
BACHELOR THESIS
Andrea Minguez Angulo

Design and implementation of
a Flutter-based mobile App for
SCRUM project management

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of European Computer Science
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Stefan Sarstedt
Supervisor: Prof. Dr. Ulrike Steffens

Submitted on: 03. August 2023

Andrea Minguez Angulo

Design and implementation of a Flutter-based
mobile App for SCRUM project management

Andrea Minguez Angulo

Title of Thesis

DESIGN AND IMPLEMENTATION OF A FLUTTER-BASED MOBILE APP FOR
SCRUM PROJECT MANAGEMENT

Keywords

SCRUM, Task Management, Scrum Master, Product Owner, Developer, Sprint, Mobile
App, User Interface (UI), Flutter, Widget, Firebase.

Abstract

This thesis focuses on the design and implementation of Scrumer, a mobile application
aimed at supporting agile project management using the Scrum framework. The objective
of this research is to develop an intuitive and user-friendly mobile app that facilitates
efficient collaboration and task management within Scrum teams, while also providing an
introduction to the Scrum framework for users who utilize Scrumer for personal use.

The study begins with an analysis of existing project management apps, both related and
unrelated to Scrum. Based on this analysis, Scrumer is developed, incorporating Scrum
principles while offering flexibility for regular users and those involved in Scrum teams.

The functional requirements of Scrumer are defined, including user registration and login,
project creation and management, task creation and collaboration, and sprint planning.
Non-functional requirements, such as cross-platform compatibility, responsive design, and
intuitive user interfaces, are also considered.

The development phase includes the analysis, design implementation and evaluation of
the app. The analysis process defines the class architecture and identifies the use cases.
This is followed by the design process, where the system architecture, user interface, and
logo of Scrumer are created. The implementation of the system architecture and user
interface design successfully meets the established requirements, resulting in a functional
task management app.

The results of this research demonstrate that Scrumer effectively addresses the needs of
Scrum teams by providing a comprehensive set of features for efficient task management,
collaboration, and progress tracking. The user-friendly interface and intuitive design of
the app contribute to improved productivity and user satisfaction within Scrum teams,
as well as for new users adopting a more flexible Scrum framework.

iii

Table of Contents

List of Figures ix

List of Tables xi

I Prologue 1

1 Introduction 2
1.1 Motivation . 2

1.1.1 Why make an App? . 2
1.1.2 Why make an App for SCRUM Project Management? 2
1.1.3 Why make a Mobile App? . 3

1.2 Goals . 4
1.3 Impact . 5
1.4 Development Methology . 5
1.5 Document Structure . 6

2 Context 7
2.1 SCRUM . 7

2.1.1 Large Scaled SCRUM . 10
2.2 Scrumer: our App adapted to the Scrum Rules 11
2.3 State of the Art . 12

2.3.1 Scrum App . 13
2.3.2 Vivify Scrum . 15
2.3.3 Todoist . 16
2.3.4 Comparison . 18

iv

Table of Contents

II Development 20

3 Requirements 21
3.1 Functional Requirements . 21
3.2 Non functional Requirements . 23

4 Analysis 24
4.1 Use Case Model . 24
4.2 Class Model . 24
4.3 Analysis of each Use Case . 25

4.3.1 Register as Scrum Team User . 26
4.3.2 Register as Normal User . 26
4.3.3 Login with Email and Password . 27
4.3.4 Register and Login With Google account 28
4.3.5 Reset Password . 28
4.3.6 Edit Profile . 28
4.3.7 Create Project . 28
4.3.8 Join Project . 29
4.3.9 Edit Project . 29
4.3.10 Abandon Project . 29
4.3.11 Delete Project . 30
4.3.12 Create Sprint . 30
4.3.13 Edit Sprint . 30
4.3.14 Get tasks completed . 30
4.3.15 Edit Task . 31
4.3.16 Create Task . 31
4.3.17 Add task to sprint . 31
4.3.18 Remove task from sprint . 31
4.3.19 Delete Task . 32

5 Design 33
5.1 System Architecture . 33

5.1.1 User . 33
5.1.2 Authentication Database . 33
5.1.3 App Database . 34
5.1.4 Image Cloud Storage . 34

5.2 UI Design . 35

v

Table of Contents

5.3 Logo Design . 38

6 Implementation 40
6.1 Build environment . 40

6.1.1 Flutter . 40
6.1.2 Firebase . 42

6.2 Source Code Structure . 43
6.3 Save and Retrieve Data on Firebase . 46

6.3.1 toMap and fromMap methods . 46
6.3.2 firebase_service.dart methods . 47
6.3.3 User Class . 49
6.3.4 Project Class . 50

6.4 Refresh Data from Database . 51
6.4.1 Initial Retrieve method . 51
6.4.2 Subscription to updates . 51

6.5 Responsive Implementation . 52
6.6 Authentication . 52

6.6.1 Authentication Service: Authenticate with Google 54
6.6.2 Login Page . 55
6.6.3 Choose Registration Page . 58
6.6.4 Reset Password Page . 60
6.6.5 Registration for work user . 61
6.6.6 Registration for normal user . 64

6.7 Home Page . 65
6.8 Project . 66

6.8.1 ProjectPage . 66
6.8.2 CurrentProjectTile widget . 67
6.8.3 ContainerAddProject widget . 72
6.8.4 DialogCreate widget . 74
6.8.5 DialogJoin widget . 75
6.8.6 DialogCreateJoin widget . 76
6.8.7 DialogEditAbandon widget . 76
6.8.8 DialogEditDelete widget . 77
6.8.9 OtherProjectTile widget . 78

6.9 Product Backlog . 79
6.9.1 ProductBacklogPage . 79

vi

Table of Contents

6.9.2 DialogCreateTask widget . 80
6.9.3 selectToShow method . 82
6.9.4 ContainerAddTask widget . 82
6.9.5 ContainerTasks widget . 83
6.9.6 TaskTile widget . 83
6.9.7 DialogEditTask widget . 87

6.10 Sprint . 88
6.10.1 SprintPage . 88
6.10.2 CountdownTimerContainer widget 89
6.10.3 SprintInfoContainer widget . 91
6.10.4 selectToShow method . 92
6.10.5 ContainerAddSprint widget . 92
6.10.6 DialogCreateSprint widget . 93
6.10.7 CurrentSprintTile widget . 95
6.10.8 DialogEditSprint widget . 95
6.10.9 ContainerGetTasksInPBacklog widget 96
6.10.10ContainerTasks widget . 96

6.11 Profile . 98
6.11.1 ProfilePage . 98

6.12 Logo . 101

7 Evaluation 102
7.1 Strategy . 102
7.2 Unitary Tests . 103
7.3 Functional Evaluation . 104

7.3.1 Functional Requirements for Users (FR01 to FR06) 104
7.3.2 Functional Requirements for Projects (FR07 to FR08) 106
7.3.3 Functional Requirements for Projects (FR09 to FR17) 106
7.3.4 Functional Requirements for Current Sprint (FR18 to FR21) . . . 109
7.3.5 Functional Requirements for Tasks (FR22 to FR24) 109

7.4 Non-Functional Evaluation . 110
7.5 Acceptance Testing . 112

vii

Table of Contents

III Epilogue 113

8 Conclusion 114
8.1 Goals achieved . 114
8.2 Lessons learned . 116
8.3 Future work . 116
8.4 Personal Conclusion . 117

IV License and Bibliography 118

9 License Information 119

Bibliography 123

viii

List of Figures

2.1 Scrum App. Interface with all of the projects 13
2.2 Scrum App. Interface with information of each project 14
2.3 Scrum App. Interface to share a project 14
2.4 Vivify Scrum. Interface with all of the projects 15
2.5 Vivify Scrum. Interfaces to add a member to a project 16
2.6 Vivify Scrum. Interface to display Product Backlog 16
2.7 Todoist. Interface with all of the tasks . 17
2.8 Todoist. Interface with the main menu . 17

4.1 Use Case Model Part I . 25
4.2 Use Case Model Part II . 26
4.3 General Class Model . 27
4.4 Database Model . 27

5.1 Design. Context Diagram . 34
5.2 Design. Authentication UI . 35
5.3 Design. Product Backlog UI . 36
5.4 Design. Sprint UI . 37
5.5 Design. Project UI . 37
5.6 Design. Profile UI . 38
5.7 Design. Logo Sketches . 39
5.8 Design. Scrumer Logo . 39

6.1 Code Structure . 44
6.2 Lib folder Structure . 45
6.3 Models folder Structure . 45
6.4 Authentication sub-folder Structure . 53
6.5 Login UI . 56
6.6 Login: Register First message . 58

ix

List of Figures

6.7 Choose Registration UI . 59
6.8 Reset Password UI . 60
6.9 Register Work User UI . 62
6.10 Register Normal User UI . 65
6.11 Project sub-folder Structure . 67
6.12 Project UI . 68
6.13 Project QR UI . 69
6.14 Project Team Members UI . 70
6.15 Project Sprint Information when there is no Sprint UI 71
6.16 Project Sprint Information when there is a Sprint UI 72
6.17 Add Project when the user does not have projects UI 73
6.18 Dialog to add a Project UI . 73
6.19 Dialog to edit a Project UI . 77
6.20 Other Projects UI . 78
6.21 ProductBacklog sub-folder Structure . 79
6.22 Product Backlog UI . 80
6.23 Dialog create Task UI . 81
6.24 Add Task when the project does not have tasks UI 83
6.25 Tasks displayed on the Product Backlog UI 84
6.26 Task comment section UI . 85
6.27 Task actions UI . 86
6.28 Dialog edit Task UI . 87
6.29 Sprint sub-folder Structure . 88
6.30 Sprint UI . 89
6.31 Sprint Countdown UI . 90
6.32 Sprint Report UI . 91
6.33 The project does not have a sprint UI . 93
6.34 Dialog create Sprint UI . 94
6.35 Dialog edit Sprint UI . 96
6.36 Sprint without tasks UI . 97
6.37 Sprint with tasks UI . 97
6.38 Profile sub-folder Structure . 98
6.39 Normal User Profile UI . 99
6.40 Profile UI . 99
6.41 Edit Profile UI . 100

x

List of Tables

2.1 State of the Art Comparison: Scrum App, Vivify Scrum and Toist. 18

3.1 User Types Requirement . 21

xi

Part I

Prologue

1

1 Introduction

To develop our app effectively, we need to establish its underlying motivation and define
clear goals for the project. Additionally, analyzing the potential impact of the app is
essential. Finally, we need to outline the structure of the development process and of the
document by establishing a methodology.

1.1 Motivation

1.1.1 Why make an App?

Since I began studying software engineering, I have always had a strong desire to develop
a project from scratch to showcase the skills I have learned. My interest in the world of
app development has consistently grown, along with its potential.

1.1.2 Why make an App for SCRUM Project Management?

As I learned about SCRUM methodologies, I started applying them not only for team-
work at university, but also for personal projects and daily tasks. Implementing time
management using sprints significantly improved my task management efficiency.

The idea of having this methodology available on our mobile phones interested me. I
realized that it could benefit not only professionals working within the SCRUM frame-
work but also individuals across various domains, even for personal projects unrelated to
work.

Therefore, the motivation behind developing this app stems from the need to provide
users with an efficient tool to manage their tasks within the SCRUM project management
framework. The key motivations are as follows:

2

1 Introduction

• Make task Management productive: By using the SCRUM methodologies such as
user roles and sprints, the app will provide a different way of managing tasks,
making it more organized and time-focused.

• Make collaboration a key element: By allowing multiple users to work on the same
project, the app will facilitate teamwork. Features such as real-time updates and a
comment section for each task will enable seamless collaboration and communica-
tion among team members.

• Make an innovated Task Management system for all Users. The app will feature
an easy-to-use interface, making it accessible to both users within the SCRUM
framework and casual users. It aims to provide an innovative and user-friendly task
management experience, regardless of users’ familiarity with SCRUM.

1.1.3 Why make a Mobile App?

The motivation behind developing a mobile app stems from the need for a task manage-
ment tool that is always available and easily accessible to users.

The advantage of having a mobile app instead of relying solely on a web-based platform
is the ease and speed with which users can access and update their tasks. For instance,
users could quickly check the progress of tasks within a sprint by simply opening the app
on their phones, eliminating the need to access a website and log in to perform a swift
check.

By developing a mobile app, we can provide a seamless and user-friendly experience,
enabling individuals to effortlessly manage their tasks, track progress, and stay organized;
minimizing the time and effort required to manage their tasks.

This accessibility aligns perfectly with the fast-paced modern life, allowing users to effi-
ciently handle their workload or personal projects anytime, anywhere.

Furthermore, by utilizing the features of mobile devices, such as the camera, our app can
offer additional functionalities that enhance the user experience. For instance, integrating
QR code reading or photo-taking capabilities.

Therefore, providing a mobile app offers the best solution for users of our app.

3

1 Introduction

1.2 Goals

In this thesis, two main goals are crucial for the project’s success:

• Successful App Design and Implementation: The primary goal is to successfully
design and implement the app, ensuring its functionality, usability and reliability.

• Detailed Documentation: In parallel with the app development, a comprehensive
and professional documentation process will be followed. The goal is to provide a
detailed insight into the development process, methodologies used, decisions made
and the final conclusions.

To achieve the goal of successful app design and implementation, the following specific
goals have been identified:

• Requirement analysis: conduct a profound analysis of the app’s requirements con-
sidering all target users.

• Design: conduct a design for the App regarding the user interface, logo and overall
architecture.

The UI design should be intuitive, visually appealing, and aligned with the guide-
lines for a positive user experience.

The logo design should be representative of the app’s purpose and brand identity.

The architecture design should consider factors such as the different users on the
App, future new features, performance and maintainability.

• Implementation:develop the app based on the established design and requirements.
This process involves writing the code, establishing the database, utilizing the ap-
propriate packages and implementing the App’s functionalities.

• Evaluation: Evaluation of the App, to observe if all of the requirements are met.

• Final result: working App with an intuitive user interface.

4

1 Introduction

1.3 Impact

The expected impact of the App, is solely aimed at the User. The goal is to answer to
the question: "How does the use of the App affect the productivity of Task Management
within a Scrum cycle?"with a positive response, making an actual change in users daily
life.

We want to change the way the tasks are being managed by making it more productive,
allowing the user to instantly check the SCRUM cycle state and make instant updates,
which other users on the project can also instantly see.

Moreover, within the SCRUM cycle, we want to apply customized features for specific
roles. For instance, special attention is given to the Scrum Master role to simplify his/her
responsibilities and make project management easier.

Finally, we want to pay special attention to the type of user that is not on a SCRUM
project, and it is first introduced to the methodology on this App. We want to have an
impact (with the help of the SCRUM framework) on the way he/she structures his/her
tasks and work.

1.4 Development Methology

For the development methodology, we utilize a hybrid approach to project management,
combining Waterfall and Scrum methodologies. This approach is often referred to as
"Water-Scrum-Fall."

In Water-Scrum-Fall, the overall project follows a Waterfall methodology, following a
sequential and linear progression of phases. The phases followed are:

1. Requirements Gathering

2. Analysis

3. Design

4. Implementation

5. Evaluation

5

1 Introduction

In each phase, SCRUM principles and practices are applied to allow for flexibility and
iterative development. Specifically, during the implementation phase, we obtain the first
Minimum Viable Product (MVP) of our App. From there, we iteratively add the necessa-
ry features to meet the established requirements and analysis.

This approach enabled us to respond to changes and incorporate feedback throughout the
development process, resulting in an App that aligns with user needs and expectations.

1.5 Document Structure

The structure of the document is based on the development methodology.

Having done the introduction, the context in which the App is going to be develop is
established, including a short explanation of SCRUM, an overview of Scrumer (our App)
and a comparison of other similar Apps.

Once the context has been analysed, the next step is the development.

In the development section, first, the requirements for the app are gathered. Secondly, an
analysis is done, including the creation of a use case and class model. Then, the design
of the architecture, User Interface and Logo is established.

Then, the implementation process is structure, explaining, first, the build environment
and the source code. Then, different systems for managing data from the database and
for responsive implementation are implemented. Finally, each page and the launching
logo is implemented.

Finally, a evaluation of the requirements takes place, though unity tests, an analysis to
observe if all requirements are met, and acceptance testing.

Having done the development of the app, the conclusion takes place, where an analysis
of the goals achieved, of the lessons learned and of the future work takes place.

6

2 Context

Before we begin developing the app, it is important to analyze the current context and
understand what we are aiming to build. Therefore, we begin with a definition of SCRUM
and how its principles shape the features of our app. We also explore the concept of "Large
Scaled Scrumänd evaluate the possibility of building the App based on this approach.

Secondly, we provide a brief overview of how our app will work adapting the SCRUM
Rules and the underlying idea behind it.

Finally, we analyze other apps in the market to compare them with our idea and identify
what new elements we can bring to the table.

2.1 SCRUM

SCRUM is a framework for the Agile development of projects.[18]

In the book SCRUM Master written by Marta Palacio [32], the fundamentals of SCRUM
are addressed. It states that SCRUM is a framework for Agile project development.
Agile consists of principles and practices for project development, based on four main
characteristics:

• Individuals and iteraction over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contact negotiations.

• Responding to change over following plan.

7

2 Context

Within SCRUM, projects are developed using a series of work cycles called Sprints.

The goal of each sprint is to deliver a functional product increment. The development pro-
cess is iterative, meaning that the product is continuously improved with each sprint.

The term SSCRUMïs derived from rugby, where it describes a group of players attempting
to gain possession of the ball. This analogy relates to a team of individuals working
together to achieve the common goal of a project.

Within the SCRUM Rules, there are three different components or categories: Artifacts,
Events and Roles.

Artifacts

Artifacts represent the work or information that is used and produced during the deve-
lopment process. The three primary artifacts in SCRUM are:

• Product Backlog: List of tasks that need to be achieved in the project. It evolves
with the client’s point of view.

• Sprint Backlog: a subset of the Product Backlog that contains the tasks selected
for a specific sprint. It defines the work that the development team will focus on
during the sprint.

• Increment: The result of each Sprint. It represents the work that has been accom-
plished and is potentially shippable to the customer.

Events

Events are time-boxed activities or meetings that occur during the SCRUM process. The
five primary events in SCRUM are:

• Sprint planning: Meeting where the goal and tasks of the Sprint are set.

