) für eine Nutzwertanalyse.

Abbildung 1.14: Bildhafte Darstellung der verschiedenen Skalen⁶⁸

⁶⁷ (Statistik für Psychologie 2022)

⁶⁸ https://de.wikipedia.org/wiki/Skalenniveau/media/Datei:Skalenniveau.png, letzter Zugriff: 26.06.2022

2 Scheinwerfermessung

2.1 Ziel der Messung

Um die Werte der Nutzwertanalyse gewichten und skalieren zu können, sind Messungen von Testscheinwerfern nötig. Anhand dieser Messungen werden Erfahrungen gesammelt und somit kann eingeschätzt werden wie sehr verschiedene Kriteriumswerte variieren und wie sich die theoretischen Angaben der Kriterien mit den realen Messwerten decken. Diese Basis dient auch als Grundlage für die Unterscheidung eines nativen und angepassten Messfalls (s. Kapitel 3.2.3). Folgende Aussagen sollen geprüft werden:

- 1. Weißlicht von Scheinwerfern mit der gleichen Engine haben hohe "Ähnlichkeitsfaktoren".
- 2. Die "Ähnlichkeitsfaktoren" variieren je nach Anwendungsfall.
- 3. Die ausgewählten Kriterien sind nicht redundant zueinander.

2.2 Auswahl der Scheinwerfer

Für den praktischen Test der FixtureCheck-Methode sind verschiedene Scheinwerfer ausgewählt worden (s. Tabelle 2.1). Diese Scheinwerfer stellen eine Mischung aus reinweißen LED-Engines und Standard RGBW LED-Engines dar, die am meisten auf dem LED-Scheinwerfermarkt verbreitet sind . Zusätzlich wird versucht mit Multispektralen LED-Engines mit bis zu acht LED-Farben (der ETC "Source 4 LED Series 3" mischt sein Weißlicht aus Red, Green, Blue, Indigo, Cyan, Lime, Amber und Deep Red) auch Spezialfälle abzudecken. Damit keine redundanten Daten zu erzeugen, wurde eine überschaubare Anzahl an Scheinwerfern gewählt.

2 Scheinwerfermessung

Hersteller	Scheinwerfer	LED-Engine
Robe	"Robin Viva CMY"	weiße LED-Engine
JB-Lighting	"P12 Profile"	weiße LED-Engine
JB-Lighting	"VaryScan P7"	weiße LED-Engine
Expolite	"TourLED Pro 28 Zoom IP33"	RGBW LED-Engine
Arri	"L-7C"	RGBW LED-Engine
Clay Paky	"K-Eye K10 HCR"	multispektrale LED-Engine
ETC	"Source 4 LED Series 2 Lustr"	multispektrale LED-Engine
ETC	"Source 4 LED Series 3"	multispektrale LED-Engine

Tabelle 2.1: Auflistung der Scheinwerfer zum Testen der FixtureCheck-Methode

Es ist zu erwarten, dass das Weißlicht der Scheinwerfer mit einer sehr ähnlichen LED-Engine auch am besten zusammen passt (s. Abbildung 2.1 und 2.2). Umso spannender wird das Ergebnis der FixtureChek-Methode, wenn man unterschiedliche LED-Engines miteinander vergleicht (s. Abbildung 2.3).

Abbildung 2.1: Natives Spektrum des Va- Abbildung 2.2: Natives Spektrum des P12 ryscan P7 Profile

Abbildung 2.3: Natives Spektrum des Source 4 LED Series 3
2.3 Messaufbau und Durchführung

Um die Scheinwerfer optimal zu vergleichen, ist es wichtig dieselben Messbedingungen für jeden Scheinwerfer herzustellen. Der Messabstand von Scheinwerfer zu Messgerät beträgt in diesem Fall 5 m (s. Abbildung 2.4). Das Licht der Scheinwerfer wird direkt mit einem Spektrometer "JETI Spectraval 1511 (scv1511)" gemessen. (Die Umgebungsbeleuchtungsstärke lag bei den Messungen bei 0,004 lx). Alle Scheinwerfer werden vor der Messung mindestens 30 min lang betrieben, damit sichergestellt ist, dass sich der Scheinwerferoutput stabilisiert hat¹. Da die FixutreCheck-Methode verschiedene Arten eines Scheinwerfervergleichs ermöglicht, werden die Scheinwerfer jeweils nativ und auf eine CCT von 3200 K, 4000 K und 5600 K bei einer Beleuchtungsstärke von 500 lx eingemessen. Dazu werden die Lichtfarben über DMX mit einem Lichtstellpult "GrandMA 2 light" von MA Lighting auf die verschiedenen korrelierten Farbtemperaturen arretiert. Die drei CCT-Fälle sind so gewählt, dass eine kaltweiße, neutralweiße und warmweiße Situation entsteht und damit repräsentativ aufgezeigt werden soll, dass die FixtureCheck-Methode mit jeglicher festgelegter CCT funktioniert.

FixtureCheck-Methode: Messaufbau

Abbildung 2.4: Schematische Darstellung der direkten Messung der LED-Scheinwerfer zur Verifizierung des FixtureCheck-Methode

1

⁽DIN-Normenausschuss Lichttechnik 2019:25)

2.4 Messwerte und Auswertung

Zur Bestimmung der relevanten Werte wird das sichtbare Spektrum von 380 nm bis 780 nm gemessen und in die Software "LED ColorCalculator 7.77" der Osram Sylvania Inc. eingefügt². (Dies kann unter Umständen dazu führen, dass diese Weißlichtspektren in der Anwendung der FixtureCheck-Methode bei einzelnen Kriterien zu geringen Abweichungen führen. Die Tendenzen der FixtureCheck-Methode werden dadurch aber nicht weiter beeinflusst.)

- 1. FSI
- 2. TM-30 R_f und R_g
- 3. CCT [K]
- 4. $\Delta u'v'$

Bei der Spektrumsmessung wurde zusätzlich die Beleuchtungsstärke E mitgemessen. Der SSI wie der ΔE_{uv}^* nicht bestimmt werden, da diese Werte zwei Spektren simultan zur Auswertung nutzen. Die nativen Messungen zeigen wie unterschiedlich die Scheinwerfer zueinander sind und dass die FixtureCheck-Methode für den nativen Vergleich breit aufgestellt sein muss, um diese Werte miteinander vergleichen zu können. Große Unterschiede sind beispielsweise bei der gemessenen CCT der TourLED Pro 28 Zoom IP33 sichtbar. Bei einem Wert von $CCT_{TourLED} = 26170$ K und bei der Beleuchtungsstärke sticht der P12 Profile mit einer $E_{P12} = 12885$ lx heraus (s. Tabelle 2.2). Die TM-30 Werte sind an dieser Stelle nicht miteinander zu vergleichen, da sie unterschiedlichen Referenzspektren angehören.

Nativ	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
SSI								
FSI	3,96	4,23	6,5	6,4	7,51	4,99	6,13	5,1
R_f	83	89	71	71	93	67	74	88
R_{g}	112	112	93	92	104	120	93	107
ΔE_{uv}^*								
E [lx]	2749	3253	4912	12690	4165	2578	5608	2838
$\Delta u'v'$	-0,0252	-0,0182	0,0095	0,0075	-0,0002	-0,0327	0,0018	0,0033
CCT [K]	9799	4030	6361	6545	3543	26170	6734	4241
u'	0,211	0,2322	0,1949	0,1951	0,2347	0,2115	0,1981	0,2196
v'	0,4261	0,4846	0,4741	0,4706	0,5102	0,3859	0,4644	0,5001

Tabelle 2.2: Messergebnisse bei nativen Einstellungen. SSI und ΔE_{uv}^* können nur im Zusammenhang mit zwei Spektren gemessen werden und sind daher nicht angegeben.

https://www.osram.us/cb/tools-and-resources/applications/led-colorcalculator/ index.jsp, letzter Zugriff 20.06.2022

2 Scheinwerfermessung

Die Messergebnisse auf eine angepasste CCT zeigen, wie nahe das Weißlicht der Scheinwerfer aneinander angepasst wurde. Die Beleuchtungsstärke E sowie die CCT, $\Delta u'v'$ und die u'v'-Koordinaten unterscheiden sich so minimal, dass ein aussagekräftiger Vergleich der TM-30- und Spektren-Werte vorgenommen werden kann. Je nach LED-Scheinwerfer ist eine kaltweiße oder warmweiße CCT näher an der nativen CCT des Scheinwerfers und damit in seiner Weißlichtumgebung effizienter als in der anderen Farbtemperaturregion (s. Tabelle 2.3 bis 2.5). Diese Ergebniswerte werden genutzt, um die verschiedenen Skalen und Gewichtungen bei der FixtureCheck-Methode einschätzen zu können (s. Kapitel 3.2.3 und Kapitel 3.2.4).

3200 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
SSI								
FSI	7,83	7,3	9,24	7,6	8,59	11,38	8,32	7,48
R_f	89	89	68	73	81	47	76	80
R_{g}	97	107	97	105	106	115	101	101
ΔE_{uv}^*								
E [lx]	499	509	503	500	509	509	504	508
$\Delta u'v'$	-0,0006	0,0007	0,0003	0,0001	-0,0005	0,0004	0,0002	0,0003
CCT [K]	3207	3210	3206	3196	3215	3193	3218	3196
u'	0,2440	0,2435	$0,\!2437$	0,2441	0,2437	0,2441	0,2434	0,2440
v'	0,5166	0,5178	0,5175	0,5175	0,5165	0,5179	0,5171	0,5177

Tabelle 2.3: Messergebnisse bei CCT = 3200 K

4000 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
SSI								
FSI	5,89	6,97	7,12	5,82	6,62	7,66	6,63	5
R_f	89	65	68	70	86	65	74	84
R_g	101	115	95	100	105	120	97	104
ΔE_{uv}^*								
E [lx]	499	499	508	500	501	506	501	513
$\Delta u'v'$	-0,0005	0,0005	0,0005	0,0005	-0,0002	-0,0007	0,0012	0,0007
CCT [K]	4000	4011	3997	4002	4001	4001	3996	4007
u'	0,2253	0,2247	0,2225	0,2249	0,2252	0,2253	0,2247	0,2247
v'	0,5012	0,5019	0,5021	0,502	0,5014	0,5009	0,5027	0,5021

Tabelle 2.4: Messergebnisse bei CCT = 4000 K

2 Scheinwerfermessung

5600 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
SSI								
FSI	4,83	5,81	5,72	5,22	5,6	5,1	5,71	3,52
R_f	94	62	70	69	82	86	73	88
R_g	105	120	97	97	106	112	95	106
ΔE_{uv}^*								
E [lx]	512	503	510	508	502	516	515	504
$\Delta u'v'$	0,0003	-0,0005	0,0000	0,0000	0,0000	0,0004	0,0005	-0,0004
CCT [K]	5603	5599	5599	5599	5600	5610	5601	5612
u'	0,2059	0,2064	0,2061	0,2061	0,2061	0,2058	0,2058	0,2063
v'	0,4764	0,4758	0,4762	0,4762	0,4762	0,4764	0,4766	0,4757

Tabelle 2.5: Messergebnisse bei CCT = 5600 K

3.1 Ziele der FixtureCheck-Methode

Das Hauptziel der FixtureCheck-Methode ist der Vergleich des Weißlichts von LED-Scheinwerfern. Mit der Anwendung kann eine Entscheidungshilfe geschaffen werden, welches Scheinwerferlicht am besten zum Referenzlicht passt. Alternativ kann der Ergebniswert auch als qualitative Aussage zur Ähnlichkeit des Weißlichts genutzt werden - Ähnlichkeitsfaktor. Dabei soll so objektiv wie möglich vorgegangen werden. Es muss nicht zwingend der Scheinwerfer mit der besten Weißlichtqualität auch das beste Pendant zum Referenzscheinwerfer darstellen, sondern das ähnlichste Weißlicht. Das Ergebnis der FixtureCheck-Methode soll einfach und verständlich die Aussage des Weißlichtsvergleichs transportieren und die verschiedenen Aussagen der Farbwiedergabewerte in einem Wert zusammenfassen. Folglich gibt es drei Grundanforderungen an die FixtureCheck-Methode:

- Kombination mehrerer Weißlichtqualitätsmerkmale
- Objektivität
- Ein Ergebniswert (Ähnlichkeitsfaktor)

3.2 Angewandte Nutzwertanalyse

Die Nutzwertanalyse bildet die Basis der Methode, um die drei Grundanforderungen zu erfüllen. Die verschiedenen Messwerte können in Form der Kriterien in das System einfließen, wobei je nach Aussage des Kriteriums eine entsprechende Gewichtung vorgenommen werden kann. Dadurch das die Eingangswerte der Kann-Ziele sich auf Messwerte stützen und individuelle Wahrnehmung als Kriterien außen vor gelassen werden, entsteht eine faktenbasierte Betrachtungsweise. Diese wird nur durch die subjektive Festlegung der Gewichtungen in ihrer Objektivität eingeschränkt. Damit trotzdem eine verifizierte Aussage darüber treffen zu können, werden im Kapitel 3.2.5 verschiedene Fälle betrachtet. Der Gesamtnutzwert in Form des Ähnlichkeitsfaktors fasst die Kriterien zusammen und kann anhand der Ergebnisskala eindeutig interpretiert werden. Die Nutzwertanalyse ist einerseits dafür geeignet, mehrere Gesamtnutzwerte verschiedener Vergleiche gegenüberzustellen und zur Entscheidungshilfe in einer Rangfolge zu bringen. Ebenso kann der Gesamtnutzwert eines Vergleichs alleinstehend eine Aussage über die Ähnlichkeit des Weißlichts zweier Scheinwerfer treffen. Im Wertebereich $0 \le x \le 10$ gibt dieser Nutzwert an, wie gut die Lichtqualität beider Scheinwerfer zusammenpasst. Zu beachten ist trotz der scheinbaren Systematik die enthaltene Subjektivität des Entwicklers bei der Gewichtung und der Zielerfüllung der Kriterien.

3.2.1 Zieldefinition

Das Gesamtziel, das den besten Gesamtnutzwert ergibt, ist eine maximale Ähnlichkeit des Weißlichts unter Betrachtung der gewählten Kriterien.

3.2.2 Bestimmung der Kriterien

Als erster Schritt zur Erarbeitung der Nutzwertanalyse werden Muss- und Kann-Ziele festgelegt. Muss-Ziele sind Ausschlusskriterien und Kann-Ziele sind unabhängige Faktoren, die einen unterschiedlich großen Einfluss auf die Entscheidung inne haben. Alle genannten Farbwiedergabewerte und lichttechnischen Parameter hängen unweigerlich mit dem Spektrum eines Scheinwerfers zusammen. Sie basieren so zwar auf denselben Werten, liefern aber unterschiedliche Aussagen über das Weißlicht. Daher können sie trotzdem als unabhängig angesehen werden. Die Summe der Kann-Ziele steht für die Ähnlichkeit des Weißlichts der Scheinwerfer. Für den Fall eines nativen Weißlichtvergleichs werden andere Kriterien zu Rate gezogen, als bei einem Vergleich auf eine angepasste CCT. Diesen beiden Fallunterscheidungen werden bei der Skalierung und Gewichtung der Kriterien genauer betrachtet (s. Kapitel 3.2.3 und 3.2.4).

1. Fall: Angepasster Fall

Sind die Anwendungsbedingungen der zu vergleichenden Scheinwerfer bereits festzulegen, wird dieser Fall gewählt. Er setzt voraus, dass CCT und Beleuchtungsstärke als bekannt gegeben und die Scheinwerfer für die Messung dementsprechend eingerichtet werden. Ein Möglichkeit dafür ist die Verwendung zweier unterschiedlicher Scheinwerfermodelle im selben Anwendungsbereich, zum Beispiel als Vorderlicht. Dieser Vergleich ist durch das angepasste Weißlicht präziser in der Aussage und macht einen Vergleich mit Referenzfarben (TM-30) möglich.

2. Fall: Nativer Fall

Ist kein spezieller Anwendungsfall vorgegeben, werden native Werte für die FixtureCheck-Methode verwendet. Hier ist eine Verwendung des TM-30 nicht mehr möglich, dafür fließen die CTT, der $\Delta u'v'$ und die Beleuchtungsstärke E in den Vergleich mit ein. Dieser Fall ist durch die große Spannweite der Beleuchtungsstärke- und CCT-Werte weniger präzise, eignet sich aber für eine tendenzielle Aussage über die Ähnlichkeit des Weißlichts.

Muss-Ziele (Rahmenbedingungen)

Folgende Rahmenbedingungen sollen eingehalten werden:

- LED-Scheinwerfer: Die FixtureCheck-Methode ist speziell für LED-Scheinwerfer vorgesehen und nicht auf die speziellen Eigenschaften von Entladungslampen, Leuchtstoffröhren oder Glühlichtlampen optimiert. Beispielsweise wird der Wechsel von mechanischer zu elektrischen Dimmung (Art des Dimmverhaltens bei einigen Entladungslampen) und die damit einhergehenden Lichtqualitätsänderungen nicht berücksichtigt. Daher ist dies ein klares Ausschlusskriterium. Nur LED-Scheinwerfer sind für die FixtureCheck-Methode geeignet.
- Architekturleuchten: Die FixtureCheck-Methode nimmt keinen Bezug zu relevanten lichtqualitativen Aussagen in der Architekturbeleuchtung. Der in der Architekturbeleuchtung hochangesehene CRI wird als redundant angesehen (s. Kapitel 1.2.1). Daher sollten Architekturleuchten nicht mit dieser Methode miteinander verglichen werden.

Kann-Ziel: SSI

Der SSI wurde für die FixtureCheck-Methode angepasst (s. Kapitel 1.2.4) und macht es auf diese Weise möglich, zwei Spektren miteinander zu vergleichen. Als direkter "Spektrumsvergleicher" stellt er den wichtigsten Wert der Kann-Ziele dar. Bei $SSI \stackrel{!}{=} 100$ ist das Kritierium maximal erfüllt und es liegen identische Spektren vor.

Kann-Ziel: FSI

Der FSI vergleicht das Spektrum eines Scheinwerfes mit dem "idealen" Spektrum. Dieses Kann-Ziel dient dazu, Löcher in den gemessenen Spektren ausfindig zu machen und zu beziffern. Der FSI ist damit nicht so wichtig wie der SSI. Ein $FSI \stackrel{!}{=} 0$ erfüllt das Ziel dieses Kriteriums und entspricht dem Einheitsspektrum.

Kann-Ziel: TM-30

Die TM-30 R_f - und R_g -werte gehen als einziger Farbwiedergabewert mit Referenzfarben und Farbgamut in die FixtureCheck-Methode mit ein und sind daher sehr wichtig. Diese Werte werden anhand von Referenzspektren und aus dem Vergleich von Referenzfarben errechnet und somit nicht so direkt aus dem Scheinwerferspektrum wie der SSI oder FSI berechnet. Da der TM-30 sowohl für Test- als auch Referenzscheinwerfer ermittelt wird, muss ein Betrag der Differenz der beiden Messwerte gebildet werden (s. Gleichung 3.1 und 3.2). Das Kann-Ziel ist erfüllt wenn für beide Differenzen $\Delta R_f \stackrel{!}{=} 0$ und $\Delta R_g \stackrel{!}{=} 0$ gilt.

$$\Delta R_f = |R_{f,test} - R_{f,ref}| \stackrel{!}{=} 0 \tag{3.1}$$

$$\Delta R_g = |R_{g,test} - R_{g,ref}| \stackrel{!}{=} 0 \tag{3.2}$$

Kann-Ziel: ΔE_{uv}^*

Der ΔE_{*uv} -Wert gibt die Farbdistanz, die zwei Farborte im CIE-L*U*V* zueinander haben. Nach Definition ist ein optischer Lichtunterschied bis $\Delta E_{uv}^*=1$ nicht wahrnehmbar. Das Kann-Ziel liegt also bei $\Delta E_{uv}^* \leq 1$. Bei allen Werten $\Delta E_{uv}^* > 1$ wird die FixtureCheck-Methode eine Warnung ausgeben, dass theoretisch ein sichtbarer Unterschied vorhanden ist.

Kann-Ziel: CCT

Die CCT wird bei der FixtuereCheck-Methode verglichen, um herauszufinden, ob ein nativer Scheinwerfervergleich oder ein eingemessener Vergleich angewandt wird. Ab einem Unterschied von $\Delta CCT > 100$ K wird automatisch von einem nativen Scheinwerfervergleich ausgegangen. Bei unterschiedlichen CCT muss beachtet werden, dass die TM-30 Werte nicht mehr miteinbezogen werden können, da nun unterschiedliche Referenzspektren pro Scheinwerfer genutzt werden (s. Kapitel 1.2.3). Je geringer der ΔCCT , desto eher ist das Kann-Ziel erfüllt (s. Gleichung 3.3).

$$\Delta CCT = |CCT_{test} - CCT_{ref}| \stackrel{!}{=} 0 \tag{3.3}$$

Kann-Ziel: $\Delta u'v'$

Der $\Delta u'v'$ gibt an, wie weit ein Farbort von der Plank'schen Kurve bei einer dazugehörigen CCT entfernt ist. Dieser Wert ist nur für eine native Messung wichtig und dient zur Kontrolle beim Lichtqualitätsvergleich. Laut Definition muss $\Delta u'v' \leq 0,0050$ gelten, sonst werden Farbunterschiede sichtbar (grünstichig bzw. magentastichig), die unter Umständen dazu führen können, dass Scheinwerferlicht sehr unterschiedlich zueinander wirkt. Falls dieser Wert den Wertebereich überschreitet, wird bei der FixtureCheck-Methode eine Warnung ausgegeben. Das Kann-Ziel ist erfüllt, wenn $\Delta u'v'$ im Wertebereich 0,0000 $\leq \Delta u'v' \leq 0,0050$ liegt.

Kann-Ziel: Beleuchtungsstärke E

Schließlich spielt bei einem nativen Vergleich auch der Helligkeitsunterschied ΔE_{Bel} mit ein. Insbesondere für die gemeinsame Nutzung verschiedener Scheinwerfer ist ein ähnlicher Output-Wert elementar. Ein neuer Scheinwerfer ist keine Alternative, wenn er deutlich zu dunkel ist. Daher wird auch an dieser Stelle eine Warnung angezeigt, wenn sich Test- und Referenzlichtquelle zu sehr $\Delta E_{Bel} > 500$ lx unterscheiden. Das Kann-Ziel ist erfüllt, wenn sich Test- und Referenzbeleuchtungsstärke um mehr als 500 lx unterscheiden.

$$\Delta E_{Bel} = |E_{Bel,test} - E_{Bel,ref}| \stackrel{!}{=} 0 \tag{3.4}$$

3.2.3 Skalierung der Kriterien

Für die Nutzwertanalyse ist eine entsprechende Skalierung der einzelnen Kriterien essenziell. Der klassische Wertebereich einer Skala liegt bei $0 \le x \le 10$ und wird bei dieser FixtureCheck-Methode auf alle Kriterien angewandt. Dadurch entstehen keine Probleme bei der Überlegung wie viele Nachkommastellen aussagekräftig sind und es sind nicht unnötig viele Zwischenschritte zulässig (s. Tabelle 3.1).

Teilnutzwert TN	Einschätzung des Weißlichtvergleichs
$0 \le TN < 1$	extrem unterschiedlich
$1 \le TN < 2$	sehr unterschiedlich
$2 \le TN < 3$	unterschiedlich
$3 \le TN < 4$	relativ unterschiedlich
$4 \le TN < 5$	kaum unterschiedlich
$5 \le TN < 6$	leicht ähnlich
$6 \le TN < 7$	relativ ähnlich
$7 \le TN < 8$	ähnlich
$8 \le TN < 9$	sehr ähnlich
$9 \le TN < 10$	hervorragend ähnlich
TN = 10	identisch

 Tabelle 3.1: Abstufungen einer 10 Punkte Skala zur Einschätzung des Teilnutzwerts bei der FixtureCheck-Methode¹

Transformationsfunktion des SSI

Der SSI beziffert den Unterschied der gemessenen Spektren (s. Kapitel (1.2.4). Unter gewissen Umständen kann die SSI-Messung jedoch auch zu negativen Werten führen (s. Anhang Messung). Bei der FixtureCheck-Methode soll verglichen werden, wie ähnlich sich Spektren sind. SSI-Werte im Wertebereich SSI < 0 mit in die Skala des SSI einzubeziehen, würde dazu führen, dass die meisten positiven Werte auf eine Skala projiziert werden, die zu weit auseinandergezogen wurde. Ein Unterschied SSI = 14ist deutlich interessanter als eine Spanne von SSI = 135, die nur aufzeigt, dass sich die Scheinwerfer sehr stark spektral unterscheiden. Daher werden die negativen Werte des SSI als untere Grenze mit 0 gleichgesetzt. Die theoretische Obergrenze wird von SSI = 100 dargestellt und so ist eine adäquate Skala des SSI gewährleistet (s. Gleichung 3.5).

$$f_{SSI}(x_{SSI}) = \begin{cases} 0, 1x & \text{für } 0 < x \le 100 \\ 0 & \text{für } x \le 0 \end{cases}$$
(3.5)

Transformationsfunktion des FSI

Der FSI bzw. FSCI ist ein weiterer Wert, der ein Spektrenvergleich zwischen den gemessenen Scheinwerfern ermöglicht. Je kleiner der gemessene FSI wird, desto ähnlicher ist das gemessene Spektrum dem "idealen" Spektrum (s. Kapitel 1.2.5). Auch hier muss eine vernünftige Abgrenzung zu theoretischen FSI-Werten vorgenommen werden, um eine passende Skala zu finden. Bei der FixtureCheck-Methode wird der FSI jeweils vom Referenz- und Testspektrum gemessen und ein ΔFSI -Wert gebildet. Je größer ΔFSI wird, desto unterschiedlicher sind sich die Scheinwerfer. Bei den Messungen sind vereinzelt Werte von $\Delta FSI < 10$ aufgefallen (s. Anhang Messung). Um die Sakla des FSI nicht unnötig zu strecken, wird die Obergrenze auf $\Delta FSI = 10$ festgelegt, da die meisten Werte $\Delta FSI < 5$ sind (s. Gleichung 3.6. Bei dem FSI zeigt sich, dass die Skalenbildung ein nicht trivialer Vorgang für die FixtureCheck-Methode darstellt. Es muss gelingen sowohl sehr unterschiedliche Spektren vergleichen, sowie die verschiedenen Nuancen ähnlicher Spektren herausarbeiten zu können. Bei dem direkten Vergleich der theoretischen Skalen mit den an den gemessenen Werten angepassten Skalen (s. Kapitel3.2.5) wird dies besonders deutlich.

$$f_{\Delta FSI}(x_{\Delta FSI}) = \begin{cases} -x + 10 & \text{für} \quad 0 < x \le 10\\ 0 & \text{für} \quad 10 < x \end{cases}$$
(3.6)

Transformationsfunktion des TM-30

Für den Vergleich mit Referenzfarben bei der FixtureCheck Methode ist der TM-30 R_f - und R_g -Wert verantwortlich (s. Kapitel 1.2.3). Theoretisch kann der ΔR_f -Wert im Wertebereich $0 < \Delta R_f < 100$ variieren. Praktisch ist es jedoch kaum möglich, dass das Spektrum eines LED-Scheinwerfer diese Grenzwerte annimmt. Ein $R_f = 100$ ist mit den schmalbandigen LEDs der Scheinwerfer kaum zu erreichen, wenn die Referenzlichtquelle eine Glühlichtquelle bzw. eine Tageslichtquelle darstellt. Ähnlich ist ein $R_f = 0$ nicht praxisnah, allenfalls kann durch eine CCT, die sehr von dem Plank'schen Kurvenzug abweicht, ein nicht messbarer R_f -Wert erreicht werden (s. Anhang native Messung der TourLED). Aus den genannten Gründen wird maximal von einem $\Delta R_f = 50$ ausgegangen und so bei der FixutreCheck-Methode als Obergrenze angenommen (s. Gleichung 3.7).

Der R_g -Wert hat seine Grenzen bei $R_g = 60$ und $R_g = 140$. Auch wenn der "optimale" Scheinwerfer eine TM-30 Wertekombination von $R_f = R_g = 100$ erreichen soll, sind die $R_g \neq 100$ -Werte eine interessante Aussage über die Unter- bzw. Übersättigung der Farben eines Scheinwerfers. Deswegen wird bei der FixtureCheck-Methode die volle Bandbreite von $\Delta R_g = 80$ mit in die Skala einbezogen und für den einzelnen Scheinwerfer angegeben, wie sich die Farbsättigung verhält (Gleichung 3.8).

$$f_{\Delta R_f}(x_{\Delta R_f}) = \begin{cases} -0, 2x + 10 & \text{für } 0 < x \le 50 \\ 0 & \text{für } 50 < x \end{cases}$$
(3.7)

$$f_{\Delta R_g}(x_{\Delta R_g}) = \begin{cases} -0, 125x + 10 & \text{für} \quad 0 < x \le 80\\ 0 & \text{für} \quad 80 < x \end{cases}$$
(3.8)

Transformationsfunktion des ΔE_{uv}^*

Die Farbdistanzen ΔE_{uv}^* der gemessenen Scheinwerfer liegen meist im Wertebereich $0 < \Delta E_{uv}^* < 3$. Die Definition des ΔE_{uv}^* gibt vor, dass $\Delta E_{uv}^* > 1$ dafür steht, dass der Unterschied zwischen zwei Lichtquellen mit dem bloßen Auge sichtbar ist². Das Ziel der FixureCheck-Methode liegt darin, einen passenden Testscheinwerfer zum Referenzscheinwerfer zu finden und daher wird das Licht mit einem $\Delta E_{uv}^* > 1$ als sichtbar unterschiedlich eingestuft und in der Ausgabe vermerkt (Gleichung 3.9). Die maximale Obergrenze des ΔE_{uv}^* verschiebt sich bei einer nativen Messung stark, weil bei den Mesungen ein Wertebereich von $0 < \Delta E_{uv}^* < 285$ entstanden ist. Dieser große Werteunterschied führt dazu, dass eine Aussage des ΔE_{uv}^* im nativen Vergleich sehr schwierig ist. Außerdem liegt mit dem $\Delta u'v'$ eine gewisse Redundanz vor, da beide Werte einen Farbortunterschied beziffern. Aus diesen Gründen wird der ΔE_{uv}^* bei einem nativen Vergleich außen vor gelassen.

$$f_{\Delta E_{uv}^*}(x_{\Delta E_{uv}^*}) = \begin{cases} 10 & \text{für } 0 < x \le 1\\ -2x + 10 & \text{für } 1 < x \le 5\\ 0 & \text{für } x \le 5 \end{cases}$$
(3.9)

Sofern man bei der FixtureCheck-Methode einen nativen Spektrumsvergleich anwendet, werden auch die korrelierte Farbtemperatur, der $\Delta u'v'$ und die Beleuchtungsstärke E mit in Betracht gezogen. Falls die zu betrachtenden Scheinwerfer mit einer festen CCT gemessen werden, sind diese Werte nach Vorschrift der FixtureCheck-Methode von Test- und Referenzscheinwerfer sehr ähnlich eingestellt und spielen daher bei der Nutzwertanalyse keine weitere Rolle.

 $^{^2}$ (academic.com 2022)

Transformationsfunktion der CCT im nativen Fall

Mit dem $\Delta u'v'$ mit einhergehend muss stets die CCT einer Lichtquelle angegeben werden. Im Falle eines nativen Vergleiches hilft die Auswertung des ΔCCT auch eine Aussage über die Anpassungsfähigkeit des Spektrums zu machen. Eine Lichtquelle bei 7000 K verliert zwar etwas Output, wenn sie auf eine CCT von 5600 K angepasst wird, hat aber gute Möglichkeiten ein ausgeglicheneres Spektrum zu erreichen, wenn die einzelnen Farbe individuell ansteuert werden. Scheinwerfer mit einer nativen korrelierten Farbtemperatur von 5600 K können nicht weiter im Spektrum angeglichen werden. Außerdem sind Farbwiedergaben in stark unterschiedlichen CCT sehr verschieden. Da der TM-30 Wert, wie die meisten Farbwiedergabewerte, für jede CCT ein anderes Referenzspektrum wählt, ist eine Aussage eines Farbwiedergabewertes bei verschiedenen CCT nicht möglich. Der ΔCCT hat sein Maximum bei 10000 K, weil unter diesen Bedingungen das Ergebnis der FixtureCheck-Methode eindeutig ausfällt: Die Scheinwerfer passen nicht zusammen (Gleichung 3.10). (Zusätzlich liegt die reale Grenze der berechenbaren CCT in der Anwendung bei CCT = 19960,58 K. Alle höheren CCT-Werte werden zusammen mit dem $\Delta u'v'$ approximiert und weichen daher vom tatsächlichen Messwert ab.)

$$f_{\Delta CCT}(x_{\Delta CCT}) = \begin{cases} 10 & \text{für } 0 < x \le 50 \\ -0,0001x + 10,05 & \text{für } 50 < x \le 100000 \\ 0 & \text{für } 10000 < x \end{cases}$$
(3.10)

Transformationsfunktion des $\Delta u'v'$ im nativen Fall

Der $\Delta u'v'$ wird im CIEL*U*V*-Farbraum berechnet und gibt den Abstand des Farborts zum Plank'schen Kurvenzug an. Auch bei diesem Wert gibt es eine optisch sichtbare Grenze: Ab $\Delta u'v' = \pm 0,0050$ ist ein Grün- bzw. Magentastich bei der Lichtquelle mit dem bloßen Auge zu erkennen³. Auf diese Weise kann es dazu kommen, dass Scheinwerfer mit sehr ähnlicher CCT sehr unterschiedlich wirken. Damit der Nutzer bei einem nativen Vergleich mit der FixtureCheck-Methode nicht dieser optischen Fehleinschätzung obliegt, werden alle $\Delta(\Delta u'v')$ im Wertebereich 0,0000 < $\Delta u'v' < 0,0050$ bevorzugt und größere Abweichungen werden in der Ausgabe vermerkt (Gleichung 3.11). Ab $\Delta u'v' = 0,1000$ ist der Farbort sehr weit von dem Plank'schen Kurvenzug entfernt und kann eventuell nicht mehr einer spezifischen CCT zugeordnet werden. So gilt dieser Wert als obere Grenze für $\Delta u'v'$.

$$f_{\Delta(\Delta u'v')}(x_{\Delta(\Delta u'v')}) = \begin{cases} 10 & \text{für } 0,0000 < x \le 0,0050 \\ -100,5x+10,05 & \text{für } 0,0050 < x \le 0,1000 \\ 0 & \text{für } 0,1000 < x \end{cases}$$
(3.11)

³ (Davis & Ohno 2006)

Transformationsfunktion der Beleuchtungsstärke E im nativen Fall

Die Höhe der Beleuchtungsstärke wirkt sich auch auf die Farbwiedergabe eines Scheinwerfers aus. Farben erscheinen bei E = 200 lx anders als bei einer Beleuchtungsstärke von 3000 lx. Dieser Umstand wird bisher in keinem bekannten Farbwiedergabewert eingerechnet. Die FixtureCheck-Methode weist also darauf hin, wenn zwei Scheinwerfer eine zu große Abweichung in der Beleuchtungsstärke mit sich bringen. Diese Beleuchtungsstärkedifferenz wird auf 3000 lx festgesetzt, alles unter einem Wert von 500 lx ist ideal (s. Gleichung 3.12).

$$f_{\Delta E}(x_{\Delta E}) = \begin{cases} 10 & \text{für } 0 < x \le 500 \\ -0,00\overline{3}x + 10 & \text{für } 500 \le x \le 3000 \\ 0 & \text{für } 3000 < x \end{cases}$$
(3.12)

Überprüfung der Transformationsfunktion anhand der Teilnutzwerte TN

Zur Kontrolle der Zielerfüllung der Kriterien mithilfe der Transformationsfunktionen wird geprüft, in welchen Bereichen die Teilnutzwerte liegen. Sollten die Teilnutzwerte eines Kriteriums nur gering variieren, ist der Wertebereich des Messwerts voraussichtlich zu groß angesetzt. Um qualitative Aussagen treffen zu können, werden Teilnutzwerte über die gesamte Spannweite der Skala angestrebt. Dies wird bei den gewählten Kriterien überwiegend erreicht. Beispielhaft werden die Teilnutzwerte des ΔR_f bei CCT = 4000 K und CCT = 5600 K betrachtet. Bei einer CCT = 4000 K fällt auf, dass Teilnutzwerte in dem Wertebereich $7 \leq TN \leq 10$ schwanken (s. Tabelle 3.2). Damit wird die Spanne von $0 \leq TN \leq 10$ nicht voll ausgenutzt und diese sollte daher angepasst werden. In der Tabelle 3.3 bewegt sich der ΔR_f im Wertebereich $4,75 \leq TN \leq 10$. Bei CCT = 3200 K wird also die Skala deutlich besser ausgenutzt. Es zeigt sich, dass die Skalierung des ΔR_f sinnvoll ist, um die verschiedenen Schwankungen darstellbar zu machen.

Rf	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		7	$7,\!375$	7,625	9,625	7	8,125	9,375
L7C	7		9,625	9,375	7,375	10	8,875	7,625
P7	7,375	9,625		9,75	7,75	9,625	9,25	8
P12	7,625	9,375	9,75		8	9,375	9,5	8,25
S4 S2	9,625	7,375	7,75	8		7,375	8,5	9,75
TourLED	7	10	9,625	9,375	7,375		8,875	7,625
Viva	8,125	8,875	9,25	9,5	8,5	8,875		8,75
S4 S3	9,375	7,625	8	8,25	9,75	7,625	8,75	

Tabelle 3.2: TN des R_f -Wert bei CCT = 4000K

Rf	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		10	7,375	8	9	4,75	8,375	8,875
L7C	10		7,375	8	9	4,75	8,375	8,875
P7	7,375	7,375		9,375	8,375	7,375	9	8,5
P12	8	8	9,375		9	6,75	9,625	9,125
S4 S2	9	9	8,375	9		5,75	9,375	9,875
TourLED	4,75	4,75	7,375	6,75	5,75		6,375	5,875
Viva	8,375	8,375	9	9,625	9,375	6,375		9,5
S4 S3	8,875	8,875	8,5	9,125	9,875	5,875	9,5	

Tabelle 3.3: N des R_f -Wert bei CCT = 4000K

3.2.4 Gewichtung der Kriterien

Die Gewichtung der Kriterien ist für die Nutzwertanalyse ein entscheidender Prozess, weil sie das Ergebnis grundlegend beeinflusst. Eine AHP oder eine Präferenzanalyse für die FixtureCheck-Methode hilft beispielsweise nicht weiter (s. Kaptiel 1.3.2), da diese Methoden aus zwei Kriterien das wichtigeren herausarbeiten, eine Rangfolge einer Wichtigkeit bei den genutzten Farbwiedergabewerten aber nicht zutrifft. Bei einem Vergleich des Weißlichts kommt es primär auf das Spektrum eines Scheinwerfers an. Daher werden die Kriterien nach spektrumsnaher Berechnungsmethode gewichtet. Je direkter der Wert aus dem ursprünglichen Spektrum gerechnet wird, desto höher ist er im Ranking vertreten. Dies hängt mit dem grundlegenden Problem der FixtureCheck-Methode zusammen, dass es theoretisch sehr viele Möglichkeiten gibt ein Weißlichtspektrum aus LED-Lichtfarben zu mischen und damit denselben R_f zu erreichen. Es liegt in der Verantwortung des Nutzers dieser Anwendung, das Weißlicht so zu mischen, dass ein geeignetes Vergleichsspektrum entsteht, obwohl jederzeit viele andere Möglichkeiten existieren. Spektrumsnahe Werte errechnen sich direkter aus dem Spektrum und sind daher von diesem Problem weniger betroffen. Damit sind diese Kriterien verlässlicher als beispielweise der TM-30.

Gewichtung des SSI

Der SSI ist am nächsten am Spektrum und bekommt daher die größte Gewichtung. Dieser Wert ist am besten dafür geeignet, Ähnlichkeiten und Unterschiede der Spektren aufzuzeigen (s. Gleichung 3.13).

$$TN_{SSI} = 0,35 \cdot Zf \tag{3.13}$$

Gewichtung des FSI

Der FSI kann Löcher in Spektren beziffern und betrachtet mit seinen Aussagen das Weißlicht sehr spektrennah. Daher bekommt der FSI die zweithöchste Gewichtung der FixtureCheck-Methode (s. Gleichung 3.14).

$$TN_{\Delta FSI} = 0, 2 \cdot Zf \tag{3.14}$$

Gewichtung des TM-30

Um die Qualität von Weißlicht einschätzen zu können, wird bei der FixtureCheck-Methode der TM-30 representativ für die bekannten Farbwiedergabewerte miteinbezogen. Da sich die R_f - und R_g -Werte auf 99 Referenzfarben beziehen und sich aus einem Vergleich mit einem Referenzspektrum ergeben, sind diese Werte ferner vom ursprünglich gemessenen Spektrum anzusiedeln. Dennoch sollen diese Werte aussagekräftig mit in die FixtureCheck-Methode einbezogen werden und bekommen gemeinsam so viel Aussagekraft wie der SSI selbst (s. Gleichung 3.15 und 3.16).

$$TN_{\Delta Rf} = 0,175 \cdot Zf \tag{3.15}$$

$$TN_{\Delta Rg} = 0,175 \cdot Zf \tag{3.16}$$

Gewichtung des ΔE_{uv}^*

Schließelich soll auch die Distanz der Farborte in einem Farbraum zu einem gewissen Grad die Ähnlichkeit von Weißlicht zweier Scheinwerfer bei der FixtureCheck-Methode mit einfließen. Dabei kommt dem ΔE_{uv}^* die Hälfte des Einflusses des FSI zugute (s. Gleichung 3.17).

$$TN_{\Delta E_{uu}^*} = 0, 1 \cdot Zf \tag{3.17}$$

Gewichtung der Kriterien im nativen Fall

Im nativen Fall kommen der CCT-, $\Delta u'v'$ -, und der Beleuchtungsstärkevergleich hinzu. Dies ändert die Gewichtung der einzelnen Kriterien (s. Tabelle 3.4). Der TM-30 kann nicht weiter mitgeführt werden, da verschiedene Referenzspektren nicht vergleichbar sind. Der ΔE_{uv}^* wird ersetzt durch den $\Delta u'v'$, da seine Wertespanne deutlich zu groß wäre und eine sehr ähnliche Aussage zum $\Delta u'v'$ darstellt. Die Gewichtung von SSI und FSI ändern sich nicht und sie bleiben im selben Verhältnis wie bei der FixtureCheck-Methode im angepassten CCT Fall. CCT und $\Delta u'v'$ sind als Verortungswerte an der Plank'schen Kurve gleichstark gewichtet. Die Beleuchtungsstärke E variiert am stärksten und fällt daher am wenigsten ins Gewicht (s. Gleichung 3.18 bis 3.20).

$$TN_{\Delta CCT} = 0,175 \cdot Zf \tag{3.18}$$

$$TN_{\Delta(\Delta u'v')} = 0,175 \cdot Zf$$
 (3.19)

$$TN_{\Delta Ebel} = 0, 1 \cdot Zf \tag{3.20}$$

Kriterium	Gewichtung angepasster Fall	Gewichtung nativer Fall
SSI	$0,\!35$	0,35
ΔFSI	$0,\!20$	$0,\!20$
TM-30 ΔR_f	$0,\!175$	0
TM-30 ΔR_g	$0,\!175$	0
ΔE_{uv}^*	$0,\!10$	0
ΔCCT	0	$0,\!175$
$\Delta(\Delta u'v')$	0	$0,\!175$
ΔE_{Bel}	0	0,1

Tabelle 3.4: Gewichtung der Kriterien in beiden Fällen⁴

⁴ (Bundesministerium des Innern und für Heimat 2007)

3.2.5 Bestimmung des Gesamtnutzwerts ("Ähnlichkeitsfaktor")

Der Ergebniswert der Nutzwertanalyse GN ist auch das Hauptergebnis der FixtureCheck-Methode und wird "Ähnlichkeitsfaktor" genannt. Dieser Faktor befindet sich im Wertebereich 0 < GN < 10 und ist damit genauso wie die Teilnutzwerte skaliert. GN = 10 bedeutet, dass das Spektren des gemessenen Weißlichts identisch sind. Folgende Aufteilung der Interpretation des Ähnlichkeitsfaktors wird bei der FixtureCheck-Methode angewandt:

Gesamtnutzwert GN	Einschätzung des Weißlichtvergleichs
$0 \le GN < 1$	extrem unterschiedlich
$1 \le GN < 2$	sehr unterschiedlich
$2 \le GN < 3$	unterschiedlich
$3 \le GN < 4$	relativ unterschiedlich
$4 \le GN < 5$	kaum unterschiedlich
$5 \le GN < 6$	leicht ähnlich
$6 \le GN < 7$	relativ ähnlich
$7 \le GN < 8$	ähnlich
$8 \le GN < 9$	sehr ähnlich
$9 \le GN < 10$	hervorragend ähnlich
GN = 10	identisch

Tabelle 3.5: Abstufungen einer 10 Punkte Skala zur Einschätzung des "Ähnlichkeitsfak-
tor" GN bei der FixtureCheck-Methode⁵

Im Folgenden werden verschiedene Gewichtungen der Kriterien und deren Auswirkung auf den GN-Wert bei der FixtureCheck-Methode ausgewertet. Alle möglichen Weißlichtvergleiche der gemessenen Scheinwerfer werden betrachtet (s. Kapitel (2). In den folgenden Tabellen sind jeweils die höchsten Werte (grün) sowie die niedrigsten Werte (rot) einer Zeile gekennzeichnet.

3.3 Evaluierung der Gewichtungen

Das Ziel der Variationen ist, wie bereits erwähnt, eine fundierte Entscheidung über die Gewichtungen treffen zu können. In den folgenden Fällen werden die Gewichtungen unterschiedlich angepasst, damit die Größe des Einflusses dieser auf die Gesamtnutzwerte beziehungsweise die Rangfolgen geprüft werden kann. Es können damit Schwankungen und unabhängige Tendenzen besser verdeutlicht werden.

3.3.1 Fall 1: Gleiche Gewichtung aller Kriterien

Wenn alle Kriterien gleich gewichtet werden mit Gf = 0,2, kann ein neutraler Vergleich der Gesamtnutzwerte erfolgen. LED-Scheinwerfer liegen nativ meist bei einer kaltweißen CCT und daher weichen ihre Spektren bei CCT = 3200 K am meisten von ihren ursprünglichen Spektren ab. Dies spiegelt sich auch bei den Gesamtnutzwerten der Nutzwertanalvse wieder. Die GN erreichen an dieser Stelle die kleinsten Werte mit einem Durchschnitt $\overline{GN}=7,55$ und einer Spannweite von $GN_{max}-GN_{min}=4,85$ (s. Tabelle 3.6). Folglich sind die Werte bei CCT = 5600 K sich am ähnlichsten $\overline{GN}=7,94$ und weisen die kleinsten Differenzen $GN_{max} - GN_{min} = 3,19$ zueinander auf (s. Tabelle 3.8). Auffällig ist, dass sich das Weißlicht der TourLED Pro 28 Zoom IP33 bei CCT = 3200 K als kaum kompatibel zu den anderen Weißlicht der Scheinwerfer einordnet, bei CCT = 5600 K jedoch solide GN-Werte im Wertebereich $7 < GN_{TourLED} < 9$ aufweist. Dagegen ist der L7-C mit seinen GN-Werten von moderaten Wertebereich bei CCT = 3200 K und CCT = 4000 K auf den letzten Platz im Weißlichtvergleich bei CCT = 5600 K abgefallen. Das im Vergleich ähnlichste Weißlicht der Scheinwerfer teilt sich über die drei Tabellen hinweg auf die verschiedene Scheinwerfer auf, dagegen kann das unähnlichste Weißlicht meist zwei (bzw. einem) Scheinwerfern pro CCT zugeteilt werden.

3200 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		8,16	7,00	7,24	8,66	4,38	7,62	8,25
L7C	8,28		7,52	8,27	8,30	5,54	7,87	8,83
P7	7,42	7,66		8,79	7,95	5,83	9,12	7,81
P12	7,74	8,51	8,75		8,28	5,51	9,24	8,54
S4 S2	8,66	8,34	7,67	7,98		5,71	8,30	8,46
TourLED	4,94	5,92	5,83	5,51	6,13		5,27	6,37
Viva	8,04	8,03	9,12	9,24	8,60	5,27		8,09
S4 S3	8,13	8,67	7,47	8,06	8,16	5,85	7,71	

Tabelle 3.6: GN bei 3200 K mit Gf=0,2

4000 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		7,04	6,78	7,32	9,25	7,03	7,10	8,33
L7C	7,08		7,61	7,48	8,20	8,66	7,04	7,04
P7	7,16	7,63		9,22	7,40	6,72	9,35	7,49
P12	7,80	7,60	9,20		8,00	6,69	9,26	7,68
S4 S2	9,27	8,10	7,12	7,68		7,66	7,42	8,35
TourLED	7,25	8,56	6,66	6,67	7,82		6,22	6,57
Viva	7,50	7,12	9,35	9,24	7,72	6,32		8,00
S4 S3	8,11	7,25	7,11	7,24	7,93	6,21	7,64	

Tabelle 3.7: GN bei 4000 K mit Gf=0,2

5600 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		6,59	7,50	7,52	8,96	8,77	7,71	8,51
L7C	6,65		7,31	7,23	8,07	7,27	$6,\!57$	6,97
P7	7,80	7,29		9,74	8,13	8,08	9,55	7,54
P12	7,84	7,25	9,72		8,02	8,12	9,35	7,60
S4 S2	8,94	7,97	7,77	7,62		8,75	7,56	8,70
TourLED	8,97	7,13	7,92	8,00	9,01		8,05	8,11
Viva	7,99	6,55	9,53	9,33	7,92	8,25		7,06
S4 S3	8,27	6,67	7,10	7,16	8,32	7,73	6,70	

Tabelle 3.8: GN bei 5600 K mit Gf=0,2

3.3.2 Fall 2: Starke Gewichtung der spektrumsnahen Kriterien

Bei einer Aufteilung zu einer spektrumsnahen Gewichtung mit $TN_{SSI} = TN_{FSI} = 0, 4 \cdot Zf$ und $TN_{Rf} = TN_{Rg} = TN_{\Delta E_{uv}^*} = \frac{0,2}{3} \cdot Zf$ spielen der TM-30 und der ΔE_{uv}^* eine kleinere Rolle, da ihre Werte nicht so stark das Spektrum beurteilen wie der SSI und FSI (s. Kapitel 1.2.4 und 1.2.5). Durch die neuen Gewichtungen haben sich durch-schnittlich die GN-Werte aller drei Tabellen verschlechtert und damit sind gleichzeitig die Spannweiten ΔGN noch größer geworden. Im Vergleich zu den gleich gewichteten TN im Fall 1 ist beispielsweise bei 3200 K das arithmetische Mittel auf \overline{GN} =6,87 abgesunken und die Spannweite hat sich auf $GN_{max} - GN_{min} = 5, 19$ vergrößert (s. Tabelle 3.9). Interessanterweise bleiben die Positionen des unpassendsten Weißlichts sehr ähnlich zur gleichverteilten Gewichtung. Kleine Änderungen machen sich zum Beispiel bei CCT = 3200 K bemerkbar, da die TourLED Pro 28 Zoom IP33 jetzt am schlechtesten zum P12 Profile passt. Insgesamt verschieben sich nur fünfmal die verschiedenen größten GN-Werte in den drei Tabellen, bleiben aber sehr unterschiedlich verteilt.

3200 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		8,01	6,20	6,64	8,23	3,74	6,94	8,50
L7C	8,25		6,86	7,69	8,14	4,22	7,55	8,52
P7	7,04	7,14		8,25	7,13	4,56	8,93	6,58
P12	7,64	8,17	8,17		7,13	3,91	8,84	7,71
S4 S2	8,23	8,22	6,57	6,53		5,17	7,14	8,12
TourLED	4,86	4,98	4,56	3,91	6,01		4,07	5,52
Viva	7,78	7,87	8,93	8,84	7,74	4,07		7,28
S4 S3	8,26	8,20	5,90	6,75	7,52	4,48	6,52	

Tabelle 3.9: GN bei 3200 K mit Gf=0,8 für SSI & FSI

4000 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		6,99	6,18	6,68	8,87	6,45	6,69	8,31
L7C	7,07		6,25	5,91	8,22	8,46	6,13	6,62
P7	6,94	6,29		8,77	7,17	5,66	$9,\!19$	6,42
P12	7,64	6,15	8,73		7,27	$5,\!45$	8,92	7,15
S4 S2	8,91	8,02	6,61	6,63		7,34	7,07	7,84
TourLED	6,89	8,26	5,54	5,41	7,66		5,43	6,20
Viva	7,49	6,29	9,19	8,88	7,67	5,63		6,96
S4 S3	7,87	6,23	5,66	6,27	7,00	5,48	6,24	

Tabelle 3.10: GN bei 4000 K mit Gf=0,8 für SSI & FSI

5600 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		6,70	6,94	7,04	8,76	8,37	7,24	8,20
L7C	6,82		6,11	5,88	8,05	7,35	5,89	6,26
P7	7,54	6,07		9,55	7,44	7,85	9,38	6,65
P12	7,68	5,92	9,51		7,28	8,00	9,05	6,83
S4 S2	8,72	7,85	6,72	6,48		8,02	6,85	7,81
TourLED	8,77	7,07	7,53	7,76	8,54		7,68	7,44
Viva	7,80	5,85	9,34	9,01	7,57	8,08		6,52
S4 S3	7,72	5,66	5,77	$5,\!95$	7,05	6,68	5,80	

Tabelle 3.11: GN bei 5600 K mit Gf=0,8 für SSI & FSI

3.3.3 Fall 3: Schwache Gewichtung der spektrumsnahen Kriterien

Falls diese Gewichtung umgekehrt wird und als eine Aufteilung zu einer spektrumsfernen Gewichtung mit $TN_{SSI} = TN_{FSI} = 0, 2 \cdot Zf$ und $TN_{Rf} = TN_{Rg} = TN_{\Delta E_{uv}^*} =$ $\frac{0.8}{3} \cdot Zf$ aufgefasst wird, erhält man folgende drei Tabellen (s. Table 3.12 bis 3.14). Die Anwendung dieser Gewichtung führt dazu, dass sich durchschnittlich alle GN-Werte aller drei Tabellen leicht erhöhen und die Spannweite der Tabellenwerte verringert wird. Im Vergleich zu den gleich gewichteten TN im Fall 1 steigt beispielsweise bei 4000 K das arithmetische Mittel von $\overline{GN_{Fall1}}=7,66$ auf $\overline{GN_{Fall3}}=8,00$ und die Spannweite verkleinert sich von $GN_{max,Fall1} - GN_{min,Fall1} = 3,15$ auf $\Delta GN_{Fall3} = 2,89$ (s. Tabelle 3.10). Auch bei einer CCT = 3200 K ist der Unterschied zur gleichwertigen Gewichtung gering. Nur die TourLED Pro 28 Zoom IP33 passt mit seinem Weißlicht durch die Änderung der Gewichtung am schlechtesten zum Weißlicht des Robin Viva CMY. Zusätzlich passt der Source 4 LED Series 2 Lustr mit am besten zum Weißlicht des Robin Viva CMY. Alle anderen grün und rot markierten Werte sind bei denselben Scheinwerfern geblieben (s. Tabelle 3.12). Bei CCT = 5600 K teilen sich die Ungleichheit des Weißlichts wieder auf den L-7C und den Robin Viva CMY bzw. K-Eye K10 HCR auf (s. Tabelle 3.12). Damit spielt die starke Gewichtung der spektrennahen Kriterien eine größere Rolle bei der FixtureCheck-Methode als die starke Gewichtung der spektrenferneren Kriterien.

3200 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		8,23	7,40	7,54	8,88	4,70	7,95	8,12
L7C	8,29		7,85	8,56	8,38	6,21	8,02	8,99
P7	7,61	7,92		9,06	8,35	6,47	9,21	8,42
P12	7,79	8,68	9,04		8,85	6,31	9,43	8,95
S4 S2	8,88	8,40	8,21	8,70		5,98	8,88	8,63
TourLED	4,98	6,40	6,47	6,31	6,19		5,87	6,79
Viva	8,16	8,10	9,21	9,43	9,03	5,87		8,50
S4 S3	8,06	8,91	8,25	8,71	8,48	6,53	8,31	

Tabelle 3.12: GN bei 3200 K mit Gf=0,2 für SSI & FSI

4000 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		7,06	7,07	7,64	9,44	7,32	7,31	8,34
L7C	7,08		8,29	8,26	8,19	8,76	7,49	7,25
P7	7,26	8,30		9,44	7,51	7,25	9,43	8,02
P12	7,88	8,32	9,43		8,36	7,31	$9,\!44$	7,94
S4 S2	$9,\!45$	8,14	7,37	8,20		7,82	7,60	8,61
TourLED	7,43	8,71	7,22	7,30	7,90		6,61	6,75
Viva	7,51	7,53	9,43	9,43	7,75	6,66		8,52
S4 S3	8,23	7,76	7,83	7,72	8,40	6,57	8,34	

Tabelle 3.13: GN bei 4000 K mit Gf=0,2 für SSI & FSI

5600 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		6,53	7,78	7,76	9,06	8,97	7,95	8,66
L7C	6,56		7,91	7,90	8,08	7,23	6,91	7,33
P7	7,93	7,90		9,84	8,48	8,19	9,63	7,98
P12	7,92	7,91	9,83		8,39	8,18	9,50	7,98
S4 S2	9,05	8,03	8,30	8,19		9,12	7,91	$9,\!15$
TourLED	9,07	$7,\!16$	8,11	8,12	9,25		8,24	8,45
Viva	8,09	6,90	9,62	9,49	8,09	8,34		7,33
S4 S3	8,54	7,18	7,76	7,76	8,96	8,26	7,15	

Tabelle 3.14: GN bei 5600 K mit Gf=0,2 für SSI & FSI

3.3.4 Fall 4: Angewandte Gewichtung für die FixtureCheck-Methode

Mit der Gewichtung, die bei der FixtureCheck-Methode angewandt wird (s. Kapitel 3.2.4), gibt es die geringsten Unterschiede zur gleichverteilten Gewichtung. Dies liegt zum einen daran, dass bei Fall 2 und 3 sehr extreme Gewichtsfälle angenommen werden. Zum anderen ist es bei der FixtureCheck-Methode wichtig, dass die spektrumsnahen Kritierien eine hohe Gewichtung erhalten sollen und gleichzeitig die anderen Kriterien noch genug Wirkung auf das Gesamtergebnis GN mit sich bringen. Bei CCT = 3200 K passt das Weißlicht der TourLED Pro 28 Zoom IP33 am schlechtesten zum Weißlicht des Robin Viva CMY. Ansonsten sind alle anderen negativen extremen Rankings der Scheinwerfer bei CCT = 3200 K gleich geblieben. Die positiven Rankings haben sich dagegen auf fünf Positionen geändert(s. Tabelle 3.15). Im kaltweißen korrelierten Farbtemperaturbereich ist das Weißlicht des Source 4 LED Series 2 Lustr kaum geeignet mit dem des Robin Viva CMY zusammen genutzt zu werden. Das Weißlicht des L-7C ist in diesem Bereich am wenigsten mit dem Weißlicht anderer Scheinwerfer kompatibel (s. Tabelle 3.15). Durch die für die FixtureCheck-Methode genutzte Gewichtung ändert sich teilweise das Ranking des Weißlicht der Scheinwerfer und sorgen für einen ausgewogenen Vergleich der Kriterien.

3200 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		8,03	6,29	6,51	8,25	3,64	6,95	8,32
L7C	8,24		6,91	7,62	8,24	4,46	7,53	8,43
P7	7,03	7,15		8,48	7,15	4,72	8,96	6,94
P12	7,38	8,04	8,41		7,44	4,39	8,96	7,79
S4 S2	8,25	8,31	6,66	6,91		5,13	7,35	8,31
TourLED	4,62	5,12	4,72	4,39	5,87		4,26	$5,\!69$
Viva	7,69	7,81	8,96	8,96	7,88	4,26		7,55
S4 S3	8,11	8,15	6,34	6,95	7,78	4,78	6,89	

Tabelle 3.15: GN bei 3200 K mit den Gf, die bei der FixtureCheck-Methode angewandt werden.

4000 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		6,67	6,14	6,56	9,00	6,33	6,64	8,35
L7C	6,74		6,38	6,26	7,86	8,56	6,11	6,63
P7	6,81	6,42		9,00	6,94	5,73	$9,\!19$	6,68
P12	7,40	6,47	8,97		7,28	5,77	9,04	7,16
S4 S2	9,03	7,68	6,45	6,72		7,12	6,90	8,17
TourLED	6,71	8,39	5,62	5,74	7,40		$5,\!43$	6,26
Viva	7,34	6,25	9,19	9,00	7,43	5,61		7,25
S4 S3	7,96	6,39	6,02	6,39	7,44	5,63	6,62	

Tabelle 3.16: GN bei 4000 K mit den Gf, die bei der FixtureCheck-Methode angewandt werden.

