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Thema der Arbeit

Real-World Reinforcement Learning zur Überbrückung des Sim-to-Real Gap in der Miniat-
urautonomie

Stichworte

Reinforcement Learning, Digitaler Zwilling, Autonomes Fahren

Kurzzusammenfassung

In dieser Arbeit wird ein Reinforcement-Learning-System im Maßstab 1:87 vorgestellt.
Dies umfasst einen digitalen Zwilling mit einer vollständigen Simulation sowie ein tat-
sächliches, im Maßstab 1:87 skaliertes Auto, das mit einer Kamera, einem Servo und
einem Motor ausgestattet ist. Verschiedene Experimente wurden durchgeführt, um die
Fähigkeiten der gesamten Gym-Umgebung und einer Reinforcement-Learning-Policy zu
testen, die versucht, im realen Umfeld autonom zu fahren, indem Erfahrungen aus
der Simulation genutzt werden. Ziel ist es, den Sim-to-Real-Gap zu überbrücken, in-
dem das Training in der realen Welt fortgeführt wird. Die Ergebnisse zeigen, dass die
Reinforcement-Learning-Policy das Auto in der Simulation steuern kann, die Anwendung
in der realen Welt jedoch noch weiterer Forschung bedarf. Durch die Verwendung eines
Encoder-Actor-Setups konnte jedoch der Sim-to-Real-Gap für einen supervised gelernten
Actor überbrückt werden. . . .
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Abstract

A 1:87 real-world reinforcement learning system is presented in the scope of this thesis.
This includes a digital twin with a full simulation and a real 1:87 scaled car, equipped
with a camera, servo and motor. Different experiments were conducted to test the
capabilities of the whole gym environment and a reinforcement learning policy, trying to
drive autonomously in the real-world by using experience from the simulation. Ultimetaly
to bridge the sim-to-real gap by extending the training into the real-world. Results show
that while the reinforcement learning policy is able to drive the car in the simulation,
the performance in the real-world needs further research. Using an encoder-actor setup,
the sim-to-real gap could however be bridged for a supervised learned actor. . . .
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1 Introduction

Miniature Autonomy is a research project at the University of Applied Sciences Ham-
burg (HAW Hamburg) which develops and analyzes different methods and algorithms
in the field of autonomous driving. The miniature scale (1:87) allows for a controlled
environment where different scenarios can be tested and evaluated without the risks and
costs associated with real-world experiments [31, 30]. The cooperation with the Miniatur
Wunderland Hamburg allows to work with a large and detailed environment addition-
aly to the one at HAW Hamburg. Especially the Knuffingen section allows for testing
in different scenarios such as complex intersections, urban environment, rural mountain
roads as well as highways with construction sites. The project is part of the research
group "Autosys", which stands for autonomos systems, at the Department of Computer
Science.

1.1 Motivation

Before deploying autonomous driving systems in to the real world, they need to be tested
and evaluated in a simulated environment. The sim-to-real gap describes the difference
in performance between a model trained in a simulation and the same model deployed in
the real world. This gap is caused by the differences in the environment, entropies in the
system, and the sensors used to perceive the environment. Not all of these differences can
be simulated accurately, which leads to a decrease in performance. To bridge this gap,
the model needs to be trained in a way that it can generalize to unseen environments
and adapt to the real-world conditions with its uncertainties.

Especially when training reinforcement learning models, the sim-to-real gap is a common
problem [12]. Reinforcement learning is a machine learning paradigm where an agent
learns to interact with an environment by taking actions to maximize a reward signal.
The agent learns a policy that maps observations to actions by exploring the environment
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1 Introduction

and learning from the rewards it receives. In a simulated environment, the agent can
learn a policy that performs well in the simulation but fails to generalize to the real
world, which is often seen [2, 20].

Bridging this sim-to-real gap is the main motivation and problem statement of this thesis.
The general idea is to train a reinforcement learning model in a simulated environment
and transfer it to the real world, where it can continue the learning process in a real-
world environment. This way the model does not have to train from beginning in the
real world, but can use the knowledge it already gained in the simulation.

Using a 1:87 scaled environment has the advantage that an accurate tracking system
can be installed easily and that the car can crash without causing any harm or dam-
age. Especially during the training steps, with a lot of noise on the steering angle for
exploration, this can occur quite often.

To have the model use the experience from the simulation in the real world, when con-
tinuing the learning process, the whole system should by design already have a reduced
sim-to-real gap. Otherwise the problem could arise, that the simulation experience can-
not be used in the real world at all and the model has to start with random actions
again.

1.2 Objectives

To overcome these challenges and to bridge the sim-to-real gap, a digital twin of the envi-
ronment is developed. This digital twin, designed as a farama gymnasium environment,
also embodies a simulation of the miniature car used. The simulation is used to train a
reinforcement learning model in the early stages that can be transferred to the real world.
This model uses a sort of perception images as input and predicts raw steering angles
for the car. This is done in an end-to-end like approach. A key aspect of the autonmous
driving scenario is the handling of intersections by providing the model with a maneuver
which direction to take when there are multiple options. Possible maneuvers are going
straight, turning left or turning right. The choosing of the maneuver and therefore nav-
igation from point A to point B is not scope of this thesis, but rather the execution of
the maneuver. The car will also indicate the chosen maneuver by using blinkers.

To train in the real-world the simulation is used as a digital twin with the simulated car
being replaced with the real counterpart. This counterpart, the tinycar, is also developed

2



1 Introduction

in the scope of this project. It is a 1:87 scaled car that can be controlled by a computer
and is equipped with a camera to perceive the environment. Using a steering servo and
a motor, the car can be controlled to drive. LEDs such as blinkers are used to signal
the maneuver the model has chosen. The digital twin is used to evaluate the actions
based on a ground truth from the gym environment. The car is tracked by an overhead
camera tracking system that provides the position and orientation of the real car in the
environment. The tracking system is also developed in the scope of this project.After the
termination of an episode, e.g. when the car leaves the track or collides with an obstacle,
the car is automatically repositioned to a suitable starting position.

The objective for the trained reinforcement learning policy is ultimetaly to drive the real
car autonomously on the track. The policy should be able to generalize to the real world
and adapt to the real-world conditions. The policy should be able to drive the car on the
track without colliding with obstacles and without leaving the track. The policy should
be able to handle the intersections by executing the chosen maneuver.

1.3 Structure

This thesis first introduces the background of reinforcement learning and the different
methods which could be used. Followed by this, design choices for the observation space,
action space and reward shaping are discussed as well as the structure of the neural nets
and the overall training process. The following implementation chapter describes the
hardware setup of the tinycar, the network protocol used to communicate with the car,
the software interface to control the car and the gymnasium environment with its simula-
tion. The real-world environment, which is an option inside the developed gym environ-
ment, is described in detail, including the tracking system, the automatic repositioning
of the car and the camera preprocessing. After that results of different experiments of
the environment and with the trained models are presented. The thesis concludes with
a discussion of the results and an outlook on future work.
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2 Related Work

2.1 Steering Control with Lane Detection

Traditonal Approaches for controling a cars steering and throttle are based on controllers
like PID controllers [11]. In order to feed the controllers with enough information like
cross track error, heading error, the car needs to perceive the environment and extract
the relevant information. For lateral control, this is often done by using a camera to
detect the lane markings and plan a lane path accordingly [21]. The lane markings can
be detected by using classical computer vision techniques to fit polylines onto the lane
markings [4, 15]. These approaches however, are often limited to highway scenarios which
have flatter curve radiuses. Other approaches to detect the lane markings are based on
deep learning techniques [22, 36, 27]. This thesis will use such a lane segmentation model
to detect lane markings, but will not use a traditional controller such as Pure Pursuit
[18] or Stanley [14].