• Sprint: Periods of time in which the work is divided.

• Daily Scrum: Small meeting of 15 minutes to check the progress and plan the next
tasks.

8

2 Context

• Sprint Review: Meeting to analyze the increment generated. The modification of
the Product Backlog takes place if needed.

• Retrospective: Meeting to review of what to improve regarding the SCRUM Rules
and how to improve it for the future Sprint.

Roles

Roles define the responsibilities of the individuals involved in the SCRUM process. The
three primary roles in SCRUM are:

• Product Owner: Member of the Scrum Team. He/She represents the client’s de-
cision. His/Her responsibility is the Product Value. He/She clarifies the product’s
vision and goal. He/She is responsible for managing the product backlog.

• Developers: Member of the Scrum Team. They are a self-organizing group (3-9
people) responsible for delivering the product increment at the end of each sprint.
They collaborate to plan, develop and test the product features. Their responsibility
is the Increment. They take part in all of the events.

• Scrum Master: Member of the Scrum Team. He/She coaches the rest of the Scrum
Team and moderates the discussions. His/Her responsibilities are the SCRUM Ru-
les.

Cycle

In the SCRUM Cycle, all of the Scrum components are involved in the iterative develop-
ment process. This is the SCRUM cycle:

1. Product Backlog: The Product Owner establishes the Product Backlog.

2. Sprint Planning: During this meeting, the Product Owner and the Development
Team select items from the Product Backlog and create the Sprint Backlog. The
Scrum Master moderates the meeting.

9

2 Context

3. Sprint: The team collaborates, codes, tests and integrates their work to create the
increment.

Daily Scrum: Throughout the Sprint, the Scrum Team holds daily stand-up mee-
tings.

4. Sprint Review: At the end of the Sprint, the Scrum team analyses the increment.

5. Retrospective: Following the Sprint Review, the Scrum Team holds a Sprint Retro-
spective meeting.

Once the Retrospective concludes, a new Sprint begins, and the cycle repeats itself.

2.1.1 Large Scaled SCRUM

Large Scaled SCRUM (LeSS) relies on the idea of Scaling Agile, and it is utilized when
a whole company follows Scrum.

Agile at Scale is the practice of applying agile principles and processes to larger and more
complex projects.[30] The goal is to maintain a consistent level of agility and effectiveness
across the entire organization. It may involve multiple teams, projects and tools.

One of the possible approaches to Agile at Scale is Large Scaled SCRUM.[34]

Large Scaled SCRUM is a scaled agile framework that guides companies in adopting and
applying agile at scale. It seeks to apply the “principles, purpose, elements, and elegance
of Scrum in a large-scale context, as simply as possible.”[13]

Its structure is based on Feature Teams, which are in charge of the development work.
They are self-managing; stable and long-lived; and cross-functional.

What changes in this approach compared to normal SCRUM is that each of this Featured
Teams is a group of developers and there can be one Scrum Master for more than one
team. Also, the product Owner is the same for all feature Teams.

Furthermore, there are ambassadors representing each team, as well as a Head of the
Product Group, who meet in special meetings for an overall retrospective.

10

2 Context

2.2 Scrumer: our App adapted to the Scrum Rules

With Scrumer, our app, we aim to make SCRUM accessible to anyone through their
mobile devices. Our goal is to create a task management app based on SCRUM prin-
ciples, while also allowing flexibility for those who do not strictly adhere to SCRUM
rules. Additionally, we want the app to cater to both individual Scrum teams and larger
organizations using scaled approaches like LeSS (Large-Scale Scrum).

Regarding the three key components of SCRUM, this is how we could adapt them to or
app Scrumer:

Artifacts

• Product Backlog Section: A section where the Product Owner can add tasks, allo-
wing for the prioritization and management of product requirements.

• Sprint Section: Displays the Sprint Backlog, including the tasks assigned to the
current sprint and the remaining time. It provides a quick overview of the sprint’s
progress and allows for efficient tracking.

• Increment: Shows the tasks completed during the sprint, providing visibility into
the incremental development of the product. We will display the increment during
and after the sprint for a comprehensive view of the progress.

Events

• Meeting Tool: The app can be used during meetings to add tasks to the sprint and
set the sprint duration.

• Comments: We also want to empower users to collaborate with the Scrum Team
outside of the established meetings. Therefore, users will have the ability to ma-
ke comments on tasks, promoting collaboration and communication among team
members.

To achieve to empower users to adjust values outside of the established meetings, making
Scrum flexible, we need features that allow users to: edit tasks titles, sprint duration, add

11

2 Context

and remove tasks from the sprint, remove tasks from the product backlog, edit the project
title and description and even be able to abandon or delete a project.

Regarding user types, we aim to make the app accessible to users who are not part of a
Scrum team and strictly follow Scrum rules. For these users, all the mentioned features
will be available.

However, for users within a Scrum team adhering to Scrum rules, different features will
be assigned based on their roles.

Roles

In terms of team structure, the Scrum Master will have the responsibility of creating a
project. Later on, a Product Owner and multiple developers can join the project. Taking
inspiration from the LeSS approach, we will allow the Scrum Master to create other
projects, enabling them to be part of multiple projects simultaneously.

Also, every user can be working in more than one project, depending on the type: the
normal user (not in a Scrum Team) can create and join projects and the Scrum users,
can create project if they are Scrum Masters or join them, if they are Product Owners
or developers.

By considering these aspects, Scrumer aims to adapt to both individual Scrum teams
and organizations using scaled agile approaches. For the individual Scrum teams, the
Scrum Master is only working on one project, so he/she would just create one. And for
the Scrum Teams on scaled agile organizations, he/she would be able to manage several
teams just by switching between projects.

The app’s flexibility and adaptability will empower users to effectively manage their tasks
and projects while following SCRUM principles or adapting to their unique needs.

2.3 State of the Art

Before developing our App, it is crucial to identify existing apps that offer similar features.
An analysis of these Apps provides an overview of the market and serves as a benchmark
for the uniqueness and competitive advantage of your app, Scrumer.

12

2 Context

The goal of this analysis is to gain insights into the strengths, weaknesses and innovative
features of other Apps, allowing us to position Scrumer effectively.

Considering the existing offerings in the market, the apps that stand out as competitors
to our app, Scrumer are Scrum App, Vivify Scrum and Toist.

2.3.1 Scrum App

It is an App available for both Android and IOS devices.

Figure 2.1: Scrum App. Interface with all of the projects

It is based on the Scrum framework. It provides a simple interface, where the user can
initially create a new project. We can identify two actions: the one with a tutorial video
and the list of all the projects and another section accessed by selecting each project.

In the section for each project, we can also see different blocks including a task block for
adding tasks, a chat, a block for the beginning and ending of the sprint, which can be
modified and a block to see the members of the project.

In order to add people to the team, the user can create a link to the project and later,
share it.

13

2 Context

(a) Tasks and Chat (b) Current Sprint

Figure 2.2: Scrum App. Interface with information of each project

(a) Generate Link (b) Share Link

Figure 2.3: Scrum App. Interface to share a project

We can see that, in this App, they allow the user to make modifications on the project
title, on the tasks and also, on the finishing date of the current sprint.

14

2 Context

2.3.2 Vivify Scrum

It is an App available for only Android devices.[20]

Figure 2.4: Vivify Scrum. Interface with all of the projects

This app works with organizations which can have different Boards (which we could call
Projects). We first have a navigation bar with four sections: Boards, where we can create
projects; Invoicing, where we see the invoices of the organization; Team, where we see
the members of the team; and configuration.

We can access each Board and for each Board, we have a navigation Bar with the product
Backlog, the Sprint Backlog, the Burn down and the Members.

To add members to a Board, we can use their email or their user’s name, and we can
establish their role depending on the permission we give: Admin, Read, Read and Com-
ment.

For each Task, there are many feature. The user can establish where to have the Task
(Product Backlog or Sprint), its points of difficulty, value, priority, labels, assign it to
performers, reviewers, etc. It does also have a comment section.

15

2 Context

(a) Active Members (b) Add a member

Figure 2.5: Vivify Scrum. Interfaces to add a member to a project

Figure 2.6: Vivify Scrum. Interface to display Product Backlog

2.3.3 Todoist

It is an App available for both Android and IOS devices.[19]

It is not based on the Scrum framework. It provides a simple interface, where the user
has a global inbox with all of the tasks. Each task can have a Due Date, a priority and
a Label. So, each Label could correspond to each project.

16

2 Context

Figure 2.7: Todoist. Interface with all of the tasks

Figure 2.8: Todoist. Interface with the main menu

It has two section, the initial section, where the tasks in the inbox are displayed and a
menu, where the user can see the different projects and access the tasks filtering by date,
label, project, etc.

The user can also modify the tasks and projects. When a user marks a task as done, the
task disappears from the inbox.

17

2 Context

2.3.4 Comparison

By conducting a feature comparison among the three apps, we can draw insightful con-
clusions and ultimately, determine the competitive advantages offered by our app, Scru-
mer.

Table 2.1: State of the Art Comparison: Scrum App, Vivify Scrum and Toist.

Features Scrum App Vivify App Todoist App
Based on SCRUM 51 51 55
Collaboration on projects 51 51 51
Simplified tasks 51 55 51
Comments on each task 55 51 55
Task prioritization 55 51 55
Task assignment 55 51 55
Deadline management 51 51 51
Sprint Progress tracking 51 51 55
Mobile app availability (Android) 51 51 51
Mobile app availability (iOS) 51 55 51
Scrum roles features 55 55 55

Based on the comparison, we can make a final conclusion on the direction we want
Scrumer to take.

While Scrum App and Vivify Scrum are based on SCRUM, neither of them provides
Scrum roles.

Scrum App offers a different approach with only 2 sections and a scrolling view for
all project information. The idea of clearly separating each project information is an
interesting design feature.

Vivify Scrum provides a wide variety of features and targets big organizations, offering
a comprehensive app to communicate across all boards in the entire company. However,
this is not the intended focus of our app, Scrumer, as we want it to be used exclusively
within each Scrum Team, not throughout the entire company. Nevertheless, the design
using a navigation bar helps users switch between different sections quickly, which would
aid our goal of enabling users to check tasks as efficiently as possible.

18

2 Context

Lastly, Todoist is the most widely used app on the market for task management as it has
a simplified and clear design for displaying tasks, and the feature of marking a task as
done is the most intuitive one.

This analysis demonstrates the opportunity to develop an app like Scrumer that combines
the core principles of SCRUM, provides flexibility for users, and supports both regular
users utilizing it for personal purposes and users on Scrum teams. By addressing these
gaps in the market, Scrumer can offer a unique value proposition to its users.

19

Part II

Development

20

3 Requirements

The first step on the development process is the Requirement gathering. Firstly, we will
analyze the functional requirements and secondly, the non functional requirements.

3.1 Functional Requirements

These are the functional requirements of the App Scrumer, based on the previous des-
cription of the App:

Regarding users:

• FR01: A user has to be able to register on the App with his/her name, surname
and email, having available two different registration, depending on the user type:

– Normal User: the user is not on a Scrum Team, therefore, he/she does not
have a Scrum Role. He/She is using the App for personal work.

– Scrum Team User: the user is on a Scrum Team. He/she has to be able to
choose on the registration process, his/her Role.

Table 3.1: User Types Requirement

User Types
Normal User
Scrum Master
Product Owner

Developer

• FR02: A user has to be able to login using the email and password used on the
registration.

• FR03: A user has to be able to register and login using a google account.

21

3 Requirements

• FR04: A user has to be able to reset his/her password

• FR05: A user can have multiple projects.

• FR06: A user has the fields Name, Surname and Photo which can be modified.

Regarding projects:

• FR07: A project has the fields Title, Description and Photo which can be modified.

• FR08: A project has tasks and a current Sprint which can also be modified.

• FR09: A normal user can create Projects and Join Projects created by other normal
users.

• FR10: A normal user can abandon a project, and when there’s no one else on the
project, delete the project.

• FR11: A scrum Master can create Projects.

• FR12: A product owner and a developer can join projects.

• FR13: The method to join projects needs to be the following: A QR for the project
need to be generated and displayed to be read by another user who uses it to join
the project.

• FR14: A project needs to have a mode field, which is "work"when the project has
been created by a Scrum Master and "personal"when the creator was a normal
user.

• FR15: A "work"project needs to have one Scrum Master and it can have zero or
one Product Owner. There can be multiple developers.

• FR16: A product Owner and a developer can abandon a project.

• FR17: A scrum Master can delete a project.

Regarding the current sprint of a project:

• FR18: A sprint has the fields Title, Starting Date and Finish Date, which can be
modified.

• FR19: A normal user can create a Sprint and edit its duration.

• FR20: A scrum Master can create a Sprint and edit its duration.

22

3 Requirements

• FR21: All users need to see the progress of the sprint, meaning the tasks completed.

Regarding the tasks of a project:

• FR22: A task has the field Title which can be modified.

• FR23: a task can be created by a normal or a product owner user.

• FR24: A task can be added to or removed from the sprint and deleted from the
project.

• FR25: A task has a comment section, which acts as a chat for users on the project
to collaborate.

3.2 Non functional Requirements

These are the non-functional Requirements of Scrumer:

• NFR01: The App needs to be compatible with both Android and IOS Operating
Systems.

• NFR02: Every screen or component needs to be charged in least that 5 seconds
with the aim of not loosing user’s attention.

• NFR03: The error messages have to be clear and easy to understand by the user.

• NFR04: The design of the App needs to have a uniform theme, as well as intuitive
user interfaces,

• NFR05: Responsive design: the app needs to be adjustable to different screen sizes.

23

4 Analysis

This chapter covers the analysis of the information system to be developed, making use
of the UML modeling language.

4.1 Use Case Model

Based on the functional requirements, we can build the Use case Model.

4.2 Class Model

Based on the App description and the requirements, we can build the UML Class Mo-
del.

Analyzing the relations, we can see that all users have from 0 to multiple projects and that
a project has at least one normal User when is in "personal"mode; and on "work"mode,
it has one Scrum Master and it can have one product Owner and multiple developers.

A Project has an array sprints, which can be empty or contain multiple sprints; as well
as a tasks array which can also be empty or contain multiple tasks.

Finally, a Task can have multiple comments.

To save the passwords of the users for the authentication use cases, a database is used
with the emails and passwords of all users.

24

4 Analysis

Figure 4.1: Use Case Model Part I

4.3 Analysis of each Use Case

Once we have established the use cases and the General Class Model, we analyze the
attributes, methods and classes to use for each use case.

25

4 Analysis

Figure 4.2: Use Case Model Part II

4.3.1 Register as Scrum Team User

The constructor of the classes Scrum Master, Product Owner or Developer is called with
the user’s name, surname, email and imagePath as parameters. For each of them, the
role field is assigned.

4.3.2 Register as Normal User

The constructor of the class NormalUser is called with the user’s name, surname, email
and imagePath as parameters. The role field is assigned as "normal".

26

4 Analysis

Figure 4.3: General Class Model

Figure 4.4: Database Model

4.3.3 Login with Email and Password

Once the user has been authenticate, the User’s attributes from the class User are ac-
cessed.

27

4 Analysis

4.3.4 Register and Login With Google account

The process on the database to write the email and password of the user changes, but
for our model, it is the same process as previously described. We create the user’s object
when registering and we obtain the attributes values when logging in.

4.3.5 Reset Password

We update the database with emails and passwords.

4.3.6 Edit Profile

The editUser method of the class User is called, which has as parameters the new attri-
butes values, which are updated.

Finally, the attributes currentProject, if needed, and projects of each member of the
projects, where the user with the updated fields is a member, are updated.

4.3.7 Create Project

The constructor of the class Project is called with the title, description and imagePath
as parameters. Also, the id of the Scrum Master or Normal user that created it is passed.
We store it like this for the Normal User so we later know who the creator of the project
is.

After that, the method joinProject from the classes Normal and Scrum Master User is
called for the user that created it. In the joinProject method of the normalUser, the
user’s id is added to the developersIds arrray, as it is the array that will store the project
members, are they all have the same role.

Then, for both Normal and Scrum Master User, the currentProject attribute is updated
and the project is added to the array projects.

28

4 Analysis

4.3.8 Join Project

The method joinProject is called for the classes Normal User, Product Owner and De-
veloper. In the joinProject method of the normalUser, the user’s id is added to the
developersIds arrray, as it is the array that will store the project members, are they all
have the same role.

In the joinProject method of the productOwner, the user’s id is established as the pro-
ductOwnerId attribute of the project.

In the joinProject method of the developer, the user’s id is added to the developersIds
arrray.

Then, for both Normal and Scrum Master User, the currentProject attribute is updated
and the project is added to the array projects.

Finally, the attributes currentProject and projects of each member of the project are
updated.

As we can see, for the work users, when creating the project, the Scrum Master id is
established and when the Product Owner and Developers join, the product Owner id
and the developersId arrays are updated. However, for the normal user, when creating
the project, the creator user id is established (on the scrum Master id attribute of the
project) and it is added as well to the developersIds array. When other users join, the
developersIds arrays, which stores all of the members ids, is updated.

4.3.9 Edit Project

The editProject method of the class Project is called, which has as parameters the new
attributes values, which are updated. The attributes currentProject and projects of each
member of the project are updated.

4.3.10 Abandon Project

The abandonProject method of the class User is called, which has as parameter the pro-
ject to abandon. First, the project’s scrum Master id, product owner id and developersIds
attributes are updated, depending on the user’s role. Then, the attributes currentProject

29

4 Analysis

and projects of each member of the project are updated. Finally, the currentProject at-
tribute is updated to another project if there are more projects or to null if there are not
any more projects for that user. Also, the attribute projects is updated.

4.3.11 Delete Project

The deleteProject from the class Project is called. This method can be called by the
scrum Master of a project and by a normal user, only when the user is currently the only
member of the project.

In the method, first, we remove the project from all of the members projects array and
currentProject if needed. Then, we delete the project.

4.3.12 Create Sprint

The addSprint method of the class User is called, which has as parameter the sprint to
add. First, the current project is updated with a new value for the attributes sprints and
currentSprint. Then, the array projects is updated. Finally, the attributes currentProject,
if needed, and projects of each member of the projects, where the user with the updated
fields is a member, are updated.