5600 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		6,20	6,78	6,77	8,74	8,32	7,09	8,37
L7C	6,30		6,08	5,98	7,66	7,00	$5,\!68$	6,26
P7	7,30	$6,\!05$		9,66	$7,\!36$	7,62	9,36	6,84
P12	7,33	6,02	9,62		7,24	7,65	9,12	6,91
S4 S2	8,70	7,48	6,73	6,54		8,16	6,81	8,25
TourLED	8,67	6,76	7,34	7,44	8,61		7,51	7,76
Viva	7,58	5,64	9,32	9,09	7,44	7,86		6,66
S4 S3	$7,\!95$	5,74	6,07	6,14	$7,\!59$	7,10	6,03	

Tabelle 3.17: GN bei 5600 K mit den Gf, die bei der FixtureCheck-Methode angewandt werden.

3.3.5 Nativer Fall: Gleiche Gewichtung aller Kriterien

Im nativen Fall wechselt die Gewichtung der Kriterien. Der TM-30 kann mit seinen Referenzspektren nicht mehr mit einbezogen werden und der ΔE_{uv}^* wird auch nicht weiter betrachtet. Dafür werden die Beleuchtungsstärke, die CCT sowie der $\Delta u'v'$ mit in den Gesamtnutzwert eingerechnet. Eine gleiche Gewichtung aller Kriterien führt zu folgendem Ergebnis:

nativ	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		6,77	5,74	5,36	$5,\!53$	7,15	5,80	7,38
L7C	7,21		6,05	5,16	7,86	5,84	5,80	8,77
P7	5,86	6,09		7,81	7,48	4,18	8,85	$6,\!95$
P12	5,46	5,20	7,81		5,98	3,86	7,53	6,43
S4 S2	5,73	7,82	7,28	5,76		4,79	6,95	8,16
TourLED	$7,\!15$	$5,\!14$	4,02	3,74	4,31		4,09	6,16
Viva	5,88	5,66	8,79	7,51	7,07	4,13		6,58
S4 S3	7,44	8,65	6,71	6,21	8,10	6,46	6,46	

Tabelle 3.18: GN bei einer nativen Scheinwerfermessung mit gleichen Gewichtungen

3.3.6 Nativer Fall: Angewandte Gewichtung für die FixtureCheck-Methode

Wählt man für die Gewichtungen im nativen Fall aus Kapitel 3.2.4, die auch in der FixtureCheck-Methode zur Anwendung kommen, erhält man die Ergebnisse wie in Tabelle 3.19.

nativ	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		5,93	5,93	5,88	$5,\!41$	7,05	6,36	7,05
L7C	6,70		5,70	5,24	7,89	5,39	5,72	8,38
P7	6,14	5,77		8,71	7,01	4,48	8,81	7,06
P12	6,05	5,31	8,71		6,28	4,41	8,34	6,84
S4 S2	5,76	7,82	6,66	5,89		4,90	6,63	8,37
TourLED	$7,\!05$	4,16	4,20	4,20	4,06		4,67	$5,\!68$
Viva	6,50	5,47	8,71	8,31	6,84	4,74		6,90
S4 S3	7,16	8,17	6,64	6,45	8,26	6,20	6,69	

Tabelle 3.19: GN bei einer nativen Scheinwerfermessung mit den Gf, die bei der FixtureCheck-Methode angewandt werden

3.4 Redundanzüberprüfung der spektrumsnahen Kriterien

Durch die Eigenschaft, dass alle Werte, die in die Nutzwertanalyse einfließen, unterschiedliche Aussagen über Weißlicht und Weißlichtqualität machen, wird eine Redundanz, wie es beim TM-30 R_f und CRI R_a wäre, vermieden. Am Ähnlichsten sind die Kriterien SSI und FSI. Zur Kontrolle soll überprüft werden, ob die FixtureCheck-Methode mit dem SSI und FSI eine Redundanz aufweist und ob ein Kriterium eingespart werden kann. Wenn man die Gewichtung des FSI auf den Zf-Wert des SSI aufsummiert, erhält man einen Teilnutzwert von $TN_{SSI} = 0,55 \cdot Zf$. Ohne den FSI ergeben sich dann Gesamtnutzwerte, die durchschnittlich um $\Delta GN < 1,22$ von den eigentlichen GN der FixtureCheck-Methode abweichen und die Spannweite ($\Delta GN < 1,5$) der Werte pro Tabelle erheblich erhöht (s. Tabelle ?? bis ??). Das Ergebnis dieser theoretischen Überlegung zeigt, dass der FSI relevant für die FixtureCheck-Methode ist und mit einer Gewichtung von Zf = 0,2 entsprechend mit in das Vergleichsergebnis einbringt.

3200 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		7,42	5,18	$5,\!13$	7,76	2,43	5,79	7,91
L7C	7,75		6,30	6,70	7,98	3,52	6,89	7,85
P7	6,33	6,68		8,33	6,10	3,15	8,86	6,03
P12	6,51	7,36	8,22		6,45	3,15	8,71	6,75
S4 S2	7,76	8,09	$5,\!33$	$5,\!63$		4,21	6,09	7,93
TourLED	3,97	4,56	3,15	3,15	5,37		2,87	5,29
Viva	6,94	7,33	8,86	8,71	6,91	2,87		6,64
S4 S3	$7,\!58$	7,41	5,09	5,43	7,10	3,86	$5,\!59$	

Tabelle 3.20: GN bei 3200 K ohne FSI

4000 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		5,88	4,99	5,13	8,76	5,50	5,53	8,03
L7C	5,99		4,67	4,77	7,29	8,18	4,52	5,99
P7	6,04	4,73		8,94	5,96	3,99	9,03	5,89
P12	6,45	5,10	8,89		6,36	4,44	8,86	6,24
S4 S2	8,82	7,01	5,19	5,48		6,41	5,67	7,86
TourLED	6,10	7,91	3,83	4,39	6,85		3,86	5,73
Viva	6,63	4,74	9,03	8,80	6,49	4,13		6,47
S4 S3	7,42	5,46	4,84	5,03	6,70	4,74	5,48	

Tabelle 3.21: GN bei 4000 K ohne FSI

5600 K 500 lx	K-Eye	L7C	P7	P12	S4 S2	TourLED	Viva	S4 S3
K-Eye		5,30	5,80	$5,\!65$	8,51	7,70	6,24	8,12
L7C	5,46		4,32	4,30	6,96	6,25	$3,\!94$	5,54
P7	6,62	4,27		9,64	6,25	6,97	9,08	6,20
P12	6,53	4,36	$9,\!58$		6,16	6,88	8,88	6,17
S4 S2	8,46	6,68	5,26	5,06		7,42	5,45	8,03
TourLED	8,25	5,86	6,53	$6,\!55$	8,13		6,75	7,24
Viva	7,01	3,88	9,03	8,83	6,44	7,30		6,04
S4 S3	$7,\!46$	4,71	4,99	4,96	6,99	6,19	5,05	

Tabelle	3.22:	GN	bei	5600	Κ	ohne	FSI

3.5 Ablauf der FixtureCheck-Methode

Im Folgenden soll die Abhandlung der FixtureCheck-Methode angeführt werden und als Anleitung für den Endnutzer dienen:

- 1. Auswahl der Scheinwerfer: Als erster Schritt ist zu bestimmen, welche LED-Scheinwerfer verglichen werden sollen. Dabei ist wichtig festzulegen, welcher Scheinwerfer das Referenzlicht und das Testlicht abbildet, da diese Auswahl zu unterschiedlichen Ergebnissen führt. Jeder Scheinwerfer wird für eine spektrale Messung benötigt.
- 2. Auswahl der Vergleichsmethode: Die FixtureCheck-Methode erkennt automatisch, ob ein nativer Vergleich oder ein Vergleich einer festen CCT vorgenommen werden soll. Es wird empfohlen für den Anwendungsfall der festen CCT ein Lichtstellpult für die Farbanpassung der Scheinwerfer zu nutzen.
- 3. Messaufbau: Der zu messende Scheinwerfer wird beispielsweise auf einem Stativ aufgebaut. Das Messgerät wird in einem anwendungstypischen Abstand x zum Scheinwerfer angebracht. Falls keine genaue Abstandsgröße vordefiniert ist, kann beispielsweise ein Abstand von x = 5 m genutzt werden. Damit die FixtureCheck-Methode einen guten Scheinwerfervergleich hervorbringen kann, ist es sehr wichtig, dass für beide Scheinwerfer dieselben Messbedingungen eingestellt werden. Das Messgerät ist dann genau auf die Mitte des Scheinwerferbeams auszurichten (s. Abbildung 3.1) und die Umgebungshelligkeit ist dabei sehr gering zu halten.

FixtureCheck-Methode: Messaufbau

Abbildung 3.1: Graphische Darstellung des Messaufbaus bei der FixtureCheck-Methode

- 4. Stabilisierung des Outputs des LED-Scheinwerfers: Es wird empfohlen die zu messenden Scheinwerfer mind. 30 min lang vor der Messung bei voller Lichtausgabe zu betreiben⁶. Auf diese Weise wird sichergestellt, dass eventuelle Schwankungen in den Helligkeiten der LEDs nach Einschalten des LED-Scheinwerfers nicht mit in die Messung einfließen.
- 5. Scheinwerfermessung: Nach der Stabilisierungsphase werden entweder die Scheinwerferspektren direkt nativ gemessen oder auf eine spezielle CCT eingestellt und gemessen. Die ΔCCT und der $\Delta(\Delta u'v')$ sollten für den anwendungsbezogenen Fall so gering wie möglich gehalten werden. Für einen besseren Scheinwerferspektrenvergleich bei einer vorbestimmten CCT wird empfohlen, eine anwendungstypische Beleuchtungsstärke festzulegen (z.B. 500 lx).
- 6. Datenübertragen ins FixureCheck-Programm: Die gemessenen Spektren werden in die Excel-Datei an die entsprechende Stelle eingefügt (s. Abbildung 3.2). In dem Feld neben dem eingefügten Spektrum kann der Abstand der einzeln gemessenen Wellenlängen $\Delta \lambda$ angegeben werden. Falls der Abstand nicht $\Delta \lambda = 1$ nm beträgt, werden die fehlenden Schritte automatisch interpoliert. Des weiteren sind die Scheinwerferbezeichnungen und die gemessenen Beleuchtungsstärken in die dafür vorgesehen Tabellenfelder zu ergänzen.

⁶ (DIN-Normenausschuss Lichttechnik 2019:25)

Bitte	Testspektrum e	infügen!	Bitte Re	aranzenaktrum	-1-601
				erenzspeku um	i einfugen!
	Testscheinwerfe	r		Referenzscheinw	verfer
	LIV K Free K1F		- 1030000000	Dahia Misa CMW	
name:	HT K-Eye KIS	0	name:	RODIN VIVA CIVIT	
E [lux]:	2/49		E [lux]:	5008	
nm	Spektrum 1	Abstand in nm	nm	Spektrum 2	Abstand in nm
380	0.00030162	1	380	0.00031198	1
381	0,00037657		381	0,00036215	
382	0,00040408		382	0,00040509	
383	0,00039083		383	0,00044127	
384	0,00040078		384	0,00037869	
385	0,00039493		385	0,00029448	
386	0,00028499		386	0,00017647	
387	0,00024393		387	0,00018082	
388	0,00027158		388	0,00030823	
389	0,00034215		389	0,00031213	
390	0,00041991		390	0,00028952	
391	0,00049530		391	0,00029264	
392	0,00055842		392	0,00034085	
393	0,00060580		393	0,00044510	
394	0,00055324		394	0,00046220	
395	0,00048645		395	0,00045636	
396	0,00062786		396	0,00051237	
397	0,00073420		397	0,00052720	
398	0,00079042		398	0,00048086	
399	0,00081742		399	0,00049054	
400	0,00083709		400	0,00052285	
401	0,00100490		401	0,00058582	
402	0,00112541		402	0,00066144	
403	0,00116457		403	0,00076055	
404	0,00131337		404	0,00084903	
405	0,00151178		405	0,00093172	
406	0,00168732		406	0,00094596	
407	0,00188709		407	0,00101061	
408	0,00214552		408	0,00118654	
409	0,00241711		409	0,00132766	
410	0,00269525		410	0,00144837	

Abbildung 3.2: Einfügen der gemessenen Spektren bei der FixtureCheck-Methode

7. Ergebnisauslesung des FixureCheck-Programm: In dem zweiten Blatt der Excel-Datei kann direkt das Ergebnis des Scheinwerfervergleichs angesehen werden (s. Abbildung 3.3). Es wird der Ähnlichkeitsfaktor mit seinem Interpretationspendant rechts oben im Tabellenblatt angezeigt. Darunter sind die fünf Eingangsvariablen im Vergleich als Balkendiagramm dargestellt. Links oben wird im Tabellenblatt der Vergleichsfall angegeben. Darunter ist ein Spektrenvergleich mit den zusätzlichen Warnung der einzelnen Kritieren abgebildet.

Abbildung 3.3: Einfügen der gemessenen Spektren bei der FixtureCheck-Methode

4 Ergebnisse und Ausblick

4.1 Ergebnisse

Insgesamt ist die Nutzwertanalyse eine gute Basis für die Erfassung der Ahnlichkeit von Weißlicht und kombiniert systematisch unterschiedliche Messwerte zu einem Ergebnis. In Folge der Recherche lassen sich die Kriterien auf fünf Eingangsvariablen reduzieren. Mit dem SSI und dem ΔE_{uv}^* sind zwei Faktoren enthalten, die einen direkten Vergleich des Weißlichts im Spektrum und im Farbraum angeben. Der FSI und der TM-30 dagegen stellen in der FixtureCheck-Methode den Bezug der verschiedenen Qualitätsmerkmale des Weißlichts dar. Dabei basiert der FSI wiederum auf dem Spektrum und der TM-30 auf Referenzfarben. Zusätzliche Kriterien wie der CRI würden eine ungewollte Redundanz erzeugen, bei weniger Werten würde die Aussagekraft des Ähnlichkeitsfaktors deutlich eingeschränkt werden.

Wie in Kapitel 3.2.5 beschrieben wird der Gesamtnutzwert der Analyse als Ähnlichkeitsfaktor des Weißlichts zweier Scheinwerfer genutzt. Trotzdem besteht durch die gleiche Skalierung auch die Möglichkeit, diesen Faktor von verschiedenen Vergleichen ins Verhältnis zu setzen. Somit beschränkt sich die FixtureCheck-Methode nicht nur auf einen Ergebniswert, sondern kann auch als Unterstützung bei der Entscheidung für passende Scheinwerferalternativen genutzt werden. Die Gewichtungen, die die Teilnutzwerte im Endeffekt zum Gesamtnutzwert führen, wurden in Kapitel 3.2.4 unter gegeben Voraussetzungen geprüft. Trotz allem besteht die Möglichkeit, nach deutlich mehr Anwendungen diese flexibel anzupassen.

Die in Kapitel 2.2 formulierte Vermutung, dass die Scheinwerfer mit ähnlicher LED-Engine am besten zusammen passen, wird anhand der FixtureCheck-Methode bestätigt. Bei CCT = 5600 K passt das Weißlicht des Varyscan P7 am besten zu dem des P12 Profile, was bedeutet, dass in diesem Fall vorhersehbare Ergebnisse entstehen. Auf der anderen Seite spielt das Weißlicht des Source 4 LED Series 2 Lustr und Source 4 Series 3 am besten zusammen mit dem des HY K-Eye K15 (s. Tabelle 3.17). Dies beweist, dass die FixtureCheck-Methode mit realen Scheinwerfern funktioniert und keineswegs nur eine redundante Feststellung ist. Viel interessanter wird die Aussage, dass das Weißlicht eines L-7C "leicht ähnlich" zum Weißlicht des Source 4 Series 3 ist und auch diese Scheinwerfer zusammen genutzt werden können. Das Ziel der FixtureCheck-Methode ist nicht, dem Anwender die gesamte Entscheidung abzunehmen. Sie soll mit einem praxistauglichen Weißlichtvergleich und ihrem "Ähnlichkeitsfaktor" dem Lichtplaner helfen, eine adäquate Entscheidung treffen zu können, ohne viele Messungen und Werte miteinander vergleichen zu müssen.

4.2 Ausblick

Wie gut die FixtureCheck-Methode auch funktioniert, um die Ähnlichkeit von Weißlicht darzustellen, gibt sie nicht wieder in welcher Form sich die Unterschiede bemerkbar machen. Der SSI zum Beispiel zeigt durch die integrale Berechnungsweise, dass die Spektren sich unterscheiden, trifft aber keine Aussage darüber, an welcher Stelle des Spektrums ein Unterschied vorliegt. Diese Eigenschaft trifft jedes der gewählten Kriterien. Damit der Anwender über den Vergleich hinaus Feststellungen über die Farbunterschiede treffen kann, müsste zusätzlich zu der Nutzwertanalyse eine neue Methode entwickelt werden. Für diese wird ein einzelner Ergebniswert nicht mehr aussagekräftig sein können, weil die Farbunterschiede dann nicht mehr gegeneinander aufgerechnet werden dürfen.

Eine interessante Erweiterung der FixtureCheck-Methode stellt der Bezug zur Fernsehkamera dar. Gerade bei TV-Produktionen ist ein gutes Weißlicht nötig, um ein sende-fähiges Fernsehbild zu kreieren. Die Standardfarbkurven einer Kamera sind deutlich verschieden zu den Wahrnehmungskurven des Auges (s. Abbildung 4.1). Daher sollten die Kriterien für einen Kameraweißlichtvergleich ausgetauscht werden.

Abbildung 4.1: Spektrale Kamerakurven der "Standard"-Fernsehkamera der EBU¹

 $^{^{1}}$ (EBU 2012:12)

4 Ergebnisse und Ausblick

Im angewandten Fall müsste der Weißpunkt des Scheinwerfer nicht im Farbraum (xy-Farbkoordinaten), sondern mit Hilfe des Weißabgleichs der Kamera bestimmt werden. Der TLCI ersetzt den TM-30, die $Y-, C_b-, Cr$ -Werte sind die neuen Farbortskoordinaten und die Beleuchtungsstärke wird mit der Leuchtdichte L ersetzt. Es sind weitere relevante Parameter für eine Kameraweißlichtvergleich zu finden und in Kriterien umzuwandeln. Mit neuen Gewichtungen ist die Fixture-Check Methode auch auf Fernsehkameraweißlicht erweiterbar. Für diese Erweiterung wird dann die Gültigkeit im Zusammenhang mit einem Kamerabild zu überprüfen sein.

Die FixtureCheck-Methode eignet sich gut um ein Weißlichtvergleich numerisch abzuwickeln. Ein optischer Vergleich dagegen stellt sich deutlich schwieriger dar. Wird Weißlicht in Kombination mit Hauttönen auf Bildern verglichen, spielt stets das rot grün Verhältnis die entscheidende Rolle. Bei einem Test mit vier Hauttypen wird beispielsweise das optimierte Weißlicht des Source 4 LED Series 2 Lustr mit dem eines X4 L verglichen. Ein Vergleich der Messdaten zeigt, dass der Source 4 LED Series 2 Lustr deutlich bessere Farbwiedergabewerte aufweist (s. Tabelle 4.1).

Scheinwerfer	Е	CCT	$\Delta u'v'$	CRI	TLCI	R_f	R_g
Source 4 LED Series 2 Lustr	536 lx	$5399~\mathrm{K}$	0,000	96	95	95	103
X4 L	$537 \ \mathrm{lx}$	$5394~{\rm K}$	0,000	66	60	78	117

Tabelle 4.1: Auflistung der Scheinwerfer zum Testen der FixtureCheck-Methode

Abbildung 4.2: Optischer Vergleich des Source 4 LED Series 2 mit dem X4 L. Die Druckfarben sind nicht farbecht.

Jedoch wird bei einer Umfrage das Weißlicht des X4 L optisch bevorzugt, da es (zufälligerweise) rotstichig ist, damit der Sehgewohnheit der Umfrageprobanden entspricht und die Farben zusätzlich übersättigt sind (s. Tabelle 4.2). Umgekehrt wird ein Grünstich im Weißlicht dafür sorgen, dass die Hauttöne blass und krank aussehen und unabhängig der Farbwiedergabequalität würde dieses Weißlicht schlecht bewertet. Die Problematik dieser subjektiven Einschätzung von Weißlicht ist der Grund dafür, dass in dieser Arbeit von einem optischen Vergleich abgelassen wurde. Um das Problem angehen zu können, wäre ein neuer Ansatz für die FixtureCheck-Methode nötig. Eventuell können neue Kriterien Abhilfe schaffen, die einen optischen Vergleich miteinbeziehen. Dafür sind verschiedene biologische und psychologische Aspekte der Sehwahrnehmung zu betrachten und einzuschätzen (s. Abbildung 4.3). Nachdem die optischen Kriterien eine neue Gewichtung der FixtureCheck-Methode mit sich bringt, wäre es sehr interessant zu beobachten wie weit sich die Vergleichsmethode mit den neuen Parametern ändert und welche neuen Probleme damit entstehen.

Abbildung 4.3: Beispiel für die Erweiterung der FixtureCheck-Methode mit einem optischen Vergleich

5 Anhang

5.1 Materialliste

- Robe Robin Viva CMY
- JB-Lighting P12 Profile
- JB-Lighting VaryScan P7
- Expolite TourLED Pr0 28 Zoom IP33
- Arri L-7C
- Clay Paky K-Eye K10 HCR
- ETC Source 4 LED Series 2 Lustr
- ETC Source 4 LED Series 3
- MA Lighting GrandMA 2 light
- JETI Spectraval 1511 (scv1511)

5.2 Scheinwerfer Informationen

5.2.1 Robe Robin Viva CMY

- Seriennummer: 1800688047
- Display System (3.0) 1.7
- Module M 1.4
- Module D 1.7
- Module G 1.2
- Module O 1.5
- Module C 1.3
- DMX Mode 1
- DMX Adressen 32

5 Anhang

5.2.2 JB-Lighting P12 Profile

- HP Version
- Seriennummer: 122270
- Softwareversion 1.1.2
- Total Operation Time: 324,8h
- DMX Mode 2
- DMX Adressen 63

5.2.3 JB-Lighting VaryScan P7

- Seriennummer: 821624
- Softwareversion 1.28
- Total Operation Time: 3853,6h
- DMX Mode 2
- DMX Adressen 63

5.2.4 JB-Lighting VaryScan P7

- Seriennummer: 821624
- Softwareversion: 1.28
- Total Operation Time: 3853,6h
- DMX Mode 2
- DMX Adressen 31

5.2.5 Expolite TourLED Pr0 28 Zoom IP33

- Seriennummer: M015070700680039
- Softwareversion: V2.1
- DMX AR2.Z
- DMX Adressen 7
5.2.6 Arri L-7C

- Seriennummer: L1.0003648-680
- Softwareversion: 2.05.0
- Total Operation Time: 2358h
- DMX Mode 6
- DMX Adressen 16

5.2.7 Clay Paky K-Eye K10 HCR

- Seriennummer: BZ005624
- Softwareversion: Aleda fw 2.55.2
- Total Operation Time: 493h
- CPU Board 0.2
- com.dev 0.14
- 0: PT-3f 0.10 0.1
- 1: HcrK10 0.10 0.1
- DMX Mode Extended RGB mit CCMode RAW
- DMX Adressen 32

5.2.8 ETC Source 4 LED Series 2 Lustr

- Seriennummer: 1.7.0.9.0.13 (1)
- Softwareversion: 2.05.0
- DMX Mode Direct
- DMX Adressen 10

5.2.9 ETC Source 4 LED Series 3

- Seriennummer: 4345518
- Softwareversion: 1.1.2.56
- Arry: 2.1.0.10 CSA21
- DMX Mode 12 Channels
- DMX Adressen 12

5.2.10 JETI Spectraval 1511 (scv1511)

- Seriennummer:1510424
- Softwareversion: Software 1.10.7
- Calibration: Cert Date: 24.11.2021 Due Date: 24.11.2022, N.I.S.T. TRACEA-BLE
- Standard diffusor for specbos and spectraval ACC 032
- Illuminance accuracy $\pm 2.4\%$
- Illuminance reproducibility $\pm 0.5\%$
- Chromaticity accuracy ± 0.002 xy (Illuminant A)
- Color reproducibility ± 0.0005 xy (Illuminant A)

Abbildung 5.1: Spektrum K-Eye 3200K

Abbildung 5.2: Spektrum Arri L7C 3200K

Abbildung 5.3: Spektrum VaryScan P7 3200K

Abbildung 5.4: Spektrum P12 Profile 3200K

Abbildung 5.5: Spektrum Source4 S2 3200K

Abbildung 5.7: Spektrum Viva CMY 3200K

Abbildung 5.8: Spektrum Source4 S2 3200K

Abbildung 5.9: Spektrum K-Eye 4000K

Abbildung 5.10: Spektrum Arri L7C 4000K

Abbildung 5.11: Spektrum VaryScan P7 4000K

Abbildung 5.12: Spektrum P12 Profile 4000K

Abbildung 5.13: Spektrum Source4 S2 4000K

Abbildung 5.14: Spektrum TourLED 4000K

Abbildung 5.15: Spektrum Viva CMY 4000K

Abbildung 5.16: Spektrum Source4 S2 4000K

Abbildung 5.17: Spektrum K-Eye 5600K

Abbildung 5.18: Spektrum Arri L7C 5600K

Abbildung 5.19: Spektrum VaryScan P7 5600K

Abbildung 5.20: Spektrum P12 Profile 5600K

Abbildung 5.21: Spektrum Source4 S2 5600K

Abbildung 5.22: Spektrum TourLED 5600K

Abbildung 5.23: Spektrum Viva CMY 5600K

Abbildung 5.24: Spektrum Source4 S2 5600K

Abbildung 5.25: Spektrum K-Eye nativK

Abbildung 5.26: Spektrum Arri L7C nativK

Abbildung 5.27: Spektrum VaryScan P7 nativK

Abbildung 5.28: Spektrum P12 Profile nativK

Abbildung 5.29: Spektrum Source4 S2 nativK

Abbildung 5.30: Spektrum TourLED nativK

Abbildung 5.31: Spektrum Viva CMY nativK

Abbildung 5.32: Spektrum Source4 S2 nativK

5.4 Gemessene Spektren als Tabelle

<mark>λ [nm]</mark>			Stra	hlungsflussdicl	hte [Watt*m ⁻² *	nm]		
	K-Eye	Arri	P7	P12	Source4 S2	TourLED	Viva CMY	Source4 S3
380	0,0000054512	0,0000002604	0,0000001537	0,000000000	0,0001474064	0,0000047396	0,0000024002	0,000000000
381	0,0000017293	0,0000015225	0,000008985	0,000000000	0,0000649958	0,0000015035	0,000007614	0,000000000
382	0,000006007	0,0000020714	0,000008462	0,000003837	0,0000213887	0,000000000	0,000003967	0,0000007128
383	0,0000017030	0,0000020034	0,0000001156	0,0000010879	0,0000116371	0,000000000	0,0000011248	0,0000020211
384	0,0000009187	0,0000009751	0,000000000	0,0000005868	0,0000073779	0,000000000	0,000006067	0,0000010902
385	0,000000000	0,000000000	0,0000020227	0,0000015470	0,0000045323	0,000000000	0,0000001066	0,000000000
386	0,000000000	0,000000000	0,0000146166	0,0000111792	0,0000030036	0,000000000	0,0000007706	0,000000000
387	0,0000004608	0,0000004891	0,0000254724	0,0000292705	0,0000015870	0,000000000	0,0000007798	0,0000005469
388	0,0000013905	0,0000014759	0,0000347051	0,0000560778	0,0000002658	0,000000000	0,0000001306	0,0000016502
389	0,0000015350	0,000008630	0,0000536666	0,0000542799	0,000000000	0,000000000	0,0000185957	0,000009649
390	0,0000013910	0,000000000	0,0000670927	0,0000436015	0,000000000	0,000000000	0,0000365974	0,000000000
391	0,0000004978	0,000000000	0,0000240096	0,0000161985	0,000000000	0,000000000	0,0000204837	0,000000000
392	0,0000010975	0,000000000	0,0000034374	0,0000100300	0,000000000	0,000000000	0,0000229631	0,0000030390
393	0,0000035584	0,000000000	0,0000111451	0,0000304414	0,000000000	0,000000000	0,0000486604	0,0000098535
394	0,0000022658	0,0000096505	0,0000131719	0,0000192987	0,0000195549	0,000000000	0,0000411391	0,0000156259
395	0,000000000	0,0000214752	0,0000150223	0,0000005148	0,0000445264	0,000009809	0,0000245423	0,0000234665
396	0,000000000	0,0000251710	0,0000390465	0,0000079453	0,0000666086	0,0000151398	0,0000230305	0,0000653935
397	0,000000000	0,0000224562	0,0000582589	0,0000158437	0,0000683884	0,0000249002	0,0000248954	0,0000766112
398	0,000000000	0,0000101322	0,0000707121	0,0000246066	0,0000399648	0,0000283196	0,0000318186	0,0000423400
399	0,0000171052	0,0000180790	0,0000725247	0,0000184286	0,0000411588	0,0000410337	0,0000315851	0,0000302584
400	0,0000394263	0,0000335638	0,0000696895	0,0000080377	0,0000537102	0,0000556285	0,0000290882	0,0000279275
401	0,0000267765	0,0000435004	0,0000504118	0,0000462346	0,0000613654	0,0000215697	0,0000435282	0,0000534374
402	0,0000266083	0,0000453002	0,0000444291	0,0000711206	0,0000728623	0,0000075759	0,0000530676	0,0000664730
403	0,0000483990	0,0000327943	0,0000617180	0,0000730277	0,0000913160	0,0000286310	0,0000541442	0,0000577757
404	0,0000548040	0,0000431793	0,0000799809	0,0000794343	0,0001004192	0,0000489806	0,0000598212	0,0000761417
405	0,0000539795	0,0000641168	0,0000985045	0,0000878786	0,0001050818	0,0000687790	0,0000675875	0,0001069189
406	0,0000539228	0,0000913890	0,0000929846	0,0000839589	0,0000830854	0,0000279189	0,0000786508	0,0001172346
407	0,0000531553	0,0001051065	0,0000987352	0,0000941228	0,0000676508	0,0000072638	0,0000861753	0,0001265865
408	0,0000507952	0,0000900626	0,0001292813	0,0001350556	0,0000662166	0,0000303680	0,0000862726	0,0001345332
409	0,0000624328	0,0001137288	0,0001383267	0,0001551795	0,0000825001	0,0000510652	0,0001024677	0,0001590008
410	0,0000820311	0,0001594420	0,0001350466	0,0001633282	0,0001088537	0,0000703021	0,0001278081	0,0001928246
411	0,0000902008	0,0001996147	0,0001788952	0,0002004000	0,0001293322	0,0000703698	0,0001464876	0,0001900103
412	0,0000993509	0,0002412184	0,0002176795	0,0002372726	0,0001458107	0,0000807969	0,0001646405	0,0002045112
413	0,0001129016	0,0002889466	0,0002386769	0,0002712856	0,0001533385	0,0001210267	0,0001830147	0,0002692746
414	0,0001304940	0,0003452904	0,0002833756	0,0003163124	0,0001851139	0,0001096029	0,0002125920	0,0003038318
415	0,0001507105	0,0004071380	0,0003437207	0,0003685018	0,0002329586	0,0000637015	0,0002495283	0,0003180374
416	0,0001706646	0,0004715813	0,0003833360	0,0004344414	0,0002490098	0,0000565145	0,0002941463	0,0003468622
417	0,0001874620	0,0005355870	0,0004383613	0,0005060592	0,0002711840	0,0000673432	0,0003408909	0,0003814259
418	0,0001947348	0,0005992257	0,0005501948	0,0005937197	0,0003229135	0,0001243177	0,0003934565	0,0004308336
419	0,0002250870	0,0006882049	0,0006390066	0,0006925875	0,0003790210	0,0001533419	0,0004446300	0,0004833269
420	0,0002730612	0,0007960850	0,0007092706	0,0007993233	0,0004380568	0,0001604817	0,0004943203	0,0005377972
421	0,0003061670	0,0009532197	0,0008461259	0,0009430832	0,0005039844	0,0001561135	0,0005962548	0,0006334971
422	0,0003448667	0,0011133145	0,0009898764	0,0010957666	0,0005721879	0,0001621999	0,0007045565	0,0007234820
423	0,0004137608	0,0012577103	0,0011242360	0,0012631632	0,0006454605	0,0002161692	0,0008092883	0,0007680190
424	0,0004715184	0,0014143429	0,0012841963	0,0014500865	0,0007276570	0,0002519029	0,0009291219	0,0008487491
425	0,0005187459	0,0015803582	0,0014654135	0,0016525582	0,0008170100	0,0002709782	0,0010612314	0,0009610382
426	0,0005700920	0,0017871938	0,0016976130	0,0018612866	0,0009336184	0,0003340732	0,0012125632	0,0010553760

Spektren bei 3200K, 500lx

427	0,0006345290	0,0019942315	0,0019327224	0,0020809188	0,0010533160	0,0004006564	0,0013740212	0,0011576143
428	0,0007612427	0,0021746375	0,0021466320	0,0023563709	0,0011688514	0,0004483874	0,0015740296	0,0013176500
429	0,0008718106	0,0023691634	0,0024049017	0,0026451494	0,0013038873	0,0005084665	0,0017658510	0,0014844318
430	0,0009657816	0,0025773016	0,0027069770	0,0029464182	0,0014581141	0,0005807745	0,0019488300	0,0016574695
431	0,0011055735	0,0028221053	0,0029920721	0,0032628658	0,0016242971	0,0006748188	0,0021966547	0,0017973681
432	0,0012578820	0,0030702264	0,0032855431	0,0035846957	0,0017934687	0,0007735354	0,0024628305	0,0019469677
433	0,0014230094	0,0032877283	0,0036528431	0,0039175008	0,0019637922	0,0008702729	0,0027510356	0,0022017368
434	0,0015867221	0,0035331276	0,0040087300	0,0042559528	0,0021593805	0,0010062897	0,0030187922	0,0024529364
435	0,0017456328	0,0038048610	0,0043451177	0,0045942385	0,0023791197	0,0011829698	0,0032587603	0,0026952262
436	0,0019294313	0,0040328844	0,0047347559	0,0049590445	0,0026303974	0,0013358998	0,0035860372	0,0028824270
437	0,0021139106	0,0042493617	0,0051134274	0,0053159948	0,0028909764	0,0014925898	0,0039215851	0,0030611939
438	0,0022941481	0,0045042583	0,0053867710	0,0056353468	0,0032135811	0,0017551686	0,0042205502	0,0033171637
439	0,0024793296	0,0047295647	0,0056587334	0,0059184949	0,0035219333	0,0020043569	0,0045282396	0,0035150708
440	0,0026739780	0,0049235740	0,0059337155	0,0061634867	0,0038195292	0,0022428868	0,0048521385	0,0036475911
441	0,0028705395	0,0050785882	0,0061900919	0,0064164945	0,0041135797	0,0024756934	0,0051082500	0,0037034423
442	0,0030608636	0,0052087745	0,0064319177	0,0066622868	0,0044042164	0,0027160732	0,0053461330	0,0037312752
443	0,0032054240	0,0052329955	0,0066133315	0,0068453257	0,0046940068	0,0030521672	0,0056132685	0,0037126796
444	0,0033457158	0,0051998275	0,0067624322	0,0069846576	0,0049065840	0,0033855297	0,0058640165	0,0036547043
445	0,0034787391	0,0050939948	0,0068684911	0,0070664310	0,0050167379	0,0037103942	0,0060904400	0,0035474703
446	0,0036063550	0,0049266089	0,0068726529	0,0069922614	0,0050154508	0,0040354246	0,0062607747	0,0033880251
447	0,0037183640	0,0047480064	0,0068339353	0,0068710949	0,0049730978	0,0043511258	0,0063972697	0,0032228974
448	0,0037308833	0,0045465218	0,0066432245	0,0066768336	0,0048283599	0,0046824850	0,0064062987	0,0030711531
449	0,0037412224	0,0043275043	0,0064080874	0,0064180894	0,0046345681	0,0049782495	0,0063811320	0,0028946481
450	0,0037481819	0,0040815661	0,0061124933	0,0060740290	0,0043759981	0,0052356174	0,0063122842	0,0026836796
451	0,0036842748	0,0037832396	0,0057520804	0,0056607653	0,0040593848	0,0054706838	0,0062212908	0,0025473316
452	0,0035924037	0,0034808852	0,0053688241	0,0052329190	0,0037339421	0,0056755291	0,0061092346	0,0024320329
453	0,0034159378	0,0032364434	0,0048749594	0,0047822986	0,0034307129	0,0056811756	0,0058266070	0,0022748220
454	0,0032371600	0,0030117059	0,0044158841	0,0043327580	0,0031648078	0,0056507974	0,0055380267	0,0021755866
455	0,0030531691	0,0028096172	0,0039962196	0,0038793592	0,0029437700	0,0055731720	0,0052381424	0,0021496785
456	0,0028588965	0,0026321223	0,0036072231	0,0034189450	0,0027556982	0,0053859358	0,0048943675	0,0021080815
457	0,0026755600	0,0024719451	0,0032432464	0,0029787456	0,0025922184	0,0051661178	0,0045481162	0,0020680562
458	0,0025699891	0,0023483589	0,0029046967	0,0026149089	0,0025123440	0,0048771923	0,0041889100	0,0020760809
459	0,0024655036	0,0022419544	0,0026161939	0,0022774597	0,0024557999	0,0045481649	0,0038467218	0,0020885152
460	0,0023590857	0,0021549439	0,0023857924	0,0019656057	0,0024280252	0,0041562883	0,0035171746	0,0021065475
461	0,0022950857	0,0020987164	0,0021795358	0,0017164876	0,0024229475	0,0038287930	0,0031901794	0,0021158920
462	0,0022536344	0,0020560084	0,0019841259	0,0014954534	0,0024309281	0,0035279982	0,0028727551	0,0021267333
463	0,0023052128	0,0020473356	0,0017981590	0,0013320281	0,0025041262	0,0032540133	0,0026154915	0,0021888122
464	0,0023814538	0,0020372572	0,0016235689	0,0011856192	0,0025578039	0,0029807207	0,0023827449	0,0022672833
465	0,0024925473	0,0020250024	0,0014631446	0,0010615048	0,0025846331	0,0027057546	0,0021818820	0,0023691247
466	0,0026376983	0,0020224934	0,0013331645	0,0009505750	0,0026453840	0,0025076897	0,0020118315	0,0024411071
467	0,0027951369	0,0020252002	0,0012173290	0,0008515258	0,0027160309	0,0023401166	0,0018581249	0,0025053076
468	0,0030019152	0,0020439922	0,0011049061	0,0008004683	0,0027842018	0,0021647649	0,0017169075	0,0026065415
469	0,0032516335	0,0020502811	0,0010049739	0,0007433066	0,0028424414	0,0020071101	0,0015843593	0,0027029858
470	0,0035622081	0,0020398391	0,0009194194	0,0006768655	0,0028882004	0,0018694142	0,0014604198	0,0027944893
471	0,0038964616	0,0020296472	0,0008339979	0,0006184464	0,0029597784	0,0017906064	0,0013620467	0,0029283116
472	0,0042416448	0,0020237258	0,0007524759	0,0005656896	0,0030375764	0,0017297970	0,0012736055	0,0030772282
473	0,0046689073	0,0020620002	0,0007014081	0,0005388144	0,0031021452	0,0016486209	0,0011906356	0,0032611127
474	0,0051066460	0,0020926412	0,0006584298	0,0005069122	0,0031649485	0,0015748309	0,0011201202	0,0034286460
475	0,0055584739	0,0021127792	0,0006265657	0,0004681289	0,0032252717	0,0015112001	0,0010667178	0,0035736336
476	0,0060132727	0,0021117978	0,0005852101	0,0004518236	0,0032510960	0,0014930247	0,0009993613	0,0037833122

477	0,0064616989	0,0021063938	0,0005429904	0,0004413878	0,0032647637	0,0014901008	0,0009296504	0,0040103544
478	0,0068555426	0,0021235234	0,0005203984	0,0004153109	0,0032664012	0,0014905617	0,0008771578	0,0042097473
479	0,0072226899	0,0021382776	0,0005018227	0,0003994110	0,0032782054	0,0015180015	0,0008274170	0,0044480743
480	0,0075571539	0,0021498268	0,0004883836	0,0003968986	0,0033034092	0,0015815612	0,0007807994	0,0047402471
481	0,0077039258	0,0021512484	0,0004838740	0,0003860402	0,0033510763	0,0016452069	0,0007453802	0,0050230252
482	0,0077873988	0,0021537288	0,0004825353	0,0003734100	0,0034059835	0,0017119075	0,0007148866	0,0053007067
483	0,0078399975	0,0022002355	0,0004844946	0,0003679489	0,0034691246	0,0018188058	0,0006943601	0,0055935497
484	0,0078100886	0,0022430109	0,0004880502	0,0003716925	0,0035320839	0,0019524314	0,0006834721	0,0059079716
485	0,0076635313	0,0022805315	0,0004938359	0,0003883819	0,0035947702	0,0021239469	0,0006860819	0,0062533312
486	0,0074579299	0,0023207737	0,0005018931	0,0003973589	0,0037178053	0,0023044631	0,0006813029	0,0066017087
487	0,0072218782	0,0023656444	0,0005119284	0,0004044448	0,0038664149	0,0024923955	0,0006739200	0,0069526021
488	0,0068945517	0,0024527558	0,0005360511	0,0004203366	0,0040599701	0,0027121555	0,0006671387	0,0072822930
489	0,0065683445	0,0025528100	0,0005601600	0,0004378792	0,0042431979	0,0029733391	0,0006726951	0,0075742902
490	0,0062452058	0,0026716538	0,0005841918	0,0004578072	0,0044108227	0,0032946192	0,0006963887	0,0078102634
491	0,0059240687	0,0028029082	0,0006185008	0,0004876858	0,0046347641	0,0036486024	0,0007197458	0,0080627690
492	0,0056048520	0,0029413103	0,0006564247	0,0005214580	0,0048745405	0,0040156139	0,0007431815	0,0083118279
493	0,0053175507	0,0031205301	0,0006934832	0,0005599527	0,0050535550	0,0044004157	0,0007702318	0,0084335492
494	0,0050670656	0,0032995564	0,0007419542	0,0005970150	0,0052552818	0,0048327058	0,0008001080	0,0085358188
4 95	0,0048760226	0,0034771735	0,0008079322	0,0006316087	0,0054912802	0,0053363089	0,0008342211	0,0086073871
496	0,0046895622	0,0036914676	0,0008702443	0,0006779913	0,0057310635	0,0058725816	0,0008765517	0,0085996454
497	0,0045068351	0,0039200437	0,0009310195	0,0007298720	0,0059713994	0,0064242709	0,0009227515	0,0085563542
498	0,0043738856	0,0041387122	0,0009854320	0,0007946905	0,0061827349	0,0069861753	0,0009780789	0,0084351742
49 9	0,0042614264	0,0043648549	0,0010473486	0,0008575613	0,0064064062	0,0075628384	0,0010426569	0,0083412171
500	0,0041824432	0,0046012260	0,0011207061	0,0009168870	0,0066480954	0,0081586526	0,0011214217	0,0082913942
501	0,0041273165	0,0049496704	0,0012017029	0,0009917241	0,0068903600	0,0087977287	0,0012126124	0,0081556403
502	0,0040820597	0,0053410356	0,0012868440	0,0010740206	0,0071336036	0,0094613481	0,0013087941	0,0079855835
503	0,0040768946	0,0056275217	0,0013732746	0,0011623595	0,0073463077	0,0101066731	0,0013847726	0,0078786754
504	0,0040719652	0,0059244462	0,0014561855	0,0012451911	0,0075579924	0,0107347128	0,0014676254	0,0077582354
505	0,0040683769	0,0062326737	0,0015317529	0,0013174064	0,0077646728	0,0113223051	0,0015600329	0,0076202027
506	0,0041072150	0,0065646369	0,0016206622	0,0014070027	0,0079967294	0,0119521908	0,0016812330	0,0075173909
507	0,0041621723	0,0069009458	0,0017142318	0,0015053484	0,0082349309	0,0125916748	0,0018121040	0,0074329497
508	0,0042078817	0,0071622618	0,0018015779	0,0016434105	0,0084131177	0,0131335242	0,0019192394	0,0074229410
509	0,0042763300	0,0074389884	0,0018943629	0,0017703159	0,0086012773	0,0136533254	0,0020340491	0,0074059408
510	0,0043816417	0,0077439888	0,0019971454	0,0018813296	0,0088073615	0,0141448895	0,0021627791	0,0073764626
511	0,0044792671	0,0079833082	0,0021067316	0,0020285815	0,0089777475	0,0145295406	0,0023353162	0,0073626967
512	0,0045761345	0,0081947618	0,0022197687	0,0021921506	0,0091362686	0,0148743829	0,0025253817	0,0073549458
513	0,0046925291	0,0083314543	0,0023210719	0,0023539993	0,0093048299	0,0151853414	0,0026819605	0,0073694780
514	0,0048242077	0,0084472434	0,0024257004	0,0025285424	0,0094587461	0,0154391835	0,0028841547	0,0073850630
515	0,0049765145	0,0085303997	0,0025332427	0,0027183983	0,0095886839	0,0156040060	0,0031504449	0,0074031589
516	0,0050917730	0,0085676023	0,0026431752	0,0029463626	0,0096509503	0,0156992780	0,0034141800	0,0073869613
517	0,0051971140	0,0085878608	0,0027553204	0,0031881968	0,0096895724	0,0157705892	0,0036793588	0,0073592191
518	0,0053377697	0,0085897414	0,0028907733	0,0034594291	0,0097186770	0,0158332597	0,0039921949	0,0073241266
519	0,0054308532	0,0085524897	0,0030231280	0,0037385391	0,0097410396	0,0158383399	0,0043017804	0,0072866956
520	0,0054620572	0,0084621368	0,0031530050	0,0040317117	0,0097536626	0,0157657638	0,0046111706	0,0072447309
521	0,0055201677	0,0083526408	0,0032880987	0,0043248334	0,0096816996	0,0155608628	0,0049135665	0,0071907957
522	0,0055911892	0,0082330956	0,0034262042	0,0046261973	0,0095795854	0,0153064218	0,0052201454	0,0071284961
523	0,0057025275	0,0080870753	0,0035729817	0,0049874010	0,0094479655	0,0149898569	0,0055703649	0,0070329939
524	0,0057859229	0,0079298028	0,0037446343	0,0053333030	0,0092751042	0,0146551644	0,0058716223	0,0069374072
525	0,0058347470	0,0077609413	0,0039453198	0,0056574638	0,0090542125	0,0143027562	0,0061104290	0,0068432091
526	0,0058903118	0,0075968041	0,0041413486	0,0060020466	0,0088697405	0,0138355037	0,0063640219	0,0067474715

527	0,0059443971	0,0074343305	0,0043383608	0,0063344114	0,0086904181	0,0133327061	0,0066109084	0,0066547967
528	0,0059782825	0,0072653305	0,0045561173	0,0065675145	0,0084730654	0,0127696433	0,0067990610	0,0065779871
529	0,0060126451	0,0071179078	0,0047775120	0,0068301596	0,0082203635	0,0122400045	0,0069568060	0,0064821789
530	0,0060474360	0,0069923432	0,0050039680	0,0071258103	0,0079277381	0,0117422617	0,0070825825	0,0063650629
531	0,0060762087	0,0068785907	0,0052601052	0,0073209684	0,0076625365	0,0111526593	0,0071547730	0,0062580032
532	0,0061002430	0,0067648960	0,0055229922	0,0074960487	0,0074059475	0,0105583532	0,0072229993	0,0061521587
533	0,0061076262	0,0066364827	0,0057927197	0,0076843090	0,0071580384	0,0100308253	0,0073321947	0,0060395519
534	0,0061210343	0,0065212677	0,0060646994	0,0078458264	0,0069063571	0,0095116622	0,0074035934	0,0059571611
535	0,0061403179	0,0064188642	0,0063388570	0,0079817045	0,0066512166	0,0090008166	0,0074387470	0,0059039226
536	0,0061605852	0,0063377888	0,0066151961	0,0080761155	0,0063907742	0,0085226777	0,0074966539	0,0058286890
537	0,0061779683	0,0062585413	0,0068752655	0,0081477342	0,0061464262	0,0080619725	0,0075462774	0,0057566535
538	0,0061813567	0,0061621653	0,0070857836	0,0081586633	0,0059477996	0,0076074468	0,0075468257	0,0057042606
539	0,0061884487	0,0061064111	0,0073280746	0,0081713730	0,0057213864	0,0071893076	0,0075504665	0,0056419840
540	0,0061986435	0,0060846426	0,0075963440	0,0081855841	0,0054723515	0,0068024157	0,0075567162	0,0055716408
541	0,0061940316	0,0059927627	0,0077957728	0,0082498323	0,0052954584	0,0064706795	0,0076057203	0,0055002987
542	0,0061946184	0,0059109598	0,0079798061	0,0083050421	0,0051419390	0,0061403674	0,0076433331	0,0054399399
543	0,0062186418	0,0058918746	0,0081450907	0,0083079720	0,0050318596	0,0057835940	0,0076236817	0,0054153160
544	0,0062313360	0,0058604462	0,0082996221	0,0083083725	0,0048745865	0,0054546821	0,0076679504	0,0053993277
545	0,0062360323	0,0058207253	0,0084451941	0,0083075473	0,0046846618	0,0051502805	0,0077593791	0,0053902858
546	0,0062289360	0,0057761504	0,0085701475	0,0083234282	0,0045974853	0,0048540933	0,0077416679	0,0053827956
547	0,0062384355	0,0057431789	0,0086966315	0,0083398456	0,0045186550	0,0045740406	0,0077321808	0,0053817072
548	0,0062948745	0,0057405320	0,0088346759	0,0083524436	0,0044342189	0,0043251953	0,0077691419	0,0053964395
549	0,0063105941	0,0057209041	0,0089215809	0,0083428072	0,0043474517	0,0040768947	0,0077978061	0,0053943025
550	0,0063014657	0,0056917343	0,0089762311	0,0083204992	0,0042612563	0,0038337270	0,0078217359	0,0053823507
551	0,0063374502	0,0057016094	0,0089952471	0,0083365897	0,0042337444	0,0035809094	0,0078184424	0,0054055212
552	0,0063590130	0,0057029781	0,0090161133	0,0083431359	0,0042065866	0,0033471093	0,0078138331	0,0054238166
553	0,0063428476	0,0056801694	0,0090444556	0,0083230296	0,0041725599	0,0031502296	0,0078080433	0,0054271042
554	0,0063796730	0,0056888447	0,0090519475	0,0082960306	0,0041682782	0,0029656750	0,0078140440	0,0054304920
555	0,0064448274	0,0057145089	0,0090486158	0,0082658464	0,0041800765	0,0027889680	0,0078266158	0,0054341282
556	0,0064360766	0,0057190775	0,0090703997	0,0082593942	0,0042024818	0,0026105803	0,0078548397	0,0054821127
557	0,0064379054	0,0057317729	0,0090792452	0,0082583539	0,0042328376	0,0024385903	0,0078735218	0,0055130128
558	0,0064612517	0,0057604100	0,0090622907	0,0082670171	0,0042784132	0,0022777900	0,0078732578	0,0055100435
559	0,0064852452	0,0057677277	0,0090218783	0,0082284193	0,0043257069	0,0021414721	0,0078589310	0,0055473496
560	0,0065103850	0,0057666104	0,0089726132	0,0081717195	0,0043740480	0,0020177277	0,0078396775	0,0056038345
561	0,0065609400	0,0058012116	0,0089655658	0,0082073295	0,0044352286	0,0019143362	0,0078573133	0,0056895937
562	0,0065995323	0,0058329243	0,0089749279	0,0082042394	0,0045000255	0,0018075186	0,0078570531	0,0057548620
563	0,0066188174	0,0058601009	0,0090111969	0,0081381062	0,0045709916	0,0016947769	0,0078276919	0,0057869904
564	0,0066346316	0,0058908568	0,0089458595	0,0081331730	0,0046613725	0,0016026576	0,0078122635	0,0058182456
565	0,0066526390	0,0059228032	0,0088505193	0,0081463279	0,0047569381	0,0015196172	0,0078036268	0,0058514118
566	0,0067117715	0,0059535383	0,0088339401	0,0080941990	0,0048386145	0,0014377640	0,0078065974	0,0059132865
567	0,0067551146	0,0059934383	0,0088128113	0,0080589363	0,0049262156	0,0013579337	0,0078071797	0,0059700726
568	0,0067773385	0,0060458473	0,0087859635	0,0080468375	0,0050217950	0,0012810832	0,0078048627	0,0060201042
569	0,0068278650	0,0060648829	0,0087842046	0,0080185998	0,0051169674	0,0012190967	0,0078005842	0,0060762175
570	0,0068840368	0,0060829949	0,0087831393	0,0079876818	0,0052151086	0,0011616029	0,0077953105	0,0061347251
571	0,0069211225	0,0061661440	0,0087310424	0,0079693245	0,0053386331	0,0011024991	0,0077852562	0,0061986552
572	0,0069606575	0,0062224256	0,0086899901	0,0079404600	0,0054563896	0,0010501963	0,0077626413	0,0062506570
573	0,0070030543	0,0062485751	0,0086611254	0,0078995312	0,0055680955	0,0010053262	0,0077256735	0,0062893621
574	0,0070489711	0,0062652128	0,0086440357	0,0078700231	0,0056621764	0,0009779854	0,0077174614	0,0063405790
575	0,0070965728	0,0062946131	0,0086267315	0,0078455498	0,0057565041	0,0009543993	0,0077152036	0,0063880320
576	0,0071493207	0,0063982822	0,0085948086	0,0078328056	0,0058731176	0,0009296008	0,0077104428	0,0064036381