2.2 Imitation Learning End-to-End Systems

Another approach for lateral control is the use of end-to-end trained neural networks.
These networks take an image as input and output the steering angle directly. ALVINN
[24] in 1989 was one of the first approaches to use neural networks for steering control.
However, it can only drive in very simple scenarios with few obstacles as the neural net-
work layers were limited. Even though, it demonstrated the potential for an end-to-end
neural network navigation a vehicle on the road. The approach was further developed
by NVIDIA in 2016 with the PilotNet [7]. This approach was able to drive a car au-
tonomously on the road and was the first to use a convolutional neural network (CNN)
for steering control. Further developed by Comma.ai with the OpenPilot software [3],
it shows that it can reliably apply to commerical use in real world traffic and compete
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2 Related Work

with other L2 autonomous driving systems [25]. The main advantage of this approach
is that it does not require a lot of feature engineering and can be trained end-to-end.
The disadvantage is that the model is a black box and it is hard to understand why the
model makes certain decisions [23, 8].

Such a end-to-end approach with an CNN architecture heavily inspired by the PilotNet
[7] will be used in this thesis for pre-training the encoder. The idea is heavily inspired by
the work of Zou et al. [35], where they also train a CNN image decoder via supervised
learning and use that to train an reinforcement learning actor with the feature vector as
input.

End-to-End trained steering controller networks can go further than simply holding the
car in the center of a lane. Research at MIT has shown that these networks are also
capable of navigating intersections based on context information of the environment
[5]. Their approach is capable of steering the car through an intersection and choosing
the correct maneuver based on a rendered part of the map with navigation information
embedded. OpenPilot now uses the same idea to include navigation features into their L2
autonomous driving system [1]. A similar approach is done by the authors of [10] where
three different sub-networks are trained. Each responsible for a different maneuver (keep
straight, turn left, turn right). The sub-network in control is chosen prior by another
system. This thesis will incorporate the navigational idea in end-to-end networks. Instead
of using seperate networks, each for a maneuver, a single network architecture is designed
to predict the steering angle. Just as in [10], the decision on the maneuver is known prior
by another system and is not part of this thesis. Using this approach, compared to [1, 5],
has the advantage that the car could theoretically navigate intersection without the need
of a map or position information.

2.3 Reinforcement Learning for Autonomous Driving

Based on the idea of an end-to-end trained steering controller, reinforcement learning
can be used to train these networks instead of supervised learning [19, 29, 26, 34, 32, 33].
A problem often occuring in reinforcement learning is catastrophic forgetting. This is
when a model forgets how to perform a task it has learned before, when learning a new
task [9]. A common approach to mitigate this problem is to use a replay buffer. This will
also be used in this thesis and since the input of the model is a feature vector instead of
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raw pixels, the replay buffer can store much more data. Other approaches use machine
learning techniques to sample data from replay buffers more efficient [17, 6].

Another common problem is the sim-to-real gap, where an agent performs well in a
simulated environment but fails to generalize to the real world due to many entropies
[12, 20]. In Allamaa et al. [2] they use a executable digital twin to update a nonlinear
model predictive controller (NMPC) in the real world. The digital twin is trained in
simulation and then used to update the NMPC in the real world. While the car is
driving, the digital twin randomizes certain parameters and updates the weights of the
NMPC. While this approach also uses a digital twin, as this thesis does, the approach
is different. In this thesis the car actually faced various entropies in the real world and
adapts to them. The digital twin is used to pre-train the model to achieve a better
starting point in the real world.
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3 Methodology

This chapter describes the methodology used to train the model. Especially the reinforce-
ment learning algorithm used, the environment and simulation design, and the training
process are described in detail.

3.1 Reinforcement Learning

In Reinforcement Learning (RL) an agent learns to interact with an environment by
taking actions to maximize a reward signal. The agent learns a policy that maps obser-
vations to actions by exploring the environment and learning from the rewards it receives.
The goal of the agent is to maximize the cumulative reward it receives over time. The
agent interacts with the environment in discrete time steps, where at each time step t

the agent receives an observation ot, takes an action at and receives a reward rt. The
agent learns a policy π that maps observations to actions by maximizing the expected
cumulative reward Rt =

∑∞
i=0 γ

irt+i, where γ is the discount factor.

This section alerady assumes that the agent has no model or knowledge of the underlying
environment. This is called model-free reinforcement learning. Depending on the envi-
ronment and the task, different RL algorithms can be used to train the agent. The most
common RL algorithms are Q-Learning, Deep Q-Learning, Proximal Policy Optimiza-
tion (PPO), Soft Actor-Critic (SAC) and Deep Deterministic Policy Gradient (DDPG).
These can be categorized into value-based methods, policy-based methods and actor-
critic methods.

Value-Based methods learn a value function that estimates the expected cumulative
reward of taking an action in a given state. The agent then chooses the action with the
highest value. Q-Learning is a value-based method that learns the Q-Value of taking
an action in a given state. Deep Q-Learning uses a neural network to approximate the
Q-Value function.
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Policy-Based methods learn a policy that maps observations to actions directly. The
policy is optimized to maximize the expected cumulative reward. Proximal Policy Op-
timization (PPO) is a policy-based method that uses a clipped surrogate objective to
update the policy.

Actor-Critic methods combine value-based and policy-based methods. The actor learns
a policy that maps observations to actions, while the critic learns a value function that
estimates the expected cumulative reward. The actor is updated to maximize the ex-
pected cumulative reward, while the critic is updated to minimize the error between
the estimated value and the actual reward. Soft Actor-Critic (SAC) is an actor-critic
method that uses a maximum entropy objective to encourage exploration. Compared to
SAC, Deep Deterministic Policy Gradient (DDPG) is another actor-critic method that
utilizes deterministic policies, simplifying decision-making but potentially limiting explo-
ration. While SAC promotes exploration through entropy regularization, DDPG relies
on exploration strategies like noise injection. Another variant of DDPG is Twin Delayed
Deep Deterministic Policy Gradient (TD3) [13], which will be used in this project and is
described in the following section.

3.1.1 Twin Delayed Deep Deterministic Policy Gradient

For controlling the car, especially the steering angle, Twin Delayed Deep Deterministic
Policy Gradient (TD3) [13] is used. TD3 is an off-policy actor-critic algorithm that learns
a deterministic policy. It is an extension of Deep Deterministic Policy Gradient (DDPG)
that uses a pair of critics to estimate the Q-Value of taking an action in a given state.
The critics are used to reduce overestimation bias and stabilize training. The policy is
updated to maximize the expected cumulative reward, while the critics are updated to
minimize the error between the estimated value and the actual reward.

The target for the Critic network is calculated as follows:

yt = rt + γ min
i=1,2

Qtarget,i(st+1, at+1) (3.1)

where yt is the target value, rt is the reward at time step t, γ is the discount factor,
Qtarget,i is the target Q-value of the i-th critic network, st+1 is the next state and at+1 is
the next action. The target value is calculated as the reward plus the discounted minimum
target Q-Value of the next state and action. The critics are updated to minimize the
error between the estimated Q-Value Qcritic and the target Q-Value Qtarget.

8



3 Methodology

The target for the Actor network is calculated as follows:

J(θ) = −Qcritic,1(si, π(si)) (3.2)

where J(θ) is the objective function, Qcritic,1 is the Q-Value of the first critic network, si
is the state and π(si) is the action chosen by the Actor network. The actor is updated
to maximize the Q-Value of the first critic network.

TD3 uses a target policy smoothing and target Q-value clipping to improve stability and
performance. The target policy smoothing adds noise to the target policy to prevent the
policy from collapsing to a single action. The target Q-value clipping clips the target
Q-Value to reduce overestimation bias. TD3 also uses delayed policy updates to improve
stability and performance. The policy is updated less frequently than the critics, which
reduces the variance of the policy updates. Usually after every second step. This makes
the training more stable and efficient.

3.1.2 Exploration Noise

To encourage exploration, noise is added to the action chosen by the policy. The noise
used is an Ornstein-Uhlenbeck process, which is a stochastic process that generates tem-
porally correlated noise. The noise is added to the action to encourage exploration and
prevent the policy from collapsing to a single action. The noise is calculated as follows:

xt = xt−1 · θ · (µ− xt−1) + σ · random (3.3)

where xt is the noise at time step t, xt−1 is the noise at the previous time step, θ is the
decay rate, µ is the mean, σ is the standard deviation and random is a random number
drawn from a normal distribution. The noise is added to the action chosen by the policy
to encourage exploration.

9



3 Methodology

3.2 Environment and Simulation Design

For the first training steps of the agent, a simulated environment is used. This simulation
is a digital twin of the real environment used, so observation space, action space, reward
signal and other information used, are the same and defined in the following.