4.3.13 Edit Sprint

This method can be called by the scrum Master of a project and by a normal user. The
editSprint method of the class User is called, which has as parameters the new attributes
values for the current sprint of the current Project, which are updated. The attributes
currentProject, if needed, and projects of each member of the project are updated.

4.3.14 Get tasks completed

The countTasksInSprint and countTasksFinished methods of the class Project are called,
which calculate the number of Tasks with the flag inSprint with the value true and the
number of Tasks with the flag finished with the value true.

30

4 Analysis

4.3.15 Edit Task

The editTask method of the class User is called, which has as parameters the task and
the its new title. This method updates the title for that task, which is on the array tasks
of the current Project. The attributes currentProject, if needed, and projects of each
member of the project are updated.

4.3.16 Create Task

This method can be called by the product Owner of a project and by a normal user.
The addTask method of the class User is called, which has as parameter the task to add.
First, the current project is updated adding the task to the attribute tasks. Then, the
array projects is updated. Finally, the attributes currentProject, if needed, and projects
of each member of the projects, where the user with the updated fields is a member, are
updated.

4.3.17 Add task to sprint

The addTaskToSprint method of the class User is called, which has as parameter the
task to add to the sprint. First, the current project is updated, setting to true the value
of the attribute inSprint of that task. Then, the array projects is updated. Finally, the
attributes currentProject, if needed, and projects of each member of the projects, where
the user with the updated fields is a member, are updated.

4.3.18 Remove task from sprint

The removeTaskFromSprint method of the class User is called, which has as parameter
the task to remove from the sprint. First, the current project is updated, setting to false
the value of the attribute inSprint of that task. Then, the array projects is updated.
Finally, the attributes currentProject, if needed, and projects of each member of the
projects, where the user with the updated fields is a member, are updated.

31

4 Analysis

4.3.19 Delete Task

The deleteTask method of the class User is called, which has as parameter the task to
delete. First, the current project is updated erasing the task from the attribute tasks.
Then, the array projects is updated. Finally, the attributes currentProject, if needed,
and projects of each member of the projects, where the user with the updated fields is a
member, are updated.

32

5 Design

Once we have established the requirements and we have analyzed the use cases and class
model for Scrumer, we need to design the architecture, the User interface and the logo
of our App.

5.1 System Architecture

The system architecture design of the Scrumer app is based on a client-server model [31],
utilizing various components to provide a seamless user experience. The architecture
consists of four main entities: User, Authentication database, App Database, and Image
Cloud Storage.

5.1.1 User

The User entity represents the end-users of the Scrumer app. Users interact with the
app through a client-side interface, accessing various features and functionalities such as
registration, login, and project management.

5.1.2 Authentication Database

The Authentication database entity is responsible for user authentication and authori-
zation within the system. It stores user credentials (email and password) securely and
handles the authentication process during login and registration. The Authentication
database ensures that only authorized users can access the app and its functionalities.

33

5 Design

5.1.3 App Database

The App Database entity serves as the central storage and synchronization mechanism
for project-related data. It stores information related to users and projects: tasks, sprints
and comments. The App Database enables real-time updates and synchronization across
multiple clients, ensuring that all users have access to the latest project information and
updates.

5.1.4 Image Cloud Storage

The Image Cloud Storage entity is responsible for storing and managing images (user
profile and project) used within the app. It provides a storage infrastructure that allows
users to upload, retrieve and display images related to their projects and their profiles.
The Image Storing System ensures efficient and secure storage of images, facilitating their
seamless integration within the Scrumer app.

To visualize the system architecture, a context diagram is created, illustrating the in-
teractions and relationships between these entities. The context diagram provides an
overview of the system’s components and their connections.

Figure 5.1: Design. Context Diagram

34

5 Design

5.2 UI Design

The UI design for the Scrumer app includes various components and screens created
using the App Miro tool for Ipad.[15] The color theme chosen is a light grey for the
background and the color black is used for items in the UI. In addition, the color blue is
used to represent actions related to the sprint.

Figure 5.2: Design. Authentication UI

Regarding the use cases related to the Authentication Process, we design a UI that allows
the user to login and to register. To login, the user enters the email and password, there
is the possiblity to register and to reset password.

To register, the user can choose his/her type of user between normal User and the Scrum
Team User. Then, depending on what he/she chose, the registration screen will be diffe-
rent.

For the scrum Team user, a scroll wheel allows him/her to choose his/her role, but for
the normal user, it is only required the name and surname.

For both type of users, there are two possible methods to register and to login: using
email and password or using a Google Account.

Overall, these designs aim to provide a seamless and intuitive user experience during the
login and registration processes.

35

5 Design

Once the user has logged in, for the navigation within the app, a navigation bar has
been included. The navigation bar consists of four sections: Product Backlog, Sprint,
Project, and Profile. Each section represents a different aspect of the app’s functionality
and contains several screens.

Figure 5.3: Design. Product Backlog UI

For the Product Backlog section, the UI design includes screens that allow users to view,
edit and add tasks. Also, the design provides a bottom sheet for the comment section of
each task.

The Sprint section incorporates screens that enable users to plan, track and review the
project current sprint. It displays the tasks that are currently in the sprint and shows if
the sprint is finished.

Also, it has a button, which provides a sprint report to the user, where the number of
tasks finished is displayed and a new sprint can be created (it appears depending on the
user type).

To create a sprint, a calendar and a clock is displayed to the user, to choose the date for
the sprint. Furthermore, the sprint can be edited.

In the Project section of the app’s UI, users can add projects: joining or creating a new
one (depending on their user type) and view and edit the current project, having a section
for the title, description, members, sprint report and image.

36

5 Design

Figure 5.4: Design. Sprint UI

Figure 5.5: Design. Project UI

Lastly, the Profile section offers screens that allow users to manage their personal infor-
mation. Users can view and update their profile details, and also,they can logout.

Overall, the UI design for the Scrumer app, created using the App Miro, focuses on
delivering a visually appealing and intuitive user experience. The designs for the au-
thentication use cases, along with the navigation bar and respective sections, provide a

37

5 Design

Figure 5.6: Design. Profile UI

cohesive and efficient interface for users to interact with the app’s various features and
functionalities.

5.3 Logo Design

The logo design for the Scrumer app presents a unique combination of elements that
represent the concept of SCRUM project management, but it is also linked to the name
of the App.

Taking inspiration from the association of a sprint with a rocket icon and the overall prin-
ciples of SCRUM, the logo design aims to create a visually recognizable brand identity.

During the design process, various sketches and drawings are created to explore different
possibilities and refine the logo concept. These initial iterations incorporate the rocket
symbol and creatively integrated the letter SS"from Scrumer. The goal is to find a visually
appealing composition that effectively communicates the app’s focus.

After consideration and analysis, the final logo design is selected. It features a rocket
shape seamlessly crafted from the letter SS"with the word SSCRUMERïnside the smoke
of the rocket, making the Ü"from SSCRUMERä continuation to the drawing. This design

38

5 Design

Figure 5.7: Design. Logo Sketches

not only captures the essence of Scrum but also establishes a strong association with the
Scrumer app.

The logo predominantly uses the black color, which aligns with the theme that the app
will have.

Figure 5.8: Design. Scrumer Logo

39

6 Implementation

This chapter covers all aspects related to the implementation of the App, including the
build environment, the source code structure and the code implementation of each use
case.

6.1 Build environment

The chosen development environment for the App is Visual Studio Code, which provides
a robust and efficient platform for software development.

For the implementation of the App, two key technologies are utilized: Flutter, with its
programming language Dart, and Firebase.

Regarding the system Architecture Design from the previous section, Flutter is used
to implement the SCRUMER system and Firebase is used to implement the entities
Authentication Database, App Database and Cloud Storage.[7]

6.1.1 Flutter

Flutter is a popular open-source UI framework developed by Google. It enables the creati-
on of cross-platform applications with a single codebase, allowing for efficient development
and consistent user experiences across different platforms.[8]

Therefore, Flutter allows us to deploy Scrumer in both IOS and Android devices.

The code written within the Flutter framework implements the system SCRUMER from
the architecture design. Therefore, it implements the Class model established in the
analysis section and use it to implement the App use cases, using the user interfaces
designed on the Design section.

40

6 Implementation

Furthermore, the Flutter App is linked to a Firebase project, which provides the systems
for the Authentication Database, the App Database and the cloud Storage. At the end,
we have the Flutter app Scrumer connecting the user with the firebase systems, following
the previously established architecture design.

Dart

Dart is the programming language used in Flutter. It is a modern, object-oriented lan-
guage with a strong type system, providing developers with the necessary tools to build
applications.[4]

Widgets in Flutter

In Flutter, the code is structured around widgets, which are classes that describe the
visual elements and behaviors of the application. [10] Widgets are configured using pro-
perties, which are parameters passed to the widget constructor. Properties allow us to
customize the behavior, appearance, and content of the widget. Many widgets have pro-
perties to accept child widgets, allowing to nest and compose widgets to create complex
user interfaces.

In Flutter, the structure of widgets follows a tree-like structure, where each widget can
have child widgets. At the top level, Scrumer has the MyApp widget, which represents
our entire application and is initialized in the main function. Within MyApp, we define
the theme, title, and the home widget for our application: the auth_page.

Widgets in Flutter can either extend the StatelessWidget or StatefulWidget class. A
StatelessWidget is a widget that does not have any mutable state. Once it is built, it
remains the same throughout its lifetime.

On the other hand, a StatefulWidget is a widget that can change its internal state during
its lifetime. It consists of two classes: the StatefulWidget itself and the corresponding
State class, which contains the mutable state for the StatefulWidget.

In classes that extend either StatelessWidget or StatefulWidget, we define the build me-
thod.

41

6 Implementation

The build method is a crucial method in Flutter widgets as it is responsible for creating
and returning the widget hierarchy that represents the visual elements of your user inter-
face. The build method is called automatically by the Flutter framework when it needs
to build or rebuild the widget.

Inside the build method, we establish the widget tree by using different widgets provided
by the Flutter framework, such as Container, Text, Stack, Image, Button and more.
Additionally, we also utilize custom widgets defined in other classes to compose our
Scrumer UI.

By nesting and configuring these widgets within the build method, we create the desired
visual representation of our UI, following the design established previously.

6.1.2 Firebase

Firebase[5], a comprehensive mobile and web development platform, has been integrated
into the App for various functionalities: Authentication database, App database and
Image Cloud Storage. As the Flutter App is aimed for both IOS and Android Users, our
firebase project does also support both operating systems.

Authentication Database

Firebase Authentication is utilized for user authentication and authorization purposes,
ensuring secure access to the App’s features and data.[6]

This database implements the entity Authentication Database [27] from the architecture
design. Therefore, it stores the emails and passwords from the users and it is used for
the registration and login of the users.

Firestore Database

Firestore Database is employed to store and synchronize real-time data across multiple
devices and clients, enabling seamless data updates and collaboration.[2]

This database implements the entity App Database from the architecture design. There-
fore, it stores the project-related data and user-related data and it is used for the project
management actions.

42

6 Implementation

On the Flutter App code, we work with the class model on Dart; but on firebase, the
structure is different: the database works with Documents.

To resolve this issue, in Firebase, we have two different collection: Users and Projects.
A User document is created when the user registers and a project document is created
when a user creates a new project.

To correctly save and retrieve all of the user and project information, we have toMap
and fromMap methods in all classes.

This way, for example, on the project creation, we first create the project object with its
constructor and then, we call the toMap method. In this method, we create a map of its
attributes; and for example, for its array attribute tasks, it calls the toMap method for
each task in the array.

FireStore

Firebase Storage serves as a reliable solution for storing and retrieving images within the
App, ensuring efficient image management and delivery.[3]

This database implements the entity Cloud Storage from the architecture design. The-
refore, it stores the projects and user images and it is used for the project management
actions.

On the class model for project and user, we have an attribute called imagePath, which
is the path to the firebase FireStore location of the image.

6.2 Source Code Structure

The code structure of our Flutter app Scrumer follows a hierarchical architecture that
promotes code organization, re-usability and maintainability.

The key components in the code structure are the android, build, ios, lib folders and the
pubspec.yaml file.

• android folder: Android-specific code and resources that are necessary for building
and running the app on Android devices.

43

6 Implementation

Figure 6.1: Code Structure

• build folder: It is automatically generated when we build or compile Scrumer. It
contains the compiled and generated artifacts, as well as intermediate files, produ-
ced during the build process.

• ios folder: The platform-specific code and resources required for building and run-
ning the app on iOS devices.

• lib folder: The main codebase of the app. The key components of the lib folder are
the assets, icons, images, models, pages and services subfolders and the main.dart
file.

44

6 Implementation

Figure 6.2: Lib folder Structure

– assets folder: This folder contains the app’s lottie animations in the UI.

– components folder: This folder houses reusable UI components or widgets that
can be used across multiple screens.

– icons folder: This folder holds the icon assets used in the app.

– images folder: This folder holds the images assets used in the app.

– models folder: This folder includes data models that represent the structured
data used in Scrumer. The models correspond to the classes in the class model
designed.

Figure 6.3: Models folder Structure

– pages folder: This folder contains individual screen widgets or UI components
of the app. Each screen represents a distinct user interface view and is im-
plemented as a Flutter widget. The folder is divided into subfolders corre-
sponding to different sections of the app, such as Authentication, Product

45

6 Implementation

Backlog, Sprint, Project, and Profile. Additionally, there is a separate screen
for the home_page, which is used to build the navigation bar.

– services folder: This folder contains classes with methods responsible for hand-
ling the authentication process of the user and the connection for updating
and retrieving data from the Firebase database. These services facilitate com-
munication with Firebase and provide the necessary functionalities for data
management.

– main.dart : This file contains the main() function, which sets up the app and
specifies the Authentication page as the initial screen to be displayed. It serves
as the entry point of the app and orchestrates the overall app structure.

• test folder: This folder includes a file with different unitary tests for the App.

• pubspec.yaml : This file is a configuration file that manages dependencies, assets,
fonts, and other project-specific settings. It defines the required packages and re-
sources used in Scrumer.

6.3 Save and Retrieve Data on Firebase

Several methods are implemented to achieve the process of saving and retrieving data
faster and more efficiently. The idea behind this process is that we have our classes
structure and we have the Firestore Database with two collections: users and projects,
and the goal is to transform the data from one structure to the other easily.

The classes have the methods previously established on the class model, with the toMap
and fromMap methods added. For the saving and retrieving data, a class with methods is
implemented on the firebase_service.dart file on the services sub-folder of the lib folder.
Also, some methods are added to the user and projects classes.

6.3.1 toMap and fromMap methods

To write data from the models structure to the Database, we add the methods toMap,
which transform all of the attributes of a class into a map. To retrieve data from the
Database to the models, we add fromMap methods, which transform the map obtained

46

6 Implementation

from the Database into objects of the class model. For example, this is the fromMap
project of the Product Owner User class:

static ProductOwnerUserScrumer fromMap(Map<String, dynamic> map) {

return ProductOwnerUserScrumer(

id: map[’id’],

name: map[’name’],

surname: map[’surname’],

email: map[’email’],

)

..role = map[’role’]

..currentProject = map[’currentProject’] != null

? Project.fromMap(map[’currentProject’])

: null

..imagePath = map[’imagePath’]

..projects = (map[’projects’] as List)

.map((projectMap) => Project.fromMap(projectMap))

.toList();

}

Code snippet 6.1: fromMap project of the Product Owner User class

6.3.2 firebase_service.dart methods

The methods impleneted on the class FirestoreService on this file are: get_user_class,
setUserToCollection, setProjectToCollection, getUserById, getProjectById and deleteDo-
cument.

get_user_class method

This method is responsible for returning the corresponding object of the current user.

It first obtains the current user in the Authentication Database; secondly, it obtains
the user document from the collection users on the Firebase Database, searching for
the document with the User ID (obtained from the Authentication Database). Then, it
accesses the user attributes that are structure as a map. Finally, depending on the role
of the user, it calls the fromMap method to the corresponding user class: Normal, Scrum
Master, Developer or Product Owner.

47

6 Implementation

setUserToCollection method

This method is responsible for updating the user document on the Firebase Database.

It has as parameter the user object. It first access the document using the user ID and
then, creates a map using the toMap method of the user. Finally, it saves the map on
the user document.

setProjectToCollection method

This method is responsible for updating the project document on the Firebase Databa-
se.

It has as parameter the project object and it follows the same process as the setUserTo-
Collection method.

getUserById method

This method is responsible for obtaining the user object that corresponds to an ID passed
as an argument.

It first obtains a reference to the users collection and uses it to obtain the document,
searching with the User ID. Then, it accesses the user attributes that are structure as
a map. Finally, depending on the role of the user, it calls the fromMap method to the
corresponding user class: Normal, Scrum Master, Developer or Product Owner.

getProjectById method

This method is responsible for obtaining the project object that corresponds to an ID
passed as an argument.

It follows the same process as the getUserById method, creating a project object with
the attributes of the database.

48

6 Implementation

deleteDocument method

This method is responsible from erasing the document corresponding to the collection
name and document ID passed as arguments.

It first obtains the collection instance and then, it calls the delete method for the docu-
ment in that collection.

For all methods, when an exception occurs, an error message is displayed.

These method of the service folder are used on the classes user and project.

6.3.3 User Class

In the user class, for every method that needs to update the current user data, it calls
setUserToCollection(this). When the current project has been updated and we need to
modify its database data, we have added new methods on the user class: copyProject,
updateProjectOfUser, updateObjectProjectInProjectsInMembers,

updateProjectOfUser method

This method is responsible for updating the user document when a project of this user
has been updated. The user and the project are passed as arguments.

It updates the currentProject field, if needed, and then, the project in the projects array.

updateObjectProjectInProjectsInMembers method

This method is responsible for updating the user document of all project members of the
project passed as an argument.

It has another argument which corresponds with a flag onAbandon that is set to false
and it will have the value true when the user has abandon the project.

It first updates the document of the project on the collection projects. Secondly, it up-
dates the currentProject field, if needed, and then, the project in the projects array of
this user, only when the user has not abandon the project.

49

6 Implementation

Then, it updates the currentProject field, if needed, and then, the project in the projects
array for all the project members, calling the method updateProjectOfUser.

copyProject method

This method is responsible for creating a clone of the project passed as an argument.