577 0.00216844 0.006471335 0.006437135 0.006437135 578 0.007221972 0.006461058 0.008577558 0.008139772 0.000813987 0.007130480 0.006437933 579 0.0072219728 0.005554637 0.008551471 0.00758728 0.000813975 0.007730428 0.005546483 580 0.007514571 0.008551471 0.008514210 0.000814323 0.007740030 0.006554683 581 0.007514571 0.008514141 0.007514772 0.000846141 0.007740030 0.00651441 583 0.007514571 0.008414199 0.00851599 0.00881514 0.007724177 0.000881514 0.007724177 0.000881514 0.007724177 0.000881514 0.007724177 0.000881514 0.007724177 0.000881514 0.007724177 0.000881514 0.007724177 0.000881514 0.007724177 0.000881514 0.007724173 0.0007841135 0.007724173 0.0007841135 0.007724173 0.0007841135 0.007724135 0.007724173 0.0007841135 0.007724135 0.0077241135 0.007724135 0.0									
578 0.0007219729 0.0006463018 0.000772481 0.0006159770 0.0007730026 0.006648988 579 0.0075197208 0.0066137611 0.006430125 0.000543120 0.0006430075 0.0006480075 0.0007714075 0.0006481050 581 0.0075915125 0.000681210 0.000772277 0.000881851 0.007721277 0.000888551 0.007721271 0.000881215 0.0007721271 0.0007801210 0.00079211401 0.0007721276 0.0007921401 0.0007721276 0.00077211401 0.0007721276 0.00077211401 0.0007721276 0.0007721402 0.0007721402 0.0007721402 0.0007721402 0.0007721401 0.0007721401 0.0007721401 0.0007721401 0.0007721401 0.0007721401 0.0007721401 0.00077201401 0.00077201401 0.000772	577	0,0071908414	0,0064543096	0,0085775859	0,0078063938	0,0059716084	0,0009024940	0,0077157077	0,0064377333
579 0.0072989866 0.0005312130 0.000539847 0.000539847 0.000553985 580 0.0075381206 0.0005618750 0.000531891 0.0007410032 0.0005531891 581 0.0075381206 0.0005618750 0.0005119972 0.0008461446 0.0077440322 0.0005740020 0.00057153981 582 0.007440512 0.0005519994 0.0003519212 0.00057059900 0.000846146 0.007752770 0.0006461164 583 0.007544105 0.0005319391 0.0005779390 0.000845156 0.007792170 0.000664113 584 0.0075451105 0.006811501 0.0007141025 0.0007911530 0.0077115	578	0,0072219729	0,0064661058	0,0085743554	0,0077677141	0,0060529779	0,0008734220	0,0077304859	0,0064889886
580 0,0073847008 0,0006818701 0,0008411045 0,000787228 0,000848307 0,0077480302 0,000681733 581 0,0074460512 0,006618702 0,008514212 0,00074460512 0,0007460512 0,0008411254 0,0007460512 0,0008411254 0,0007460512 0,0007541155 0,0008611264 0,0077541075 0,000841146 0,007724108 0,000841146 0,007724108 0,000841146 0,007724116 0,000841146 0,007724116 0,000841146 0,007724116 0,000841146 0,007724117 0,000841147 0,0008721344 586 0,007591555 0,005972393 0,0077421020 0,007792726 0,0007915350 0,007721345 587 0,0077693999 0,0008239832 0,00272333 0,0077402026 0,000792276 0,0007620276 0,0007620276 0,0007620276 0,0007740302 0,001752076 0,00072286 0,00072286 0,00072286 0,00072286 0,00072286 0,00072286 0,000722876 0,0008294172 0,0008294172 0,000762957 581 0,007745276 0,000722866 0,00772286 0,00772826 <	579	0,0072899868	0,0065261203	0,0085213765	0,0077242898	0,0061589772	0,0008553848	0,0077309246	0,0065222916
511 0.00781000 0.006613700 0.0084110140 0.007712072 0.000641372 0.0007110772 0.00661378 522 0.0074169512 0.0083789127 0.0083789127 0.0008414729 0.0008414729 0.0008414729 0.0008414729 0.0008414729 0.0008414729 0.0008414729 0.0008414729 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.000841474 0.0007847575 0.0007784774 0.000784774 0.000784774 0.000784774 0.000784774 0.0007784774 0.000778478 0.000778478 0.000778478 0.000778478 0.000778478 0.0007784884 0.0007784897 0.0007784898 0.00077848978 0.0007784897 0.0007784897 0.0007784897 0.0007784897 0.0007784897 0.0007784897 0.0007784897 0.0007784974 0.0007784974 0.0007784974 0.0007784974 0.0007784974 0.0007784974 0.0007784974 0.00077849747 0.00077849747 0.000778497	580	0,0073547208	0,0065854871	0,0084631420	0,0076870257	0,0062612335	0,0008433075	0,0077316632	0,0065546585
922 0,0074199512 0,0068378127 0,003741294 0,007417297 0,00681140 0,007764290 0,006719944 0,006811414 0,007764291 0,00064914 0,007764290 0,00681150 585 0,00756451 0,006814444 0,00681350 0,00786471 0,00084456 0,007764703 0,006811501 586 0,00755451 0,006813501 0,006813737 0,00084456 0,007915308 0,007764733 0,006711545 588 0,00752766 0,007027276 0,007764575 0,001157667 0,008272319 0,007764585 0,007128585 0,007764585 0,007128585 0,007128585 0,007128585 0,007128585 0,007128585 0,007128585 0,007128585 0,007128585 0,007128585 0,007128585 0,007	581	0,0073881206	0,0066167501	0,0084110543	0,0076726493	0,0063379327	0,0008461432	0,0077403032	0,0065931891
583 0.007441292 0.007599944 0.003842149 0.007599395 0.007412708 0.007792277 0.006681150 584 0.007559110 0.008841499 0.0033228399 0.007412131 0.008925942 0.007792277 0.006861150 586 0.0075590451 0.008814199 0.002378373 0.007780278 0.007917233 0.007917233 0.007917233 0.007917233 0.007917333 0.007917333 0.007917333 0.007917333 0.007917333 0.007917333 0.007917333 0.007917333 0.0079173333 0.0077917570 0.0077917570 0.007718570 0.007718570 0.007718570 0.007718571 0.0077197171 0.0077197171 0.0077197171 0.0077197171 0.0077197171 0.0077197171 0.0077197171 0.0077197171 0.0077197171 0.0077197171	582	0,0074169512	0,0066591725	0,0083789127	0,0076173949	0,0064147297	0,0008469146	0,0077516775	0,0066142105
544 0,0073040858 0,0073823231 0,007382724 0,006593990 0,000884358 0,007792770 0,006884139 555 0,007554110 0,006841398 0,007387383 0,007287283 0,007687283 0,007782738 0,006884328 0,007781533 0,007781533 0,007781533 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007711530 0,007712335 0,007729893 0,007729893 0,007129797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797 0,007219797	583	0,0074421924	0,0067099944	0,0083614216	0,0075306930	0,0064917204	0,0008460974	0,0077648980	0,0066218448
585 0,007541105 0,008414199 0,00338399 0,0074813126 0,009677738 0,0008925942 0,0077841417 0,0007084121 586 0,007539405 0,0087121581 0,002710126 0,00773758 0,007084024 0,0077211538 0,007711530 0,007711538 0,007711538 0,007721154 0,007721154 0,007721154 0,007721154 0,007721154 0,007721154 0,007721154 0,007721154 0,007721154 0,0077211538 0,0077211538 0,0077211538 0,0077215457 0,0077215457 0,007724577 0,007748577 0,007735528 0,007244285 0,007244285 0,007748572 0,007713555 0,0077145578 0,007724517 0,007724517 0,007724517 0,007713555 0,007714577 0,00735528 0,007149272 0,007149272 0,007149272 0,007149272 0,007149272 0,0071497247 0,00873528 0,0071497247 0,00873528 0,0071497248 0,001449737 0,00873531 0,007712353 0,007712353 0,007712353 0,007712353 0,0077123537 0,007845473 0,00873528 0,007149757 0,008735287 0,009772448 0,00771248	584	0,0075046585	0,0067803995	0,0083522815	0,0075082714	0,0065793960	0,0008661614	0,0077922770	0,0066811506
586 0,0075594561 0,007847308 0,00829942 0,007847333 0,0067842133 587 0,007589389 0,006518312 0,007521502 0,0077121340 0,0077121340 588 0,0075702786 0,0070024298 0,0075246040 0,006684135 0,007510330 0,0077912360 590 0,0077002780 0,007004229 0,008260945 0,007314620 0,006881406 0,00103334 0,007998250 0,008298478 0,006829847 591 0,0077497228 0,007158560 0,0082725131 0,0071495221 0,007159523 0,008298478 0,007672288 583 0,0077497220 0,007258002 0,007884423 0,007184532 0,0071493423 0,00823441 0,007193535 584 0,0077767313 0,007427855 0,00884944 0,007184562 0,007131431 0,001443737 0,008714834 0,0067740383 587 0,0077812563 0,007835355 0,007183535 0,0071314391 0,001443737 0,008871483 0,0067740383 587 0,00773147536 0,007814372 0,007153355 0,007153355<	585	0,0075541105	0,0068414199	0,0083358994	0,0074815126	0,0066577738	0,0008843563	0,0078241417	0,0067206197
587 0,007898389 0,0069126312 0,007911530 0,007723915 0,0077485770 0,00723935 0,007728930 0,007728930 0,007728930 0,007728930 0,007728930 0,007728930 0,007789371 0,007729391 0,00772850 0,008307239 0,007187522 0,007088183 0,0011524057 0,00831514 0,007173235 554 0,007748570 0,007740526 0,00848553 0,007149746 0,007149746 0,007149746 0,007149747 0,008473147 0,008473147 0,008473147 0,008473147 0,008473147 0,008473147 0,008473147 0,007147465 0,007149746 0,007149746 0,007149746 0,007149746 0,007149746 0,007149746 0,007149747	586	0,0075595451	0,0068724086	0,0082978337	0,0074278023	0,0067084624	0,0008925942	0,0078647533	0,0066942139
588 0,0076340009 0,00858334 0,008251316 0,007324604 0,006656354 0,00703030 0,00779815030 0,0077981503 0,007798555 0,007798555 0,007798555 0,007798555 0,007798555 0,007798555 0,007798555 0,007729855 0,007729915055 0,007254251 0,0082291917 0,00877199555 0,007729915055 0,007385209 0,008386425 0,007148522 0,0071485729 0,007305209 0,00720395 0,007042295 0,008386424 0,00720395 0,0071485731 0,0081711131 0,0067172995 595 0,0077767315 0,007305209 0,008386424 0,00720395 0,0071845731 0,008471885 0,0067170355 596 0,0077807519 0,007385209 0,0083851556 0,007180622 0,0071314391 0,008714884 0,0067140335 597 0,0073817285 0,0077480555 0,007180085 0,007180082 0,0071314391 0,008714184 0,006757401155 598 0,007831918 0,007484555 0,007180085 0,007180085 0,007138502 0,007113497 0,008871412 0,0067574711 <td< td=""><td>587</td><td>0,0075893899</td><td>0,0069126312</td><td>0,0082741026</td><td>0,0073757363</td><td>0,0067809244</td><td>0,0009173238</td><td>0,0079115308</td><td>0,0067121549</td></td<>	587	0,0075893899	0,0069126312	0,0082741026	0,0073757363	0,0067809244	0,0009173238	0,0079115308	0,0067121549
599 0,007702786 0,007024268 0,007272378 0,007708990 0,007708990 0,007708990 0,007708990 0,007708990 0,007708990 0,007285800 0,0087273109 0,0072446253 0,00859140 0,001059913 0,008144673 0,00814473 0,00814473 0,0081458913 0,0071255800 0,008727330 0,0072464253 0,0071254920 0,0071255903 0,007125590 0,008205913 0,001147607 0,008230554 0,006711953 594 0,0077763791 0,007402785 0,008440685 0,007244028 0,0071314391 0,001447377 0,00831554 0,007245035 595 0,0077767391 0,007402785 0,008440685 0,007123973 0,0071314391 0,001443737 0,008714583 0,006712353 596 0,007785198 0,00740285 0,00845552794 0,0071237237 0,007113491 0,01148371 0,00871248 0,0077638314 597 0,007745855 0,00740285 0,007145852 0,007145852 0,007145852 0,007145852 0,007145852 0,007145853 0,00725846 0,007258464 0,007258464 0,0072585	588	0,0076340009	0,0069583394	0,0082591916	0,0073248604	0,0068663954	0,0009520109	0,0079619030	0,0067570466
990 0,007708030 0,0070560762 0,008255916 0,007300115 0,008581406 0,00105820161 0,008144868 0,008725815 591 0,007748577 0,007128586 0,007244112 0,007049287 0,0011676607 0,008230164 0,0067725845 593 0,0077493228 0,007185055 0,008366424 0,007724112 0,007049283 0,001347707 0,00830644 0,0067712325 594 0,007767319 0,007330520 0,008366424 0,007184580 0,001447737 0,00845111310 0,0067712323 595 0,007767319 0,0074027855 0,0071497620 0,0071497620 0,0015586812 0,0067740881 597 0,00778172865 0,007456053 0,0071497620 0,007183022 0,007185055 0,0018158017 0,008183027 0,008774081 598 0,0077848653 0,007783028 0,007183055 0,007283996 0,0018163017 0,008183024 0,0067742081 509 0,007884053 0,0077845055 0,007183055 0,0021815517 0,008184544 0,00218151619 0,00918146460 0,0088143044<	589	0,0076702786	0,0070024298	0,0082609454	0,0073171211	0,0068513382	0,0010030334	0,0079798250	0,0067208892
911 0,007748577 0,002128588 0,008272819 0,007244122 0,001167667 0,001284682 0,007749328 922 0,007749328 0,00736505 0,008286025 0,007244112 0,007064284 0,001157667 0,008236054 0,00671198555 934 0,0077495706 0,007365209 0,008386424 0,007184552 0,0070813484 0,001434731 0,008411110 0,0067113835 955 0,007776719 0,007402285 0,004446855 0,0071442084 0,0071345052 0,0014538727 0,00853827 0,007737777 0,006733251 956 0,0077812565 0,007556672 0,0071805022 0,007119477 0,00853827 0,007733550 0,001853827 0,007538507 0,0001853827 0,0077385505 0,007385507 0,0001982024 0,0002198148 0,0007538144 0,0002198148 0,0007538511 0,000844007 500 0,0077848555 0,0071932565 0,0071935506 0,007353507 0,00238144 0,000211424 0,000844007 601 0,0077845751 0,007875554 0,0071846755 0,007146785 0,00	590	0,0077080930	0,0070560762	0,0082650916	0,0073009115	0,0068681406	0,0010520161	0,0080294678	0,0066972553
922 0,0077459226 0,0072459556 0,008268025 0,007245928 0,0011676607 0,008291917 0,0067072995 533 0,007770338 0,007258902 0,008360344 0,007184572 0,0013434737 0,008300304 0,0067119327 554 0,007767319 0,007450255 0,008448655 0,0071497462 0,0071345731 0,008571777 0,008571779 0,0087777777 0,0087317777 0,0087317777 0,008731777 0,0087317777 0,0087317777 0,008731777 0,0087317777 0,008731777 0,008731777 0,008731777 0,008731777 0,008731777 0,008731777 0,0087314777 0,0087314777 0,0087314777 0,0087314571 0,0087314571 0,008734217 0,008734218 0,007745948 0,007745948 0,007745948 0,007145085 0,007145085 0,007145085 0,00714568 0,00714568 0,00714568 0,007211475 0,00814384 0,008755414 0,00864000 0,00814384 0,008755411 0,00814384 0,00864000 0,00814384 0,00814384 0,00864000 0,007145685 0,007145685 0,007145614 0,00221142 0	591	0,0077485770	0,0071285860	0,0082723109	0,0072642635	0,0069545497	0,0010958923	0,0081448689	0,0067025847
593 0,0077203383 0,0072589092 0,0083070239 0,007385422 0,0073083440 0,0012524057 0,008303054 0,006713352 594 0,007749579 0,007305209 0,0038440865 0,0071342080 0,0071314391 0,001443771 0,008513110 0,0067133251 595 0,00778172863 0,0074478025 0,0048435554 0,0071342062 0,0071243057 0,00871740575 0,00871743183 0,0087974797 0,006734217 597 0,007812863 0,007546673 0,008706786 0,0071380351 0,0071263574 0,0011683047 0,008741124 0,0067742132 599 0,007846953 0,0077934380 0,0077934380 0,0077535355 0,0071417633 0,0021651619 0,0091414040 0,0068314304 601 0,007854053 0,0077934380 0,00872495025 0,0073385767 0,002151619 0,008444017 602 0,0078541472 0,0078385264 0,0077348665 0,0073931378 0,0023181440 0,008247045 0,006842470 603 0,007856427 0,008123647 0,0079728844 0,0072138576 <t< td=""><td>592</td><td>0,0077439228</td><td>0,0071950556</td><td>0,0082868025</td><td>0,0072244112</td><td>0,0070049289</td><td>0,0011676607</td><td>0,0082291917</td><td>0,0067072990</td></t<>	592	0,0077439228	0,0071950556	0,0082868025	0,0072244112	0,0070049289	0,0011676607	0,0082291917	0,0067072990
94 0,0077465790 0,0073305209 0,0083869424 0,0072020399 0,007881383 0,0013434731 0,0084111310 0,0067173322 595 0,007767319 0,007402785 0,008455534 0,007149265 0,008351552 0,007149265 0,008531552 0,007156062 0,001556821 0,0067210397 0,00683027 0,0087319180 0,0077467353 0,0077463553 0,0077463553 0,0077403785 0,0077403785 0,0077403785 0,0077403785 0,0077533531 0,0077403785 0,0077403785 0,0077403785 0,0077403785 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0077467853 0,0072164785 0,0022165161 0,007841772 0,007854647 0,008814277 0,00784777 0,007858214 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,0072163931 0,00072163632 0,007217447 0	593	0,0077203383	0,0072589092	0,0083070239	0,0071854522	0,0070389440	0,0012524057	0,0083003054	0,0067119352
595 0,0077767319 0,0074927855 0,0071448208 0,0071314391 0,0014437377 0,0085335146 0,0067216286 596 0,0077800450 0,007476265 0,008533554 0,0071497462 0,0071735056 0,015586812 0,0087373779 0,00687315180 0,00672456473 0,0068297049 0,0072519047 0,00873119180 0,00672452473 0,0072519045 0,0077545645 0,007744855 0,007744855 0,007744855 0,007744855 0,00774552422 0,009281142 0,0067842471 600 0,00778509463 0,00779538962 0,00714575565 0,007145756 0,0072852834 0,008148440175 602 0,00778509463 0,00797853892 0,0071457856 0,007145785 0,007145785 0,007145785 0,0072188378 0,009281132 0,0084207865 0,0079805838 0,0092981132 0,0088140072 0,0088140072 0,0084207865 0,007781477 0,007581378 0,0027198378 0,0092981422 0,007781477 0,007581378 0,0027198377 0,007781477 0,007781477 0,007781477 0,007781477 0,007781477 0,007781477 0,0077816984 0,0	594	0,0077495790	0,0073305209	0,0083869424	0,0072020399	0,0070861383	0,0013434731	0,0084111310	0,0067173327
596 0,0078004450 0,0074760265 0,0084535554 0,00714728655 0,0015830812 0,0086741883 0,0067302315 597 0,0075819180 0,0076160332 0,0085315526 0,0071830622 0,0072130497 0,001830827 0,0089173773 0,0067382511 598 0,007810285 0,0077043855 0,0087006786 0,0071800835 0,0072511665 0,001891024 0,009021142 0,0067824233 600 0,007850463 0,0077833950 0,0077833950 0,007255555 0,007383576 0,0022598113 0,0068430440173 602 0,007841772 0,0079339892 0,0093399105 0,007183086 0,00755544 0,0022598113 0,0068430440173 602 0,007841722 0,009389892 0,007183086 0,00755544 0,002250814 0,009271955 0,00798172878 0,009271248 0,00682080 603 0,007880842 0,0081123005 0,009239051 0,007380767 0,00768075142 0,0071028378 0,009771248 0,0071028378 605 0,0078804122 0,008112500 0,0099393346 0,00739373180 <t< td=""><td>595</td><td>0,0077767319</td><td>0,0074027855</td><td>0,0084408655</td><td>0,0071948208</td><td>0,0071314391</td><td>0,0014437377</td><td>0,0085335146</td><td>0,0067216296</td></t<>	595	0,0077767319	0,0074027855	0,0084408655	0,0071948208	0,0071314391	0,0014437377	0,0085335146	0,0067216296
597 0,0078172863 0,0075456473 0,0085315526 0,0071630622 0,0071230737 0,0016830827 0,008143834 0,006757771 598 0,007810932 0,008706786 0,0071923723 0,00721511605 0,0018163917 0,0089143834 0,00677574711 599 0,0078509463 0,0077923490 0,00678282853 0,0071800835 0,007285966 0,0001992024 0,009281142 0,0067854464 601 0,0078429785 0,00779733909 0,008895322 0,0071467855 0,0072139676 0,0021561519 0,00984040175 602 0,007845027 0,0078785309 0,008895322 0,0071496785 0,007231584 0,002538194 0,0095814072 0,0068440175 603 0,007882984 0,0093115150 0,0072495025 0,0077611438 0,0027198378 0,009771148 0,007078477 604 0,007882942 0,0082115150 0,0093981847 0,0072198378 0,0097071477 60 0,00786084 0,007108377 0,0035283790 0,00971702837 605 0,007861492 0,0082115150 0,0093918472 0,000	596	0,0078004450	0,0074760265	0,0084535354	0,0071497462	0,0071736505	0,0015586812	0,0086741863	0,0067240381
598 0,007819180 0,0076160332 0,0086297049 0,0071923723 0,0072511605 0,0018163917 0,0089143834 0,006774711 599 0,0077860946 0,0077923490 0,008782835 0,0073850969 0,0012161619 0,0091436408 0,0068143447 601 0,007850946 0,0077853982 0,00718785309 0,008890322 0,0071417635 0,0021361619 0,0091436408 0,006844047 602 0,0078424785 0,0078785309 0,0090369105 0,0071417633 0,0023093583 0,009259113 0,0068401472 603 0,0078850627 0,008287407 0,0091735654 0,0072913378 0,0027198378 0,00925102 0,00775318767 0,0072503931 0,0097755262 0,007724877 606 0,0078861289 0,00938931647 0,007380767 0,0078058377 0,0035383790 0,0098764289 0,007102877 606 0,007886129 0,009389381467 0,007390555 0,00390552030 0,001702877 0,003755844 0,007102877 0,003755846 0,007102877 0,003583790 0,0097421847 0,0007123873 0,00037	597	0,0078172863	0,0075456473	0,0085315526	0,0071630622	0,0072130497	0,0016830827	0,0087973779	0,0067382510
599 0,00778486953 0,0077043855 0,0087006786 0,0071800835 0,0072859969 0,0019992024 0,009281142 0,006782424 600 0,0078509463 0,0077922490 0,008788283 0,0071655505 0,007385076 0,0021651619 0,0091456408 0,006814014 601 0,0078411772 0,00979538962 0,009135654 0,007792495025 0,0075951414 0,0092538113 0,0068440175 603 0,007856027 0,0080287407 0,009135654 0,0072495025 0,0075951378 0,0092710287 0,0095814072 0,006455513 604 0,0078828342 0,0081123005 0,0092329051 0,0072696884 0,002977951 0,009771248 0,007203733 605 0,007880492 0,008464776 0,0093983846 0,0073180767 0,007383780 0,009874289 0,007102837 606 0,007836421 0,008464776 0,009493939 0,0074898722 0,003315597 0,003915978 0,009684640 0,00720373 607 0,0078693428 0,008671256 0,009671266 0,007817944 0,008465229 0,00106	598	0,0078319180	0,0076160332	0,0086297049	0,0071923723	0,0072511605	0,0018163917	0,0089143834	0,0067574717
600 0,0078599463 0,0077923490 0,0087882833 0,0071653505 0,007385076 0,0021651619 0,009143608 0,0068143044 601 0,007842785 0,0078785309 0,0088950322 0,0071467855 0,007245033 0,0023093583 0,0022958113 0,0068401075 602 0,0078626342 0,00930827407 0,0091735654 0,0072495025 0,007591378 0,0022198787 0,0095814072 0,009682521 604 0,0078828342 0,008123005 0,0073930876 0,007621438 0,0027975526 0,007084777 605 0,007861492 0,0083255544 0,0093983486 0,0073913180 0,007621428 0,003383790 0,0097755262 0,00778477 606 0,007861492 0,0084674776 0,009493990 0,0077893732 0,003383790 0,009785282 0,0033915978 0,009965382 0,007385373 0,0044905220 0,0044905220 0,0044905220 0,004395232 0,0071023373 606 0,0077936247 0,008759237 0,008467229 0,0043053203 0,01049128 0,007112303 607 0,00893	599	0,0078486953	0,0077043855	0,0087006786	0,0071800835	0,0072859969	0,0019992024	0,0090281142	0,0067852428
601 0,0078342785 0,007875309 0,0088950322 0,0071467855 0,007411763 0,0023093583 0,0092598113 0,006840173 602 0,0078411772 0,0079588962 0,000369105 0,0071934606 0,0075053644 0,0027198378 0,002970951 0,00095114072 0,0068455513 604 0,007883788 0,0081123005 0,0072329517 0,007211438 0,0029770551 0,0097755262 0,007044477 605 0,0078601492 0,008325584 0,0073931180 0,0078058577 0,0035383790 0,0097752622 0,007104877 606 0,0078601492 0,0084674776 0,0074989872 0,0078058577 0,0039155978 0,0099764288 0,0071028773 607 0,007861492 0,0084674776 0,007498972 0,0079516015 0,0039155978 0,009966364 0,0072097373 608 0,007893642 0,008721566 0,0075914341 0,008213744 0,0046866661 0,010108504 0,007123332 610 0,007937245 0,009957562 0,0097102683 0,0086376229 0,0011108504 0,0078431867	600	0,0078509463	0,0077923490	0,0087882853	0,0071653505	0,0073385076	0,0021651619	0,0091436408	0,0068143046
662 0,0078411772 0,007938982 0,009369105 0,0071934606 0,0075053644 0,0021798378 0,0094207865 0,006802000 603 0,0078560627 0,0080287407 0,0091735654 0,0072495025 0,0075931378 0,0027198378 0,009571248 0,007265055 604 0,0078601492 0,0082115159 0,0093081457 0,007569884 0,007622274 0,0032500931 0,0097755262 0,007078876 606 0,0078601492 0,00842115159 0,0093983846 0,0073931180 0,007805877 0,003155978 0,0093666448 0,0072083772 607 0,0078601492 0,0084674776 0,0094993990 0,007593595 0,009306967322 0,0043053203 0,01010491128 0,00721373731 608 0,0078936428 0,008671244 0,0043053203 0,0101085044 0,00731375411 609 0,0078936424 0,008772156 0,00967322 0,003153734 0,0101085044 0,007123337 610 0,0079128417 0,008977249 0,007122683 0,008649524 0,0101260705 0,0078431862 611 <td>601</td> <td>0,0078342785</td> <td>0,0078785309</td> <td>0,0088950322</td> <td>0,0071467855</td> <td>0,0074117633</td> <td>0,0023093583</td> <td>0,0092598113</td> <td>0,0068440173</td>	601	0,0078342785	0,0078785309	0,0088950322	0,0071467855	0,0074117633	0,0023093583	0,0092598113	0,0068440173
603 0,0078566627 0,0080287407 0,0091735654 0,0072495025 0,0075931378 0,0027198378 0,0095814072 0,0069455512 604 0,0078828342 0,0081123005 0,0092329051 0,0072696884 0,007211438 0,0029770951 0,0096771248 0,0070265655 605 0,0078601492 0,008215554 0,009398346 0,00733180767 0,0076928274 0,0032550931 0,0097755262 0,00771028375 607 0,0078601492 0,0084674776 0,00994993990 0,0074898722 0,007516015 0,0039155978 0,009666684 0,0072097373 608 0,007896428 0,0086161897 0,0095908937 0,007891341 0,0082213744 0,0046866661 0,01006976995 0,0074293237 610 0,007937245 0,008172368 0,009679609 0,0078177946 0,0084067229 0,0051815534 0,010185044 0,007121316 611 0,007937245 0,009710283 0,0082176421 0,00828742254 0,0051815534 0,010185044 0,007149345 612 0,008060527 0,0093877249 0,0097012514	602	0,0078411772	0,0079538962	0,0090369105	0,0071934606	0,0075053644	0,0025038194	0,0094207865	0,0068902000
604 0,0078828342 0,0081123005 0,0092329051 0,0072696884 0,0072211438 0,0029770951 0,0096771248 0,0070265053 605 0,0078837989 0,0082115159 0,009381457 0,0073180767 0,0076928274 0,0032500931 0,0097755262 0,00707128378 606 0,0078601492 0,0083255584 0,0093983846 0,0073931180 0,007856577 0,0033155978 0,0099674289 0,0072039733 607 0,0078936428 0,0086161897 0,0095908937 0,0075903555 0,0008967362 0,0043053203 0,0100409128 0,0071629373 608 0,0079312417 0,0086181897 0,0096434660 0,0075914341 0,008213744 0,004686661 0,0100676995 0,007429332 610 0,0079128417 0,00897151622 0,009670609 0,0078177946 0,008518524 0,001185044 0,0077814983 611 0,0080723304 0,009372555 0,0097102683 0,008387370 0,008845624 0,0011870453 0,001187045 0,001187045 612 0,0080723304 0,009372555 0,0097102683	603	0,0078560627	0,0080287407	0,0091735654	0,0072495025	0,0075931378	0,0027198378	0,0095814072	0,0069455517
605 0,0078837989 0,0082115159 0,009381457 0,0073180767 0,0076928274 0,003250931 0,0097755262 0,0070784777 606 0,0078601492 0,0083255584 0,009983846 0,0073931180 0,007856577 0,0035383790 0,0098764289 0,0071028378 607 0,0078760984 0,0086161897 0,0099908937 0,0075903595 0,0080967362 0,0043053203 0,0100409128 0,00712863 609 0,0078969317 0,0087721506 0,009679669 0,007814341 0,008213744 0,0046866661 0,0100676995 0,00774293327 610 0,0079372345 0,0091513622 0,009717211 0,0079621244 0,008258624 0,0057588363 0,0101857095 0,0078431862 612 0,008060527 0,0093677249 0,0097102683 0,0082764224 0,002844622 0,0101265733 0,008818777 613 0,0080723304 0,0095872655 0,009745142 0,008374486 0,0011265733 0,008818777 614 0,0081254769 0,009803290 0,009672381 0,00854545825 0,009141848	604	0,0078828342	0,0081123005	0,0092329051	0,0072696884	0,0076211438	0,0029770951	0,0096771248	0,0070265053
606 0,0078601492 0,0083255584 0,003988486 0,0073931180 0,0078058577 0,003583790 0,0098764289 0,0071028378 607 0,0078760984 0,0084674776 0,0094993990 0,0074898782 0,0079516015 0,0039155978 0,0099663684 0,0072039732 608 0,0078936428 0,0086161897 0,0095908937 0,0075903595 0,0080967362 0,0043053203 0,0100409128 0,0071028372 609 0,0078969317 0,0087721506 0,0096796069 0,0078177946 0,0084067229 0,0051815534 0,101085044 0,007122305 611 0,0079372345 0,0091513622 0,0097102683 0,008853673 0,0088742254 0,005284622 0,101185044 0,0078418655 612 0,008006527 0,0093677249 0,0097102683 0,0082176421 0,009118744 0,0062844622 0,101125076 0,0078418655 613 0,0080723304 0,0098093290 0,0096672381 0,008311511 0,0075792470 0,011256733 0,0088147776 614 0,0081254769 0,0098093290 0,0096672381	605	0,0078837989	0,0082115159	0,0093081457	0,0073180767	0,0076928274	0,0032500931	0,0097755262	0,0070784477
607 0,0078760984 0,0084674776 0,0094993990 0,0074898782 0,0079516015 0,0039155978 0,0099663684 0,0072039732 608 0,0078936428 0,0086161897 0,0095908937 0,0075903595 0,008067362 0,0043053203 0,010409128 0,0073167610 609 0,0079128417 0,0087721506 0,0096434660 0,0076914341 0,008213744 0,0046866661 0,0100676995 0,0074293327 610 0,0079128417 0,0089528598 0,0097017211 0,0079622194 0,0086358624 0,0057598363 0,010185044 0,0078143162 612 0,0080060527 0,0093677249 0,0097102683 0,0082176421 0,0083742254 0,0062844622 0,0101279074 0,0078418651 614 0,0081254769 0,0098093290 0,009672381 0,0083734086 0,009311511 0,001705130 0,0086417676 615 0,0081691212 0,0101256806 0,009519676 0,0087482743 0,0102346023 0,00915588 0,0099756021 0,00881476763 616 0,008208036 0,010491498 0,0095619676	606	0,0078601492	0,0083255584	0,0093983846	0,0073931180	0,0078058577	0,0035383790	0,0098764289	0,0071028378
6080,00789364280,00861618970,00959089370,00759035950,00809673620,00430532030,0104091280,00731676106090,00789693170,00877215060,00964346600,00769143410,00822137440,00468666610,01006769950,00742933276100,00791284170,00895285980,00967906090,00781779460,00840672290,00518155340,0101850440,00761123036110,00793723450,00915136220,00970172110,0079621940,0088586240,00575983630,01012790740,00784318626120,0080050270,00936772490,00970451420,00821764210,00887422540,0068495430,01012607330,00841886516140,00812547690,00980932900,00966723810,00837340860,00943115110,00757924700,01012657330,00884186516150,00816912120,01012568060,00961806530,00874827430,010123460230,00914594890,0097560210,00891470856160,00820880360,0149104980,00956196760,00874827430,0112456840,011155880,0098756130,00926562576170,00830211830,01126426600,00934245130,0093883290,0112485840,01116551290,0098287510,00926562716180,0084556610,01172616160,00926034410,00938185910,0112865840,01116561290,0092875510,0092663746190,0085420000,01176161160,00926034410,0093018670,0112456340,01136592630,0097551370,0	607	0,0078760984	0,0084674776	0,0094993990	0,0074898782	0,0079516015	0,0039155978	0,0099663684	0,0072039732
6090,00789693170,00877215060,00964346600,00769143410,00822137440,00468666610,01006769950,00742933276100,00791284170,00895285980,00967906090,00781779460,00840672290,00518155340,0101850440,00761123036110,00793723450,00915136220,0097172110,00796221940,00863586240,00575983630,01012870950,00784318626120,00800605270,00936772490,00971026830,00808536730,00887422540,00628446220,01012790740,00798412556130,00817233040,00958726550,00970451420,00821764210,00913187440,00686495430,01012657330,00881485656140,00816912120,01012568060,00966723810,00837340860,00943115110,00757924700,01012657330,00884187656150,00820880360,01049104980,00956196760,0087427430,01023460230,00914594890,00997560210,00891470956170,00832011830,0185172430,00944630770,00890474580,0112865840,0111555880,0098275510,00926563256180,0084556610,01126426600,00934245130,00981859110,0118550870,01234576340,0097511870,01001534026200,0087763170,0122383880,00912516930,0095081770,01234576340,0097511870,01001634026210,0089517660,01272263570,00896714510,0098632940,01384385440,01655468660,0093116890,011295092 <td>608</td> <td>0,0078936428</td> <td>0,0086161897</td> <td>0,0095908937</td> <td>0,0075903595</td> <td>0,0080967362</td> <td>0,0043053203</td> <td>0,0100409128</td> <td>0,0073167610</td>	608	0,0078936428	0,0086161897	0,0095908937	0,0075903595	0,0080967362	0,0043053203	0,0100409128	0,0073167610
6100,00791284170,00895285980,00967906090,00781779460,00840672290,0051815340,01010850440,00761123036110,00793723450,00915136220,00970172110,00796221940,00863586240,00575983630,01015870950,00784318626120,0080605270,00936772490,00971026830,0088732570,00887422540,00628446220,01012790740,00798412576130,00807233040,00958726550,00970451420,00821764210,00913187440,00686495430,01010800050,00881886776140,00812547690,00980932900,00966723810,00837340860,00943115110,00757924700,01012657330,00881818776150,00820880360,01049104980,00956196760,00874827430,01023460230,00914594890,00997560210,00891470956170,0082011830,01085172430,00944630770,00880474580,011155880,0098756210,00926563256180,00844556610,01126426600,00931425130,0098883290,01124865840,0111651290,00982875510,00962688776190,00859420000,0117616160,00926034410,00931859110,01363928630,0096522110,01040463066200,00875763170,0122283580,00991251630,00986829840,01363928630,0096522110,01040463066210,00893617060,01272263570,00896714510,00986829840,01363928630,01363928630,0099316890,01129509266230,009487248	609	0,0078969317	0,0087721506	0,0096434660	0,0076914341	0,0082213744	0,0046866661	0,0100676995	0,0074293327
6110,00793723450,00915136220,00970172110,00796221940,00863586240,00575983630,01015870950,00784318626120,0080605270,00936772490,00971026830,00808536730,00887422540,00628446220,01012790740,00798412576130,00807233040,00958726550,00970451420,00821764210,00913187440,00686495430,01012657330,00831886776140,00816912120,01012568060,00966723810,00837340860,00943115110,00757924700,01012657330,00881818776150,00816912120,01012568060,00961806530,0085458250,00981143480,00834786920,0100751300,00864107676160,00820880360,01049104980,00956196760,00874827430,01023460230,00914594890,00997560210,00891470956170,00832011830,01085172430,00944630770,00890474580,01072245430,0101155880,00989797180,00926563256180,00844556610,01126426600,00934245130,0093883290,01124865840,01116651290,00982875510,0096268776190,00857563170,0122383880,00912516930,00950981770,01243083010,01363928630,0096522110,01040463066210,0093167060,01272263570,00896714510,00988529840,01384385440,01655468660,0093116890,0112950926230,00949872480,0134506610,0086338040,01000581590,01470715830,0183074000,0093011689 <td>610</td> <td>0,0079128417</td> <td>0,0089528598</td> <td>0,0096790609</td> <td>0,0078177946</td> <td>0,0084067229</td> <td>0,0051815534</td> <td>0,0101085044</td> <td>0,0076112303</td>	610	0,0079128417	0,0089528598	0,0096790609	0,0078177946	0,0084067229	0,0051815534	0,0101085044	0,0076112303
6120,0080605270,00936772490,00971026830,00808536730,00887422540,00628446220,01112790740,00798412576130,00807233040,00958726550,00970451420,00821764210,00913187440,00686495430,01010800050,00818486536140,00812547690,00980932900,00966723810,00837340860,00943115110,00757924700,01012657330,00838187776150,00816912120,01012568060,00961806530,00855458250,00981143480,00834786920,01007051300,00864107626160,00820880360,01049104980,00956196760,00874827430,01023460230,00914594890,00997560210,00891470986170,00832011830,01085172430,0094630770,00890474580,0107155880,0098975180,00926563256180,00844556610,01126426600,00934245130,0090883290,01124865840,01116651290,00982875510,0092668776190,00859420000,01176161160,00926034410,00931859110,0112850670,01234576340,00977511870,0100153406200,00875763170,01222838380,00912516930,00950981770,01234083010,01363928630,0096522110,01040463086210,00893617060,01272263570,00896714510,00988639860,01384385440,01655468660,00941465960,0112959926230,00921259590,01334506610,0086338040,0100581590,01470715830,01830774000,00930116890,0112658266 </td <td>611</td> <td>0,0079372345</td> <td>0,0091513622</td> <td>0,0097017211</td> <td>0,0079622194</td> <td>0,0086358624</td> <td>0,0057598363</td> <td>0,0101587095</td> <td>0,0078431862</td>	611	0,0079372345	0,0091513622	0,0097017211	0,0079622194	0,0086358624	0,0057598363	0,0101587095	0,0078431862
6130,00807233040,00958726550,00970451420,00821764210,00913187440,00686495430,01010800050,00814886516140,00812547690,00980932900,00966723810,00837340860,00943115110,00757924700,01012657330,0088181776150,00816912120,01012568060,00961806530,00855458250,00981143480,00834786920,01007051300,00864107626160,00820880360,01049104980,00956196760,00874827430,01023460230,00914594890,00997560210,00891470986170,00832011830,01085172430,00944630770,00890474580,01072245430,01011555880,00989797180,00926583296180,00844556610,01126426600,00934245130,00908883290,01124865840,01116651290,00982875510,00962668776190,00859420000,01176161160,00926034410,00931859110,01183526070,01234576340,00977511870,0100153466200,00875763170,0122383880,00912516930,00950981770,01243083010,01363928630,00966522110,01040463086210,00893617060,01272263570,00896714510,00984639860,01384385440,01655468660,00941465960,0112959926230,00949872480,01400192460,00863383040,01000581590,01470715830,01830774000,00930116890,01126582666250,0101486720,01539136560,00833407820,01030615810,0167719870,02234646440,009612	612	0,0080060527	0,0093677249	0,0097102683	0,0080853673	0,0088742254	0,0062844622	0,0101279074	0,0079841257
6140,00812547690,00980932900,00966723810,00837340860,00943115110,00757924700,01012657330,00838187776150,00816912120,01012568060,00961806530,0085548250,00981143480,00834786920,01007051300,00864107626160,00820880360,01049104980,00956196760,00874827430,01023460230,00914594890,00997560210,00891470956170,00832011830,01085172430,00944630770,00890474580,01072245430,01011555880,0098797180,00926563256180,00844556610,01126426600,00934245130,00908883290,01124865840,01116651290,00982875510,0092668776190,00859420000,01176161160,00926034410,00931859110,01183526070,01234576340,00977511870,01000153466200,00875763170,01222838380,00912516930,00950981770,0124083010,01363928630,00966522110,01040463086210,0083617060,01272263570,00896714510,00984639860,01304936790,0150104320,00953363060,01126590926230,00921259590,01334506610,00863383040,01000581590,01470715830,01830774000,00930116890,01126582686240,00979450410,01469584180,00863383040,01060581590,01470715830,01234646440,0096123510,0128879746260,0101486720,01539136560,00833407820,01030615810,0167719870,02234646440,0096212351	613	0,0080723304	0,0095872655	0,0097045142	0,0082176421	0,0091318744	0,0068649543	0,0101080005	0,0081488651
6150,00816912120,01012568060,00961806530,00855458250,00981143480,00834786920,01007051300,00864107626160,00820880360,01049104980,00956196760,00874827430,01023460230,00914594890,00997560210,00891470956170,00832011830,01085172430,00944630770,00890474580,01072245430,01011555880,00989797180,00926563296180,00844556610,01126426600,00934245130,00908883290,01124865840,01116651290,00982875510,0092668776190,00859420000,01176161160,00926034410,00931859110,01183526070,01234576340,00977511870,0100153406200,00875763170,01223838380,00912516930,00950981770,01243083010,01363928630,00966522110,01040463086210,00893617060,01272263570,00896714510,00984639860,01304936790,0150104320,00953363060,01129590926220,00921259590,01334506610,00879885040,00984639860,01384385440,01655468660,00941465960,01129590926230,00949872480,01400192460,00863383040,01000581590,01470715830,01830774000,00930116890,011265826866250,01011486720,01539136560,00833407820,01306151810,01667719870,02234646440,00906123510,01288879746260,0106469490,01609929340,00189114910,0104664350,01775152300,02450386490,0089	614	0,0081254769	0,0098093290	0,0096672381	0,0083734086	0,0094311511	0,0075792470	0,0101265733	0,0083818777
6160,00820880360,01049104980,00956196760,00874827430,01023460230,00914594890,00997560210,00891470986170,00832011830,01085172430,00944630770,00890474580,01072245430,01011555880,00989797180,00926563256180,00844556610,01126426600,00934245130,00908883290,01124865840,01116651290,00982875510,00926668776190,00859420000,01176161160,00926034410,00931859110,01183526070,01234576340,00977511870,0100153406200,00875763170,01223838380,00912516930,00950981770,01243083010,01363928630,00966522110,01040463086210,00893617060,01272263570,00896714510,00984639860,01364936790,01500104320,00953363060,01082462816220,00921259590,01334506610,00879885040,00984639860,01384385440,01655468660,00941465960,0112959996230,00949872480,01400192460,00863383040,01000581590,01470715830,01830774000,00930116890,01180779286240,00979450410,01469584180,00847489420,0116191950,01664852000,02234646440,00906123510,01288879746250,01011486720,0153136560,00833407820,0130615810,01667718870,02234646440,00906123510,01288879746260,01046469490,0160929340,00819114910,01044664350,01775152300,02450386490,008924	615	0,0081691212	0,0101256806	0,0096180653	0,0085545825	0,0098114348	0,0083478692	0,0100705130	0,0086410762
6170,00832011830,01085172430,00944630770,00890474580,01072245430,01011555880,00989797180,00926563256180,00844556610,01126426600,00934245130,00908883290,01124865840,01116651290,00982875510,0092668776190,00859420000,01176161160,00926034410,00931859110,01183526070,01234576340,00977511870,01000153406200,00875763170,01223838380,00912516930,00950981770,01243083010,01363928630,00966522110,01040463086210,00893617060,01272263570,00896714510,00968529840,01304936790,01500104320,00953363060,01082462816220,00921259590,01334506610,00879885040,00984639860,01384385440,01655468660,00941465960,01129599926230,00949872480,01400192460,00863383040,01000581590,01470715830,01830774000,00930116890,0112959926240,00979450410,01469584180,00847489420,0116191950,01564852000,0229352230,00919603310,01236582686250,01111486720,01539136560,00833407820,0130615810,01667719870,02234646440,00906123510,01298879746260,01046469490,0160929340,00819114910,01044664350,01775152300,02450386490,00892428880,0136586244	616	0,0082088036	0,0104910498	0,0095619676	0,0087482743	0,0102346023	0,0091459489	0,0099756021	0,0089147099
6180,00844556610,01126426600,00934245130,0090883290,01124865840,01116651290,00982875510,0096268776190,00859420000,01176161160,00926034410,00931859110,01183526070,01234576340,00977511870,01000153406200,00875763170,01223838380,00912516930,00950981770,01243083010,01363928630,00966522110,01040463086210,00893617060,01272263570,00896714510,00968529840,01304936790,0150104320,00953363060,01082462816220,00921259590,01334506610,00879885040,00984639860,01384385440,01655468660,00941465960,01129599926230,00949872480,01400192460,00863383040,01000581590,01470715830,01830774000,00930116890,01180779286240,00979450410,01469584180,00847489420,01016191950,01564852000,022352230,00919603310,01236582666250,01011486720,01539136560,00833407820,01030615810,01667719870,02234646440,00906123510,0128879746260,01046469490,01609929340,00819114910,01044664350,01775152300,02450386490,00892428880,0136586244	617	0,0083201183	0,0108517243	0,0094463077	0,0089047458	0,0107224543	0,0101155588	0,0098979718	0,0092656329
6190,00859420000,01176161160,00926034410,00931859110,01183526070,01234576340,00977511870,0100153406200,00875763170,01223838380,00912516930,00950981770,01243083010,01363928630,00966522110,01040463086210,00893617060,01272263570,00896714510,00968529840,01304936790,01500104320,00953363060,01082462836220,00921259590,01334506610,00879885040,00984639860,01384385440,01655468660,00941465960,01129599246230,00949872480,01400192460,00863383040,01000581590,01470715830,01830774000,00930116890,01180779286240,00979450410,01469584180,00847489420,0116191950,01564852000,0223352230,00919603310,01236582666250,01011486720,01539136560,00833407820,01030615810,01667719870,02234646440,00906123510,0128879746260,01046469490,01609929340,00819114910,01044664350,01775152300,02450386490,00892428880,0136586244	618	0,0084455661	0,0112642660	0,0093424513	0,0090888329	0,0112486584	0,0111665129	0,0098287551	0,0096266877
620 0,0087576317 0,0122383838 0,0091251693 0,0095098177 0,0124308301 0,0136392863 0,009652211 0,0104046308 621 0,0089361706 0,0127226357 0,0089671451 0,0096852984 0,0130493679 0,0150010432 0,0095336306 0,0102426283 622 0,0092125959 0,013450661 0,0087988504 0,0098463986 0,0138438544 0,0165546866 0,0094146596 0,011295999 623 0,0094987248 0,0140019246 0,0086338304 0,0100058159 0,0147071583 0,0183077400 0,0093011689 0,0118077928 624 0,0097945041 0,0146958418 0,0084748942 0,0101619195 0,0156485200 0,0202935223 0,0091960331 0,0126582686 625 0,0101148672 0,0153913656 0,0083340782 0,0103061581 0,0166771987 0,0223464644 0,0090612351 0,012887974 626 0,0104646949 0,0160992934 0,0018911491 0,0104466435 0,0177515230 0,0245038649 0,00389242888 0,0136586244	619	0,0085942000	0,0117616116	0,0092603441	0,0093185911	0,0118352607	0,0123457634	0,0097751187	0,0100015340
621 0,0089361706 0,0127226357 0,0089671451 0,0096852984 0,0130493679 0,0150010432 0,0095336306 0,0108246283 622 0,0092125959 0,0133450661 0,0087988504 0,0098463986 0,0138438544 0,0165546866 0,0094146596 0,011295999 623 0,0094987248 0,0140019246 0,0086338304 0,0100058159 0,0147071583 0,0183077400 0,0093011689 0,0118077928 624 0,0097945041 0,0146958418 0,0084748942 0,011619195 0,0156485200 0,0202935223 0,0091960331 0,0123658269 625 0,0101148672 0,0153913656 0,0083340782 0,0103061581 0,0166771987 0,0223464644 0,0090612351 0,012887974 626 0,0104646949 0,0160992934 0,0081911491 0,0104466435 0,017515230 0,0245038649 0,0089242888 0,0136586244	620	0,0087576317	0,0122383838	0,0091251693	0,0095098177	0,0124308301	0,0136392863	0,0096652211	0,0104046308
622 0,0092125959 0,0133450661 0,0087988504 0,0098463986 0,0138438544 0,0165546866 0,0094146596 0,0112959992 623 0,0094987248 0,0140019246 0,0086338304 0,0100058159 0,0147071583 0,0183077400 0,0093011689 0,0118077928 624 0,0097945041 0,0146958418 0,0084748942 0,0101619195 0,0156485200 0,0202935223 0,0091960331 0,0123658268 625 0,0101148672 0,0153913656 0,0083340782 0,0103061581 0,0166771987 0,0223464644 0,0090612351 0,0129887974 626 0,0104646949 0,0160992934 0,0081911491 0,0104466435 0,0177515230 0,0245038649 0,0089242888 0,0136586244	621	0,0089361706	0,0127226357	0,0089671451	0,0096852984	0,0130493679	0,0150010432	0,0095336306	0,0108246281
623 0,0094987248 0,0140019246 0,0086338304 0,0100058159 0,0147071583 0,0183077400 0,0093011689 0,0118077926 624 0,0097945041 0,0146958418 0,0084748942 0,0101619195 0,0156485200 0,0202935223 0,0091960331 0,0123658269 625 0,0101148672 0,0153913656 0,0083340782 0,0103061581 0,0166771987 0,0223464644 0,0090612351 0,0129887974 626 0,0104646949 0,0160992934 0,0081911491 0,0104466435 0,0177515230 0,0245038649 0,0089242888 0,0136586244	622	0,0092125959	0,0133450661	0,0087988504	0,0098463986	0,0138438544	0,0165546866	0,0094146596	0,0112959092
624 0,0097945041 0,0146958418 0,0084748942 0,0101619195 0,0156485200 0,0202935223 0,0091960331 0,0123658269 625 0,0101148672 0,0153913656 0,0083340782 0,0103061581 0,0166771987 0,0223464644 0,0090612351 0,0129887974 626 0,0104646949 0,0160992934 0,0081911491 0,0104466435 0,0177515230 0,0245038649 0,0089242888 0,0136586244	623	0,0094987248	0,0140019246	0,0086338304	0,0100058159	0,0147071583	0,0183077400	0,0093011689	0,0118077928
625 0,0101148672 0,0153913656 0,0083340782 0,0103061581 0,0166771987 0,0223464644 0,0090612351 0,0129887974 626 0,0104646949 0,0160992934 0,0081911491 0,0104466435 0,0177515230 0,0245038649 0,0089242888 0,01356586244	624	0,0097945041	0,0146958418	0,0084748942	0,0101619195	0,0156485200	0,0202935223	0,0091960331	0,0123658269
626 0,0104646949 0,0160992934 0,0081911491 0,0104466435 0,0177515230 0,0245038649 0,0089242888 0,0136586244	625	0,0101148672	0,0153913656	0,0083340782	0,0103061581	0,0166771987	0,0223464644	0,0090612351	0,0129887974
	626	0,0104646949	0,0160992934	0,0081911491	0,0104466435	0,0177515230	0,0245038649	0,0089242888	0,0136586244

627	0,0109169662	0,0168351298	0,0080249920	0,0105775557	0,0189001251	0,0269999748	0,0088203203	0,0144545505
628	0,0113943904	0,0174435931	0,0078672851	0,0106539121	0,0200505144	0,0295650287	0,0086763173	0,0153011367
629	0,0118931705	0,0179364522	0,0077177085	0,0106813172	0,0211995478	0,0321850509	0,0084969706	0,0161909504
630	0,0124978894	0,0180924396	0,0075414508	0,0107455123	0,0221286098	0,0349814809	0,0083894589	0,0171259761
631	0,0131119148	0,0180740861	0,0073677993	0,0107940128	0,0229350620	0,0377572660	0,0082683565	0,0180341587
632	0,0137224559	0,0176682597	0,0072145843	0,0107872756	0,0234697995	0,0404318473	0,0080837540	0,0188565520
633	0,0144241103	0,0169529380	0,0070463837	0,0107406108	0,0234792764	0,0427912934	0,0079281816	0,0196312258
634	0,0151861657	0,0160383256	0,0068680691	0,0106684016	0,0231548094	0,0449586484	0,0077905274	0,0203782815
635	0,0158971012	0,0148469808	0,0067317826	0,0105880396	0,0221464658	0,0461824858	0,0076256747	0,0206510943
636	0,0165985224	0,0136491113	0,0066001539	0,0104916589	0,0208912304	0,0469580109	0,0074652244	0,0206907109
637	0,0172849776	0,0124510295	0,0064754472	0,0103639821	0,0191812779	0,0468970193	0,0073147363	0,0202937698
638	0,0177977929	0,0113474721	0,0063342306	0,0102177709	0,0173081345	0,0458985893	0,0071410615	0,0195715281
639	0,0182125000	0,0102957732	0,0061853946	0,0100656031	0,0153652714	0,0444160546	0,0069615318	0,0186793288
640	0,0182562009	0,0094690273	0,0060378544	0,0099538919	0,0135408109	0,0418176104	0,0068557235	0,0173906291
641	0,0180673979	0,0087276613	0,0058767094	0,0097868629	0,0118276576	0,0388101288	0,0067187322	0,0160354713
642	0,0175669825	0,0081107999	0,0056994059	0,0095475512	0,0102846386	0,0352830371	0,0065415677	0,0146059468
643	0,0166323749	0,0075951650	0,0055876543	0,0093602752	0,0090478470	0,0315512574	0,0064057317	0,0134450685
644	0,0155385333	0,0071306837	0,0054855938	0,0091853263	0,0079377936	0,0277705405	0,0062777759	0,0123800851
645	0,0142296092	0,0068110772	0,0053429388	0,0090064257	0,0071026354	0,0241070040	0,0061357302	0,0114738783
646	0,0128991173	0,0065015279	0,0052089859	0,0088080997	0,0063455579	0,0207214273	0,0059884942	0,0107925418
647	0,0115461338	0,0062007162	0,0050828207	0,0085912077	0,0056598059	0,0175886616	0,0058360783	0,0103192163
648	0,0102909328	0,0059471984	0,0049151217	0,0083713178	0,0051557222	0,0149389276	0,0057200205	0,0100529252
649	0,0091333883	0,0057158854	0,0047600681	0,0081614852	0,0046940577	0,0125275497	0,0056072328	0,0098536150
650	0,0082238814	0,0055310134	0,0046584968	0,0079815164	0,0042849549	0,0106272453	0,0054888962	0,0097720755
651	0,0074148195	0,0053481066	0,0045432862	0,0078006736	0,0039563000	0,0090275058	0,0053587087	0,0098026203
652	0,0066716764	0,0051676528	0,0044204892	0,0076208459	0,0036793215	0,0076210215	0,0052222050	0,0099044675
653	0,0061605259	0,0050396723	0,0043006413	0,0074057402	0,0034644481	0,0065245770	0,0050798815	0,0100992370
654	0,0056795674	0,0049109568	0,0041836828	0,0072063813	0,0032608869	0,0055320814	0,0049530199	0,0103125585
655	0,0052494567	0,0047797741	0,0040726957	0,0070388475	0,0030773875	0,0047281636	0,0048560075	0,0105564391
656	0,0048621941	0,0046543936	0,0039553347	0,0068602171	0,0029168795	0,0040476572	0,0047435123	0,0107810960
657	0,0045005663	0,0045308893	0,0038364271	0,0066744550	0,0027664698	0,0034330408	0,0046257916	0,0110020481
658	0,0042206216	0,0043977550	0,0037235316	0,0064512361	0,0026212524	0,0029828781	0,0045132360	0,0112717305
659	0,0039730363	0,0042883033	0,0036192167	0,0062744268	0,0024966331	0,0025760848	0,0043998330	0,0114998115
660	0,0037655677	0,0042079406	0,0035257387	0,0061544329	0,0023974144	0,0022233196	0,0042859426	0,0116769563
661	0,0035661451	0,0041113717	0,0034280609	0,0059964396	0,0022996249	0,0019384703	0,0041859190	0,0116625393
662	0,0033777343	0,0040132307	0,0033294071	0,0058258520	0,0022063122	0,0016824049	0,0040879287	0,0115559889
663	0,0032276890	0,0039226973	0,0032297394	0,0056356178	0,0021301648	0,0014845351	0,0039848263	0,0112330909
664	0,0031028292	0,0038454822	0,0031348199	0,0054896767	0,0020457525	0,0012999722	0,0038798243	0,0107003514
665	0,0029977770	0,0037787503	0,0030436585	0,0053785532	0,0019548782	0,0011259016	0,0037733668	0,0100030526
666	0,0028634174	0,0036437212	0,0029702080	0,0051947283	0,0018860562	0,0010029782	0,0036383854	0,0090984553
667	0,0027362171	0,0035262284	0,0028889056	0,0050180405	0,0018166126	0,0008925811	0,0035230514	0,0081644377
668	0,0026289169	0,0034602635	0,0027844336	0,0048682368	0,0017404036	0,0008002486	0,0034569226	0,0071833701
669	0,0025353347	0,0033892910	0,0027039119	0,0047383225	0,0016813060	0,0007143793	0,0033701571	0,0062588114
670	0,0024486155	0,0033159587	0,0026348234	0,0046182997	0,0016314663	0,0006331936	0,0032738540	0,0053741365
671	0,0023539650	0,0032376673	0,0025463822	0,0044853650	0,0015952355	0,0005812331	0,0031853352	0,0047022421
672	0,0022807309	0,0031605851	0,0024602556	0,0043543363	0,0015452625	0,0005249367	0,0030956649	0,0041008762
673	0,0022378909	0,0030849464	0,0023771116	0,0042255367	0,0014754144	0,0004622021	0,0030040044	0,0035980806
674	0,0021577905	0,0030385290	0,0023286491	0,0040977355	0,0014172369	0,0004323889	0,0029306230	0,0031811124
675	0,0020702567	0,0029875585	0,0022869671	0,0039746114	0,0013629462	0,0004077637	0,0028604215	0,0028031802
676	0,0020006866	0,0028668705	0,0022297803	0,0038778498	0,0013129161	0,0003611327	0,0027806400	0,0025136080

677	0,0019406397	0,0027826894	0,0021580083	0,0037473156	0,0012679511	0,0003210505	0,0027019489	0,0022579506
678	0,0018892233	0,0027313842	0,0020732535	0,0035866697	0,0012275977	0,0002869170	0,0026243454	0,0020331849
679	0,0018281791	0,0026563259	0,0020050366	0,0034934143	0,0012089501	0,0002668246	0,0025390433	0,0018748270
680	0,0017743308	0,0025849200	0,0019446780	0,0034036734	0,0011840812	0,0002469158	0,0024607912	0,0017255157
681	0,0017421291	0,0025297773	0,0018997409	0,0033019523	0,0011357074	0,0002231272	0,0024030061	0,0015794269
682	0,0016767329	0,0024666577	0,0018406681	0,0031991061	0,0010944529	0,0002041517	0,0023274882	0,0014587516
683	0,0015943812	0,0023998581	0,0017741705	0,0030962918	0,0010573570	0,0001878453	0,0022432693	0,0013529667
684	0,0015598435	0,0023553444	0,0017103987	0,0030062827	0,0010264183	0,0001701046	0,0021950357	0,0012780794
685	0,0015257802	0,0023006034	0,0016589313	0,0029216239	0,0009883617	0,0001581641	0,0021345164	0,0012011935
686	0,0014923876	0,0022301766	0,0016261584	0,0028450007	0,0009393926	0,0001550557	0,0020551655	0,0011211556
687	0,0014408654	0,0021669338	0,0015606948	0,0027477941	0,0009128402	0,0001403814	0,0019930184	0,0010573894
688	0,0013870046	0,0021076961	0,0014915821	0,0026483780	0,0008904748	0,0001251452	0,0019382928	0,0009986288
689	0,0013494884	0,0020570951	0,0014564193	0,0025686780	0,0008521209	0,0001266169	0,0018948042	0,0009383396
690	0,0013133340	0,0019989318	0,0014172315	0,0024897663	0,0008226731	0,0001206916	0,0018399131	0,0008925429
691	0,0012782967	0,0019336378	0,0013742141	0,0024113224	0,0008013003	0,0001079743	0,0017743875	0,0008599241
692	0,0012467806	0,0018833161	0,0013329560	0,0023280375	0,0007722876	0,0001007723	0,0017296247	0,0008100062
693	0,0012113233	0,0018352388	0,0012914152	0,0022498202	0,0007480021	0,0000946880	0,0016849006	0,0007668919
694	0,0011639740	0,0017881831	0,0012483233	0,0021862856	0,0007386773	0,0000898282	0,0016334695	0,0007472550
695	0,0011316132	0,0017451544	0,0012042597	0,0021166683	0,0007178471	0,0000815569	0,0015923836	0,0007191814
696	0,0011071636	0,0017040798	0,0011598935	0,0020442486	0,0006909070	0,0000717231	0,0015563165	0,0006870647
697	0,0010724482	0,0016516109	0,0011219289	0,0019875085	0,0006678727	0,0000727328	0,0014947634	0,0006743126
698	0,0010438333	0,0015993969	0,0010900049	0,0019308522	0,0006442860	0,0000713528	0,0014404655	0,0006558406
699	0,0010246234	0,0015478549	0,0010674124	0,0018746363	0,0006199897	0,0000663593	0,0013974570	0,0006288021
700	0,0009927492	0,0015076928	0,0010299310	0,0018141679	0,0005926270	0,0000623258	0,0013492541	0,0006053825
701	0,0009572317	0,0014709511	0,0009891921	0,0017536326	0,0005672018	0,0000593933	0,0013031496	0,0005832445
702	0,0009239941	0,0014348946	0,0009577042	0,0017024663	0,0005609362	0,0000617591	0,0012820751	0,0005626471
703	0,0008949548	0,0013956156	0,0009239830	0,0016450259	0,0005457850	0,0000625437	0,0012505855	0,0005394472
704	0,0008700859	0,0013532292	0,0008881136	0,0015814992	0,0005219210	0,0000617742	0,0012089066	0,0005137196
705	0,0008585010	0,0013204822	0,0008655913	0,0015290598	0,0005116567	0,0000564399	0,0011852848	0,0004910615
706	0,0008402156	0,0012842304	0,0008416809	0,0014803874	0,0005016274	0,0000522196	0,0011580503	0,0004726775
707	0,0007945562	0,0012317017	0,0008067004	0,0014370013	0,0004858193	0,0000534334	0,0011105889	0,0004656497
708	0,0007573640	0,0011971536	0,0007723581	0,0013961802	0,0004693656	0,0000507309	0,0010795846	0,0004561084
709	0,0007254006	0,0011737527	0,0007383873	0,0013569316	0,0004525011	0,0000455947	0,0010587833	0,0004450043
710	0,0007161756	0,0011315873	0,0007121663	0,0013140446	0,0004291320	0,0000409620	0,0010272123	0,0004306097
711	0,0007002063	0,0010900800	0,0006884843	0,0012700805	0,0004117472	0,0000350929	0,0010000102	0,0004176477
712	0,0006726784	0,0010498049	0,0006689366	0,0012242796	0,0004044346	0,0000271043	0,0009802679	0,0004071169
713	0,0006540138	0,0010273530	0,0006413879	0,0011882450	0,0003859466	0,0000370928	0,0009493665	0,0003895154
714	0,0006378036	0,0010093995	0,0006129784	0,0011547174	0,0003660774	0,0000502448	0,0009152780	0,0003714842
715	0,0006180255	0,0009818657	0,0005952898	0,0011154832	0,0003606264	0,0000457523	0,0008833374	0,0003653037
716	0,0006012827	0,0009584895	0,0005763301	0,0010778509	0,0003520394	0,0000423659	0,0008629215	0,0003446708
717	0,0005873308	0,0009389319	0,0005560415	0,0010415163	0,0003404072	0,0000400144	0,0008533698	0,0003101294
718	0,0005638461	0,0008989074	0,0005337604	0,0009969340	0,0003330528	0,0000430086	0,0008360035	0,0003168240
719	0,0005433239	0,0008619369	0,0005094484	0,0009597805	0,0003249953	0,0000434520	0,0008123647	0,0003224301
720	0,0005337811	0,0008397450	0,0004805761	0,0009451334	0,0003137974	0,0000354711	0,0007747798	0,0003121693
721	0,0005100227	0,0008224753	0,0004679252	0,0009126640	0,0003024433	0,0000420564	0,0007485697	0,0002959626
722	0,0004796406	0,0008071099	0,0004629635	0,0008715912	0,0002911266	0,0000547774	0,0007285535	0,0002776025
723	0,0004668370	0,0007745856	0,0004387164	0,0008450910	0,0002819615	0,0000329173	0,0007130275	0,0002809326
724	0,0004539386	0,0007449902	0,0004215329	0,0008208291	0,0002725420	0,0000190823	0,0006953493	0,0002787719
725	0,0004408417	0,0007192043	0,0004138253	0,0007994679	0,0002627274	0,0000160466	0,0006746594	0,0002691606