3.2.1 Observation Space

The oberservation space for the agent is like in most end-to-end approaches a camera
frame. But instead of using the raw camera frame, the frame is preprocessed by a lane
segmentation model. This segmentation model takes the raw camera frame and detects
all the lane lines and road edges and outputs a binary image for each class. So if the model
detects road edges, dashed lines, solid lines as individual classes, three binary images are
output. These binary segmentation images are the oberservation space for the agent.
Figure 3.1 shows an example of the observation space but rendered as an RGB image,
where each class gets a certain color. This format for the oberservation space is chosen,
because it minimzes by design the sim-to-real gap. Simulating raw camera frames needs
a lot of computational power and a hyper realistic simulation. By using a segmentation
model, the simulation can be simplified since only lanelines have to be rendered. The
segmentation model used for the real camera frames however, has to be very accurate
so there are no differences between the simulated and real observation space. So the
oberservation space is defined as:

st = {0, 1}C×W×H (3.4)

with C being the number of classes (lane line types), W being the width and H being
the height of the camera frame.

However, the trained agent should not only be able to keep itself centered in its lane,
but also be able to execute a certain maneuver whenever possible. These maneuvers
are going straight, turning left or turning right, which are meant to be executed only at
intersections. This one hot encoded maneuver vector (each index represents a maneuver)
is also part of the agents input. But it is not provided as oberservation space by the
environment. Instead is it given from the user or an external navigation system. This
changes the policy to be defined as:
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Figure 3.1: Rendered observation space of the simulated environment. The observation
space itself would be in CxWxH format with C being the classes of the lane
segmentation models output. In this example there are two classes visible.
Road edges (here in red) and dashed lines (here in green). The image shown
is the rendered RGB version of this observation space for better visualization.

π : (st,mt)→ at (3.5)

with st being the observation space given by the environment, mt being the one hot
encoded maneuver vector and at being the action chosen by the policy.

The general critic network defined in section 3.1.1, which is used to estimate the Q-Value
of taking an action in a given state, would then be defined as:

Qcritic : (st,mt, at)→ Qt (3.6)

with Qt being the Q-Value of taking action at in state st with maneuver mt.

3.2.2 Action Space

The action space for the agent is the steering angle of the car. The throttle is set to a
constant value, so the agent only has to control the steering angle. This simplifies the
action space and the training process. Since the observation space does not include any
information necessary for longitudinal control, the agent would nonetheless use a constant
throttle value. The steering angle is a continuous value between -1 and 1, where -1 is
the maximum left steering angle and 1 is the maximum right steering angle. The actual
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steering angle is calculated by multiplying the action value by the maximum steering
angle of the car. For the simulated environment this has to be set to the same value as
the real car, so the agent can learn to control the car in the simulation and transfer the
learned policy to the real world. So the action space is defined as:

at ∈ [−1, 1] (3.7)

3.2.3 Additional Information Calculated

For the reward signal and the evaluation process of the agent, additional information is
calculated from the environment after every step. This information is the cross track
error (CTE), the heading error and the current position, which will be used to render
the driven trajectory. The CTE is the perpendicular distance between the car and the
center of the lane. The center of the lane is the ground truth path which is manually
labeled into the map. The heading error is the difference between the current heading of
the car and the heading of the ground truth path. The current position is the position
of the car in the environment based on the center of the rear axle. Both the CTE and
position is given in meters and the heading error in radians.

3.2.4 Reward Signal

The reward signal used is soley based on the absolute value of the CTE, so direction
does not matter. Based on previous experiments, a linear reward shaping gives the best
results. Therefore the reward signal for this environment is defined as:

rt = max(−33× abs(CTE) + 1,−1) (3.8)

This reward signal is used to encourage the agent to stay centered in its lane. The reward
signal is clipped to the range of -1 to 1 to prevent the agent from receiving rewards that
are too large or too small. The −33 is calculated by using the negative of the maximum
reward 1 divided by the maximum CTE which should still give a positive reward, which
is defined as 0.03 meters (for the 1:87 scaled environment).
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3.2.5 Episode Termination

An episode is terminated if the car leaves the track, collides with an obstacle or the
maximum number of steps is reached. The maximum number of steps is set to 1000.
The car leaving the track is defined as the CTE being larger than 0.1 meters. The
collision with an obstacle is defined as the car not moving for more than 10 steps, even
though a velocity is set. For the real-world environment the eipsode reset will perform
an automatic repositioning of the car to the nearest position within the lane. For the
simulation, a random but defined spawn point will be used.

3.3 Model Architecture

As in [35], the system is trained in two steps. First, the encoder is pretrained using
Imitation Learning (IL) and then the Actor and Critic network are trained using TD3.
The encoder is pretrained to learn a feature representation of the observation space that
can be used for the Actor and Critic network. For this, training data using a human driver
and a stanley controller in the simulation is collected, by saving the observation space
(lane segmentation image), chosen maneuver and action. The imitation learning network,
as shown in Figure 3.2, is then trained to predict the action given the observation space
and maneuver. This way the encoder indirectly learns a feature vector representation
after the convolutional layers. This encoder from the IL network is then cut off and used
for the Actor and Critic network and not updated during the TD3 learning process.

This has the advantage that the convolutional layers, which take the most processing
time in neural networks, do not have to be backpropagated, speeding up the learning
time. Especially when considering that training is also done in a real-world environment,
where training should happen in real-time. Another benefit is that the encoder could
potentially minimize the sim-to-real gap by design. The encoder compressed the highly
dimensional observation space into a vector of 256 values. It will be evaluated, by first
training the IL network completly in the simulation, to have an encoder which can
compress the observation space from the simulation. And then training another model
of the IL network using only real data, collected by a human driver, and using the
weights of the fully connected layer, which come after the feature vector, of the prvious
simulation-only model. This way the real data encoder should be able to learn a similar
feature representation as the simulation-only encoder for similar oberservation spaces.

13



3 Methodology

The outcome would be two encoders, one which will be used for the simulation and one
for the real-world environment. The trained actors should then be able to generalize to
the real world, since the feature representation is similar.

The Actor and Critic network are using a frame stack of the last 10 feature vectors as
input. The actor part of the IL network only uses the current feature vector, simplifying
this supervised learning step. Using a frame stack for the actor should have the benefit
of giving the actor information about the past states and therefore the ability to predict
smoother steering angles. Otherwise the steering behavior could potentially start to
oscillate, which is a common problem in controllers that only use the current state.
Similar to why the derivative of the error is used in PID controllers.
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Figure 3.2: Overview of the model architectures used and the training process. The
Imitation Learning (IL) network on the top is used to pretrain the encoder
by using the observation space, maneuver and corresponding action, given by
a human driver. The encoder is then cut out and used for the TD3 learning
process on the bottom. Given the observation space, the encoder outputs a
feature vector. The Actor and Critic network are using a frame stack of the
last 10 feature vectors as input. These are then used to calculate the action
and Q-Value. During TD3 learning, the encoder is frozen, hence only the
Actor and Critic network are updated.
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In order to train a model in a simulation or in the real world, a simulation as well as a
miniature car, which can be controlled by a computer, is needed. This chapter describes
the implementation of the environemt as well as the technical setup of the tinycar.

The environment is written as a Farama Gymnasium Environment, which is a standard
for reinforcement learning, previously known as OpenAI gyms. The gym environment
which includes a map for the car, also includes a simulation of the car, which is used to
train the reinforcement learning model in the first iterations. For that the car kinematics
and camera images are simulated. When training in the real-world, the car and camera
classes are replaced with control software for the tinycar. The control software is used
to send commands to the car and receive camera data. The feedback on the position
and orientation of the car is provided by a tracking system, which is also part of the
real-world environment. The following sections describe these steps in detail.