Now, when a method modifies data (adding a sprint, a task, removing a task, changing
his/her name, etc) from the current project: it first copies the project, modifies the copy
and then calls the method updateObjectProjectInProjectsInMembers to update it in the
database. In the abandon method, after doing that process, it removes the project from
the projects user array and changes the value of the currentProject to null if there are
no other projects or to the first project. Finally, it updates the user document calling
setUserToCollection.

6.3.4 Project Class

In the project class, for the methods editProject and deleteProject, we have added the
method updateValues and updateValuesBeforeDeleting,

updateValues method

This method is responsible for updating the project attributes title, description and
imagePath for a user passed as an argument.

It first updates the project array and then, if needed, the current projectattribute. Finally,
it calls the method setUserToCollection to update that user document.

Therefore, in the editProject method, it first accesses each user member with the method
getUserById passing the scrumMasterId, productOwnerId or each ID from the developer-
sIds attributes of the project as arguments. Then, it calls the method updateValues for
each member. Finally. it calls setProjectToCollection.

50

6 Implementation

updateValuesBeforeDeleting method

This method is responsible for removing the project from the projects array of user passed
as argument and then, setting the current project to null if there are no other projects or
to the first project. After, it updates the user document calling setUserToCollection.

Therefore, on the deleteProject method, it calls the updateValuesBeforeDeleting method
for each project member and then, it calls the deleteDocument method.

6.4 Refresh Data from Database

When a change happens on the database, we need to update the interface for all users af-
fected by the change. To achieve this, in the pages needed, we have two different methods:
an initializing retrieve method and a subscription to updates.

6.4.1 Initial Retrieve method

To display the data for the page for the first time, we first have a flag called flagUpdate-
NeededInitial with the value true and a userScrumer variable; then, we create a method
called refreshData, which is an async method. This method assigns the value of the ob-
ject user to the userScrumer variable, calling the get_relevant_fields method. Finally, it
sets the value of flagUpdateNeededInitial to false.

On the build method, while the refreshData method has not update the value of flagUp-
dateNeededInitial to false, it displays a CircularProgressIndicator and when the userS-
crumer value has been assigned, the page is built.

6.4.2 Subscription to updates

To update the UI when a change is made, we first have a flag called subscriptionStarted
set to true and StreamSubscription variable named _userSubscription. [14]

Then, we create a method called _subscribeToUserUpdates,. This method sets _user-
Subscription to listen to changes on the database and when a field appearing on the UI is
changed, a method that handles data changed is called. This method that handles data

51

6 Implementation

changed calls the refreshData method. Finally, it sets the value of subscriptionStarted to
false.

Finally, we also create the method _unsubscribeFromUserUpdates, which cancels the
subscription and it is called on the dispose method.

On the build method, if the subscriptionStarted flag is false, it calls the method _-
subscribeToUserUpdates.

6.5 Responsive Implementation

To have a responsive implementation, and build an app that adjusts to all screen sizes,
the MediaQuery.of(context).size property is used. [1]

In the pages needed, the width and the height of the screen is obtained using MediaQue-
ry.of(context).size.width and MediaQuery.of(context).size.height and they are used for
the establishing the sizes of the different widgets in the page. For example, the Scrumer
logo on the login page needs to be proportionate to the screen size and to adjust when a
phone is on landscape mode:

double logoSize = screenWidth > screenHeight

? screenWidth * 0.3

: screenHeight * 0.3;

Code snippet 6.2: Calculation of logo size based on screen dimensions

6.6 Authentication

The first step in the implementation is the authentication part, which includes the Regis-
tration and the Login. On the folder lib, we have a sub-folder which includes all files with
the classes corresponding to the widgets for the authentication. The widgets that corre-
spond to actual pages the user interacts with are: the login page, the choose registration
page, the register normal user page, the register work user page and the reset page.

The auth page and login or choose registration page are used to navigate within this
pages. And the role wheel scroll widget is used within the register work user page.

52

6 Implementation

Figure 6.4: Authentication sub-folder Structure

Auth page

When the user opens the App, the initial screen is the auth_page. The authPage widget
extends from a StatelessWidget and it checks if the user is already logged in or not.

To check if the user is already logged in, we utilize the firebase Authentication Data-
base. We use the StreamBuilder widget, which listens to changes in the authentication
state.[26]

The StreamBuilder takes two parameters: the stream and the builder. The stream pa-
rameter is set to FirebaseAuth.instance.authStateChanges(), which provides the stream
of user authentication state changes. This stream provides updates whenever the user’s
authentication status changes. The builder parameter is a callback function that gets
called whenever a new value is received from the stream. It takes two arguments: the
context and the snapshot of the stream data. The snapshot object represents the latest
state of the stream. By accessing snapshot.hasData, we can check if the user is currently
logged in or not.

If the user is logged in, it goes directly to the HomePage, without making the user login
again. Once the user has login or register, it will come back to this page and, as the
snapshot will have data (it will have just been updated), it will also go to the HomePage.
If the user isn’t logged in, it returns the widget LoginOrChooseRegistrationPage.

53

6 Implementation

LoginOrChooseRegistration page

The LoginOrChooseRegistrationPage widget is responsible for switching between the
screen login and registration. In Flutter, the widgets work as a stack, which means that
one goes on top of the other; to avoid the login and the registration screens to do this,
when the user navigates from one to the other, we utilize this widget.

The LoginOrChooseRegistrationPage widget extends from the StatefulWidget and the-
refore, has a state. This state corresponds with a flag called showLoginPage which gets
updated on the method togglePages. This method gets called every time the user press
the option to go to the login page on the choose registration page and viceversa.

At the end, depending on the value of this flag, the build method returns the LoginPage
or the ChooseRegistrationPage.

6.6.1 Authentication Service: Authenticate with Google

The AuthService class on the services subfolder of the lib folder handles the user authen-
tication with his/her Google Account. It uses the Authentication Database.

We use this class for both the Registration and the Login, therefore, the class has a
constructor that takes a boolean parameter isRegistrationPage to indicate whether the
current page is a registration page or not.

The class has a _auth field, which is an instance of FirebaseAuth from the firebase_auth
package, which is used to interact with our Firebase Authentication Database.

The class has a method called checkIfEmailExists, which is used to check if an email
already exists in the Firebase Authentication database. It takes an email as a parameter,
and internally it calls fetchSignInMethodsForEmail to retrieve the sign-in methods asso-
ciated with the given email. If the sign-in methods list is not empty, it indicates that the
email exists in the authentication database.

The class has a method called signInWithGoogle, which handles the sign-in process with
Google.

It begins the interactive sign-in process by calling GoogleSignIn().signIn(), which opens
a Google sign-in dialog.

54

6 Implementation

Once the user has introduced his/her google account data, it calls the checkIfEmailExists
method.

Depending on the result from the checkIfEmailExists result and the value of isRegistra-
tionPage, the method returns different values: 0 if the email does not exist and it’s not a
registration page, indicating the need for registration, or 1 if the email exists and it is a
registration page, indicating that the user should proceed with the registration process.

If the email exists and it’s not a registration page, or if the email does not exist and it’s
a registration page, the method continues by obtaining the authentication details from
the Google sign-in request.

It creates a new credential using GoogleAuthProvider.credential with the obtained au-
thentication details.

Finally, it calls FirebaseAuth.instance.signInWithCredential(credential) to sign in with
the credential and returns the result of the sign-in process.

6.6.2 Login Page

The Login Page extends from a StatefulWidget as it has as a state the email and password
text editing controllers, which have as values the text for the email and password of the
user to login in.

SignUserIn method

It has a method called signUserIn which handles the process of signing a user into the
application. It also includes a showErrorMessage method to display an error message
dialog if an error occurs during the sign-in process.

This method attempts the sign-in process. It uses await and the signInWithEmailAnd-
Password method provided by FirebaseAuth.instance to authenticate the user. The email
and password values are obtained from the emailController and passwordController re-
spectively, and trimmed using trim(), to erase the white spaces the user might have
written. For the whole process, a Circular Progress Indicator inside of a Dialog is being
showed to the user.

55

6 Implementation

Figure 6.5: Login UI

If the sign-in process is successful, the loading dialog is closed. This is achieved by calling
Navigator.pop(context), which removes the top route (in this case, the loading dialog)
from the navigation stack.

If an exception of type FirebaseAuthException occurs during the sign-in process, the
loading dialog is closed as before, and the showErrorMessage method is called, passing
the error code (e.code) as the parameter.

The showErrorMessage method displays an AlertDialog to the user, showing the provided
error message (message) in the dialog’s title, which can be: ’Email needed’, ’Password
needed’, ’User not found’, etc.

User Interface

The ‘build‘ method creates the login page in the Scrumer application according to the
design previously created.

56

6 Implementation

The Scaffold widget is used as the base structure for the page. The backgroundColor
property is set to Colors.grey[300] to give it a light grey background. Inside, a SafeArea
widget, used to ensure that the content is visible and not obscured by system elements
like notches or status bars, that contains a SingleChildScrollView widget that is used to
enable scrolling when the content exceeds the screen size.

Finally, the elements of the UI are inside a Column, used to vertically stack multiple
child widgets. The main elements of the User Interface are:

• An Image.asset widget used to display the Scrumer logo.

• A Text widget used to display a welcome message.

• Two MyTextField widgets are used to display email and password text fields with
its corresponding controllers properties set. This custom text field widget is imple-
mented on the components folder.

• A Row widget used to display the ’Forgot password?’ text, when the text is pressed,
the Navigator.push method is called to navigate to the ForgotPasswordPage.

• A MyButton widget (from the components folder), used to display the ’Sign In’
button. The button has two properties: text and onTap. The text property is set to
’Sign In’, and the onTap property is set to the signUserIn method, which handles
the sign-in process.

• Another Row widget used to display a divider line and the ’Or continue with’ text.

• A SquareTile widget to display the Google sign-in buttons. The SquareTile is a
custom widget established on the components folder and it provides an onTap
callback and an image path (in this case we pass the google logo image) using a
GestureDetector for a square Container, with the image as its child. Inside the
onTap function, asynchronous code is executed to perform the sign-in process with
Google.

It utilizes the AuthService class, passing isRegistrationPage: false, and invokes the
signInWithGoogle() method to initiate the Google sign-in process.

If the signInWithGoogle() method states that the email of the user does not exist,
a dialog with the message ’Registration needed is displayed’.

57

6 Implementation

Figure 6.6: Login: Register First message

• Finally, another Row widget is used to display the ’Not a member?’ and ’Register
now’ text. The ’Register now’ text is wrapped with a GestureDetector widget, which
triggers the onTap callback provided via the widget onTap property. On the on-
Tap, it executes the method togglePages from the LoginOrChooseRegistrationPage
widget and navigate to the choose registration page.

6.6.3 Choose Registration Page

The Choose Registration Page extends from a StatefulWidget and it is responsible for
displaying the interface for the user to choose between the two registration methods:
normal user or work user.

User Interface

The ‘build‘ method creates the choose registration page in the Scrumer application ac-
cording to the design previously created.

58

6 Implementation

Figure 6.7: Choose Registration UI

It has a similar widget tree as the login, having a Scaffold, a SafeArea, a SingleChildS-
crollView and a Column nested.

The main elements of the User Interface, which are children of the column, are:

• An ‘Image.asset‘ widget used to display the Scrumer logo.

• A ‘Text‘ widget used to display a message instructing the user to choose the regis-
tration method.

• Two registration option containers:

– First Container: Represents the "Personal Use"registration option. It contains
a title text, a Lottie animation (loaded from an asset on the assets folder), a
description text, and a MyButton widget to handle the registration process
for normal users.

59

6 Implementation

– Second Container: Represents the "Work"registration option. It contains a
title text, a Lottie animation, a description text, and a MyButton widget to
handle the registration process for work users.

• Finally, another ‘Row‘ widget is used to display the Älready have an account?änd
"Login now"text, with a GestureDetector that executes the method togglePages
from the LoginOrChooseRegistrationPage widget and navigates to the login page.

6.6.4 Reset Password Page

The Reset Password Page extends from a StatefulWidget as it has as a state the email
text editing controller, which have as value the text for the email of the user.

Figure 6.8: Reset Password UI

60

6 Implementation

User Interface

The build method creates the choose registration page in the Scrumer application accor-
ding to the design previously created.

It has a similar widget tree as the login, having a scaffold, a safeArea, a SingleChildS-
crollView and a Column nested.

The main elements of the User Interface, which are children of the column, are:

• An Image.asset widget used to display the Scrumer logo.

• A Text widget used to instructing the user to enter their email to receive a reset
link.

• A MyTextField widget that allows the user to enter his/her email.

• A Row widget used to display the "Forgot password?"text, when the text is pressed,
the Navigator.push method is called to navigate to the ForgotPasswordPage.

• A MyButton widget (from the components folder), used to display the "Reset Pass-
word"button. The button has two properties: text and onTap. The ‘text‘ property
is set to "Reset Password", and the onTap property is set to the passwordReset
method, which handles the reset password process.

PasswordReset uses the FirebaseAuth.instance.sendPasswordResetEmailmethod to
send a password reset email to the user’s entered email address. If the email is sent
successfully, it displays a success message using showMessage. If an error occurs, it
displays an error message.

• Finally, another Row widget is used to display the "Remember your password?änd
"Login now"text, allowing users to navigate back to the login page using the Na-
vigator.pop method.

6.6.5 Registration for work user

The Register work user Page extends from a StatefulWidget as it has as a state the email,
password, confirmPassword, name and surname text editing controllers. It does also have
a FirebaseFirestore variable and a selectedRole variable.

61

6 Implementation

Figure 6.9: Register Work User UI

signUserUp method

It has a method called signUserUp which handles the user registration process in an
application. It performs several checks and validations before creating a new user in our
Firebase Authentication and storing user data in our Firebase Database users collecti-
on.

The method starts by checking if the entered password matches the confirmed password.
If they don’t match, it calls the showErrorMessage() method to display an error message
stating "Passwords don’t match!". Then, it checks if the name, surname, and selected
role (such as SScrum Master,Product Owner,ör "Developer") are filled in; if not, it calls
the showErrorMessage().

Then, it attempts to create a new user in Firebase Authentication using the createUser-
WithEmailAndPassword() method.

62

6 Implementation

Once the entry of the user has been created on the Authentication Database, depending
on the selected role, a corresponding UserScrumer subclass instance is created. The user’s
unique identifier (user.uid), name, surname, and email are passed to the constructor of
the appropriate subclass.

Finally, the user object is converted to a map using the toMap() method and stored in
Firestore under the üsers"collection with the user’s unique identifier as the document
ID.

This method attempts the sign-up process. It uses async and the signInWithEmailAnd-
Password method provided by FirebaseAuth.instance to authenticate the user. The email
and password values are obtained from the emailController and passwordController re-
spectively, and trimmed using trim(), to erase the white spaces the user might have
written. For the whole process, a Circular Progress Indicator inside of a Dialog is being
showed to the user.

If the sign-up process is successful, the loading dialog is closed. This is achieved by calling
Navigator.pop(context), which removes the topmost route (in this case, the loading dialog)
from the navigation stack.

If during the process, an exception occurs, the showErrorMessage method is called and it
displays an AlertDialog to the user, showing the provided error message (message) in the
dialog’s title, which can be: ’Email needed’, ’Password needed’, ’User not found’, etc.

User Interface

The build method creates the choose registration page in the Scrumer application accor-
ding to the design previously created.

It has a similar widget tree as the login, having a Scaffold, a SafeArea, a SingleChildS-
crollView and a Column nested.

The main elements of the User Interface, which are children of the column, are:

• An Image.asset widget used to display the Scrumer logo.

• A Text widget used to instructing the user to create his/her Scrumer Account.

• Two MyTextField widget that allows the user to enter his/her name and surname.

63

6 Implementation

• A Text widget used to instructing the user to choose his/her Role, followed by a
RoleWheel widget [], which is a custom widget fro the components folder which
allows the user to scroll through the three roles and choose one. When the user has
selected the role, the selected role is updated.

• A Text widget used to instructing the user to type the email and password follo-
wed by three MyTextField widget that allows the user to enter his/her email and
password twice.

• A MyButton widget (from the components folder), used to display the SSign Up"button.
The button has two properties: text and onTap. The text property is set to "Re-
set Password", and the onTap property is set to the singUserUp method, which
handles the signing up process.

• Another Row widget used to display a divider line and the Ör continue with"text.

• A SquareTile widget to display the Google sign-in buttons. The SquareTile is a
custom widget established on the components folder and it provides an onTap
callback and an image path (in this case we pass the google logo image) using a
GestureDetector for a square Container, with the image as its child. Inside the
onTap function, the signUpwithGoogle method is called.

In the signUpwithGoogle method, several checks regarding the name, surname and
role take place, as in the normal singUp method. Then, it utilizes the AuthService
class, passing isRegistrationPage: true, and invokes the signInWithGoogle() method
to initiate the Google sign-up process. Once, the Google sign-up process continues
with the same process as the normal singUp method: it creates an object for the
corresponding user class and it maps to write the user data in a new document on
the users collection of the database.

• Finally, another Row widget is used to display the "Don’t have a Role?änd "Go
back"text. The "Register now", allowing users to navigate back to the choose re-
gistration page using the Navigator.pop method.

6.6.6 Registration for normal user

The registration for the normal user has a similar implementation as for the work user.

64

6 Implementation

Figure 6.10: Register Normal User UI

However, the normal users do not have scrum roles, so the feature to choose a role does
not appear; therefore, all of the code referring to the selection of the role does not exists
and the sizes and spaces between widgets is different as well.

With this implementation, all of the use cases and goals regarding the authentication
process have been implemented and achieved.Also, the system architecture has been
established, having written the user email and password on the Authentication Firebase
Database and the User data (mapped from the class model) on the collection users of
Firebase Database.

6.7 Home Page

The Home Page represents the main content and navigation logic for the home page of
the application when the user is logged in.

65

6 Implementation

The WidgetsBinding.instance.addPostFrameCallback is used to schedule a callback after
the current frame has finished rendering. In this case, it is used to remove the focus from
any input fields by calling FocusScope.of(context).unfocus. This ensures that when the
page is loaded, no input fields, from for example, the login page, have focus.

In this page, the bottom navigation bar of the App is implemented using the custom
MyBottomNavBar widget [29] from the components folder. We have four main pages
corresponding with each section of the navigation bar: Product Backlog, Sprint, Project
and Profile. The currently selected page is stored in the _selectedIndex variable, which
is updated when the user taps on a navigation item through the navigateBottomBar
method. The _pages list holds the different pages that correspond to each navigation
item.

