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erkannt. Die resultierenden Parametrisierungen der Primitive werden verwendet, um
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dert und in Echtzeit auf das Kamerabild überlagert, sodass der Nutzer sie in einer Aug-
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Abstract

This thesis presents a system that detects geometric primitive in the user's surroundings

on mobile devices without specialized depth-sensing hardware. The system utilizes depth
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data from the Google ARCore Depth API to create a point cloud. To e�ciently store

and update the point cloud information in real-time, a custom octree implementation

is employed. Primitives are detected within the point cloud using the RANSAC imple-

mentation by [SWK07]. The resulting parameterizations of the primitives are used to

generate triangle meshes of their convex hulls. These meshes are �nally rendered and

overlayed onto the camera feed, accessible to the user through an Augmented Reality

(AR) application.
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1 Introduction

In recent years, advancements in computer vision technology and hardware for mobile

devices have enabled the development of mobile applications that can understand and

interact with the real world. Augmented Reality (AR) is a popular application of this

technology, allowing for the overlay of digital information onto the real world. For in-

stance, in the ecommerce industry, companies like Amazon are leveraging AR to enable

customers to visualize furniture in their homes before making a purchase. Similarly,

mobile mapping applications utilize AR to provide directions and information about the

environment through the camera feed.

Virtual Reality (VR) on the other hand creates fully immersive experiences that isolate

users from the real world. Through the use of specialized head-mounted display (HMD)

headsets, users can explore virtual worlds, play games, and watch movies in environ-

ments completely separate from their physical surroundings. This technology has gained

traction in the gaming and entertainment industries with platforms like Oculus Rift,

SteamVR and PlayStation VR.

Building upon the advancements of VR and mobile AR, a recent trend in the industry

is the development of devices that combine the two technologies, allowing to seamlessly

blend virtual objects into the real world and vice versa, creating the illusion of a singular,

uni�ed world. This technology is named di�erently by di�erent companies, such as Mixed

Reality (MR) by Microsoft and Meta or Spatial Computing by Apple. MR / Spatial

Computing allows for immersive experiences while still enabling users to interact with

the real world. Similarly to AR, its potential applications span across various industries,

from healthcare to education to entertainment. Examples of devices include Microsoft's

HoloLens and more recently the Meta Quest 3 and Apple Vision Pro.

Figure 1.1 shows a screenshot of a trailer for a game on the Quest 3 that mixes the real

world with virtual objects. You can see virtual boxes and enemies blended into the real
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1 Introduction

Figure 1.1: Screenshot of trailer for the game Espire 2 by Tripwire Interactive showcasing
a player using the Meta Quest 3 playing the game blended with their real
environment.

environment of the player. The player can interact with these objects with their body

and hands, using controllers or hand tracking.

Current AR applications use a variety of techniques to blend virtual objects into the real

world and make them interactable. As an example, the ARCore Depth SDK by Google

provides features like

� Detection of �at surfaces

� Placement of virtual objects on surfaces

� Depth information that can be used to occlude objects behind real-world objects

� Lighting estimation for realistic shading of virtual objects

This however, does not allow for understanding of the environment for the purpose of

complex logic outside of rendering, such as navigation of AI agents through the environ-

ment or creating customized game logic based on the layout of the environment, as the

API does not provide a mesh of the environment or similar features. To enable these

kinds of applications, it is essential to have an accurate understanding of the real world

surrounding the user.
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1 Introduction

This thesis aims to provide an implementation of a system that can create a mesh of the

environment from data provided by the ARCore Depth API using primitive detection

algorithms and overlay this mesh onto the camera feed for visualization. The information

about the environment (both the primitive parameterization and the resulting mesh) can

then be used for various applications as mentioned above.
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2 Primitive Detection Algorithms

Figure 2.1: Process of detecting primitives [KYB19]

Primitive detection is a well-established area in computer vision that aims to detect

simple geometric shapes like planes, spheres or cylinders in given input data. These

methods are model-�tting algorithms that identify the most likely model that �ts (a

subset of) the input data. The result of these algorithms is a set of parameters that

describe the detected shape. These shapes are an abstraction of the input data, o�ering

a simpli�ed compact representation of the data, allowing for higher performance and the

ability to perform higher-level tasks such as object recognition or scene reconstruction.

The input data representation varies by algorithm, with the most common types being:

� Point Clouds: A set of 3D points in space representing the sampled surface of

the real-world

� Depth Images: A 2D image where each pixel represents the distance to the

camera, typically obtained from depth sensors
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2 Primitive Detection Algorithms

� Image Sequences: A sequence of 2D images from di�erent viewpoints that are

typically �rst convert to a point cloud or depth image for further processing, further

discussed in section 4.1.2

� Meshes: A polygonal representation of surfaces, consisting of vertices, edges and

faces, typically generated from surface reconstruction algorithms. Not further con-

sidered in this thesis. For an explanation of meshes, see section 4.4.1. [KYB19]

This chapter provides an overview of the most common primitive detection algorithms by

categorizing them based on their underlying methodology. The chapter then compares

the two most widely used base methodologies, the Hough Transform and the Random

Sample Consensus (RANSAC) algorithm.

2.1 Categorization

Kaiser, Ybanez Zepeda, and Boubekeur [KYB19] reviewed over 70 detection algorithms,

evaluating them based on their input/output data types, underlying methodology, sup-

ported primitive types, context of application and provide a rating for multiple criteria.

The authors categorize the underlying methodology of the algorithms into three cate-

gories:

� Stochastic: algorithms that use random sampling to detect primitives, such as

RANSAC

� Parameter Space: algorithms that use a parameter space to detect primitives,

such as the Hough Transform

� Clustering: algorithms that aggregate data in a local-to-global fashion based on

similarity constrains, such as primitive-driven region growing

The following sections provide an overview of the most common algorithms in each

category.
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2 Primitive Detection Algorithms

2.1.1 Stochastic (RANSAC)

The Random Sample Consensus (RANSAC) algorithm is a widely used stochastic model

parameter estimation algorithm �rst introduced in 1981 by Fischler and Bolles [FB81].

"The basic principle of the algorithm is to try many possible randomized models that

could �t the data and evaluate how good this model is in order to �nd a consensus, i.e.

an agreement of most of the data samples." [KYB19]

For a given shape that requires n points to be de�ned, RANSAC follows the following

steps to detect the shape in a set of data points P [FB81]:

1. Randomly select a subset S1 of n data points from P

2. Fit the model M1 to the selected points

3. Determine the subset of inliers S1∗ of P that �t the model M1 within a prede�ned

tolerance, this is called the consensus set

4. If size of the consensus set |S1∗| is greater than a prede�ned threshold t, re-�t the

model to S1∗, resulting in new model M1∗

5. If size of the consensus set |S1∗| is smaller than a prede�ned threshold t, repeat

until a model with a consensus set of size t is found or a prede�ned number of

iterations is reached

The algorithm has 3 main parameters that need to be set:

� Error tolerance: the distance between a data point and the model under which

the data point is considered an inlier

� Threshold t: the number of inliers required to consider a model valid

� Number of iterations: the number of times the algorithm will try to �nd a model

with a consensus set of size t
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2 Primitive Detection Algorithms

2.1.2 Parameter Space (Hough Transform)

The parameter space refers to a mathematical space which is de�ned by the parame-

ters of the shape instead of their coordinates. The Hough transform (HT) introduced

in 1962 [Hou62] takes advantage of this concept. The algorithm was originally designed

to detect lines in images, but has since been generalized to detect more complex shapes

like circles [Bal81] and 3D shapes [Woo+14].

The HT works by creating a voting space based on parameters where similar shapes

overlap[KYB19]. The following explanation of the HT is based on [Shr21]. Figure 2.2

illustrates the concept of the Hough Transform for detecting lines. On the left, the image

space is shown, where 4 points are located on a line. The right side shows the parameter

space, where the axes represent the parameters of the line equation

y = mx+ c (2.1)

Each point in image space creates a line in parameter space, as there are an in�nite

number of lines that pass through a point. All points on the line represent a valid

parameterization of the line. When all points are plotted in parameter space, local

maxima represent the parameters of possible lines in image space.

x

y

yi = mxi + c

(a) Image Space

m

c

(m, c)

c = −mxi + yi

(b) Parameter Space

Figure 2.2: Concept of Hough Transform illlustrated for the usage of detecting lines.
Reconstructed from [Shr21].

The Hough Transform is implemented by discretizing the parameter space into uniform

sections using a two-dimensional array to store the votes for each parameter, called the
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2 Primitive Detection Algorithms

accumulator [DH72]. Each data point contributes votes to the shapes it aligns with, indi-

cating the likelihood of a speci�c shape being present in the input data. By accumulating

these votes, the parameters corresponding to the shape with the highest number of votes

can be identi�ed. After all data points have voted, the parameters with the highest votes

reveal the shape that most accurately �ts the input data.

A problem that arises when using the Hough Transform with the parameterization of a

line y = mx+ c is that the slope m can be in�nite for vertical lines, which would require

the parameter space to be in�nite. A more suitable parameterization for the Hough

Transform is achieved by using the angle θ from the x-axis and the distance ρ from the

origin:

x sin θ + y cos θ + ρ = 0 (2.2)

This parameterization allows for the representation of vertical lines without the need for

x

y

θ

ρ

x sin θ − y cos θ + ρ = 0

(a) Image Space

θ

ρ

x sin θ − y cos θ + ρ = 0

(b) Parameter Space

Figure 2.3: Hough Transform using polar coordinates. Reconstructed from [Shr21].

an in�nite parameter space. The angle θ ranges from 0 and π, representing all possible

orientations of lines, while the distance ρ can take any value between 0 and the size of

the image space. This parameterization not only allows for the representation of vertical

lines but decreases the size of the accumulator array, as the parameter space is now �nite.