727	0,0004106909	0,0006823900	0,0003674797	0,0007503749	0,0002497683	0,0000286487	0,0006295257	0,0002420771
728	0,0003981911	0,0006555648	0,0003546401	0,0007132409	0,0002340652	0,0000300754	0,0006162053	0,0002329510
729	0,0003925205	0,0006321087	0,0003439569	0,0006841788	0,0002275332	0,0000256858	0,0006013361	0,0002291421
730	0,0003917298	0,0006110337	0,0003348031	0,0006608566	0,0002275565	0,0000171278	0,0005853384	0,0002291334
731	0,0003709818	0,0005911786	0,0003105657	0,0006389222	0,0002169244	0,0000204187	0,0005661365	0,0002135794
732	0,0003555670	0,0005765157	0,0002912943	0,0006172363	0,0002057787	0,0000215530	0,0005461731	0,0001994758
733	0,0003502619	0,0005708243	0,0002813435	0,0005961698	0,0001943356	0,0000185002	0,0005252807	0,0001886613
734	0,0003339278	0,0005561885	0,0002691135	0,0005761055	0,0001945947	0,0000143381	0,0005153537	0,0001859386
735	0,0003176702	0,0005387017	0,0002567100	0,0005551351	0,0001957040	0,0000118648	0,0005066865	0,0001860993
736	0,0003196737	0,0005209121	0,0002472687	0,0005282558	0,0001826180	0,0000200166	0,0004873291	0,0001884365
737	0,0003131634	0,0005038930	0,0002381034	0,0005071522	0,0001740318	0,0000247677	0,0004706173	0,0001830182
738	0,0002999056	0,0004875424	0,0002291873	0,0004907097	0,0001690512	0,0000268003	0,0004560638	0,0001714512
739	0,0002971640	0,0004710796	0,0002207310	0,0004781908	0,0001657339	0,0000317622	0,0004472331	0,0001757132
740	0,0002902482	0,0004549372	0,0002136946	0,0004617718	0,0001619283	0,0000312393	0,0004379234	0,0001704559
741	0,0002744845	0,0004393545	0,0002092695	0,0004375909	0,0001570337	0,0000201065	0,0004271463	0,0001458096
742	0,0002730026	0,0004298891	0,0001936649	0,0004179784	0,0001496365	0,0000168344	0,0004006351	0,0001382648
743	0,0002745750	0,0004203227	0,0001763429	0,0004009021	0,0001417535	0,0000153985	0,0003730038	0,0001370283
744	0,0002630506	0,0003958606	0,0001736958	0,0003898863	0,0001364856	0,0000077680	0,0003745656	0,0001375544
745	0,0002492925	0,0003801410	0,0001686324	0,0003734015	0,0001328413	0,0000062919	0,0003632032	0,0001357190
746	0,0002335378	0,0003724275	0,0001613836	0,0003519825	0,0001306867	0,0000104243	0,0003401044	0,0001317399
747	0,0002269628	0,0003625986	0,0001527233	0,0003403432	0,0001295842	0,0000145814	0,0003332284	0,0001317149
748	0,0002208528	0,0003530893	0,0001453835	0,0003281012	0,0001283289	0,0000194358	0,0003234386	0,0001313356
749	0,0002139738	0,0003446980	0,0001412487	0,0003125959	0,0001265269	0,0000258381	0,0003039920	0,0001293945
750	0,0002125310	0,0003340243	0,0001382712	0,0003045761	0,0001233885	0,0000203571	0,0002980358	0,0001208131
751	0,0002120652	0,0003225276	0,0001349625	0,0002983875	0,0001191301	0,0000118469	0,0002959005	0,0001098622
752	0,0002004377	0,0003125420	0,0001246387	0,0002811147	0,0001100716	0,0000204010	0,0002780946	0,0001026183
753	0,0001962396	0,0003060046	0,0001189938	0,0002639190	0,0001055188	0,0000248054	0,0002694607	0,0001017793
754	0,0001996599	0,0003030075	0,0001181498	0,0002468195	0,0001055885	0,0000249517	0,0002702356	0,0001075057
755	0,0001883100	0,0002907561	0,0001135931	0,0002452346	0,0000910452	0,0000110730	0,0002663389	0,0001043073
756	0,0001792433	0,0002782964	0,0001075461	0,0002449395	0,0000811385	0,0000020497	0,0002576218	0,0000993080
757	0,0001801753	0,0002680966	0,0000989413	0,0002432964	0,0000869894	0,0000091451	0,0002384316	0,0000925040
758	0,0001756700	0,0002596228	0,0000933482	0,0002328160	0,0000903386	0,0000102864	0,0002284298	0,0000886561
759	0,0001685548	0,0002521489	0,0000893826	0,0002180211	0,0000914172	0,000090216	0,0002229806	0,0000860712
760	0,0001605524	0,0002473389	0,0000882914	0,0002011642	0,0000803841	0,0000112737	0,0002215239	0,0000826503
761	0,0001545503	0,0002393663	0,0000854393	0,0001897688	0,0000774981	0,0000097819	0,0002148851	0,0000795002
762	0,0001507165	0,0002279860	0,0000806875	0,0001842785	0,0000834232	0,0000042411	0,0002026549	0,0000766460
763	0,0001522392	0,0002174003	0,0000803330	0,0001721315	0,0000776837	0,000080736	0,0001901400	0,0000688303
764	0,0001510512	0,0002077954	0,0000781906	0,0001613504	0,0000736781	0,0000113278	0,0001786615	0,0000643060
765	0,0001408600	0,0002006645	0,0000698280	0,0001567013	0,0000784186	0,000097009	0,0001702152	0,0000702785
766	0,0001426718	0,0001940104	0,0000676688	0,0001522270	0,0000818505	0,000095617	0,0001650289	0,0000741054
767	0,0001501555	0,0001879768	0,0000685875	0,0001478878	0,0000842014	0,0000101146	0,0001618679	0,0000768162
768	0,0001369030	0,0001938918	0,0000636603	0,0001459658	0,0000751442	0,0000078973	0,0001679974	0,0000793440
769	0,0001286659	0,0001890706	0,0000588653	0,0001398440	0,0000681511	0,0000049140	0,0001663206	0,0000777284
770	0,0001277657	0,0001687338	0,0000543019	0,0001276886	0,0000642068	0,000008448	0,0001533485	0,0000701234
771	0,0001217358	0,0001739537	0,0000500115	0,0001233807	0,0000608014	0,000000000	0,0001457038	0,0000701749
772	0,0001153851	0,0001816266	0,0000463757	0,0001214943	0,0000581251	0,000000000	0,0001396131	0,0000710905
773	0,0001141020	0,0001687189	0,0000456296	0,0001214018	0,0000583365	0,000000000	0,0001344284	0,0000664941
774	0,0001150337	0,0001609870	0,0000432149	0,0001157616	0,0000608013	0,0000076603	0,0001272756	0,0000591787
775	0,0001176917	0,0001572846	0,0000394995	0,0001057974	0,0000650229	0,0000212918	0,0001185871	0,0000497420
776	0,0001020552	0,0001574188	0,0000397924	0,0001069850	0,0000610385	0,000086060	0,0001214149	0,0000536872

777	0,0000942929	0,0001554949	0,0000418619	0,0001077390	0,0000560293	0,0000050418	0,0001202030	0,0000543369
778	0,0001012277	0,0001498107	0,0000467601	0,0001071022	0,0000497505	0,0000187667	0,0001113610	0,0000485225
779	0,0000992417	0,0001404904	0,0000429371	0,0001002981	0,0000521602	0,0000118837	0,0001109696	0,0000457793
780	0,0000940235	0,0001315677	0,0000383009	0,0000928962	0,0000566565	0,0000032669	0,0001102455	0,0000444426

	Spektren bei 4	000K, 500IX						
<mark>λ [</mark> nm]			Stra	hlungsflussdic	nte [Watt*m ⁻² *	nm]		
	K-Eye	Arri	P7	P12	Source4 S2	TourLED	Viva CMY	Source4 S3
380	0,0000721039	0,0000004413	0,0000037729	0,0000092619	0,0000432160	0,0000004712	0,000000000	0,0000097699
381	0,0000228729	0,0000025802	0,0000011968	0,0000541514	0,0000836804	0,0000027549	0,000000000	0,0000571212
382	0,000000000	0,0000024300	0,0000012472	0,0000557373	0,0000905572	0,0000025945	0,0000067751	0,0000548833
383	0,000000000	0,000003319	0,0000035361	0,0000203996	0,0000687138	0,000003544	0,0000192097	0,0000104300
384	0,000000000	0,0000065260	0,0000414558	0,0000159347	0,0000471874	0,000000000	0,0000354272	0,0000262891
385	0,000000000	0,0000115494	0,0000748513	0,0000175587	0,0000275406	0,0000003101	0,0000455424	0,0000505959
386	0,000000000	0,0000038415	0,0000584054	0,0000208911	0,0000129043	0,0000022407	0,0000233083	0,0000651792
387	0,000000000	0,0000024869	0,0000441571	0,0000242747	0,0000117225	0,0000120034	0,0000177528	0,0000512887
388	0,000000000	0,0000075036	0,0000319372	0,0000277451	0,0000240520	0,0000297556	0,0000288970	0,0000085895
389	0,000000000	0,0000043875	0,0000208150	0,0000366260	0,0000322933	0,0000338152	0,0000412931	0,0000078406
390	0,000000000	0,000000000	0,0000136995	0,0000472943	0,0000382644	0,0000346647	0,0000520832	0,0000187046
391	0,000000000	0,000000000	0,0000324800	0,0000647149	0,0000366851	0,0000374659	0,0000517549	0,0000412789
392	0,0000006913	0,0000006580	0,0000344552	0,0000597198	0,0000366060	0,0000406666	0,0000577616	0,0000419561
393	0,0000022413	0,0000021336	0,0000154222	0,0000267611	0,0000384073	0,0000443485	0,0000716484	0,0000152733
394	0,0000100174	0,0000013586	0,0000140615	0,0000313888	0,0000368039	0,0000397932	0,0000624289	0,0000366031
395	0,0000197250	0,0000033821	0,0000183255	0,0000475552	0,0000341438	0,0000332304	0,0000475626	0,0000684551
396	0,0000318066	0,0000522038	0,0000232027	0,0000619274	0,0000308555	0,0000325723	0,0000505621	0,0000467183
397	0,0000347730	0,0000736394	0,0000318793	0,0000744173	0,0000349828	0,0000336442	0,0000564483	0,0000391920
398	0,0000242252	0,0000547585	0,0000463910	0,0000843547	0,0000502267	0,0000373031	0,0000667410	0,0000526382
399	0,0000145449	0,0000617134	0,0000581268	0,0000864956	0,0000462155	0,0000497311	0,0000639774	0,0000687781
400	0,0000062336	0,0000775700	0,0000683632	0,0000856819	0,0000356405	0,0000649309	0,0000559346	0,0000851378
401	0,0000248050	0,0000597853	0,0000731000	0,0000882481	0,0000524667	0,0000679286	0,0000382924	0,0000856521
402	0,0000408590	0,0000533737	0,0000740072	0,0000894552	0,0000637234	0,0000558096	0,0000368759	0,0000910124
403	0,0000527751	0,0000668392	0,0000681631	0,0000882600	0,0000653685	0,0000168262	0,0000639811	0,0001049727
404	0,0000610663	0,0000712175	0,0000808986	0,0000859604	0,0000772259	0,0000180140	0,0000724126	0,0001123498
405	0,0000675858	0,0000713262	0,0001021585	0,0000831886	0,0000937195	0,0000379035	0,0000720632	0,0001165974
406	0,0000540517	0,0001073332	0,0001156843	0,0001186004	0,0001142380	0,0000388225	0,0000939268	0,0001424244
407	0,0000540870	0,0001375785	0,0001335291	0,0001540039	0,0001407104	0,0000552742	0,0001051622	0,0001683857
408	0,0000835912	0,0001557957	0,0001613608	0,0001898559	0,0001807590	0,0001059727	0,0000935245	0,0001950724
409	0,0000883177	0,0001724617	0,0001850055	0,0002123585	0,0001869544	0,0001048558	0,0001155588	0,0002283768
410	0,0000788594	0,0001881819	0,0002061684	0,0002271459	0,0001737748	0,0000741164	0,0001567656	0,0002653411
411	0,0000824448	0,0002310456	0,0002235903	0,0002926427	0,0002151798	0,0000988299	0,0002002526	0,0002713344
412	0,0000902755	0,0002682001	0,0002547449	0,0003535084	0,0002574132	0,0001194433	0,0002368415	0,0002883528
413	0,0001076840	0,0002884433	0,0003232212	0,0003981263	0,0002962811	0,0001229307	0,0002567141	0,0003386476
414	0,0001298310	0,0003396919	0,0003903282	0,0004676386	0,0003400857	0,0001550313	0,0002939159	0,0004038496
415	0,0001550452	0,0004114427	0,0004562109	0,0005534843	0,0003869968	0,0002061171	0,0003425413	0,0004787229
416	0,0001911004	0,0005218855	0,0005377017	0,0006390790	0,0004327158	0,0002006330	0,0004093426	0,0005106949
417	0,0002309213	0,0006312078	0,0006321231	0,0007349347	0,0004850012	0,0002000799	0,0004795819	0,0005506711
418	0,0002806725	0,0007286436	0,0007658009	0,0008662678	0,0005599988	0,0002319740	0,0005573794	0,0006299402
419	0,0003506616	0,0008204180	0,0008955717	0,0010199926	0,0006216587	0,0002793580	0,0006384983	0,0007205644
420	0,0004357254	0,0009070856	0,0010212539	0,0011897869	0,0006725169	0,0003383389	0,0007215356	0,0008192514
421	0,0004740958	0,0010445522	0,0012013727	0,0013915377	0,0007544568	0,0004324100	0,0008420538	0,0009418462
422	0,0005206686	0,0011976418	0,0013967280	0,0016052905	0,0008490310	0,0005190015	0,0009731435	0,0010687061
423	0,0006251357	0,0013846838	0,0016222589	0,0018485316	0,0009766855	0,0005563421	0,0011253736	0,0011991048
424	0,0007318816	0,0015722593	0,0018661725	0,0020980162	0,0010801105	0,0006615056	0,0012864885	0,0013375072
425	0,0008395615	0,0017584320	0,0021240294	0,0023505801	0,0011608957	0,0008261627	0,0014539139	0,0014817084
426	0,0009842546	0,0019797985	0,0024582019	0,0026813436	0,0012847753	0,0009370699	0,0016861282	0,0016744747

427	0,0011385121	0,0022145477	0,0028072832	0,0030353540	0,0014167961	0,0010464544	0,0019264882	0,0018849914
428	0,0013128600	0,0024924754	0,0031756381	0,0034475061	0,0015557103	0,0011995486	0,0021591836	0,0021472724
429	0,0015081344	0,0027888460	0,0035661181	0,0038697735	0,0017226939	0,0013849066	0,0024211416	0,0024262755
430	0,0017238284	0,0031028331	0,0039776169	0,0043008790	0,0019173921	0,0016021183	0,0027117062	0,0027212104
431	0,0019684498	0,0035059238	0,0044233630	0,0047261161	0,0020977180	0,0018143555	0,0030418327	0,0030700213
432	0,0022224404	0,0039258687	0,0048852443	0,0051612157	0,0022884831	0,0020301885	0,0033874847	0,0034380852
433	0,0024924863	0,0043242722	0,0053971784	0,0056638420	0,0025628048	0,0022736548	0,0037723049	0,0038482137
434	0,0027931958	0,0047876516	0,0059060458	0,0061907843	0,0028354511	0,0025516018	0,0041650978	0,0042702486
435	0,0031218376	0,0053138164	0,0064017390	0,0067345118	0,0031009086	0,0028621469	0,0045590443	0,0046971583
436	0,0035023134	0,0057780072	0,0068925388	0,0072274085	0,0034623256	0,0031935735	0,0049658965	0,0051414399
437	0,0038784126	0,0062236212	0,0073688027	0,0076978660	0,0038351731	0,0035264775	0,0053698191	0,0055745154
438	0,0042029828	0,0067403607	0,0078411095	0,0081917042	0,0041872614	0,0039000979	0,0058091180	0,0059804796
439	0,0045432103	0,0071970606	0,0082808177	0,0086658005	0,0045708106	0,0042781486	0,0062253217	0,0063273305
440	0,0049086425	0,0075909830	0,0086896086	0,0091249402	0,0049993455	0,0046690403	0,0066219732	0,0066101873
441	0,0052641099	0,0077571311	0,0090603914	0,0094634004	0,0054077874	0,0051551705	0,0070229071	0,0068630552
442	0,0056109123	0,0078351333	0,0094055014	0,0097585837	0,0058066719	0,0056584351	0,0074222862	0,0070843073
443	0,0059314981	0,0077287743	0,0096506134	0,0100052220	0,0061998533	0,0061049638	0,0078263585	0,0071248181
444	0,0062128566	0,0074946764	0,0098612807	0,0101364307	0,0065222819	0,0065918684	0,0081751573	0,0070972246
445	0,0064399389	0,0071007978	0,0100256684	0,0101181256	0,0067490819	0,0071239566	0,0084481713	0,0069833648
446	0,0065696155	0,0066318588	0,0099514680	0,0099883217	0,0068441129	0,0076045105	0,0086469467	0,0066776312
447	0,0066660523	0,0061577898	0,0098035660	0,0098221248	0,0068779097	0,0080506694	0,0088122610	0,0063295764
448	0,0067363156	0,0056328647	0,0095454260	0,0095252065	0,0067048024	0,0084618023	0,0089023321	0,0059642511
449	0,0066984354	0,0051674553	0,0092299138	0,0091553260	0,0065041801	0,0087826353	0,0089291684	0,0056024952
450	0,0065266781	0,0047634444	0,0088358418	0,0086868378	0,0062643385	0,0089981573	0,0088774696	0,0052361889
451	0,0063119160	0,0044064396	0,0083032573	0,0081330953	0,0059100822	0,0091367140	0,0087663230	0,0048511923
452	0,0060730629	0,0040768911	0,0077293129	0,0075536115	0,0055331514	0,0092242893	0,0086214741	0,0044734883
453	0,0056721442	0,0038110508	0,0070452384	0,0068566658	0,0052006888	0,0090458081	0,0082850764	0,0041484989
454	0,0052739580	0,0035710689	0,0063985223	0,0061745915	0,0048728076	0,0088083216	0,0079139107	0,0038578436
455	0,0048744965	0,0033614365	0,0057923148	0,0055037316	0,0045468239	0,0084914811	0,0074932377	0,0036078734
456	0,0045244103	0,0032243341	0,0052166635	0,0048700407	0,0043306168	0,0080213376	0,0070284676	0,0034183357
457	0,0042035341	0,0031175688	0,0046778578	0,0042751911	0,0041645722	0,0075183422	0,0065629101	0,0032603106
458	0,0039005620	0,0030394968	0,0042249338	0,0037475334	0,0040872365	0,0069853365	0,0060550251	0,0031660576
459	0,0036508795	0,0029810920	0,0038121971	0,0032860547	0,0040370550	0,0064502869	0,0055701935	0,0030760504
460	0,0034643183	0,0029464156	0,0034409667	0,0028993824	0,0040204450	0,0058969410	0,0051018382	0,0029885060
461	0,0033253952	0,0029214858	0,0031265376	0,0025621895	0,0040602537	0,0053962719	0,0046415105	0,0029278107
462	0,0032104647	0,0029037744	0,0028376848	0,0022510249	0,0041202694	0,0049234457	0,0041962243	0,0028803791
463	0,0031767699	0,0029303516	0,0025922295	0,0020124500	0,0042084484	0,0045128004	0,0038371561	0,0028783995
464	0,0031804478	0,0029713525	0,0023612143	0,0017973973	0,0043205035	0,0041339517	0,0035068747	0,0028806465
465	0,0032359657	0,0030326037	0,0021480758	0,0016130396	0,0044665135	0,0037956977	0,0032134744	0,0028886116
466	0,0033397708	0,0031353162	0,0019651844	0,0014724416	0,0046094196	0,0034857319	0,0029599514	0,0029253007
467	0,0034662971	0,0032463423	0,0017989299	0,0013520399	0,0047481530	0,0032010241	0,0027312195	0,0029735341
468	0,0036920426	0,0033210926	0,0016467279	0,0012503379	0,0048819313	0,0029907249	0,0025480563	0,0030485228
469	0,0039262014	0,0034147866	0,0015095678	0,0011531974	0,0050190127	0,0027952038	0,0023739376	0,0031384621
470	0,0041752621	0,0035346631	0,0013893462	0,0010600045	0,0051621988	0,0026149256	0,0022079855	0,0032492943
471	0,0045041736	0,0035900695	0,0012665153	0,0009820330	0,0052778614	0,0024292428	0,0020494113	0,0033756419
472	0,0048615012	0,0036288318	0,0011482288	0,0009102577	0,0053840397	0,0022511807	0,0018995228	0,0035070329
473	0,0052948763	0,0037179325	0,0010718726	0,0008421372	0,0054972957	0,0021497755	0,0017968878	0,0036559282
474	0,0057217138	0,0037974569	0,0010031468	0,0007803471	0,0055639053	0,0020416343	0,0016854005	0,0038340831
475	0,0061393055	0,0038637737	0,0009449169	0,0007272678	0,0055664561	0,0019242982	0,0015618199	0,0040522428
476	0,0066054905	0,0038625875	0,0009017280	0,0006916646	0,0055438571	0,0018551947	0,0014691467	0,0042748307

477	0,0070794007	0,0038405020	0,0008636257	0,0006622771	0,0055114819	0,0018035142	0,0013857170	0,0045009332
478	0,0074922957	0,0038238975	0,0008245052	0,0006360282	0,0054555136	0,0017649939	0,0012879263	0,0047572702
479	0,0078767107	0,0038155080	0,0007916072	0,0006185088	0,0053852173	0,0017436970	0,0012127990	0,0050329467
480	0,0082261748	0,0038176762	0,0007666264	0,0006124122	0,0052946863	0,0017450216	0,0011670763	0,0053366448
481	0,0084158162	0,0037535362	0,0007607146	0,0005988036	0,0052074369	0,0017820552	0,0011170155	0,0056554954
482	0,0085455330	0,0036736886	0,0007609024	0,0005840246	0,0051250880	0,0018292573	0,0010669146	0,0059760473
483	0,0085942328	0,0036365750	0,0007616537	0,0005795678	0,0050702730	0,0018709058	0,0010234675	0,0063075178
484	0,0085603630	0,0036094703	0,0007669480	0,0005822027	0,0050171294	0,0019515350	0,0009944033	0,0066673115
485	0,0084097045	0,0035961763	0,0007786093	0,0005947943	0,0049659094	0,0020871507	0,0009854459	0,0070676225
486	0,0082014001	0,0036349360	0,0007962323	0,0006133342	0,0049569243	0,0022267320	0,0009905067	0,0074877272
487	0,0079645363	0,0036949317	0,0008166903	0,0006344416	0,0049688334	0,0023721892	0,0009996310	0,0079141127
488	0,0076547212	0,0037924964	0,0008450417	0,0006599301	0,0050632873	0,0025571724	0,0009991144	0,0082855359
489	0,0073310391	0,0039014125	0,0008830899	0,0006891403	0,0051541581	0,0027638788	0,0010062305	0,0086515486
490	0,0069884363	0,0040268126	0,0009352939	0,0007237497	0,0052396929	0,0030019175	0,0010245819	0,0090087597
491	0,0066817073	0,0042110245	0,0009892889	0,0007668270	0,0053149670	0,0032734369	0,0010591091	0,0093181207
492	0,0063905351	0,0044190951	0,0010456405	0,0008131869	0,0053916094	0,0035616059	0,0010989358	0,0096017030
493	0,0061529283	0,0046692413	0,0011273346	0,0008633781	0,0055483842	0,0039165818	0,0011322240	0,0097713736
494	0,0059185888	0,0049570184	0,0012058779	0,0009180793	0,0057008016	0,0042777333	0,0011736898	0,0099092822
495	0,0056912499	0,0053017382	0,0012790066	0,0009794779	0,0058456028	0,0046461862	0,0012276817	0,0099970858
496	0,0055467486	0,0056750090	0,0013566172	0,0010678563	0,0060181631	0,0050556060	0,0012998911	0,0100435215
497	0,0054331811	0,0060640903	0,0014381255	0,0011659860	0,0061984371	0,0054882996	0,0013798261	0,0100678781
498	0,0053221128	0,0065078002	0,0015500821	0,0012487393	0,0063223515	0,0060164841	0,0014673639	0,0099941229
499	0,0052461561	0,0069854865	0,0016643782	0,0013344539	0,0064422221	0,0065528831	0,0015572284	0,0098890187
500	0,0052265863	0,0075135169	0,0017815479	0,0014242382	0,0065549709	0,0070983451	0,0016501322	0,0097354026
501	0,0052620538	0,0081095179	0,0018967656	0,0015327841	0,0067269361	0,0076340163	0,0017488936	0,0095865212
502	0,0053163325	0,0087369600	0,0020132800	0,0016501772	0,0069209137	0,0081737985	0,0018521955	0,0094315430
503	0,0053288915	0,0093052092	0,0021404785	0,0017677920	0,0070668728	0,0087295311	0,0019733324	0,0092143859
504	0,0053782517	0,0099037729	0,0022750212	0,0018826133	0,0072073989	0,0092914719	0,0020992546	0,0090083011
505	0,0054873981	0,0105397710	0,0024188502	0,0019906192	0,0073373262	0,0098523870	0,0022304678	0,0088268625
506	0,0055975540	0,0111743083	0,0025421689	0,0021313766	0,0074860403	0,0103839776	0,0023660356	0,0086678931
507	0,0057091769	0,0118065584	0,0026579579	0,0022833197	0,0076387565	0,0108992568	0,0025037530	0,0085188994
508	0,0058443436	0,0124385494	0,0027891904	0,0024117239	0,0077351182	0,0113523518	0,0026561794	0,0083787169
509	0,0059810793	0,0130054154	0,0029205241	0,0025417415	0,0078473070	0,0117841919	0,0028066173	0,0082550770
510	0,0061218158	0,0134761832	0,0030538497	0,0026761947	0,0079855760	0,0121878227	0,0029560528	0,0081545870
511	0,0062763022	0,0139418698	0,0031943175	0,0028329563	0,0080694531	0,0125134292	0,0031105727	0,0080910797
512	0,0064374450	0,0144017394	0,0033388353	0,0030009488	0,0081345711	0,0128129667	0,0032711907	0,0080368879
513	0,0065936902	0,0147187862	0,0034732831	0,0031721503	0,0082363887	0,0131252569	0,0034600055	0,0079461187
514	0,0067260724	0,0149280268	0,0036087208	0,0033502645	0,0083300038	0,0133890678	0,0036641621	0,0078779656
515	0,0068206815	0,0149731895	0,0037430410	0,0035350790	0,0084105474	0,0135762141	0,0038870949	0,0078467585
516	0,0069187669	0,0150122550	0,0038787411	0,0037366661	0,0085026193	0,0137344847	0,0041168510	0,0077444505
517	0,0070179323	0,0150305394	0,0040160172	0,0039442454	0,0085883137	0,0138725255	0,0043508445	0,0076305476
518	0,0071190744	0,0148389767	0,0041748584	0,0041713083	0,0085652280	0,0139023355	0,0046241604	0,0076333055
519	0,0072084922	0,0146268574	0,0043168492	0,0044018145	0,0085586295	0,0138823461	0,0048726944	0,0075804600
520	0,0072829260	0,0143827249	0,0044382508	0,0046397431	0,0085725710	0,0137948192	0,0050917215	0,0074527281
521	0,0073340743	0,0140527749	0,0045793406	0,0048850144	0,0085729666	0,0137163764	0,0053578846	0,0073891809
522	0,0073732969	0,0136779456	0,0047293091	0,0051394566	0,0085613689	0,0136210517	0,0056410972	0,0073388523
523	0,0073743861	0,0131668827	0,0049007298	0,0054449877	0,0084892617	0,0133739132	0,0059404101	0,0072435948
524	0,0073565284	0,0126467279	0,0050685353	0,0057271297	0,0084195268	0,0131162920	0,0062318615	0,0071542075
525	0,0073162366	0,0121215982	0,0052306482	0,0059782966	0,0083540468	0,0128494259	0,0065112878	0,0070734518
526	0,0072885694	0,0116133067	0,0053775960	0,0063027973	0,0082326093	0,0124931255	0,0067470125	0,0070267763

527	0,0072607739	0,0111177447	0,0055243799	0,0066289785	0,0081008935	0,0121215355	0,0069631340	0,0069771788
528	0,0072077344	0,0106504820	0,0056995475	0,0068559262	0,0079885713	0,0117816702	0,0071342976	0,0068483442
529	0,0071624940	0,0101854249	0,0058944188	0,0071002334	0,0078424787	0,0114137581	0,0072913645	0,0067432933
530	0,0071249753	0,0097192883	0,0061113602	0,0073643483	0,0076588484	0,0110128685	0,0074339376	0,0066627532
531	0,0070605946	0,0092537724	0,0062899727	0,0076022272	0,0075533193	0,0105712881	0,0075239120	0,0066076165
532	0,0069963492	0,0088114911	0,0064685360	0,0078210010	0,0074564515	0,0101264216	0,0076050441	0,0065544403
533	0,0069616584	0,0084783801	0,0066931885	0,0079764143	0,0073154505	0,0097017077	0,0077015184	0,0064823248
534	0,0069233206	0,0081126244	0,0068979984	0,0081352590	0,0071692720	0,0093208056	0,0077632189	0,0064098878
535	0,0068815866	0,0077157044	0,0070837782	0,0082974752	0,0070182590	0,0089822538	0,0077915876	0,0063372531
536	0,0067964191	0,0074089725	0,0072724748	0,0083826359	0,0069064801	0,0086359543	0,0078261806	0,0062739103
537	0,0067112081	0,0071121678	0,0074596078	0,0084474596	0,0068012278	0,0082989279	0,0078553296	0,0062268805
538	0,0066461722	0,0067645680	0,0076495602	0,0084857582	0,0066827654	0,0079735088	0,0078566230	0,0062318686
539	0,0066020048	0,0064674008	0,0078665241	0,0085377797	0,0065646057	0,0076350624	0,0078901030	0,0062064211
540	0,0065753490	0,0062129139	0,0081055584	0,0086011642	0,0064469890	0,0072865392	0,0079503601	0,0061557137
541	0,0065230947	0,0059556728	0,0082587483	0,0086371709	0,0063496072	0,0070432969	0,0079908481	0,0061252979
542	0,0064691262	0,0057150237	0,0084000044	0,0086671131	0,0062579997	0,0068125964	0,0080202326	0,0060922964
543	0,0064190049	0,0055262982	0,0085408128	0,0086884241	0,0061745381	0,0065725969	0,0080207128	0,0060404000
544	0,0063780651	0,0052882882	0,0086596049	0,0086905162	0,0060854041	0,0063165806	0,0080444365	0,0060038825
545	0,0063448204	0,0050169984	0,0087615636	0,0086791074	0,0059935336	0,0060520481	0,0080856307	0,0059795452
546	0,0063088112	0,0048110218	0,0088624788	0,0086790537	0,0059261342	0,0058040797	0,0080944954	0,0059817034
547	0,0062683553	0,0046248630	0,0089513255	0,0086836846	0,0058635994	0,0055749536	0,0081075591	0,0059896266
548	0,0062136576	0,0044695286	0,0090086671	0,0086965813	0,0058049753	0,0053839547	0,0081384394	0,0060058479
549	0,0061943698	0,0043011018	0,0090603451	0,0086865924	0,0057666288	0,0052001212	0,0081754083	0,0060109640
550	0,0061981702	0,0041279672	0,0091086760	0,0086635732	0,0057422406	0,0050245513	0,0082164890	0,0060097968
551	0,0061879464	0,0040011256	0,0091322558	0,0086782140	0,0056871870	0,0048359414	0,0082124495	0,0060115763
552	0,0061642358	0,0038741371	0,0091485274	0,0086849836	0,0056430466	0,0046629570	0,0082144384	0,0060077585
553	0,0061100238	0,0037376467	0,0091502138	0,0086689338	0,0056249254	0,0045211642	0,0082339476	0,0059900621
554	0,0060936305	0,0036312912	0,0091512982	0,0086296961	0,0056006809	0,0043706193	0,0082318159	0,0059999441
555	0,0060977814	0,0035418368	0,0091524183	0,0085786599	0,0055735390	0,0042165086	0,0082184657	0,0060247339
556	0,0061150942	0,0034564897	0,0091632232	0,0086267802	0,0055766051	0,0040990198	0,0082393565	0,0060390414
557	0,0061252545	0,0033754121	0,0091603510	0,0086489955	0,0055719993	0,0039822545	0,0082516035	0,0060631180
558	0,0061211536	0,0033018558	0,0091304414	0,0086191207	0,0055517538	0,0038653190	0,0082462571	0,0061061883
559	0,0061278721	0,0032192665	0,0090964763	0,0085977330	0,0055501712	0,0037617530	0,0082292937	0,0061411610
560	0,0061391790	0,0031348897	0,0090618602	0,0085797970	0,0055576351	0,0036652868	0,0082080465	0,0061708240
561	0,0061362462	0,0031063646	0,0090512298	0,0085383532	0,0055779535	0,0035801180	0,0082082466	0,0061502429
562	0,0061330518	0,0030612167	0,0090463651	0,0085136800	0,0055961752	0,0034767704	0,0082034042	0,0061545537
563	0,0061294932	0,0029888377	0,0090509978	0,0085163838	0,0056111043	0,0033434643	0,0081904181	0,0061995583
564	0,0061320014	0,0029362108	0,0090046802	0,0084861034	0,0056185196	0,0032628951	0,0081717217	0,0062330057
565	0,0061378552	0,0028943301	0,0089468813	0,0084470387	0,0056277226	0,0032033164	0,0081561241	0,0062619364
566	0,0061530366	0,0028841823	0,0089674750	0,0084396230	0,0056911828	0,0031454604	0,0081964546	0,0062887154
567	0,0061746510	0,0028646681	0,0089529893	0,0084259259	0,0057315227	0,0030813509	0,0081992328	0,0063206098
568	0,0062051427	0,0028326895	0,0088916044	0,0084041402	0,0057408226	0,0030090933	0,0081517032	0,0063595854
569	0,0062486757	0,0027838212	0,0088719919	0,0083610265	0,0057380450	0,0029664867	0,0081313913	0,0063599907
570	0,0062915312	0,0027400451	0,0088563210	0,0083130483	0,0057374745	0,0029319181	0,0081180643	0,0063579469
571	0,0063015390	0,0027680893	0,0087767550	0,0082721195	0,0057781497	0,0028902592	0,0080949749	0,0064201820
572	0,0063235940	0,0027712444	0,0087329514	0,0082358223	0,0058294527	0,0028422225	0,0080601880	0,0064544779
573	0,0063592691	0,0027463043	0,0087292089	0,0082045032	0,0058929077	0,0027867500	0,0080119657	0,0064573344
574	0,0064087180	0,0027474800	0,0086938190	0,0081610594	0,0059178118	0,0027442082	0,0080301727	0,0064879097
575	0,0064571617	0,0027518830	0,0086490264	0,0081202156	0,0059355548	0,0027050752	0,0080481518	0,0065253331
576	0,0064860730	0,0027434038	0,0085915877	0,0081047825	0,0059606061	0,0026677860	0,0079915744	0,0065665750

577 0.0065072866 0.002743550 0.008075222 0.005971651 0.00253862 578 0.0066703915 0.002745266 0.008056463 0.00805646 0.0069425335 0.002588620 580 0.0066703916 0.002785107 0.00281167 0.00258112 0.002585125 581 0.0066775310 0.002821767 0.0084012251 0.0069705112 0.00253137 582 0.006741496 0.002853973 0.008290788155 0.0006125035 0.002513638 584 0.0067414964 0.0028781674 0.0082491757 0.007741303 0.006137519 0.002513638 585 0.006742524 0.0029015745 0.0082491757 0.007415066 0.006137519 0.002513638 586 0.006830651 0.0029150677 0.007415050 0.000851222 0.002481383 587 0.006840578 0.002570577 0.007418550 0.00685122 0.002515160 591 0.006840250 0.003116428 0.006875627 0.006985221 0.002515160 591 0.0068402505 0.003116428									
578 0,0065214670 0,0027443554 0,008556611 0,0080765222 0,005901003 0,002586600 579 0,0066703919 0,002784555 0,008446144 0,00738050 0,006421337 0,0025864500 581 0,0067017125 0,002281087 0,008320390 0,000821337 0,002525353 583 0,0067411496 0,0022813700 0,0077481350 0,006414033 0,002515383 585 0,0067424649 0,0022816470 0,0082823576 0,006139561 0,002515383 585 0,0067425624 0,002916145 0,008230396 0,0074412750 0,0061375191 0,002515383 587 0,0068763776 0,0029565774 0,0074541250 0,006132124 0,002515128 588 0,0069763776 0,0029565774 0,0075451250 0,0006981273 0,002545529 591 0,006942335 0,003180331 0,00857667 0,007418056 0,000993212 0,002545529 592 0,006942335 0,003328462 0,0079317470 0,0073257066 0,007935550 0,002645039 0,002545595 <td>577</td> <td>0,0065072866</td> <td>0,0027407339</td> <td>0,0085620023</td> <td>0,0080897831</td> <td>0,0059785816</td> <td>0,0026315814</td> <td>0,0079604024</td> <td>0,0065782945</td>	577	0,0065072866	0,0027407339	0,0085620023	0,0080897831	0,0059785816	0,0026315814	0,0079604024	0,0065782945
579 0,0066002472 0,002785755 0,00844614 0,007925800 0,006639312 0,00553912 580 0,0067017125 0,0027810575 0,008412251 0,0079877611 0,00653912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00553912 0,00513956 0,0075412750 0,001375191 0,002539892 581 0,00562225 0,002290201845 0,002440072 0,0025440727 0,0057412750 0,0025131400 582 0,0066300851 0,0022902018 0,008131202 0,0076442750 0,002548133 583 0,006910082 0,003025657 0,007418560 0,005681222 0,002448139 593 0,006934223 0,003154323 0,0073270080 0,0066930173 0,0025817657 594 0,006934233 0,0073270030 0,006693243 0,0073270030 0,006693243 0,0025817657 595 0,0069949178 0,003726484	578	0,0065214670	0,0027435504	0,0085586618	0,0080755292	0,0059901003	0,0025966604	0,0079531961	0,0065628115
880 0,0066703919 0,002785755 0,0084402137 0,0025816450 581 0,0066753510 0,002281067 0,0084012251 0,00078977611 0,0006595310 0,0002513869 582 0,006741496 0,002281762 0,008282576 0,0077481351 0,0061379191 0,0002513869 584 0,006746664 0,002281674 0,008240377 0,007441275 0,0061375191 0,002513869 585 0,0067405664 0,0022916745 0,008240377 0,0074412754 0,002513869 586 0,006840673 0,00229565774 0,0081478454 0,007481756 0,0022513639 587 0,006940673 0,00229565774 0,008057667 0,0006850222 0,002481383 589 0,0069408550 0,003118428 0,008057667 0,002685126 0,002541560 591 0,0069408550 0,003184831 0,007285269 0,006093218 0,002541560 593 0,0069964795 0,003184831 0,007295609 0,00610028 0,0027495755 594 0,0069964795 0,0031808331 0,008072	579	0,0066002472	0,0027645266	0,0085044638	0,0080005664	0,0060425335	0,0025938224	0,0079418205	0,0065949159
581 0,0066753510 0,0027931087 0,0084012251 0,0078977611 0,0060494033 0,002252553 582 0,006741126 0,0038206966 0,0077881591 0,006494033 0,002253553 583 0,0067461262 0,002330661 0,00077861391 0,006139551 0,0025131400 586 0,0067623624 0,0023916745 0,008232355 0,0076412750 0,0061375191 0,0025089893 587 0,0068762076 0,002390252 0,0074613250 0,0060805222 0,002381551 588 0,0068762076 0,002390557 0,008137454 0,0074807776 0,006085122 0,002541560 591 0,0069442853 0,003154284 0,007355576 0,0073805136 0,002664552 592 0,006945523 0,003156833 0,0072319560 0,006089224 0,002644155 593 0,00699534 0,0032451430 0,0072317904 0,0060932691 0,002644155 594 0,006995354 0,0032469642 0,007792317904 0,006693340 0,0027197255 595 0,0007022875 0,00	580	0,0066703919	0,0027857555	0,0084466144	0,0079285800	0,0060821337	0,0025864507	0,0079267399	0,0066137524
582 0,0067017125 0,0028217623 0,0083597300 0,0078497350 0,0066440433 0,002522557 583 0,006744146 0,00282786149 0,0082495776 0,00770412750 0,0005133864 584 0,0067632624 0,0029016745 0,0076412764 0,0025133640 586 0,0067632624 0,002922122 0,0082490757 0,0076412764 0,002513140 0,002513140 587 0,0068406673 0,0029422172 0,008037686 0,0076412764 0,002500788 588 0,006810002 0,0029565774 0,008037686 0,007461760 0,002584558 590 0,006910022 0,0030764080 0,0080570667 0,0074198569 0,006081023 0,002584558 591 0,006932432 0,003142838 0,0007325008 0,006093228 0,002189756 592 0,006934233 0,003284515 0,0027395085 0,002199253 0,002749756 593 0,006934233 0,003284513 0,00723170008 0,0060931263 0,002199254 595 0,0070022852 0,0031424706 0,00	581	0,0066753510	0,0027981087	0,0084012251	0,0078977611	0,0060539512	0,0025451697	0,0078995141	0,0065592179
583 0,0067441496 0,0025393730 0,0083206986 0,0077881951 0,0066025035 0,002513658 584 0,0067496664 0,0023786149 0,0082291057 0,0077461058 0,0061375191 0,002513658 585 0,006680351 0,002322122 0,0028291068 0,007416068 0,001251148 0,002507892 587 0,0068762076 0,0023250774 0,008193020 0,0076046544 0,006151143 0,002507897 588 0,006871220 0,003000566 0,0080570676 0,0074805776 0,006685115 0,00251128 590 0,006442855 0,00300056406 0,0080570676 0,006085112 0,0025870567 591 0,006842855 0,0031808331 0,00733270006 0,006093218 0,0025870567 593 0,0069409550 0,0031808331 0,0077317044 0,006093263 0,002281703 594 0,007602285 0,0033286462 0,007938343 0,0071176679 0,006093263 0,002281703 595 0,0070102851 0,003723662 0,00701176779 0,0060912727 0,0060931263 <td>582</td> <td>0,0067017125</td> <td>0,0028217623</td> <td>0,0083597300</td> <td>0,0078497350</td> <td>0,0060494033</td> <td>0,0025225537</td> <td>0,0078719615</td> <td>0,0065408813</td>	582	0,0067017125	0,0028217623	0,0083597300	0,0078497350	0,0060494033	0,0025225537	0,0078719615	0,0065408813
584 0,006749666 0,0022786149 0,0082823576 0,0077040333 0,0061039963 0,002513140 585 0,0067623624 0,0029022212 0,008213920 0,0076416086 0,006127549 0,002509983 587 0,0068406673 0,002922212 0,008133202 0,0076416284 0,00620122 0,002541283 0,0025055774 0,008133202 0,00606954085 0,002541283 0,0025515128 588 0,006910002 0,003020656 0,0080554359 0,006685155 0,002515128 0,002541283 0,002541563 591 0,006934233 0,0031164283 0,0030545459 0,0073852789 0,0066881034 0,002581555 592 0,006934235 0,003138462 0,0079385433 0,0079385433 0,0026810407 594 0,006934595 0,003328462 0,0079385433 0,006938218 0,002795555 597 0,0070028275 0,003328462 0,0079380433 0,002791555 0,006699354 0,0037384053 0,002791555 597 0,0070169677 0,003726466 0,0079926872 0,00669313930 0	583	0,0067441496	0,0028539730	0,0083206986	0,0077881951	0,0060625035	0,0025138690	0,0078437591	0,0065496190
585 0,0067623624 0,0022016745 0,00764120750 0,00764120750 0,0051375191 0,0025131400 586 0,0068006673 0,00229402018 0,0076410086 0,0051221143 0,0025009893 587 0,0058752076 0,0022955774 0,0031474544 0,0075412075 0,0026082122 0,002485515 0,0025151286 599 0,0069190082 0,0030200565 0,0030575667 0,0074807776 0,006085112 0,002545539 591 0,00699409550 0,0031808331 0,0080571677 0,007352788 0,0006938218 0,002546559 592 0,00699409550 0,0031808331 0,0072317904 0,0060938218 0,002546559 593 0,005993478 0,0033286462 0,007993330 0,0027116672 0,002611253 0,0027199254 595 0,0070166977 0,003671430 0,007793682 0,007019377 0,0060933930 0,0022779503 596 0,0070166977 0,003671430 0,007792766 0,0060933930 0,0022779503 597 0,007016977 0,0035712534 0,0079727766 0,	584	0,0067496664	0,0028786149	0,0082823576	0,0077040333	0,0061039963	0,0025136384	0,0078274970	0,0065569030
SE6 0,0068030851 0,0022222122 0,0022391908 0,0076445646 0,001161143 0,002500789 S87 0,0068406673 0,0023956774 0,008178452 0,007646544 0,001161143 0,002300789 S88 0,00669190082 0,003200565 0,002695776 0,00078451250 0,000585151 0,002515138 S90 0,0069442835 0,0033020656 0,007807776 0,0006953515 0,002581535 S91 0,0069544283 0,0033286331 0,003225650 0,007327008 0,006932691 0,002587065 S93 0,00799550 0,0033286462 0,0079984133 0,0071176692 0,0006993591 0,002691407 S94 0,007022875 0,0033286462 0,007998413 0,0071176692 0,0002799953 S95 0,007022875 0,0033286462 0,0079798882 0,007016824 0,0002993534 0,0037974888 0,00701176692 0,0026932691 0,0022873783 S96 0,007028825 0,00332844706 0,0079778682 0,007019376 0,006087126 0,0027993037 S97 0,0070382300 </td <td>585</td> <td>0,0067623624</td> <td>0,0029016745</td> <td>0,0082490757</td> <td>0,0076412750</td> <td>0,0061375191</td> <td>0,0025131400</td> <td>0,0078263091</td> <td>0,0065594647</td>	585	0,0067623624	0,0029016745	0,0082490757	0,0076412750	0,0061375191	0,0025131400	0,0078263091	0,0065594647
587 0,0068406673 0,0029402018 0,0081933202 0,0076946544 0,001261143 0,002007883 588 0,0068762076 0,0029565774 0,008178454 0,0075451250 0,00060855151 0,0025815128 590 0,0069442835 0,0030704080 0,00080756767 0,0074807776 0,0060885151 0,002581755 591 0,0069442835 0,0030704080 0,008075677 0,0073652788 0,00608938218 0,002581755 592 0,00699442835 0,0033286462 0,0079836330 0,0027285609 0,006104285 0,0026104077 594 0,006993534 0,0034097820 0,007116677 0,00609329330 0,002851793 595 0,0070169677 0,0038042706 0,0079793682 0,007019376 0,0060939330 0,002851793 596 0,007033082 0,0037972962 0,007019376 0,0061611512 0,00239146 601 0,0070130362 0,003977429 0,00779766 0,0061611512 0,003299146 602 0,0070130376 0,003977429 0,007979766 0,00612641451 0,002399	586	0,0068030851	0,0029222122	0,0082291908	0,0076416086	0,0061427549	0,0025098993	0,0078630193	0,0065495050
S88 0,0068762076 0,0029565774 0,0081478454 0,0075451250 0,0069962122 0,002481395 589 0,006910082 0,0030766080 0,0074807776 0,006885515 0,002511528 591 0,0069324323 0,0031154238 0,0080570667 0,0073652798 0,0060983218 0,002564559 592 0,0069940255 0,0031584313 0,0080251473 0,0073257008 0,0060993281 0,00225870557 593 0,0069594789 0,0032581359 0,007981303 0,007716692 0,0060932691 0,0022870557 595 0,0070022875 0,0034974771 0,0079798082 0,0070195376 0,0060893303 0,0022817933 598 0,0070388289 0,003772662 0,0070195376 0,006087126 0,002390837 599 0,007030832 0,0038424706 0,0079727866 0,006127275 0,006187126 0,0033924514 600 0,00701101013 0,004374656 0,006993462 0,006270003 0,0033924514 601 0,007014071 0,004324556 0,006693468142 0,0063324512 0,0033	587	0,0068406673	0,0029402018	0,0081933202	0,0076046544	0,0061261143	0,0025007899	0,0078608083	0,0065504190
Se9 0,0069190082 0,0030200565 0,0080937698 0,0074807776 0,0060885515 0,002515128 590 0,0069324323 0,0031154238 0,0080570667 0,007362798 0,0060881073 0,002587055 591 0,0069324323 0,0031808331 0,0080554539 0,007327008 0,006098218 0,002587055 592 0,0069940955 0,0033288139 0,007383530 0,00732705509 0,006104285 0,002514077 594 0,0069966935 0,0033286462 0,00791747 0,0071716692 0,006991263 0,0027199255 595 0,0070022875 0,0034068820 0,007917317 0,007015576 0,0060933930 0,0022817933 597 0,0070189677 0,0036071430 0,0079798682 0,007015576 0,006087126 0,002280837 599 0,007030832 0,003742656 0,0099945 0,007015576 0,006679126 0,0033299261 604 0,007010131 0,0043244706 0,007992572 0,00611615152 0,003329261 605 0,0070714077 0,0045396812 0,0066939179	588	0,0068762076	0,0029565774	0,0081478454	0,0075451250	0,0060962122	0,0024881399	0,0078349041	0,0065579568
590 0,0069442835 0,0030764080 0,0080570667 0,0074198569 0,0060850222 0,0025415607 591 0,00693218 0,0031184238 0,0080554359 0,0073652788 0,0002881073 0,002564559 592 0,0069409550 0,0031808331 0,008251473 0,00732170008 0,0002832018 0,0026640155 593 0,0069409550 0,003328462 0,00791747 0,0072317904 0,0069932691 0,0022640155 595 0,0070022875 0,0034069820 0,0079702317 0,0071716697 0,0020892491 0,002932930 0,00235814 596 0,0070166677 0,0036071430 0,0079702317 0,007015376 0,0066933330 0,00238174 597 0,0070330832 0,0038424706 0,007907028174 0,0061615152 0,0031329017 601 0,007013030832 0,003744254 0,00797076682 0,006617027 0,006131329017 602 0,007014070 0,0043274656 0,008002025 0,006693110 0,00615152 0,003328451 603 0,0070714077 0,006312347 0,0066	589	0,0069190082	0,0030200565	0,0080937698	0,0074807776	0,0060885515	0,0025151280	0,0078454190	0,0065245566
591 0,0069324323 0,0031154238 0,0080554359 0,0073652798 0,0060881073 0,002587055 592 0,0069349789 0,0031808331 0,0080251473 0,0073270008 0,0060938218 0,0025870550 593 0,0069386935 0,0033286462 0,0079917747 0,0072317904 0,0060932691 0,002610477 595 0,0070022875 0,0034069820 0,0079302317 0,0071170677 0,002694393 0,00227199255 597 0,0070169677 0,0034074741 0,0079726882 0,007061824 0,002994393 0,00227199255 597 0,0070169677 0,00340747430 0,00779727862 0,0070028174 0,0021264445 0,0030299144 600 0,0070169677 0,0038424706 0,0079727866 0,0069127275 0,006127275 0,006120344 0,003329312 601 0,00701101013 0,004327455 0,00799727866 0,006893110 0,0062406760 0,00332932512 602 0,007014077 0,0045396818 0,006090142 0,0062406760 0,0033252520 603 0,0070738264 <	590	0,0069442835	0,0030764080	0,0080570667	0,0074198569	0,0060850222	0,0025415607	0,0078605538	0,0064961511
592 0,0069409550 0,0031808331 0,0080251473 0,0073270008 0,0060938218 0,0025870550 593 0,0069594789 0,0032581359 0,0079836330 0,0072317904 0,0060932661 0,0026640155 595 0,0070022875 0,0034069820 0,0079917471 0,0071716692 0,0060933661 0,0027193255 596 0,0060993534 0,0034977471 0,0071970217 0,00717979 0,0060933930 0,0027193255 597 0,0071058677 0,0036971430 0,0079726822 0,007061824 0,0060933931 0,0028137937 598 0,007038828 0,0037272664 0,007972766 0,00609139314 0,00231392914 600 0,00701030832 0,003424765 0,0079028174 0,006127275 0,006130334 0,0033292651 601 0,00700710101 0,0043274656 0,0068939462 0,0062407660 0,003525203 604 0,007074074 0,0043794652 0,0068939462 0,0062407660 0,00382451 605 0,007074728 0,005293541 0,006802493944 0,0062407650	591	0,0069324323	0,0031154238	0,0080554359	0,0073652798	0,0060881073	0,0025645599	0,0078823861	0,0064792616
593 0,0069594789 0,0032581359 0,0079836330 0,0072955609 0,006104285 0,002610407: 594 0,0069866935 0,0033286462 0,0079917747 0,0072137904 0,0060932691 0,0026640150 595 0,0070022875 0,0034069820 0,00790317 0,0071716692 0,0060933261 0,0022795053 597 0,0070189677 0,003671430 0,0079736882 0,007061824 0,0060933303 0,002817433 598 0,0070388289 0,0037236045 0,0079727262 0,00700228174 0,0061264445 0,0032399265 600 0,007019076 0,0041312534 0,0079727262 0,0070028174 0,0061203054 0,0032399265 602 0,0070110113 0,0043274556 0,0080042155 0,006291795 0,006270003 0,0333824518 603 0,007071407 0,0045396818 0,00800421365 0,0062935521 0,003881426 604 0,0070782664 0,005715034 0,0080928413 0,0067936075 0,006393182 0,004749207 607 0,0070782664 0,005715036 0,006	592	0,0069409550	0,0031808331	0,0080251473	0,0073270008	0,0060938218	0,0025870650	0,0078800202	0,0064766896
594 0,0069866935 0,0033286462 0,0079917747 0,0072317904 0,0060932691 0,0026440150 595 0,0070022875 0,0034069820 0,0079894103 0,0071716692 0,0060919263 0,0027195055 597 0,007018677 0,0036071430 0,0079782882 0,0070661824 0,0060939300 0,00281734 598 0,0070388289 0,0037236045 0,0079727862 0,00708174 0,0061615152 0,0031229144 600 0,0070288225 0,0039274293 0,0079727866 0,0069127275 0,0061615152 0,0031329017 601 0,0070101013 0,0043274656 0,008002025 0,0069127275 0,0061615152 0,003324514 603 0,007071407 0,0043396818 0,0080042185 0,006293894 0,00627602 0,0032892520 604 0,0070742672 0,005024457 0,0080704865 0,006293894 0,0062406760 0,0038881422 605 0,0070782644 0,005715034 0,00808027472 0,0068045451 0,006444541 0,0043282654 609 0,00707966987 0,000	593	0,0069594789	0,0032581359	0,0079836330	0,0072955609	0,0061004285	0,0026104071	0,0078684808	0,0064801154
595 0,0070022875 0,0034069820 0,007994103 0,00711716692 0,0060919263 0,0027199256 596 0,0069993534 0,0034977471 0,0079702317 0,0070161824 0,0060933930 0,0022875 597 0,0070169677 0,003671430 0,0079786882 0,0070193776 0,0060870126 0,002930837 598 0,0070388229 0,0037236045 0,007927962 0,0070028174 0,0061264445 0,003299144 600 0,0070109076 0,0041312534 0,007927806 0,0069127275 0,0061193054 0,0033924518 601 0,0070101013 0,0043274656 0,00800225 0,0069127275 0,0062070034 0,0033924518 602 0,0070101013 0,004324656 0,0080047186 0,006299319 0,006290703 0,003289262 604 0,0070547782 0,005244457 0,0080042365 0,0062985521 0,0038628242 605 0,007078264 0,005244457 0,008028413 0,0067936075 0,006444541 0,004794207 606 0,0070782664 0,005244457 0,00802747 <td>594</td> <td>0,0069866935</td> <td>0,0033286462</td> <td>0,0079917747</td> <td>0,0072317904</td> <td>0,0060932691</td> <td>0,0026640150</td> <td>0,0079092575</td> <td>0,0064586111</td>	594	0,0069866935	0,0033286462	0,0079917747	0,0072317904	0,0060932691	0,0026640150	0,0079092575	0,0064586111
596 0,0069993534 0,0034977471 0,0079702317 0,0071170679 0,0060996490 0,0027795053 597 0,0070169677 0,0036071430 0,0079786882 0,007061824 0,0060933930 0,0028517936 598 0,0070388289 0,0037236045 0,007927962 0,0070028174 0,0061264445 0,0030299144 600 0,0070288225 0,0039774293 0,007927866 0,00698110 0,00615152 0,0031329011 601 0,007010103 0,0041312534 0,00790252 0,0069039175 0,006207003 0,0033924518 603 0,0070071407 0,0043274656 0,008002025 0,006909175 0,0062216302 0,003525202 604 0,0070071407 0,0043274656 0,008023056 0,0062985521 0,0038681242 605 0,00707547782 0,005244457 0,00802747 0,0067936075 0,0062985521 0,0038688242 606 0,0070782664 0,005715034 0,00802747 0,006812347 0,0064445411 0,004748206 607 0,0070782664 0,00779636075 0,00664645454	595	0,0070022875	0,0034069820	0,0079894103	0,0071716692	0,0060919263	0,0027199256	0,0079649992	0,0064401744
597 0,0070169677 0,0036071430 0,0079786882 0,0070661824 0,0060939303 0,0028517936 598 0,0070388289 0,0037236045 0,0079930845 0,0070195376 0,0060870126 0,0029308376 599 0,0070268225 0,0039774293 0,0079727806 0,0069688110 0,0061615152 0,0031329017 601 0,0070190976 0,0041312534 0,0079988572 0,0069059179 0,0062070003 0,0033924518 602 0,0070101013 0,0043274656 0,008002025 0,0069059179 0,0062070003 0,0033924518 603 0,007071407 0,0043274656 0,0080047186 0,0069999462 0,0062406760 0,0038284224 605 0,0070382300 0,0047741652 0,008078865 0,0067936075 0,006285521 0,0038284224 605 0,007078264 0,005289951 0,008078865 0,0067937031 0,006391882 0,0040749207 607 0,0070792664 0,005715034 0,00802747 0,0066416547 0,006445451 0,006447562 0,00474232064 6099 0,007979959	596	0,0069993534	0,0034977471	0,0079702317	0,0071170679	0,0060996490	0,0027795053	0,0080443316	0,0064264180
598 0,0070388289 0,0037236045 0,0079398845 0,0070195376 0,0060870126 0,0029308376 599 0,0070330832 0,0038424706 0,0079727962 0,0070028174 0,0061615152 0,0033299146 600 0,0070190976 0,0041312534 0,007927806 0,0069127275 0,0061013054 0,0032399263 602 0,007011013 0,0043274556 0,00800225 0,0069059179 0,0062070003 0,00332525203 604 0,0070382300 0,004771652 0,0080423056 0,006293984 0,0062406760 0,0038828923 606 0,0070547782 0,0050244457 0,0080708865 0,0067936075 0,006298521 0,0038828923 606 0,0070754297 0,005289951 0,008070847 0,006679301 0,006391882 0,0040749203 607 0,007078264 0,0055715034 0,00802747 0,00659179 0,0056444541 0,004644541 0,004748556 609 0,007188464 0,0067488759 0,00801616172 0,0068961918 0,005474856 610 0,0071882498 0,00802163	597	0,0070169677	0,0036071430	0,0079786882	0,0070661824	0,0060933930	0,0028517936	0,0080580462	0,0064178636
599 0,0070330832 0,0038424706 0,007927962 0,0070028174 0,0061264445 0,003029144 600 0,0070268225 0,0039774293 0,007927806 0,0069688110 0,0061615152 0,003132917 601 0,007010013 0,0041312534 0,007968572 0,0069127275 0,0061903054 0,0032399263 602 0,007011013 0,0043274656 0,008002025 0,0069059179 0,0062070003 0,0033924518 603 0,007071407 0,0045396818 0,008047186 0,0068990462 0,0062406760 0,0038828212 604 0,0070547782 0,0050244457 0,0080708865 0,0067936075 0,0062985521 0,00388282926 606 0,0070782664 0,0055715034 0,00802747 0,00664185 0,004749207 607 0,0070782664 0,005715034 0,00802747 0,006816497 0,006474562 0,004783650 610 0,0071288464 0,0067498759 0,008016711 0,0068136497 0,00776733 0,007567319 0,005181237 611 0,0071828977 0,00707956171 <td>598</td> <td>0,0070388289</td> <td>0,0037236045</td> <td>0,0079930845</td> <td>0,0070195376</td> <td>0,0060870126</td> <td>0,0029308376</td> <td>0,0080507906</td> <td>0,0064113655</td>	598	0,0070388289	0,0037236045	0,0079930845	0,0070195376	0,0060870126	0,0029308376	0,0080507906	0,0064113655
600 0,0070268225 0,0039774293 0,007927806 0,0069688110 0,0061615152 0,0031329112 601 0,0070190976 0,0041312534 0,007968572 0,0069127275 0,0061903054 0,002399263 602 0,0070101013 0,0043274656 0,008002025 0,0069059179 0,0062070003 0,0033924518 603 0,0070071407 0,0045396818 0,008047186 0,0068293984 0,0062406760 0,00368814226 604 0,0070547782 0,0050244457 0,0080708865 0,0067936075 0,0062985521 0,0038628922 606 0,0070782664 0,0055715034 0,0080928413 0,0067946185 0,006444541 0,0042932066 608 0,007096987 0,005882100 0,00802747 0,0066407562 0,0047836406 610 0,0071288464 0,0067498759 0,0080116872 0,0068136497 0,0057667319 0,0051081233 611 0,0071828977 0,00799638 0,0079717822 0,0079717822 0,007977633 612 0,0071828977 0,0079756171 0,0068961918 0,00	599	0,0070330832	0,0038424706	0,0079727962	0,0070028174	0,0061264445	0,0030299146	0,0080627684	0,0064079800
601 0,0070190976 0,0041312534 0,0079968572 0,0069127275 0,0061903054 0,0032399263 602 0,0070101013 0,0043274656 0,008002025 0,0069059179 0,0062216302 0,0033924518 603 0,0070382300 0,0047741652 0,0080423056 0,00622406760 0,0038881226 604 0,0070547782 0,0050244457 0,0080708865 0,0067936075 0,0062985521 0,0038882928 606 0,0070574297 0,0052899951 0,0080928413 0,0067936075 0,006444541 0,00479200 607 0,0070782664 0,005715034 0,0080928413 0,0067946185 0,006444541 0,0042932066 608 0,007096987 0,0058882100 0,006802747 0,006812547 0,006470562 0,0047835400 610 0,0071288464 0,0067498759 0,0068116872 0,0068138223 0,006470562 0,007478383 612 0,0071828977 0,0079796308 0,0079756171 0,00689513824 0,0070717822 0,005907633 613 0,0071828464 0,0007559562 0,0	600	0,0070268225	0,0039774293	0,0079727806	0,0069688110	0,0061615152	0,0031329017	0,0081079832	0,0063932017
602 0,0070101013 0,0043274656 0,008002025 0,0069059179 0,0062070003 0,0033924518 603 0,0070071407 0,0045396818 0,0080047186 0,0068293984 0,0062216302 0,0035525203 604 0,0070382300 0,0047741652 0,0080423056 0,0068293984 0,0062406760 0,0036881422 605 0,0070547782 0,0050244457 0,0080708865 0,0067936075 0,0062985521 0,0038828292 606 0,0070574297 0,0052899951 0,0080928413 0,0067946185 0,0064644541 0,0042932068 607 0,0070966987 0,005882100 0,0080802747 0,0068012547 0,0064644541 0,0047492076 608 0,0070966987 0,0083123345 0,008002747 0,0068012547 0,0066470562 0,0047835403 610 0,0071288464 0,0067498759 0,008016872 0,0068136497 0,0067667319 0,0051081237 611 0,0071828977 0,0079756171 0,0068556385 0,0070717822 0,005907633 613 0,0071851568 0,0077559562 <	601	0,0070190976	0,0041312534	0,0079968572	0,0069127275	0,0061903054	0,0032399263	0,0081931168	0,0063636239
603 0,0070071407 0,0045396818 0,0080047186 0,0068990462 0,0062216302 0,0035525201 604 0,0070382300 0,0047741652 0,0080423056 0,0068293984 0,0062406760 0,003868922 605 0,0070547782 0,0050244457 0,0080708865 0,0067936075 0,0063931882 0,0040749201 606 0,0070782664 0,0055715034 0,0080928413 0,0067946185 0,006444541 0,0042932066 608 0,0070966987 0,0058882100 0,008002747 0,0068012547 0,0065410976 0,0042932066 609 0,007097059 0,0063123345 0,0080275425 0,006806854 0,0066470562 0,0047835493 610 0,0071807366 0,0071982498 0,0080216711 0,0068136497 0,0067667319 0,0054794883 612 0,007181568 0,0084245977 0,0079103414 0,0068911277 0,0072592318 0,0063461698 614 0,0071815168 0,008259522 0,0078086981 0,007715623 0,0077407466 616 0,0072472281 0,0076552778	602	0,0070101013	0,0043274656	0,0080002025	0,0069059179	0,0062070003	0,0033924518	0,0082267719	0,0063463383
6040,00703823000,00477416520,00804230560,00682939840,00624067600,00368814266050,00705477820,00502444570,00807088650,00679360750,00629855210,00386289236060,00705742970,00528999510,00809081420,00678970310,00639318820,00407492006070,00707826640,00557150340,00809284130,00679461850,00646445410,00429320666080,00709669870,00588821000,00808027470,00680125470,00654109760,00478354036100,00719790590,00631233450,00802754250,00680168720,00667673190,00510812376110,00718073660,00719824980,00802167110,00681384230,00689619180,00547948836120,00718289770,0077963080,007951710,0068563850,00707178220,00590776336130,00718515680,00842459770,007780869810,00699175620,0077182230,00679502446140,00719521230,00985964260,00772676100,00699175620,0077152330,00734047666160,00732220980,01071361200,00765527780,00705547400,00988432640,00939457536190,00776939810,01267624210,00772678080,00725360780,00939457536190,0077939810,01267624210,0077682780,00725360780,00953415780,01116083386210,0084279000,01638430660,0071622580,0072637450,0018575170,0133364434622<	603	0,0070071407	0,0045396818	0,0080047186	0,0068990462	0,0062216302	0,0035525201	0,0082420221	0,0063380544
6050,00705477820,00502444570,00807088650,00679360750,00629855210,00386289236060,00705742970,00528999510,00809081420,00678970310,00639318820,00407492056070,00707826640,00557150340,00809284130,00679461850,0066445410,00429320666080,00709669870,00588821000,00808027470,00680125470,00664405620,00478354056090,00709790590,00631233450,0080168720,0068968540,00664705620,00478354056100,00718284640,00674987590,00801168720,00681362970,00679673190,00510812336110,00718073660,00719824980,00802167110,00681382230,00689619180,00547948826120,00718178560,00779963080,00797561710,00685563850,00707178220,00590776336130,00719521230,00907559620,007788068810,00693142990,00746601020,00679304466140,00719521230,0097559620,00772676100,00699175620,00771562330,00734047666160,00732220980,01071361200,00765527780,00706547400,00798843200,00793425756180,00758716350,01267624210,0077258080,007213170,00906756810,01023030166200,00786699150,01502593520,00726870800,00722303170,0093457570,0133644346210,0084279000,01638430660,00716222580,00725360780,00953415780,011160833	604	0,0070382300	0,0047741652	0,0080423056	0,0068293984	0,0062406760	0,0036881426	0,0082259756	0,0063622649
6060,00705742970,00528999510,00809081420,00678970310,00639318820,00407492036070,00707826640,00557150340,00802284130,00679461850,00646445410,00429320686080,00709669870,00588821000,0080027470,00680125470,00654109760,00452265486090,00719284640,00631233450,00802754250,00680968540,00664705620,00478354096100,00712884640,00674987590,00801168720,00681364970,00676673190,0051812336110,00718073660,00719824980,0082167110,00681382230,00689619180,00547948326120,00718515680,00842459770,00791034140,00689712770,00725923180,00634616986140,00719521230,00907559620,00780869810,00693142990,00746601020,00679502466150,00724722810,00985964260,00772676100,00699175620,00771562330,00734047666160,00732220980,01071361200,00765527780,00706547400,00798843200,00793922176170,00745674740,01166971110,00756884210,00712095500,00833644790,00863993156180,0077939810,01375865360,00771872880,00721203170,0096576810,01023030166200,00786699150,01375865360,007726870800,00725360780,00953415780,0116083336210,0084279000,01638430660,0071622580,00725360780,00953415780,0133644	605	0,0070547782	0,0050244457	0,0080708865	0,0067936075	0,0062985521	0,0038628923	0,0082296121	0,0063866145
6070,00707826640,00557150340,00809284130,00679461850,00646445410,00429320686080,00709669870,00588821000,0080027470,00680125470,00654109760,00452265486090,00709790590,00631233450,00802754250,00680968540,00664705620,00478354056100,00712884640,00674987590,00801168720,00681364970,00667673190,00510812376110,00718073660,00719824980,00802167110,00681382230,00689619180,00547948826120,0071829770,00779963080,00797561710,00685563850,00707178220,00590776336130,00718515680,0082459770,00791034140,00699712770,00725923180,00634616926140,00719521230,00907559620,00780869810,00693142990,007746601020,00679502466150,00724722810,00985964260,00772676100,00699175620,00771562330,00734047606160,00732220980,01071361200,00765527780,00706547400,00798843200,00793722176170,00745674740,01166971110,00758880,00712358080,00869487640,00939457536180,00770939810,01375865360,00730787490,00722103170,0096556810,01023030166200,00786699150,01502593520,0072870800,0072360780,0053415780,0111603336210,0084279000,01638430660,0071822580,0072360780,0053415780,013364434	606	0,0070574297	0,0052899951	0,0080908142	0,0067897031	0,0063931882	0,0040749207	0,0082517377	0,0064110044
6080,00709669870,00588821000,00808027470,00680125470,00654109760,00452265486090,00709790590,00631233450,00802754250,00680968540,00664705620,00478354056100,00712884640,00674987590,00801168720,00681364970,00676673190,0051812376110,00718073660,00719824980,00802167110,00681382230,00689619180,00547948826120,00718289770,00779963080,00797561710,00685563850,00707178220,00590776336130,00718515680,00842459770,00791034140,00699112770,00725923180,00634616986140,00719521230,00907559620,00780869810,00699175620,00771562330,00734047606150,00724722810,00985964260,00772676100,00699175620,00771562330,00734047606160,00732220980,01071361200,00765527780,00706547400,00798843200,00793722176170,00758716350,01267624210,00747528880,00712095500,0083644790,00863933156180,00758716350,01267624210,0073087490,00722103170,0096756810,01023030166200,00786699150,01502593520,00726870800,0072360780,00953415780,01116083336210,0084279000,01638430660,0071822580,00728292150,01004144160,01215067666220,00826921490,01790266490,00771949610,0074858640,01187119770,01336443	607	0,0070782664	0,0055715034	0,0080928413	0,0067946185	0,0064644541	0,0042932068	0,0082491181	0,0064758721
6090,00709790590,00631233450,00802754250,00680968540,00664705620,00478354056100,00712884640,00674987590,00801168720,00681364970,00676673190,00510812376110,00718073660,00719824980,00802167110,00681382230,00689619180,00547948826120,00718289770,00779963080,00797561710,00685563850,00707178220,00590776336130,00718515680,00842459770,00791034140,0068912770,00725923180,00634616986140,00719521230,00907559620,00780869810,00699175620,00771562330,00734047606150,00724722810,00985964260,00772676100,00699175620,00771562330,00734047606160,00732220980,01071361200,00765527780,00706547400,00798843200,00793722176170,00758716350,01267624210,00747528880,0071205500,00833644790,00863993196180,00758716350,01267624210,00747528880,00722103170,0096756810,01023030166200,00786699150,01502593520,00726870800,00725360780,00953415780,01116083336210,0084279000,01638430660,00718222580,00728292150,01004144160,01215067666220,00851339480,01949506840,0068317330,0074858640,0118719770,01333644396230,00851339480,01949506840,00678317330,0074858640,0118719770,015301855	608	0,0070966987	0,0058882100	0,0080802747	0,0068012547	0,0065410976	0,0045226548	0,0082384405	0,0065456962
610 0,0071288464 0,0067498759 0,0080116872 0,0068136497 0,0067667319 0,0051081233 611 0,0071807366 0,0071982498 0,0080216711 0,0068138223 0,0068961918 0,0057798883 612 0,0071828977 0,0077996308 0,0079756171 0,0068556385 0,0070717822 0,0059077633 613 0,0071851568 0,0084245977 0,0079103414 0,0068971277 0,0072592318 0,0063461698 614 0,0071952123 0,0090755962 0,007886981 0,0069314299 0,0074660102 0,0067950244 615 0,0072472281 0,0098596426 0,0077267610 0,0069917562 0,0077156233 0,0073404760 616 0,0073222098 0,0107136120 0,007552778 0,0070654740 0,0079984320 0,0079372217 617 0,0074567474 0,0116697111 0,00745688421 0,007120550 0,008364479 0,0086393129 618 0,0075871635 0,0126762421 0,0074752888 0,007123171 0,00966948764 0,0012303016 620 0,0078669915	609	0,0070979059	0,0063123345	0,0080275425	0,0068096854	0,0066470562	0,0047835409	0,0082133938	0,0066113405
611 0,0071807366 0,0071982498 0,0080216711 0,0068138223 0,068961918 0,0054794883 612 0,0071828977 0,0077996308 0,0079756171 0,0068556385 0,0070717822 0,0059077635 613 0,0071851568 0,0084245977 0,0079103414 0,0068971277 0,0072592318 0,0063461698 614 0,0071952123 0,0090755962 0,0078086981 0,0069314299 0,0074660102 0,0067950246 615 0,0072472281 0,0098596426 0,007267610 0,0069917562 0,0077156233 0,0073404760 616 0,0073222098 0,0107136120 0,0076552778 0,0070654740 0,00799384320 0,0079372217 617 0,0074567474 0,0116697111 0,007587888 0,0071209550 0,008364479 0,0086939319 618 0,0075871635 0,0126762421 0,0074752888 0,0071735808 0,0086948764 0,0093945757 619 0,0077093981 0,0137586536 0,0072687080 0,0072536078 0,0095341578 0,0111608338 620 0,008427900	610	0,0071288464	0,0067498759	0,0080116872	0,0068136497	0,0067667319	0,0051081237	0,0081872229	0,0066699136
612 0,0071828977 0,0077996308 0,0079756171 0,0068556385 0,0070717822 0,00590776333 613 0,0071851568 0,0084245977 0,0079103414 0,0068971277 0,0072592318 0,0063461692 614 0,0071952123 0,0090755962 0,0078086981 0,0069314299 0,0074660102 0,0067950246 615 0,0072472281 0,0098596426 0,0077267610 0,0069917562 0,0077156233 0,0073404766 616 0,0073222098 0,0107136120 0,0076552778 0,0070654740 0,0079884320 0,0079372217 617 0,0074567474 0,0116697111 0,0075888421 0,007120550 0,008364479 0,0086939319 618 0,007789381 0,0126762421 0,0074752888 0,0071735808 0,0086948764 0,0093945757 619 0,0077093981 0,013758556 0,0073708749 0,0072210317 0,0090675681 0,0111608338 620 0,0078669915 0,0150259352 0,0072687080 0,00722536078 0,0095341578 0,0111608338 621 0,008427900	611	0,0071807366	0,0071982498	0,0080216711	0,0068138223	0,0068961918	0,0054794882	0,0081594322	0,0067230458
613 0,0071851568 0,0084245977 0,0079103414 0,0068971277 0,0072592318 0,0063461698 614 0,0071952123 0,0090755962 0,0078086981 0,0069314299 0,0074660102 0,0067950246 615 0,0072472281 0,0098596426 0,0077267610 0,0069917562 0,0077156233 0,0073404766 616 0,0073222098 0,0107136120 0,0076552778 0,0070564740 0,0079884320 0,0079372217 617 0,0074567474 0,0116697111 0,007588421 0,0071209550 0,008364479 0,0086999319 618 0,0077851635 0,0126762421 0,007457888 0,0071735808 0,0086948764 0,0093945753 619 0,0077093981 0,0137586536 0,0073708749 0,0072210317 0,0090675681 0,01120303016 620 0,0078669915 0,0150259352 0,0072687080 0,0072210317 0,0090675681 0,0111608338 621 0,008427900 0,0163843066 0,007162258 0,0072829215 0,0100414416 0,0121506766 622 0,0082692149	612	0,0071828977	0,0077996308	0,0079756171	0,0068556385	0,0070717822	0,0059077635	0,0080831619	0,0068312570
614 0,0071952123 0,0090755962 0,0078086981 0,0069314299 0,0074660102 0,00679502446 615 0,0072472281 0,0098596426 0,0077267610 0,0069917562 0,0077156233 0,0073404760 616 0,0073222098 0,0107136120 0,0076552778 0,0070654740 0,0079884320 0,0079372217 617 0,0074567474 0,0116697111 0,0075688421 0,0071209550 0,0083364479 0,0086399319 618 0,007793981 0,0126762421 0,0074752888 0,0071735808 0,0086948764 0,0093945753 619 0,0077093981 0,0137586536 0,0073708749 0,0072210317 0,0090675681 0,0102030316 620 0,0078669915 0,0150259352 0,0072867080 0,0072536078 0,0095341578 0,0111608333 621 0,0080427900 0,0163843066 0,0071622258 0,007246715 0,010341416 0,0121506766 622 0,0082692149 0,0179026649 0,007194961 0,0073426715 0,0103875517 0,013364434 623 0,0085133948	613	0,0071851568	0,0084245977	0,0079103414	0,0068971277	0,0072592318	0,0063461698	0,0080082177	0,0069505667
615 0,0072472281 0,0098596426 0,0077267610 0,0069917562 0,0077156233 0,0073404766 616 0,0073222098 0,0107136120 0,0076552778 0,0070654740 0,0079884320 0,0079372217 617 0,0074567474 0,0116697111 0,0075688421 0,0071209550 0,0083364479 0,0086399319 618 0,0077093981 0,0126762421 0,0074752888 0,0071735808 0,008948764 0,0093945753 619 0,0077093981 0,0137586536 0,0073708749 0,0072210317 0,0090675681 0,0102030316 620 0,0078669915 0,0150259352 0,0072867080 0,007236078 0,0095341578 0,0111608333 621 0,0080427900 0,0163843066 0,007162258 0,007236078 0,0095341578 0,0113708766 622 0,0082692149 0,0179026649 0,007194961 0,0073426715 0,0105875517 0,013364434 623 0,0085133948 0,0194950684 0,006831733 0,0074818445 0,0118711977 0,015101857 624 0,0087776827	614	0,0071952123	0,0090755962	0,0078086981	0,0069314299	0,0074660102	0,0067950246	0,0079448050	0,0070869192
616 0,0073222098 0,0107136120 0,0076552778 0,0070654740 0,0079884320 0,0079372217 617 0,0074567474 0,0116697111 0,0075688421 0,0071209550 0,0083364479 0,0086399319 618 0,0075871635 0,0126762421 0,0074752888 0,0071735808 0,0086948764 0,0093945751 619 0,0077093981 0,0137586536 0,0073708749 0,0072210317 0,0090675681 0,010203016 620 0,0078669915 0,0150259352 0,0072867080 0,0072536078 0,0095341578 0,0111608333 621 0,0080427900 0,0163843066 0,0071622258 0,0072829215 0,0100414416 0,0121506766 622 0,0082692149 0,0179026649 0,007194961 0,0073426715 0,0105875517 0,013364434 623 0,0085133948 0,0194950684 0,006831733 0,007485864 0,0118711977 0,0159101857 624 0,0087776827 0,021649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,009829635 <td< td=""><td>615</td><td>0,0072472281</td><td>0,0098596426</td><td>0,0077267610</td><td>0,0069917562</td><td>0,0077156233</td><td>0,0073404760</td><td>0,0078745120</td><td>0,0072325802</td></td<>	615	0,0072472281	0,0098596426	0,0077267610	0,0069917562	0,0077156233	0,0073404760	0,0078745120	0,0072325802
617 0,0074567474 0,0116697111 0,0075688421 0,0071209550 0,0083364479 0,0086399319 618 0,0075871635 0,0126762421 0,0074752888 0,0071735808 0,0086948764 0,0093945757 619 0,0077093981 0,0137586536 0,0073708749 0,0072210317 0,0090675681 0,0102303016 620 0,0078669915 0,0150259352 0,0072687080 0,0072536078 0,0095341578 0,0111068338 621 0,0080427900 0,0163843066 0,0071622258 0,0072829215 0,0100414416 0,0121506766 622 0,0082692149 0,0179026649 0,0007194961 0,0073426715 0,0105875517 0,0133364434 623 0,0085133948 0,0194950684 0,006831733 0,007485864 0,01142684 0,0145880766 624 0,0087776827 0,021649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,009829635 0,022697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	616	0,0073222098	0,0107136120	0,0076552778	0,0070654740	0,0079884320	0,0079372217	0,0078008171	0,0073835895
618 0,0075871635 0,0126762421 0,0074752888 0,0071735808 0,0086948764 0,0093945753 619 0,0077093981 0,0137586536 0,0073708749 0,0072210317 0,0090675681 0,012030316 620 0,0078669915 0,0150259352 0,0072687080 0,0072536078 0,0095341578 0,0111608338 621 0,0080427900 0,0163843066 0,0071622258 0,0072829215 0,0100414416 0,0121506766 622 0,0082692149 0,0179026649 0,0070194961 0,0073426715 0,0105875517 0,013364434 623 0,0085133948 0,0194950684 0,006831733 0,007488864 0,011492684 0,0145880769 624 0,0087776827 0,0211649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,0090829635 0,022697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	617	0,0074567474	0,0116697111	0,0075688421	0,0071209550	0,0083364479	0,0086399319	0,0077250117	0,0075820926
619 0,0077093981 0,0137586536 0,0073708749 0,0072210317 0,0090675681 0,0102303016 620 0,0078669915 0,0150259352 0,0072687080 0,0072536078 0,0095341578 0,0111608338 621 0,0080427900 0,0163843066 0,0071622258 0,0072829215 0,0100414416 0,0121506766 622 0,0082692149 0,0179026649 0,0070194961 0,0073426715 0,0105875517 0,0133364434 623 0,0085133948 0,0194950684 0,0068831733 0,0074085864 0,0111942684 0,0145880769 624 0,0087776827 0,0211649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,0090829635 0,022697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	618	0,0075871635	0,0126762421	0,0074752888	0,0071735808	0,0086948764	0,0093945751	0,0076353086	0,0077861931
620 0,0078669915 0,0150259352 0,0072687080 0,0072536078 0,0095341578 0,0111608338 621 0,0080427900 0,0163843066 0,0071622258 0,0072829215 0,0100414416 0,0121506760 622 0,0082692149 0,0179026649 0,0070194961 0,0073426715 0,0105875517 0,0133364434 623 0,0085133948 0,0194950684 0,0068831733 0,0074085864 0,0111942684 0,0145880769 624 0,0087776827 0,0211649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,0090829635 0,0229697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	619	0,0077093981	0,0137586536	0,0073708749	0,0072210317	0,0090675681	0,0102303016	0,0075230918	0,0079979634
621 0,0080427900 0,0163843066 0,0071622258 0,0072829215 0,0100414416 0,0121506760 622 0,0082692149 0,0179026649 0,0070194961 0,0073426715 0,0105875517 0,0133364434 623 0,0085133948 0,0194950684 0,0068831733 0,0074085864 0,0111942684 0,0145880769 624 0,0087776827 0,0211649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,009829635 0,0229697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	620	0,0078669915	0,0150259352	0,0072687080	0,0072536078	0,0095341578	0,0111608338	0,0074430991	0,0082579022
622 0,0082692149 0,0179026649 0,0070194961 0,0073426715 0,0105875517 0,0133364434 623 0,0085133948 0,0194950684 0,0068831733 0,0074085864 0,0111942684 0,0145880768 624 0,0087776827 0,0211649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,0090829635 0,0229697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	621	0,0080427900	0,0163843066	0,0071622258	0,0072829215	0,0100414416	0,0121506760	0,0073687957	0,0085375465
623 0,0085133948 0,0194950684 0,0068831733 0,0074085864 0,0111942684 0,0145880769 624 0,0087776827 0,0211649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,0090829635 0,0229697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	622	0,0082692149	0,0179026649	0,0070194961	0,0073426715	0,0105875517	0,0133364434	0,0072449978	0,0088281810
624 0,0087776827 0,0211649652 0,0067564989 0,0074818445 0,0118711977 0,0159101857 625 0,0090829635 0,0229697381 0,0066463510 0,0074932253 0,0126320848 0,0174203933	623	0,0085133948	0,0194950684	0,0068831733	0,0074085864	0,0111942684	0,0145880769	0,0071278553	0,0091402623
625 0.0090829635 0.0229697381 0.0066463510 0.0074932253 0.0126320848 0.017420393	624	0,0087776827	0,0211649652	0,0067564989	0,0074818445	0,0118711977	0,0159101857	0,0070204902	0,0094764165
	625	0,0090829635	0,0229697381	0,0066463510	0,0074932253	0,0126320848	0,0174203935	0,0069108289	0,0098557634
626 0,0094132642 0,0248239038 0,0065375369 0,0075008431 0,0134336735 0,0190188917			0.004000000	0.0005275260	0.0075009421	0.0124226725	0.0100188017	0.0068035675	0.0102555122