In the build method, the Scaffold widget is used as the main layout container. It has
three properties: body, backgroundColor and bottomNavigationBar.

The body property is set to the value of the _selectedIndex of the _pages list, which
displays the currently selected page. The backgroundColor property of the Scaffold is
set to Colors.grey[300] to provide a light grey background. The bottomNavigationBar
property is set to the MyBottomNavBar widget, which handles the navigation between
different pages.

6.8 Project

For the implementation of the project section of the Navigation Bar, the sub-folder
project includes several widgets. The widget that at the end, is responsible to display
the whole project page is the ProjectPage widget.

6.8.1 ProjectPage

This is the widget responsible for displaying all of the UI related to the Project.

66

6 Implementation

Figure 6.11: Project sub-folder Structure

Project UI

The UI consists of a ListView, wrapped with a RefreshIndicator[21], with provides a
pull-to-refresh functionality to update (calling the method refreshData) its content when
the user performs a swipe-down gesture. The ListView has various components:

• A Row with the logo of Scrumer, with the modification of having the "PRO-
JECT"text instead of SCRUMER, and the Project title.

• The CurrentProjectTile widget, which displays the information and status of the
current project.

• If the user has other projects, it displays the Öther Projects"title and an Ädd"button
if there is more than one project.

• If the user has other projects, an horizontal ListView.builder to display the Other-
ProjectTile widgets for each project, allowing the user to switch between projects.

6.8.2 CurrentProjectTile widget

The CurrentProjectTile widget displays the details of the current project for a user. It
includes the project’s title, description, team members, the sprint information and an
image. It also provides options to edit, delete, and abandon the project.

There are two possible cases:

1. The user does not have projects. In this case, the ContainerAddProject is return.

67

6 Implementation

Figure 6.12: Project UI

2. The user has at least one project. In this case, a Container with the project’s title,
QR button, edit button, description, team members, sprint report and image is
returned.

QR Button

The QR button opens a showModalBottomSheet [9], where the QR linked to the Project
ID is shown using a QrImageView, from the package qr_flutter [24], which has been added
to the dependencies on the pubspec.yaml file.

Team Members UI

For the team members data, several widgets and variables are used. Firstly, there are
several variables for the names of the Scrum Master, product Owner and developers.
Also, they have their respective imagePath variables.

68

6 Implementation

Figure 6.13: Project QR UI

The CurrentProjectTile has the getName and getImagePath methods, which obtain the
user object corresponding to the ID string passed as an argument, and then, they return
the user nae and the user imagePath. If they do not find any user with that ID, the
method returns ’Nobody’ as the name. And when the user has a default profile image
and it is a work user, the method returns the default imagePath for the user role: there
are different default images for the Scrum Master, Product Owner and Developers.

The CurrentProjectTile has the refreshDataNames method, which receives as parameter a
String scrumMasterId, a String productOwnerId and a list of Strings developersIds. This
method updates the values of the names and imagePaths variables calling the getName
and getImagePath methods for each ID.

When the widget is initialize or an update happens, the refreshDataNames method is
called.

To display the members data, a Container widget is used . It contains a ListView.builder
that creates a list of items dynamically based on the number of team members.

The itemCount of the ListView.builder is determined by the user’s role and the number
of developers in the project. If the user is not a normal user, the count is set to 2
(ScrumMaster and Product Owner) plus the number of developers. Otherwise, it’s set

69

6 Implementation

to the number of developers only, as on the normal mode, we have all members of the
project saved on the developersIds array.

Inside the itemBuilder, the individual team members are created based on their index.
The first two items are for the Scrum Master and Product Owner and are only displayed
if the user role is not "normal", while the rest are for the Developers.

To display in a special way the current user, we have a flag itisUser which is set a true
after checking for the actual user.

To display each member information, the RoleTile widget is returned. On The RoleTile
widget takes four required parameters: name, rolepath, role, and itIsUser (we pass the
flag we have update it stating if that user is the current user).

For the the "work"mode, it first displays the Scrum Master and Product Owner RoleTi-
le passing the variables names and imagePaths established with the refreshDataNames
method, with the Scrum roles. When there is no product Owner on the team, an empty
Container is returned. Then, it displays the Developers RoleTiles.

(a) Normal User (b) Work User

Figure 6.14: Project Team Members UI

For the "personal"mode, the members are in the developersIds list, so it displays the
Developers RoleTiles. For the role, instead of developer as a role, the word ’Member’ is
passed, except for the creator of the project, for whom the Role is ’Creator’. We know

70

6 Implementation

who the creator is because as we stated on the class model design, his/her ID is saved
on the ScrumMasterId attribute of the project.

RoleTile widget

The RoleTile widget is a custom widget that displays the information of a team member
in a stylized container. The widget takes four required parameters: name, rolepath, role,
and itIsUser.

Inside the build method, a Container is used, with background color depending on whe-
ther the team member is the current user (itIsUser). The content of the container is
composed of a Row widget that contains an image and text. The image is displayed
using the ClipRRect widget to apply rounded corners. It can be either a local asset
image (when it is a default image) or an image loaded from a network URL (when is
the user’s profile image), depending on the rolepath. The text content consists of two
Text widgets. The first displays the team member’s role (role). The second Text widget
displays the team member’s name (name). If the name is an empty string, it’s displayed
as "Nobody".

Sprint Information

(a) Normal User (b) Work User: S.Master, P.Owner/Developer

Figure 6.15: Project Sprint Information when there is no Sprint UI

71

6 Implementation

(a) Sprint not finished (b) Sprint finished

Figure 6.16: Project Sprint Information when there is a Sprint UI

There are two different widgets to be displayed:

1. There is not a sprint for the project. In this case, the ContainerAddSprint is dis-
played.

2. There is a sprint for the project. In this case, the SprintInfoContainer is displayed.

6.8.3 ContainerAddProject widget

It is utilized in the project, product backlog and the sprint screen when the user does
not have any projects and it is a Container with the a welcoming message to the user
(Hi username!), an icon button to add a new project, a text instructing the user to add
a project and a Lottie animation.

The add project icon button returns a Dialog to the user. This dialog varies depending
on the user role:

• The Scrum master users can only create projects, so they visualize the DialogCreate.

• The Product Owners and Developers receive the DialogJoin.

72

6 Implementation

Figure 6.17: Add Project when the user does not have projects UI

• The normal users can create and join projects, so they visualize the DialogCreate-
Join.

(a) Normal User (b) Work User: S.Master, P.Owner/Developer

Figure 6.18: Dialog to add a Project UI

73

6 Implementation

6.8.4 DialogCreate widget

This widget represents a dialog box that allows users to create a new project.

The DialogCreate class is defined as a StatefulWidget that takes a UserScrumer object as
a parameter, which is the current user creating the project. It has the variables: two text
editing controllers for the title and description of the project. and the _selectedImage
variable, initially set to null, for the image of the project.

The widget has a _selectAndCropImage method that allows the user to select an image
from either the gallery or the camera. The selected image is then cropped and stored
in the _selectedImage variable. For this method, the ImagePicker and ImageCropper
packages are added as a dependency of the project on the pubspec.yaml file.[22]

The widget has a _saveImageToFirebase method, responsible for saving the project data,
including the image, to Firebase Firestore. This method takes place when the user presses
the create button.

It first retrieves the values from the title and description text fields. If the title or/and
the description are empty, an AlertDialog is shown with a message indicating it.

Then, if an image has been selected by the user, it proceeds to upload the image to
Firebase Storage. It creates a reference to the storage location using FirebaseStora-
ge.instance.ref().child(imagePath), where imagePath is a unique path for the image in
the project_images directory.

The selected image is uploaded using putFile(_selectedImage!), which returns an Upload-
Task that can be awaited using await.

After the image upload is complete, the download URL of the uploaded image is retrieved
using storageRef.getDownloadURL. To save the download URL into the Firebase Data-
base, a new Project object is created with the project details, including the download
URL of the image (if available).

Then, the joinProject method is called on the user object (in this case a sub-class: Scrum
Master User) to add the project to the user’s list of projects and establish it as the
current project.

Finally, the dialog is dismissed by calling Navigator.of(context).pop(true).

74

6 Implementation

If no image is selected, the code follows a similar process but without the image upload
step. Instead, a default image path is saved for the project.

The build method of the CreateDialog constructs the UI of the dialog box using the
AlertDialog widget. It includes the ’Create Project’ title, a message instructing the user
to create a new project, a MyTextField and MyTextFieldDescription (custom widgets
from the components folder) for the title and description of the project input fields,
an image preview with an editing icon button and a MyButton widget used for the
"Create"button, which calls the _saveImageToFirebase method when tapped.

6.8.5 DialogJoin widget

This widget represents a dialog box that allows users to join an existing project.

It has the variables: idController, a text editing controller for the project ID input field;
qrController, a QR code controller used to capture and process QR code scans; and
qrKey, a global key used to uniquely identify the QR code view widget.

The user can type the Project ID or press the QR Button, which is a MyButtonIcon
(custom widget from the components folder) for the QR code scan button, which opens
a new dialog to display the QR code scanner view.[17] When the user scans a QR code, the
_onQRViewCreated method is called, which updates the ID controller with the scanned
QR code and closes the scanning dialog.

The Dialog has a MyButton widget used for the "Join"button. When the user presses it,
it first retrieves the project ID from the ID controller and checks if the project exists. If
the project does not exist, a SnackBar is shown indicating it.

If the project exists, if the user is already a member of the project, a SnackBar is shown
indicating it.

If the user is not a member of the project, it checks if the user has the role of "produc-
tOwneränd if there is already a product owner assigned to the project. If so, a SnackBar
is shown indicating it.

If the project is in "personal"mode, a SnackBar is shown indicating that the user can’t
join a project created by a normal user, as this Dialog is only shown to Product Owners
and Developers.

75

6 Implementation

If all the checks pass, the user is added to the project using the joinProject method of
the corresponding user object (sub-class from User): Product Owner or Developer.

The build method of the JoinDialog constructs the UI of the dialog box using the Alert-
Dialog widget. It includes the ’Join Project’ title, a message instructing the user to type
or scan the qr to join a Project, a MyTextField (custom widget from the components
folder) for the ID of the project, the QR Button and the "Join"Button.

6.8.6 DialogCreateJoin widget

This dialog is a combination of the Create and the Join Dialog, but it has a differences
regarding the sizes of the widgets and on the join section, when the user presses join, the
method joinProject from the folder project is executed.

In the joinProject method, it checks if the project does not exist, if the user is already a
member of the project, or if the project is in "work"mode (since the DialogCreateJoin is
shown for normal users). If any of these checks fail, a SnackBar is shown to indicate the
corresponding error.

If all the checks pass, the user is added to the project using the joinProject method of
the corresponding user object (sub-class from User): Normal User.

6.8.7 DialogEditAbandon widget

This widget is shown when the user presses the Edit Button on the CurrentProjectTile.
This widget is displayed to the Product Owners and the Developers users.

The DialogEditAbandon widget is a dialog box that allows the user to edit and abandon
a project. It displays the project’s current details, such as title, description, and image,
and provides options to modify them.

The editing section follows the same process as the create Dialog previously described.

For the abandon Project functionality, the widget also includes a Äbandon Project"button
that prompts the user to confirm the abandonment of the project, once the Button is
pressed. If the user confirms, the project is abandoned calling the abandonProject method
on the user object.

76

6 Implementation

(a) Abandon Button
-P.Owner
Developer
-Normal user (more
members)

(b) Delete Button
-S.Master

-Normal user
(the only member)

Figure 6.19: Dialog to edit a Project UI

6.8.8 DialogEditDelete widget

This widget is shown when the user presses the Edit Button on the CurrentProjectTile.
This widget is displayed to the Scrum Masters and the Normal users.

The DialogEditDelete widget is a dialog box that allows the user to edit and delete a
project. It displays the project’s current details, such as title, description, and image,
and provides options to modify them.

The editing section follows the same process as the create Dialog previously described.

For the delete Project functionality, the widget presents a "Delete Project"button that
prompts the user to confirm the erasing of the project, once the Button is pressed. If
the user confirms, the project is removed from the projects array of the user and from
the project is deleted calling the deletingProject method on the current project object.
Then, the current project takes the null or another project value (if the user has more
projects). finally, the user data is updated on the users collection on the database using
the setUserToCollection method.

77

6 Implementation

For the normal users, if in the project, the normal user is the only member, the delete
button is displayed. However, when there are more members in the project, the abandon
button, with the same implementation as the Äbandon"button on the DialogEditAbandon
widget, is displayed.

6.8.9 OtherProjectTile widget

The OtherProjectTile widget represents a tile for displaying a project other than the
current project. It is used in the ProjectPage to show the list of other projects that the
user is associated with.

(a) One project (b) More projects

Figure 6.20: Other Projects UI

If the user only has one project, a container instructing the user to add a new project is
displayed. This container follows the same process as the ContainerAddProject.

If the user has more than one project, a container with the project title, a switch button,
and the project image are displayed.

If the project title is too long, it is truncated with an ellipsis.

The switch button is represented by an MyIconButton (custom widget from the com-
ponents folder). When clicked, it shows an AlertDialog confirming if the user wants to

78

6 Implementation

switch to the selected project. When the user confirms, the currentProject of the user is
set to that project and the database is updated using the method setUserToCollection.

The project image is displayed using an Image widget, either from a local asset (default
project image) or a network image (image in the fireStore), depending on the project’s
image path.

With this implementation, all of the use cases and goals regarding the project page have
been implemented and achieved.

6.9 Product Backlog

For the implementation of the product backlog section of the Navigation Bar, the sub-
folder product backlog includes several widgets. The widget that at the end, is responsible
to display the whole project page is the ProductBacklogPage widget.

Figure 6.21: ProductBacklog sub-folder Structure

6.9.1 ProductBacklogPage

This is the widget responsible for displaying all of the UI related to the Product Backlog.

79

6 Implementation

Figure 6.22: Product Backlog UI

Product Backlog UI

The UI consists of a Scaffold with various components:

• A Row with the logo of Scrumer, with the modification of having the "PRODUCT
BACKLOG"text instead of SCRUMER, and the Product Backlog title.

• If the user has a current project and a current sprint with task; a Add Task Button,
is displayed (only to the product owner and the normal user). This Button leads
to the DialogCreateTask.

• Finally, the method selectToShow is used to establish which widget to display.

6.9.2 DialogCreateTask widget

This widget represents a dialog box that allows users to create a new task for the current
project. This widget is only presented to the product owner and the normal user.

80

6 Implementation

Figure 6.23: Dialog create Task UI

The DialogCreatetask class is defined as a StatefulWidget that takes a UserScrumer
object as a parameter, which is the current user creating the project. It has the variables:
two text editing controllers for the title and description of the project.

The widget has a _saveTaskToFirebase method, responsible for saving the task data.
This method takes place when the user presses the create button.

It first retrieves the values from the title and description text fields. If the title or/and
the description are empty, an AlertDialog is shown with a message indicating it. Then, a
new Task object is created with the task details. Finally, the addTask method is called
on the user object to add the task to the user’s current project list of tasks. Finally, the
dialog is dismissed by calling Navigator.of(context).pop(true).

The build method of the DialogCreateTask constructs the UI of the dialog box using the
AlertDialog widget. It includes the ’Create Task’ title, a message instructing the user
to create a new task, a MyTextField and MyTextFieldDescription (custom widgets from
the components folder) for the title and description and a MyButton widget used for the
"Create"button, which calls the _saveTaskToFirebase method when tapped.

81

6 Implementation

6.9.3 selectToShow method

The selectToShow function is used to determine which widget to display based on the
current state of the user’s project and sprint.

1. If the user doesn’t have a current project, it returns a ContainerAddProject widget,
which belongs to the Project folder and it instructs the user to add a new Project.

2. If the user has a current project but doesn’t have a current sprint , it returns a
ContainerAddSprint widget, , which belongs to the Project folder and it instructs
the user to add a new Sprint.

3. If the user has a current project, a current sprint, and no tasks in the current
sprint, it returns a ContainerAddTask widget when the user is in the Product
Backlog page, and a CurrentSprintTile when the user is on the Sprint Page.

4. If the user has a current project, a current sprint, and there are tasks in the current
sprint, it checks if the user is in the sprint page . If it is, it returns a CurrentSprint-
Tile widget.

5. If none of the above conditions are met, it assumes that the user is in the product
backlog page and returns a ContainerTasks widget. This widget displays the list of
tasks in the product backlog and allows the user to perform related actions.

6.9.4 ContainerAddTask widget

It is utilized in the product backlog and the sprint screen when the user does not have
any tasks on the current Project and it is a Container with the a welcoming message
to the user (Hi username!), an icon button, only presented to the product owner and
the normal user, to add a new task; a text instructing the user to add a task (product
owner and normal user) or to wait for the product owner to add a task (scrum Master
and developer); and a Lottie animation.

The add project icon button returns a DialogCreateTask to the user.

82

6 Implementation

(a) Add Button
-P.Owner

-Normal user

(b) No Add Button
-S.Master
Developer

Figure 6.24: Add Task when the project does not have tasks UI

6.9.5 ContainerTasks widget

It is utilized in the product backlog and the sprint screen when the user has tasks on the
current Project and it displays the list of tasks in the product backlog and allows the
user to perform related actions.

Depending on which page is displayed, its size is different.

It creates a ListView.builder widget to build the list of tasks. Inside the itemBuilder, for
each task, if the user is in the sprint page, the task is displayed only when it is in the
sprint.

For each task, it creates a TaskTile widget.

6.9.6 TaskTile widget

The TaskTile widget is responsible for displaying the details of each task and providing
actions to perform on the task, such as: editing, deleting, and toggling the status of the
task. It also allows users to view and add comments to the task.

83

6 Implementation

(a) Add Task
-P.Owner

-Normal user

(b) No Add Task
-S.Master
Developer

Figure 6.25: Tasks displayed on the Product Backlog UI

toggleTaskStatus method

The toggleTaskStatus function is responsible for toggling the status (finished/unfinished)
of a task when the checkbox associated with the task is clicked.

showTaskDetails method

The showTaskDetails function is responsible for displaying the comments of a task in a
modal bottom sheet. It allows users to view the task’s title and comments, and add new
comments.

Firstly, a commentController is created to handle the input for adding new comments.