To detect lines using this parameterization, the same voting process as described above

is used.
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2 Primitive Detection Algorithms

2.1.3 Clustering (Primitive-Driven Region Growing)

Clustering or segmentation is a fundamental concept in data analysis that groups sim-

ilar data points into clusters. "Most commonly, segmentation is treated as a local-

to-global aggregation problem with similarity constraints employed to control the pro-

cess." [LMM98] Algorithms start by selecting a small subset of data points as initial

regions, which are then expanded by adding similar points to the region. Homogenous

regions are �nally merged to form the �nal clusters. [LMM98]

One common paradigm in the context of 3D geometric primitive detection is primitive-

driven region growing. This approach starts by assigning a seed label to a point, and then

iteratively checks neighboring points to see if their characteristics like color, Euclidean

distance or normal orientation match the seed labels characteristics within a certain

threshold. Generic solutions often use a heuristic like the primitive �tting error, which is

the mean square error between the point and the potential primitive. If the neighboring

point matches, the label is assigned to the neighboring point. The process is repeated

until no more points can be added to the region. [KYB19]

For an extensive overview of other clustering paradigms like automatic clustering see

survey by [KYB19].

2.2 Choosing an Algorithm: Hough Transform vs.

RANSAC

[KYB19] lists over 70 detection algorithms, many of which are specialized for speci�c

application contexts like indoor scenes, outdoor scenes, urban buildings or individual

objects. As this thesis aims to develop a �rst end to end implementation for detecting

and rendering primitives in AR, it is important to consider algorithms that are widely

used and applicable to a wide range of applications.

Among the various methodologies, the Hough Transform and the Random Sample Con-

sensus (RANSAC) algorithm emerge as the most widely used in the �eld of primitive

detection. [SWK07]. On the other hand, primitive growing is also a commonly used

methodology but is considered to be the least robust to outliers and one of the slowest

methods compared by [KYB19]. This might pose a problem for the use-case of this the-

sis, as the depth data may contain a signi�cant amount of noise and the performance of
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2 Primitive Detection Algorithms

Figure 2.4: Compairison of Primitive Detection algorithm performance [KYB19]

a mobile device is limited. Therefore, it is necessary to compare the Hough Transform

and RANSAC and make decision on which algorithm to use for the implementation.

Both algorithms show varying performance depending on the context of the application.

With optimizations, both algorithms are suitable for a wide range of applications, but it

is important to consider that the Hough Transform is more computationally expensive

than RANSAC [KYB19]. In a study, [TLG07] found that RANSACs processing time

is negligible in comparison to the Hough Transform. Additionally, RANSAC is more

robust to noise and outliers [KYB19]. It is also a simpler algorithm which makes it

easier to extend and adapt to di�erent contexts [TLG07; KYB19]. The main drawback

of RANSAC is that results are not repeatable, as the algorithm is based on random

sampling [KYB19].

In a speci�c application of detecting building roofs as planes in 3D Lidar scans of

cityscapes, [TLG07] found that by default both RANSAC and Hough-Transform yield

similar, insu�cient results for their use-case. �That can be explained by the use of a pure
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2 Primitive Detection Algorithms

mathematical principle, without taking into account the particularity of the building Li-

dar data. [. . . ] That is why [they] may detect a set of points which represents several

roof planes or which belongs to several planes.�

Additionally, determining the optimal parameters for the Hough Transform proved chal-

lenging, as the optimal values heavily vary based on the characteristics of the point cloud.

Motivated by RANSAC's speed, Tarsha-Kurdi, Landes, and Grussenmeyer extended the

algorithm and achieved satisfying results.

In the end, both the Hough Transform and RANSAC are suitable algorithms for detecting

primitives. However, the Hough Transform is more computationally expensive, harder

to tune for speci�c contexts and less robust to noise and outliers. RANSAC also has

a publicly available reference implementation in C++ by [SWK07], which is e.g. used

in the open source tool CloudCompare [Dan+]. This allows for easy testing on ones

own pointclouds without the need to write custom code, making it useful for evaluation

purposes, as can later be seen in chapter 5.

Due to these reasons, the Random Sample Consensus (RANSAC) algorithm will be used

for the implementation of the primitive detection in this thesis.

11



3 Implementation Context

This chapter goes over the technical background of the implementation and the context

in which it is developed.

3.1 Potential Pitfalls

During the planning phase of this thesis, a potential pitfall of the system was identi�ed.

The development device, Google Pixel 7, lacks a depth sensor. Extracting depth infor-

mation using the Depth API is still possible, however the Depth API will rely solely on

Depth from Motion techniques to derive depth information from camera images as later

described in section 4.1.2. It is important to note that camera-based Depth from Motion

has limitations when it comes to detecting depth in objects with minimal texture, such

as walls. This drawback could potentially present challenges, especially when detecting

walls or furniture with minimal texture, where the accuracy of depth information ob-

tained from the Depth API may not be su�cient for accurate recognition. [Goo] This

pitfall is addressed in the evaluation, chapter 5.

3.2 Hard- and Softwarestack

The mobile application is developed for Android and tested using a Google Pixel 7.

The implementation is carried out in Java/Kotlin using the Android Studio integrated

development environment (IDE). The Google ARCore SDK is used to access depth in-

formation about a scene. The SDK is available by default, and no additional libraries

are required.

Algorithms are implemented in C++ in the procedural-augmented-reality project

provided by Prof. Dr. Phillipp Jenke. The code of this thesis is integrated into the ap-

plication and interfaced with Kotlin through a binding layer.

12



3 Implementation Context

3.3 Libraries and External Code

The following libraries and/or publicly available code are used in this thesis:

� The RANSAC implementation by Schnabel, Wahl, and Klein is used for primitive

detection and is further examined in this thesis [SWK07]

� ARCore Raw Depth provides a reference implementation for using the ARCore Raw

Depth API. It is used as a basis for unprojecting depth image pixels into world

space in this thesis. [GT22]

� The monotone chain implementation in C++ to compute the convex hull available

on Wikibooks1

3.4 Testing

All algorithms implemented in the procedural-augmented-reality project are

unit tested using Google Test, a C++ testing framework. To achieve this, a CMake

library target backend is de�ned, that contains all functionality of the procedural-

augmented-reality project. A second target that contains the tests, backend-test, is

de�ned, which links against backend and the Google Test library.

The testing process involves writing individual test cases for each function and class to

ensure they behave as expected under various conditions. For instance, the integrity of

the Octree data structure is veri�ed by recursively checking the bounds of each node

and its children. Other tests validate the correct insertion and retrieval of points within

the Octree, ensuring that nodes are placed in the correct sub-octants. Edge cases are

also considered, such as testing the behavior of the Octree when searching for points

within a radius. Additionally, the deletion functionality is extensively tested through

various scenarios, including deleting nodes from the root and upwards or downwards in

the hierarchy.

1Algorithm Implementation/Geometry/Convex hull/Monotone chain - Wikibooks, open books for an
open world. url: https : / / en . wikibooks . org / wiki / Algorithm _ Implementation /
Geometry/Convex_hull/Monotone_chain#C++ (visited on 04/22/2024).
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4 Solution

This chapter goes into detail about the solution of the whole detection pipeline. All

concepts and algorithms that are used will be explained in detail as needed.

In the system, the �rst step involves collecting depth information via depth images and

con�dence images from the ARCore Raw Depth API, as explained in section 4.1. Next, in

section 4.2, the depth images are converted into a point cloud. The RANSAC algorithm

is then applied to the point cloud to detect geometric primitives in section 4.3. Finally,

rendering the primitives is explained in section 4.4. For the scope of this thesis, the

implementation focuses on detecting planes. However, it is possible to extend the pipeline

to detect all other primitives detected by the RANSAC implementation by [SWK07].

4.1 Capturing Depth Images

The �rst step is acquiring the depth data required for primitive detection. Google AR-

Core [Goo] is an SDK for developing augmented reality applications on Android and iOS

devices and provides a wide range of features, such as motion tracking, environmental

understanding, and light estimation. For the purpose of this project, it is used to access

depth information from the camera in form of depth images.

4.1.1 ARCore Depth APIs

Google ARCore provides two APIs to access depth information � the Depth API and

the Raw Depth API. Both APIs work by estimating depth information from a sequence

of monocular camera images using a technique called Depth from Motion. When the

user moves their device, the system takes a sequence of images and estimates the depth

information by comparing the di�erences between these images to the position of the

device at the time the images were taken. The technical details of this system are further

14
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discussed in section 4.1.2. Google claims that that one "can get accurate results from 0

to 65 meters away, with best results between 0.5 and 5 meters." [Goo]

Both the Raw Depth API and Full Depth API provide depth information for a given

frame of a camera image using depth images, but they di�er in the level of detail they

provide:

The Raw Depth API provides depth images and con�dence images, where some pixels

may not have any depth information. The depth image provides the distance from the

camera of a given pixel in millimeters. The con�dence image indicates the reliability

of the depth information for each pixel, ranging from 0 (no con�dence) to 255 (high

con�dence).