627	0,0098052050	0,0266773694	0,0064225327	0,0075640293	0,0143015814	0,0207591439	0,0067176741	0,0106879963
628	0,0102367962	0,0283293663	0,0062822572	0,0075805053	0,0152060912	0,0226581776	0,0066289229	0,0111974319
629	0,0107028471	0,0297965745	0,0061198224	0,0075551868	0,0161410665	0,0246944621	0,0065379564	0,0117745469
630	0,0111749312	0,0305903999	0,0059775467	0,0075537840	0,0170668284	0,0266500609	0,0063902225	0,0123045005
631	0,0116831632	0,0309762157	0,0058460758	0,0075470883	0,0179824589	0,0285254553	0,0062520964	0,0128660625
632	0,0123036863	0,0304090112	0,0057416764	0,0075192439	0,0188821158	0,0302099058	0,0061659306	0,0135466430
633	0,0129106862	0,0290823685	0,0056137543	0,0074656457	0,0194947367	0,0317456759	0,0060416373	0,0141961626
634	0,0135112209	0,0272682013	0,0054704304	0,0073954882	0,0199270011	0,0331923044	0,0058926685	0,0148282152
635	0,0142016480	0,0246436650	0,0053682869	0,0073084739	0,0198674483	0,0339517826	0,0057886979	0,0153538005
636	0,0148777821	0,0219626324	0,0052608589	0,0072133200	0,0195610601	0,0343209769	0,0056768955	0,0158150698
637	0,0155221494	0,0192080222	0,0051407466	0,0071028736	0,0187915173	0,0339544689	0,0055471703	0,0161554514
638	0,0159984582	0,0166232394	0,0050147001	0,0069991944	0,0176368946	0,0329366447	0,0054306043	0,0162547933
639	0,0163813562	0,0141393493	0,0048857419	0,0068975147	0,0162968662	0,0315812479	0,0053195376	0,0162268870
640	0,0164295082	0,0122085143	0,0047589556	0,0067879628	0,0147420971	0,0294494837	0,0052121444	0,0158514089
641	0,0162132202	0,0104696208	0,0046485749	0,0066627915	0,0131572220	0,0270724810	0,0051055442	0,0153027432
642	0,0156420725	0,0090104037	0,0045620995	0,0065184375	0,0115493940	0,0243903252	0,0050016731	0,0145264076
643	0,0148339846	0,0078101391	0,0044424968	0,0063769613	0,0100915308	0,0216991041	0,0048883270	0,0136937467
644	0,0139124305	0,0067275132	0,0043154799	0,0062388733	0,0087223080	0,0190188985	0,0047751924	0,0128485823
645	0,0127335732	0,0059386206	0,0041996134	0,0061189777	0,0076538379	0,0164738358	0,0046802326	0,0120372596
646	0,0115278904	0,0052391204	0,0040864729	0,0059897847	0,0067390686	0,0141571553	0,0045819070	0,0113393237
647	0,0102950514	0,0046215895	0,0039756113	0,0058516184	0,0059657504	0,0120490088	0,0044802052	0,0107455865
648	0,0092024852	0,0042080455	0,0038739491	0,0056890710	0,0053105356	0,0103693878	0,0043783825	0,0103042302
649	0,0081885314	0,0038351437	0,0037766306	0,0055413231	0,0047203866	0,0088402275	0,0042775370	0,0099568573
650	0,0073492245	0,0035011337	0,0036879837	0,0054467270	0,0042755617	0,0075844049	0,0041788840	0,0098294769
651	0,0066368579	0,0032124764	0,0035829339	0,0053184905	0,0038828284	0,0065098094	0,0040916091	0,0097746229
652	0,0060065993	0,0029533614	0,0034684113	0,0051703141	0,0035242154	0,0055521767	0,0040122408	0,0097665797
653	0,0054932052	0,0027845862	0,0034039642	0,0050294961	0,0032422586	0,0048484736	0,0039002780	0,0099066570
654	0,0050350216	0,0026159393	0,0033264503	0,0048938790	0,0029869652	0,0042000704	0,0037942129	0,0100644159
655	0,0046783683	0,0024452666	0,0032232087	0,0047685082	0,0027801789	0,0036495006	0,0037009269	0,0102494458
656	0,0043415009	0,0023174897	0,0031189741	0,0046275828	0,0026141072	0,0031889094	0,0036192804	0,0105016077
657	0,0040199298	0,0022089049	0,0030160978	0,0044825203	0,0024655156	0,0027771688	0,0035399334	0,0107796681
658	0,0037683466	0,0021202701	0,0029283860	0,0043539446	0,0023261600	0,0024954270	0,0034319276	0,0110578649
659	0,0035393221	0,0020312870	0,0028497359	0,0042486808	0,0021972233	0,0022371700	0,0033404096	0,0113380592
660	0,0033385072	0,0019422807	0,0027823862	0,0041720410	0,0020814191	0,0020083386	0,0032692116	0,0116197016
661	0,0031801980	0,0018482295	0,0027251701	0,0040536415	0,0019680043	0,0017840737	0,0031830149	0,0118222858
662	0,0030383727	0,0017621301	0,0026599475	0,0039334981	0,0018625409	0,0015810456	0,0030929744	0,0119927611
663	0,0029263295	0,0017141863	0,0025504573	0,0038440350	0,0017881774	0,0014634580	0,0029998200	0,0120995919
664	0,0028036063	0,0016532669	0,0024723743	0,0037312810	0,0017143719	0,0013456564	0,0029306508	0,0120484816
665	0,0026725368	0,0015821812	0,0024189695	0,0036002817	0,0016410266	0,0012277184	0,0028803332	0,0118734414
666	0,0025508057	0,0015214120	0,0023348374	0,0035096699	0,0015748099	0,0011258613	0,0027861023	0,0113991035
667	0,0024402959	0,0014682558	0,0022561982	0,0034111681	0,0015027408	0,0010334331	0,0027005084	0,0108150861
668	0,0023524045	0,0014300905	0,0021946563	0,0032849259	0,0014143530	0,0009585488	0,0026416702	0,0100185411
669	0,0022756132	0,0013860032	0,0021394784	0,0031964025	0,0013659107	0,0008909077	0,0025754746	0,0090995329
670	0,0022047546	0,0013396853	0,0020874329	0,0031252248	0,0013372191	0,0008279646	0,0025061143	0,0081233044
671	0,0021368459	0,0013064306	0,0020289055	0,0030108923	0,0013026828	0,0007864553	0,0024416379	0,0071455996
672	0,0020594919	0,0012776956	0,0019653129	0,0029172232	0,0012645608	0,0007449759	0,0023782105	0,0062372612
673	0,0019683091	0,0012553278	0,0018942215	0,0028527910	0,0012211577	0,0007033749	0,0023160461	0,0054245789
674	0,0019090876	0,0012069701	0,0018333648	0,0027889637	0,0011794773	0,0006602092	0,0022463950	0,0047314341
675	0,0018580783	0,0011560863	0,0017752697	0,0027167085	0,0011379511	0,0006206690	0,0021752574	0,0040946734
676	0,0018038123	0,0011323270	0,0017175124	0,0025979418	0,0010952464	0,0006042417	0,0021086240	0,0035935989

677	0,0017500853	0,0011003825	0,0016709829	0,0025016688	0,0010555034	0,0005680390	0,0020489187	0,0031593219
678	0,0016969178	0,0010611377	0,0016345916	0,0024257258	0,0010184779	0,0005141529	0,0019955126	0,0027857742
679	0,0016387654	0,0010294707	0,0015822704	0,0023621144	0,0009928828	0,0005058197	0,0019514772	0,0024783400
680	0,0015858976	0,0010024610	0,0015322568	0,0022998366	0,0009632738	0,0004964275	0,0019042487	0,0022123547
681	0,0015481994	0,0009853205	0,0014928018	0,0022367563	0,0009192021	0,0004702578	0,0018451447	0,0020357806
682	0,0014965075	0,0009640794	0,0014408755	0,0021800566	0,0008884568	0,0004447958	0,0017847873	0,0018561789
683	0,0014377643	0,0009404268	0,0013828378	0,0021264063	0,0008649784	0,0004202599	0,0017240480	0,0016764164
684	0,0013992321	0,0009027405	0,0013508685	0,0020374763	0,0008349879	0,0004194545	0,0016667394	0,0015404425
685	0,0013597824	0,0008714260	0,0013136892	0,0019665084	0,0008161768	0,0004110402	0,0016184076	0,0014192137
686	0,0013188745	0,0008497868	0,0012685068	0,0019228396	0,0008143906	0,0003910052	0,0015836985	0,0013203189
687	0,0012822694	0,0008353090	0,0012347293	0,0018523746	0,0007952018	0,0003748881	0,0015573703	0,0012265281
688	0,0012489608	0,0008222385	0,0012028110	0,0017802384	0,0007683360	0,0003611064	0,0015281571	0,0011382196
689	0,0012262361	0,0008042182	0,0011603385	0,0017431557	0,0007258653	0,0003536722	0,0014656902	0,0010700174
690	0,0011874672	0,0007806918	0,0011197442	0,0016961101	0,0006997078	0,0003460817	0,0014146512	0,0010110648
691	0,0011338742	0,0007520410	0,0010807535	0,0016397659	0,0006884248	0,0003383148	0,0013739355	0,0009604678
692	0,0011068719	0,0007281281	0,0010408591	0,0015756713	0,0006581685	0,0003201861	0,0013247858	0,0009032416
693	0,0010791104	0,0007049952	0,0010052333	0,0015180404	0,0006336533	0,0003008574	0,0012816510	0,0008496609
694	0,0010407569	0,0006823276	0,0009811461	0,0014798756	0,0006303968	0,0002814702	0,0012570767	0,0008076538
695	0,0010168044	0,0006673810	0,0009527716	0,0014361441	0,0006159174	0,0002741444	0,0012242004	0,0007767589
696	0,0010002806	0,0006565592	0,0009222246	0,0013897532	0,0005956793	0,0002732698	0,0011868999	0,0007518174
697	0,0009675060	0,0006424895	0,0008961005	0,0013550826	0,0005874861	0,0002684986	0,0011508324	0,0007223476
698	0,0009299469	0,0006263127	0,0008650321	0,0013158448	0,0005704037	0,0002627110	0,0011187820	0,0006916918
699	0,0008853383	0,0006070330	0,0008266385	0,0012699014	0,0005399430	0,0002554162	0,0010929974	0,0006594022
700	0,0008560173	0,0005858389	0,0008005002	0,0012184638	0,0005206524	0,0002446081	0,0010552249	0,0006363594
701	0,0008319501	0,0005654973	0,0007755930	0,0011687079	0,0005038995	0,0002342714	0,0010149458	0,0006139005
702	0,0008121922	0,0005549574	0,0007347854	0,0011417313	0,0004817262	0,0002341976	0,0009830342	0,0005772060
703	0,0007942836	0,0005400604	0,0007104921	0,0011104801	0,0004674219	0,0002232462	0,0009594544	0,0005537298
704	0,0007782238	0,0005209027	0,0007024711	0,0010750745	0,0004608761	0,0002016139	0,0009441051	0,0005432819
705	0,0007582312	0,0005049747	0,0006820257	0,0010410106	0,0004479726	0,0002018838	0,0009173826	0,0005258121
706	0,0007367777	0,0004897540	0,0006594360	0,0010051854	0,0004336262	0,0002035207	0,0008917944	0,0005065621
707	0,0007120073	0,0004748337	0,0006352711	0,0009623147	0,0004173253	0,0001994036	0,0008742299	0,0004844862
708	0,0006881975	0,0004631209	0,0006128849	0,0009349331	0,0004022596	0,0001961781	0,0008500253	0,0004699910
709	0,0006649701	0,0004533951	0,0005915890	0,0009171548	0,0003879513	0,0001935063	0,0008216863	0,0004601948
710	0,0006343861	0,0004366784	0,0005696654	0,0008901833	0,0003791144	0,0001783236	0,0008039068	0,0004337018
711	0,0006110367	0,0004214805	0,0005481826	0,0008610412	0,0003689989	0,0001693426	0,0007779597	0,0004151657
712	0,0005998642	0,0004088847	0,0005273968	0,0008283196	0,0003566740	0,0001708824	0,0007381452	0,0004101230
713	0,0005829789	0,0004106511	0,0005167171	0,0007967458	0,0003483922	0,0001631790	0,0007229236	0,0004008896
714	0,0005645149	0,0004134410	0,0005061762	0,0007655450	0,0003406562	0,0001535029	0,0007137465	0,0003888322
715	0,0005474592	0,0003920704	0,0004744629	0,0007333470	0,0003275357	0,0001505433	0,0006907921	0,0003669860
716	0,0005306975	0,0003839700	0,0004544269	0,0007103241	0,0003113959	0,0001505125	0,0006715803	0,0003533721
717	0,0005141130	0,0003884756	0,0004454084	0,0006959114	0,0002922793	0,0001532733	0,0006558191	0,0003475279
718	0,0005041627	0,0003660370	0,0004292577	0,0006775344	0,0002965637	0,0001539425	0,0006372802	0,0003383985
719	0,0004916340	0,0003413921	0,0004140479	0,0006584719	0,0002941266	0,0001528141	0,0006185314	0,0003284633
720	0,0004703021	0,0003195610	0,0004036795	0,0006389870	0,0002665935	0,0001476003	0,0006002420	0,0003175054
721	0,0004556812	0,0003049894	0,0003867211	0,0006202948	0,0002543127	0,0001367596	0,0005797850	0,0003088155
722	0,0004443250	0,0002945131	0,0003663586	0,0006016674	0,0002503926	0,0001231233	0,0005586716	0,0003012193
723	0,0004264041	0,0002905286	0,0003459142	0,0005735433	0,0002553091	0,0001123621	0,0005475615	0,0002908916
724	0,0004091034	0,0002849102	0,0003327099	0,0005536674	0,0002501605	0,0001048933	0,0005354249	0,0002814646
725	0,0003925509	0,0002770473	0,0003292415	0,0005448568	0,0002313507	0,0001018450	0,0005218312	0,0002732072
726	0,0003765969	0,0002671936	0,0003127972	0,0005205224	0,0002246874	0,0001124165	0,0005051021	0,0002591551

727	0,0003636537	0,0002574678	0,0002944675	0,0004949640	0,0002207961	0,0001206750	0,0004884000	0,0002450083
728	0,0003626425	0,0002501726	0,0002810578	0,0004795953	0,0002162968	0,0001055506	0,0004747736	0,0002361384
729	0,0003552319	0,0002399324	0,0002708843	0,0004677302	0,0002146693	0,0001004766	0,0004582006	0,0002298688
730	0,0003432307	0,0002275713	0,0002630138	0,0004583570	0,0002150945	0,0001025898	0,0004394971	0,0002254519
731	0,0003362614	0,0002222753	0,0002601868	0,0004334471	0,0002061092	0,0001044338	0,0004278761	0,0002196229
732	0,0003276979	0,0002166026	0,0002511622	0,0004175540	0,0001997733	0,0001019624	0,0004145168	0,0002143109
733	0,0003163072	0,0002100573	0,0002314691	0,0004178678	0,0001984234	0,0000921777	0,0003980533	0,0002100028
734	0,0003094422	0,0002080997	0,0002258872	0,0003984684	0,0001879872	0,0000846415	0,0003837043	0,0002034644
735	0,0003027575	0,0002059088	0,0002225570	0,0003745141	0,0001753256	0,0000791492	0,0003709259	0,0001967892
736	0,0002899501	0,0001952503	0,0002085979	0,0003586154	0,0001657506	0,0000808523	0,0003632325	0,0001930806
737	0,0002814890	0,0001881710	0,0001956842	0,0003451224	0,0001627189	0,0000887070	0,0003520862	0,0001849368
738	0,0002765121	0,0001839606	0,0001836428	0,0003335861	0,0001649004	0,0001014298	0,0003382310	0,0001732929
739	0,0002593399	0,0001799283	0,0001769008	0,0003170401	0,0001666081	0,0000935369	0,0003270168	0,0001687206
740	0,0002448040	0,0001778053	0,0001709698	0,0003006717	0,0001637445	0,0000813100	0,0003175437	0,0001649201
741	0,0002363011	0,0001792461	0,0001660737	0,0002850496	0,0001522827	0,0000627432	0,0003110803	0,0001619230
742	0,0002355989	0,0001753163	0,0001607736	0,0002810718	0,0001482522	0,0000668213	0,0002980121	0,0001566642
743	0,0002364475	0,0001692717	0,0001551186	0,0002794318	0,0001450426	0,0000763971	0,0002846116	0,0001519043
744	0,0002293706	0,0001617903	0,0001480625	0,0002661083	0,0001299529	0,0000695185	0,0002843741	0,0001556892
745	0,0002235582	0,0001581789	0,0001429997	0,0002526921	0,0001223996	0,0000702758	0,0002757581	0,0001509835
746	0,0002189151	0,0001581031	0,0001397666	0,0002392282	0,0001217300	0,0000779863	0,0002595373	0,0001385592
747	0,0002111234	0,0001502700	0,0001301837	0,0002337537	0,0001262369	0,0000697005	0,0002489532	0,0001334163
748	0,0002014138	0,0001423569	0,0001232302	0,0002278389	0,0001258881	0,0000635103	0,0002424854	0,0001307069
749	0,0001880538	0,0001357799	0,0001233570	0,0002193770	0,0001137385	0,0000651043	0,0002440536	0,0001319755
750	0,0001900142	0,0001354009	0,0001220263	0,0002116405	0,0001062367	0,0000607899	0,0002326625	0,0001268282
751	0,0001964191	0,0001374262	0,0001199415	0,0002037801	0,0001013011	0,0000536110	0,0002167755	0,0001196383
752	0,0001857919	0,0001379506	0,0001167112	0,0001923949	0,0001019569	0,0000430345	0,0002092431	0,0001182067
753	0,0001777602	0,0001366038	0,0001085341	0,0001876920	0,0001041882	0,0000407248	0,0002056271	0,0001174565
754	0,0001723965	0,0001333402	0,0000952953	0,0001898424	0,0001080316	0,0000468902	0,0002060284	0,0001174049
755	0,0001678625	0,0001301145	0,0000951644	0,0001706105	0,0001025855	0,0000555104	0,0002049876	0,0001161192
756	0,0001639192	0,0001238131	0,0000940644	0,0001551818	0,0000938975	0,0000634819	0,0001995891	0,0001150911
757	0,0001612132	0,0001099489	0,0000867486	0,0001554635	0,0000799751	0,0000691008	0,0001838970	0,0001150675
758	0,0001551071	0,0001044406	0,0000827496	0,0001515899	0,0000856265	0,0000619719	0,0001715012	0,0001037222
759	0,0001477559	0,0001024092	0,0000797728	0,0001467215	0,0000990108	0,0000505970	0,0001616063	0,0000888592
760	0,0001441584	0,0000967257	0,0000716201	0,0001518760	0,0000984702	0,0000569223	0,0001628764	0,0000926864
761	0,0001401396	0,0000947733	0,0000674103	0,0001455413	0,0000948652	0,0000567976	0,0001607168	0,0000939014
762	0,0001356728	0,0000968612	0,0000674631	0,0001267900	0,0000879510	0,0000497055	0,0001548622	0,0000923041
763	0,0001403892	0,0000866950	0,0000687322	0,0001200167	0,0000805791	0,0000389093	0,0001489107	0,0000822955
764	0,0001417723	0,0000787495	0,0000684521	0,0001155802	0,0000733347	0,0000327949	0,0001448807	0,0000755933
765	0,0001311202	0,0000811088	0,0000636685	0,0001131592	0,0000667144	0,0000404239	0,0001460181	0,0000806799
766	0,0001204672	0,0000841815	0,0000623620	0,0001088524	0,0000665460	0,0000435787	0,0001363702	0,0000778661
767	0,0001098921	0,0000871368	0,0000626700	0,0001038244	0,0000695187	0,0000441965	0,0001214041	0,0000712432
768	0,0001043996	0,0000755831	0,0000566872	0,0001078733	0,0000641897	0,0000399197	0,0001212469	0,0000766884
769	0,0001041269	0,0000691378	0,0000531822	0,0001051426	0,0000637372	0,0000357367	0,0001215888	0,0000776939
770	0,0001114223	0,0000701484	0,0000532972	0,0000926118	0,0000703562	0,0000317242	0,0001226536	0,0000722593
771	0,0001065266	0,0000736325	0,0000526554	0,0000920910	0,0000621903	0,0000289705	0,0001129245	0,0000711649
772	0,0000990453	0,0000758123	0,0000523316	0,0000931967	0,0000524897	0,0000266885	0,0001036466	0,0000706199
773	0,0000946713	0,0000685578	0,0000544907	0,0000869698	0,0000542646	0,0000251447	0,0001103435	0,0000672624
774	0,0000953742	0,0000644263	0,0000521791	0,0000821525	0,0000556969	0,0000294318	0,0001092578	0,0000635019
775	0,0001000330	0,0000627260	0,0000463835	0,0000784315	0,0000568632	0,0000382634	0,0001021093	0,0000594261
776	0,0001022385	0,0000612153	0,0000410912	0,0000758388	0,0000545029	0,0000329296	0,0001037574	0,0000621877

777	0,0000992836	0,0000576305	0,0000378249	0,0000746337	0,0000522907	0,0000319730	0,0001029075	0,0000616001
778	0,0000875756	0,0000504728	0,0000380469	0,0000757695	0,0000505506	0,0000393984	0,0000972445	0,0000548394
779	0,0000828441	0,0000536079	0,0000373431	0,0000731253	0,0000521538	0,0000366190	0,0000921465	0,0000535959
780	0,0000804733	0,0000589076	0,0000370672	0,0000694482	0,0000542247	0,0000321745	0,0000859407	0,0000554374

	Spektren bei S	000K, 300IX				-		
λ [nm]	ļ		Stra	hlungsflussdic	nte [Watt*m ⁻² *	nm]		
	K-Eye	Arri	P7	P12	Source4 S2	TourLED	Viva CMY	Source4 S3
380	0,0000612128	0,0000050283	0,0000755373	0,0000514733	0,0000175974	0,0000477652	0,0000407386	0,0000574022
381	0,0000263807	0,0000293987	0,0001148752	0,0000163284	0,0000193652	0,0000633237	0,0000404117	0,0000467473
382	0,0000298345	0,0000635927	0,0000982285	0,0000163343	0,0000259304	0,0000799630	0,0000398922	0,0000473723
383	0,0000658790	0,0001055854	0,0000341840	0,0000463133	0,0000364803	0,0000972624	0,0000392332	0,0000576209
384	0,0000469963	0,0000905447	0,0000712125	0,0000373152	0,0000471501	0,0000887664	0,0000259729	0,0000487047
385	0,0000223684	0,0000644333	0,0001070282	0,0000283201	0,0000593549	0,0000704976	0,0000197454	0,0000393081
386	0,0000156006	0,0000309361	0,0000482134	0,0000541896	0,0000814216	0,0000234486	0,0000594044	0,0000435120
387	0,0000228482	0,0000549463	0,0000297310	0,0000743832	0,0000739407	0,0000047370	0,0000832617	0,0000668648
388	0,0000442698	0,0001370558	0,0000515742	0,0000890952	0,0000366435	0,0000142929	0,0000914978	0,0001097369
389	0,0000605034	0,0001297067	0,0000494797	0,0000736227	0,0000536941	0,0000393899	0,0000655669	0,0000903661
390	0,0000746595	0,0001030342	0,0000409014	0,0000536770	0,0000776502	0,0000679455	0,0000409514	0,0000615357
391	0,0000875392	0,0000909954	0,0000256596	0,0000503639	0,0000579182	0,0001027011	0,0000831843	0,0000697319
392	0,0000860702	0,0000782767	0,0000393125	0,0000529096	0,0000385875	0,0001124010	0,0001014156	0,0000764864
393	0,0000666951	0,0000648133	0,0000889755	0,0000627651	0,0000199059	0,0000907379	0,0000895368	0,0000814008
394	0,0000457799	0,0000501029	0,0001037673	0,0000585243	0,0000128500	0,0000771671	0,0000851235	0,0000943222
395	0,0000265849	0,0000362791	0,0001061089	0,0000522260	0,0000124146	0,0000661065	0,0000830322	0,0001077348
396	0,0000294746	0,0000342344	0,0000925280	0,0000758287	0,0000494648	0,0000495589	0,0000786903	0,0000979778
397	0,0000383185	0,0000393338	0,0000866120	0,0000821259	0,0000654441	0,0000424878	0,0000849538	0,0000995835
398	0,0000562063	0,0000551657	0,0000919450	0,0000627754	0,0000503895	0,0000493516	0,0001071110	0,0001181030
399	0,0000661061	0,0000676558	0,0001038479	0,0000514357	0,0000444711	0,0000626661	0,0001042626	0,0001037653
400	0,0000720894	0,0000791985	0,0001172407	0,0000449852	0,0000433200	0,0000782262	0,0000926017	0,0000781256
401	0,0000579626	0,0001116518	0,0001031350	0,0000886365	0,0000778142	0,0000947479	0,0001082408	0,0000897086
402	0,0000530759	0,0001274682	0,0000992027	0,0001215582	0,0000964346	0,0001034978	0,0001117722	0,0001141194
403	0,0000643410	0,0001142548	0,0001130659	0,0001361808	0,0000874342	0,0000986968	0,0000940162	0,0001615384
404	0,0000816466	0,0001264192	0,0001294869	0,0001535676	0,0001014054	0,0001157586	0,0001026627	0,0001911717
405	0,0001015842	0,0001502895	0,0001469363	0,0001720725	0,0001259366	0,0001428315	0,0001235281	0,0002122185
406	0,0001009269	0,0001737679	0,0001689106	0,0002009175	0,0001494182	0,0001256548	0,0001369807	0,0001975411
407	0,0001078352	0,0001979504	0,0001966204	0,0002311414	0,0001813630	0,0001216953	0,0001489772	0,0002000636
408	0,0001315615	0,0002244205	0,0002374457	0,0002650970	0,0002325403	0,0001467335	0,0001583480	0,0002401608
409	0,0001498088	0,0002697112	0,0002772904	0,0002985731	0,0002468256	0,0001663341	0,0001921216	0,0002926946
410	0,0001648558	0,0003255932	0,0003164251	0,0003316540	0,0002399680	0,0001827535	0,0002397223	0,0003521397
411	0,0001842559	0,0003634585	0,0003859811	0,0003741561	0,0002698330	0,0002268983	0,0002822985	0,0003770826
412	0,0002086948	0,0004055365	0,0004525860	0,0004392198	0,0003072017	0,0002643096	0,0003253248	0,0004101860
413	0,0002465784	0,0004625438	0,0005101813	0,0005641309	0,0003606385	0,0002820903	0,0003718867	0,0004702424
414	0.0002833072	0.0005325734	0.0006041214	0.0006758087	0.0004249907	0.0003420941	0.0004220078	0.0005644236
415	0.0003191002	0.0006109989	0.0007219393	0.0007781254	0.0004963505	0.0004300580	0.0004742884	0.0006809939
416	0,0003461706	0.0007141568	0.0008415917	0,0009358331	0.0005707416	0.0004845742	0.0005773439	0.0007774593
417	0,0003887388	0,0008316375	0,0009724632	0,0011080209	0,0006435811	0,0005431570	0,0006861896	0,0008828919
418	0.0004844386	0.0009907335	0.0011422545	0.0013148143	0.0007126076	0.0006262796	0.0008015104	0.0010258364
419	0.0005729165	0.0011791930	0.0013702732	0.0015508639	0.0007906097	0.0007432631	0.0009283528	0.0011744836
420	0.0006550723	0.0013888228	0.0016414720	0.0018076173	0.0008749598	0.0008854934	0.0010630834	0.0013263499
421	0.0007718221	0.0016221616	0.0018951230	0.0020898321	0.0010086819	0.0009838627	0.0012526614	0.0015329489
422	0.0009080213	0.0018624923	0.0021736896	0.0023941805	0.0011521299	0.0011012390	0.0014567156	0.0017561740
423	0.0011021352	0.0021167950	0.0025597581	0.0027715344	0.0013069126	0.0013176792	0.0016876585	0.0020149343
424	0.0012957116	0.0024042180	0.0029165060	0.0032043610	0.0014787006	0.0015264248	0.0010257050	0.0022929114
425	0.0014868033	0.0027183480	0.0032437320	0.0036823245	0.0016642264	0.0017261607	0.0021676989	0.0025852641
426	0.0017472076	0.0030786516	0.003762230	0.0041610150	0.0018344019	0.0019734122	0.0024560741	0.0029696174
	0,001/4/20/0	0,0000700010	0,0007022232	0,00,101010103	0,0010044010	0,0010704100	0,0024000/41	0,00200001/4

427	0,0020360127	0,0034502548	0,0043106563	0,0046683717	0,0020200436	0,0022443203	0,0027735553	0,0033756392
428	0,0024122172	0,0038506836	0,0048585971	0,0053335133	0,0023009691	0,0025988883	0,0032038561	0,0038221798
429	0,0027767617	0,0043174840	0,0054670479	0,0059951056	0,0025702872	0,0029547031	0,0036562143	0,0043104922
430	0,0031283993	0,0048495710	0,0061344342	0,0066510303	0,0028270812	0,0033106328	0,0041293070	0,0048392698
431	0,0036278452	0,0054636496	0,0068265557	0,0073118291	0,0031458137	0,0036940127	0,0046217019	0,0054667845
432	0,0041598458	0,0061179395	0,0075295412	0,0079866364	0,0034868066	0,0041066314	0,0051283196	0,0061222553
433	0,0046843793	0,0069028646	0,0082621874	0,0087389764	0,0038778740	0,0046592685	0,0056932614	0,0068097950
434	0,0052596308	0,0077153960	0,0090133601	0,0095187892	0,0042956221	0,0052390243	0,0063015065	0,0075250776
435	0,0058795098	0,0085423465	0,0097706678	0,0103141307	0,0047346893	0,0058371995	0,0069457341	0,0082570701
436	0,0065752712	0,0095180966	0,0105972660	0,0111399640	0,0052884104	0,0064284074	0,0075685624	0,0091081149
437	0,0072752390	0,0104793449	0,0113977915	0,0119345430	0,0058557741	0,0070130837	0,0081741802	0,0099312646
438	0,0080084360	0,0112519889	0,0120351648	0,0125989457	0,0064237798	0,0076832672	0,0088164440	0,0104930664
439	0,0087201519	0,0119301420	0,0126992802	0,0132310796	0,0070362005	0,0083559631	0,0094560547	0,0110367704
440	0,0094204176	0,0125083549	0,0134068809	0,0138356946	0,0077136191	0,0090449009	0,0101046562	0,0115683805
441	0,0100614692	0,0128272630	0,0139583314	0,0143845714	0,0083215746	0,0098103412	0,0107677323	0,0119449568
442	0,0106808723	0,0130213321	0,0144477806	0,0148856711	0,0089088284	0,0105909204	0,0114251681	0,0122348572
443	0,0113040794	0,0128024357	0,0148297882	0,0151529482	0,0095301667	0,0113641245	0,0120441039	0,0121870652
444	0,0118191078	0,0123439259	0,0151096575	0,0153205643	0,0100524444	0,0121078183	0,0125707027	0,0120194417
445	0,0121878785	0,0115857217	0,0152555722	0,0153593357	0,0104398119	0,0128031053	0,0129714453	0,0117019348
446	0,0124531087	0,0107061851	0,0152410934	0,0151642705	0,0106375709	0,0134534246	0,0133538788	0,0110706134
447	0,0126546020	0,0098312507	0,0151482016	0,0149000601	0,0107533370	0,0140573537	0,0137089846	0,0103769519
448	0,0125862860	0,0089483221	0,0146857408	0,0144848326	0,0106473427	0,0145328563	0,0139400853	0,0096689391
449	0,0124019016	0,0081270513	0,0141013213	0,0139456412	0,0104054567	0,0148721308	0,0140651506	0,0089587907
450	0,0120695447	0,0073616830	0,0133530785	0,0132411634	0,0099908264	0,0150491320	0,0140604074	0,0082291156
451	0,0116059930	0,0068183624	0,0125629151	0,0124402391	0,0094725635	0,0149746056	0,0139833876	0,0076374271
452	0,0110877520	0,0063527790	0,0117559823	0,0116108589	0,0089244034	0,0148027080	0,0138544735	0,0070980291
453	0,0103113798	0,0058908083	0,0107407267	0,0106186365	0,0082785798	0,0143784934	0,0133896874	0,0065491431
454	0,0095471220	0,0055286722	0,0097592302	0,0096193067	0,0077030357	0,0137731899	0,0128526266	0,0060746385
455	0,0087893141	0,0052905799	0,0088096886	0,0085991642	0,0072109985	0,0129269902	0,0122155228	0,0056901644
456	0,0080396940	0,0051032200	0,0079109859	0,0076867908	0,0068458130	0,0120039682	0,0115391482	0,0053804021
457	0,0073269884	0,0049398512	0,0070731027	0,0068447557	0,0065441354	0,0110872860	0,0108671824	0,0051146351
458	0,0067072448	0,0047855483	0,0063954867	0,0060716908	0,0063597850	0,0101435899	0,0101056424	0,0049529371
459	0,0061634304	0,0046761155	0,0057769343	0,0053842185	0,0062293964	0,0092638830	0,0093282860	0,0047934982
460	0,0057044268	0,0046220084	0,0052190280	0,0047908453	0,0061654117	0,0084436440	0,0085073462	0,0046316307
461	0,0053592945	0,0046085837	0,0047619184	0,0042834789	0,0061982703	0,0076685653	0,0077474939	0,0045109852
462	0,0050654695	0,0046152293	0,0043513846	0,0038185610	0,0062616814	0,0069311930	0,0070274077	0,0044100450
463	0,0048942524	0,0047003038	0,0040436935	0,0034577082	0,0063215730	0,0063629622	0,0064429257	0,0043679576
464	0,0047470295	0,0048008586	0,0037297807	0,0031463361	0,0064315859	0,0058471615	0,0059008032	0,0043432132
465	0,0046315773	0,0049235505	0,0034041610	0,0029008359	0,0066119248	0,0053993350	0,0054124006	0,0043421055
466	0,0045806111	0,0050637997	0,0031029421	0,0026455340	0,0068091068	0,0049749710	0,0049785389	0,0043438482
467	0,0045639043	0,0052121939	0,0028236765	0,0023996095	0,0070083583	0,0045786975	0,0045808635	0,0043528708
468	0,0046654611	0,0054155163	0,0025998971	0,0022089381	0,0072097121	0,0042670381	0,0042418271	0,0044208160
469	0,0047924211	0,0056050482	0,0023809653	0,0020423779	0,0074183093	0,0039674515	0,0039453490	0,0045090658
470	0,0049544790	0,0057790448	0,0021638028	0,0019040590	0,0076391590	0,0036773347	0,0036986117	0,0046249958
471	0,0051865833	0,0059295840	0,0019898409	0,0017628002	0,0078210169	0,0034084763	0,0034457585	0,0047342947
472	0,0054442035	0,0060696224	0,0018338639	0,0016256273	0,0079855959	0,0031542076	0,0031972177	0,0048488717
473	0,0057669307	0,0061958992	0,0016993729	0,0015238403	0,0081203188	0,0029478011	0,0029819288	0,0050587240
474	0,0061282138	0,0063044948	0,0015866566	0,0014264149	0,0082271165	0,0027425741	0,0027845340	0,0052684868
475	0,0065421338	0,0063887310	0,0015038564	0,0013350144	0,0082954903	0,0025390571	0,0026117698	0,0054779711
476	0,0069450839	0,0063766196	0,0014471485	0,0012618647	0,0083015178	0,0023755434	0,0024505968	0,0056929781