The showModalBottomSheet [9] function is called to display the modal bottom sheet. The
isScrollControlled parameter is set to true to enable scrolling when the content exceeds
the screen height.

84

6 Implementation

(a) Task in Sprint (b) Task not in Sprint

Figure 6.26: Task comment section UI

The background color of the modal bottom sheet is determined based on whether the
task is in a sprint or not. If it’s in a sprint, a light grey color is used; otherwise, a darker
grey color is used.

The content of the modal bottom sheet is built using a StatefulBuilder, which allows the
content to be updated within the modal.

The content includes a header section displaying the task’s title, a list of comments, and
a section for adding new comments.

The header section includes a colored bar at the top representing the task’s status (blue
if in a sprint, white otherwise) with the task’s title,

The list of comments is displayed using a ListView.builder widget. It iterates over the
comments associated with the task and displays them in reverse order. Each comment is
styled based on whether the comment was made by the current user or another user.

The section for adding new comments consists of a MyTextFieldNoPadding (custom
widget from the components folder) for entering the comment text and a MyButtonI-
conComment (custom widget from the components folder) for submitting the comment.
When the button is tapped, a new Comment object is created using the input data, and
is added tot he task calling the addComment method of the UserScrumer object.

85

6 Implementation

build method

Inside the build method, it creates an InkWell widget that wraps the entire task tile.
This allows users to tap on the tile to execute the showTaskDetails method and access
the comments of the task.

(a) Add Task to Sprint (b) Delete Task from
P.Backlog

(c) Delete Task from
Sprint

Figure 6.27: Task actions UI

The task tile is wrapped in a Slidable widget[25], which provides swipe actions for the
task tile. Depending on the context, different actions are available:

• If the user is in the product backlog or the sprint page and the task is in the Sprint,
the user can swipe left and press on the white action with a assignment icon to
delete the task from the sprint. This will execute the deleteTaskFromSprint method
on the user object.

• If the user is in the product backlog page, the user can swipe left and press on
the red action with a bin icon to delete the task. This will execute the deleteTask
method on the user object.

86

6 Implementation

• If the task is not the sprint, the user can swipe right and press on the blue action
with a rocket icon to add the task to the sprint. This will execute the addTaskTo-
Sprint method on the user object.

The task tile has a background color that indicates whether the task is in the sprint
(blue) or not (white).

The content of the task tile includes:

• A Checkbox (if the task is in the sprint) which triggers the toggleTaskStatus method
when pressed, the task title.

• The title with different styles depending on whether the task is marked as finished
(line through the text) is or not.

• An edit button which displays the DialogEditTask when pressed.

6.9.7 DialogEditTask widget

This widget represents a dialog box that allows users to edit a task for the current project.

Figure 6.28: Dialog edit Task UI

87

6 Implementation

The DialogEditTask class follows the same process as the DialogCreateTask widget, ex-
cept for the fact that when the Ëdit"button is pressed, the editTask method is called on
the user object to edit the task to the user’s current project list of tasks.

With this implementation, all of the use cases and goals regarding the product backlog
page have been implemented and achieved.

6.10 Sprint

For the implementation of the sprint section of the Navigation Bar, the sub-folder sprint
includes several widgets. The widget that at the end, is responsible to display the whole
sprint page is the SprintPage widget.

Figure 6.29: Sprint sub-folder Structure

6.10.1 SprintPage

This is the widget responsible for displaying all of the UI related to the Sprint.

Sprint UI

The UI consists on a Scaffold with various components:

88

6 Implementation

Figure 6.30: Sprint UI

• A Row with the logo of Scrumer, with the modification of having the SSPRINT"text
instead of SSCRUMER", and the Sprint title. If there is a current sprint and it is
not finished, the logo is blue.

• If the user has a current project and a current sprint, a CountdownTimerContainer
widget is displayed.

• Finally, the method selectToShow (explained in the product Backlog section) is
used to establish which widget to display.

6.10.2 CountdownTimerContainer widget

This widget is responsible for displaying the time left of the current sprint and the chart
Button (which displays the Sprint report). It is used in the Sprint page and in the Project
page (to display the sprint information). In each page, the sizes vary, based on the value
of onReport, that indicates whether the countdown is on the project page.

89

6 Implementation

It uses the CountdownTimer widget from the flutter_countdown_timer [11] package (de-
pendency established on the pubspec.yaml file).

The CountdownTimer widget takes the endTime parameter, which represents the end
time of the countdown in milliseconds since the epoch. We pass the end attribute of the
current sprint object.

The widgetBuilder callback is invoked by the CountdownTimer widget to build the UI
based on the current remaining time.

(a) Sprint not finished (b) Sprint finished

Figure 6.31: Sprint Countdown UI

If the sprint is not finished (time is null), indicating that the countdown has finished, it
displays a message stating that the sprint has finished.

If the sprint is not finished, it builds a row with three _buildTimeContainer widgets to
display the remaining days, hours, and minutes.

If the user is on the sprint page, it also shows a Chart button with an icon to open a
dialog for the sprint report, which builds the SprintInfoContainer widget.

90

6 Implementation

6.10.3 SprintInfoContainer widget

This widget displays information about a sprint, including its title, start and end dates,
progress percentage, and optional buttons for creating a new sprint. It is used in the
Sprint page, in the CountdownTimerContainer when the Chart Button is pressed. Also,
it is used in the project page, to display the sprint information.

(a) Sprint not finished (b) Sprint finished:
1. S.Master/Normal, 2. P.Owner/Developer

Figure 6.32: Sprint Report UI

It first displays the sprint title. Secondly, when the user is in the sprint page, there are
two possibilities:

• If the sprint is finished, it displays the start and end dates of the sprint in a
horizontal row.

• If the sprint is not finished, it displays the CountdownTimerContainer widget to
show the time left for the sprint.

It uses the CircularPercentIndicator widget from the percent_indicator package (depen-
dency established on the pubspec.yaml file) to display the progress percentage of the
sprint.

91

6 Implementation

Inside the CircularPercentIndicator [28], it displays an animated Lottie animation and
the number of finished tasks and total tasks in the sprint. The animation indicates either
that the sprint is finished (trophie animation) or it is not (rocket launching animation).

If the sprint is over and the user’s role is either "normalör ßcrumMaster", it displays a
button for creating a new sprint, opening the DialogCreateSprint widget.

6.10.4 selectToShow method

The method selectToShow (explained in the product Backlog section) is used to establish
which widget to display:

• If the user doesn’t have a current project, it returns a ContainerAddProject widget,
which belongs to the Project folder and it instructs the user to add a new Project.

• If the user has a current project but doesn’t have a current sprint , it returns a
ContainerAddSprint widget.

• If the user has a current project, a current sprint, it returns a CurrentSprintTile
widget.

6.10.5 ContainerAddSprint widget

It is utilized in the product backlog and the sprint screen when the user does not have a
sprint fro the current project and it is a Container with the a welcoming message to the
user (Hi username!), an icon button to add a new sprint (only displayed to the scrum
aster and the normal user), a text instructing the user to add a project (scrum master
and normal user) or to wait for the scrum master to create a sprint (product owner and
developer) and a Lottie animation.

The add project icon button returns a Dialog to the user, the DialogCreateSprint.

92

6 Implementation

(a) Add sprint
-S.Master

-Normal user

(b) No Add Sprint
-P.Owner
Developer

Figure 6.33: The project does not have a sprint UI

6.10.6 DialogCreateSprint widget

This widget represents a dialog box that allows users to create a new sprint for the current
project. This widget is only presented to the scrum master and the normal user.

The DialogCreateSprint class is defined as a StatefulWidget that takes a UserScrumer
object as a parameter, which is the current user creating the sprint. It has the variables:
a text editing controller for the title of the sprint , a selectedDateTime, a formattedDate
and a formattedTime variables.

The widget has a _showDateTimePicker method, responsible for showing a date picker
and a time picker and allowing the user to select a future date and time for the sprint.
[33]

Localization configuration

To be able to have the calendar display where the first day of the week is monday [23], the
package flutter_localizations is added as a dependency and we configure localization for

93

6 Implementation

(a) Create Sprint (b) Date Picker (c) Time Picker (d) Selected Date

Figure 6.34: Dialog create Sprint UI

our App with a list of delegates (GlobalMaterialLocalizations.delegate, GlobalWidgetsLo-
calizations.delegate, GlobalCupertinoLocalizations.delegate), that handle the localization
of various widgets; and a list of language and region (English, Spanish); and finally, we
add the locale property to the date picker as Great Britain.

In this method, it first uses the showDatePicker function to display a date picker dialog.

If a date is selected, it shows the time picker dialog using the showTimePicker function.

If a time is selected, it creates a DateTime object called selectedDateTime by combining
the selected date and time.[16]

Then, if the selected date and time is before the current date and time, an AlertDialog
with an error message is shown.

If the selected date and time is valid, it updates the selectedDateTime, formattedDate,
and formattedTime variables.

The widget has a _saveTaskToFirebase method, responsible for saving the sprint data.
This method takes place when the user presses the create button.

It first retrieves the value from the title text field. If the title or/and the selectedDateTime
are empty, an AlertDialog is shown with a message indicating it. Then, a new Sprint

94

6 Implementation

object is created with the sprint details, giving the value of Datetime.now() to the begin
attribute and the selectedDateTime to the end attribute. Finally, the addSprint method
is called on the user object to add the sprint to the user’s current project list of sprints
and as the currentSprint.

The build method of the DialogCreateSprint constructs the UI of the dialog box using
the AlertDialog widget. It includes the ’Create Sprint’ title, a MyTextField (custom
widget from the components folder) for the title, a MyIconButton widget for selecting
the end date and time of the sprint, which calls the _showDateTimePicker method
when tapped; and a MyButton widget used for the "Create"button, which calls the _-
saveSprintToFirebase method when tapped.

6.10.7 CurrentSprintTile widget

The CurrentSprintTile widget displays the details of the current sprint of the current
project for a user. It includes the sprint’s title and an edit button, for the scrum master
and the normal user, which displays the dialogEditSprint widget.

There are two possible cases:

1. The sprint does not have tasks. In this case, the ContainerGetTasksInPBacklog is
return.

2. The sprint has tasks. In this case, a ContainerTasks is return.

6.10.8 DialogEditSprint widget

This widget represents a dialog box that allows users to edit the sprint title and end
date. It is only displayed to the scrum master and normal user.

The DialogEditSprint class follows the same process as the DialogCreateSprint widget,
except for the fact that when the Ëdit"button is pressed, the editSprint method is called
on the user object to edit the sprint.

95

6 Implementation

(a) Edit Sprint (b) Date error

Figure 6.35: Dialog edit Sprint UI

6.10.9 ContainerGetTasksInPBacklog widget

This widget is responsible for displaying a message when a user doesn’t have any tasks
in the current sprint.It consists on a Column with a welcoming message to the user
(Hi username!), a text informing the user that he/she doesn’t have any tasks in the
current sprint,a text instructing the user to set tasks in the product backlog; and a
Lottie animation widget.

6.10.10 ContainerTasks widget

It is utilized in the product backlog and the sprint screen when the user has tasks on
the current Project and in the sprint page, it displays the list of tasks in the sprint and
allows the user to perform related actions.

It creates a ListView.builder widget to build the list of tasks. Inside the itemBuilder,
for each task, if the user is in the sprint page, the task is displayed only when it is in
the sprint. As it was explained in the product backlog section, for each task, it creates
a TaskTile widget, which allows the user to mark or unmark the task as done, edit the
task, access the comment section, and use the Slidable feature to delete the task from
the sprint or delete it from the project.

96

6 Implementation

(a) Edit sprint
-S.Master
-Normal user

(b) No Edit
-P.Owner
Developer

Figure 6.36: Sprint without tasks UI

(a) Edit Button
-S.Master

-Normal user

(b) No Edit Button
-P.Owner
Developer

Figure 6.37: Sprint with tasks UI

97

6 Implementation

With this implementation, all of the use cases and goals regarding the sprint page have
been implemented and achieved.

6.11 Profile

For the implementation of the profile section of the Navigation Bar, the sub-folder profile
includes several widgets. The widget that at the end, is responsible to display the whole
profile page is the ProfilePage widget.

Figure 6.38: Profile sub-folder Structure

6.11.1 ProfilePage

This is the widget responsible for displaying all of the UI related to the Profile. The UI
consists on a Scaffold with various components:

• A Row with the logo of Scrumer, with the modification of having the "PROFI-
LE"text instead of SSCRUMER", and the Sprint title.

• A logout Button that executes the signUserOut method, which uses

FirebaseAuth.instance.signOut() to log the user out.

• A ProfileTile widget, which displays the user’s information.

98

6 Implementation

Figure 6.39: Normal User Profile UI

ProfileTile widget

This widget is responsible for displaying the profile information of a user.

(a) Scrum Master (b) Product Owner (c) Developer

Figure 6.40: Profile UI

99

6 Implementation

It consists on a Column with the following elements: a row with the user’s name (if
the name overflows, it is truncated with an ellipsis) and an edit button, which opends
a DialogEditProfile widget; the user’s surname; the user’s email and a row with the the
role information and profile image.

DialogEditSprint widget

This widget represents a dialog box that allows users to edit the user’s name, surname
and profile photo.

(a) Default Image (b) Image Picker (c) Image Cropper (d) Image selected

Figure 6.41: Edit Profile UI

The widget has a _selectAndCropImage[22] method that allows the user to select an
image from either the gallery or the camera.

The widget has a _saveImageToFirebase method, responsible for saving the project data,
including the image, to Firebase Firestore. This method takes place when the user presses
the edit button.

It first validates that the name and surname fields are not empty. Otherwise, the profile
image is saved to Firebase Storage. If a new image was selected, the image is uploaded

100

6 Implementation

to Firebase Storage and the download URL is obtained. The user’s profile information is
then updated with the new name, surname, and imagePath.

If the user had a previous profile image that was not the default image, it is deleted from
Firebase Storage.

Finally, the user information is updated in Firebase Firestore.

With this implementation, all of the use cases and goals regarding the profile page have
been implemented and achieved.

6.12 Logo

To add the logo to the App icon for launching the app, we first use the tool appicon,
to have the icon in all necessary sizes for the platforms ios and android. As a result, we
obtain two different folders, one for each operating system.

Secondly, we add the generated icons to the corresponding android (android/app/src/-
main/res) and ios (ios/Runner/assets.xcassets/appIcon.appiconset) folders.[12]

101

7 Evaluation

In this chapter, we include the testing process for Scrumer. First, we introduce the testing
strategy; then, we explain the unitary tests and the manual tests. Finally, we explain the
acceptance tests.

7.1 Strategy

Observing the requirements established and the implementation of the App, the strategy
chosen is to use unitary tests to evaluate the methods used on the models of the App,
and manually test (System tests) the App to evaluate the User Interface.

This strategy is chosen because it is easier to check all of the widgets (sometimes it ends
up being a big widget tree) displayed for each case directly on the User Interface; rather
than verifying each widget for each case, which has a lot of possibilities regarding the 4
types of users, number of projects, sprint finished or not, etc.

Therefore, the unitary tests are aimed to evaluate of the changes on the class models
are done correctly, which means testing the methods of these classes. And the manual
testing includes evaluation of the whole system, including the UI that calls these methods;
therefore, testing the integration between widgets and the database changes shown in the
UI.

The manual testing can be structure as functional tests and non functional tests, corre-
sponding to the different requirements previously established. We use real Android devi-
ces: Samsung Galaxy A14, Samsung Galaxy Core Prime and Samsung Galaxy A50.

Finally, acceptance testing takes place, showing the product to four different users.

102

7 Evaluation

7.2 Unitary Tests

In Flutter, testing in the actual firebase project is not available. Therefore, we use the
package mockito, to imitate a Firebase Authetication Database, a Firebase Firestore
Database and a Firebase Cloud Storage.

Then, in the test folder, we include a file widget_file.dart, where the tests are included. In
this file, a test for the display of all the element of a UI widget is included, to serve as an
example for other tests. The widget tested is DialogCreate, used for creating a project.

testWidgets(’Test Create Project Dialog Error Message’,

(WidgetTester tester) async {

// Create a test user

String id = ’01’;

ScrumMasterUserScrumer user = ScrumMasterUserScrumer(

id: id,

name: ’philip’,

surname: ’smith’,

email: "philip@gmail.com",

);

await tester.pumpWidget(

MaterialApp(

home: DialogCreate(

user: user,

firebaseAuth: mockFirebaseAuth,

firebaseFirestore: mockFirebaseFirestore,

),

),

);

// Verify that the dialog appears

expect(find.text(’Create Project’), findsOneWidget);

expect(find.text(’Title’), findsOneWidget);

expect(find.text(’Description’), findsOneWidget);

// Tap the "Create" button

await tester.tap(find.byType(MyButton));

await tester.pump();

// Verify that the title and description are needed

expect(find.text(’Title needed’), findsOneWidget);});

Code snippet 7.1: Test method for the error message in the Create Project Dialog

103

7 Evaluation

We test if a widget containing an error message is displayed when the user does not
enters any project title and presses the "Create"button.

The rest of the tests follow a similar structure and evaluate if the methods used for
different features like edit profile user, add multiple projects to one user, create a project
as Scrum Master and later, add a product owner to the same project, add a sprint to a
project.

The goal of the unitary tests is to find errors in each model, the file is executed and the
tests have a successful result.

7.3 Functional Evaluation

This is the evaluation corresponding to each functional requirements of the App Scru-
mer.

7.3.1 Functional Requirements for Users (FR01 to FR06)

FR01: A user has to be able to register and login using an email and
password.

Evaluation: We test the user registration process, ensuring that the user can input their
name, surname, and email in both registration methods. Upon successful registration,
we verify that the user is redirected to the home page, and their information is correctly
stored in the Authentication Database and Firestore Database.

FR02: A user has to be able to login using an email and password used on
the registration.

Evaluation: We check the login process, making sure that users can log in using their
registered email and password. In case of incorrect credentials, we verify that an appro-
priate error message is displayed, and upon successful login, the user is directed to the
home page.

Regarding the four type of users, we observe that four sub-classes have been established
in the app models.

104

7 Evaluation

Furthermore, regarding the two different registrations, we can see that, first, a interface
to choose the registration is built followed by two different registration interfaces for the
two different users.

FR03: A user has to be able to reset his/her password.