4.1 Tinycar

The 1:87 scaled miniature car developed and used in this project, will be called tinycar.
The tinycar consists of a steering servo, DC motor, LEDs for headlights, blinkers and
taillights as well as a front facing camera. All is controlled by a custom designed PCB
which utilizes an ESP32 microcontroller. The ESP32 is a low-cost, low-power microcon-
troller with integrated Wi-Fi capabilities. The ESP32 is used to control the car and to
communicate with the computer running the control software. The ESP32 is powered by
a LiPo battery which is charged via USB. When controlling the car during the real-world
training, all the computation is done on the computer and the ESP32 only receives the
commands and sends back the telemetry and camera data. The ESP32 is connected to
the computer via Wi-Fi and the computer sends the commands to the car via a custom
network protocol. Figure 4.1 shows the tinycar during a test drive. Even though network
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Figure 4.1: The tinycar during a data collection test drive, remote controlled by a human,
in the section of Knuffingen in the Miniatur Wunderland Hamburg. The car
is equipped with a camera, LEDs for headlights, blinkers and taillights and is
controlled by an ESP32 microcontroller. The cars body features a cyberpunk-
inspired design, with only one headlight to break the symmetry.

latency is a big factor with this setup, the gain in computational power outweighs the
latency [28].

4.1.1 Hardware Setup

The core concept of this vehicle centers on streaming camera data to an external, more
powerful computer for processing, a difference to other approaches that conduct com-
putations onboard [16]. Opting for a compact and efficient ESP32 over a Raspberry Pi
Compute Module avoids increasing the cars size and energy demands. The ESP32 S3
model is chosen for its additional GPIOs and RAM, maintaining power consumption
below 500 mA — even with active servo, motor, and LED lights — and enabling the use
of a small 400 mAh LiPo battery. This battery allows for at least 48 minutes of opera-
tion. The custom designed PCB, designed to fit essential components like the DC Motor
driver, LiPo battery charger, and camera interface, measures 22 x 45 mm. For enhanced
usability, a USB-C port is incorporated at the vehicles rear, facilitating firmware up-
dates, debugging, and battery charging via a TP4056 chip. The charging circuit includes
a load-sharing mode as a safety feature to prevent overcharging of the LiPo battery, with
two LEDs indicating the batterys status. When power is drawn through the USB-C port,
the battery is disconnected from the circuit, ensuring accurate charge measurement for
the TP4056 chip to terminate the charging process.
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Figure 4.2: The custom designed PCB for the tinycar. The PCB features an ESP32
microcontroller, a motor driver, a servo connector, a camera connector, a
LiPo battery charging and measuring circuit and a USB interface. The LEDs
can directly be connected to the PCB, since the board also features resistors
for the LEDs.

The motor driver, a BD6210F-E2 H-Bridge IC, offers up to 500 mA being drawn, suf-
ficient for the vehicles 4.2 V DC motor. It supports bidirectional control and speed
variation via PWM signals. Even though the trained model only drives forward, the
later discuseed repositioning needs a reverse mode for the car. Despite components like
the DC motor and servo performing best at 5V, the LiPo battery output varies between
4.2V when fully charged and 3.2V when nearly depleted. To circumvent the limitations
of a 3.3V LDO voltage regulator, the motor and servo are directly connected to the bat-
tery, prioritizing power over consistent performance, as the regulated 3.3V would restrict
maneuverability.

The dimensions of the car are kept within the range of a 1:87 scaled truck, with a
wheelbase of 48.7 mm and a width of 32 mm. Figure 4.3 shows the blueprint of the car
with the dimensions. The camera is angled at 75 degrees, making 70 % of the camera
frame useful for lane detection. With an FOV 120 degrees, the car is able to look into
corners, even though left turns might be harder to see, as discussed later.
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Figure 4.3: Full Overview of the tinycar with front perspective (top left), bottom view
(top right), rear view (bottom left) and left side view (bottom right). All
measurements are in mm. The front-mounted camera, positioned at a 75-
degree angle, optimizes lane visibility and extends the lateral view with a 120
degree field of view. The car’s dimensions are based on a 1:87 scaled truck,
with a wheelbase of 48.7 mm and a width of 32 mm.
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4.1.2 Network Protocol

As stated above, the car allows to be controlled via WiFi. This includes controlling
the cars servo, motor and LED state as well as receiving camera frames and telemetry
data, such as battery voltage or WiFi RSSI. In order to minimize the latency between
capturing a camera frame and receiving it on the host computer, a custom UDP protocol
is implemented. It consits of two different types.

The Tinycar Frame Protocol (TCFP) is developed for streaming camera images, inspired
by the Real-Time Protocol (RTP) as outlined in RFC 3550. RTP, designed to accom-
modate various codecs and network clients, introduces significant overhead due to its
versatility, which results in many of its bytes being unused in this application. A critical
limitation of RTP for this context is its lack of packet numbering within a frame. Given
that both TCFP and RTP utilize UDP for real-time communication, camera frames must
be segmented into multiple packets to avoid exceeding the maximum datagram size, ne-
cessitating reassembly at the recipients end. RTPs structure includes a sequence number
that increments with each packet, disregarding frame boundaries, and a fragmentation
offset for reassembling frames, but it does not specify the total frame size or the exact
number of packets required for complete frame reassembly. TCFP streamlines this pro-
cess by eliminating unnecessary information, such as source identifiers, and by modifying
the sequence number to increment per frame rather than per packet. It introduces a
packet number within each frame sequence, starting from zero for the first packet, and
includes the total number of packets needed for a frame. This allows the receiving end
to easily identify missing packets, thereby facilitating frame integrity without the need
for separate buffering and reordering processes. Consequently, TCFP reduces memory
copy operations and latency by enabling direct packet placement into the buffer based
on frame number and packet sequence, thereby simplifying the reordering process and
enhancing efficiency.

The Tinycar Control Protocol (TCCP) is designed for controlling the car and receiving
telemetry data. It is a simple protocol with a fixed size struct. The message contains the
packet type and the actual data, such as the servo angle, motor speed, LED state, battery
voltage or WiFi RSSI. The lack of a sequence number means that missing packets cannot
be identified. However, as for TCFP, missing packets are not resent and the protocol is
designed to be lossy, following the fire-and-forget principle. When starting the car, the
host has to send a control message first, so that the car knows the IP address to send
back telemetry or TCFP messages.
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4.1.3 Software Interface

The host library to interact with the tinycar, is written in C++ to make the frame packet
reassembly as efficient as possible. However, a python wrapper is provided for easier
integration into a Python RL gymnasium environment. Each possible command, like
setting a motor duty cycle or setting the blinker left, is a individual method call. Since
the network protocol follows the fire-and-forget principle, no acknowledgment is sent
back, making the command methods return as soon as the message leaves the transmit
buffer.

4.2 Simulation

In order to enhance training time in the first steps of the reinforcement learning model,
a simulation of the tinycar is used. The simulation features two main parts, the kine-
matics of the car and the camera resp. the lane segmentation simulation. Both of these
components need a map to drive on and to render the camera image from. This projects
uses two maps, both being a 1:1 replica of the environment at HAW Hamburg and a
part of Knuffingen in the Miniatur Wunderland Hamburg. Figure 4.5 shows the map of
Knuffingen. The maps are annotated by hand using a reference image, using a custom
mapbuilder. The mapbuilder allows to draw the lane lines, as detected by the lane seg-
mentation model, onto the reference image as well as a ground truth lane path which is
the center of a lane. The mapbuilder then generates a map file which can be used by the
simulation to render the camera image and to calculate the position and rotation of the
car after a step. The map file is a json file which contains the nodes and edges for each
lane line and the ground truth trajectory. The represented graph for the ground truth is
handeled as a directional graph, important for the local path calculation.

4.2.1 Kinematics

The RL algorithm only controls the steering angle and the speed is kept constant at a
speed of 0.5 m/s. Therefore, dynamics can be neglected and only the kinematics need to
be simulated. The simulated vehicle is a bycicle model. This means that the vehicle has
one steerable axle at the front. The range of movement in the longitudinal and lateral
direction is restricted by this steering. So the steering angle can be used to determine
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Figure 4.4: Example image of the mapbuilder tool. The tool is used to annotate the map
of the environment. The mapbuilder generates a json file with graphs for each
lane line and the ground truth trajectory. The lines are polylines, meaning
nodes are connected by straight lines with no curvature. The reference image
is only used for the tool and not part of the later generated map. The tool
allows that paths can be split, needed for intersections on the ground truth
trajectory.