In contrast, the Full Depth API provides a single depth image, where each pixel has a

depth value. To achieve this, values for pixels without depth information are interpolated.

No con�dence image is provided.

(a) Full Depth API depth image (b) Camera image

(c) Raw Depth API depth image (d) Raw Depth API con�dence image

Figure 4.1: Full Depth vs. Raw Depth. Source: [Goo]

Both Depth APIs have their use cases � the Full Depth API is preferred in cases where

it is crucial to have a depth value for every pixel, such as calculating if an object should

be occluded by the scene in an AR application, while the Raw Depth API is preferred if
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accuracy of the depth information is crucial. As accuracy is crucial for primitive detection

and depth information for every pixel is not required, the Raw Depth API is used in this

thesis.

4.1.2 Technical Background: Depth From Motion

Depth from motion is a technique developed by Google that estimates depth information

from a sequence of monocular camera images and is used by the ARCore Depth API to

provide depth information. Its primary purpose is to enable AR applications that rely

on depth information on devices lacking a dedicated depth sensor or multiple cameras.

This sections provides a brief overview of the workings of the Depth from Motion system

by [Val+18].

Figure 4.2: Overview of the Depth from Motion System. Source: [Val+18]

When users move their smartphones, the system uses ARCore's visual-inertial odometry

(VIO) to determine its position and orientation in six dimensions (6DoF): up/down, left-

/right, forward/backward, and tilt/swivel/rotate. After activating tracking and acquiring

the most recent camera image (in black and white for faster processing), a reference image

or keyframe from the past is chosen to compare with the current image.

A process known as polar recti�cation then aligns the keyframe and current frame onto

the same plane based on their di�erences in position and orientation. This alignment sim-

pli�es the process of �nding matching points in both images by focusing on comparable

horizontal lines.

Next, they use an image correspondence algorithm to identify matching points, which

generates disparity maps that indicate the positional di�erences between matched points

in the two images. As scenes may contain low textured objects or repetitive patterns
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which can lead to incorrect matches, they use an invalidation step, which removes points

that are likely to be incorrect matches. This step also provides a con�dence value, which

is later used in the interpolation step. Triangulation is used to compute a sparse depth

map based on the disparity maps.

The missing values in the sparse depth maps are then interpolated using a variation of an

algorithm called the bilateral solver (see �gure 4.3), which yields an intermediate data

structure known as a bilateral depth grid. This grid is a structured representation of

depth information that can be converted into a full depth map on demand, assessable

through the Full Depth API.

(a) Raw point cloud (b) Interpolated

Figure 4.3: Interpolation with Bilateral Solver. Source: [Val+18]

From the paper it is unclear, which part of the pipeline are omitted in the Raw Depth

API, but it is reasonable to assume that the Raw Depth API accesses the sparse depth

map and con�dence values before the interpolation step.

4.2 Building the Point Cloud

With the depth image and con�dence image collected from the Raw Depth API, the

next step is to convert the depth image into a point cloud, as RANSAC is a point-based

algorithm. The process consists of three steps:

1. Filtering low con�dence points

17



4 Solution

2. Transforming depth image pixels to world coordinate points

3. Inserting new points into the point cloud

4.2.1 Filtering Low Con�dence Points

The Raw Depth API provides a con�dence image that indicates the reliability of the depth

information for each pixel. To improve the accuracy of the point cloud, points with low

con�dence are �ltered out. A threshold value is set, below which points are discarded.

Filtering out low con�dence points early in the pipeline also improves performance, as

fewer points need to be processed in the following steps.

4.2.2 Transforming Depth Image Pixels to World Coordinate Points

The Depth API provides depth images where each pixel holds the distance from the

camera in millimeters. Before inserting points into the point cloud, the pixel values

of the depth image �rst need to be converted into 3-dimensional coordinates relative

to a �xed origin in the world. This section will �rst provide a brief overview of the

mathematical concepts required to understand the transformation process. Then, the

process of transforming a point from the depth image into world space will be explained.

Transformations

In computer graphics matrices are used to represent geometric transformations like trans-

lation, scaling, rotation, shearing, re�ection and projection. While it is out of scope to

cover all of these transformations in detail, this section will use the example of the trans-

lation to explain the concepts of transformations and homogenous coordinates based

on [Dör+19].

To apply transformations to a point, the points is represented in homogenous coordinates,

which is a 4x1 matrix with the fourth w element set to 1.

p =


w · x
w · y
w · z
w

 (4.1)
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The homogenous coordinates are then multiplied with a transformation matrix M to

apply the transformation.

p′ = M · p (4.2)

In the case of a translation, the translation matrix is a 4x4 matrix with the translation

vector t as the fourth column.

p′ =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 ·


w · x
w · y
w · z
w

 =


w · (x+ tx)

w · (y + ty)

w · (z + tz)

w

 (4.3)

Note that transformation can also e�ect the fourth element w, as later explained in the

section about perspective projection. To account for this, the resulting matrix is then

divided by the fourth element w. The cartesian coordinates of the point are then the

�rst three elements of the resulting matrix.

One advantage of using matrices to represent transformations is that multiple transfor-

mations can be combined by multiplying the transformation matrices. The resulting

matrix will then apply all transformations in the order they were multiplied.

p′ = (Mn · · ·M3 ·M2 ·M1) · p (4.4)

If multiple transformations were to be applied to thousands of points, it would be more

e�cient to multiply the transformation matrices once and then apply the resulting matrix

to all points [Vri20]. Graphics Processing Unit's (GPUs) also contain hardware imple-

mentation of 4x4 matrix operations, which further increases the performance of matrix

operations over other methods [Dör+19]. Transformation matrices can also be inverted

(M−1) to apply the inverse transformation, or in other words 'undo' the transforma-

tion [Dör+19].

Coordinate Systems and Basis Change

Di�erent coordinate systems, also known as spaces [Vri20], are commonly utilized to

represent points in space, allowing for simpli�ed calculations. To illustrate this, consider a

camera inside a moving car, �lming a person inside the car. In order to implement smooth

camera movement around the person, calculations based on coordinates relative to the
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world (world space) would need to account for the car's movement in each frame. By using

the car's local coordinate system, where all points are relative to the clarity. [Vri20]

To transform points between these systems, their positions are multiplied with a cor-

responding transformation matrix. To improve performance, these matrices are often

combined to a singular matrix, called the MVP-Matrix, that transforms points from

local space to screen space. [Vri20]

Figure 4.4: Coordinate systems. Adjusted from [Vri20].

Perspective Projection and Camera Intrinsics

In the real world, objects appear smaller the further away they are from the viewer. The

same concept applies to images captured by cameras. To illustrate this, consider a simpel

pinhole camera model, as shown in �gure 4.5. The camera is represented as a box with

a small hole (aperture) on one side. This aperture allows light rays from the scene to

pass through and form an inverted image on the opposite side of the box In the diagram,

the red lines depict the light rays corresponding to the top and bottom of the tree. The

closer the tree is to the camera, the smaller it needs to be to �t inside the two rays, or

in other words to appear the same size on the image plane. This concept is known as

perspective projection and can be achieved by dividing the x and y coordinates of a point

by its z coordinate. During this process, the z coordinate is lost and can't be recovered.

20



4 Solution

Figure 4.5: Pinhole camera model. Source: Wikimedia Commons

[Sze22]

Ps =

x/zy/z

1

 (4.5)

This however, does not account for the geometry of the camera itself � the camera

intrinsics. These intrinsics are a set of parameters that describe the camera's geometry

and are used to calculate the projection [Sze22]. The two most important parameters

are the focal length f and the image center c, as shown in �gure 4.6a.

(a) Geometry of a camera with an image
plane height H, width W , focal length
f , and principal point c. Source: [Sze22]

−zc

yc

C

a

A

z

y

f
c

f y
z

(b) Projection of an observed point A onto
the image plane in the y-direction.
Based on [Kri17] and [Goo]

Figure 4.6: Camera intrinsics

The focal length f is the distance between the image plane and the aperture of the

camera. The image center c (also called principal point) is the point where the principal

axis zc intersects the image plane, denoted in pixel coordinates. Figure 4.6b shows the
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projection of an observed point A onto the image plane. Note that the image plane

is displayed in the −zc direction, as opposed to +zc direction. It shows how the focal

length f a�ects the y-coordinate of the projected point. [Sze22; Goo; Kri17] This can be

simulated by using ones �ngers to form a square that represents a virtual image plane

and moving it closer or farther to the eye. The farther away the square is (higher focal

length), the less �eld of view the square covers.

Mathematically, the projection is often represented as a matrix, called the calibration

matrix

K =

fx 0 cx

0 fy cy

0 0 1

 (4.6)

with independent focal lengths fx and fy to account for aspect ratios other than 1:1. As

di�erent focal lengths in each dimension do not re�ect the real geometry of a camera, a

more intuitive way to understand di�erent focal lengths can be used by introducing the

aspect ratio a:

K =

f 0 cx

0 af cy

0 0 1

 (4.7)

[Sze22]

Applying the transformation to the depth pixels

With the mathematical concepts clari�ed, the transformation of depth image pixels into

world space can be explained. First, it is necessary to understand how the depth values

are represented in the depth image.