Evaluation: We test the password reset functionality, confirming that when a user requests
a password reset, they receive an email to reset their password. After following the reset
link, we check if the user can successfully reset their password.

FR04: A user has to be able to register and login using a Google account.

Evaluation: We verify that the user can choose the Google account registration option
and successfully register using their Google account. Similarly, we test if the user can
log in using their registered Google account. Upon successful registration and login, we
ensure that the user is directed to the home page and their credentials are appropriately
stored in the Authentication Database and Firestore Database.

FR05: A user can have multiple projects.

Evaluation: We create multiple projects for a user and verify that all projects are correctly
associated with the user in the database. (The method to add multiple projects is tested
in the unitary tests). Additionally, we check the user interface to ensure that all projects
are displayed correctly for the user.

FR06: A user has the fields Name, Surname, and Photo, which can be
modified.

Evaluation: We test the user profile editing functionality, ensuring that the user can
modify their Name, Surname, and Photo. After making the changes, we verify that
the updated information is correctly stored in the database and reflected in the user
interface.

105

7 Evaluation

FR07: A project has the fields Name, Surname, and Photo, which can be
modified.

Evaluation: We test the user profile editing functionality, ensuring that the user can
modify their Name, Surname, and Photo. After making the changes, we verify that
the updated information is correctly stored in the database and reflected in the user
interface.

7.3.2 Functional Requirements for Projects (FR07 to FR08)

FR07: A project has the fields Title, Description, and Photo, which can be
modified.

Evaluation: We verify that a project’s Title, Description, and Photo can be modified
through the user interface. After making the changes, we check if the updated project
information is correctly stored in the database and reflected in the user interface.

FR08: A project has tasks and a current Sprint, which can also be
modified.

Evaluation: We test the functionality to modify tasks and the current Sprint of a project.
We verify that tasks can be added, removed, and edited through the user interface, and
the changes are correctly reflected in the database. Additionally, we ensure that the
current Sprint can be modified, including its Title, Starting Date, and Finish Date.

7.3.3 Functional Requirements for Projects (FR09 to FR17)

FR09: A normal user can create Projects and Join Projects created by
other normal users.

Evaluation: We test the ability of a normal user to create a new project. Upon successful
creation, we check if the project is added to the user’s project list.

Additionally, we test the ability of a normal user to join a project created by another
normal user using a generated QR code. Upon successful joining, we verify if the user is

106

7 Evaluation

added to the project’s user list and if his/her current project and other projects UI has
been updated. Then, we verify if the new member is visible for the rest of the project
members.

We also test possible errors, by entering a project Id that does not exist, the result is
a message telling us that the project does not exist. Also, we test it entering a "perso-
nal"project and the result is a message telling us that we need to join "work"projects.
Finally, we test that a user can join a project for which he/she is already a member. The
result is a message telling that he/she is already a member.

FR10: A normal user can abandon a project, and when there’s no one else
on the project, delete the project.

Evaluation: We test if a normal user can abandon a project, this is observe in the Dialog
widget that is displayed with a Äbandon Project". If the user is the last member of the
project, we check if the button appearing is the "Delete Button". Then, we evaluate if
the corresponding changes in the users and project data take place. For the delete option,
we observe that the project document is erase from the Firebase database.

FR11: A scrum Master can create Projects.

Evaluation: We test the ability of a Scrum Master to create a new project and ensure it
is successfully added to the database.

FR12: A product owner and a developer can join projects.

Evaluation: We verify that both product owners and developers can only join existing
projects using the provided QR code. We do this by we entering a project Id that does
not exist, the result is a message telling us that the project does not exist. Also, we test
it entering a "personal"project and the result is a message telling us that we need to join
"work"projects.

Finally, we test that a product owner or a developer can join a project for which he/she
is already a member. The result is a message telling that he/she is already a member.

107

7 Evaluation

FR13: The method to join projects needs to be the following: A QR for the
project needs to be generated and displayed to be read by another user who
uses it to join the project.

Evaluation: We check if the QR code generation is successful and whether it can be
scanned by another user to join the project.

FR14: A project needs to have a mode field, which is "work"when the
project has been created by a Scrum Master and "normal"when the creator
was a normal user.

Evaluation: We verify if the mode field on the firebase Database of the project is set
correctly based on the creator’s role.

FR15: A "work"project needs to have one Scrum Master and it can have
zero or one Product Owner. There can be multiple developers.

Evaluation: We check if the project enforces the correct number of Scrum Masters, Pro-
duct Owners, and Developers based on the project mode. To test it, we try to join as
Product Owner a project, where there is already another product owner. The result is a
message saying that there is another product owner for that project.

For developers, we test if for one project, multiple developers can join.

FR16: A product Owner and a developer can abandon a project.

Evaluation: We test if a product owner or developer can abandon the project and verify
that they are removed as members of the project by looking in the database and in the
Project UI of other members.

FR17: A scrum Master can delete a project.

Evaluation: We ensure that a Scrum Master can delete a project and that the associated
document is also removed from the database. Also, we verify that the project has also
been erase for all project members.

108

7 Evaluation

7.3.4 Functional Requirements for Current Sprint (FR18 to FR21)

FR18: A sprint has the fields Title, Starting Date, and Finish Date, which
can be modified.

Evaluation: We test if the fields of the current sprint, such as Title, Starting Date, and
Finish Date, can be modified successfully.

FR19: A normal user can create a Sprint and edit its duration.

Evaluation: We verify if a normal user can create a new sprint and edit its duration
(Starting Date and Finish Date).

FR20: A scrum Master can create a Sprint and edit its duration.

Evaluation: We test if a Scrum Master can create a new sprint and modify its duration.
We verify that a product owner and a developer cannot create or modify sprints by
observing that the edit button does only appear for the scrum master.

FR21: All users need to see the progress of the sprint, meaning the tasks
completed.

Evaluation: We check if all users can view the progress of the sprint, by observing the
sprint report.

7.3.5 Functional Requirements for Tasks (FR22 to FR24)

FR22: A task has the field Title which can be modified.

Evaluation: We verify if the Title field of a task can be modified successfully.

109

7 Evaluation

FR23: A task can be created by a normal or a product owner user.

Evaluation: We test if both normal users and product owners can create new tasks. We
observe that the other users cannot create tasks, as the create button does not appear
for them.

FR24: A task can be added to or removed from the sprint and deleted from
the project.

Evaluation: We check if tasks can be added to or removed from the current sprint and if
they can be deleted from the project by using the displayable options. We check if the
data has been successfully modified in the database.

FR25: A task has a comment section, which acts as a chat for users on the
project to collaborate.

Evaluation: We examine the functionality of the comment section associated with tasks in
the Scrumer app. We ensure that each task in the app has a comment section associated
with it. When viewing a task, we ensure that the user views the list of comment, being
the last comment on the bottom part.

We ensure that users can type and add comments to the comment section of a task.
Then, we test whether the comments added are updated in the database.

Finally, we evaluate the user Identification: each comment should display the name,
surname and image of the user who posted it.

7.4 Non-Functional Evaluation

In this section, we evaluate the non-functional requirements for Scrumer:

110

7 Evaluation

NFR01: The App needs to be compatible with both Android and iOS
Operating Systems.

Evaluation: We verify if the app functions correctly on both Android, using several real
Android Devices and we verify if all of the IOS configurations adhere to the flutter
requirements for IOS, as having developed the app in Windows doesn’t allow testing the
app in real iPhones.

NFR02: Every screen or component needs to be charged in less than 5
seconds with the aim of not losing the user’s attention.

Evaluation: We measure the loading times of various screens and components to ensure
they meet the specified requirement.

NFR03: The error messages have to be clear and easy to understand by the
user.

Evaluation: We review the error messages displayed to the user and ensure they are clear
and provide relevant information.

NFR04: The design of the App needs to have a uniform theme, as well as
intuitive user interfaces.

Evaluation: We assess the app’s design to ensure consistency in the theme, which we
observe follows a light grey design, with the use of black and blue (sprint related actions)
colors, and evaluate if the user interfaces are intuitiveness.

NFR05: Responsive design: the app needs to be adjustable to different
screen sizes.

Evaluation: We test the app on various Android Devices with different screen sizes and
use different orientations in those devices.

111

7 Evaluation

7.5 Acceptance Testing

Acceptance testing takes place to show the product to four different users. This step
is crucial to gather feedback from actual users and validate that the app meets their
requirements and expectations.

During acceptance testing, the four users interact with the app, perform various tasks,
and provide feedback on their experience.

During the acceptance testing phase, the first user, who uses the app as a normal user,
provides feedback indicating that initially, he found it difficult to understand how to
add tasks and was confused by the concept of sprints. However, once he pressed on the
Add button in the Container to Add a Sprint, the calendar and timer helped him to
understand the time slot system and found the app useful for his daily tasks. To address
this usability concern, descriptions have been added under the "Create Sprintänd Ädd
Task"features to provide clearer guidance and improve user understanding.

The other three users use the app as a Scrum Team, and their feedback is positive,
particularly highlighting the benefits of collaboration through the task comments feature.
The Scrum Master appreciates the ease of creating projects and allowing others to join, as
it enhanced productivity and team collaboration. However, they expressed their concern
of having everyone (despite the role) with the same profile picture, when they have the
default profile picture.

In response to their feedback, a new feature has been added to the app that when the
user does not have a personalized photo, it does not display the default user photo, but
a different profile picture for each role in the members section of the current project and
in the comment section. This addition helps team members easily identify one another
during discussions.

Once the acceptance testing phase is completed, the app is ready for its official release
to the target audience.

112

Part III

Epilogue

113

8 Conclusion

Having finish with the development of Scrumer, this chapter includes the conclusions,
including an analysis of the goals achieved and the lessons learned from the project.
Furthermore, it is important to analyse the improvement that could be made to the
software and the future steps to take.

8.1 Goals achieved

The main goal of this project was to develop a functional mobile application, Scrumer,
that successfully implemented the design and requirements established for supporting
agile project management using the SCRUM framework. Several goals were achieved
throughout the process:

• Understanding the Context: A thorough analysis of existing project management
apps, both related and unrelated to Scrum, was conducted. This analysis provided
valuable insights into the market and helped in identifying the unique features and
aspects that could be incorporated into Scrumer.

• Clear Requirements Definition: The functional and non-functional requirements of
Scrumer were defined, covering essential features such as user registration and lo-
gin, project creation and management, task creation and collaboration, and sprint
planning. These requirements provided a solid foundation for the development pro-
cess.

• Use Case Analysis: The use cases corresponding to the defined requirements were
analyzed and documented. This analysis played a crucial role in shaping the design
and implementation of Scrumer, ensuring that the app’s functionality aligned with
the identified use cases.

114

8 Conclusion

• System Architecture and User Interface Design: A clear and comprehensive design
of the system architecture and user interface was established. This design served
as a roadmap for the implementation phase and ensured that the app met the
intended requirements and provided an intuitive user experience.

• Adjusted Implementation to design and requirements: a working App was built,
using a Flutter building environment and Firebase for the authentication database,
App database and Image Cloud Storage.

• Evaluation of the App, an analysis was made, to ensure that each requirement was
successfully implemented and met the intended functionality.

Regarding the impact of our App, Scrumer improves productivity of Task Management
within a Scrum cycle by focusing on four concepts:

• User Productivity Enhancement: Scrumer successfully enhanced task management
productivity within Scrum cycles by providing a mobile platform for users to ac-
cess and update their tasks conveniently. The app’s user-friendly interface and
role-based access control contributed to improved efficiency and streamlined colla-
boration within Scrum teams.

• Flexibility for User Scrum Roles: Providing flexibility in accommodating the user
roles within projects: Scrum Masters, Product Owners, and Developers; allowed for
better customization and adaptability to specific project needs. Understanding the
unique requirements of each role and implementing features accordingly contributed
to a more tailored user experience.

• Flexibility for Non-Scrum Users: Scrumer not only aimed to Scrum teams but
also introduced individuals to the Scrum framework by offering a flexible mode
for personal task management. This flexibility expanded the app’s user base and
allowed users to benefit from Scrum principles even outside traditional project
management settings.

• Streamlined Project Management: The integration of multiple projects within Scru-
mer, particularly for Scrum Masters working in companies with a Scaled Agile
Framework like LeSS, provided an efficient and centralized platform for managing
various projects. The ability to switch between projects seamlessly and initiate
team projects without the need for extensive setup further enhanced project ma-
nagement processes.

115

8 Conclusion

8.2 Lessons learned

Throughout the development of Scrumer, several valuable lessons were learned:

• Simplicity in Design: Simplifying the class structure and database design proved
to be crucial in managing different user types and roles within projects. For ex-
ample, the fact that the projects were stored in the same database and were the
same for both types of users, made it difficult to differentiate when to display the
team members on the project page as work users (scrum master, product owner,
developers) or as normal users (creator, members). At the end, instead of having
two different Project classes or any other solution, the simplest one was having one
attribute with the project’s mode: work or personal.

• Asynchronous Data Retrieval: Dealing with asynchronous data retrieval from the
Firebase database presented challenges, especially during page initialization or re-
building when data changes occurred.

Implementing a refreshData method and using listeners to the database helped
in managing data updates effectively. Displaying a loading indicator during data
retrieval helped improve the user experience.

• Continuous Improvement: Scrumer’s development process highlighted the import-
ance of iterative improvements and continuous refinement. Regularly evaluating
the app’s performance, identifying areas for enhancement, and incorporating new
features or functionalities. For example the customization of the profile photo, was
later added and it is a useful way for the user to identify his/her teammates in the
project page or the task’s comment section.

8.3 Future work

The idea of having a separate user subclass for each user type is based on making the
software accessible for improvements in Scrum role-based features.

On the process of the goals establishment and requirement gathering, many ideas had
to be abandoned either due to the complexity they posed or because they didn’t align
with the direction of Scrumer. One such idea, which could be a great new feature, is the
addition of event tools where team members can join events. This could include timers,

116

8 Conclusion

displaying project members in meetings, or even collaborative activities like Scrum poker
for sprint planning. Also, the feature of notifying the users when a sprint is finished or a
task is done could also be added on the future. Furthermore, considering an advertising
system as a potential business idea to generate revenue from Scrumer is also something
to explore in the future.

In addition to introducing new features, the next step is to deploy the app on both the
Play Store and the App Store.

8.4 Personal Conclusion

As a personal conclusion, the development of this project has resulted in a highly satis-
factory outcome. Throughout the process, I not only learned how to build an app from
scratch but also gained valuable experience in analysis, design, implementation and tes-
ting. One of the key lessons I learned was the importance of analysis and planning before
starting the development process.

Additionally, I acquired new skills in Flutter and Dart, which are powerful tools for
app development. Exploring these technologies introduced me to a vibrant community of
developers. Learning a new language and framework from scratch expanded my technical
knowledge and broadened my skill set.

Documenting the entire development process in detail was another valuable aspect of
this project. It allowed me to practice and improve my documentation skills, which will
be beneficial in future projects. Creating clear and concise documentation helped me
summarize complex methods and processes, and present a comprehensive overview of
the project.

Moreover, conducting this thesis as an exchange student in Germany, a different acade-
mic environment, enhanced my research skills and provided a more practical and less
theoretical approach compared to what I might have experienced in my home universi-
ty.

Overall, this project has been an enriching experience that has not only enhanced my
technical skills but also improved my ability to plan, document, and execute complex
tasks. It has provided valuable insights into app development, research methodologies,
and project management.

117

Part IV

License and Bibliography

118

9 License Information

App License Information

Lottie Animations

The Lottie animations used in this app are public in the LottieFiles website. For them,
the following license policy appears:

"Permission is hereby granted, free of charge, to any person obtaining a copy of the
public animation files available for download at the LottieFiles site (“Files”) to download,
reproduce, modify, publish, distribute, publicly display, and publicly digitally perform
such Files, including for commercial purposes, provided that any display, publication,
performance, or distribution of Files must contain (and be subject to) the same terms
and conditions of this license."