22



4 Implementation

Figure 4.5: Part of Knuffingen in the Miniatur Wunderland Hamburg as a rendered map
for the simulation and real-world environment. The map is annotated by
hand using a reference image and a custom mapbuilder. The mapbuilder
generates a json file with graphs for each lane line and the ground truth
trajectory. The lane lines are not 100 % accurate, since they are drawn as
polylines and therefore are not perfectly round. The numbers on the map
are the node ids for the ground truth trajectory. These are needed to define
certain spawn points when training the RL algorithm in the simulation.

the curve radius at the current timestep. Based on this, a linear transformation matrix
can be defined to update the position and orientation of the car after a timestep. This
transformation matrix conducts a translation to the center of the current curve, which is
calculated by using the normalvector and curve radius, a rotation, given by the steering
angle and current velocity, and a translation back to the outer curve. The transformation
matrix is then applied to the current position of the car to get the new position and
orientation.

4.2.2 Ground Truth Reference Path

After each simulation step (performing a position and orientation update for the car),
the local path is calculated. This local path is a list of three edges of the hand annotated
ground truth trajectory, based on the current position and heading of the car. The
local path is needed to calculate the CTE and heading error for the reward function
and episode termination. It is updated by checking the distance to the next edge of the
ground truth trajectory. If the distance is smaller than the old current edge, the next
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edge is set as the current edge. This is done for all edges directly connected to the current
edge. Based on this new edge, the trajectory is followed two more times to form the local
path. If the local path goes through an intersection, the given maneuver defines which
edge to choose. The local path is then used to calculate the CTE and heading error.

4.2.3 Camera Rendering

As described before, the simulated camera image is not a representation of the real
camera image but the lane segmentation, which is the preprocessing step for the real
camera in the gymnasium environment. The used lane segmentation model predicts 5
classes of lane lines: Outer road edge, dashed lines, solid lanes, blocking area and wait
line. The base information for the camera rendering comes from the map and current
position/orientation of the car. The map defines all lane lines for the respective class.
Figure 4.5 shows a rendered version of the map. The position and orientation of the car
in addition to the mounting position of the camera, relative to the car frame, define the
extrinsic camera matrix. The FOV and resolution of the real-camera define the intrinsic
camera matrix.

Based on the CAD model of the tinycar, the extrinsic matrix is defined with:

E =

 0.0 −1.0 0.0 −0.005
0.374 0.0 0.927 −0.037
−0.927 0.0 0.374 −0.015

 (4.1)

The intrinsic matrix, based on the lens specifications and the chosen resolution of 160 x
128, is defined with:

I =

95.34 0 80

0 76.27 64

0 0 1

 (4.2)

In order to project the lane line points into the camera frame, the points first need to be
transformed from world coordinate system to camera coordinate system. This is done by
converting the points into homogeneous coordinates and applying the extrinsic matrix
by a matrix multiplication. Now the z-axis of the points is the distance to the camera,
forming the Z buffer. The Z buffer is used to sort the points by their distance to the
camera. The points behind the camera are discarded. The remaining points are then
projected into the camera frame by applying the intrinsic matrix. The points are then
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Figure 4.6: Two example images from the simulation’s camera feed are overlayed onto
the corresponding frames captured by the real camera of the tinycar. Given
that the simulated map mirrors the real environment in a 1:1 scale, the car
is positioned at two random locations, and its orientation and position is
determined using the tracking system. Subsequently, the camera images are
simulated for these positions. The simulated images are then overlayed with
the actual camera feed to verify the accuracy of the simulation parameters.
Small differences in the positioning of the lane lines can be seen.

drawn onto the camera image. For each lane line an individual image, ultimetaly forming
a CxWxH tensor. The line thickeness in the drawing function is defined by the thickness
of the lane lines of the segmentation model.

A special case which arises in this context, is the possibility that one end of the lane
line is in front of the camera and the other is behind. This would result in a glitch,
which does not project the lane line correctly. To avoid this, this case is detected and
the intersection of the lane line edge with the camera plane is calculated. This results in
a new edge with both ends in front of the camera.

Figure 3.1 shows an example of the camera rendering. Figure 4.6 shows an overlay of the
rendered camera image at the same location as the real camera image.

4.3 Real-World Environment

The real-world environment is an option of the developed gymnasium environment. It
uses the same map with the same local path calculation as the simulation but replaces
the kinematics model and camera rendering with the real car and camera. The real-
world environment consists of the tracking system, the automatic repositioning and the
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Figure 4.7: The two markers on the top of the tinycar, used to identify the car in the
camera image. Only the white squares are used for the tracking. Since the
front has two markers and the rear one, the orientation of the car can be
calculated. The position of the car in the simulation is defined as the center
of the rear axle, therefore its the center of the rear marker.

camera preprocessing. The camera preprocessing consits of only resizing the 5 lane
segmentation images, after they are output from the lane segmentation model [27]. The
tinycar provides with VGA resolution images, which are fed into this lane segmentation
model. The model outputs 5 classes of lane lines, which are then resized to 160 x 128
and provided as oberservation space.

4.3.1 Tracking System

In the simulation the position and orientation of the car is calculated by the kinematics
model based on the steering angle and velocity. In the real-world environment, the
steering angle and velocity is sent to the car. In order to get a feedback on the position
and orientation of the car after that step, a tracking system is needed. The tracking
system consists of two cameras mounted over the track looking directly down, as seen in
Figure 4.8. The cameras are calibrated so that the position and orientation of the car can
be calculated by the position of the car in the camera image. This is done by undisorting
the camera image and applying a correction factor, which maps the pixel position to the
real-world position. The car is equipped with two different markers on the top, which
are used to identify the car in the camera image. Figure 4.7 shows the markers on the
car. The markers position is identified by filtering the image for a white color range and
then applying a contour detection. All found contours are then filtered by their area and
the distances between the contours, which has to be in a certain range. The position of
the car is then calculated by the center of the rear marker. The orientation of the car is
calculated by the angle between the front and rear marker.
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Figure 4.8: Overview of the environment at HAW Hamburg with the two tracking cam-
eras mounted over the track. Each camera captures one half of the track. The
cameras are directly connected to a Raspberry Pi 4 via the Camera Serial
Interface (CSI), which processes the camera image and calculates the posi-
tion and orientation of the car. The Raspberry Pi 4 is connected to the host
computer via Ethernet. Between the two cameras sits the WiFi access point
used to communicate with the car underneath.
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Each camera is directly connected to a Raspberry Pi 4, which is used to process the
camera image and calculate the position and orientation of the car. The Raspberry Pi 4
is connected to the computer running the control software via Ethernet. The position and
orientation are sent via a UDP message to the real-world environment software running
on the host computer. Based on the ID, which identifies the two cameras and is also sent
with the tracking data, the position is transformed into the world coordinate system. The
transformation matrix used for that is determined by stitching the two camera images
together manually. It is defined as:

M2 =

1.01 0.0 −21
0.0 1.01 410

0.0 0.0 1.0

 (4.3)

with M2 being the transformation matrix for the second camera (left) relative to the
first camera (right), as seen in Figure 4.8. The transformation matrix does a scaling and
linear translation. Rotation is not needed since both cameras are mounted exactly in
line to each other.

The cameras use a 640 x 480 pixel resolution with a frame rate of 30 fps. The resolution
is sufficient to detect the car within 2.2 mm accuracy while keeping a low latency of 2
ms per frame. Using a higher resolution would increase the latency even though 2.2 mm
accuracy is enough for stable control of the car, as seen in the results later.

4.3.2 Automatic Repositioning

The reset procedure in the simulated environment includes repositioning the car to a
random spawn point. To prevent a manual repositioning in the real-world environment,
an automatic repositioning procedure inside the reset method is implemented. The psue-
docode for this procedure can be seen in Algorithm 1. The repositioning continuesly
samples the nearest edge from the ground truth trajectory, based on the current position
and orientation of the car. The end criteria for the repositioning is a distance of max
0.02 meters between the end node of the nearest edge and the current position and a
heading error of max 0.34 radians. During an episode, every drive command is stored
in a history list. This history stores the steering angle and velocity with a maximum of
30 entries. During the repositioning, if the history still contains entries, the last entry is
popped and the car is driven in the opposite direction. If the history is empty, a local
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path is calculated based on the nearest edge and the current position and orientation of
the car. The CTE and heading error are calculated based on the local path. The Stanley
control algorithm [14] is then used to calculate the steering angle. Based on that steering
angle and a fixed velocity of 0.03 m/s, the car is driven until the end criteria are met.
During this procedure the tinycar turns on its hazard blinkers for visual indication.