97. 0,00734883 0,00338989 0,001399698 0,00221010 0,0022118418 0,0022148482 0,009311941 778 0,000581102 0,005020481 0,001107570 0,001107570 0,001107570 0,000119202 0,000119202 0,000119202 0,0001192022 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
978 0.0007244947 0.0001347167 0.0011347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.0001347667 0.000134767 0.000134767 0.001134767 0.0011347677 0.001134767 0.0011347677 0.0011347677 0.0011347677 0.0011347677 0.0011347677 0.001134777 484 0.0085373147 0.001537177 0.001135787 0.001358371 0.0013985418 0.0011479741 0.000557218 0.00114679741 0.000557218 585 0.0085373147 0.001538717 0.001135817 0.007211218 0.0011647981 0.000585318 0.0011647981 0.000585318 0.0011647981 0.000585318 0.0011647981 0.000584588 0.0011647981 0.000584588 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981 0.0011647981	477	0,0073418683	0,0063284256	0,0013989698	0,0011965456	0,0082845321	0,0022312166	0,0022951937	0,0059115042
9 0.008032160 0.0001305189 0.001107287 0.001177882 0.000217178 0.0001372852 0.00021178 480 0.008599540 0.00623718 0.00112757017 0.0010559956 0.0013758726 0.0001372852 0.001269726 481 0.0085795140 0.005375729 0.001269714 0.001355138 0.001365406 0.001375147 0.007677174 482 0.008757147 0.00557328 0.001269716 0.001385501 0.001365776 0.001667771 0.001667771 0.001667771 0.001667771 0.0016777716 0.001527716 0.001385310 0.007267712 0.001667771 0.001667771 0.001677771 0.001527716 0.001715202 0.001527716 0.00176777 0.001627716 0.00176777 0.001237111 0.001627716 0.00176777 0.00123711 0.001277716 0.001706777 0.00123711 0.001706777 0.001238164 0.001706777 0.001238164 0.001706777 0.001236164 0.001276776 0.001237678 0.001276776 0.001237677 0.001236164 0.001276776 0.001237677 0.001236164 0.001276776 <t< td=""><td>478</td><td>0,0077284977</td><td>0,0062224484</td><td>0,0013471675</td><td>0,0011456452</td><td>0,0082304107</td><td>0,0021394486</td><td>0,0021488825</td><td>0,0061548861</td></t<>	478	0,0077284977	0,0062224484	0,0013471675	0,0011456452	0,0082304107	0,0021394486	0,0021488825	0,0061548861
400 0,008381025 0,0001275711 0,0001859486 0,00019751148 0,0013853222 0,001869486 0,0019751481 0,0013751476 0,0013751476 0,0013751476 0,0013751176 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,0013751180 0,001355118 0,001355118 0,001355118 0,001355118 0,001355217 0,001355217 0,001355217 0,001355217 0,001355217 0,001355217 0,001355217 0,001355218 0,00135	479	0,0080832162	0,0061208831	0,0013051593	0,0011072578	0,0081678682	0,0020648239	0,0020259509	0,0064515783
611 0.008859460 0.00585357 0.001266720 0.001694986 0.0015748510 0.0017967765 0.007786715 422 0.008754147 0.005573130 0.001256274 0.001555130 0.001894840 0.0017957765 0.0077857785 434 0.008754174 0.005572130 0.0012562776 0.0010585510 0.007867128 0.001395440 0.00155524 0.001190074 444 0.008555212 0.0013450775 0.0013450785 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602745 0.0012602747 0.0012602747 0.0012602745 0.0012602747 0.0012602745 0.0012602745 0.0012602747 0.0012602745 0.0012602745 0.0012602745 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274 0.001260274	480	0,0083981052	0,0060237158	0,0012757017	0,0010850986	0,0080928112	0,0020121749	0,0019328522	0,0068216837
412 0.007321346 0.005375807 0.001259714 0.001057185 0.001936400 0.001713028 0.007567183 443 0.008754114 0.005572118 0.00123622376 0.0010655113 0.001285072 0.0016679741 0.005575718 0.0016679741 0.005575718 0.0016679741 0.00557578 0.0016679741 0.00557578 0.0016679741 0.005565788 466 0.00853528 0.005577580 0.001155294 0.001185689 0.001289755 0.0016297515 0.001569788 488 0.076731512 0.00554849 0.0011939347 0.00189806 0.002284131 0.001289776 0.001289777 0.001289781 490 0.0075681120 0.00558828 0.001519384 0.003276811 0.002284138 0.001798700 0.001289975 0.001289975 0.001289975 0.001299975 0.001299975 0.001299975 0.001299975 0.001299776 0.001299776 0.001299776 0.001299777 0.001299777 0.001299777 0.001299776 0.001299776 0.001299777 0.001299777 0.001299777 0.001299777 0.001299777 0.00129977	481	0,0085895480	0,0058853552	0,0012636202	0,0010694986	0,0079858606	0,0019754881	0,0018537756	0,0071495021
483 0.00873417 0.00554127 0.00125627 0.001065813 0.007285138 0.001393640 0.001679741 0.007867283 444 0.00854127 0.00554127 0.00554127 0.0015787018 0.001258274 0.007867128 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001106791 0.001289930 0.001106791 0.001289304 0.001289304 0.001289304 0.001289304 0.001289304 0.001289304 0.001289304 0.001289304 0.001289304 0.001289304 0.001289304 0.001279796 0.002729582 0.001299305 0.01129208 0.001289304 0.0012793790 0.002729582 0.001299305 0.01129208 0.001279079 0.002729582 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.001279579 0.0012795799 0.001279579	482	0,0087291348	0,0057353077	0,0012569714	0,0010571866	0,0078763910	0,0019461804	0,0017806726	0,0074667152
444 0.007901747 0.002258276 0.001085010 0.007801728 0.001996015 0.001679741 0.002250274 485 0.00854221 0.001571187 0.001180118 0.001861728 0.001960575 0.00164728 0.001980574 0.00164028 0.001980578 0.00164028 0.001980578 0.00164128 0.001980578 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.00164128 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288064 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.001288645 0.0011289125 0.011289125 0.011289125<	483	0,0087534174	0,0055772193	0,0012484726	0,0010555133	0,0078285138	0,0019365405	0,0017130280	0,0078547861
455 0,005542321 0,001200711 0,001200711 0,00120071 0,00120071 466 0,00523500 0,001215220 0,001103021 0,007846447 0,001202244 0,00120224 476 0,0052731512 0,0052473167 0,00135227 0,001235244 0,001283354 0,001283354 0,001283354 0,001283354 0,001283354 0,001283354 0,001283354 0,00127011 0,001283345 0,00127017 0,01213154 489 0,00753112 0,001253328 0,001271010 0,00126604 0,000275314 0,001785313 0,001785333 0,001270870 0,001256337 491 0,005684106 0,001175038 0,001376797 0,001356342 0,001725636 0,001795633 0,001795666 0,001795767 0,00159533 0,001797566 0,001795767 0,00159533 0,001797576 0,01159533 0,011797576 0,011795761 0,001797576 0,01159533 0,001797576 0,01159533 0,0017975775 0,01159533 0,00271673 0,0017975762 0,0017975775 0,01159533 0,00271673 0,0017977576 0,001592359 <td< td=""><td>484</td><td>0,0087051747</td><td>0,0054513349</td><td>0,0012562876</td><td>0,0010638501</td><td>0,0078067128</td><td>0,0019396410</td><td>0,0016679741</td><td>0,0082528724</td></td<>	484	0,0087051747	0,0054513349	0,0012562876	0,0010638501	0,0078067128	0,0019396410	0,0016679741	0,0082528724
466 0.005835300 0.0051275202 0.001315224 0.001130002 0.0077811221 0.002140033 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.001400339 0.00128004 0.000280339 0.001400339 0.00128004 0.000280339 0.001400319 0.00128004 0.000280339 0.001788700 0.00128004 0.00118004 0.00118004 </td <td>485</td> <td>0,0085542321</td> <td>0,0053701187</td> <td>0,0012870169</td> <td>0,0010862410</td> <td>0,0078211200</td> <td>0,0019605754</td> <td>0,0016544968</td> <td>0,0086657281</td>	485	0,0085542321	0,0053701187	0,0012870169	0,0010862410	0,0078211200	0,0019605754	0,0016544968	0,0086657281
477 0,005151219 0,001287316 0,001287316 0,001287316 0,001287316 0,001287316 0,001287316 0,001287316 0,001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,0001287316 0,001287316 0,0001287316 0,0011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,011286900 0,0011286900 0,0011286900 0,0011286900 0,0011286900 0,0011286900 0,0011286900 0,0011286900 0,0011286900 0,0011286910 0,00112869110 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,0011286910 0,001111186910 0,0011286910 0,00111869115	486	0,0083635306	0,0052757502	0,0013155224	0,0011103091	0,0078486487	0,0020198859	0,0016400539	0,0091030244
488 0,0078731612 0,003025429 0,0019933547 0,0011833000 0,0079221411 0,002288941 0,001706777 0,102281865 489 0,007685312 0,005508064 0,001253105 0,01288004 0,002288941 0,001238007 0,002288941 0,001238007 0,002288521 491 0,0068336519 0,005508064 0,011519338 0,01177601 0,00253530 0,002795562 0,0112924055 493 0,0062349609 0,00511449 0,001547495 0,001877558 0,0023795601 0,001829524 0,011259815 494 0,0062349609 0,00511449 0,001574054 0,010574752 0,003877572 0,013578578 0,002375759 0,01157842 495 0,005241669 0,002349590 0,002315569 0,002315690 0,002315577 0,01157842 486 0,005805876 0,007770407 0,002520569 0,002215410 0,002767258 0,002251550 0,01159135 501 0,005339590 0,002715857 0,002751590 0,002751590 0,002751590 0,002751590 0,011591858	487	0,0081512198	0,0051843720	0,0013450089	0,0011367619	0,0078811821	0,0020941553	0,0016287916	0,0095465389
90,0075635112 0,005248489 0,001320132 0,003209623 0,0022983941 0,001709777 0,010281865 490 0,007208666 0,001378200 0,001378200 0,001378200 0,001281865 491 0,00533512 0,005598806 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378200 0,001378201 0,00237555 0,00237555 0,00237555 0,003395239 0,0113997549 0,01153340 495 0,006541566 0,0022711774 0,0113907621 0,009577258 0,003396239 0,002301592 0,11531340 496 0,05583576 0,00770467 0,00252058 0,002521140 0,003990567 0,0027167248 0,0023201592 0,0118111415159 500 0,0055785718 0,008264800 0,00272594 0,002512053 0,0027111416 0,003265900 0,00271114111415159 0,00251150 0,00111111212 501 0,00567155718 0,008264800 0,002725934 0,0029211203 <t< td=""><td>488</td><td>0,0078731612</td><td>0,0052025429</td><td>0,0013935347</td><td>0,0011833080</td><td>0,0079221411</td><td>0,0021830439</td><td>0,0016641263</td><td>0,0099135150</td></t<>	488	0,0078731612	0,0052025429	0,0013935347	0,0011833080	0,0079221411	0,0021830439	0,0016641263	0,0099135150
490 0,007208846 0,0015393224 0,0015291180 0,0012869004 0,002421138 0,0017379700 0,0105514527 491 0,0005338151 0,005766665 0,001175008 0,00177700 0,0027259562 0,0017326700 0,0017362605 0,0017342605 0,0017342605 0,0027259562 0,0012734553 0,0027259562 0,0012734553 0,0027259562 0,001573455 0,0027259562 0,001573455 0,0025195749 0,0015795749 0,0015970525 0,0035669732 0,0021159722 0,011573455 495 0,006541366 0,0022116708 0,0021926023 0,0028199725 0,002361972 0,011573452 0,0011573456 496 0,0053935940 0,0022315078 0,0022231410 0,0039950607 0,002417524 0,011189124 497 0,005825577 0,00846993 0,002211578 0,0022115787 0,0003560972 0,001255972 0,011189124 498 0,005825874 0,0023158574 0,00231759903 0,0027149160 0,0092714916 0,0039142271 0,004520166 0,0022511590 0,011189134 500 0,00653339359<	489	0,0075635112	0,0052484899	0,0014532072	0,0012329134	0,0080209623	0,0022893941	0,0017006777	0,0102818665
e11 0,0059338519 0,00575989064 0,01159038 0,0013776214 0,005865552 0,0012726906 0,011294152 492 0,00661153 0,005116966 0,011715030 0,011377617 0,0023375061 0,00129393553 0,011294152 493 0,0062349609 0,005211649 0,011548410 0,011797072 0,003970521 0,0033975631 0,0021977249 0,011593453 495 0,0062449609 0,002549566 0,0022011974 0,017976721 0,009577252 0,003396258 0,0021757749 0,011591342 496 0,005841566 0,0022116708 0,012520533 0,002680051 0,003490430 0,002310522 0,0111491153 497 0,005842567 0,007770487 0,0025325647 0,0037785718 0,002711388 0,002251410 0,09959667 0,004772748 0,002531594 0,011191138 499 0,0075785718 0,0037710393 0,0027149166 0,009794277 0,001452640 0,002721494 0,011631845 500 0,005873550 0,0027114916 0,099714277 0,0056465451 0,001346557	490	0,0072088648	0,0053353284	0,0015291180	0,0012869004	0,0082048211	0,0024211383	0,0017389700	0,0106514529
492 0,0066871537 0,0057166965 0,0017150308 0,0014777601 0,0082255747 0,001229592 0,0112934153 493 0,0064450562 0,0055414207 0,00123444051 0,0015704795 0,00335535 0,002375661 0,00159375640 0,011593555 495 0,006541368 0,006453266 0,0022115708 0,0015926230 0,00336695723 0,0021759722 0,011573656 496 0,0058484623 0,0073349590 0,0022115708 0,002223140 0,009590067 0,0042767248 0,002301592 0,0111491125 500 0,005785758 0,007784707 0,0022512058 0,0022215410 0,00959067 0,0042767248 0,002231742 0,111491125 500 0,005785717 0,0084504693 0,002711388 0,002212053 0,0097164277 0,0042671248 0,0022812915 0,0111491125 501 0,0058255272 0,008450845 0,002711388 0,0022812035 0,100246457 0,0022812035 0,002813985 0,011251855 0,0018358842 0,0018358842 0,0018358842 0,0018358584 0,011251856 0,0018358584 <td>491</td> <td>0,0069338519</td> <td>0,0055098064</td> <td>0,0016190384</td> <td>0,0013762814</td> <td>0,0083685632</td> <td>0,0025688378</td> <td>0,0017826006</td> <td>0,0109560349</td>	491	0,0069338519	0,0055098064	0,0016190384	0,0013762814	0,0083685632	0,0025688378	0,0017826006	0,0109560349
493 0,0064505062 0,0035414207 0,0018268449 0,001770499 0,008703553 0,0029376061 0,0119797649 0,0115044240 494 0,006234669 0,0063111649 0,001971040 0,0017977621 0,003396259 0,0021513196 0,001577585 0,0033962593 0,0021575722 0,0115074524 495 0,005837840 0,0063306259 0,0022511506 0,0022601302 0,003404340 0,002301592 0,0117878424 497 0,00584025875 0,007770407 0,002532058 0,002231410 0,00989104277 0,0042427142 0,011381854 500 0,005825527 0,003770407 0,0025312647 0,0093716127 0,004271040 0,00283111191123 501 0,005933359 0,0024278345 0,0002714916 0,009310127 0,002831635 0,002281935 0,002281935 0,0027114916 0,0058464946 0,003747570 0,0110841649 502 0,0064163393 0,012176685 0,00371171 0,1010372624 0,0036451345 0,003445522 0,003745770 0,0110841449 505 0,0064163393 0,0	492	0,0066871537	0,0057166965	0,0017150308	0,0014777601	0,0085255747	0,0027259562	0,0018295924	0,0112294155
494 0,0062349609 0,001211649 0,0013731656 0,0088775672 0,0031395813 0,0013737649 0,0115019453 495 0,006504168 0,006549568 0,000271174 0,001397621 0,009258005 0,003669723 0,002157572 0,0135078427 497 0,0058484623 0,0077704087 0,002351056 0,0022693061 0,003949166 0,002341567 0,011365136 0,0033673139 0,002341566 0,003365039 0,011365136 0,0033671121 0,003847570 0,010835828 0,0033673171 0,0103634564 0,0036415353 0,0037675772 0,0036641353 0,0037675772 0,00376673972 0,00376673972 0,006463522 0,0098745610 0,0037667391 0,005713885 0,003366977777 0,00366415	493	0,0064505062	0,0059414207	0,0018268449	0,0015704799	0,0087003553	0,0029376061	0,0018993953	0,0114024404
495 0,0060541368 0,0026495668 0,002701974 0,0017907621 0,00396097728 0,0038609723 0,002101578972 0,0115131963 496 0,0058073840 0,0009320609 0,00221610506 0,003260005 0,0038609723 0,0021301592 0,0111801125 497 0,0058025876 0,007704087 0,0025301594 0,002231410 0,009897012 0,0044207144 0,00143974070 0,002212143 0,0005825272 0,0084258264 0,00272194166 0,0097164277 0,004520166 0,0012383755 0,002926547 0,00518059 0,0030747570 0,011081125 500 0,005825272 0,0084528450 0,0032937955 0,0029210243 0,00330445 0,0053939918 0,0105987667 503 0,0061282674 0,00518059 0,0032659990 0,011241665 0,0064825030 0,0032659990 0,011241667 504 0,0062982193 0,0114984174 0,003397171 0,011055136 0,006418393 0,003745750 0,0011357186 0,006418393 0,003485822 0,0094131884 505 0,0064112939 0,0112816166 0,00428416	494	0,0062349609	0,0062111649	0,0019444051	0,0016731656	0,0088775672	0,0031595813	0,0019757649	0,0115094559
496 0,0059379840 0,0059320669 0,0022115708 0,003260005 0,0036609723 0,0021755972 0,0115078420 497 0,0058405876 0,007774087 0,002530598 0,002251140 0,00590567 0,0022427742 0,0113188644 498 0,005802587 0,007774087 0,002502593 0,0022371584 0,002531274 0,0025315504 0,011101125 500 0,0055253272 0,008406993 0,002711388 0,0025312647 0,0083710101 0,004734070 0,00272110243 0,011888494 501 0,0055253272 0,003405339 0,0027119166 0,0029265547 0,005282269 0,002893918 0,0110593765 502 0,0066700528 0,010092044 0,0033973755 0,0100326546 0,003282269 0,0034845757 0,011365136 0,0034845757 0,011365135 0,0034845822 0,00984816517 0,0034845729 0,00984816517 0,0034845729 0,0098481551 0,0034845727 0,0013864817 0,0038489729 0,009839179 0,011165136 0,0067412916 0,0038489729 0,009839179 0,011165136 0,006741344	495	0,0060541368	0,0065495668	0,0020701974	0,0017907621	0,0090577258	0,0033962598	0,0020619372	0,0115131965
497 0,0058484623 0,0073449590 0,0023610506 0,0020693801 0,00394941669 0,0034949430 0,002301592 0,0114891592 498 0,0058025876 0,0077780407 0,0022533258 0,002271140 0,009590667 0,00422767248 0,0024237142 0,0111081125 500 0,0058253272 0,0088466993 0,0023711388 0,0023714166 0,00937164777 0,004620166 0,0022611534 0,0111091125 501 0,0058125872 0,00084166939 0,0027149166 0,0093871012 0,004672016 0,0022615364 0,01109316855 502 0,006070628 0,0109972629 0,0034257838 0,0031112977 0,1010327282 0,0064816345 0,003265590 0,011241666 504 0,0065415393 0,0114984174 0,0038311297 0,0103375720 0,0101365164 0,00026411341 0,0038481649 0,00134485822 0,009413388 505 0,0067412916 0,0122816154 0,0044330171 0,011365164 0,000766214 0,008449729 0,009413388 507 0,0067412916 0,013288667 0,00433037171	496	0,0059379840	0,0069320669	0,0022116708	0,0019260293	0,0092680005	0,0036609723	0,0021755972	0,0115078420
498 0,0058025876 0,0077704087 0,0025320598 0,0022721410 0,0095799667 0,0042767248 0,002210243 0,011101125 500 0,0057853718 0,008664800 0,0027025934 0,0023799603 0,00937164277 0,004620166 0,0072710445 0,011091125 500 0,0058233277 0,0084528450 0,0033793755 0,0029126647 0,0053168059 0,002710747570 0,1103846911 501 0,006700628 0,010902044 0,0032393755 0,002120263 0,00064455 0,0006416345 0,003265699 0,0110141666 504 0,0062982193 0,0114984174 0,0035981851 0,0033937570 0,011365136 0,0068435030 0,00354485822 0,009413885 505 0,0064163393 0,0112476056 0,0036736484 0,011141276 0,007265114 0,0038449729 0,009413885 507 0,006431359 0,014325652 0,00443187 0,004747665 0,0114142676 0,007265114 0,0093849729 0,009326307 508 0,0063340751 0,0144326525 0,004441825 0,004418350 0,0	497	0,0058484623	0,0073349590	0,0023610506	0,0020693801	0,0094841669	0,0039409430	0,0023001592	0,0114891591
499 0,0057885718 0,002244800 0,0027025934 0,0023799603 0,007164277 0,0046202166 0,002515504 0,0111091123 500 0,0058253222 0,0088406993 0,002714186 0,0098371012 0,0049734070 0,0027210243 0,100388864 501 0,005930353 0,0003765039 0,0027149166 0,00056646946 0,00377570 0,0103864911 503 0,0061226674 0,0010970628 0,0100976539 0,00211276783 0,001127770 0,0100826540 0,00664816345 0,0033664317 0,0013265590 0,0101327828 0,0064816345 0,0033664317 0,009413888 505 0,0064163393 0,0121760856 0,003857637 0,01116112676 0,0075671272 0,004697459 0,009203355 506 0,006711591 0,0143285625 0,0044491782 0,004747685 0,0101312788 0,004697459 0,009203355 508 0,0071398993 0,015086044 0,004645527 0,004630191 0,004465610 0,008920566 510 0,0073894694 0,0044636657 0,00531488 0,0093325939 0,	498	0,0058025876	0,0077704087	0,0025320598	0,0022251410	0,0095990667	0,0042767248	0,0024237142	0,0113188648
500 0,0058253272 0,0088466933 0,002711388 0,0025321647 0,0089371012 0,0049734070 0,00271210243 0,010888584 501 0,0059339359 0,004528450 0,0030763039 0,0027149166 0,0099266547 0,0055168059 0,0028939918 0,101987660 502 0,0060702628 0,0100902044 0,0032937955 0,002112033 0,0100826540 0,0066826293 0,003114894174 0,0033071171 0,0101378228 0,0064816345 0,003465812 0,00936364511 0,00936364513 505 0,0064163933 0,0112760566 0,0033071171 0,010135136 0,0064815030 0,00343645127 0,0094133885 506 0,0065711591 0,012760856 0,00343017 0,00347750 0,0101412676 0,007265114 0,0034848729 0,0094133885 507 0,0067112916 0,0128816194 0,0042430481 0,0038527637 0,0101457480 0,00778948649 0,0042714106 0,0099336203 508 0,006712989 0,015616655 0,004463927 0,0042665160 0,010148249 0,0046653652 0,008477372 0,0	499	0,0057885718	0,0082624800	0,0027025934	0,0023799603	0,0097164277	0,0046202166	0,0025615504	0,0111091129
501 0,0059339359 0,0094528450 0,003763039 0,0027149166 0,009266547 0,0053168059 0,0028393918 0,010587666 502 0,0060700628 0,010092044 0,0032937955 0,002122053 0,100034045 0,0056646946 0,00377570 0,013640910 503 0,006416328674 0,0107972629 0,0034257838 0,003112977 0,1000826540 0,0064816345 0,0034685822 0,0098746510 505 0,0064163393 0,011276686 0,003830190 0,0034937570 0,010136516 0,0068416345 0,0038489729 0,00941318388 506 0,0065711591 0,011485149 0,001457480 0,0075672072 0,004697459 0,009230355 508 0,0071398993 0,015086094 0,004243041 0,0038527637 0,011457480 0,00728748649 0,009230355 509 0,0071398993 0,015086094 0,0044463927 0,00476765 0,011166849 0,0082091191 0,0046945510 0,0088277 510 0,0073798226 0,016938791 0,005295236 0,00477655 0,00793325939 0,0052645	500	0,0058253272	0,0088406993	0,0028711388	0,0025321647	0,0098371012	0,0049734070	0,0027210243	0,0108388584
502 0,0060700628 0,0100902044 0,0032937955 0,0029122053 0,0100034045 0,0056646946 0,003777570 0,0103640910 503 0,0061828674 0,0107972629 0,0034257838 0,0031112977 0,0100825640 0,006822629 0,0032605909 0,011241666 504 0,00621828674 0,0113977625 0,003830190 0,0034937570 0,0101327828 0,0064116345 0,0034649173 0,0036641514 0,003649173 0,0036641514 0,003649173 0,0036711591 0,013881614 0,0004410187 0,00375672637 0,001457480 0,0072672072 0,004697455 0,009326207 506 0,007139993 0,015086094 0,0042430481 0,0038527637 0,011341249 0,0072848649 0,0042741606 0,009326207 508 0,0071398933 0,015086094 0,004483277 0,0042861560 0,010184284 0,0082091191 0,004897561 0,008825661 510 0,0073690491 0,015616666 0,0048320896 0,0046714571 0,010084254 0,00826977 0,004536052 0,0088205616 511 0,0077798226 </td <td>501</td> <td>0,0059339359</td> <td>0,0094528450</td> <td>0,0030763039</td> <td>0,0027149166</td> <td>0,0099266547</td> <td>0,0053168059</td> <td>0,0028939918</td> <td>0,0105987660</td>	501	0,0059339359	0,0094528450	0,0030763039	0,0027149166	0,0099266547	0,0053168059	0,0028939918	0,0105987660
503 0.0061828674 0.0107972629 0.0034257838 0.0031112977 0.0100826540 0.006822629 0.003260590 0.0111241666 504 0.0062982193 0.0114984174 0.0035981851 0.0033071171 0.0101327828 0.0064816345 0.0034485822 0.0098745510 505 0.0065711591 0.0121760856 0.0033330190 0.0034937570 0.0101412676 0.007265514 0.0038489729 0.0099131888 507 0.0067412916 0.0135970867 0.004430187 0.0038527637 0.0101457480 0.0075672072 0.0040697459 0.009332553 508 0.0069340751 0.0133285625 0.0044491782 0.0040747695 0.010131249 0.007849649 0.0042741606 0.0093326202 509 0.007399993 0.015086094 0.0046463927 0.0048815660 0.0101485740 0.008561903 0.0046536052 0.0088205061 510 0.0077398924 0.0156316665 0.0048320896 0.010148044 0.008820771 0.0048820727 0.004853672 0.008820761 511 0.0077778226 0.016398791 <	502	0,0060700628	0,0100902044	0,0032937955	0,0029122053	0,0100034045	0,0056646946	0,0030747570	0,0103640910
504 0,0062982193 0,0114984174 0,003981851 0,0033071171 0,0101327828 0,0064816345 0,0034485822 0,0098746510 505 0,0064163393 0,0121760856 0,003330190 0,003437570 0,0101365136 0,0068435030 0,0036364317 0,0096173819 506 0,006711591 0,0128816194 0,004430187 0,0036736484 0,0101412676 0,0072065114 0,0038489729 0,0049133885 507 0,0067412916 0,0135970867 0,0042430481 0,0038527637 0,0101457480 0,00736948649 0,0042741606 0,009326202 508 0,0073690491 0,015086094 0,004463927 0,00428566 0,0101166849 0,0082091191 0,004655052 0,008807033 510 0,0075772206 0,0156160665 0,0048320896 0,01048457288 0,008806727 0,00468592867 0,00848107033 511 0,0075972206 0,01651938791 0,005230646 0,004857288 0,009933598 0,009111614 0,0050743577 0,008435939 512 0,0077985684 0,01716767982 0,005518290	503	0,0061828674	0,0107972629	0,0034257838	0,0031112977	0,0100826540	0,0060822629	0,0032605909	0,0101241666
505 0,0064163393 0,0121760856 0,003830190 0,0034937570 0,0111365136 0,0068435030 0,0036364317 0,00961731519 506 0,0065711591 0,0128816194 0,0040430187 0,0036736484 0,0101412676 0,0072065114 0,0038489729 0,0094133888 507 0,0067412916 0,0135970867 0,0042430481 0,0038527637 0,0101457480 0,0075672072 0,0040697459 0,0093203355 508 0,0069340751 0,0143285625 0,0044491782 0,004747695 0,0101341249 0,0078948649 0,0042741606 0,009320355 509 0,0071398993 0,01506665 0,0048320896 0,0044835969 0,1010882574 0,0085061903 0,0046536052 0,008807032 511 0,0075772206 0,016339738 0,005232064 0,004857528 0,009933978 0,009325393 0,005264254 0,008825763 512 0,007798226 0,01538957 0,0055270645 0,009933978 0,0053257939 0,0054518502 0,008357983 514 0,008150022 0,0171676912 0,0057243771	504	0,0062982193	0,0114984174	0,0035981851	0,0033071171	0,0101327828	0,0064816345	0,0034485822	0,0098746510
506 0,0065711591 0,0128816194 0,0040430187 0,0036736484 0,011412676 0,0072065114 0,0038489729 0,004138888 507 0,0067412916 0,0135970867 0,0042430481 0,0038527637 0,0101457480 0,0075672072 0,0040697459 0,002303355 508 0,0069340751 0,0143285625 0,0044491782 0,0040747695 0,0111616849 0,002201191 0,004665510 0,008892566 510 0,0073690491 0,015616665 0,004320896 0,0044335969 0,1100882574 0,0085061903 0,0046536052 0,008807035 511 0,0075772206 0,016339793 0,005295236 0,004714571 0,1100448084 0,0088066727 0,004553652 0,008713275 512 0,007798226 0,015195657 0,005295236 0,004857288 0,009933599 0,0051115161 0,0075675262 0,00837983 513 0,007567584 0,0163397938 0,0055318290 0,0052270645 0,009953979 0,0056327743 0,008237939 514 0,0081577119 0,0171620653 0,0055318290 0,0055	505	0,0064163393	0,0121760856	0,0038330190	0,0034937570	0,0101365136	0,0068435030	0,0036364317	0,0096173819
507 0,0067412916 0,0135970867 0,0042430481 0,0038527637 0,011457480 0,0075672072 0,0040697459 0,009230355 508 0,0069340751 0,0143285625 0,0044491782 0,004747695 0,0101341249 0,0078948649 0,0042741606 0,0090326202 509 0,0071398993 0,0150086094 0,0046463927 0,0042861560 0,0101166849 0,0082091191 0,0046536052 0,008807038 510 0,00773690491 0,0156160665 0,0048320896 0,0044835969 0,0100882574 0,0088086727 0,004536652 0,00880703875 511 0,0077798226 0,0165195657 0,0052300646 0,0048575288 0,009933378 0,0093325939 0,0052642454 0,008435903 513 0,0079865684 0,0171676918 0,005218290 0,0052270645 0,0099244870 0,0095628075 0,0053218290 0,005242743 0,008230743 0,008230743 0,008230743 0,008230743 0,008230743 0,008230743 0,008230743 0,008230743 0,008230743 0,008230743 0,008230743 0,0083320796 0,00972320	506	0,0065711591	0,0128816194	0,0040430187	0,0036736484	0,0101412676	0,0072065114	0,0038489729	0,0094133888
508 0,0069340751 0,0143285625 0,0044491782 0,0040747695 0,01341249 0,0078948649 0,0042741666 0,0090326202 509 0,0071398993 0,0150086094 0,0046463927 0,0042861560 0,011166849 0,0082091191 0,004695100 0,008892566 510 0,007772206 0,0160938791 0,005295236 0,0046714571 0,010882574 0,008806727 0,0048592867 0,0087013275 512 0,007798226 0,0165195657 0,0052300646 0,0048575288 0,009933978 0,009325939 0,0052642454 0,008435993 513 0,0079865684 0,0170567982 0,0052318290 0,0052270645 0,009933978 0,005325939 0,0052642454 0,008383978 514 0,0081577119 0,017167091 0,0057243771 0,0054365573 0,009970320 0,0098029748 0,005321743 0,0082349935 515 0,0084150002 0,01711620653 0,005171719 0,0056327743 0,008803727 0,0058085221 0,00816361743 516 0,0084150002 0,01711620653 0,006171374 0	507	0,0067412916	0,0135970867	0,0042430481	0,0038527637	0,0101457480	0,0075672072	0,0040697459	0,0092303359
509 0,0071398993 0,0150086094 0,0046463927 0,0042861560 0,011166849 0,0082091191 0,004496510 0,0088925660 510 0,0073690491 0,0156160665 0,0048320896 0,004835969 0,0100882574 0,0085061903 0,0046536052 0,0088070382 511 0,0075772206 0,0160938791 0,005295236 0,0046714571 0,0100448084 0,008806727 0,0048592867 0,0082718275 512 0,007798256 0,0161839738 0,0053098057 0,00531988 0,0099833978 0,009325393 0,0052642454 0,0084345903 514 0,0081577119 0,0170567982 0,0055318290 0,0052270645 0,0099833978 0,0054327743 0,008230993 515 0,0084150002 0,0171167891 0,0057243771 0,0054365573 0,0099833978 0,005832274 0,0081893076 516 0,0084150002 0,0171184663 0,0060872780 0,0058384894 0,0099659307 0,0058085221 0,0081893076 517 0,00850757 0,0171844663 0,0060171784 0,009426159 0,0103257705	508	0,0069340751	0,0143285625	0,0044491782	0,0040747695	0,0101341249	0,0078948649	0,0042741606	0,0090326202
510 0,0073690491 0,0156160665 0,0048320896 0,0044835969 0,0100882574 0,0085061903 0,0046536052 0,0088070383 511 0,0075772206 0,0160938791 0,0050295236 0,0046714571 0,0100448044 0,0088086727 0,0048592867 0,0087013275 512 0,007798226 0,0165195657 0,0052300646 0,0048575288 0,0099332599 0,005242454 0,0083087873 513 0,0079865684 0,0168397938 0,005351889 0,0099332593 0,005242454 0,008335783 514 0,0081577119 0,017167891 0,0057243771 0,0054365573 0,009924870 0,0095628075 0,0058085221 0,0081689007 515 0,0084150002 0,01711620653 0,0059119911 0,005405505 0,0097072320 0,0098029748 0,0058085221 0,00811864027 517 0,008507675 0,0171844663 0,006872780 0,005320976 0,0102357705 0,0061503478 0,0081164664 519 0,0087399464 0,0167423813 0,0064916385 0,0069450795 0,0103281429 0,006332221	509	0,0071398993	0,0150086094	0,0046463927	0,0042861560	0,0101166849	0,0082091191	0,0044696510	0,0088925060
511 0,0075772206 0,0160938791 0,005295236 0,0046714571 0,0100448084 0,0088086727 0,0048592867 0,0087013275 512 0,0077798226 0,0165195657 0,0052300646 0,0048575288 0,009953599 0,0091115614 0,0050745367 0,0082888037 513 0,0079865684 0,0168397938 0,0053698057 0,00502570645 0,0099244870 0,0095628075 0,0054518502 0,0083357987 514 0,0081577119 0,017056782 0,0057243771 0,0054365573 0,0099244870 0,0095628075 0,0056327743 0,008230903 516 0,008150702 0,017167081 0,0057243771 0,005460555 0,0097072320 0,009809377 0,0081889307 517 0,0085067675 0,0171844663 0,0060872780 0,006542844 0,0101017948 0,0059810796 0,0081136142 518 0,0086522124 0,017045053 0,0061880052 0,006067928 0,0102357705 0,0061503478 0,0081136142 519 0,008820265 0,016361748 0,0064916385 0,0063320970 0,0103281429	510	0,0073690491	0,0156160665	0,0048320896	0,0044835969	0,0100882574	0,0085061903	0,0046536052	0,0088407038
512 0,0077798226 0,0165195657 0,0052300646 0,0048575288 0,0099953599 0,0091115614 0,0050745367 0,008288800 513 0,0079865684 0,0168397938 0,0053698057 0,0050351988 0,0099833978 0,009325939 0,00526242454 0,0084345903 514 0,0081577119 0,0170567982 0,0055318290 0,0052270645 0,0099244870 0,0098029748 0,0056327743 0,0082340903 515 0,0082727989 0,0171167891 0,0057243771 0,005405505 0,0097072320 0,0099659307 0,0058085221 0,00816893073 516 0,0085607675 0,0171844663 0,0060872780 0,0058384894 0,0096295434 0,0101017948 0,0059810796 0,0081136142 518 0,008522124 0,017045053 0,006180052 0,006067928 0,0092487059 0,0101017948 0,006332251 0,007028700 519 0,0087399464 0,0167423813 0,0064916385 0,0063320970 0,0013281429 0,006382251 0,0077829443 520 0,0088801224 0,0159167311 0,0064916385	511	0,0075772206	0,0160938791	0,0050295236	0,0046714571	0,0100448084	0,0088086727	0,0048592867	0,0087013275
513 0,0079865684 0,0168397938 0,0053698057 0,0050351988 0,009983978 0,0093325939 0,0052642454 0,0084345903 514 0,0081577119 0,0170567982 0,0055318290 0,0052270645 0,0099244870 0,0095628075 0,0054518502 0,0083357987 515 0,0082727989 0,0171167891 0,0057243771 0,0054365573 0,0097983155 0,0098029748 0,0056327743 0,008230093 516 0,0084150002 0,0171620653 0,0059109911 0,0056405505 0,0097072320 0,0099659307 0,0058085221 0,00816893073 517 0,0085607675 0,0171844663 0,0060872780 0,0058384894 0,00925434 0,0101017948 0,0059810796 0,0081184442 518 0,008522124 0,017045053 0,006180052 0,006067928 0,0092450159 0,01012357705 0,0063382251 0,0079287400 519 0,0087399464 0,0167423813 0,0064916385 0,0063320970 0,0093450239 0,0103258751 0,0065526061 0,00797842943 520 0,008881224 0,0154364455	512	0,0077798226	0,0165195657	0,0052300646	0,0048575288	0,0099953599	0,0091115614	0,0050745367	0,0085288801
5140,00815771190,01705679820,00553182900,00522706450,00992448700,00956280750,00545185020,00833579875150,00827279890,01711678910,00572437710,00543655730,00979831550,00980297480,00563277430,00823409055160,00841500020,01716206530,00591099110,00564055050,00970723200,00996593070,00580852210,00816893075170,00856076750,01718446630,00608727800,00583848940,00962954340,01010179480,00598107960,00811861425180,0085221240,0170450530,00618800520,0060679280,00954874950,01023577050,00615034780,0081614665190,00873994640,01674238130,00631919360,00617117840,00945601590,01032814290,00633822510,00792874005200,00882302650,01636617480,00649163850,00633209700,00934502390,01036587510,00655260610,00785229135210,00888112240,01591673110,00664727380,00649070190,00928540310,01039923950,00671682050,00774829415220,00881937680,01543644550,00679164170,00665449610,0092625980,01042279450,00686540330,00734364255230,00882083880,01430322090,00698511500,0073435480,0088835790,01034100260,00714961980,0072424555240,0082083880,01370180000,0071042140,00715314170,00874753090,0103353660,0072892630<	513	0,0079865684	0,0168397938	0,0053698057	0,0050351988	0,0099833978	0,0093325939	0,0052642454	0,0084345903
515 0,0082727989 0,0171167891 0,0057243771 0,0054365573 0,0097983155 0,0098029748 0,0056327743 0,0082340903 516 0,0084150002 0,0171620653 0,0059109911 0,0056405505 0,0097072320 0,0099659307 0,0058085221 0,0081689307 517 0,0085607675 0,0171844663 0,0060872780 0,0058384894 0,0096295434 0,0101017948 0,0059810796 0,0081136142 518 0,0086522124 0,0170045053 0,0061880052 0,006067928 0,0095487495 0,0102357705 0,0061503478 0,0080114666 519 0,0087399464 0,0167423813 0,0064916385 0,0063320970 0,0093450239 0,0103281429 0,006332251 0,0072827400 520 0,008820265 0,0163661748 0,0064916385 0,0069320970 0,0093450239 0,0103658751 0,0065526061 0,0077822943 521 0,008810224 0,0159167311 0,0066472738 0,0064907019 0,0022854031 0,0103992395 0,0067168205 0,0077482943 522 0,0088789738 0,0154364455 <td>514</td> <td>0,0081577119</td> <td>0,0170567982</td> <td>0,0055318290</td> <td>0,0052270645</td> <td>0,0099244870</td> <td>0,0095628075</td> <td>0,0054518502</td> <td>0,0083357987</td>	514	0,0081577119	0,0170567982	0,0055318290	0,0052270645	0,0099244870	0,0095628075	0,0054518502	0,0083357987
516 0,0084150002 0,0171620653 0,0059109911 0,0056405505 0,0097072320 0,009659307 0,0058085221 0,0081689307 517 0,0085607675 0,0171844663 0,0060872780 0,0058384894 0,0096295434 0,0101017948 0,0059810796 0,0081136142 518 0,0086522124 0,0170045053 0,0061880052 0,0060067928 0,0095487495 0,0102357705 0,0061503478 0,0080161466 519 0,0087399464 0,0167423813 0,0063191936 0,0061711784 0,0094560159 0,0103281429 0,0063382251 0,0079287400 520 0,0088801224 0,0159167311 0,0064916385 0,0063320970 0,0093450239 0,0103658751 0,0067168205 0,0077482943 521 0,0088801224 0,0159167311 0,0066472738 0,0064907019 0,0092854031 0,0103897166 0,00770482943 522 0,0088789738 0,0154364455 0,0067916417 0,0066544961 0,0092265298 0,0104227945 0,0068654033 0,0075419095 524 0,0088789738 0,0149099675 0,0068828566	515	0,0082727989	0,0171167891	0,0057243771	0,0054365573	0,0097983155	0,0098029748	0,0056327743	0,0082340903
5170,00856076750,01718446630,00608727800,00583848940,00962954340,01010179480,00598107960,00811361425180,00865221240,01700450530,00618800520,00600679280,00954874950,01023577050,00615034780,00801614665190,00873994640,01674238130,0063191360,00617117840,00945601590,01032814290,00633822510,00792874005200,00882302650,01636617480,00649163850,00633209700,00934502390,0103587510,00655260610,00785229135210,00888012240,01591673110,00664727380,00649070190,00928540310,01039923950,00671682050,00774829435220,00891937680,01543644550,00679164170,00665449610,00922652980,01042279450,00686540330,007363694265230,00882083880,01433322090,00698511500,0073435480,00888835790,01034100260,00714961980,00724224525250,00874227060,0137180000,0071042140,00715314170,00874753090,01030538600,00728926300,00728063505260,00867528640,01309718620,0072288340,00734206150,00859065910,01017157700,00742878510,0072075046	5 16	0,0084150002	0,0171620653	0,0059109911	0,0056405505	0,0097072320	0,0099659307	0,0058085221	0,0081689307
518 0,0086522124 0,0170045053 0,0061880052 0,0060067928 0,0095487495 0,0102357705 0,0061503478 0,0080161466 519 0,0087399464 0,0167423813 0,0063191936 0,0061711784 0,0094560159 0,0103281429 0,0063382251 0,0079287400 520 0,0088230265 0,0163661748 0,0064916385 0,0063320970 0,0093450239 0,010358751 0,0065526061 0,0079287400 521 0,0088801224 0,0159167311 0,0066472738 0,0064907019 0,0092854031 0,0103992395 0,0067168205 0,0077482941 522 0,0089193768 0,0154364455 0,0067916417 0,0066544961 0,0092265598 0,0104227945 0,0068654033 0,0076369428 523 0,0088789738 0,0149099675 0,0068828566 0,0068647321 0,0092485181 0,0103807166 0,00770748294 0,0077482945 524 0,0088208388 0,0143332209 0,0069851150 0,007343548 0,0088883579 0,0103410026 0,0071496198 0,007289630 525 0,0087422706 0,0137018000 </td <td>517</td> <td>0,0085607675</td> <td>0,0171844663</td> <td>0,0060872780</td> <td>0,0058384894</td> <td>0,0096295434</td> <td>0,0101017948</td> <td>0,0059810796</td> <td>0,0081136142</td>	517	0,0085607675	0,0171844663	0,0060872780	0,0058384894	0,0096295434	0,0101017948	0,0059810796	0,0081136142
5190,00873994640,01674238130,00631919360,00617117840,00945601590,01032814290,00633822510,00792874005200,00882302650,01636617480,00649163850,00633209700,00934502390,01036587510,00655260610,00785229135210,00888012240,01591673110,00664727380,00649070190,00928540310,01039923950,00671682050,00774829415220,00891937680,01543644550,00679164170,00665449610,00922652980,01042279450,00686540330,00763694285230,0088208380,01490996750,00688285660,00686473210,00904981810,01038071660,0070798140,00754190915240,00882083880,01433322090,00698511500,0073435480,00888835790,01034100260,00714961980,00724245275250,00874227060,01370180000,0071042140,00715314170,00874753090,010303538600,00728926300,0072806355260,00867528640,01309718620,0072238340,00734206150,00859065910,01017157700,00742878510,00720750466	518	0,0086522124	0,0170045053	0,0061880052	0,0060067928	0,0095487495	0,0102357705	0,0061503478	0,0080161466
520 0,0088230265 0,0163661748 0,0064916385 0,0063320970 0,0093450239 0,0103658751 0,0065526061 0,0078522913 521 0,0088801224 0,0159167311 0,0066472738 0,0064907019 0,0022854031 0,0103658751 0,0067168205 0,0077482941 522 0,0089193768 0,0154364455 0,0067916417 0,0066544961 0,0092262598 0,0104227945 0,0068654033 0,0076369428 523 0,008820838 0,0143099675 0,0068828566 0,0068647321 0,0090498181 0,0103807166 0,007079814 0,0075419091 524 0,0088208388 0,0143332209 0,0069851150 0,007343548 0,0088883579 0,0103410026 0,0071496198 0,0072424545 525 0,0087422706 0,0137018000 0,007104214 0,0071531417 0,0087475309 0,0103053860 0,0072892630 0,007289636 526 0,0086752864 0,0130971862 0,0072238834 0,0073420615 0,0085906591 0,0101715770 0,0074287851 0,00720750466	519	0,0087399464	0,0167423813	0,0063191936	0,0061711784	0,0094560159	0,0103281429	0,0063382251	0,0079287400
521 0,0088801224 0,0159167311 0,0066472738 0,0064907019 0,0092854031 0,0103992395 0,0067168205 0,0077482943 522 0,0089193768 0,0154364455 0,0067916417 0,0066544961 0,0092262598 0,0104227945 0,0068654033 0,00736369428 523 0,008820838 0,0149099675 0,0068828566 0,0068647321 0,0090498181 0,0103807166 0,007079814 0,00754190915 524 0,0088208388 0,0143332209 0,0069851150 0,007343548 0,008883579 0,0103410026 0,0071496198 0,0072424525 525 0,0087422706 0,0137018000 0,0071004214 0,0071531417 0,0087475309 0,0103053860 0,0072892630 0,0072896365 526 0,0086752864 0,0130971862 0,007223834 0,0073420615 0,0085906591 0,0101715770 0,0074287851 0,00720750466	520	0,0088230265	0,0163661748	0,0064916385	0,0063320970	0,0093450239	0,0103658751	0,0065526061	0,0078522913
522 0,0089193768 0,0154364455 0,0067916417 0,0066544961 0,0092262598 0,014227945 0,0068654033 0,0076369428 523 0,0088789738 0,0149099675 0,0068828566 0,0068647321 0,0090498181 0,0103807166 0,0070079814 0,0075419091 524 0,0088208388 0,0143332209 0,0069851150 0,0070343548 0,0088883579 0,0103410026 0,0071496198 0,0072424572 525 0,0087422706 0,0137018000 0,0071004214 0,0071531417 0,0087475309 0,010353860 0,0072892630 0,0072896365 526 0,0086752864 0,0130971862 0,007223834 0,0073420615 0,0085906591 0,0101715770 0,0074287851 0,00720750466	521	0,0088801224	0,0159167311	0,0066472738	0,0064907019	0,0092854031	0,0103992395	0,0067168205	0,0077482941
523 0,0088789738 0,0149099675 0,0068828566 0,0068647321 0,0090498181 0,0103807166 0,0070079814 0,0075419093 524 0,0088208388 0,0143332209 0,0069851150 0,0070343548 0,0088883579 0,0103410026 0,0071496198 0,0074242452 525 0,0087422706 0,0137018000 0,0071004214 0,0071531417 0,0087475309 0,0103053860 0,0072892630 0,0072806365 526 0,0086752864 0,0130971862 0,0072238834 0,0073420615 0,0085906591 0,0101715770 0,0074287851 0,00720750466	522	0,0089193768	0,0154364455	0,0067916417	0,0066544961	0,0092262598	0,0104227945	0,0068654033	0,0076369428
524 0,0088208388 0,0143332209 0,0069851150 0,0070343548 0,0088883579 0,0103410026 0,0071496198 0,0074242452 525 0,0087422706 0,0137018000 0,0071004214 0,0071531417 0,0087475309 0,0103053860 0,0072892630 0,0072806350 526 0,0086752864 0,0130971862 0,0072238384 0,0073420615 0,0085906591 0,0101715770 0,0074287851 0,00720750466	523	0,0088789738	0,0149099675	0,0068828566	0,0068647321	0,0090498181	0,0103807166	0,0070079814	0,0075419091
525 0,0087422706 0,0137018000 0,0071004214 0,0071531417 0,0087475309 0,0103053860 0,0072892630 0,0072806350 526 0,0086752864 0,0130971862 0,0072238834 0,0073420615 0,0085906591 0,0101715770 0,0074287851 0,00720750446	524	0,0088208388	0,0143332209	0,0069851150	0,0070343548	0,0088883579	0,0103410026	0,0071496198	0,0074242452
526 0,0086752864 0,0130971862 0,0072238834 0,0073420615 0,0085906591 0,0101715770 0,0074287851 0,0072075046	525	0,0087422706	0,0137018000	0,0071004214	0,0071531417	0,0087475309	0,0103053860	0,0072892630	0,0072806350
	526	0,0086752864	0,0130971862	0,0072238834	0,0073420615	0,0085906591	0,0101715770	0,0074287851	0,0072075046

527	0,0086150031	0,0125060318	0,0073385363	0,0075395928	0,0084293498	0,0100192937	0,0075611350	0,0071530306
528	0,0085726006	0,0119268462	0,0073863532	0,0076813563	0,0082570013	0,0099029415	0,0076513671	0,0070953500
529	0,0084808015	0,0113640790	0,0074853199	0,0078123914	0,0080909923	0,0097725309	0,0077377925	0,0070206886
530	0,0083350143	0,0108148020	0,0076394021	0,0079323552	0,0079303305	0,0096257287	0,0078202931	0,0069269906
531	0,0082423078	0,0102716396	0,0077286438	0,0080675339	0,0077511468	0,0094497371	0,0079039467	0,0068414171
532	0,0081592585	0,0097447935	0,0078060359	0,0081988393	0,0075701405	0,0092785563	0,0079858236	0,0067597890
533	0,0080651962	0,0092842264	0,0078969936	0,0082965545	0,0073972116	0,0091612894	0,0080593844	0,0066879287
534	0,0079718904	0,0088318704	0,0079942907	0,0083955305	0,0072035994	0,0090088685	0,0081464634	0,0066301873
535	0,0078794514	0,0083876564	0,0080977695	0,0084958118	0,0069902612	0,0088228261	0,0082466299	0,0065861281
536	0,0077542326	0,0079874710	0,0081598602	0,0085469557	0,0068691678	0,0086952169	0,0082259537	0,0065173266
537	0,0076386594	0,0076015326	0,0082182863	0,0085856728	0,0067530696	0,0085833718	0,0082036355	0,0064559470
538	0,0075717546	0,0072072219	0,0082916061	0,0086078250	0,0065795222	0,0084804541	0,0082537403	0,0064335804
539	0,0074753481	0,0068421184	0,0083326492	0,0086387186	0,0064384885	0,0083455197	0,0083086393	0,0064042263
540	0,0073546200	0,0065021663	0,0083467671	0,0086768726	0,0063248736	0,0081842571	0,0083674576	0,0063691507
541	0,0072886760	0,0061847616	0,0083948710	0,0087212609	0,0061997348	0,0080683485	0,0084116289	0,0063001608
542	0,0072304741	0,0058870303	0,0084517385	0,0087574121	0,0060859190	0,0079668100	0,0084448603	0,0062475424
543	0,0071723441	0,0056393292	0,0085233722	0,0087628960	0,0060125395	0,0078909233	0,0084475097	0,0062633934
544	0,0070856358	0,0053752382	0,0086014850	0,0087629157	0,0059312181	0,0077911070	0,0084601787	0,0062611508
545	0,0069793805	0,0051023719	0,0086841786	0,0087595875	0,0058453927	0,0076753626	0,0084807364	0,0062460959
546	0,0069032399	0,0048607040	0,0086777689	0,0087637264	0,0057347991	0,0075928142	0,0084902469	0,0061973962
547	0,0068436271	0,0046166675	0,0086872395	0,0087637438	0,0056380959	0,0075082236	0,0085031415	0,0061633999
548	0,0068182070	0,0043492147	0,0087596525	0,0087488078	0,0055805161	0,0074055244	0,0085264484	0,0061749253
549	0,0067606644	0,0041339007	0,0087610886	0,0087493839	0,0055243197	0,0073036862	0,0085579317	0,0061658419
550	0,0066849456	0,0039552379	0,0087193989	0,0087606317	0,0054706131	0,0072050163	0,0085949658	0,0061448303
551	0,0066286765	0,0037806164	0,0087474624	0,0087644347	0,0054190332	0,0071344231	0,0086141363	0,0061141567
552	0,0065753653	0,0036152502	0,0087664967	0,0087614369	0,0053694476	0,0070602429	0,0086217236	0,0061016263
553	0,0065242595	0,0034651621	0,0087569641	0,0087426260	0,0053220221	0,0069718529	0,0086041201	0,0061300671
554	0,0064997543	0,0033042486	0,0087424445	0,0087518302	0,0053031439	0,0069010047	0,0086015249	0,0061430359
555	0,0064898678	0,0031386838	0,0087256990	0,0087762888	0,0052998418	0,0068402407	0,0086073043	0,0061479044
556	0,0064374672	0,0030575971	0,0087087600	0,0087476744	0,0052813705	0,0067751962	0,0085939160	0,0061531442
557	0,0063967475	0,0029607620	0,0086839206	0,0087226694	0,0052698728	0,0067004812	0,0085913520	0,0061536022
558	0,0063788486	0,0028312116	0,0086432735	0,0087050574	0,0052718429	0,0066063630	0,0086096978	0,0061445471
559	0,0063522921	0,0027399491	0,0086213105	0,0086795769	0,0052548420	0,0065502073	0,0085857048	0,0061591952
560	0,0063236274	0,0026667547	0,0086080781	0,0086512060	0,0052301077	0,0065118732	0,0085439909	0,0061847730
561	0,0063423829	0,0025966948	0,0085914536	0,0086327300	0,0052259029	0,0064764013	0,0085386133	0,0062127141
562	0,0063467043	0,0025225484	0,0085969539	0,0086138655	0,0052306374	0,0064166896	0,0085321777	0,0062170795
563	0,0063275700	0,0024415183	0,0086386672	0,0085944073	0,0052500328	0,0063173130	0,0085240965	0,0061830750
564	0,0062885335	0,0023669486	0,0085916260	0,0085602138	0,0052543882	0,0062489803	0,0084940881	0,0062015839
565	0,0062497010	0,0022984246	0,0085151219	0,0085242813	0,0052567718	0,0061971279	0,0084611536	0,0062378544
566	0,0062946464	0,0022613280	0,0084676325	0,0085226988	0,0053010610	0,0061911382	0,0084819228	0,0062506505
567	0,0063154206	0,0022159571	0,0084408330	0,0085059990	0,0053345553	0,0061637140	0,0084884749	0,0062611217
568	0,0063038098	0,0021596313	0,0084423491	0,0084693059	0,0053536308	0,0061077071	0,0084761900	0,0062686911
569	0,0062992510	0,0021193843	0,0084033902	0,0084416419	0,0053635392	0,0060597041	0,0084425617	0,0062997413
570	0,0062974653	0,0020861244	0,0083546017	0,0084144290	0,0053694532	0,0060153026	0,0084032737	0,0063339269
571	0,0062994703	0,0020676812	0,0083178451	0,0083682899	0,0053650654	0,0059771583	0,0083655376	0,0063403147
572	0,0062998080	0,0020457463	0,0082837633	0,0083306576	0,0053716944	0,0059275210	0,0083340594	0,0063394718
573	0,0062981984	0,0020197541	0,0082524614	0,0083023685	0,0053907238	0,0058646370	0,0083094142	0,0063303997
574	0,0062938009	0,0020094762	0,0082111150	0,0082433869	0,0054310353	0,0058451201	0,0082717730	0,0063502034
575	0,0062938712	0,0020012043	0,0081728065	0,0081834719	0,0054693248	0,0058263583	0,0082396077	0,0063718575
576	0,0063190607	0,0019852970	0,0081598240	0,0081516425	0,0054745633	0,0057628521	0,0082482479	0,0063709604

-								
577	0,0063362548	0,0019757138	0,0081271173	0,0081132107	0,0054870721	0,0057142563	0,0082394954	0,0063742030
578	0,0063461558	0,0019721058	0,0080765740	0,0080691305	0,0055064298	0,0056799213	0,0082149426	0,0063814720
579	0,0063396033	0,0019645680	0,0080425057	0,0080587146	0,0055066199	0,0056500467	0,0081920828	0,0063613438
580	0,0063361525	0,0019641952	0,0080022787	0,0080333601	0,0055069493	0,0056173164	0,0081563680	0,0063448028
581	0,0063518030	0,0019911851	0,0079295642	0,0079352619	0,0055174786	0,0055707600	0,0080724028	0,0063547714
582	0,0063730394	0,0019993203	0,0078695249	0,0078517631	0,0055275843	0,0055317440	0,0080192263	0,0063477421
583	0,0063983728	0,0019931553	0,0078185272	0,0077786562	0,0055372196	0,0054980618	0,0079888220	0,0063275955
584	0,0064101791	0,0019944437	0,0077943387	0,0077241554	0,0055623077	0,0054493313	0,0079448204	0,0062893631
585	0,0064216468	0,0020051727	0,0077591354	0,0076763689	0,0055826778	0,0054032072	0,0079075787	0,0062627913
586	0,0064353031	0,0020396891	0,0076876931	0,0076422472	0,0055865967	0,0053675610	0,0078916934	0,0062719246
587	0,0064409565	0,0020754643	0,0076454573	0,0075888459	0,0055938466	0,0053459887	0,0078456473	0,0062685368
588	0,0064417193	0,0021118806	0,0076211647	0,0075238957	0,0056031030	0,0053330681	0,0077813992	0,0062575387
589	0,0064554658	0,0021453155	0,0075397003	0,0074477484	0,0055625184	0,0052822932	0,0077197346	0,0062285639
590	0,0064536491	0,0021839566	0,0074670455	0,0073782224	0,0055428605	0,0052499624	0,0076760088	0,0061972184
591	0,0064184830	0,0022331863	0,0074144083	0,0073219137	0,0055679620	0,0052567206	0,0076679924	0,0061611574
592	0,0064112801	0,0022834455	0,0073776629	0,0072470143	0,0055654418	0,0052057061	0,0076329201	0,0061170986
593	0,0064160749	0,0023349584	0,0073471839	0,0071650286	0,0055504110	0,0051313887	0,0075856783	0,0060706299
594	0,0063850291	0,0024121665	0,0072738682	0,0071122665	0,0055412787	0,0051489055	0,0075407733	0,0060505381
595	0,0063720448	0,0024962063	0,0072152719	0,0070493733	0,0055344735	0,0051386751	0,0074878507	0,0060331562
596	0,0063874827	0,0025911319	0,0071797182	0,0069701874	0,0055312151	0,0050843948	0,0074219861	0,0060198993
597	0,0063728348	0,0026814877	0,0071480009	0,0068926590	0,0055465815	0,0050716233	0,0073696549	0,0059811008
598	0,0063510536	0,0027748132	0,0071164895	0,0068177570	0,0055661014	0,0050731984	0,0073208908	0,0059346551
599	0,0063623917	0,0029089926	0,0070758572	0,0067650760	0,0055634072	0,0050739487	0,0072633094	0,0059021011
600	0,0063634752	0,0030560999	0,0070311948	0,0066929681	0,0055675721	0,0050725779	0,0072162921	0,0058815084
601	0,0063511057	0,0032182234	0,0069808772	0,0065963245	0,0055795230	0,0050679746	0,0071816470	0,0058750706
602	0,0063160079	0,0033986262	0,0069457984	0,0065394271	0,0055754904	0,0051001084	0,0071120931	0,0058571342
603	0,0062806040	0,0035886193	0,0069070020	0,0064862189	0,0055739809	0,0051328932	0,0070349851	0,0058364149
604	0,0062744683	0,0037987070	0,0068309763	0,0064040167	0,0056066809	0,0051210902	0,0069661396	0,0058168988
605	0,0062695662	0,0040374641	0,0067842342	0,0063399445	0,0056554600	0,0051466524	0,0068966395	0,0058018324
606	0,0062656970	0,0043036892	0,0067650276	0,0062928198	0,0057194384	0,0052075577	0,0068262665	0,0057908396
607	0,0062371338	0,0046239370	0,0067296709	0,0062096835	0,0057677478	0,0052643074	0,0067898710	0,0057659659
608	0,0062159844	0,0049713485	0,0066897132	0,0061257235	0,0058123744	0,0053212544	0,0067401228	0,0057554034
609	0,0062334345	0,0053789141	0,0066432825	0,0060589382	0,0058519240	0,0053803595	0,0066288618	0,0058013864
610	0,0062563572	0,0058331126	0,0065870208	0,0060135072	0,0059672173	0,0054614141	0,0065397091	0,0058293205
611	0,0062827785	0,0063222409	0,0065228789	0,0059827766	0,0061370738	0,0055581483	0,0064655814	0,0058438483
612	0,0062402595	0,0068733370	0,0064155210	0,0059197246	0,0062357798	0,0056901134	0,0063890738	0,0058837507
613	0,0062192775	0,0074655274	0,0063231217	0,0058606133	0,0063555115	0,0058293440	0,0063046743	0,0059267914
614	0,0062601888	0,0081392031	0,0062740713	0,0058165959	0,0065344867	0,0059791335	0,0062031357	0,0059732335
615	0,0063051562	0,0088991324	0,0061906908	0,0057469425	0,0067414752	0,0061746911	0,0061032289	0,0060477472
616	0,0063526653	0,0097062408	0,0060900024	0,0056646727	0,0069632909	0,0063942462	0,0060048949	0,0061369918
617	0,0064297506	0,0107431783	0,0060249361	0,0056278256	0,0072167894	0,0066310930	0,0059340038	0,0062286101
618	0,0065017384	0,0118134894	0,0059394182	0,0055849376	0,0075026228	0,0069002606	0,0058503275	0,0063360522
619	0,0065644692	0,0129297173	0,0058200415	0,0055323997	0,0078410295	0,0072221357	0,0057459042	0,0064696880
620	0,0066685501	0,0141860442	0,0056896909	0,0054940784	0,0082200137	0,0075915704	0,0056668110	0,0066266056
621	0,0067903053	0,0155182352	0,0055582102	0,0054594895	0,0086217486	0,0079847307	0,0055939368	0,0067898672
622	0,0069365735	0,0170250925	0,0054728599	0,0054185403	0,0090862734	0,0084239316	0,0055007589	0,0069274193
623	0,0070925625	0,0186308813	0,0053767339	0,0053657791	0,0095711322	0,0089204082	0,0054060552	0,0070883361
624	0,0072594318	0,0203451399	0,0052682927	0,0052989719	0,0100769596	0,0094839430	0,0053105991	0,0072771582
625	0,0074704322	0,0222446236	0,0051654053	0,0052663904	0,0106653171	0,0101354780	0,0052228597	0,0075307762
626	0,0077125306	0,0241892997	0,0050625383	0,0052394624	0,0113019771	0,0108162693	0,0051334772	0,0078016097