These are the Lottie animations used:

• Normal user Registration option:

https://lottiefiles.com/animations/man-working-on-laptop-in-office-IScjkzvNcq

• Work user Registration option:

https://lottiefiles.com/animations/designer-team-at-work-Kd6ZuthqFV

• Create new project:

https://lottiefiles.com/animations/startup-MZbGD6AQK5

• Create sprint:

https://lottiefiles.com/animations/rocket-launch-E2fg4zXD59

• Sprint has no tasks (Colors have been modified):

https://lottiefiles.com/animations/cronogram-peoples-6A2SRJaiWj

119

https://lottiefiles.com/animations/man-working-on-laptop-in-office-IScjkzvNcq
https://lottiefiles.com/animations/designer-team-at-work-Kd6ZuthqFV
https://lottiefiles.com/animations/startup-MZbGD6AQK5
https://lottiefiles.com/animations/rocket-launch-E2fg4zXD59
https://lottiefiles.com/animations/cronogram-peoples-6A2SRJaiWj

9 License Information

• Add Task:

https://lottiefiles.com/animations/man-with-task-list-Z2XrIU43bQ

• Sprint not finished information (Animation has been modified):

https://lottiefiles.com/animations/rocket-flighting-pqEmhIAhGC

• Sprint finished information:

https://lottiefiles.com/animations/trophy-yEGPe40FVr

Flaticon assets

The photos used in this app are public in the Flaticon website. For them, the following
license policy appears:

“Flaticon license: Free for personal and commercial use with attribution”

These are the photos and icons used:

• Scrum Master: https://www.flaticon.com/free-icon/delegation_9571752?term=
coordinator&page=1&position=1&origin=style&related_id=9571752

• Product Owner: https://www.flaticon.com/free-icon/growth_7376385?term=developer&
page=3&position=3&origin=style&related_id=7376385

• Developer: https://www.flaticon.com/free-icon/developer_2550601?term=developer&
page=1&position=43&origin=style&related_id=2550601

• Normal User: https://www.flaticon.com/free-icon/leader_4059687?term=owner&

page=1&position=13&origin=search&related_id=4059687

• Default User Profile image: https://www.flaticon.com/free-icon/user_219983?k=1686581730103&
log-in=google

• Switch icon: https://www.flaticon.com/free-icon/transfer_10621360?term=exchange&
page=5&position=17&origin=search&related_id=10621360

Packages

The packages (libraries, dependencies, etc.) used in this app are each subject to their
individual licenses.These are the packages used:

• cupertino_icons: The MIT License text can be found at:
https://pub.dev/packages/cupertino_icons/license

120

https://lottiefiles.com/animations/man-with-task-list-Z2XrIU43bQ
https://lottiefiles.com/animations/rocket-flighting-pqEmhIAhGC
https://lottiefiles.com/animations/trophy-yEGPe40FVr
https://www.flaticon.com/free-icon/delegation_9571752?term=coordinator&page=1&position=1&origin=style&related_id=9571752
https://www.flaticon.com/free-icon/delegation_9571752?term=coordinator&page=1&position=1&origin=style&related_id=9571752
https://www.flaticon.com/free-icon/growth_7376385?term=developer&page=3&position=3&origin=style&related_id=7376385
https://www.flaticon.com/free-icon/growth_7376385?term=developer&page=3&position=3&origin=style&related_id=7376385
https://www.flaticon.com/free-icon/developer_2550601?term=developer&page=1&position=43&origin=style&related_id=2550601
https://www.flaticon.com/free-icon/developer_2550601?term=developer&page=1&position=43&origin=style&related_id=2550601
https://www.flaticon.com/free-icon/leader_4059687?term=owner&page=1&position=13&origin=search&related_id=4059687
https://www.flaticon.com/free-icon/leader_4059687?term=owner&page=1&position=13&origin=search&related_id=4059687
https://www.flaticon.com/free-icon/user_219983?k=1686581730103&log-in=google
https://www.flaticon.com/free-icon/user_219983?k=1686581730103&log-in=google
https://www.flaticon.com/free-icon/transfer_10621360?term=exchange&page=5&position=17&origin=search&related_id=10621360
https://www.flaticon.com/free-icon/transfer_10621360?term=exchange&page=5&position=17&origin=search&related_id=10621360
https://pub.dev/packages/cupertino_icons/license

9 License Information

• firebase_core: The Apache License 2.0 text can be found at:
https://pub.dev/packages/firebase_core/license

• firebase_auth: The MIT License text can be found at:
https://pub.dev/packages/firebase_auth/license

• google_sign_in: The BSD 3-Clause License text can be found at:
https://pub.dev/packages/google_sign_in/license

• google_nav_bar: The MIT License text can be found at:
https://pub.dev/packages/google_nav_bar/license

• cloud_firestore: The BSD 3-Clause License text can be found at:
https://pub.dev/packages/cloud_firestore/license

• lottie: The BSD 3-Clause License text can be found at:
https://pub.dev/packages/lottie/license

• uuid: The MIT License text can be found at:
https://pub.dev/packages/uuid/license

• qr_flutter: The MIT License text can be found at:
https://pub.dev/packages/qr_flutter/license

• qr_code_scanner: The BSD 2-Clause License text can be found at:
https://pub.dev/packages/qr_code_scanner/license

• image_picker: The MIT License text can be found at:
https://pub.dev/packages/image_picker/license

• image_cropper: The Apache License 2.0 text can be found at:
https://pub.dev/packages/image_cropper/license

• firebase_storage: The BSD 3-Clause License text can be found at:
https://pub.dev/packages/firebase_storage/license

• intl: The Unicode License Agreement text can be found at:
https://pub.dev/packages/intl/license

• flutter_slidable: The MIT License text can be found at:
https://pub.dev/packages/flutter_slidable/license

121

https://pub.dev/packages/firebase_core/license
https://pub.dev/packages/firebase_auth/license
https://pub.dev/packages/google_sign_in/license
https://pub.dev/packages/google_nav_bar/license
https://pub.dev/packages/cloud_firestore/license
https://pub.dev/packages/lottie/license
https://pub.dev/packages/uuid/license
https://pub.dev/packages/qr_flutter/license
https://pub.dev/packages/qr_code_scanner/license
https://pub.dev/packages/image_picker/license
https://pub.dev/packages/image_cropper/license
https://pub.dev/packages/firebase_storage/license
https://pub.dev/packages/intl/license
https://pub.dev/packages/flutter_slidable/license

9 License Information

• flutter_countdown_timer: The MIT License text can be found at:
https://pub.dev/packages/flutter_countdown_timer/license

• percent_indicator: The MIT License text can be found at:
https://pub.dev/packages/percent_indicator/license

• flutter_localizations: The BSD 3-Clause License text can be found at:
https://pub.dev/packages/flutter_localizations/license

• mockito: The pache License 2.0 text can be found at:
https://pub.dev/packages/mockito/license

Freepik image

One image from Freepik has been used for the default project image:

https://de.freepik.com/vektoren-kostenlos/flacher-desing-denkender-konzepthintergrund_

4723691.htm#page=3&query=lightbulb%20project%20blue&position=29&from_view=search&

track=ais

Document License Information

The images used for the profile pictures have been obtained from Freepik:

https://www.freepik.com

Library Image (other photos used):

https://static01.nyt.com/images/2015/10/24/opinion/24manguel/24manguel-superJumbo.

jpg Back to School image (other photos used):

https://www.freevector.com

Other Apps Analysis:

Any analysis of other apps in this thesis (Scrum App, Vivify Scrum and Toist) is con-
ducted solely for academic and research purposes. No unauthorized use or redistribution
of the analyzed apps is intended or allowed.

122

https://pub.dev/packages/flutter_countdown_timer/license
https://pub.dev/packages/percent_indicator/license
https://pub.dev/packages/flutter_localizations/license
https://pub.dev/packages/mockito/license
https://de.freepik.com/vektoren-kostenlos/flacher-desing-denkender-konzepthintergrund_4723691.htm#page=3&query=lightbulb%20project%20blue&position=29&from_view=search&track=ais
https://de.freepik.com/vektoren-kostenlos/flacher-desing-denkender-konzepthintergrund_4723691.htm#page=3&query=lightbulb%20project%20blue&position=29&from_view=search&track=ais
https://de.freepik.com/vektoren-kostenlos/flacher-desing-denkender-konzepthintergrund_4723691.htm#page=3&query=lightbulb%20project%20blue&position=29&from_view=search&track=ais
https://www.freepik.com
https://static01.nyt.com/images/2015/10/24/opinion/24manguel/24manguel-superJumbo.jpg
https://static01.nyt.com/images/2015/10/24/opinion/24manguel/24manguel-superJumbo.jpg
https://www.freevector.com

Bibliography

[1] : Adaptive and Responsive Layouts. – URL https://docs.flutter.dev/ui/

layout/adaptive-responsive

[2] : Cloud Firestore. – URL https://firebase.google.com/docs/firestore

[3] : Cloud Storage for Firebase. – URL https://firebase.google.com/docs/

storage

[4] : Dart Language. – URL https://dart.dev/language

[5] : Firebase. – URL https://firebase.google.com/

[6] : Firebase Authentication. – URL https://firebase.google.com/docs/

auth

[7] : Firebase x Flutter Playlist. – URL https://youtube.com/playlist?list=

PLlvRDpXh1Se4Ceivpg8KrGvzb8BL9BHwo

[8] : Flutter. – URL https://flutter.dev/

[9] : Flutter BottomSheet Widget). – URL https://www.youtube.com/watch?v=

pcHViPPbSHQ

[10] : Flutter FAQ. – URL https://docs.flutter.dev/resources/faq

[11] : flutter_countdown_timer Documentation. – URL https://pub.dev/

documentation/flutter_countdown_timer/latest/

[12] : How to Add App icons in Flutter | Automatic Manual Way 2021. – URL https:

//www.youtube.com/watch?v=O9ChjwrZqns

[13] : Large Scale Scrum: Comprehensive Overview of LeSS. – URL https://www.

digite.com/agile/large-scale-scrum-less/#coordination

[14] : Listen to Realtime Changes with Cloud Firestore. – URL https://firebase.

google.com/docs/firestore/query-data/listen

123

https://docs.flutter.dev/ui/layout/adaptive-responsive
https://docs.flutter.dev/ui/layout/adaptive-responsive
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/storage
https://dart.dev/language
https://firebase.google.com/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://youtube.com/playlist?list=PLlvRDpXh1Se4Ceivpg8KrGvzb8BL9BHwo
https://youtube.com/playlist?list=PLlvRDpXh1Se4Ceivpg8KrGvzb8BL9BHwo
https://flutter.dev/
https://www.youtube.com/watch?v=pcHViPPbSHQ
https://www.youtube.com/watch?v=pcHViPPbSHQ
https://docs.flutter.dev/resources/faq
https://pub.dev/documentation/flutter_countdown_timer/latest/
https://pub.dev/documentation/flutter_countdown_timer/latest/
https://www.youtube.com/watch?v=O9ChjwrZqns
https://www.youtube.com/watch?v=O9ChjwrZqns
https://www.digite.com/agile/large-scale-scrum-less/#coordination
https://www.digite.com/agile/large-scale-scrum-less/#coordination
https://firebase.google.com/docs/firestore/query-data/listen
https://firebase.google.com/docs/firestore/query-data/listen

Bibliography

[15] : Miro. Mobile Application. – URL https://miro.com/

[16] : PERCENT INDICATOR Flutter Package of the Day. – URL https://www.

youtube.com/watch?v=nmkDW_cYrp4

[17] : qr_code_scanner Example. – URL https://pub.dev/packages/qr_code_

scanner/example

[18] : What is Scrum?. – URL https://www.scrum.org/resources/what-

scrum-module

[19] : Todoist. Mobile Application. November 18 2012. – URL https://todoist.

com/

[20] : Vivify Scrum. Mobile Application. April 19 2019. – URL https://www.

vivifyscrum.com/

[21] Flutter: RefreshIndicator (Flutter Widget of the Week). – URL https://www.

youtube.com/watch?v=ORApMlzwMdM

[22] Gupta, Pawneshwer: How to open image with image picker, crop and save in Flut-
ter. – URL https://learnpainless.com/open-image-image-picker-

crop-save-flutter/

[23] Heap, Richard: Flutter: showDatePicker set first day of week to Monday.
– URL https://stackoverflow.com/questions/57975312/flutter-

showdatepicker-set-first-day-of-week-to-monday

[24] Josephine, Maureen: Generating QR Code in a Flutter App. – URL
https://medium.com/podiihq/generating-qr-code-in-a-flutter-

app-50de15e39830

[25] Khan, Shaiq: Slidable in Flutter. – URL https://medium.flutterdevs.com/

slidable-in-flutter-33193e2f1108

[26] Koko, Mitch: Firebase Authentication in Flutter Playlist. – URL https://www.

youtube.com/playlist?list=PLlvRDpXh1Se4Ceivpg8KrGvzb8BL9BHwo

[27] Koko, Mitch: Firebase x Flutter Playlist. – URL https://youtube.com/

playlist?list=PLlvRDpXh1Se4wZWOWs8yapI8AS_fwDHzf

[28] Koko, Mitch: Flutter BottomSheet Widget. – URL https://www.youtube.

com/watch?v=pcHViPPbSHQ

124

https://miro.com/
https://www.youtube.com/watch?v=nmkDW_cYrp4
https://www.youtube.com/watch?v=nmkDW_cYrp4
https://pub.dev/packages/qr_code_scanner/example
https://pub.dev/packages/qr_code_scanner/example
https://www.scrum.org/resources/what-scrum-module
https://www.scrum.org/resources/what-scrum-module
https://todoist.com/
https://todoist.com/
https://www.vivifyscrum.com/
https://www.vivifyscrum.com/
https://www.youtube.com/watch?v=ORApMlzwMdM
https://www.youtube.com/watch?v=ORApMlzwMdM
https://learnpainless.com/open-image-image-picker-crop-save-flutter/
https://learnpainless.com/open-image-image-picker-crop-save-flutter/
https://stackoverflow.com/questions/57975312/flutter-showdatepicker-set-first-day-of-week-to-monday
https://stackoverflow.com/questions/57975312/flutter-showdatepicker-set-first-day-of-week-to-monday
https://medium.com/podiihq/generating-qr-code-in-a-flutter-app-50de15e39830
https://medium.com/podiihq/generating-qr-code-in-a-flutter-app-50de15e39830
https://medium.flutterdevs.com/slidable-in-flutter-33193e2f1108
https://medium.flutterdevs.com/slidable-in-flutter-33193e2f1108
https://www.youtube.com/playlist?list=PLlvRDpXh1Se4Ceivpg8KrGvzb8BL9BHwo
https://www.youtube.com/playlist?list=PLlvRDpXh1Se4Ceivpg8KrGvzb8BL9BHwo
https://youtube.com/playlist?list=PLlvRDpXh1Se4wZWOWs8yapI8AS_fwDHzf
https://youtube.com/playlist?list=PLlvRDpXh1Se4wZWOWs8yapI8AS_fwDHzf
https://www.youtube.com/watch?v=pcHViPPbSHQ
https://www.youtube.com/watch?v=pcHViPPbSHQ

Bibliography

[29] Koko, Mitch: Modern Bottom Nav Bar. – URL https://www.youtube.com/

watch?v=FEvYl8Mzsxw

[30] Kukhnavets, P.: What is Agile at Scale? Hygger.io Guides. – URL https:

//hygger.io/guides/agile/agile-at-scale/

[31] Molloy, J.: A Comprehensive Overview of the Client-Server Model. – URL https:

//www.liquidweb.com/blog/client-server-architecture/

[32] Palacio, Marta: SCRUM Master. Iubaris Info 4 Media SL, June 2020. – Illus-
trations and cover: María de la Fuente Soro. Registered rights in Safe Creative.
Registration number: 2006034305256. Iubaris Info 4 Media SL is the publisher and
owner of distribution rights, released under the terms of the Creative Commons
by-nd-nc 4.0 license.

[33] Srivastava, Naveen: Date and Time Picker in Flutter. – URL https://medium.

flutterdevs.com/date-and-time-picker-in-flutter-72141e7531c

[34] Venema, M.: 6 Scaled Agile Frameworks – Which One Is Right For You?. – URL
https://www.nimblework.com/blog/scaled-agile-frameworks/

125

https://www.youtube.com/watch?v=FEvYl8Mzsxw
https://www.youtube.com/watch?v=FEvYl8Mzsxw
https://hygger.io/guides/agile/agile-at-scale/
https://hygger.io/guides/agile/agile-at-scale/
https://www.liquidweb.com/blog/client-server-architecture/
https://www.liquidweb.com/blog/client-server-architecture/
https://medium.flutterdevs.com/date-and-time-picker-in-flutter-72141e7531c
https://medium.flutterdevs.com/date-and-time-picker-in-flutter-72141e7531c
https://www.nimblework.com/blog/scaled-agile-frameworks/

Personal Declaration of Authorship

Andrea Minguez Angulo, a student of the Bachelor of European Computer Science at
Hamburg University of Applied Sciences, as the author of this academic document titled
DESIGN AND IMPLEMENTATION OF A FLUTTER-BASED MOBILE APP FOR
SCRUM PROJECT MANAGEMENT and presented as the Thesis for the Bachelor of
European Computer Science.

I DECLARE THAT

This work is original and I have not copied or utilized any part of another work without
clearly and accurately citing its source, both within the text and in the bibliography.
I adhere to the principles of proper data usage and do not incorporate any third-party
data without obtaining the necessary authorization, in accordance with the prevailing
legislation. Moreover, I acknowledge that non-compliance with this obligation may lead
to academic penalties, in addition to potential further consequences. In Hamburg, on
27th July 2023.

Signed: Andrea Minguez Angulo

126

	List of Figures
	List of Tables
	Prologue
	Introduction
	Motivation
	Why make an App?
	Why make an App for SCRUM Project Management?
	Why make a Mobile App?

	Goals
	Impact
	Development Methology
	Document Structure

	Context
	SCRUM
	Large Scaled SCRUM

	Scrumer: our App adapted to the Scrum Rules
	State of the Art
	Scrum App
	Vivify Scrum
	Todoist
	Comparison

	Development
	Requirements
	Functional Requirements
	Non functional Requirements

	Analysis
	Use Case Model
	Class Model
	Analysis of each Use Case
	Register as Scrum Team User
	Register as Normal User
	Login with Email and Password
	Register and Login With Google account
	Reset Password
	Edit Profile
	Create Project
	Join Project
	Edit Project
	Abandon Project
	Delete Project
	Create Sprint
	Edit Sprint
	Get tasks completed
	Edit Task
	Create Task
	Add task to sprint
	Remove task from sprint
	Delete Task

	Design
	System Architecture
	User
	Authentication Database
	App Database
	Image Cloud Storage

	UI Design
	Logo Design

	Implementation
	Build environment
	Flutter
	Firebase

	Source Code Structure
	Save and Retrieve Data on Firebase
	toMap and fromMap methods
	firebase_service.dart methods
	User Class
	Project Class

	Refresh Data from Database
	Initial Retrieve method
	Subscription to updates

	Responsive Implementation
	Authentication
	Authentication Service: Authenticate with Google
	Login Page
	Choose Registration Page
	Reset Password Page
	Registration for work user
	Registration for normal user

	Home Page
	Project
	ProjectPage
	CurrentProjectTile widget
	ContainerAddProject widget
	DialogCreate widget
	DialogJoin widget
	DialogCreateJoin widget
	DialogEditAbandon widget
	DialogEditDelete widget
	OtherProjectTile widget

	Product Backlog
	ProductBacklogPage
	DialogCreateTask widget
	selectToShow method
	ContainerAddTask widget
	ContainerTasks widget
	TaskTile widget
	DialogEditTask widget

	Sprint
	SprintPage
	CountdownTimerContainer widget
	SprintInfoContainer widget
	selectToShow method
	ContainerAddSprint widget
	DialogCreateSprint widget
	CurrentSprintTile widget
	DialogEditSprint widget
	ContainerGetTasksInPBacklog widget
	ContainerTasks widget

	Profile
	ProfilePage

	Logo

	Evaluation
	Strategy
	Unitary Tests
	Functional Evaluation
	Functional Requirements for Users (FR01 to FR06)
	Functional Requirements for Projects (FR07 to FR08)
	Functional Requirements for Projects (FR09 to FR17)
	Functional Requirements for Current Sprint (FR18 to FR21)
	Functional Requirements for Tasks (FR22 to FR24)

	Non-Functional Evaluation
	Acceptance Testing

	Epilogue
	Conclusion
	Goals achieved
	Lessons learned
	Future work
	Personal Conclusion

	License and Bibliography
	License Information
	Bibliography