This procedure should ensure that if the car leaves the street and hits an obstacle, it
can reposition itself by first always driving backwards until there is enough clearence to
turn around and then driving forward to the nearest edge. It can happen that during
the forward drive, the car gets stucks due to another obstacle, or that the history is too
short to get enough clearence. This however, is evaluated in a later section.

Algorithm 1 Automatic Repositioning
Require: P and θ not None
Pe, θe, E ← SampleNearestEdge(P, θ)
while ‖PPe‖ > 0.02 ∨ abs(θ − θe) > 0.34 do

if len(H) > 0 then
α, v ← H.pop()
drive(α,−v)

else
findLocalPath(E)
CTE, θerror ← CalculateInfo(P, θ, E)
α← StanleyControl(CTE, θerror)
drive(α, 0.03)

end if
Pe, θe, E ← SampleNearestEdge(P, θ)

end while
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This chapter presents the results of the experiments conducted in the scope of this thesis.
The experiments are divided into three parts. The first part is the presentation of the
gymnasium environment with the tinycar performance especially the real-time capabil-
ities and the tracking system. The second part is the presentation of the encoder. The
last part is the presentation of the reinforcement learning trained actor in conjunction
with the different encoders.

5.1 Environment

To make sure that there are no errors, which could affect the subsequent reinforcement
learning, and the environment is suitable for the experiments, different tests are con-
ducted. Besides the real-time capabilities of the tinycar together with the environment,
the tracking system and the automatic repositioning with its stanley controller are pre-
sented.

5.1.1 Real-Time Aspects

The gymnasium environment requires certain real-time aspects to be met in order to
do reinforcement learning in the real-world. Especially since the weights of the neural
network are updated while the car still interacts with the environment. The only real-
time operating system used in the whole system is the firmware of the tinycar, which uses
FreeRTOS and therefore allows strict timing requirements. The tracking system, with
its Raspberry Pis, uses Linux while the gymnasium environment is run on macOS. Both
are consumer operating systems. So the timing diagrams will use worst case scenarios.
Another big factor to measure is the latency through the network. Especially the time
between capturing a frame on the tinycar and the receiving of that frame in the gym
environment, which is transmitted over a wireless network.
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Tinycar Frame Latency

Due to the lack of perfect clock synchronization between the host, running the gym
environment, and the tinycar, a technique similar to a three-way handshake is employed
for accurate time measurement. Following RFC 3550’s guidance, both RTP and TCFP
packets mark the start of a new frame with a timestamp, denoted as t1 in Figure 5.1.
Upon receiving all packets of a frame, the host records its timestamp (h1). It then sends
a Round-Trip Time (RTT) message via the TCCP protocol, to which, upon receipt, the
tinycar logs the timestamp (t2) and replies with an RTT message including t2. When
the host receives this, it sets h2. With these four timestamps the host can calculate the
frame’s latency.

Assuming the latency for an RTT messages is symmetric, the latency for a single RTT
message (dr) is calculated as:

dr =
dh

2
=
h2− h1

2
(5.1)

Thus, the network frame latency is defined as:

df = dt− dr = t2− t1− dr (5.2)

Table 5.1 shows the worst-case latencies for different camera resolutions. The jitter is
the interarrival jitter as defined in RFC 3550. The compression and decompression times
are the time it takes to compress and decompress the image using JPEG including the
custom fragmentation and defragmentation process, as described in section 4.1.2. The
compression is done on the ESP32, therefore taking longer compared to the decompres-
sion, done on the host computer. The network time is the frame latency as described
above. The inference time is the time it takes to run the VGG lane segmentation model
on the host, using pytorch with Metal backend. It is included to give the total latency
to receive an observation for the gym environment.

The latency for a td3 learning step takes around 55.2 ms on the same Mac (worst case
execution time). These are added to the tinycar latencies to give a total latency for a
learning step of around 101 ms using the 320x160 resolution.
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Figure 5.1: This illustration depicts the network latency measurement process for a cam-
era frame transmitted from the tinycar to the Host. It shows the tinycar’s
timeline with t and t2, and the host’s timeline with h1 and h2, representing
key transmission and reception events. The durations dt and dh signify the
camera frame transmission time and the RTT message round-trip time, re-
spectively.

Resolution Jitter Compression Network Decompression Inference Total
[ms] [ms] [ms] [ms] [ms] [ms]

1280 x 720 8.3 128.2 20.4 5.0 48.2 201.8
640 x 480 2.0 55.4 11.2 2.1 48.2 116.9
320 x 240 1.8 17.0 8.3 1.4 19.1 45.8
160 x 120 1.0 17.1 5.1 0.4 7.3 29.9

Table 5.1: Worst-case measurements over a period of 1 min. All measurements are in
milliseconds. RSSI during measurements was around -35 dBm and the tinycar
was 2 m in direct sight from WiFi Access Point. Inference was done using
the VGG lane wegmentation model on a MacBook with M1 chip [27]. The
inference time for resolutions of 1280 x 720 and 640 x 480 is identical, as both
employ the same underlying model.
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Resolution Accuracy Frame Processing Network Latency Total
[mm] [ms] [ms] [ms]

1280 x 960 1.1 41.4 0.9 42.3
640 x 480 2.2 23.1 0.9 24.0
320 x 240 4.4 8.3 0.9 9.2

Table 5.2: Worst-case measurements over a period of 1 min. All time measurements are in
milliseconds. The accuracy is the size of one pixel in millimeter, which depends
on the resolution and distance between camera and ground. The Raspberry
Pis for the tracking system and the host running the gym environment are
connected via LAN cables. The tracking system uses OpenCV in C++ for
processing the frames. The packets sent over the network are always 12 bytes,
which includes the id for the camera, x and y position and the orientation.

Tracking System Latency

The tracking system latency is measured by the time it takes to process a frame from
the overhead camera to the time it is available in the gym environment. Similar as
above, the total latency consists of the time to process the frame using OpenCV and the
network latency. Since the tracking data packet only uses 12 bytes, the network latency
is measured by dividing the RTT time by 2. The camera frame consists of multiple
packets, therefore the special measurement is required.

Table 5.2 shows the worst-case latencies for the tracking system for different resolutions
of the overhead camera. The 12 bytes sent over the network includes the id for the
camera, x and y position and the orientation. The frame processing time is the time it
takes to process the frame using OpenCV in C++. The network latency is the time it
takes to send the tracking data packet over the network. The total latency is the sum
of the frame processing and network latency. The camera sends 30 frames per second.
With the resolution of 1280 x 960, this means that the frame processing takes too long
and only every second frame is processed. The accuracy, which is the size of one pixel in
millimeter, is determined by using a 1 meter long ruler and counting the pixels for the
meter in the image. This value depends on the resolution and the distance between the
camera and the ground.
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Location False Positives Position Std Dev Orientation Std Dev
[%] [mm] [deg]

1 2.6 0.250 0.721
2 1.9 0.536 1.180
3 1.7 0.778 0.901
4 3.4 0.538 1.182
5 30.2 0.689 1.231

Table 5.3: Susceptibility to errors for the tracking system. The tinycar is placed at five
different locations and for each 1000 measurements are taken. The false pos-
itives are the number of measurements where the tracking system detects a
marker which is not there. The mean and standard deviation are calculated
for the position and orientation without the false positives. The position is in
millimeter and the orientation in degrees.

5.1.2 Tracking System

For the tracking system the number of measurement errors and the standard deviation of
measurements is determined. For that, the tinycar with its tracking markers is placed at
five different locations. For each location 1000 measurements are taken. A ground truth
for the measurements were not used for testing, as determining the exact position of
the tinycar within 1 mm is not feasible. Measurements errors in the ground truth could
potentially lead to wrong conclusions. Therefore only the deviation of the measurements
is used and the number of measurements errors is counted. A measurement error would
be a false positive, which means that the tracking system detects a marker which is not
there. To determine the usability of the accuracy, a stanley controller using only the
position data and virtual map with ground truth trajectory (as in Figure 4.5) is tested
and evaluated in a later section.