In terms of coordinate systems, the depth values are in screen space, as shown in �g-

ure 4.4. To convert these points into world space, the transformations need to be applied

backwards:

1. From screen space to view space (`unprojecting`)

2. From view space to world space

Another way to think about this procedure is to conceptualize the unprojecting step

as transforming the pixels into a local space relative to the camera, as de�ned by the

camera's position, up and look vector. Then, the point is transformed from the cameras
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local space into world space using the cameras model matrix. For simplicity and to avoid

confusion when transforming into di�erent directions, the latter approach is used going

forward.

The �rst step is to unproject the pixels from screen space to the cameras local space Kl,

as explained by [GT22; Goo]. Referring to �gure 4.6 and "given point A on the observed

real-world geometry and a 2D point a representing the same point in the depth image,

the value given by the Depth API at a is equal to the length of CA projected onto the

principal axis. This can also be referred as the z-coordinate of A relative to the camera

origin C." [Goo]

Using the camera intrinsics, the depth value is transformed to the local space relative to

the camera Kl. The camera intrinsics can be retrieved from the API using the method

frame.getCamera().getTextureIntrinsics(). However, this method returns

the intrinsics of the camera image, which di�ers from the depth image, as the depth

image usually has a lower resolution. To calculate the focal length f and camera center c

from the provided intrinsicsK, depth imageD and camera image dimensions xDim, yDim,

the provided focal length and principal point are scaled by the ratio of the dimensions

of the depth image and the camera image:

S =

dimx(D)
xDim

0

0
dimy(D)
yDim

 f = S ·Kfc = S ·Kc (4.8)

These values are then used to unproject the point into local space relative to the camera

Kl using the equation

pl =


d · (x− cx)/fx

d · (cy − y)/fy

−d

1

 (4.9)

as evident from �gure 4.6.

As the resulting point is in a local space relative to the camera Kl, it needs to be trans-

formed into world space Kw. To transform it, the camera pose is retrieved and converted

to a matrix: cameraPoseAnchor.getPose().toMatrix(modelMatrix, 0). By

multiplying the model matrix Twl with pl, the point is transformed into world space.

pw = Twl · pl (4.10)
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4.2.3 Inserting New Points into the Point Cloud

With all pixels from the depth image transformed to world coordinates, the �nal step

involves adding these points to the point cloud. However, simply storing a list of all

points and appending new data to it is not feasible. As a new depth image is captured

every frame, the number of points would grow endlessly. This approach would also result

in a massive number of points representing the same point on real-world geometry, but

with slightly di�erent position values, as subsequent depth images will show the same

real-world geometry from di�erent angles, with depth values varying slightly. To address

this issue, a spatial data structure that partitions the space into smaller regions and

allows to store only one point per region can be used. One possible approach is to use

a three-dimensional grid, where each cell represents a region in space. Alternatively, a

more advanced approach involves utilizing a spatial data structure such as an octree,

which can provide improved performance.

Figure 4.7: Octree. Source: Wikimedia Commons

Octree An octree is a spatial tree data structure where each node has exactly eight

children. The tree can be used to sparsely partition three-dimensional space into smaller

cubes and allows for e�cient insertion and traversal in logarithmic time. "For the de�-

nition a simple recursive splitting of [cubes] is continued until there is only one point in

a [cube]." [GE02]
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Fixed Depth Octree

A straightforward approach to utilize an octree for point cloud storage is to use a variation

of the octree with a �xed depth. Points are always inserted at the de�ned depth of the

tree, creating all nodes up to that depth if they do not yet exist. The center coordinate

of the leaf node can then be inferred as the point in space, thus saving the coordinates of

the point explicitly is not required. Instead, to �nd the coordinates of a given node, the

tree needs to be traversed while keeping track of the extent and center coordinate of the

current node. This approach will naturally provide quantization of the point cloud, with

the resolution of the point cloud determined by the depth of the octree and extend of the

root. This is functionally equal to a three-dimensional grid, but with the advantage of

logarithmic time complexity for insertion and traversal. Using this approach, duplicate

points are removed and adjusting the resolution of the octree allows for �ne-tuning of

the threshold distance between points under which points are considered duplicates.

One advantage of an octree with a �xed width is simplicity, as points are always inserted

at the same depth and deletion of points is not required. The biggest drawback is that

the resolution of the point cloud is �xed and needs to be chosen beforehand. As the

accuracy of the depth values di�ers based on conditions like lighting and texture of the

captured surface, it is di�cult to choose a �xed resolution that works for all values.

Quantization might also lead to worse detection results for surface that do not align with

the axis of the octree. For example, a plane that is tilted by a couple of degrees will lead

to aliasing, meaning that the distance between the points and the �tted plane will vary

across the plane, as demonstrated in �gure 4.8.

Figure 4.8: Example of aliasing, distance between the line and cell centers varies across
cells
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Octree with Neighborhood

To improve upon the �xed depth octree, the actual point coordinates can be saved in a

given node of the octree. Furthermore, the con�dence value can also be stored, in order

to determine how accurate it's position is. This allows to improve the accuracy of the

data as new, higher con�dence data arrives. In order to achieve this, custom logic on

inserting new points is required: When inserting a new point with a certain con�dence

value, a range query with a radius calculated from the con�dence value is performed to

�nd all nodes within a certain distance of the point to be inserted.

� If no node is found, a new leaf node is created and the point is inserted.

� If a node is found with a lower con�dence value, the new point is inserted and the

old node is removed.

� If a node is found with a higher con�dence value, the new point is not inserted and

discarded.

Using this approach, duplicate points are removed and adjusting the multiplier for the

radius of the range query allows for �ne-tuning of the threshold under which points are

considered duplicates. From here on, this approach will be referred to as the Epsilon

Octree.

Range Query To check if an octree node, which is an axis-aligned bounding box

(AABB) with equal sides, and a sphere intersect, the square distance between the center

of the sphere and the closest point on the AABB is calculated. If the square distance is

smaller than the square of the radius of the sphere, the sphere and the AABB intersect.

Calculating the square distance between a sphere and the closest point on the AABB

can be achieved by summing up the squared distance in each dimension: If the sphere's

center is outside the extent of the box on a given axis, the distance is the amount by

which it exceeds the box's boundary; otherwise, the distance is zero. In n dimensions,

this can be expressed as

d2 =

n∑
i=1


(Ci −Bi − s)2 if Ci > (Bi + s)

(Ci −Bi + s)2 if Ci < (Bi − s)

0 otherwise

 (4.11)
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where C is the center of the sphere, B is the center of the AABB, and s is the half-size

of the AABB. [Gla94]

Deleting nodes Deleting nodes from an octree is a non-trivial task [Sam89; FB74],

as it may require restructuring the tree to maintain the octree properties. Finkel and

Bentley [FB74] suggest reinserting all child nodes of the deleted node, while [Sam80]

propose a more e�cient method that tries to replace the deleted node with a suited

node, such that the octree properties are maintained. For simplicity, the �rst approach is

used. In addition, an optimization is made: As nodes are only deleted when a new point

is inserted with a higher con�dence value, it is possible to simply update the old node

with the new position, in case the octree properties are not violated. This is the case

when the new point is within the same cell as the old point. The tree is �rst traversed

once to �nd the node that needs to be deleted. If the node is in the same cell as the new

point to be inserted, the old node is updated with the data of the new point. Otherwise,

the old node is deleted as by [FB74] and the new point is inserted.

4.3 Detecting Primitives using RANSAC

To detect primitives in the point cloud, the Random Sample Consensus (RANSAC)

algorithm is used, as discussed in section 2.2. As [KYB19] considers [SWK07] to be the

reference implementation of RANSAC and its code is publicly available in C++, it will

be used in this thesis.

4.3.1 Schnabel's E�cient RANSAC Algorithm

Schnabel, Wahl, and Klein [SWK07] extended the RANSAC algorithm to be more ef-

�cient and robust for detecting primitives. Their approach is speci�cally designed for

detecting planes, spheres, cylinders, cones and tori in 3D point clouds. The key improve-

ments over the original RANSAC method are in the following areas:

� Sampling strategy: "Since shapes are local phenomena, the a priori probability

that two points belong to the same shape is higher the smaller the distance between

the points" [SWK07]. To take advantage of this fact, they employed non-uniform

sampling based on locality, which increases the probability of selecting points that
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belong to the same shape. They provide an example of the magnitude of this

improvement: For a point cloud consisting of 341,587 points that contains a cylinder

with 1066 points, uniform sampling would require 151,522,829 shapes candidates

to be drawn, while their method only requires 64,929 candidates.

� Score function: They introduce a scoring function that evaluates the quality of a

shape candidate. The score function is based on 3 parameters: The support of the

shape (number of inliers), the deviation of the normals and a connectivity measure,

that discards shapes that are not the largest connected component on the shape.

� Re�tting: After a shape is detected, they re�t the shape to the inliers using a

least-squares method [Sha98], and include points that are within a certain distance

of the shape to declutter the point cloud.

To �nd connected components in the point cloud, they use a bitmap in the parameter

domain of the shape. The parameter domain refers to a parameters de�ning the shape,

e.g. u, v for a plane. They then set a pixel in the bitmap for each point that projects

into it. The points of the largest connected component in the bitmap are then considered

inliers of the shape, while the rest are outliers and discarded / kept in the dataset for

further iterations. Optimally, the bitmaps resolution should be set to the sampling

resolution of the point cloud. For irregularly sampled point clouds, they recommend

choosing the minimal resolution that is satis�ed throughout the point cloud as the bitmap

resolution [SWK07]. Later on this will prove to be a challenge in combination with data

from the Depth from Motion algorithm, as described in section 5.3.2.