627	0,0080468976	0,0260481440	0,0049593285	0,0052026002	0,0120523074	0,0115070433	0,0050322444	0,0080696628
628	0,0083692081	0,0277056989	0,0048410589	0,0051485731	0,0128189678	0,0122485236	0,0049341685	0,0084017067
629	0,0086799259	0,0291786013	0,0047096976	0,0050793911	0,0135982825	0,0130335256	0,0048392691	0,0087902762
630	0,0090746284	0,0299197959	0,0046172807	0,0050128776	0,0143811401	0,0137738437	0,0047630831	0,0091412502
631	0,0094848830	0,0302455779	0,0045275757	0,0049472669	0,0151555084	0,0144805888	0,0046808029	0,0095013795
632	0,0099161010	0,0296172217	0,0044334355	0,0048854313	0,0159124101	0,0151123501	0,0045753758	0,0099079846
633	0,0103852458	0,0282460401	0,0043528194	0,0048111690	0,0165520968	0,0156207682	0,0044869128	0,0102695362
634	0,0108801561	0,0263977408	0,0042805226	0,0047287477	0,0171195019	0,0160525477	0,0044089293	0,0106037125
635	0,0113949780	0,0237275222	0,0041765704	0,0046729634	0,0172779407	0,0161110794	0,0043125905	0,0108189368
636	0,0118870105	0,0209981377	0,0040719277	0,0046039162	0,0172603350	0,0160066716	0,0042200705	0,0109783561
637	0,0123337810	0,0181904098	0,0039674464	0,0045072015	0,0169157454	0,0155992189	0,0041359655	0,0110338746
638	0,0127142769	0,0156628701	0,0038905162	0,0044233891	0,0161938516	0,0149609438	0,0040465800	0,0109160979
639	0,0130478594	0,0132762950	0,0038229173	0,0043441722	0,0152764046	0,0141992509	0,0039547277	0,0107115341
640	0,0130871147	0,0113215247	0,0037201923	0,0042547607	0,0139160237	0,0131203331	0,0038654238	0,0103383266
641	0,0129592418	0,0095723247	0,0036136666	0,0041642727	0,0125407030	0,0119956906	0,0037854774	0,0099370896
642	0,0126072913	0,0081213064	0,0035034769	0,0040737091	0,0111607622	0,0108219863	0,0037194639	0,0095030520
643	0,0119882596	0,0069830398	0,0034275213	0,0039768030	0,0098538334	0,0096945990	0,0036383770	0,0091632944
644	0,0112589132	0,0059692161	0,0033544199	0,0038829300	0,0086012803	0,0085894737	0,0035553021	0,0088604137
645	0,0103299900	0,0052055648	0,0032483427	0,0038177479	0,0075707179	0,0075643414	0,0034857076	0,0086300553
646	0,0093878714	0,0045394434	0,0031530875	0,0037254522	0,0066356875	0,0066715460	0,0034097615	0,0084728436
647	0,0084317552	0,0039629336	0,0030676936	0,0036076996	0,0057879298	0,0059003523	0,0033277174	0,0083833119
648	0,0075552081	0,0035098944	0,0030063588	0,0035322054	0,0051274828	0,0052651642	0,0032448558	0,0084476171
649	0,0067460000	0,0031103043	0,0029366698	0,0034550804	0,0045325150	0,0046834767	0,0031662118	0,0085676845
650	0,0061029074	0,0028201066	0,0028316860	0,0033556067	0,0040565588	0,0042051976	0,0030999844	0,0087948389
651	0,0055230947	0,0025625789	0,0027551968	0,0032662165	0,0036769717	0,0038160397	0,0030262067	0,0090256352
652	0,0049851141	0,0023264975	0,0026970936	0,0031838153	0,0033591035	0,0034841173	0,0029483268	0,0092593487
653	0,0045702088	0,0021556333	0,0026315072	0,0030815910	0,0030828868	0,0031819857	0,0028783818	0,0096091300
654	0,0041969048	0,0019971140	0,0025590122	0,0029947592	0,0028301733	0,0029113353	0,0028119069	0,0099694781
655	0,0038990259	0,0018602260	0,0024742800	0,0029378970	0,0026212694	0,0026999179	0,0027520330	0,0103438973
656	0,0036193510	0,0017254466	0,0023886027	0,0028642628	0,0024343671	0,0025160426	0,0026923505	0,0106797015
657	0,0033556124	0,0015964648	0,0023077135	0,0027847361	0,0022609757	0,0023459711	0,0026309538	0,0110044864
658	0,0031778517	0,0015171687	0,0022802530	0,0027102770	0,0021337729	0,0022013347	0,0025473907	0,0113856316
659	0,0029952669	0,0014464232	0,0022426192	0,0026392847	0,0020164850	0,0020734904	0,0024801124	0,0117227495
660	0,0028076572	0,0013863064	0,0021929022	0,0025728080	0,0019116711	0,0019664615	0,0024327962	0,0120055623
661	0,0026794123	0,0013106421	0,0021073652	0,0024866710	0,0018311743	0,0018713813	0,0023637146	0,0121576139
662	0,0025666771	0,0012388002	0,0020245364	0,0024001528	0,0017511473	0,0017797675	0,0022951114	0,0122257267
663	0,0024639667	0,0011973950	0,0019862201	0,0023297688	0,0016498451	0,0016912049	0,0022483808	0,0120564207
664	0,0023546463	0,0011455234	0,0019267959	0,0022705103	0,0015693171	0,0016182389	0,0021964001	0,0117255509
665	0,0022401699	0,0010854517	0,0018508226	0,0022200051	0,0015051192	0,0015575372	0,0021403167	0,0112679727
666	0,0021447418	0,0010525958	0,0017969116	0,0021619892	0,0014471232	0,0014953761	0,0020622642	0,0103681082
667	0,0020586922	0,0010164514	0,0017415751	0,0020972615	0,0013900606	0,0014360580	0,0019934574	0,0094175124
668	0,0019895858	0,0009669376	0,0016778280	0,0020169886	0,0013330204	0,0013826073	0,0019491157	0,0084127487
669	0,0019281938	0,0009403993	0,0016337625	0,0019538293	0,0012864135	0,0013467585	0,0018973680	0,0074024611
670	0,0018704087	0,0009237438	0,0015996592	0,0018994280	0,0012450151	0,0013182523	0,0018424296	0,0063993482
671	0,0018007690	0,0008665388	0,0015662268	0,0018455151	0,0011998325	0,0012512131	0,0017939505	0,0055505833
672	0,0017404836	0,0008337991	0,0015219028	0,0018001078	0,0011562701	0,0012032057	0,0017510573	0,0047815655
673	0,0016933640	0,0008359740	0,0014618098	0,0017667127	0,0011148593	0,0011822707	0,0017160047	0,0041236346
674	0,0016366746	0,0008103064	0,0014238973	0,0017244667	0,0010769998	0,0011462130	0,0016712175	0,0036182911
675	0,0015772112	0,0007779866	0,0013892855	0,0016760245	0,0010403287	0,0011061783	0,0016231225	0,0031680037
676	0,0015181379	0,0007525028	0,0013391060	0,0016077364	0,0010053040	0,0010681916	0,0015725710	0,0027922097

677	0,0014670580	0,0007321777	0,0012926299	0,0015459695	0,0009750688	0,0010383146	0,0015395565	0,0024784930
678	0,0014232261	0,0007165092	0,0012495461	0,0014901490	0,0009491741	0,0010157556	0,0015223171	0,0022210472
679	0,0013794624	0,0007026788	0,0012214961	0,0014498514	0,0009086198	0,0009927885	0,0014752788	0,0020193084
680	0,0013389568	0,0006852147	0,0011887111	0,0014121220	0,0008686482	0,0009656580	0,0014276350	0,0018285580
681	0,0013067582	0,0006573043	0,0011383915	0,0013761606	0,0008343967	0,0009272656	0,0013870049	0,0016493167
682	0,0012566021	0,0006300463	0,0011022155	0,0013343664	0,0008068092	0,0008989611	0,0013447197	0,0015088955
683	0,0011976434	0,0006036322	0,0010739037	0,0012899351	0,0007830329	0,0008764657	0,0013021079	0,0013906701
684	0,0011813154	0,0005977193	0,0010460285	0,0012657826	0,0007629182	0,0008644458	0,0012813882	0,0012991347
685	0,0011621530	0,0005864423	0,0010136667	0,0012315997	0,0007440856	0,0008431993	0,0012538248	0,0012064188
686	0,0011386346	0,0005669642	0,0009744134	0,0011820645	0,0007271804	0,0008078454	0,0012157785	0,0011117792
687	0,0010997166	0,0005406840	0,0009597973	0,0011434371	0,0007087499	0,0007863162	0,0011710622	0,0010434916
688	0,0010580162	0,0005164847	0,0009469281	0,0011096242	0,0006895714	0,0007666872	0,0011264254	0,0009867127
689	0,0010256318	0,0005158338	0,0008999720	0,0010836256	0,0006679147	0,0007329180	0,0010924227	0,0009491205
690	0,0010009012	0,0005073204	0,0008650277	0,0010505784	0,0006459272	0,0007092348	0,0010627294	0,0009028121
691	0,0009830863	0,0004915549	0,0008409973	0,0010109652	0,0006235694	0,0006947206	0,0010368788	0,0008484132
692	0,0009393266	0,0004772588	0,0008066059	0,0009792262	0,0006107343	0,0006677368	0,0010106984	0,0008137318
693	0,0008980312	0,0004655233	0,0007776405	0,0009496111	0,0005975642	0,0006456528	0,0009806157	0,0007781414
694	0,0008713066	0,0004601289	0,0007663439	0,0009230410	0,0005804130	0,0006405304	0,0009399927	0,0007336842
695	0,0008565087	0,0004370406	0,0007328672	0,0008879607	0,0005564589	0,0006303213	0,0009190183	0,0006974835
696	0,0008475868	0,0004051438	0,0006881853	0,0008488639	0,0005290766	0,0006174163	0,0009081028	0,0006659235
697	0,0008146064	0,0004028729	0,0006739719	0,0008313542	0,0005106244	0,0006063970	0,0008726369	0,0006388228
698	0,0007829452	0,0003963228	0,0006627980	0,0008113340	0,0004928895	0,0005911278	0,0008475515	0,0006129129
699	0,0007534534	0,0003833260	0,0006562972	0,0007876215	0,0004763380	0,0005695030	0,0008383376	0,0005889464
700	0,0007313636	0,0003756006	0,0006200628	0,0007659245	0,0004631070	0,0005490374	0,0008058466	0,0005699542
701	0,0007124604	0,0003675789	0,0005792532	0,0007435302	0,0004519186	0,0005304397	0,0007688303	0,0005532224
702	0,0007000768	0,0003473747	0,0005684317	0,0007131261	0,0004477574	0,0005220921	0,0007493968	0,0005416961
703	0,0006806179	0,0003329407	0,0005566367	0,0006922273	0,0004347352	0,0005122594	0,0007344429	0,0005228176
704	0,0006542324	0,0003241995	0,0005439050	0,0006807061	0,0004130206	0,0005009845	0,0007239201	0,0004967371
705	0,0006316616	0,0003168046	0,0005272498	0,0006485529	0,0003974421	0,0004868882	0,0007040207	0,0004739073
706	0,0006124047	0,0003091399	0,0005078259	0,0006193522	0,0003858474	0,0004717148	0,0006808487	0,0004561304
707	0,0006011555	0,0002998102	0,0004810878	0,0006079740	0,0003834834	0,0004540796	0,0006511913	0,0004520583
708	0,0005798370	0,0002939920	0,0004646889	0,0005893957	0,0003732757	0,0004458001	0,0006360383	0,0004415455
709	0,0005522531	0,0002903530	0,0004546997	0,0005663370	0,0003581935	0,0004433285	0,0006298856	0,0004270302
710	0,0005437287	0,0002859653	0,0004474895	0,0005369001	0,0003521961	0,0004280466	0,0006066286	0,0004156225
711	0,0005313502	0,0002790939	0,0004336690	0,0005190805	0,0003393464	0,0004132007	0,0005831356	0,0003981235
712	0,0005122983	0,0002680691	0,0004087063	0,0005208059	0,0003148624	0,0003992082	0,0005593869	0,0003703130
713	0,0005004389	0,0002537394	0,0004026371	0,0005002066	0,0003043194	0,0003902403	0,0005459760	0,0003607748
714	0,0004887328	0,0002406775	0,0003992804	0,0004744038	0,0002990155	0,0003824553	0,0005353091	0,0003557663
715	0,0004621824	0,0002425966	0,0003728595	0,0004618818	0,0002977326	0,0003713267	0,0005199614	0,0003408406
716	0,0004454876	0,0002379459	0,0003527329	0,0004442276	0,0002860504	0,0003631963	0,0005030976	0,0003308227
717	0,0004380919	0,0002269988	0,0003384899	0,0004215709	0,0002643779	0,0003578742	0,0004846841	0,0003254242
718	0,0004239725	0,0002219741	0,0003355945	0,0004181408	0,0002657423	0,0003443345	0,0004692442	0,0003171872
719	0,0004093338	0,0002170649	0,0003294883	0,0004123573	0,0002651094	0,0003333043	0,0004553376	0,0003094391
720	0,0003955449	0,0002106382	0,0003113782	0,0003943600	0,0002519684	0,0003315713	0,0004446555	0,0003039340
721	0,0003810342	0,0002023544	0,0003034383	0,0003821562	0,0002415942	0,0003233838	0,0004355008	0,0002913420
722	0,0003662411	0,0001932717	0,0003005261	0,0003723765	0,0002327322	0,0003119613	0,0004266816	0,0002754818
723	0,0003528390	0,0001877556	0,0002904083	0,0003476210	0,0002249104	0,0003031033	0,0004061799	0,0002691219
724	0,0003435929	0,0001848076	0,0002742712	0,0003301037	0,0002208764	0,0002902786	0,0003897836	0,0002593626
725	0,0003399255	0,0001853213	0,0002498967	0,0003222982	0,0002219502	0,0002720133	0,0003788606	0,0002449467
726	0,0003251441	0,0001800349	0,0002432866	0,0003171197	0,0002210314	0,0002661064	0,0003657100	0,0002413926

727	0,0003089447	0,0001722339	0,0002391496	0,0003110106	0,0002172732	0,0002636212	0,0003522917	0,0002387641
728	0,0002977818	0,0001595898	0,0002274809	0,0002982578	0,0002035115	0,0002630681	0,0003398328	0,0002290559
729	0,0002891753	0,0001542263	0,0002181233	0,0002878167	0,0001941390	0,0002587031	0,0003349570	0,0002196123
730	0,0002823870	0,0001540668	0,0002104079	0,0002790167	0,0001878962	0,0002516036	0,0003355017	0,0002103459
731	0,0002765408	0,0001481446	0,0002029435	0,0002635152	0,0001843742	0,0002381915	0,0003303164	0,0002062044
732	0,0002667246	0,0001448468	0,0001932828	0,0002536764	0,0001809043	0,0002304282	0,0003214252	0,0002039137
733	0,0002502178	0,0001463036	0,0001799806	0,0002538852	0,0001774504	0,0002326485	0,0003065657	0,0002045901
734	0,0002475615	0,0001448794	0,0001785032	0,0002441382	0,0001642222	0,0002281792	0,0002921317	0,0001964834
735	0,0002462213	0,0001427332	0,0001795960	0,0002321427	0,0001513676	0,0002210337	0,0002790636	0,0001875948
736	0,0002297489	0,0001414471	0,0001752745	0,0002244856	0,0001562590	0,0002107057	0,0002727009	0,0001887707
737	0,0002242702	0,0001332600	0,0001704072	0,0002167722	0,0001558154	0,0002006329	0,0002675442	0,0001822745
738	0,0002275516	0,0001196115	0,0001651223	0,0002090394	0,0001511325	0,0001907955	0,0002633642	0,0001696992
739	0,0002187830	0,0001149777	0,0001491980	0,0002039337	0,0001460828	0,0001880939	0,0002491122	0,0001627714
740	0,0002114591	0,0001145151	0,0001346700	0,0001971570	0,0001391967	0,0001870145	0,0002381100	0,0001609663
741	0,0002079127	0,0001210988	0,0001237100	0,0001869704	0,0001288632	0,0001883341	0,0002341087	0,0001682976
742	0,0002039398	0,0001154873	0,0001231361	0,0001812353	0,0001267815	0,0001842060	0,0002291126	0,0001614993
743	0,0001994541	0,0001067542	0,0001261027	0,0001759932	0,0001261324	0,0001782190	0,0002227830	0,0001497247
744	0,0001925822	0,0001058213	0,0001282332	0,0001636410	0,0001157249	0,0001726589	0,0002099842	0,0001380338
745	0,0001897804	0,0001012265	0,0001281946	0,0001565997	0,0001138259	0,0001687095	0,0002031637	0,0001317770
746	0,0001906950	0,0000933097	0,0001261827	0,0001544147	0,0001196820	0,0001662392	0,0002018076	0,0001304865
747	0,0001794573	0,0000969191	0,0001114169	0,0001508746	0,0001058031	0,0001608024	0,0001925654	0,0001276139
748	0,0001700610	0,0000980904	0,0000996962	0,0001467661	0,0000947796	0,0001555824	0,0001845282	0,0001230131
749	0,0001671291	0,0000915885	0,0000972299	0,0001416575	0,0000939571	0,0001514218	0,0001807067	0,0001148796
750	0,0001611844	0,0000876709	0,0000967044	0,0001372182	0,0000928585	0,0001429265	0,0001777300	0,0001148131
751	0,0001549989	0,0000851347	0,0000974243	0,0001324391	0,0000922604	0,0001333953	0,0001748221	0,0001180218
752	0,0001579386	0,0000853389	0,0001020589	0,0001223635	0,0000971730	0,0001308422	0,0001696034	0,0001204952
753	0,0001567550	0,0000834294	0,0000959725	0,0001169690	0,0001008937	0,0001296426	0,0001608993	0,0001208175
754	0,0001513462	0,0000793550	0,0000789041	0,0001163773	0,0001033887	0,0001298309	0,0001486316	0,0001189344
755	0,0001438246	0,0000738214	0,0000777160	0,0001105264	0,0000976845	0,0001261405	0,0001498555	0,0001138187
756	0,0001385407	0,0000697803	0,0000784740	0,0001043267	0,0000910323	0,0001226749	0,0001490313	0,0001059483
757	0,0001394225	0,0000698677	0,0000793852	0,0000988375	0,0000844739	0,0001209185	0,0001392180	0,0000922696
758	0,0001332401	0,0000625065	0,0000775564	0,0000964236	0,0000866076	0,0001190756	0,0001351547	0,0000916604
759	0,0001239493	0,0000533709	0,0000746411	0,0000953169	0,0000916877	0,0001169278	0,0001332984	0,0000969795
760	0,0001165270	0,0000622934	0,0000736961	0,0000931875	0,0000854029	0,0001120582	0,0001269706	0,0001014012
761	0,0001155554	0,0000681650	0,0000684156	0,0000902251	0,0000764478	0,0001090554	0,0001227656	0,0000974582
762	0,0001215679	0,0000707552	0,0000584460	0,0000863665	0,0000645987	0,0001080773	0,0001208614	0,0000844756
763	0,0001169569	0,0000613818	0,0000635877	0,0000850944	0,0000660118	0,0001067828	0,0001140364	0,0000843382
764	0,0001110225	0,0000551003	0,0000664044	0,0000829880	0,0000690947	0,0001030638	0,0001096106	0,0000838983
765	0,0001054488	0,0000612865	0,0000577272	0,0000778112	0,0000718531	0,0000931360	0,0001133159	0,0000781466
766	0,0001058806	0,0000569591	0,0000557361	0,0000748306	0,0000701850	0,0000947388	0,0001121848	0,0000715821
767	0,0001093095	0,0000475245	0,0000573924	0,0000730932	0,0000661408	0,0001019323	0,0001082319	0,0000649439
768	0,0001068849	0,0000532412	0,0000617233	0,0000741258	0,0000622395	0,0000931316	0,0000980612	0,0000700261
769	0,0001040592	0,0000581035	0,0000586394	0,0000753220	0,0000593690	0,0000882229	0,0000920860	0,0000724613
770	0,0001006770	0,0000616896	0,0000448365	0,0000767472	0,0000580168	0,0000889955	0,0000922405	0,0000710428
771	0,0001003488	0,0000612110	0,0000408509	0,0000693657	0,0000566965	0,0000838806	0,0000903396	0,0000712329
772	0,0000988030	0,0000589215	0,0000409493	0,0000613166	0,0000551354	0,0000786201	0,0000878212	0,0000703291
773	0,0000876027	0,0000531057	0,0000482992	0,0000613426	0,0000524144	0,0000801964	0,0000849820	0,0000621684
774	0,0000817369	0,0000482411	0,0000463160	0,0000584075	0,0000498123	0,0000776968	0,0000822752	0,0000572240
775	0,0000800244	0,0000441156	0,0000370611	0,0000531643	0,0000473018	0,0000720212	0,0000796709	0,0000547832
776	0,0000898320	0,0000335187	0,0000443569	0,0000565500	0,0000514054	0,0000720656	0,0000823681	0,0000606821

777	0,0000893672	0,0000320851	0,0000484301	0,0000561982	0,0000520900	0,0000717899	0,0000805066	0,0000591788
778	0,0000705019	0,0000468601	0,0000459651	0,0000488981	0,0000464867	0,0000706361	0,0000704782	0,0000444196
779	0,0000655204	0,0000400067	0,0000403380	0,0000464043	0,0000441267	0,0000679803	0,0000691034	0,0000454003
780	0,0000640121	0,0000301869	0,0000342980	0,0000465927	0,0000436528	0,0000655574	0,0000694074	0,0000501002

	Spektren nativ							
λ [nm]			Stra	hlungsflussdicl	nte [Watt*m ⁻² *	nm]		
	K-Eye	Arri	P7	P12	Source4 S2	TourLED	Viva CMY	Source4 S3
380	0,0003119801	0,0002078428	0,0002659895	0,0008118240	0,0003584244	0,0005248086	0,0003016220	0,0000230246
381	0,0003621454	0,0002594885	0,0003545508	0,0008898290	0,0001611874	0,0004118908	0,0003765700	0,0001346175
382	0,0004050872	0,0003177255	0,0003886663	0,0008766810	0,0001103659	0,0003405052	0,0004040820	0,0001798352
383	0,0004412732	0,0003806818	0,0003759166	0,0007863920	0,0001853035	0,0003059135	0,0003908260	0,0001677414
384	0,0003786872	0,0003475184	0,0003739138	0,0009497650	0,0001996592	0,0003489552	0,0004007760	0,0001312142
385	0,0002944814	0,0003132077	0,0003783667	0,0010764000	0,0002038063	0,0003910872	0,0003949280	0,0000886125
386	0,0001764651	0,0003556090	0,0004045055	0,0008004960	0,0002138889	0,0003623984	0,0002849920	0,0000294740
387	0,0001808191	0,0004091757	0,0004267040	0,0007094280	0,0002477369	0,0003265967	0,0002439320	0,0000585139
388	0,0003082270	0,0004745190	0,0004451102	0,0008029550	0,0003058309	0,0002831396	0,0002715790	0,0001765522
389	0,0003121284	0,0004487719	0,0003833158	0,0009876660	0,0002205114	0,0003071885	0,0003421480	0,0002108418
390	0,0002895154	0,0003999856	0,0003309203	0,0011613400	0,0001163434	0,0003396170	0,0004199060	0,0002174999
391	0,0002926420	0,0003315311	0,0004843656	0,0011311200	0,0001068871	0,0003160844	0,0004953010	0,0001755959
392	0,0003408539	0,0003137851	0,0005567963	0,0012262800	0,0001196066	0,0003196975	0,0005584150	0,0001706121
393	0,0004450960	0,0003595773	0,0005275444	0,0014775900	0,0001599590	0,0003572499	0,0006058000	0,0002118225
394	0,0004622014	0,0003533988	0,0005526714	0,0016280600	0,0002145383	0,0003599528	0,0005532420	0,0002648021
395	0,0004563595	0,0003377517	0,0005943902	0,0017384900	0,0002754146	0,0003560099	0,0004864520	0,0003150533
396	0,0005123737	0,0004095421	0,0006356417	0,0017785800	0,0003786902	0,0004083916	0,0006278590	0,0002959532
397	0,0005271976	0,0004662986	0,0006770323	0,0018456100	0,0004392313	0,0004834411	0,0007341960	0,0003020751
398	0,0004808561	0,0005017656	0,0007193067	0,0019535800	0,0004373448	0,0005937145	0,0007904220	0,0003457687
399	0,0004905380	0,0004982276	0,0007678555	0,0021543100	0,0004531082	0,0006159900	0,0008174230	0,0003644266
400	0,0005228466	0,0004805483	0,0008191298	0,0023870600	0,0004796355	0,0006046328	0,0008370930	0,0003746271
401	0,0005858198	0,0004894193	0,0009100722	0,0026187000	0,0006447062	0,0006241429	0,0010049000	0,0004386012
402	0,0006614446	0,0005257663	0,0010029239	0,0029034100	0,0007773785	0,0006854964	0,0011254100	0,0004781064
403	0,0007605499	0,0006109839	0,0011005500	0,0032859400	0,0008552827	0,0008214338	0,0011645700	0,0004751203
404	0,0008490334	0,0006980099	0,0013182218	0,0036730000	0,0009140852	0,0008715374	0,0013133700	0,0005481121
405	0,0009317194	0,0007850170	0,0015895780	0,0040584400	0,0009634898	0,0008812501	0,0015117800	0,0006557653
406	0,0009459613	0,0009739989	0,0018197554	0,0047220400	0,0010526181	0,0009726948	0,0016873200	0,0007439049
407	0,0010106112	0,0011347320	0,0020715875	0,0054225800	0,0011693183	0,0011014216	0,0018870900	0,0008308361
408	0,0011865368	0,0012381238	0,0023786705	0,0062195700	0,0013480301	0,0013126572	0,0021455200	0,0009182549
409	0,0013276605	0,0014002526	0,0027422116	0,0072230000	0,0016539970	0,0014970696	0,0024171100	0,0010447518
410	0,0014483748	0,0015953852	0,0031366947	0,0083407500	0,0020315659	0,0016654649	0,0026952500	0,0011931351
411	0,0017112104	0,0018857995	0,0036591930	0,0097511100	0,0021072584	0,0018577373	0,0031625400	0,0013609326
412	0,0019714023	0,0021817899	0,0042782861	0,0113134000	0,0022522602	0,0020772388	0,0036728200	0,0015343289
413	0,0022162598	0,0024913932	0,0051555914	0,0132928000	0,0026220541	0,0023726761	0,0042898500	0,0017264389
414	0,0025276625	0,0028972824	0,0060584431	0,0156628000	0,0029546561	0,0027275413	0,0050214000	0,0019801666
415	0,0028821886	0,0033657363	0,0069742881	0,0182831000	0,0032609326	0,0031205665	0,0058262200	0,0022739721
416	0,0033841019	0,0039432189	0,0083468472	0,0214515000	0,0036155662	0,0036246704	0,0067218000	0,0025432138
417	0,0039349095	0,0045510744	0,0097936138	0,0247934000	0,0039775870	0,0041612323	0,0076832900	0,0028372115
418	0,0046133043	0,0052405065	0,0113823746	0,0286198000	0,0043584311	0,0047832931	0,0088548000	0,0032254447
419	0,0053426406	0,0060788829	0,0132266753	0,0332432000	0,0048485348	0,0054592074	0,0102785000	0,0036754196
420	0,0061054850	0,0070257459	0,0152537759	0,0384459000	0,0054194341	0,0061713962	0,0118858000	0,0041695938
421	0,0072303350	0,0082426448	0,0178326089	0,0444510000	0,0060187846	0,0072296123	0,0138518000	0,0047478623
422	0,0084463730	0,0095415225	0,0205865757	0,0509014000	0,0066207619	0,0084116232	0,0159421000	0,0053763566
423	0,0098229599	0,0110142448	0,0237259393	0,0586617000	0,0072167719	0,0098928334	0,0183240000	0,0061567976
424	0,0114750746	0,0125853227	0,0271650275	0,0671402000	0,0079450570	0,0113953121	0,0208301000	0,0070263698
425	0,0133563130	0,0142284117	0,0308370936	0,0761746000	0,0087845804	0,0129015002	0,0234218000	0,0079668045
426	0,0155455103	0,0162053109	0,0350121925	0,0857583000	0,0095159978	0,0148940559	0,0265721000	0,0091509434

427	0,0178888756	0,0182820437	0,0394291058	0,0958348000	0,0103103142	0,0170371803	0,0299493000	0,0103841624
428	0,0208019688	0,0206317062	0,0447495249	0,1082080000	0,0115332817	0,0195690112	0,0340694000	0,0116905342
429	0,0240968087	0,0231971660	0,0501627549	0,1209230000	0,0127657859	0,0223009389	0,0384154000	0,0132166442
430	0,0277649544	0,0259715596	0,0556522288	0,1339430000	0,0140040437	0,0252253772	0,0429750000	0,0149589233
431	0,0320797563	0,0290559319	0,0618587887	0,1483430000	0,0154211584	0,0289567727	0,0480786000	0,0168671611
432	0,0366505433	0,0322895470	0,0682711148	0,1633980000	0,0169415784	0,0329425919	0,0534486000	0,0188618266
433	0,0418704264	0,0359978266	0,0749339179	0,1805250000	0,0188460909	0,0373533243	0,0596802000	0,0211479251
434	0,0473063267	0,0398419667	0,0819225138	0,1976040000	0,0207651076	0,0421919370	0,0660573000	0,0234858445
435	0,0528721004	0,0437610961	0,0891373237	0,2143020000	0,0226628418	0,0474067481	0,0724705000	0,0258350841
436	0,0594475901	0,0481967931	0,0963531543	0,2323430000	0,0250222433	0,0534695836	0,0795107000	0,0285043528
437	0,0661417481	0,0526258303	0,1033198152	0,2501560000	0,0274565124	0,0596512209	0,0865387000	0,0311560550
438	0,0731959976	0,0569336139	0,1098369861	0,2672900000	0,0300634194	0,0663973581	0,0937199000	0,0336166424
439	0,0800179861	0,0608288750	0,1161128365	0,2839420000	0,0328988109	0,0735152758	0,1010540000	0,0360176323
440	0,0867000113	0,0643071225	0,1222140413	0,3003230000	0,0360621734	0,0812196232	0,1087100000	0,0383932555
441	0,0940074121	0,0670548857	0,1277238396	0,3159840000	0,0388215909	0,0897900707	0,1167780000	0,0402766345
442	0,1013689139	0,0693902209	0,1329789268	0,3311760000	0,0414854672	0,0986404775	0,1248430000	0,0419364904
443	0,1081316290	0,0701628284	0,1379167196	0,3452550000	0,0445131461	0,1083294904	0,1324180000	0,0430157313
444	0,1144464795	0,0699515724	0,1420045446	0,3571010000	0,0469508933	0,1181237759	0,1398320000	0,0435769657
445	0,1200975021	0,0684852437	0,1449511356	0,3659260000	0,0485941761	0,1279113038	0,1469370000	0,0434673623
446	0,1248504159	0,0657678090	0,1456547958	0,3719790000	0,0496105567	0,1380137189	0,1536490000	0,0427248580
447	0,1290313832	0,0627726304	0,1455777364	0,3767090000	0,0502915015	0,1478839674	0,1599900000	0,0417500646
448	0,1315346704	0,0592708304	0,1439262091	0,3771970000	0,0497090581	0,1578747363	0,1657370000	0,0398588675
449	0,1327822181	0,0557350297	0,1410601808	0,3754680000	0,0484878478	0,1667893992	0,1705160000	0,0377718586
450	0,1324961916	0,0520708041	0,1366236148	0,3709150000	0,0464530108	0,1745385760	0,1741730000	0,0353942726
451	0,1301721642	0,0487524953	0,1303462953	0,3621450000	0,0440045044	0,1808942495	0,1763300000	0,0331156460
452	0,1270314178	0,0455970746	0,1234908082	0,3517390000	0,0414549810	0,1863332420	0,1777910000	0,0309174737
453	0,1212158335	0,0423605561	0,1150223551	0,3354870000	0,0386241470	0,1877674748	0,1770170000	0,0287672158
454	0,1147110549	0,0394794399	0,1064231694	0,3176750000	0,0359491725	0,1878720283	0,1747750000	0,0268327382
455	0,1072382464	0,0370208790	0,0975530063	0,2976330000	0,0334425270	0,1862478695	0,1706000000	0,0251525426
456	0,0994666798	0,0350504594	0,0889642556	0,2765870000	0,0314368512	0,1815009032	0,1646700000	0,0237236002
457	0,0918605675	0,0333264956	0,0808608381	0,2559580000	0,0297126806	0,1757267180	0,1582910000	0,0224654088
458	0,0840837154	0,0318549332	0,0738830149	0,2351700000	0,0285805044	0,1670014291	0,1503200000	0,0216545336
459	0,0768611569	0,0306730776	0,0673848596	0,2156330000	0,0276728597	0,1574465673	0,1418610000	0,0209138104
460	0,0701649362	0,0298360025	0,0613355263	0,1971880000	0,0270315939	0,1465033342	0,1324990000	0,0202411713
461	0,0643872042	0,0290781875	0,0562387488	0,1802270000	0,0268746237	0,1353377261	0,1228940000	0,0197967067
462	0,0590791740	0,0283936947	0,0515721359	0,1641900000	0,0268946565	0,1243006527	0,1133810000	0,0194304445
463	0,0550319142	0,0281689433	0,0476710777	0,1511650000	0,0271314652	0,1142133326	0,1046680000	0,0190637405
464	0,0514256364	0,0280998674	0,0440514435	0,1390970000	0,0274732095	0,1045041886	0,0965117000	0,0188185470
465	0,0483974888	0,0282450272	0,0407882403	0,1282430000	0,0279622947	0,0952277480	0,0890497000	0,0187390589
466	0,0458163602	0,0283855778	0,0376658554	0,1183760000	0,0284872870	0,0869324200	0,0820944000	0,0188476087
467	0,0435023102	0,0285430506	0,0347087242	0,1092730000	0,0290262767	0,0793065648	0,0756017000	0,0190206542
468	0,0416215398	0,0288677869	0,0320252312	0,1017440000	0,0296685737	0,0728006187	0,0700740000	0,0192062369
469	0,0401584432	0,0292467534	0,0296558684	0,0946353000	0,0303254294	0,0667860890	0,0650601000	0,0194578537
470	0,0392110366	0,0296993695	0,0276500782	0,0879281000	0,0310087592	0,0612924036	0,0606157000	0,0197979665
471	0,0383719223	0,0301198697	0,0257995008	0,0819142000	0,0315609922	0,0564277003	0,0566499000	0,0203088470
472	0,0376543508	0,0305343974	0,0240433394	0,0762665000	0,0320818507	0,0518707665	0,0529372000	0,0208734236
473	0,0377680141	0,0310466515	0,0225187072	0,0713607000	0,0327868298	0,0478036736	0,0497670000	0,0214936383
474	0,0380254352	0,0313567854	0,0211182907	0,0667089000	0,0332741444	0,0439180798	0,0466150000	0,0221310332
475	0,0384796005	0,0313892827	0,0198888565	0,0624074000	0,0334623896	0,0402832311	0,0434896000	0,0227914721
476	0,0392952102	0,0314703422	0,0189539361	0,0589387000	0,0334232686	0,0369870977	0,0406386000	0,0235665727

477	0,0402306677	0,0315313913	0,0181309154	0,0558319000	0,0333075018	0,0338607478	0,0379376000	0,0243702413
478	0,0412079359	0,0312007106	0,0174077422	0,0534209000	0,0331244582	0,0311273964	0,0356619000	0,0251095480
479	0,0423519915	0,0308511853	0,0168147810	0,0512477000	0,0329435593	0,0287375038	0,0336727000	0,0259502690
480	0,0437259510	0,0304705933	0,0163883913	0,0493662000	0,0327610332	0,0267803480	0,0320439000	0,0269321588
481	0,0444221653	0,0299337723	0,0161938557	0,0478536000	0,0323167251	0,0249172567	0,0303613000	0,0277045482
482	0,0449068678	0,0293521173	0,0160783373	0,0465683000	0,0318499483	0,0231572099	0,0287381000	0,0284319011
483	0,0454784227	0,0287312967	0,0160022151	0,0462426000	0,0319368316	0,0219084151	0,0276774000	0,0294733875
484	0,0456869909	0,0281183578	0,0160364667	0,0460594000	0,0319196954	0,0208216130	0,0267740000	0,0305029540
485	0,0453827097	0,0275132145	0,0162252794	0,0460738000	0,0317543324	0,0199585795	0,0260882000	0,0315169747
486	0,0448149393	0,0270129135	0,0165775161	0,0465537000	0,0319340780	0,0192840951	0,0256847000	0,0326198902
487	0,0441232853	0,0265594959	0,0169947011	0,0472229000	0,0322361723	0,0186855589	0,0253908000	0,0337738522
488	0,0431370274	0,0263224055	0,0174831318	0,0482154000	0,0325756101	0,0183204115	0,0253142000	0,0350628488
489	0,0419584128	0,0262092619	0,0180626118	0,0493937000	0,0331178249	0,0180856216	0,0253238000	0,0362794899
490	0,0405032059	0,0262798116	0,0187747019	0,0508433000	0,0339576131	0,0180439820	0,0254612000	0,0373873496
491	0,0391403788	0,0264872680	0,0197165808	0,0528316000	0,0347860591	0,0180865394	0,0257857000	0,0384585127
492	0,0378069015	0,0267478223	0,0207418859	0,0550260000	0,0356092684	0,0181765638	0,0261803000	0,0394967892
493	0,0365005563	0,0271007954	0,0217916024	0,0574412000	0,0364563023	0,0185414316	0,0266481000	0,0402933142
494	0,0352343552	0,0276082709	0,0229393414	0,0600894000	0,0374865603	0,0189945584	0,0273176000	0,0410594900
495	0,0340412267	0,0283545744	0,0242330642	0,0630855000	0,0387972559	0,0195831151	0,0282983000	0,0417747439
496	0,0331164985	0,0292179386	0,0257158006	0,0665519000	0,0399474182	0,0203266272	0,0293387000	0,0422992887
497	0,0323094209	0,0301417816	0,0272931770	0,0702259000	0,0410484165	0,0211487467	0,0304165000	0,0427352617
498	0,0318392432	0,0312744334	0,0291369661	0,0741308000	0,0422882397	0,0222416299	0,0316706000	0,0429070359
499	0,0314391414	0,0324608078	0,0309336485	0,0782428000	0,0434529565	0,0233658687	0,0330365000	0,0430764985
500	0,0311542119	0,0337241530	0,0326427812	0,0826533000	0,0444911009	0,0245318238	0,0345699000	0,0432424270
501	0,0309821054	0,0350425126	0,0345169758	0,0873686000	0,0456516820	0,0257657054	0,0362148000	0,0432689731
502	0,0308679697	0,0364132232	0,0364827390	0,0922585000	0,0468677249	0,0270526905	0,0379365000	0,0432303584
503	0,0311631869	0,0380825073	0,0385091593	0,0970868000	0,0480498397	0,0285498105	0,0399048000	0,0431676591
504	0,0314149274	0,0397010789	0,0405295841	0,1020700000	0,0490999786	0,0300382970	0,0418722000	0,0430215161
505	0,0315966655	0,0412078829	0,0425017708	0,1072090000	0,0499214008	0,0314844291	0,0438012000	0,0427520456
506	0,0320969891	0,0428503762	0,0446348580	0,1125640000	0,0507959474	0,0330772325	0,0459357000	0,0427425525
507	0,0327199470	0,0445351964	0,0468241374	0,1179520000	0,0516886097	0,0347099582	0,0481323000	0,0428342386
508	0,0333138088	0,0460948506	0,0489876372	0,1226270000	0,0525600128	0,0360957183	0,0500898000	0,0428924595
509	0,0339595765	0,0476147827	0,0510495728	0,1274490000	0,0533319881	0,0374930665	0,0521701000	0,0431049740
510	0,0346944626	0,0490905770	0,0529774192	0,1325700000	0,0539510023	0,0389274903	0,0544747000	0,0435613730
511	0,0354029445	0,0504975183	0,0548568870	0,1378050000	0,0547784777	0,0402779926	0,0564468000	0,0438386773
512	0,0361180067	0,0518673574	0,0567460578	0,1431310000	0,0556771702	0,0416082209	0,0583395000	0,0440593509
513	0,0369918254	0,0528491612	0,0587078935	0,1481220000	0,0563550316	0,0428737915	0,0606083000	0,0445245202
514	0,0378435080	0,0537550588	0,0605719623	0,1528590000	0,0569301923	0,0440277034	0,0627053000	0,0449205149
515	0,0386482980	0,0545349223	0,0622554900	0,1571280000	0,0573475997	0,0449943014	0,0645057000	0,0452112102
516	0,0393589171	0,0550089045	0,0639912058	0,1613730000	0,0577640833	0,0459139236	0,0664223000	0,0455089808
517	0,0400404597	0,0553556087	0,0657193855	0,1655800000	0,0581743652	0,0467970812	0,0683658000	0,0457979585
518	0,0407866593	0,0554501880	0,0672892634	0,1697290000	0,0585075301	0,0475095628	0,0703007000	0,0459532448
519	0,0414167758	0,0553798998	0,0686870496	0,1738810000	0,0588589579	0,0481036981	0,0720261000	0,0460945985
520	0,0418984269	0,0550847970	0,0698707467	0,1780780000	0,0592323915	0,0485450291	0,0734927000	0,0462140396
521	0,0422821445	0,0546313725	0,0712411637	0,1812960000	0,0593121667	0,0488257351	0,0751806000	0,0463623029
522	0,0426144308	0,0540954241	0,0726301120	0,1842330000	0,0593113291	0,0490220336	0,0768955000	0,0464756712
523	0,0427759149	0,0533206075	0,0736936949	0,1872920000	0,0594091304	0,0489392530	0,0782582000	0,0462486099
524	0,0428309501	0,0524726350	0,0747101276	0,1901640000	0,0594295488	0,0487655590	0,0796482000	0,0459405706
525	0,0427585196	0,0515476574	0,0756646234	0,1927940000	0,0593597171	0,0484861463	0,0810642000	0,0455400837
526	0,0427092197	0,0505027306	0,0766959275	0,1952320000	0,0591383111	0,0481793737	0,0823044000	0,0452182280

527	0,0426532460	0,0494637744	0,0777161928	0,1976040000	0,0588576545	0,0478270122	0,0834809000	0,0449024750
528	0,0425004498	0,0486013749	0,0785567262	0,1999090000	0,0584218916	0,0472010737	0,0845668000	0,0444672964
529	0,0422990307	0,0476673972	0,0792854953	0,2021930000	0,0579173947	0,0465685362	0,0855531000	0,0440318650
530	0,0420420694	0,0466483615	0,0798950162	0,2044570000	0,0573330890	0,0459225981	0,0864343000	0,0435912111
531	0,0417777976	0,0457570139	0,0803165950	0,2061160000	0,0569319902	0,0451828185	0,0873383000	0,0431524234
532	0,0415147235	0,0448836934	0,0807626788	0,2076360000	0,0565937008	0,0444386916	0,0881774000	0,0427022902
533	0,0412626699	0,0439453804	0,0815544917	0,2091550000	0,0563676418	0,0437640353	0,0886816000	0,0421855962
534	0,0408643292	0,0431897183	0,0821260875	0,2105890000	0,0560029762	0,0430174709	0,0892984000	0,0416765114
535	0,0403260637	0,0426104514	0,0824870213	0,2119450000	0,0555059762	0,0422026032	0,0900248000	0,0411754753
536	0,0399104397	0,0419390570	0,0827421182	0,2129310000	0,0548485450	0,0414238133	0,0908055000	0,0407162946
537	0,0395389971	0,0412872356	0,0829679532	0,2138100000	0,0542787961	0,0406832565	0,0915237000	0,0402730178
538	0,0392090462	0,0407059142	0,0831269009	0,2144780000	0,0541007448	0,0399911860	0,0919638000	0,0398084839
539	0,0388639755	0,0401823165	0,0833826871	0,2150630000	0,0537344595	0,0392850077	0,0924130000	0,0393771753
540	0,0385072692	0,0397081439	0,0837190252	0,2155790000	0,0532124866	0,0385688190	0,0928691000	0,0389746842
541	0,0380726145	0,0392131273	0,0841230461	0,2164850000	0,0528538964	0,0378941345	0,0932003000	0,0386398759
542	0,0376723695	0,0387639092	0,0844435647	0,2172710000	0,0525449370	0,0372618552	0,0934917000	0,0382799986
543	0,0374110047	0,0384656851	0,0844507661	0,2174800000	0,0523199113	0,0367382862	0,0937002000	0,0377951612
544	0,0370838717	0,0381311767	0,0844180902	0,2178940000	0,0521053663	0,0361667041	0,0938950000	0,0374638105
545	0,0367147430	0,0377765365	0,0843629140	0,2184710000	0,0519048831	0,0355687870	0,0940850000	0,0372519338
546	0,0365386892	0,0374016393	0,0844768193	0,2185730000	0,0516932637	0,0349701972	0,0941216000	0,0369692809
547	0,0363212696	0,0371118698	0,0846005313	0,2188320000	0,0514944315	0,0343805529	0,0942790000	0,0367005398
548	0,0359294311	0,0370403528	0,0846959796	0,2195940000	0,0513147163	0,0337872921	0,0947860000	0,0364691051
549	0,0356968399	0,0368904161	0,0847049525	0,2195360000	0,0514107424	0,0333386289	0,0949875000	0,0361812340
550	0,0355715418	0,0366986830	0,0846700188	0,2189950000	0,0516826577	0,0329916220	0,0950066000	0,0358675483
551	0,0354290953	0,0364395264	0,0847336524	0,2193440000	0,0515967905	0,0324674956	0,0950239000	0,0358156180
552	0,0352106740	0,0362781299	0,0846886780	0,2194210000	0,0514901126	0,0319835740	0,0950351000	0,0356868764
553	0,0348112335	0,0363360076	0,0843748969	0,2187590000	0,0513652464	0,0315917204	0,0950210000	0,0353476036
554	0,0346515540	0,0363279092	0,0841834588	0,2182940000	0,0514441415	0,0312087450	0,0949113000	0,0351752368
555	0,0346223080	0,0362860653	0,0840619041	0,2179450000	0,0516334271	0,0308341315	0,0947550000	0,0350944890
556	0,0344979879	0,0363204074	0,0840269517	0,2181530000	0,0517627109	0,0303968826	0,0948818000	0,0349415076
557	0,0343941504	0,0363469603	0,0840298681	0,2180910000	0,0519206622	0,0300082326	0,0949594000	0,0348388593
558	0,0343295155	0,0363557597	0,0841010635	0,2174850000	0,0521340121	0,0297109522	0,0949337000	0,0348327657
559	0,0341968379	0,0364551208	0,0837100157	0,2166540000	0,0523088629	0,0292679046	0,0947724000	0,0346918436
560	0,0340379212	0,0365972552	0,0831298159	0,2157400000	0,0524708716	0,0287709714	0,0945521000	0,0344970624
561	0,0339745693	0,0367768636	0,0830680599	0,2151240000	0,0527650412	0,0285611928	0,0943114000	0,0344815345
562	0,0339299855	0,0369149053	0,0829303515	0,2144680000	0,0530077088	0,0282825788	0,0940292000	0,0344509869
563	0,0339162742	0,0369860419	0,0826692729	0,2137480000	0,0531678050	0,0278910810	0,0936797000	0,0343962472
564	0,0338558084	0,0371311299	0,0822077152	0,2127560000	0,0532960594	0,0276119119	0,0933784000	0,0343331093
565	0,0337916006	0,0373007579	0,0817112510	0,2117600000	0,0534303425	0,0273832302	0,0931180000	0,0342750236
566	0,0338614521	0,0374290038	0,0815685488	0,2116450000	0,0537681708	0,0271964592	0,0930198000	0,0342818801
567	0,0338996272	0,0375999848	0,0813239848	0,2110380000	0,0540651360	0,0269488679	0,0927750000	0,0342857026
568	0,0338963941	0,0378297301	0,0809460220	0,2097790000	0,0543085040	0,0266209818	0,0923367000	0,0342868423
569	0,0339468516	0,0380245601	0,0805135688	0,2086460000	0,0545639951	0,0264215041	0,0920408000	0,0341684309
570	0,0340198408	0,0382175772	0,0800930435	0,2075260000	0,0548285362	0,0262522086	0,0917718000	0,0340325370
571	0,0341381089	0,0384727794	0,0798466926	0,2061530000	0,0551325814	0,0260148245	0,0913649000	0,0340155199
572	0,0342439792	0,0386895764	0,0794864231	0,2049950000	0,0554041857	0,0257800354	0,0909465000	0,0339640789
573	0,0343359585	0,0388635788	0,0789952045	0,2040730000	0,0556397849	0,0255468707	0,0905123000	0,0338732126
574	0,0343113116	0,0392213163	0,0784081268	0,2030260000	0,0557479720	0,0253977784	0,0899842000	0,0338744263
575	0,0343006008	0,0395962321	0,0778611253	0,2019210000	0,0558840565	0,0252544760	0,0894537000	0,0339111352
576	0,0344872027	0,0398587339	0,0776076094	0,2006450000	0,0563008128	0,0250436683	0,0890036000	0,0340219539
			-		-		-	

577	0,0346191973	0,0401105720	0,0772450567	0,1992990000	0,0565201813	0,0248303032	0,0886043000	0,0339481569
578	0,0347010211	0,0403524975	0,0767859239	0,1979000000	0,0565573321	0,0246165144	0,0882569000	0,0337048004
579	0,0347873190	0,0406937378	0,0762564838	0,1965400000	0,0567211471	0,0244316630	0,0878055000	0,0337657961
580	0,0348720664	0,0409990853	0,0756794128	0,1952310000	0,0568708366	0,0242665893	0,0872744000	0,0337933878
581	0,0349461947	0,0411236031	0,0749515716	0,1940380000	0,0568976423	0,0241503494	0,0864963000	0,0335340801
582	0,0350061222	0,0413153628	0,0743505778	0,1925600000	0,0569337010	0,0240246174	0,0857897000	0,0333778552
583	0,0350543376	0,0415574039	0,0738402208	0,1908520000	0,0569749106	0,0238902868	0,0851310000	0,0332977411
584	0,0351921540	0,0418931245	0,0732651546	0,1890450000	0,0570929469	0,0236932702	0,0844957000	0,0332575848
585	0,0353217046	0,0422270861	0,0726570807	0,1873080000	0,0571593132	0,0235260611	0,0838928000	0,0331910323
586	0,0354075115	0,0425340548	0,0719733898	0,1857780000	0,0570671184	0,0234538034	0,0833702000	0,0330431697
587	0,0354654675	0,0428885205	0,0713114526	0,1840690000	0,0569617187	0,0233160449	0,0827747000	0,0329358359
588	0,0355062765	0,0432706848	0,0706651551	0,1822560000	0,0568486848	0,0231388946	0,0821368000	0,0328535877
589	0,0355358953	0,0435169091	0,0699705934	0,1805720000	0,0567722498	0,0230773169	0,0813538000	0,0327882287
590	0,0355993673	0,0437561051	0,0692831766	0,1788850000	0,0567029949	0,0229796582	0,0805837000	0,0326994489
591	0,0357285927	0,0439826509	0,0686041207	0,1771630000	0,0566397615	0,0227993417	0,0798376000	0,0325578039
592	0,0357764184	0,0442818466	0,0679447410	0,1750180000	0,0565492132	0,0227192231	0,0790621000	0,0324499609
593	0,0357857797	0,0446188009	0,0672916665	0,1727000000	0,0564494607	0,0226874508	0,0782780000	0,0323569553
594	0,0357585752	0,0450613731	0,0664210394	0,1707090000	0,0563900585	0,0226698310	0,0774725000	0,0321971248
595	0,0357346759	0,0454415958	0,0655967780	0,1689390000	0,0563142298	0,0226732724	0,0767189000	0,0321050315
596	0,0357151577	0,0457226865	0,0648431364	0,1675100000	0,0562110026	0,0227095379	0,0760448000	0,0321192772
597	0,0356896221	0,0460237328	0,0639916200	0,1654800000	0,0561270909	0,0226520463	0,0751632000	0,0319947186
598	0,0356639208	0,0463491682	0,0631092648	0,1632460000	0,0560620274	0,0225791991	0,0742122000	0,0318384202
599	0,0356608321	0,0468350361	0,0622897275	0,1611490000	0,0561191284	0,0226751024	0,0733255000	0,0318478548
600	0,0356493613	0,0472441582	0,0614996102	0,1589950000	0,0561731003	0,0227495273	0,0725208000	0,0318973222
601	0,0356232477	0,0475510252	0,0607415826	0,1567580000	0,0562161672	0,0227943398	0,0718120000	0,0319922039
602	0,0355460329	0,0481123830	0,0599649498	0,1546450000	0,0562783256	0,0229662613	0,0710096000	0,0320431967
603	0,0354624693	0,0486916945	0,0591478101	0,1525080000	0,0563857276	0,0231789645	0,0701506000	0,0320966521
604	0,0354162961	0,0490203172	0,0581758759	0,1501760000	0,0567069175	0,0234373437	0,0691503000	0,0322192770
605	0,0352991229	0,0495049619	0,0572105859	0,1480740000	0,0569913572	0,0236398883	0,0681914000	0,0324324984
606	0,0351137604	0,0501372197	0,0562488720	0,1461820000	0,0572402646	0,0237893663	0,0672686000	0,0327312487
607	0,0351302296	0,0505915411	0,0555019227	0,1437180000	0,0577436511	0,0240596932	0,0661834000	0,0328843307
608	0,0351405044	0,0511143586	0,0547253388	0,1412110000	0,0582777987	0,0243999187	0,0651564000	0,0330963815
609	0,0350300963	0,0519558010	0,0537560978	0,1388950000	0,0587838436	0,0249143315	0,0644325000	0,0335822757
610	0,0350146482	0,0528685643	0,0528369412	0,1367120000	0,0594815614	0,0254416041	0,0635288000	0,0340364742
611	0,0350645989	0,0538318311	0,0519456974	0,1346030000	0,0603151449	0,0259780540	0,0624862000	0,0344666902
612	0,0349916133	0,0548750788	0,0510800378	0,1324470000	0,0614948114	0,0266658256	0,0616160000	0,0351633227
613	0,0348863600	0,0559318053	0,0501853150	0,1301430000	0,0626917360	0,0273142214	0,0606287000	0,0359057371
614	0,0347250410	0,0569975905	0,0492307101	0,1275280000	0,0638659723	0,0278394863	0,0593518000	0,0367097991
615	0,0347934914	0,0584147835	0,0483251049	0,1252930000	0,0656220915	0,0287568703	0,0584288000	0,0376001691
616	0,0349816801	0,0600151343	0,0474495725	0,1232560000	0,0676849039	0,0298784618	0,0576920000	0,0385369815
617	0,0350573392	0,0616518948	0,0466778320	0,1207150000	0,0699685476	0,0309512087	0,0567495000	0,0396502353
618	0,0351854174	0,0634890963	0,0458497904	0,1183590000	0,0725237914	0,0321292081	0,0558064000	0,0408714455
619	0,0354033527	0,0656521758	0,0449362593	0,1163520000	0,0755193261	0,0334759363	0,0548747000	0,0422659027
620	0,0356938452	0,0678950590	0,0440431875	0,1141130000	0,0787951651	0,0350569408	0,0540351000	0,0438265995
621	0,0360099602	0,0702212247	0,0431472826	0,1118090000	0,0822434473	0,0367479255	0,0532019000	0,0454645446
622	0,0363380141	0,0730298387	0,0422610304	0,1100070000	0,0862655130	0,0386084949	0,0522100000	0,0472100172
623	0,0367422339	0,0759831601	0,0413908596	0,1079970000	0,0906493327	0,0406223566	0,0511764000	0,0491335207
624	0,0372391551	0,0790909852	0,0405511242	0,1057530000	0,0954455414	0,0428094904	0,0501030000	0,0512624896
625	0,0378973039	0,0826727985	0,0398660112	0,1036800000	0,1009882358	0,0455324136	0,0493791000	0,0533787753
626	0,0386212771	0,0864467807	0,0391620829	0,1016380000	0,1068302283	0,0484151315	0,0486696000	0,0555497856