The results are presented in Table 5.3 and show that for four locations the false posi-
tives and standard deviations are within a certain range. Location 5 however shows a
significant increase in false positives. This problem can also be seen in the next section.

5.1.3 Stanley Controller

The stanley controller is mainly used in the automatic repositioning to bring the car
back to the track after driving backwards up for a maximum of 30 steps. During the
drive with the stanley controller, the steering angle is purely based on the position of the
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Maneuver CTE Avg CTE Std Dev H-Error Avg H-Error Std Dev
[mm] [mm] [deg] [deg]

Straight 14.645 24.592 11.193 13.409
Right 5.687 5.194 12.046 12.672
Left 11.877 18.576 20.178 28.430

Table 5.4: Benchmark for the stanley controller. The tinycar is driven with the stanley
controller for 2000 steps for each maneuver in the real-world. The cross track
error (CTE) and heading error (H-Error) are calculated for each step. The
average and standard deviation are calculated for each maneuver. The CTE
is in millimeter and the H-Error in degrees.

tracking system and its CTE and heading error to the ground truth trajectory. Table
5.4 shows a benchmark for the stanley controller, where the tinycar is driven for 2000
steps for each maneuver. During the drive the CTE and heading error are calculated
for each step. Using the right maneuver, the tinycar has the lowest CTE and heading
error. An artifical delay of 50 ms is added to also test, if the whole system delay is
still within a feasible range. Figure 5.2 shows the positions of the tinycar rendered onto
the map during this drive with the straight maneuver. It can be seen that near the
two upper intersections the car struggles to keep the position within the lane. This also
happens during the left turn maneuver. However, the right turn maneuver also passes
the intersection, but from a different direction without any oscillations. Location 5 in
Table 5.3 is in this area and shows the highest false positives, leading to false steering
angles.

5.2 Encoder

The encoder is used to transform the observation from the gym environment into a
format that can be used by the actor. More precise, it compresses information from
a 160x128 image into a 256 dimensional vector. The encoder is trained via supervised
learning, meaning that input and output are given in the training process. However, since
the encoder learns an arbitrary representation of the input, the output of the encoder
is not interpretable and thefore not known beforehand. But the steering angle for a
given input can be easily collected by either driving the car manually or with the stanley
controller. So the encoder and actor are trained simultaneously, as depicted in Figure 3.2.
That way, the feature vector used by the actor includes information that distinct certain
input images from others to predict the correct steering angle. Different experiments
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Figure 5.2: Positions of the tinycar rendered onto the map while steering with stanley
controller in the real-world. The light gray lines show the ground truth tra-
jectories and the blue line shows the actual driven path. The other colors
visualize the lane lines. The figure shows that near the two upper intersec-
tions, the car struggles to keep the position within the lane. The blue dots on
the right and lower side of the image show the false positives of the tracking
system.
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are conducted to train a suitable encoder. Especially one that generates similar feature
vectors for simulation and real inputs, to minimize the sim-to-real gap in the beginning.

Three different training setups are tested for that. The first trains two encoders, one
using simulation data, the other using real data. These encoders are not intended to be
used for the final model, but to analyze the sim-to-real gap and as a baseline for the other
two training setups. The second setup trains one encoder using simulation data and real
data. So both datasets are mixed together and sampled randomly from during training.
The third setup shares the weights of the actor to generate similar feature vectors for
simulation and real inputs. With this setup, also two encoders are trained. But the one
with simulation data is trained first and then the weights of the actor are copied to the
second encoder. This second encoder is then trained with real data, but only the encoder
part. The actor part is frozen. The idea is that the second encoder learns to generate
feature vectors in such a way that the actor can use them to predict the correct steering
angle.

The simulation training dataset is generated by using the stanley controller to drive on the
map of the environment at HAW Hamburg and Knuffingen. Split between these two envi-
ronments is 50-50, with each dataset consisting of 40,000 images. So the simulation data
in total consits of 80,000 images. Using the stanley controller, an Ornstein-Uhlenbeck
noise is added to the steering angle, so that the encoder also has images outside the
current driving lane. This diversifies the dataset. The ground truth steering angle in the
dataset however, is the clean stanley controller, which would then calculate a steering
angle to get from outside the lane back into it. The spawn points are set so that each
intersection is passed from each possible direction. Each spawn point is also driven three
times, to include every possible maneuver. One episode in the data collection is 1000
steps, but only every second frame is saved.

The real training data is generated by manually driving the tinycar on the track at HAW
Hamburg and Knuffingen. The total real dataset consits of 36,184 images, with 21,512
images from HAW Hamburg and 14,672 images from Knuffingen.

5.2.1 Feature Vector Comparison

To compare the feature vectors with each other, a sequence of 631 frames will be used.
The frames were collected by driving the tinycar with the stanley controller over the track
at HAW Hamburg. At each step, the frame of the real camera (which is post-processed
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Figure 5.3: Loss curve during training process of the encoder with simulation dataset
only. The loss function is mean squared error, which is averaged over the last
10 values and plotted every 10th step.

with the lane segmentation) is captured, parallel to a rendered frame in the simulation
at the same location and orientation as in the real-world. Figure 4.6 shows an example
where the raw camera image is overlayed with the rendered simulation image. So at each
step in the sequence, two input images are saved. The feature vectors are then calculated
with the respective encoder. The average, std deviation and maximum difference of these
two vectors are used to determine the similarity of the feature vectors. These values are
then averaged over the whole sequence.

The encoders are trained with a batch size of 32 and a learning rate of 1e-4. Adam is
used as the optimizer. They are trained for 10,000 steps each. So 320,000 images are fed
through the network and backpropagated, which is every frame 4 times for the simulation
dataset. For the loss function the mean squared error is used. Figure 5.3 shows the loss
curve for the encoder trained with simulation data only. Similar curves can be seen for
all over training setups as well.

Using the two independently trained encoders, they produce a mean difference of the
vectors of 1.143 for the 631 frames. The maximum difference is 10.084. This means
that the maximum difference between two values in their feature vectors is 10.084. The
standard deviation is 0.071. These values do not have a unit and the value of the feature
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Setup Mean Max Std Dev
Independent 1.143 10.084 0.071

Mixed 0.679 7.486 0.093
Shared Actor 0.636 6.035 0.056

Table 5.5: Difference between feature vectors of 2 different encoders respectively. Input
images are of same location but one from the real-world environment and the
other simulated. A low difference means a very similar feature vector for the
same scene represented, either in simulation or real-world.

vector is not interpretable. However, they can be compared relative to each other with
the other two setups. Table 5.5 shows the results for all three setups. These show that
mixing training dataset or sharing the weights of the actor generates more similar feature
vectors than independently training two encoders. Even though there is no big difference
between the mixed and shared actor setup.

5.2.2 Supervised Training Driving Results

Since the encoder implicitly updated the actor when training the encoder, the similarity
of feature vectors can also be tested by benchmarking the driving performance. In this
experiment, the actor, which is initially trained using only simulation data, is used in
conjunction with the encoder trained on real data using the shared actor setup. This
setup gave the best results in the differences of the feature vectors (as seen in Table 5.5).
This supervised learned encoder and actor are tested on the track at HAW Hamburg in
the real-world, similar to the test in Section 5.1.3. The same benchmark is conducted
with 5000 driven steps for each maneuver.

Table 5.6 shows the results of the benchmark. The CTE and H-Error are calculated for
each step and then averaged over the whole maneuver. Similar to the stanley controller
(Table 5.4), the right turn maneuver has the lowest average CTE, both in simulation
and real-world. The results also show that the driving performance based on the CTE
is similar to the stanley controller, indicating that the encoder does generate feature
vectors based on the real input to predict a steering angle with the sim based actor, to
keep the car in the lane. It can also be seen that the real-world driving performance is
slighly better than the simulation driving performance.