The algorithm requires the following parameters to be set:

� Epsilon ϵ: The maximum distance between a point and the shape to be considered

an inlier.

� Bitmap Epsilon β: The resolution of the bitmap used to determine connected

shapes.

� Normal threshold α: The maximum deviation of the normals of the points to

the shape.

� Minimum support n: The minimum number of inliers a shape needs to have to

be considered a valid shape.
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� Overlook probability: The probability that a point is overlooked by the sampling

strategy. A higher value increases the number of shape candidates drawn but also

the probability of �nding the best candidate shape.

4.3.2 Wrapping C++ Code in Java/Kotlin Using SWIG

As the RANSAC algorithm is implemented in C++ and the application is developed

for Java/Kotlin, the C++ code needs to be wrapped to be used in the application. To

automatically generate the necessary code to interface with Java/Kotlin, the Simpli�ed

Wrapper and Interface Generator (SWIG) is used. SWIG is "a program development tool

that automatically generates the bindings between C/C++ code and common scripting

languages" [Bea96]. It takes an interface �le that describes the functions and classes

to be wrapped as input and generates the necessary code to interface with the target

language.

An example interface �le is shown in codeblock 4.1. First, the module name is de�ned

using the %module directive. Then, in a block de�ned by the %{ and %} directives, the

C++ code that is necessary for compilation and should be included is de�ned. Finally, the

%include directive is used to declare all classes and functions that should be wrapped

by SWIG. In the case of template functions and classes, the %template directive

also needs to be used to explicitly instantiate a template using a speci�c name. In the

example codeblock, a std::vector<Vector3f> is wrapped as Vector3fVector in

the target language.

Listing 4.1: Example SWIG interface �le

%module backend

%{

#inc lude "math/Vector3 f . h"

%}

%inc lude " std_vector . i "

%inc lude "math/Vector3 f . h"

%template ( Vector3 fVector ) std : : vector<Vector3f >;

In the case of generating interfaces in Java, multiple �les will be generated by SWIG:
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� backendJNI.java contains the Java Native Interface (JNI) function declarations

(denoted by the keywords final static native) that are used to interface

with the C++ code

� backend_wrap.cxx contains the native C++ implementation of the JNI function

declarations above

� One java �le for each wrapped C++ class that internally calls the JNI functions

declared in backendJNI.java

4.3.3 Porting the E�cient RANSAC Algorithm Library to the ARM

Architecture

To compile the library for ARM, a few adjustments to the code are necessary. The library

uses the xmmintrin.h header �le, which is an x86-speci�c header �le that provides

access to the Streaming SIMD Extensions (SSE) instruction set. In this case it is only

used to allocate and free memory using the functions _mm_malloc and _mm_free. A

conditional compilation directive is added to include the header �le only if the target

architecture is x86. If the target architecture is ARM, the standard library functions

malloc and free are used instead.

Furthermore, the bundled compiler used by Android Studio (clang) is stricter than the

gcc compiler and requires some minor adjustments to the code. Most notably, the er-

ror explicit qualification required is �xed by adding the this keyword to

all member function calls. Other adjustments include �xes like removing obsolete key-

words and changing deprecated functions of the C++ standard library with their modern

counterparts.

This example illustrates that wrapping code into another architecture is not always

straightforward and comes with its own set of challenges.

4.4 Rendering the Primitives

With the primitives detected using the RANSAC algorithm, the next step is to render

them in the AR scene. This section �rst provides an overview of the OpenGL rendering

pipeline in section 4.4.1 and the necessary steps to render the planes in section 4.4.2.
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As planes are in�nite in size, section 4.4.3 �nally explains how to create a mesh that

constrains the planes to the area where the points are located, using the convex hull

algorithm.

4.4.1 OpenGL Rendering Pipeline

This section provides an overview of the OpenGL rendering pipeline and the necessary

steps to render the primitives. Explanations are based on the book Learn OpenGL by

Vries [Vri20] unless stated otherwise.

Polygon Meshes

Figure 4.9: Mesh overview. Source: [Dör+19]

Rendering an object is achieved by creating a polygon mesh, which is a collection of

vertices that de�ne the faces of it. The vertices are connected by edges to form polygons,

which in turn create the surface of the object. Polygons can be of any shape, but need

to be planar, meaning that all vertices lie on the same plane. The most commonly used

type of polygon is the triangle, as it is the simplest polygon that can de�ne a surface and

is guaranteed to be planar. The graphics pipeline is also optimized for triangles, as they

are easy to rasterize and interpolate. Figure 4.9 shows the relationship between vertices,

edges, and polygons in a mesh. [Dör+19]

Polygon meshes can be represented many ways. The simplest representation is a list

of vertices, where the vertices are stored in a speci�c order to form the polygons. In

OpenGL, this can be achieved by using the glDrawArrays function, which takes a

bu�er of vertices and draws them as triangles. However, a drawback of this approach is

that vertices are often shared between multiple polygons, resulting in redundant vertex

data, as is apparent in �gure 4.9. To render the cube in the �gure 4.9, only 8 vertices are
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required, but since each of the 6 faces is rendered with two triangle, a total of 36 vertices

would be required when using this approach. [Dör+19; Vri20]

Figure 4.10: The concept of indexing. VBO in blue, EBO in green.

To address this issue, a common solution is the use of an indexed face-set, which is

a datastructure consisting of two lists � one for the vertices and one for the indices.

The vertices list contains all unique vertices of the mesh, while the indices list contains

the indices of the vertices that form the polygons. In OpenGL, the glDrawElements

function is used to draw indexed meshes It which requires two bu�ers to be bound: The

Vertex Bu�er Object (VBO) for the vertices and the Element Bu�er Object (EBO) for

the indices. [Dör+19; Vri20] Figure 4.10 illustrates the concept of indexing.

Shaders

This section provides an overview of shaders and their role in the rendering pipeline as

detailed by [Vri20].

Shaders are isolated programs that run on the GPU and can be used to render objects.

In OpenGL, they are written in the OpenGL Shading Language (GLSL). Two types of

shaders are required to render an object: Vertex shaders and fragment shaders. See

�gure 4.11 for an overview of the graphics pipeline.

Vertex shaders are executed for each vertex de�ned in the vertex bu�er, which is de�ned

on the CPU and passed to the GPU by copying the data to the GPU's memory, e.g.

by using the glBufferData function. On mobile devices, a separate bu�er is often

not needed, as Android devices usually only have a uni�ed memory architecture, which
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Figure 4.11: Graphics Pipeline. Blue boxes represent programmable stages. The Geom-
etry Shader is optional and not covered in this thesis. Source: [Vri20]

allows for direct access to memory declared on the CPU from the GPU without copying

the data. For example, the Pixel 7 is equipped with a proprietary Google Tensor G2

system-on-chip (SoC) Processor with integrated a Mali-G710 MP7 GPU1 and 8GB of

LPDDR5X RAM2.

The vertex data can contain any attributes of the vertex, such as position, color, texture

coordinates, or normals. The vertex shader is then executed for each vertex and can

be used to transform the vertex position between di�erent coordinate systems, or ma-

nipulate the vertex attributes on a per-vertex basis. To pass data back to the pipeline,

the vertex shader can de�ne out variables. In case of the vertex position, the output

position is passed back to the pipeline by assigning it to the gl_Position variable us-

ing homogeneous coordinates. OpenGL expects the vertex position to be in normalized

device coordinates (NDC), which range from -1 to 1 in all dimensions [Dör+19]:

(x, y, z) ∈ [−1, 1]× [−1, 1]× [−1, 1] (4.12)

All coordinates outside this cube are considered outside the view of the camera and

subsequently clipped, which means they will not be rendered. Note that in other imple-

mentations, the cube might be de�ned with z ∈ [0, 1] [Dör+19]

1Thomas Claburn. Google introduces Pixel 7 phones, related watch and Pixel. url: https://www.
theregister.com/2022/10/06/made_by_google_pixel_phones/ (visited on 07/23/2024).

2Pixel phone hardware tech specs - Pixel Phone Help. url: https://support.google.com/
pixelphone/answer/7158570?hl=en#zippy=%2Cpixel (visited on 07/23/2024).
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The graphics pipline then uses the NDC and performs the perspective divide, which

divides the x, y, and z coordinates by the w coordinate of the homogenous coordinates,

resulting in a reduction of dimension from 4 to 3. Then, the viewport transformation,

which maps the NDC to screen space, parameterized by the screen width and height in

pixels, is performed. Rasterization and interpolation of the vertex positions alongside all

other vertex attributes is then performed across the primitive. The resulting elements

are called fragments. The fragment shader is then executed for each rasterized fragment

of the primitive and is expected to output a color by setting the out vec4 FragColor

variable. The screen position of the fragment and all variables that were passed as out

from the vertex shader can also be accessed in the fragment shader, with their values

interpolated across the primitive. This allows for smooth color transitions or texture

mapping across the primitive. Before the �nal color is written to the framebu�er, a

depth test is performed to determine if the fragment is visible or covered by fragments

from other primitives, in which case it is discarded. [Vri20]

Perspective Projection in OpenGL

As discussed in section 4.2.2, perspective projection is used to simulate the e�ect of

objects appearing smaller the further away they are from the viewer. This transformation

from 3D space to a 2D projection is handled by a projection matrix. In OpenGL rendering

however, the projection matrix does not directly transform from view-space to screen-

space. Instead, an intermediate coordinate system known as clip space is introduced,

as shown in �gure 4.12. Coordinates in clip space are in normalized device coordinates

(NDC), which is a cube with coordinates ranging from -1 to 1 in all dimensions, as

discussed in the previous section.