627 0.0394542365 0.0904472020 0.0382242623 0.0996732000 0.1130113658 0.0513265826 628 0.044416231 0.0984550075 0.035660202 0.098657000 0.13664640103 0.0651905700 630 0.0426700476 0.016526457 0.035660722 0.098557000 0.138467143 0.062057082 631 0.043945309 0.0141767786 0.0350064728 0.0815037000 0.1466687668 0.0662657082 632 0.0451933990 0.014083539 0.03202756935 0.085755000 0.1572561174 0.0805602758 634 0.0489904004 0.103463374 0.0322857500 0.1572561174 0.08055602758 635 0.0552755015 0.0807848000 0.157356444 0.0902824737 636 0.057458114 0.08178438307 0.02285788 0.075852800 0.117025648 0.0992519904 639 0.057458114 0.0621741191 0.0278253007 0.0778532800 0.112526201 0.1064803625 640 0.0627751192 0.0621741191 0.02782532021 0.066402070 0.065259		
628 0,0404162817 0,0984559075 0,036614713 0,098650000 0,11366439260 0,0545724705 630 0,0426700476 0,106326457 0,035664728 0,095671000 0,133867143 0,06209406 631 0,0439453099 0,10440757786 0,035064728 0,0815037000 0,142662764 0,066255702 633 0,0471933990 0,1044002539 0,033400792 0,0875938000 0,157259414 0,0050204773 634 0,0489971473 0,048937470 0,032265560 0,0583785000 0,1518192214 0,0803420477 635 0,056220959 0,099355685 0,0320875823 0,0807810000 0,1518192214 0,06023758 638 0,057458818 0,047934239 0,023269781 0,078512000 0,115206201 0,104802348 640 0,061471379 0,067991425 0,02280982372 0,085663000 0,112256601 0,105283869 641 0,065275143 0,022807981 0,07528300 0,112256601 0,1064903256 642 0,65708379 0,0254893877 0,0268983170	0,0476636000	0,0579116080
629 0,0414918673 0,0984595075 0,0366148713 0,093860000 0,1256640103 0,0581095720 630 0,0428700476 0,101832657 0,035860021 0,0398571000 0,1358467145 0,062057082 631 0,0454954897 0,10530664728 0,0915037000 0,1474368183 0,0708655581 633 0,0454954847 0,10530850472 0,087395000 0,157356114 0,0080284737 634 0,052055915 0,994397567 0,0312987423 0,0837985000 0,1573156944 0,0050227583 635 0,050215913 0,994397567 0,0312987423 0,0837851000 0,1518192241 0,0802824737 637 0,0524575915 0,994397567 0,032285781 0,081780300 0,15384184 0,0902219904 639 0,057145481 0,067914253 0,022829781 0,0765252000 0,15702266 0,1061893821 641 0,067381149 0,022829781 0,07525000 0,1125266201 0,1061893823 643 0,0672812043 0,052639967 0,0274938307 0,771230000 0,0682914112 <td>0,0467192000</td> <td>0,0605184000</td>	0,0467192000	0,0605184000
630 0,0426700476 0,1016326457 0,035869021 0,0935671000 0,1388467143 0,0620950409 631 0,043945309 0,1041767786 0,035064728 0,087592000 0,1474368183 0,0796657082 632 0,0471933990 0,104802359 0,0334000792 0,087592000 0,1573561174 0,0803462047 633 0,0489904004 0,1034863974 0,032855560 0,087592000 0,1573561174 0,0803462047 635 0,0527550915 0,09393556385 0,0837592000 0,153341894 0,0902824737 637 0,0548971473 0,081708838 0,029892372 0,078516000 0,15341894 0,09022519904 639 0,054971473 0,081708838 0,0298292372 0,07852000 0,1371022268 0,108182030 640 0,061677139 0,667931413 0,0272838070 0,117556201 0,1012597283 0,1012590201 0,117556201 0,1014525763 641 0,0687783009 0,02762938970 0,0278339879 0,0278398070 0,0278398070 0,0278398074 0,0468205049 0,02599789	0,0458334000	0,0633382230
631 0,0439453099 0,1041767796 0,035064728 0,0915037000 0,14048687968 0,062657082 632 0,045495487 0,1052069817 0,0341029499 0,085920000 0,152765174 0,0755660767 633 0,0489904004 0,1034863974 0,032863560 0,05737651174 0,0603420776 635 0,0508206959 0,0993554635 0,0322863560 0,0573751174 0,0603420775 636 0,052755915 0,9493975607 0,021287423 0,06256000 0,153348189 0,090502758 637 0,0589441472 0,0742761870 0,0228992372 0,0785102000 0,115205601 0,105297899 641 0,067381349 0,0270909108 0,0778510200 0,115256601 0,1062997899 642 0,06577812043 0,055639697 0,0224939872 0,0669602000 0,0682918141 0,1042578178 644 0,0659738134 0,022909281 0,0669602000 0,0682918141 0,1042578178 644 0,0669739303 0,023872505 0,064737000 0,057830449 0,022197171 0,022207778	0,0449894000	0,0664184763
632 0,045495487 0,1052069817 0,0341025499 0,087592000 0,11774368183 0,0708659581 633 0,047939390 0,144802353 0,032865600 0,0853985000 0,1572569117 0,080340247 635 0,0508206959 0,099355635 0,032765953 0,0837894000 0,155192241 0,080378517 636 0,052755015 0,094397567 0,0312987423 0,087894000 0,1518192241 0,080322758 637 0,05448971473 0,067941278 0,022867981 0,076512000 0,1466622488 0,0992519904 639 0,051441472 0,074271870 0,022867981 0,0765252000 0,112566201 1,06493625 641 0,065708307 0,057058148 0,027090180 0,71223000 0,096792831 0,1062757882 643 0,065708307 0,0525663967 0,0246939872 0,0668215000 0,0682159141 0,146252486 0,096972831 0,1021719957 645 0,0687312030 0,023875505 0,067310600 0,0727517233 0,1021719957 645 0,068238846	0,0441389000	0,0696124916
633 0.0471933990 0.1048032539 0.0334009792 0.0875928000 0.1527265144 0.0755660767 634 0.0489904004 0.1034803974 0.032855603 0.08375894000 0.1573261174 0.0835635273 635 0.0527550915 0.0943975607 0.0312987423 0.0817691044 0.09022819375 637 0.0548971473 0.0871458818 0.0811870000 0.1573156944 0.0902281975 638 0.0571458818 0.0811708838 0.0228692372 0.0776102000 0.1460622488 0.0992519904 649 0.0616771379 0.06799914253 0.022853027 0.077598000 0.1125266210 0.1048908257 641 0.0657881079 0.057083143 0.0272909108 0.071223000 0.098792831 0.1065782428 643 0.065788104 0.062580977 0.0264939720 0.0682290890 0.102525786 0.064797000 0.062226681 0.091579117532 0.1021575752 644 0.0669590054 0.042580717 0.0221075786 0.064797000 0.062250681 0.0915791189 645 0	0,0432714000	0,0730906640
634 0,048990400 0,1034863974 0,03226635600 0,053385000 0,1573261174 0,0803462047 635 0,0520756951 0,0993555635 0,0327556953 0,082187000 0,1531592341 0,0853655273 636 0,0571458818 0,081775007 0,0305555287 0,0805663000 0,133481898 0,0992519904 639 0,0594441472 0,0742761870 0,0229887372 0,774758000 0,125005355 0,1031882030 640 0,0616771379 0,067934423 0,0225523082 0,0747598000 0,125005355 0,1062597899 641 0,0657763149 0,0227090180 0,0712230000 0,096792831 0,106578248 643 0,0677812043 0,0226097872 0,066802000 0,088219412 0,1048256763 644 0,068578550 0,048525049 0,0223075787 0,064327000 0,0682250985 0,0973106934 645 0,0645283967 0,0223075783 0,066147000 0,060226081 0,091510114 647 0,064065729 0,035367573 0,061131000 0,0523800449 0,049970710 </td <td>0,0423681000</td> <td>0,0767755372</td>	0,0423681000	0,0767755372
635 0.0508206959 0.093355863 0.0320756953 0.0837894000 0.1581592341 0.0853655273 636 0.052755015 0.0843975607 0.0312897423 0.0805663000 0.1573156944 0.095022758 637 0.0548971473 0.080170888 0.02298692372 0.0765125000 0.137102926 0.101882030 640 0.0616771379 0.067914253 0.0228552302 0.0747598000 0.1250035365 0.1052597899 641 0.0637851194 0.0621741191 0.027838077 0.0729398200 0.1125266201 0.1064936525 642 0.0657083079 0.0570583143 0.0270990188 0.0712230000 0.098792831 0.1063258733 644 0.0685788650 0.0486255049 0.0225057876 0.0664327000 0.060226061 0.0917119957 645 0.0682839846 0.0223872753 0.0661427000 0.06026610 0.091710710 644 0.06605729 0.0385340033 0.022377578 0.066172000 0.0423466135 645 0.06605647802 0.0367629071 0.0223775794 0.06570	0,0414390000	0,0806047938
636 0.0527550915 0.0943975607 0.0312987423 0.085263000 0.1573156944 0.0902824737 637 0.0548971473 0.0873432979 0.0305555287 0.0805663000 0.1533481898 0.099251904 638 0.057145818 0.061717137 0.0679914233 0.0228297891 0.075225500 0.1371029268 0.1031882030 641 0.0616771379 0.067914233 0.0227693077 0.072395800 0.1125266201 0.1046493625 642 0.0657083079 0.0570583143 0.027090108 0.0712230000 0.082219412 0.1048256763 644 0.0667781504 0.0455669717 0.022527876 0.0666027000 0.0682250985 0.0973100934 645 0.0668419973 0.0245279867 0.064432700 0.0662250985 0.0973100934 644 0.0669590054 0.0448635107 0.0223776599 0.066072000 0.0437347031 0.0774706445 649 0.06567802 0.03854130916 0.0223777699 0.0600792000 0.0434790118 0.068638886 650 0.055251480 0.03354	0,0405955000	0,0847048530
537 0.0548971473 0.0879432979 0.0305555287 0.0805663000 0.1533481898 0.0992519904 638 0.057145818 0.0811708838 0.0298982372 0.0766102000 0.1460622488 0.0992519904 639 0.0554441472 0.0742761870 0.029259781 0.0755225000 0.1371029268 0.1031882030 641 0.0667751194 0.06729114253 0.0287838077 0.0779858000 0.1152566201 0.104803625 642 0.065783079 0.0570583143 0.027093807 0.068020500 0.088218412 0.1048256753 644 0.066578550 0.04455869717 0.0252072867 0.0664736600 0.0660250661 0.091591174 647 0.066857802 0.0335340053 0.023775987 0.0667766000 0.060260681 0.091591174 644 0.0660587020 0.03354130916 0.022377598 0.0660792000 0.044407350 0.091591174 644 0.06605872802 0.033631107 0.022377599 0.0660792000 0.033458410 0.0623461055 651 0.0565281480 0.03345	0,0397901000	0,0886378892
538 0.0571458818 0.0811708838 0.0298982372 0.0765102000 0.1466622488 0.0992519904 639 0.0594441472 0.0729161870 0.0222697981 0.0755225000 0.1371029268 0.105297889 641 0.0616771379 0.067914253 0.0278238077 0.0729858000 0.1125266201 0.1065490362 642 0.0657083079 0.0570683143 0.027909108 0.0712320000 0.0969792831 0.106578248 643 0.067714194 0.0526639697 0.0264939872 0.0664327000 0.068275085 0.0973106934 644 0.068283846 0.0428689517 0.025207876 0.06644327000 0.060266681 0.0915691174 647 0.0668283846 0.0428893517 0.022377573 0.061562000 0.0473747031 0.0774704645 648 0.066057290 0.03385340053 0.022375794 0.056702100 0.0338534411 0.062846888 650 0.0517003729 0.03367520971 0.022757698 0.0660729000 0.0347900118 0.0551911826 651 0.0551701379 0.033	0,0390545000	0,0922332427
639 0,0594441472 0,0742761870 0,0292697981 0,0755225000 0,1371029268 0,1031882030 640 0,0616771379 0,0679914253 0,0285523082 0,0747598000 0,1125566201 0,1064903625 641 0,0637651194 0,0621741191 0,027893077 0,0729858000 0,01125566201 0,1064903625 642 0,0657083079 0,057058143 0,027999108 0,071223000 0,0996792831 0,105782248 643 0,0682788550 0,025990254 0,066402000 0,068275985 0,1017119957 645 0,068239846 0,0446255049 0,022377505 0,0664327000 0,060260681 0,0915691174 647 0,0669990054 0,0445038790 0,022377509 0,061562000 0,042407536 0,069863886 650 0,055647802 0,0367420971 0,0223775794 0,0560792000 0,0334513016 0,022375794 0,052990100 0,0334410 0,0623466105 651 0,0517030729 0,034031307 0,222375794 0,052906100 0,0217190791 0,03373265666 652 </td <td>0,0382253000</td> <td>0,0951544745</td>	0,0382253000	0,0951544745
640 0,0616771379 0,067914253 0,0285523082 0,0747598000 0,1250035365 0,1052597899 641 0,06578351194 0,0621741191 0,0278238077 0,0729858000 0,1125266201 0,064093625 642 0,0657083079 0,0526639697 0,0264939872 0,066020000 0,0882918412 0,1048256763 644 0,0685783650 0,0465255049 0,0252057876 0,0664327000 0,0682250885 0,0973106934 645 0,0689590054 0,0428893517 0,0252057876 0,0664327000 0,062250885 0,0973106934 644 0,0669590054 0,043583905 0,023170753 0,061562000 0,0473747031 0,0774706445 647 0,0660547802 0,0354130916 0,0222375794 0,0567021000 0,0338358441 0,0625111880 650 0,057003729 0,034031307 0,021631884 0,057020900 0,0347900118 0,055191886 651 0,047049158 0,032639391 0,022999171 0,0556391000 0,0212790791 0,0373265606 652 0,047049158 0,02362	0,0373638000	0,0976748408
641 0,0637851194 0,0621741191 0,02728238077 0,0729858000 0,112526201 0,064903625 642 0,0657083079 0,0570583143 0,0220909108 0,0712230000 0,0996792831 0,1065782248 643 0,062821043 0,0526639697 0,0229092281 0,068025000 0,071517532 0,1021719957 645 0,068239846 0,042889317 0,0225057876 0,0664327000 0,068225084 0,0915691174 647 0,0665950054 0,0405083790 0,022377573 0,0615662000 0,04284937710 648 0,0605647802 0,0367629071 0,022375794 0,060792000 0,0424407536 0,06885886 650 0,0517003729 0,0340313107 0,0226375794 0,0587021000 0,0383538441 0,062366105 651 0,0517003729 0,0340313107 0,0226375184 0,05290000 0,0347900118 0,052806100 652 0,047049118 0,03263391 0,022903542 0,032736114 0,0229486354 653 0,0344686956 0,0297492505 0,0151010000 0,0227376114	0,0366763000	0,0984049736
642 0.0657083079 0.0570583143 0.0270909108 0.0712230000 0.0996792831 0.1065782248 643 0.0672812043 0.0526639697 0.0264939872 0.06802000 0.082318412 0.1042256763 644 0.0682738350 0.048525049 0.0259092281 0.068025000 0.0775172532 0.1021719957 645 0.06882839846 0.0428893517 0.0245279867 0.0644327000 0.062260881 0.0915691174 647 0.0669590054 0.0405038790 0.0238775025 0.061562000 0.047374706445 648 0.06605647802 0.0367629071 0.022377594 0.0587021000 0.0383538441 0.062366615 651 0.0517003729 0.0340313107 0.0216319884 0.057202900 0.0347900118 0.0551911826 652 0.0470049158 0.0326373319 0.0209894717 0.055301000 0.02316762111 0.042888388 653 0.0342854460 0.0306236302 0.0199457215 0.052061000 0.02316767476 655 0.0312374214 0.022894488790 0.051373000 <t< td=""><td>0,0359393000</td><td>0,0981204249</td></t<>	0,0359393000	0,0981204249
643 0,0672812043 0,0526639697 0,0264939872 0,0696062000 0,0882918412 0,1048256763 644 0,0685783650 0,0486255049 0,0259092281 0,0680205000 0,0775172532 0,1021719957 645 0,0682839846 0,048893517 0,0252057876 0,0664327000 0,068225985 0,0973106934 647 0,0669509054 0,0405038790 0,0238725025 0,061119000 0,0528300449 0,0849970710 648 0,06605647802 0,036729071 0,022776998 0,060792000 0,0424407536 0,0696638886 650 0,0562581480 0,0326379319 0,02022375794 0,057029000 0,0347900118 0,0551911826 652 0,0470049158 0,0326379319 0,020894717 0,0556391000 0,032776959 0,0347900118 0,0425868193 653 0,0425336243 0,0316012944 0,0206493188 0,0543019000 0,022776595 0,0334784746 655 0,0344686956 0,0297492505 0,014144313 0,514010000 0,0227376114 0,026548783 657 0,0	0,0351468000	0,0964723886
644 0,0685783650 0,0486255049 0,025902281 0,0680205000 0,0775172532 0,1021719957 645 0,0682419973 0,0455869717 0,0252057876 0,064327000 0,0682250985 0,0973106934 646 0,0669509054 0,0405038790 0,0238725025 0,0631119000 0,0528300449 0,0849970710 648 0,0640085729 0,0385340053 0,023170753 0,0615662000 0,0473747031 0,0774706445 649 0,0605647802 0,035729071 0,0227766998 0,0580792000 0,042407536 0,0698638886 650 0,0552581480 0,032673319 0,0220375794 0,0587021000 0,03343538441 0,0623466105 651 0,047049158 0,332673319 0,0209894717 0,055391000 0,0327790791 0,0373265666 654 0,0382854460 0,0306236302 0,019457215 0,0529061000 0,0271790791 0,0373265666 655 0,0344688956 0,0297492505 0,014144313 0,0514010000 0,0223736114 0,0226642842 656 0,0312374214 0,	0,0342746000	0,0931438534
645 0,0688419973 0,0455869717 0,0252057876 0,0664327000 0,0682250985 0,0973106934 646 0,0682839846 0,0428893517 0,0245279867 0,0647966000 0,0600260681 0,0915691174 647 0,0669590054 0,0405038790 0,0238725025 0,0631119000 0,0528300449 0,0849970710 648 0,0605647802 0,0357629071 0,0227756988 0,060792000 0,0424407536 0,0698638886 650 0,0552831480 0,0357130916 0,0222375794 0,0587021000 0,038538441 0,0623466105 651 0,0617003729 0,0340313107 0,0216319884 0,05720900 0,031672111 0,048288388 653 0,0470049158 0,0326379319 0,0209894717 0,0556391000 0,02271790791 0,03726566 655 0,0312574214 0,0208255 0,019457215 0,0529061000 0,02271790791 0,03726566 657 0,0228089376 0,028189748 0,018507507 0,0489009000 0,022376144 0,022650428 658 0,01220192914 0,02665	0,0334326000	0,0889942900
646 0,0682839846 0,042889517 0,0245279867 0,0647966000 0,0600260681 0,0915691174 647 0,0669590054 0,0405038790 0,0238725025 0,0631119000 0,0528300449 0,0849970710 648 0,060085729 0,0385340053 0,023170753 0,0615662000 0,0473747031 0,0774706445 649 0,0605647802 0,0367629071 0,0227766998 0,0600792000 0,0424407536 0,0698638886 650 0,0517003729 0,0340313107 0,0216319884 0,0572029000 0,0347900118 0,0551911826 652 0,0470049158 0,0326379319 0,020984717 0,055391000 0,02295543 0,0425868193 653 0,0342686956 0,0316012944 0,0204693188 0,0543019000 0,02271790791 0,037265606 655 0,0312374214 0,0289548932 0,0189507090 0,0223781644 0,022650428 656 0,0312374214 0,0289548932 0,0179257864 0,0476836000 0,012143318 0,0222650428 657 0,02239410878 0,026524642 0	0,0328993000	0,0828762854
647 0,0669590054 0,0405038790 0,0238725025 0,0631119000 0,0528300449 0,0849970710 648 0,0640085729 0,0385340053 0,023170753 0,0615662000 0,0473747031 0,0774706445 649 0,0605647802 0,0367629071 0,0227766998 0,0600792000 0,0424407536 0,0698638886 650 0,0552581480 0,0354130916 0,0222375794 0,0587021000 0,0347900118 0,0623466105 651 0,0517003729 0,0340313107 0,0216319884 0,0572029000 0,0315672111 0,042888383 653 0,0425336243 0,0316012944 0,0204693188 0,0543019000 0,022963543 0,0425868193 654 0,038285460 0,0306236302 0,0194144313 0,051101000 0,023781604 0,0209048628 657 0,0283089376 0,0281897748 0,0185075087 0,0489009000 0,021790791 0,0225660428 659 0,0250508487 0,027666256 0,0179257864 0,0465040000 0,019927976 0,021247323 660 0,0220192914 0,	0,0321646000	0,0765770711
648 0,0640085729 0,0385340053 0,0233170753 0,0615662000 0,0473747031 0,0774706445 649 0,0605647802 0,0367629071 0,0227766998 0,0600792000 0,0424407536 0,0698638886 650 0,0552581480 0,0354130916 0,0222375794 0,0587021000 0,033538441 0,0623466105 651 0,0517003729 0,0340313107 0,0216319884 0,0572029000 0,0347900118 0,0551911826 652 0,0470049158 0,0326379319 0,0209894717 0,0556391000 0,021790791 0,0373265606 654 0,038285460 0,0306236302 0,019457215 0,0529061000 0,0271790791 0,0373265606 655 0,0344686956 0,0297492505 0,0189526029 0,051073000 0,0237831604 0,0209048628 657 0,0283089376 0,028189774 0,0185075087 0,0489009000 0,021243314 0,02266524642 0,0174183709 0,045375400 0,021043918 0,0226560428 659 0,0239410878 0,0266524642 0,0174183709 0,0465040000 0,01919279	0,0312407000	0,0700974665
6490,06056478020,03676290710,02277669980,06007920000,04244075360,06986388866500,05625814800,03541309160,02223757940,05870210000,03835384410,06234661056510,05170037290,03403131070,02163198840,05720290000,03479001180,05519118266520,04700491580,03263793190,02098947170,05563910000,03156721110,0482883886530,04253362430,03160129440,02046931880,05430190000,022929635430,04258681936540,03828544600,03062363020,01994572150,05290610000,02717907910,03732656066550,03123742140,02895489320,01895260290,05010730000,022378116040,0290486286570,02830893760,02818977480,01850750870,044890090000,02104039180,02265604286590,02201929140,0260514420,017192578640,04768360000,01992797060,02012473236600,02201929140,02607314300,0170029560,04537540000,0189190440,01619361116620,01905304190,02472653150,0165164910,04272990000,01733629960,01464819376630,0179029740,02410126630,01560076140,0440440000,018936990,01338556136640,01683422060,0223166750,0145634000,0165782760,0120447696650,0153034400,0223166750,01430640630,03824430000,0142232910,0066469215666 <td>0,0306233000</td> <td>0,0641738653</td>	0,0306233000	0,0641738653
6500,05625814800,03341309160,02223757940,05870210000,03835384410,06234661056510,05170037290,03403131070,02163198840,05720290000,03479001180,05519118266520,04700491580,03263793190,02098947170,05563910000,03156721110,0482883836530,04253362430,03160129440,02046931880,05430190000,02292635430,04258681936540,03828544600,03062363020,01994572150,05290610000,02171907910,03732656666550,03123742140,02895489320,01895260290,05010730000,02237361140,0290486286570,02830893760,02818977480,01850750870,044890090000,02237361140,02265604286590,02201929140,02605314300,01792578640,04768360000,01992797060,02012473236600,02201929140,02607314300,0170295960,04537540000,01819190440,01619361116620,01905304190,02472653150,01650076140,0440400000,01819190440,01619361136630,0179029740,0243166750,014501721430,0345840000,01462827870,01108771606640,01683422060,0235019030,0153984740,04057630000,0142827870,01108771606650,0152953370,02243166750,01430640630,03824430000,0142827870,01108771606660,0153334400,02234668560,01321144740,03522970000,01317708710,0083823577<	0,0299965000	0,0587122007
6510,05170037290,03403131070,02163198840,05720290000,03479001180,05519118266520,04700491580,03263793190,02098947170,05563910000,03156721110,04828838386530,04253362430,03160129440,02046931880,05430190000,022929635430,04258681936540,03828544600,03062363020,01994572150,05290610000,02717907910,03732656066550,03123742140,02895489320,01895260290,05010730000,022378116040,0290486286570,02830893760,02818977480,01850750870,04890090000,02237361140,0225604286590,02201929140,02665246420,01792578640,04768360000,01992797060,02012473236600,02201929140,02607314300,0170029560,04537540000,01992797060,0212473236610,02046448190,02472653150,01605164910,04272990000,0173629960,01464819376630,0179029740,024712653150,01605164910,0427290000,01582760,01220447696650,0158334400,02230109030,01513984740,04057630000,01482164740,0103751806660,01503334400,02233010930,013711430,03945840000,01422229910,00886673056680,0136041690,02233967800,0135716680,0322440000,01362940950,00886673056690,0136044600,0288065860,0132114740,03522970000,01317708710,0088823577 </td <td>0,0292147000</td> <td>0,0543859558</td>	0,0292147000	0,0543859558
6520,04700491580,03263793190,02098947170,05563910000,03156721110,04828838386530,04253362430,03160129440,02046931880,05430190000,02929635430,04258681936540,03828544600,03062363020,01994572150,05290610000,02717907910,03732656066550,03446869560,02974925050,01941443130,05140100000,02532676590,03287647466560,03123742140,02895489320,01895260290,05010730000,02237861140,0290486286570,0280893760,02818977480,01850750870,04890090000,02237361140,02265604286590,0220929140,02605246420,017912578640,04768360000,01992797060,02012473236600,02201929140,02607314300,01700295960,04537540000,01908680320,01791430466610,02046448190,0224311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01513984740,04057630000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,0142232910,00964692156650,0150334400,0212243166750,01430640630,03824430000,0142232910,00964692156660,01303041690,02133967800,01357166680,03212400000,01137708710,0083	0,0285649000	0,0507486851
6530,04253362430,03160129440,02046931880,05430190000,02929635430,04258681936540,03828544600,03062363020,01994572150,05290610000,02717907910,03732656066550,03446869560,02974925050,01941443130,05140100000,02532676590,03287647466560,03123742140,02895489320,01895260290,05010730000,02237361140,0290486286570,0280893760,02818977480,01850750870,04890090000,02237361140,0226544447726580,02605084870,02736662560,01792578640,04768360000,01992797060,02012473236600,02201929140,02607314300,01700295960,044537540000,01992797060,02012473236610,02046448190,02540311980,01652996130,0440400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,0156076140,04057630000,01669336990,0138556136640,01683422060,022350109030,01133984740,04057630000,01482164740,01034598416670,01329260800,02139267800,013812164750,03824430000,01482164740,01034598416670,0134040600,02283065860,01321144740,03522970000,01317708710,0088235776700,01248776510,02047690810,01285637390,03221470000,01231015020,00	0,0280032000	0,0475584964
6540,03828544600,03062363020,01994572150,05290610000,02717907910,03732656066550,03446869560,02974925050,01941443130,0514010000,02532676590,03287647466560,03123742140,02895489320,01895260290,05010730000,02378316040,02900486286570,02830893760,02818977480,01850750870,04890090000,02237361140,02544447726580,02605084870,02736662560,01792578640,04768360000,02104039180,02265604286590,02394108780,02665246420,01741837090,04650400000,01992797060,02012473236600,02201929140,02607314300,0170029560,04537540000,01908680320,01791430466610,02046448190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,0169336990,01338556136640,01683422060,0232019030,01513984740,04057630000,0165782760,01220447696650,01582953370,02292081510,01467121430,03945840000,0142232910,00964692156680,01363041690,02133967800,0135716680,03712250000,0142232910,00964692156680,01363041690,02133967800,0135716680,03621440000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01231015020,007340732	0,0273025000	0,0456065069
6550,03446869560,02974925050,01941443130,0514010000,02532676590,03287647466560,03123742140,02895489320,01895260290,05010730000,02378316040,02900486286570,02830893760,02818977480,01850750870,0489090000,02237361140,02544447726580,02605084870,02736662560,01792578640,04768360000,02104039180,02265604286590,02291929140,02605314300,0170029560,04550400000,01992797060,02012473236600,02201929140,02607314300,0170029560,04537540000,01908680320,01791430466610,02046448190,02540311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,0165782760,01220447696650,0153334400,02243166750,01430640630,03824430000,0142232910,00964692156680,01363041690,02133967800,0135716680,03621440000,01317708710,00838235776700,01248776510,0204769810,01285637390,03421000000,01231015020,00734073926710,01191636080,01987064290,01241160700,03315490000,01231015020,007340739	0,0266137000	0,0439533811
6560,03123742140,02895489320,01895260290,05010730000,02378316040,02900486286570,02830893760,02818977480,01850750870,04890090000,02237361140,025444477726580,02605084870,02736662560,01792578640,04768360000,02104039180,02265604286590,0229129140,02665246420,01741837090,04650400000,01992797060,02012473236600,02201929140,02607314300,0170029560,04537540000,01908680320,01791430466610,02046448190,02540311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,0165782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01482164740,01034598416670,01429260800,02132241230,01394635460,03712250000,01422329910,00964692156680,01363041690,0213967800,0135716680,03621440000,01362940950,00896673056690,01304040600,02088065860,0132114740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421400000,01231015020,00734	0,0259558000	0,0428247940
6570,02830893760,02818977480,01850750870,04890090000,02237361140,02544447726580,02605084870,02736662560,01792578640,04768360000,02104039180,02265604286590,02394108780,02665246420,01741837090,04650400000,01992797060,02012473236600,02201929140,02607314300,01700295960,04537540000,01908680320,01791430466610,02046448190,02540311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,0160936990,01220447696640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,0142827870,01108771606660,01503334400,022133967800,01357166680,03712250000,01422329910,00964692156680,0136041690,02133967800,01325144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421400000,01231015020,00734073926710,01191636080,01987064290,01241160700,03315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01148892450,00	0,0253764000	0,0422394909
6580,02605084870,02736662560,01792578640,04768360000,02104039180,0226504286590,02394108780,02665246420,01741837090,04650400000,01992797060,02012473236600,02201929140,02607314300,01700295960,04537540000,01908680320,01791430466610,02046448190,02540311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,01609366990,01338556136640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01542827870,0108771606660,01503334400,02243166750,01394635460,03712250000,01482164740,01034598416670,01363041690,02133967800,01357166680,03621440000,01362940950,00896673056690,01304040600,02088065860,01321144740,0352297000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01221015020,00734073926710,01191636080,01987064290,01241160700,03315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01148892450,006	0,0248225000	0,0418967724
6590,02394108780,02665246420,01741837090,04650400000,01992797060,02012473236600,02201929140,02607314300,01700295960,04537540000,01908680320,01791430466610,02046448190,02540311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01542827870,01108771606660,0150334400,02243166750,01430640630,03824430000,01482164740,01034598416670,01363041690,02133967800,01357166680,03712250000,0132292910,00964692156680,0136040600,02088065860,01321144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01221015020,00734073926710,01191636080,01987064290,01241160700,0315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01148892450,00690028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065	0,0241843000	0,0418347380
6600,02201929140,02607314300,01700295960,04537540000,01908680320,01791430466610,02046448190,02540311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01542827870,01108771606660,01503334400,02243166750,01430640630,03824430000,01482164740,0134598416670,01429260800,02192241230,01394635460,03712250000,01422329910,00964692156680,01363041690,02088065860,01321144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01279284170,00784872036710,01191636080,01987064290,01241160700,03315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01148892450,00690028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065547863	0,0236049000	0,0419044115
6610,02046448190,02540311980,01652996130,04404400000,01819190440,01619361116620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01542827870,01108771606660,01503334400,02243166750,01430640630,03824430000,01482164740,01034598416670,01429260800,02192241230,01394635460,03712250000,01422329910,00964692156680,01363041690,02088065860,01321144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01279284170,00784872036710,01191636080,01987064290,01241160700,0315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01148892450,00690028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065547863	0,0230994000	0,0421333783
6620,01905304190,02472653150,01605164910,04272990000,01733629960,01464819376630,01790299740,02410126630,01560076140,04166930000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01542827870,01108771606660,01503334400,02243166750,01430640630,03824430000,01482164740,01034598416670,01429260800,02192241230,01394635460,03712250000,01422329910,00964692156680,01363041690,02133967800,01357166680,03621440000,01362940950,00896673056690,01204765150,02047690810,01285637390,03421000000,01279284170,00784872036710,01191636080,01987064290,01241160700,03315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01148892450,00690028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065547863	0,0224741000	0,0423664179
6630,01790299740,02410126630,01560076140,04166930000,01669336990,01338556136640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01542827870,01108771606660,01503334400,02243166750,01430640630,03824430000,01482164740,01034598416670,01429260800,02192241230,01394635460,03712250000,0142232910,00964692156680,01363041690,02133967800,01357166680,03621440000,01362940950,00896673056690,01304040600,02088065860,01321144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01272284170,0784872036710,01191636080,01987064290,01241160700,03315490000,01231015020,0069028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065547863	0,0218594000	0,0425869031
6640,01683422060,02350109030,01513984740,04057630000,01605782760,01220447696650,01582953370,02292081510,01467121430,03945840000,01542827870,01108771606660,01503334400,02243166750,01430640630,03824430000,01482164740,01034598416670,01429260800,02192241230,01394635460,03712250000,01422329910,00964692156680,01363041690,02133967800,01357166680,03621440000,01362940950,00896673056690,01304040600,02088065860,01321144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01279284170,00784872036710,01191636080,01987064290,01201454310,03221470000,01231015020,00734073926720,01139782380,01932820240,01201454310,0342530000,01141665090,0069028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065547863	0,0213964000	0,0427470360
6650,01582953370,02292081510,01467121430,03945840000,01542827870,01108771606660,01503334400,02243166750,01430640630,03824430000,01482164740,01034598416670,01429260800,02192241230,01394635460,03712250000,01422329910,00964692156680,01363041690,02133967800,01357166680,03621440000,01362940950,00896673056690,01304040600,02088065860,01321144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01279284170,00784872036710,01191636080,01987064290,0121160700,03315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01148892450,00690028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065547863	0,0208847000	0,0427434742
6660,01503334400,02243166750,01430640630,03824430000,01482164740,01034598416670,01429260800,02192241230,01394635460,03712250000,01422329910,00964692156680,01363041690,02133967800,01357166680,03621440000,01362940950,00896673056690,01304040600,02088065860,01321144740,03522970000,01317708710,00838235776700,01248776510,02047690810,01285637390,03421000000,01279284170,00784872036710,01191636080,01987064290,01241160700,03315490000,01231015020,00734073926720,01139782380,01932820240,01201454310,03221470000,01184892450,00690028256730,01095297410,01887512180,01168427810,03143530000,01141665090,0065547863	0,0203350000	0,0426115407
667 0,0142926080 0,0219224123 0,0139463546 0,0371225000 0,0142232991 0,0096469215 668 0,0136304169 0,0213396780 0,0135716668 0,0362144000 0,0136294095 0,0089667305 669 0,0130404060 0,0208806586 0,0132114474 0,0352297000 0,0131770871 0,0083823577 670 0,0124877651 0,0204769081 0,0128563739 0,0342100000 0,0127928417 0,0078487203 671 0,0119163608 0,0198706429 0,0124116070 0,031549000 0,0123101502 0,0073407392 672 0,0113978238 0,0193282024 0,0120145431 0,0322147000 0,0114889245 0,0069002825 673 0,0109529741 0,0188751218 0,0116842781 0,0314353000 0,0114166509 0,0065547863	0,0198530000	0,0417419739
668 0,0136304169 0,0213396780 0,0135716668 0,0362144000 0,0136294095 0,0089667305 669 0,0130404060 0,0208806586 0,0132114474 0,0352297000 0,0131770871 0,0089667305 670 0,0124877651 0,0204769081 0,0128563739 0,0342100000 0,0127928417 0,0078487203 671 0,0119163608 0,0198706429 0,0124116070 0,0331549000 0,0123101502 0,0073407392 672 0,0113978238 0,0193282024 0,0120145431 0,0322147000 0,0114889245 0,0069002825 673 0,0109529741 0,0188751218 0,0116842781 0,0314353000 0,0114166509 0,0065547863	0,0193989000	0,0405533857
669 0,0130404060 0,0208806586 0,0132114474 0,0352297000 0,0131770871 0,0083823577 670 0,0124877651 0,0204769081 0,0128563739 0,0342100000 0,0127928417 0,0078487203 671 0,0119163608 0,0198706429 0,0124116070 0,0331549000 0,0123101502 0,0073407392 672 0,0113978238 0,0193282024 0,0120145431 0,0322147000 0,01148489245 0,0069002825 673 0,0109529741 0,0188751218 0,0116842781 0,0314353000 0,0114166509 0,0065547863	0,0189892000	0,0387304262
670 0,0124877651 0,0204769081 0,0128563739 0,0342100000 0,0127928417 0,0078487203 671 0,0119163608 0,0198706429 0,0124116070 0,0331549000 0,0123101502 0,0073407392 672 0,0113978238 0,0193282024 0,0120145431 0,0322147000 0,0118489245 0,0069002825 673 0,0109529741 0,0188751218 0,0116842781 0,0314353000 0,0114166509 0,0065547863	0,0184304000	0,0364469552
671 0,0119163608 0,0198706429 0,0124116070 0,0331549000 0,0123101502 0,0073407392 672 0,0113978238 0,0193282024 0,0120145431 0,0322147000 0,0118489245 0,0069002825 673 0,0109529741 0,0188751218 0,0116842781 0,0314353000 0,0114166509 0,0065547863	0,0178097000	0,0339156258
672 0,0113978238 0,0193282024 0,0120145431 0,0322147000 0,0118489245 0,0069002825 673 0,0109529741 0,0188751218 0,0116842781 0,0314353000 0,0114166509 0,0065547863	0,0174304000	0,0306606672
673 0,0109529741 0,0188751218 0,0116842781 0,0314353000 0,0114166509 0,0065547863	0,0170009000	0,0274742331
	0,0164978000	0,0243730284
674 0,0105920200 0,0184949367 0,0113369596 0,0305922000 0,0110096901 0,0062530986	0,0160947000	0,0216218491
675 0,0102440413 0,0181138031 0,0109913393 0,0297307000 0,0106242113 0,0059715302	0,0157184000	0,0190394708
676 0,0098431642 0,0176207881 0,0106871231 0,0288804000 0,0103245588 0,0057377153	0,0153418000	0,0168848095

-								
677	0,0095151659	0,0171435545	0,0103565168	0,0280694000	0,0100093261	0,0054974691	0,0149480000	0,0149537671
678	0,0092530445	0,0166811301	0,0100027045	0,0272949000	0,0096805632	0,0052518295	0,0145392000	0,0132268846
679	0,0089471086	0,0163488778	0,0097786593	0,0265907000	0,0093588918	0,0050680256	0,0141917000	0,0118336074
680	0,0086341782	0,0160145162	0,0095187251	0,0258376000	0,0090576321	0,0048959761	0,0138468000	0,0106011400
681	0,0083132813	0,0156309860	0,0091209531	0,0249258000	0,0088061197	0,0047351086	0,0134867000	0,0096911581
682	0,0080722081	0,0152211666	0,0088424950	0,0241791000	0,0085321826	0,0045181956	0,0131106000	0,0088399953
683	0,0078746609	0,0148006081	0,0086296063	0,0235263000	0,0082485691	0,0042742416	0,0127274000	0,0080292863
684	0,0076254058	0,0144847535	0,0083844792	0,0229282000	0,0080437482	0,0041743525	0,0123484000	0,0074964869
685	0,0073751656	0,0141521779	0,0081311617	0,0222968000	0,0078188425	0,0040655365	0,0120102000	0,0069678100
686	0,0071230603	0,0137935814	0,0078649785	0,0216138000	0,0075629633	0,0039429387	0,0117340000	0,0064447214
687	0,0069184333	0,0134039990	0,0076565951	0,0209312000	0,0073522089	0,0038264066	0,0113919000	0,0060359990
688	0,0067361296	0,0130175720	0,0074540702	0,0202584000	0,0071467904	0,0037118452	0,0110492000	0,0056658000
689	0,0065945212	0,0126899253	0,0071752913	0,0196167000	0,0068845238	0,0035936787	0,0108077000	0,0053063728
690	0,0064081924	0,0123800211	0,0069359444	0,0191041000	0,0066616002	0,0034718565	0,0105535000	0,0050167839
691	0,0061802397	0,0120851612	0,0067320098	0,0187081000	0,0064740404	0,0033463223	0,0102865000	0,0047905972
692	0,0059854413	0,0117007583	0,0064881843	0,0180343000	0,0062714862	0,0032224945	0,0099705800	0,0045451598
693	0,0058214870	0,0113482058	0,0062617141	0,0174140000	0,0060892271	0,0031124880	0,0096691400	0,0043136571
694	0,0057289079	0,0111073945	0,0060931279	0,0170217000	0,0059651304	0,0030384106	0,0094203000	0,0041243187
695	0,0055579217	0,0108757175	0,0059240965	0,0164989000	0,0058176137	0,0029659069	0,0091600800	0,0039565148
696	0,0053463225	0,0106473927	0,0057551536	0,0159089000	0,0056564009	0,0028936693	0,0088935000	0,0038005626
697	0,0052000971	0,0103433831	0,0055898936	0,0154298000	0,0054478471	0,0027943579	0,0086053700	0,0036422784
698	0,0050503339	0,0100376973	0,0054204094	0,0150192000	0,0052577086	0,0027085890	0,0083552800	0,0034883834
699	0,0048960352	0,0097311534	0,0052454533	0,0147144000	0,0050965112	0,0026438156	0,0081641900	0,0033419624
700	0,0047834878	0,0094635576	0,0050814536	0,0142481000	0,0049493951	0,0025827302	0,0079385900	0,0031982811
701	0,0046735763	0,0092162984	0,0049211201	0,0137552000	0,0048023689	0,0025210679	0,0077023600	0,0030625493
702	0,0045010263	0,0090308392	0,0047664659	0,0134219000	0,0046314095	0,0024502436	0,0074716700	0,0029753108
703	0,0043783767	0,0087858269	0,0046159453	0,0130476000	0,0044887556	0,0023688702	0,0072409500	0,0028708887
704	0,0043049804	0,0084826426	0,0044697100	0,0126336000	0,0043741436	0,0022772420	0,0070105400	0,0027497191
705	0,0041727096	0,0082602220	0,0043490920	0,0122216000	0,0042666256	0,0022307168	0,0068350100	0,0026850700
706	0,0040470525	0,0080424599	0,0042220320	0,0118149000	0,0041433419	0,0021906207	0,0066660900	0,0026193222
707	0,0039654340	0,0077961908	0,0040597968	0,0114121000	0,0039645460	0,0021486802	0,0064879100	0,0025224772
708	0,0038554161	0,0075838082	0,0039117388	0,0110517000	0,0038552573	0,0020817573	0,0062848700	0,0024380197
709	0,0037277127	0,0073923663	0,0037723879	0,0107175000	0,0037890726	0,0019992864	0,0060662800	0,0023612031
710	0,0035915763	0,0071705772	0,0036625749	0,0103963000	0,0036766632	0,0019774229	0,0059372200	0,0022890779
711	0,0034654806	0,0069546731	0,0035537088	0,0100544000	0,0035633620	0,0019452811	0,0057982400	0,0022177786
712	0,0033560933	0,0067488047	0,0034460003	0,0096772300	0,0034489809	0,0018953499	0,0056417100	0,0021477296
713	0,0032404327	0,0065722642	0,0033403730	0,0094560300	0,0033407122	0,0018201032	0,0054815100	0,0020712636
714	0,0031290069	0,0064061027	0,0032360208	0,0092701000	0,0032378316	0,0017457691	0,0053213900	0,0019961055
715	0,0030552293	0,0062392721	0,0031322393	0,0089727000	0,0031537266	0,0017295401	0,0051647200	0,0019409484
716	0,0029937688	0,0060516029	0,0030299056	0,0086720500	0,0030420948	0,0016968329	0,0050024300	0,0018813418
717	0,0029436638	0,0058428982	0,0029283252	0,0083664700	0,0029035252	0,0016481973	0,0048337800	0,0018171238
718	0,0028262429	0,0056966766	0,0028197557	0,0081205400	0,0028596873	0,0016182778	0,0046946600	0,0017567031
719	0,0027143007	0,0055360689	0,0027132088	0,0078856400	0,0028150081	0,0015721160	0,0045532800	0,0017024624
720	0,0026388241	0,0053190305	0,0026150054	0,0076629100	0,0027387009	0,0014774938	0,0043976900	0,0016637755
721	0,0025530254	0,0051472978	0,0025271470	0,0074159300	0,0026167893	0,0014265447	0,0042615400	0,0016063106
722	0,0024615557	0,0049996069	0,0024456401	0,0071590700	0,0024750999	0,0013995997	0,0041357700	0,0015407352
723	0,0023580327	0,0048505599	0,0023813134	0,0069526800	0,0024222209	0,0013982430	0,0040072600	0,0015117102
724	0,0022754943	0,0047162734	0,0023133687	0,0067501200	0,0023781961	0,0013736752	0,0039075700	0,0014724351
725	0,0022209373	0,0046012519	0,0022401563	0,0065516400	0,0023459174	0,0013175311	0,0038463600	0,0014190630
726	0,0021700183	0,0044865371	0,0021502840	0,0063117000	0,0022578416	0,0012923964	0,0037114200	0,0013907261

727	0,0021134323	0,0043657127	0,0020632293	0,0060812200	0,0021726445	0,0012687212	0,0035696200	0,0013632362
728	0,0020286194	0,0042173855	0,0020038181	0,0059297200	0,0021548108	0,0012196533	0,0034715200	0,0013137483
729	0,0019728102	0,0040838175	0,0019389915	0,0057371500	0,0020833636	0,0011789985	0,0033765700	0,0012793594
730	0,0019376859	0,0039606386	0,0018702042	0,0055149400	0,0019734500	0,0011443124	0,0032837500	0,0012557314
731	0,0018793810	0,0038365526	0,0018276523	0,0053292100	0,0019048695	0,0011066786	0,0031908700	0,0012125727
732	0,0018215925	0,0037292688	0,0017786037	0,0051644000	0,0018536520	0,0010782819	0,0031035200	0,0011724834
733	0,0017663412	0,0036519238	0,0017179578	0,0050356600	0,0018308869	0,0010660877	0,0030266400	0,0011389180
734	0,0017049127	0,0035424885	0,0016435496	0,0048275100	0,0017717297	0,0010445010	0,0029145000	0,0010954400
735	0,0016458072	0,0034254755	0,0015687565	0,0046140600	0,0017061707	0,0010197626	0,0028002100	0,0010520621
736	0,0016098156	0,0033222825	0,0015153101	0,0045035000	0,0016663870	0,0009940151	0,0027331100	0,0010258277
737	0,0015861493	0,0032305463	0,0014686790	0,0043947500	0,0016115968	0,0009697135	0,0026678100	0,0009931614
738	0,0015723683	0,0031482253	0,0014276208	0,0042878000	0,0015450542	0,0009466434	0,0026041800	0,0009554884
739	0,0015494297	0,0030303139	0,0013953551	0,0040907900	0,0014898052	0,0009154440	0,0025384100	0,0009413233
740	0,0015007586	0,0029178916	0,0013498322	0,0039252900	0,0014362543	0,0008931619	0,0024599700	0,0009245703
741	0,0014041974	0,0028186538	0,0012783586	0,0038268100	0,0013847228	0,0008883179	0,0023575600	0,0009007239
742	0,0013792448	0,0027704823	0,0012457043	0,0037341800	0,0013405201	0,0008825955	0,0022769800	0,0008751196
743	0,0013705210	0,0027301427	0,0012236860	0,0036353700	0,0013007451	0,0008743736	0,0022020100	0,0008482057
744	0,0013021253	0,0026226147	0,0011814137	0,0034822800	0,0012730596	0,0008517484	0,0021130400	0,0008167424
745	0,0012478122	0,0025323969	0,0011357800	0,0033583900	0,0012564711	0,0008244243	0,0020406400	0,0007847347
746	0,0012064770	0,0024582046	0,0010872152	0,0032614400	0,0012500492	0,0007929009	0,0019835200	0,0007523219
747	0,0011962211	0,0023755099	0,0010546625	0,0031561500	0,0012061662	0,0007642756	0,0019228500	0,0007333067
748	0,0011952549	0,0023059471	0,0010155758	0,0030743400	0,0011521848	0,0007302895	0,0018770400	0,0007139708
749	0,0012088386	0,0022671751	0,0009588106	0,0030462400	0,0010830698	0,0006838034	0,0018649300	0,0006912852
750	0,0011657908	0,0022037544	0,0009246031	0,0029564900	0,0010873386	0,0006774418	0,0018134400	0,0006734534
751	0,0011072208	0,0021298462	0,0009000175	0,0028420800	0,0011135256	0,0006864508	0,0017459600	0,0006581379
752	0,0011215543	0,0020566880	0,0008781040	0,0027407400	0,0010638500	0,0006838284	0,0016846200	0,0006478209
753	0,0010930191	0,0019976755	0,0008562041	0,0026092600	0,0010087302	0,0006667682	0,0016353700	0,0006377242
754	0,0010205737	0,0019532175	0,0008343387	0,0024470300	0,0009480858	0,0006349266	0,0015985600	0,0006278620
755	0,0009820564	0,0018945923	0,0008022040	0,0024303400	0,0009609717	0,0006336598	0,0015443300	0,0006003470
756	0,0009579042	0,0018370532	0,0007712697	0,0024045500	0,0009564663	0,0006188407	0,0014861200	0,0005779781
757	0,0009593969	0,0017866623	0,0007464672	0,0023139100	0,0008876138	0,0005617441	0,0014235000	0,0005735858
758	0,0009285032	0,0017235089	0,0007226034	0,0022209100	0,0008541442	0,0005308135	0,0013956500	0,0005544570
759	0,0008866309	0,0016600352	0,0006994521	0,0021324700	0,0008358704	0,0005147239	0,0013801600	0,0005293561
760	0,0008884434	0,0016593619	0,0006806179	0,0021093200	0,0008077650	0,0005301547	0,0013272900	0,0005139787
761	0,0008549036	0,0016315786	0,0006585542	0,0020321900	0,0007790558	0,0005504060	0,0012806900	0,0004982452
762	0,0007831764	0,0015746088	0,0006330302	0,0018967700	0,0007497263	0,0005759599	0,0012409200	0,0004821516
763	0,0007874014	0,0015030686	0,0006096977	0,0018677600	0,0007454109	0,0005358546	0,0012168200	0,0004829168
764	0,0007885192	0,0014378372	0,0005856369	0,0018466200	0,0007395300	0,0004976648	0,0011849600	0,0004815450
765	0,0007546964	0,0013955125	0,0005593138	0,0018091800	0,0007208303	0,0004883168	0,0011276900	0,0004686386
766	0,0007364743	0,0013640273	0,0005541099	0,0017456800	0,0007221193	0,0004669594	0,0010899400	0,0004518149
767	0,0007261547	0,0013381359	0,0005588538	0,0016684300	0,0007324019	0,0004397680	0,0010622500	0,0004336189
768	0,0007092670	0,0013159600	0,0005286261	0,0016136600	0,0006963876	0,0004344824	0,0010357000	0,0004399562
769	0,0006903222	0,0012771993	0,0005061935	0,0015703200	0,0006612263	0,0004309614	0,0009974580	0,0004356000
770	0,0006685631	0,0012147436	0,0004952479	0,0015439400	0,0006275977	0,0004300343	0,0009426020	0,0004157916
771	0,0006634340	0,0011853587	0,0004841893	0,0014770600	0,0005827459	0,0004094439	0,0009302740	0,0003918722
772	0,0006595738	0,0011637477	0,0004665521	0,0014071400	0,0005456336	0,0003922984	0,0009226640	0,0003723440
773	0,0006409394	0,0011383330	0,0004178941	0,0013752500	0,0005607109	0,0004168392	0,0008843450	0,0003795444
774	0,0006222040	0,0010877828	0,0004011167	0,0013480800	0,0005565870	0,0004245410	0,0008724950	0,0003708658
775	0,0006033841	0,0010176324	0,0004091698	0,0013246000	0,0005375052	0,0004191300	0,0008812650	0,0003498145
776	0,0005833964	0,0010322542	0,0004081096	0,0012744500	0,0005406021	0,0003834867	0,0008338460	0,0003464331

777	0,0005704499	0,0010302013	0,0003976273	0,0012299800	0,0005250923	0,0003556784	0,0007911940	0,0003333438
778	0,0005698202	0,0009945150	0,0003714640	0,0011971400	0,0004762660	0,0003432991	0,0007602600	0,0003025485
779	0,0005403473	0,0009484456	0,0003612016	0,0011802500	0,0004614577	0,0003645270	0,0007355490	0,0003136007
780	0,0005084263	0,0009049657	0,0003519550	0,0011642500	0,0004554344	0,0003851339	0,0007170550	0,0003293981

Abbildungsverzeichnis

1.1	XYZ Spektralwertfunktionen des 2°-Normalbetrachters ¹	6
1.2	Darstellung des xy-Farbraums mit eingezeichneter Koordinate ²	$\overline{7}$
1.3	Darstellung des u'v'-Farbraums mit Plank'schem Kurvenzug ³	8
1.4	Darstellung des dreidimensionalen $L^*U^*V^*$ -Farbraums ⁴	9
1.5	Die acht Color Test Samples (CTS) des CRI von gemessenem Sonnen-	
	licht ⁵ \ldots	11
1.6	Die verschiedenen R_i Farbreferenzen ⁶	13
1.7	Ergbnisprotokoll der TLCI-Messung eines High End Systems Sola-	
	Wash Pro 2000 LED-Scheinwerfers ⁷	15
1.8	Alle neunundneunzig Referenzfarben des TM-30 ⁸	17
1.9	Ergebnisprotokoll einer TM-30 Messung eines Robe Robin Viva CMY	
	mit allen 50 Ergebnissen. Der Report wurde mit dem ANSI/IES TM-	
	30-18 Calculator Version 2.00 erstellt.	21
1.10	Ergebnisprotokoll einer SSI-Messung mit zusätzlicher Darstellung der	
	spektralen Differenzen9	23
1.11	Darstellung der R_{1-8} -Werte eines Testscheinwerfers (orange Kurve)	
	und Referenzlichtquelle (blaue Kurve) im x,y-Farbraum	27
1.12	Vorgang einer Sensitivitätsanalyse ¹⁰	31
1.13	Tabelle einer Präferenzanalyse mit 28 von 91 Schritten ¹¹ \ldots \ldots	33
1.14	Bildhafte Darstellung der verschiedenen Skalen ¹²	34
0.1		0.0
2.1	Natives Spektrum des Varyscan P7	30
2.2	Natives Spektrum des P12 Profile	30
2.3	Natives Spektrum des Source 4 LED Series 3	30
2.4	Schematische Darstellung der direkten Messung der LED-Scheinwerfer	07
	zur verinzierung des FixtureCneck-Methode	37
3.1	Graphische Darstellung des Messaufbaus bei der FixtureCheck-Methode	64
3.2	Einfügen der gemessenen Spektren bei der FixtureCheck-Methode	65
3.3	Einfügen der gemessenen Spektren bei der FixtureCheck-Methode	66
4.1	Spektrale Kamerakurven der "Standard"-Fernsehkamera der $\mathrm{EBU^{13}}$.	68
4.2	Optischer Vergleich des Source 4 LED Series 2 mit dem X4 L. Die	
1.0	Drucktarben sind nicht tarbecht.	69
4.3	Beispiel für die Erweiterung der FixtureCheck-Methode mit einem op-	
	tischen Vergleich	70
5.1	Spektrum K-Eve 3200K	75
J.T		

Abbildungsverzeichnis

5.2	Spektrum Arri L7C 3200K
5.3	Spektrum VaryScan P7 3200K
5.4	Spektrum P12 Profile 3200K
5.5	Spektrum Source4 S2 3200K
5.6	Spektrum TourLED 3200K
5.7	Spektrum Viva CMY 3200K
5.8	Spektrum Source4 S2 3200K
5.9	Spektrum K-Eye 4000K
5.10	Spektrum Arri L7C 4000K
5.11	Spektrum VaryScan P7 4000K
5.12	Spektrum P12 Profile 4000K 81
5.13	Spektrum Source4 S2 4000K
5.14	Spektrum TourLED 4000K 82
5.15	Spektrum Viva CMY 4000K
5.16	Spektrum Source4 S2 4000K
5.17	Spektrum K-Eye 5600K
5.18	Spektrum Arri L7C 5600K
5.19	Spektrum VaryScan P7 5600K
5.20	Spektrum P12 Profile 5600K
5.21	Spektrum Source4 S2 5600K
5.22	Spektrum TourLED 5600K
5.23	Spektrum Viva CMY 5600K
5.24	Spektrum Source4 S2 5600K
5.25	Spektrum K-Eye nativK
5.26	Spektrum Arri L7C nativK
5.27	Spektrum VaryScan P7 nativK 91
5.28	Spektrum P12 Profile nativK
5.29	Spektrum Source4 S2 nativK
5.30	Spektrum TourLED nativK 94
5.31	Spektrum Viva CMY nativK
5.32	Spektrum Source4 S2 nativK

Tabellenverzeichnis

1.1	Einschätzung der CRI R_a -Werte ¹⁴	11
1.2	Einschatzung der TLCI Q_a -Werte ¹³	14
1.3	Gewichtung der Beispiel Kann-Ziele A,B,C und D ¹⁰	30
1.4	Abstufungen einer 10 Punkte Skala zur Einschatzung des Zielerful-	20
	lungsfaktors Zt ¹	30
2.1	Auflistung der Scheinwerfer zum Testen der FixtureCheck-Methode	36
2.2	Messergebnisse bei nativen Einstellungen. SSI und ΔE^* können nur	00
	im Zusammenhang mit zwei Spektren gemessen werden und sind daher	
	nicht angegeben.	38
2.3	Messergebnisse bei $CCT = 3200 \text{ K}$	39
2.4	Messergebnisse bei $CCT = 4000 \text{ K}$	39
2.5	Messergebnisse bei $CCT = 5600 \text{ K}$	40
9 1	Ab staffan som sin en 10 Damlets Clarle som Fin och äteran sides Tailantemante	
J.1	Absturungen einer 10 Funkte Skala zur Einschatzung des Tehnutzwerts	16
<u>ว</u> ฤ	Def der Fixture Gleck-Methode $^{\circ}$	40 50
ე.∠ ეე	IN des R_f -wert bei CCT = 4000K	50
う.う う_4	N des K_f -wert bei $COI = 4000$ K	01 52
3.4 2.5	Abstation and a singer 10 Devolute Clashe and Einschützung des Ähnlich	00
3.5	Absturungen einer 10 Punkte Skala zur Einschatzung des "Annlich-	F 4
26	CNL hei 2000 K mit Of 0.2	54 55
3.0 2.7	GN bei 3200 K mit $GI=0,2$	00 56
ე. ეი	$GN bei 4000 K mit GI=0,2 \dots \dots$	00 E.C
3.8 2.0	GN bei 2000 K mit GI= $0,2$	00 57
3.9 2 10	GN bei 3200 K mit GI=0,8 für SSI & FSI $\dots \dots \dots \dots \dots$	07 57
0.10 0.11	GN bei 4000 K mit GI=0,8 für SSI & FSI \ldots	57
0.11 0.10	GN bei 2000 K mit GI=0,8 für SSI & FSI $\dots \dots \dots \dots \dots$	07 50
0.12 2 1 2	GN bei 4000 K mit GI=0,2 für SSI & FSI $\dots \dots \dots \dots \dots \dots$	- 00 50
0.10 0.14	GN bei 5600 K mit $G_{I}=0,2$ für SSI & FSI	59
0.14 9.15	CN bei 2000 K mit den Cf. die bei der FirtureCheelt Methode ange	59
5.15	undt worden	60
216	CN hei 4000 K mit den Of die hei der FirstungCheck Methode ange	00
3.10	worder worder	60
917	ON hei 5600 K mit den Of die hei der Eistere Oberle Methoderen	00
3.17	GN DEI 2000 K mit den GI, die dei der FixtureUneck-Methode ange-	~ ~
	would would be	60
9 10	wandt werden.	60 61

Tabellenverzeichnis

3.19	GN bei einer nativen Scheinwerfermessung mit den Gf, die bei der	
	FixtureCheck-Methode angewandt werden	61
3.20	GN bei 3200 K ohne FSI	62
3.21	GN bei 4000 K ohne FSI	62
3.22	GN bei 5600 K ohne FSI	63
		~ ~
4.1	Auflistung der Scheinwerfer zum Testen der FixtureCheck-Methode .	69
Literaturverzeichnis

- Smet, Kevin & Ryckaert, Wouter R. & Pointer, Michael R. & Deconinck, Geert & Hanselaer, Peter: "Correlation between color quality metric predictions and visual appreciation of light sources" OPTICS EXPRESS 8151-8166 (OSA) vol. 19, No. 9, 25.04.2011
- Davis, Wendy & Ohno, Yoshi: "Development of a Color Quality Scale"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 568.8399&rep=rep1&type=pdf, 08.02.2006, letzter Zugriff 13.05.2022
- Bernstädt, Herbert: "Farbwiedergabe: TM-30-15, CRI und Co."Production Partner: https://www.production-partner.de/basics/farbwiedergabetm-30-15-cri-und-co/, 22.02.2018, letzter Zugriff 13.05.2022
- Hentschel, Hans-Jürgen: "Licht und Beleuchtung Theorie und Praxis der Lichttechnik", 4. Auflage, Hüthig 1994
- Roberts, Alan: "TELEVISION LIGHTING CONSISTENCY INDEX (TLCI 2012)", Version 2.015e, 10.08.2015
- Illuminating Engineering Society: "Technical Memorandum: IES Method for Evaluating Light Source Color Rendition - An American National Standart", Version TM-30-20, 2020
- Society of Motion Picture and Television Engineers: "ST 2122:2020 SMPTE Standard - Spectral Similarity Index (SSI)"in: ST 2122:2020, pp.1-10, 21 July 2020
- Rea, Mark & Deng, Lei & Wolsey, Robert: "Appendix B: Calculating color rendering metrics"in: *Lighting Answers: Light Sources and Color*, vol. 8, issue 1, October 2004
- Hashimoto, Kenjiro & Yano, Tadashi & Shimizu, Masanori & Nayatni, Yoshinobu: "New Method for Specifying Color-Rendering Properties of Light Sources Based on Feeling of Contrast"in: COLOR research an application, vol. 32, no. 5, October 2007
- Academy of Motion Picture Arts and Sciences: "Academy Spectral Similarity Index (SSI): Overview", 16.09.2020
- Takasaki, Hiroshi: "Chromatic Changes Induced by Changes in Chromaticity of Background of Constant Lightness" Jornal Optical Society of America, vol. 57, p. 93-96, January 1967

- Rea, Mark S. & Freyssinier, Jean Paul "Color Rendering: a tale of two metrics"in: *Color Research & Application*, vol. 33(3), p. 192-202
- Luo, M.R.: "The quality of light sources"in: *Coloration Technology*, vol. 127, p.75-87, 06.03.2011
- Judd, Deane B.: "A Flattery Index for Artificial Illuminants"in: Illuminating Engineering Journal, vol. 62, p. 593-598, October 1967
- Thornton, W. A.: "A validation of the color preference index"in: Illuminating Engineering Journal, vol. 62, p. 191-194, 1972
- Bodrogi, Peter & Brückner, Stefan & Khanh, Tran Quoc: "Ordinal Scale Based Description of Colour Rendering"in: Color Research & Application, vol. 36(4), p. 272-285, 2010
- Royer, M. P.& Houser, K. W. & Wilkerson, A. M. "Color Discrimination Capability Under Highly Structured Spectra"in: Color Research & Application, vol. 37(6), p. 441-449, December 2012
- Szabó F. & Bodrogi P. & Schanda J.: "A colour harmony rendering index based on predictions of color harmony impression"in: *Lighting Res. Technol.*, vol. 41, p. 165-182, 13.01.2009
- Bundesministerium des Innern und für Heimat: "Handbuch für Organisationsuntersuchungen und Personalbedarfsermittlung"https://www. orghandbuch. de/OHB/DE/Organisationshandbuch/6_MethodenTechniken/ 65_Wirtschaftlichkeitsuntersuchung/652_Qualitative/qualitativenode. html,2007, letzter Zugriff 21.06.2022
- LeXWARE: "Nuzuwertanalyse einfach erklärt"https://www.buchhaltungeinfach-sicher.de/bwl/nutzwertanalyse, 17.03.2022, letzter Zugriff 21.06.2022
- Methodenportal Universität Leipzig: "Skalenniveaus"*https://home.uni-leipzig.de/methodenportal/skalenniveaus/*, 2021, letzter Zugriff 23.06.2022
- Katholische Universität Eichstätt-Ingolstadt: "Skalen"https://eo-umw-jwpa. ku. de/journalistik/methoden/untersuchungsvorbereitung/skalen/, 20.02.2017, letzter Zugriff 23.06.2022
- Statisitk für Psychologie: "Was du schon immer über Skalenniveaus wissen wolltest...", https://www.statistikpsychologie.de/skalenniveaus/, 2022, letzter Zugriff 23.06.2022

Literaturverzeichnis

- Deutsches Institut für Normung e.V. Normausschuss Lichttechnik (FNL): "Licht und Beleuchtung – Messung und Darstellung photometrischer Daten von Lampen und Leuchten – Teil 4: LED-Lampen, -Module und -Leuchten; Deutsche Fassung EN 13032-4:2015+A1:2019"*DIN EN 13032-4*, November 2019
- Greule, Roland: "Licht und Beleuchtung im Medienbereich", 2., aktualisierte und erweiterte Auflage, Hanser 2021
- Gigahertz-Optik: "RGB- und XYZ-Spektralwertfunktionen", /urlhttps://www.gigahertz-optik.com/de-de/service-undsupport/informationsportal/grundlagen-lichtmesstechnik/licht-farbe/farbmetrik/, 2022, letzter Zugriff 05.08.2022
- Ohno, Yoshi "Calculation of CCT and Duv and Practical Conversion Formulae", https://cormusa.org/wp-content/uploads/2018/04/CORM_2011_ Calculation_of_CCT_and_Duv_and_Practical_Conversion_Formulae. pdf, presentation at CORM 2011 Conference, 05.2011
- EBU Operating Eurovision and Euroradio: "Tech 3353 Development of a "Standard" Television Camera Model implemented in the TLCI-2012", November 2012
- Höveler, Bernhard & Voß, Martin: "Zuschlagskriterien für die Lieferantenbewertung festlegen", https://www.business-wissen.de/artikel/ausschreibungzuschlagskriterien-fuer-die-lieferantenbewertung-festlegen/, 27. November 2017
- DeWiki: https://dewiki.de/Lexikon/Nutzwertanalyse, letzter Zugriff 23.07.2022
- Service, Phil: "The Wright Guild Experiments and the Development of the CIE 1931 RGB and XYZ Color Spaces", https://philservice.typepad.com/ Wright-Guild_ and_ CIE_ RGB_ and_ XYZ. pages. pdf, 29.03.2016, letzter Zugriff 24.07.2022
- de-academic.com: "CIELuv-Farbraumsystem", https://de-academic.com/dic. nsf/dewiki/224321, 2020-2022, letzter Zugriff 23.07.2022

Ich versichere, die vorliegende Arbeit selbstständig ohne fremde Hilfe verfasst und keine anderen Quellen und Hilfsmittel als die angegebenen benutzt zu haben. Die aus anderen Werken wörtlich entnommenen Stellen oder dem Sinn nach entlehnten Passagen sind durch Quellenangaben eindeutig kenntlich gemacht.

Ort, Datum

Matthias Held