The projection matrix de�nes a frustum, which, depending on the projection type, can

be a truncated pyramid or a cube, that de�nes the volume of space visible through

the camera lens. In the case of the perspective projection, the frustum is a truncated

pyramid, as shown in �gure 4.13. The parameters of the frustum are de�ned by the

�eld of view, aspect ratio, and near and far clipping planes. Multiplication of the vertex

position with the projection matrix transforms the vertex into clip space. "The projection

matrix [. . . ] also manipulates the w value of each vertex coordinate in such a way that

the further away a vertex coordinate is from the viewer, the higher this w component

becomes" [Vri20]. When the coordinates are later divided by w in the perspective divide,

it results in the desired perspective scaling e�ect. Points closer to the viewer have a
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Figure 4.12: Extension of coordinate systems by clip space. Source: [Vri20]

Figure 4.13: Frustrum de�ned by perspective projection. Source: [Vri20]

smaller w and are less a�ected by the divide, while points further away have a larger w

and are reduced in size more signi�cantly.

4.4.2 Rendering Planes

The RANSAC algorithm provides the parameterization of any detected plane using a

normal vector n and the point p relative the worlds origin. Using OpenGL, a plane

can be rendered by creating two triangles composed of 3 vertices each, with two corner

vertices shared between the triangles. To render a plane from the parameterization, one
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can �rst �nd two arbitrary vectors u and v that are perpendicular to each-other and to

the normal vector n. Using u and v, the four corner vertices of the plane can then be

calculated by adding and subtracting u ∗ size/2 and v ∗ size/2 from the point p.

Calculating an Arbitrary Perpendicular Vector The cross product of two vectors

a and b is a vector that is perpendicular to both a and b, as long as a and b are not

parallel. To calculate an arbitrary perpendicular vector to a given vector n, one can use

any of the 3 basis vectors b1, b2, and b3. Choosing any of the basis vectors that is not

parallel to n will result in a perpendicular vector. To minimize �oating point errors,

which are largest for planes where n almost aligns with the chosen basis vector, the basis

vector with the smallest dot product with n can be chosen. The normalized cross product

of two vectors n and bsmallest then yields a perpendicular vector to n.

Figure 4.14: Rendered RANSAC plane with size of 2 · 2m

4.4.3 Constraining Planes to the Area Where the Points Are Located

As surfaces in the real world are not in�nite, the planes detected by the RANSAC

algorithm should also be constrained to a �nite area. To achieve this, a bounding volume

can be used. A bounding volume is a geometric shape that encloses a set of points or

other shapes, and is often used to simplify collision detection or culling [GE02]. In this
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Figure 4.15: Most commonly used bounding volumes. Source: [GE02]

case the bounding volume will be used to generate a mesh that represents the plane,

constrained to where its points are located. Common bounding volumes include axis-

aligned bounding boxes (AABB), spheres, or oriented bounding boxes (OBB). A more

complex bounding volume is the convex hull, which is the smallest convex polygon that

contains all the points [GE02]. A rubber band can be used to illustrate the concept:

If a rubber band is stretched around a set of points represented by nails in a board,

the convex hull is the shape a rubber band takes when it is released, as illustrated in

�gure 4.20 [De +08]. As the convex hull is the most accurate commonly used bounding

volume, it will be used for constraining the planes going forward.

Figure 4.16: Rubber band analogy for the Convex Hull. Source: Wikimedia Commons
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Convex Hull Algorithms

There are many algorithms available for calculating the convex hull, as it is a well-known

problem in computational geometry. This section will mainly cover the Graham Scan.

For a more comprehensive overview of available algorithms, see [De +08] section 1.4.

In 1972 [Gra72] proposed an algorithm to calculate the convex hull of n points in

O(n log n) time, the Graham's Scan. The Graham Scan algorithm begins by selecting

the point with the lowest y-coordinate (or the leftmost point in the case of a tie). Note

that the original paper describes using the center of the points as the starting point, but

common implementations use the lowest y-coordinate3,4 � the core concepts remain the

same. After selecting the starting point, it then sorts the remaining points in ascending

order of their polar angles relative to the starting point. If two points have the same

polar angle, only the farthest point is kept. Finally, it iteratively considers each point

in the sorted order and determines whether it makes a clockwise or counterclockwise

turn relative to the previous two points on the convex hull. If it makes a clockwise, the

algorithm removes the previous point from the convex hull and repeats the process until

all points have been considered.

(a) PAB are counter-
clockwise, A is kept

C

(b) BCD are clockwise,
C is removed

(c) ABD are clockwise,
D is kept, resulting
hull

Figure 4.17: Example of the Graham Scan algorithm applied to a set of points. Source:
Wikimedia Commons

[And79] later proposed a variation of the algorithm called the monotone chain in 1979,

which sorts the points by their x-coordinate and y-coordinates instead of their polar

angle. It then constructs the upper and lower hulls separately, which are then merged to

form the convex hull.

3Graham scan. In: Wikipedia. Page Version ID: 1219560976. Apr. 18, 2024.
4Convex Hull using Graham Scan. GeeksforGeeks. Section: DSA. July 24, 2013. url: https:
//www.geeksforgeeks.org/convex-hull-using-graham-scan/ (visited on 06/22/2024).
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Figure 4.18: Upper and lower hull of Andrew's monotone chain algorithm. Source: [De
+08]

More recent algorithms like Chan's algorithm [Cha96] combine the Graham Scan with

other techniques to solve the problem in O(n log h) time, where h is the number of points

of the convex hull. Thus, in case h is much smaller than n, these algorithms are faster

than the Graham's Scan.

For the purpose of this thesis, the Chan's algorithm would be the most e�cient choice,

as the number of points of the convex hull is expected to be much smaller than the total

number of points. However, as Chan's algorithm is more complex to implement and

the performance impact of the convex hull algorithm is small compared to running the

RANSAC algorithm, Andrew's Monotone Chain Algorithm is used instead.

Rendering Planes Constrained by the Convex Hull

To render a plane constrained by the convex hull, a triangle mesh can be created with

triangles consisting of two subsequent vertices of the hull and the centroid of the hull as

the third vertex each, as shown in �gure 4.19.

Figure 4.20 shows the result of the convex hull algorithm implemented into the applica-

tion. Prior to detecting the planes, the smartphone has been moved around the scene to

capture the points from di�erent angles.

To make it easier to distinguish between di�erent planes when detecting multiple planes,

as will be shown in the evaluation, section 5.4, the planes are rendered in random colors

by assigning a color vertex attribute to each vertex of a plane.
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Figure 4.19: Triangle mesh for convex hull polygon with 7 vertecies using centroid

(a) Point data (b) Convex Hull

(c) Rendered Primitive

Figure 4.20: Convex Hull with real data
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In this chapter, the individual algorithms, as well as the �nal performance of the combined

system, will be evaluated. First, the depth from motion algorithm will be evaluated based

on di�erent materials and their resulting con�dence maps in section 5.1. Section 5.2

will then evaluate the two point cloud datastructures as described in section 4.2.3. In

section 5.3, the RANSAC algorithm will be evaluated based on synthetic data, as well as

real world data. Finally, in section 5.4.2, the application performance will be evaluated

on the use case of a full room scan. CloudCompare [Dan+], an open-source tool for

working with 3D point clouds, will be used for the evaluation of the point clouds and the

RANSAC algorithm.

5.1 Depth from Motion

As the depth from motion algorithm greatly di�ers in its performance based on the

amount of texture in the captured scene [Goo], this section will evaluate di�erent mate-

rials based on their resulting con�dence maps, as retrieved from the ARCore Raw Depth

API. In �gure 5.1, the con�dence maps of di�erent materials are shown - the camera

image on top, the con�dence map on the bottom.

In �gure 5.1b and 5.1a, the con�dence maps of a wall at di�erent distances is shown. It

is apparent that the con�dence map of the wall at 1.5m distance is almost completely

black, meaning low con�dence. This is due to the lack of any texture on the wall at

this distance. When moving closer to the wall, the structure of the wall becomes more

apparent and the con�dence increases greatly.

In �gure 5.1c, a carpet with a lot of texture is shown, the resulting con�dence map has

fairly high con�dence on average, but also has dark sports throughout the map. This

could be a result of the repetitive pattern of the carpet.
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(a) Wall, 1.5m (b) Wall, 0.5m (c) Carpet (d) Wooden �oor

(e) Leather armchair (f) White furniture (g) Bathroom tiles (h) Gift paper

Figure 5.1: Comparison of con�dence maps of di�erent materials. Camera image on top,
con�dence map on bottom.

The highest con�dence of all tested materials is achieved on a wooden �oor, as shown

in �gure 5.1d. This can be attributed to the high amount of texture and value variance

throughout the wood, while not being repetitive. The seams between the wooden planks

are also clearly visible.

Figure 5.1e shows a leather armchair, which has high con�dence on the seams of the

chair and creases of the leather, with low con�dence in other areas, where the leather

is smoother. A similar pattern is visible on white furniture and bathroom tiles, in �g-

ures 5.1f and 5.1g respectively, where the white surface has very low con�dence, while

the seams between the surfaces have increased con�dence. The gift paper shown in �g-

ure 5.1h shows a similar e�ect, but less pronounced. As the surface itself is striped with

dots randomly placed throughout, the con�dence is higher overall, but the striped pattern

is still visible in the con�dence map, as the stripes themselves contain little texture.

These examples show how the amount of texture on a given surface greatly in�uences the

con�dence of the depth from motion algorithm, as expected. The algorithm performs
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best on surfaces with high texture, while struggling with low texture surfaces. Small

repetitive patterns can also lead to low con�dence, as visible in the carpet example. It

is also important to note that the texture captured by the camera is important, not

the texture of the material itself. This can be seen in the �rst example of the wall:

When capturing from afar, the cameras resolution is too low to capture the texture,

but when moving closer to the wall, the texture of the wall becomes more apparent

and the con�dence increases. Lighting conditions will also in�uence the con�dence of

the algorithm, as angled light will create shadows that will increase the texture of the

surface [Goo] (not shown in the comparison).

5.2 Point Clouds

This section will evaluate the two point cloud datastructures as described in section 4.2.3.

To evaluate the datastructures, the point cloud is transferred from the mobile application

to a computer using a simple HTTP server with a single endpoint, that accepts a �le

using a POST request and saves it to disk. The Android application will then stream

the point cloud data, serialized as a PLY �le, to the server on a push of a button. A

PLY �le is a simple �le format for storing 3D point cloud data in plain text and allows

for saving custom properties for each vertex, such as the con�dence value of the point.

In all the following images of the point clouds, the con�dence value is color-coded, with

green being high con�dence and red being low con�dence.

Listing 5.1: Example PLY �le

ply

format a s c i i 1 . 0

element ver tex 6

property f l o a t x

property f l o a t y

property f l o a t z

property f l o a t con f idence

property uchar red

property uchar green

property uchar blue

end_header

0 .1851168 =0.77074146 =0.92582846 1 .0 0 255 0
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=0.061887983 =0.7755803 =0.79551744 1 .0 0 255 0

=0.058628604 =0.7638883 =0.7860476 0.80784315 245 10 0

=0.07720285 =0.75610626 =0.80394375 0.81960785 230 25 0

=0.19774273 =0.6645372 =2.5003948 1 .0 0 255 0

=0.09499544 =0.028413996 =2.553247 0.99607843 5 250 0

(a) Color image of setup (b) Captured point cloud (c) Segmented point cloud

Figure 5.2: Test setup for capturing point clouds

For test data, a cube wrapped with the same gift-paper as in �gure 5.1h is used, called

test cube from now on. The bottom of the test cube is hollow, so in total, 5 faces are

visible. The cube is propped up on stand, to allow for easy segmentation of the point

cloud later on, in order to remove the �oor and other objects from the point cloud.

Reproducibility is ensured by using controlled lighting conditions and a �xed setup. To

capture a scan of the test cube, the camera is moved around the cube 3 times, while also

moving the camera up and down, to capture multiple angles for the depth from motion

algorithm to work to its full potential. The full setup is shown in �gure 5.2.

5.2.1 Quantization Octree vs. Epsilon Octree

A point cloud with a resolution of s = 0.005m or 5mm is captured for both the quanti-

zation octree and the epsilon octree. In the resulting segmented point cloud, the quanti-

zation octree has a total of about 90.000 points, while the epsilon octree only has about

20.000 points. This can be explained due to the quantization octree always ending up with

the maximal resolution with enough data added, as it is functionally a three-dimensional

grid. The epsilon octree, on the other hand, will only add points that are within the

epsilon threshold of the current point, which means that gaps between points are at least

epsilon wide, but can be wider. For example, if two points almost 2 epsilon apart, no
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points will be added between them and the gap will be approximately 2 epsilon wide. As

epsilon is set to s, the epsilon octree will have fewer points than the quantization octree

with the same resolution. To compare the two datastructures, the quantization octree

will be used with a lower resolution of s = 0.010m, which results in a number of points

of about 22.000, which is comparable to the epsilon octree at s = 0.005m.

Figure 5.3 shows the raw and segmented point clouds of both datastructures. From

inspecting the raw point cloud visually, it is apparent that the quantization octree has

a higher amount of noise. While the cube is easily recognizable in the point cloud of

the epsilon octree, the point cloud of the quantization octree has a lot of noise around

the cube. The quantization octree also has more low-con�dence points than the epsilon

octree. This is due to the quantization octree always adding points to the cloud that

fall within the threshold, while the epsilon octree only adds / updates points based on a

condition that takes the con�dence of the point into account and ignores lower con�dence

points that are close to higher con�dence points. As such, the epsilon octree improves

the accuracy of the point cloud when new, higher con�dence points are added.

(a) Quantization Octree, s = 0.010m (b) Epsilon Octree, s = 0.005m

Figure 5.3: Comparison of Quantization Octree and Epsilon Octree. Raw point cloud on
top, segmented on bottom.
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To calculate statistics on the point clouds, the real box is measured and a primitive

box with matching dimensions is created in CloudCompare. Using the �ne registration

(ICP) feature, it is possible to align the point clouds to the primitive box. The underlying

algorithm of the �ne registration feature is the Iterative Closest Point (ICP) algorithm,

which iteratively minimizes the mean square distance between a "model" shape and a

"data" shape [BM92]. Once the point clouds are aligned to the primitive, the distance

between the points of the point cloud and the primitive box can be calculated using the

Cloud/Mesh Distance feature in CloudCompare. The result of this calculation can be

seen in �gure 5.4. From the histogram, it is apparent that the quantization octree has

higher noise than the epsilon octree. This can also be seen in the standard deviation,

which is 0.022 for the quantization octree and 0.011 for the epsilon octree. This con�rms

the �rst suspicion from visual inspection of the point clouds. The mean distance is also

higher for the quantization octree, with 0.0046 compared to 0.0011 for the epsilon octree.

This can be understood as points being 0.5cm and 0.1cm away from the real surface in

mean, respectively. If these points were to be used for primitive detection, this would

indicate how far o� the detected primitives would be from the real surface.

These results suggest that the epsilon octree is an improvement over the quantization

octree in terms of accuracy, both when it comes to the amount of noise and the distance

to the real surface. As such, the epsilon octree will be used for following evaluations.

(a) Quantization Octree (b) Epsilon Octree

Figure 5.4: Histogramm of distances between segmented point cloud points and primitive
mesh
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5.3 RANSAC Algorithm

In this section, the RANSAC algorithm will be evaluated based on a model of a cube, �rst

using synthetic data in section 5.3.1 and then using real world data in section 5.3.2.

5.3.1 Tests on Synthetic Cube

A unit cube will be used as a test object to evaluate the RANSAC algorithm. The cube

has been generated with a side length of 1 and a sampling rate of 0.01. This would

equate to a cube with a side length of 1m and a distance of 1cm between points in the

real world, which is comparable to what was used in section 5.2.1.

Resilience to Noise

In �gure 5.5, the unit cube is shown with varying noise levels using gaussian noise. The

noise level is de�ned as the standard deviation of the noise added to the points.

With a noise level of 0.01, the cube is perfectly reconstructed. Increasing the noise level

to 0.02, the cube is still recognized mostly correctly. Starting from noise level to 0.03, the

default parameters do not yield correct results. To achieve correct results, the epsilon

parameter of the RANSAC algorithm has to be increased to 0.2. This leads to 6 faces

being recognized correctly, but some points not being assigned to the correct faces, as

the with each primitive extraction pass, points are extracted that lie within 0.2 of the

recognized plane.

Resilience to Missing Data

As a big problem of depth from motion techniques is the lack of depth information in

areas with minimal texture, the resilience to missing data is crucial. In �gure 5.6, points

towards the center of the cubes surfaces have been removed. This mimics the structure

of real world data from the Depth API, as edges are often detected more accurately than

surfaces, as visible in the con�dence maps of the bathroom tiles and white furniture

in �gure 5.1. To simulate this e�ect, points have been removed with an increasing

probability based on the quadratic distance to the center of the face the points belongs

to.
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(a) Noise level 0.00 (b) Noise level 0.01 (c) Noise level 0.02 (d) Noise level 0.03

Figure 5.5: Unit cube with varying noise level

The algorithm is able to correctly recognize the faces of the cube with a missing level

up to 24. With a missing level of 48, the algorithm still detects the planes, but doesn't

assign all points to the faces. With increasing missing level, the n parameter, which

de�nes the minimum number of points required to �t a primitive, is also required to be

lowered. In real world applications this would lead to more false detections, primitives

being detected where there are none.

(a) Missing level 6 (b) Missing level 12 (c) Missing level 24 (d) Missing level 48

Figure 5.6: Unit cube with varying missing level

48



5 Evaluation

Resilience to Noise and Missing Data Combined

When combining both noise and missing data, the quality of the detection is much worse.

In �gure 5.7, the cube is shown with a noise level of 0.01 and varying missing levels. With

noise level 0.01 and missing level 6, the cube is still recognized correctly. With missing

level 12, more than 6 faces are being recognized, but all the points are still assigned to

primitives. This might be due to the shapes not being recognized as connected shapes,

which causes the algorithm to only �t the largest connected component of the points and

will create a new parameterization for the remaining points. To achieve results with a

missing level of 24, the epsilon parameter had to be increased to 0.015 to achieve any

results at all. As visible from the �gure, the cube is not recognized correctly, with only

small parts of the cube being recognized. When increasing the noise level to 0.02, the

algorithm yields no satisfactory results with any missing level, even with tweaking the

parameters.

(a) Missing level 6 (b) Missing level 12 (c) Missing level 24

Figure 5.7: Unit cube with noise level = 0.01 and varying missing level

5.3.2 Tests on Real World Data

Figure 5.8 show the results of the RANSAC algorithm on the dataset created with the

epsilon octree, as seen in �gure 5.3b. Note that CloudCompare uses AABBs to represent

the planes, instead of the convex hull as used in the application. In the segmented dataset,

the cube is recognized correctly, with all 5 faces being recognized. In the raw dataset,
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the faces of the cubes are still recognized, but the algorithm also recognizes other planes

in the dataset, some of which contain a subset of the points of the cube. This shows a

limitation of the RANSAC algorithm, which is similar to [TLG07] �ndings, where plane

primitives are constructed from points which do not belong to the same plane. [SWK07]

solution to this problem is using a bitmap to detect connected shapes, as mentioned

in section 4.3.1. Only the largest connected shape in a given shape candidate is kept.

As the points that are not part of the largest connected shape are kept in the dataset,

the algorithm will still consider them in the next iterations. However, if the resulting

separate primitives then do not cross the support threshold, they are �ltered out. In

other words, the bitmap epsilon parameter β can be used to adjust the resolution of the

bitmap, with higher values leading to shapes being detected as separate shapes quicker,

while the minimum support threshold n can be used to �lter out shapes that are not

supported by enough points.

(a) Segmented dataset, default parameters

(b) Raw dataset, n = 400, ϵ = 0.024, β = 0.047 (c) Raw dataset, n = 400, ϵ = 0.024, β = 0.005

Figure 5.8: RANSAC results on real data set collected using the epsilon octree
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In the case of the dataset visible in �gure 5.8, the default value of the bitmap epsilon

parameter was set to β = 0.024. Ideally, the bitmap epsilon parameter would be set to

the sample resolution of the dataset [SWK07]. When raising the resolution to β = 0.005,

the detection results of the cube are improved, while still detecting some artifacts that

shouldn't be detected. With these parameters, the planes in the background are also no

longer detected, as their e�ective sampling resolution is too low, which causes them to be

detected as many separate shapes that do not cross the support threshold. This shows

that applying the algorithm to a dataset with vastly varying sampling resolutions will

lead to suboptimal results, as the parameters need to be set for the whole dataset. This is

problematic for the use case in combination with the depth from motion algorithm, as the

Raw Depth API will have low con�dence in areas with low texture, which will cause lower

sampling rates, or completely missing data, which will in turn lead to connected shapes

not being present and being �ltered out. It is therefore di�cult to �nd a parameterization

for the algorithm that �ts both highly textured and low-textured objects.

5.4 Application Performance

This section will evaluate the combined performance of the application, �rst on the test

cube, then on a full room scan.

5.4.1 Test Cube

Figure 5.9 shows the results of a scan of the test cube under the same procedure as in

section 5.2 with varying sample resolution s. Note that the point cloud is not segmented in

the application, thus other planes (namely the �oor) are also detected in the background.

The parameters used aside from s will be discussed after describing the results.

With an epsilon octree resolution of s = 0.015, one of the faces is merged with points from

the stand the cube is placed on. Starting with a resolution of s = 0.010, all the 5 faces are

recognized correctly and the convex hull algorithm correctly creates a matching polygon

for each face, with small gaps between the faces. Increasing the resolution further to

s = 0.005 improves the accuracy of the edges of the planes slightly. While there are no

longer gaps between the faces, some amount of clipping is now visible in the polygons.
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(a) s = 0.015, n ≈ 60.000

(b) s = 0.010, n ≈ 125.000

(c) s = 0.005, n ≈ 250.000

Figure 5.9: Detection results of the test cube using the mobile application
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Using a trial-and-error approach, the parameters of the RANSAC algorithm were ad-

justed to achieve the best trade-o� between performance, the amount of detected planes

and noise. The �nal parameters used are:

� 0.010 ≥ s ≥ 0.005 � The resolution of the epsilon octree. Higher resolutions

than 0.005 lead to a signi�cantly higher amount of points and thus worse runtime

performance without noticeable improvements in the detection results, while lower

resolutions than 0.010 lead to visibly worse results, with outliers having a bigger

impact on the detection results, as visible in �gure 5.9a.

� n =
(
1
s

)2 ·0.152 = 900 � The minimum number of points required to �t a primitive.

Equal to the amount of points on a 15cm2 plane, if uniformly sampled with s.

Realistically, this number will be lower, as the points are scattered across the normal

of the plane. However, the epsilon octree also has a lower actual resolution than s,

as discussed in section 5.2.1, which should cancel out the e�ect. The calculation is

only a rough estimate and proved to show good results.

� ϵ = 0.022 � The epsilon parameter of the RANSAC algorithm. Lower values

lead to planes being detected as multiple planes along the planes normal. This

parameter varies depending on noise of the data. Two standard deviations contain

95.5 percent of all data, which is used as a starting point. As the epsilon octree

showed a standard deviation of 0.011, a value of 0.022 is chosen and shows good

results.

� β = 1.5s � The epsilon parameter of the bitmap. As discussed in 5.3.2, settings

this parameter is a trade of between detecting shapes that have missing data and

�ltering out shapes that are not connected in reality. 1.5s is a rather strict value

that �lters out most shapes with gaps in their data due to missing texture, however

it greatly reduces the amount of artifacts.

Other parameters are kept at their default values. As all parameters except ϵ are relative

to s, it should be easy to adapt the parameters to di�erent devices that might o�er depth

maps with other accuracies - only the resolution of the epsilon octree has to be adjusted.

As for ϵ, the parameter needs to be adjusted based on the noise level of the data, which

might vary based on the device and the lighting conditions.

As for runtime performance, the device remains responsive with ϵ ≥ 0.005, however

it heats up quickly and the application experiences a signi�cant slowdown after a few
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scans. This is due to both the creation of the point cloud using the epsilon octree and

the RANSAC algorithm being very computationally expensive.

5.4.2 Full Room Scan

For a full room scan, the device is moved around the room in a similar fashion as described

in section 5.2. The room is scanned from multiple angles to capture all surfaces. In

total, about 500.000 points are collected and processed by the RANSAC algorithm. The

processing time of the RANSAC algorithm is about two minutes, which is signi�cantly

longer than for the test cube. Figure 5.10 shows the results of a full room scan. In

general, the results can be described as mixed. The walls and �oor are mostly recognized

correctly, while some parts of them are missing. The decent results on the wall can be

explained by the lighting conditions, as the walls are lit from a window at an angle,

which creates shadows that increase the texture of the wall. In contrast, white furniture

is almost not recognized at all, as the low texture of the material leads to missing data.

When it comes to smaller objets, the algorithm struggles to correctly recognize them as is

visible from the capture of the desk, where artifacts are visible in the detection results.

In conclusion, the application is able to detect primitives in a full room scan, however

the results are not su�cient to build a full mesh of the room. The processing time of the

RANSAC algorithm is also too high to be used in most real-time applications.
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Figure 5.10: Detection results of a full room scan using the mobile application. s =
0.010, n ≈ 500.000
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This thesis introduced a system for detecting primitives in a point cloud generated from

depth data obtained from the Google ARCore API. The system utilizes a custom octree

implementation to e�ciently store and update the point cloud information in real time,

that is then used to detect planes using the RANSAC algorithm. The resulting planes are

then used to construct a triangle mesh representing their convex hulls, which is overlaid

onto the camera feed.

The system demonstrates high accuracy in detecting planes and constructing meshes

for highly textured objects, such as the test cube. However, the data quality of the

Depth API with low-textured objects like white furniture prove to be a challenge for the

system, as the depth data for these materials contains gaps, resulting in artifacts in the

detection results. Mitigating these artifacts requires increasing the bitmap resolution,

but this approach causes lower-textured materials to go undetected. For these reasons,

the system is not suitable for creating a full mesh-representation of a scene.

Nevertheless, the system developed in this thesis provides a solid foundation for further

research and development in processing depth data from ARCore or similar APIs to create

meshes from a scene. One major limitation is missing datapoints in the data obtained

through the Depth from Motion technique used by ARCore. Therefore, evaluating the

use of interpolated data from the Full Depth API and its potential for improving the

results of the RANSAC algorithm would be worthwhile. Exploring the data quality of

di�erent devices, with and without depth sensors, and its impact on the performance

of the primitive detection algorithm would also be an interesting direction for future

research.

Testing di�erent primitive detection algorithms is another area for further research.

Chapter 2 provides an overview of various primitive detection algorithms, while [KYB19]

provides an extensive survey of algorithms specialized for di�erent contexts and applica-

tion. The design of the system allows for easy integration of di�erent algorithms without
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a�ecting other components and the ability to collect point data with a smartphone and

transfer it to another device makes it easy to evaluate and compare di�erent algorithms

on real data collected from the Depth API. As a concrete example, [KYB19] lists that

the Hough Transform is more robust to incomplete data than RANSAC. Consequently,

it would be valuable to investigate whether the Hough Transform is more suitable for the

depth data obtained from the Depth API.

As far as expanding the system, implementing the ability to detect more complex prim-

itives, such as cylinders and spheres, would be a logical next step. Addressing the issue

of data quality also opens up opportunities for further research, such as automatic seg-

mentation, classi�cation, and labeling of objects in a scene.
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