Figure 5.5 shows an excerpt of the positions during the benchmark drive from Table 5.6
in the real-world. It visualizes how the right turn maneuver can handle the right and
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Env Maneuver CTE Avg CTE Std Dev H-Error Avg H-Error Std Dev
[mm] [mm] [deg] [deg]

Straight 13.572 19.033 14.683 19.493
Real Right 9.622 8.613 14.014 13.286

Left 14.289 18.601 16.327 18.718
Straight 13.512 14.314 13.952 13.724

Sim Right 11.690 6.879 15.006 11.514
Left 17.297 19.477 20.207 19.257

Table 5.6: Benchmark for the supervised trained encoder and actor with the shared actor
setup. The actor is purely trained on simulated data while the encoder for
the sim env is also trained on simulation data and for the real env trained
on real data only. For both environments the actor was trained purely with
simulated data. For each maneuver the car is driven for 5000 steps. The CTE
is in millimeter and the H-Error in degrees.

left turn without leaving the lane. The left and straight maneuver leave the lane during
a right hand turn. This can also be seen at other right turns on the track. During this
benchmark drive the car did not make the left turn with the straight maneuver, which is
not intended nor controlled but a result of the random maneuver choosing while driving.
On all the other left hand turns however, the car stayed in the lane like the right or left
maneuver. In the simulation, the actor did not show this behavior. But during a left
turn on t-intersections, the car takes the turn too wide resulting in higher CTE. The
left turn on t-intersections is performed both for left and straight maneuver. Figure 5.4
shows an excerpt for the straight maneuver.

5.3 Actor

As described in Section 3.1.1, the actor is trained with td3. First in the simulation, so
the actor can explore the basic behavior. Then in the real-world, where the actor can
adapt to the real-world conditions and to bridge the sim-to-real gap. From the previous
experiments, the two encoders which share the supervised learned actor achieved the best
results therefore they will be used for training the TD3 actor.

The exploration noise is an Ornstein-Uhlenbeck process (as described in Section 3.1.2)
with a θ of 0.15 and a σ of 0.4. The replay buffer size is set to 500,000 and after each step
the critic is learned with a batch size of 256. The actor, as recommended for td3 [13], is
updated every second step with the same batch size. The learning rate for the critic is
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Figure 5.4: Supervised learning controller with simulation encoder steering the tinycar in
the simulation. The figure shows an excerpt of the rendered positions in the
map at two t-intersections with the straight maneuver. It can be seen that
the car takes the left turns too wide resulting in overshooting and correction
to middle of the lane after that. The light gray line are the ground truth
trajectory. This executed maneuver would therefore result in a high cross-
track-error.

2e-4 and for the actor 1e-4. The target update rate τ is set to 0.001. The discount factor
γ is set to 0.99. For each episode a maximum step size of 1000 is set. For each episode
a random maneuver and spawn point is chosen. The spawn points are entries to every
intersection from every possible direction. In the simulation the actor is trained for 1000
episodes and in the real-world for another 400-500 episodes.

As described in Methodology, a linear reward shaping is used with a maxium reward of 1
and a minimum reward of -1 at an cross track error of 60 mm. If the cross track error is
above 70 mm for at least 5 steps, the episode is terminated. The 5 steps threshold is used
especially in the real-world environment in case of false postive tracking data. Added for
the real-world environment is a crash termination. If the cars velocity is below 0.01 m/s
for 5 steps, the episode is terminated. This is used to prevent the car from getting stuck
when colliding with an obstacle.

To test the performance of the trained actor, different experiments are conducted. First,
the actor is tested in the simulation to see if it can drive the car autonomously. Especially
used for hyperparameter tuning and to see if the feature vector representation if sufficient
for reinforcement learning an actor. Then the actor is tested in the real-world to see
if it can adapt to the real-world conditions and bridge the sim-to-real gap. For that
the car is driven on the track at HAW Hamburg. Knuffingen can only be used in the
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(a) Straight (b) Right

(c) Left

Figure 5.5: Positions of the tinycar rendered onto an excerpt of the map while steering
with the supervised learned encoder and actor in the real-world. Encoder
is trained with real data while actor is trained with simulation data. The
light gray lines show the ground truth trajectories and the blue line shows
the actual driven path. The other colors visualize the lane lines. The figure
shows that the left and straight maneuver struggle to make the right turn
while the right turn maneuver handles the right and left turn without leaving
the lane.
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Figure 5.6: Part of the map of the Knuffingen environment with a large intersection.
From each direction the intersection has a distinct lane for turning or keeping
straight. This lane splitting happens centimeters before the actual intersec-
tion. It can be seen at node number 277, 21 and 158.

simulation, since no tracking data is available for the real-world environment. For these
experiments however, the car will be driven with the simulation only trained actor first.
After continuing the training in the real-world, the car will be driven with the real-
world trained actor. These two actors will be compared to check for differences. The
last experiment will train the encoder again with a supervised learning process, but this
time the weights of the td3 actor will be used. This is to test if the performance can
be enhanced in case the td3 actor uses features from the simulation encoder which the
real-world encoder cannot generate.

5.3.1 RL in Simulation

In the simulation the actor is trained for 1,000 episodes with a maximum of 1,000 steps
per episode in the HAW environment and 2,000 steps in Knuffingen. The maximum step
increase for Knuffingen is due to the larger map and bigger intersections with a lane
splitting centimeters before the intersection, as seen in Figure 5.6. So that the actor has
enough time to completly pass the intersection within one episode, each episode has a
maximum of 2,000 steps.
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(a) HAW Hamburg (b) Knuffingen

Figure 5.7: Episodic reward during training in the simulation. The rewards are averaged
over the last 10 episodes. The encoder used for the actor is trained with
simulation data only. The maximum possible reward for the HAW Hamburg
environment is 1000, since the highest reward at a CTE of 0 is 1 per step.
For Knuffingen the maximum reward is 2000.

Figure 5.7 shows the rewards per episode during the training process. The rewards are
averaged over the last 10 episodes. Both reward curves show that the actor is getting
better by achieving higher rewards over time. They do not get the maximum reward of
1000 for the HAW environment or 2000 for Knuffingen. But that would imply that the
CTE is always 0 for every step. The reward curve in the Knuffingen environment shows
more fluctuations than in the HAW environment.

Table 5.7 shows the benchmark after driving the trained actors in the simulation en-
vironments. Same as in the training, the car is driven the double amount of steps in
Knuffingen compared to in the HAW Hamburg environment, to match for the size of the
intersections. As for the stanley controller and supervised learned actor, the right turn
maneuver has the lowest CTE and H-Error. The results of the td3 learned actor in the
HAW environment also have lower values compared to the supervised learned actor in
the simulation. In the Knuffingen environment the results are in general worse than in
the HAW one, for every maneuver.

When looking at the actual positions during a maneuver at an intersection, as visualized
in Figure 5.8, it can be seen that the car starts oscillating. This happens not only at
this intersection, but at almost every intersection. Also the trained actor in Knuffingen
shows the same behavior, but not all the time. The right turn maneuver also cuts the
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Env Maneuver CTE Avg CTE Std Dev H-Error Avg H-Error Std Dev
[mm] [mm] [deg] [deg]

Straight 12.736 8.412 13.633 11.188
HAW Right 8.930 7.549 14.377 11.063

Left 16.533 20.158 17.788 16.199
Straight 19.866 26.479 7.364 12.015

Knuffingen Right 13.306 19.252 9.296 15.259
Left 15.014 20.211 12.254 18.363

Table 5.7: Benchmark drive with the td3 actor in the simulation. The actor is trained
for 1,000 episodes with a maximum of 1,000 steps per episode in the HAW
environment and 2,000 steps in Knuffingen. For the test drive 5000 steps were
driven in the HAW environment and 10000 in Knuffingen, to cover for the
bigger map. The CTE is in millimeter and the H-Error in degrees.

corner, crossing the outer edge of the road. The highest oscillations can be seen during
the left turn maneuver. This is also the maneuver with the highest standard deviation
in the benchmark (Table 5.7).

In Knuffingen the actor does not tend to oscillate as much as in the HAW environment,
but it does take the wrong lanes approaching an intersection. Figure 5.9 shows the
positions during a maneuver in Knuffingen. The car always takes the right turn lane,
regardless of the maneuver. All episodes are terminated early because the cross track
error exceeds 70 mm at the last step. The right turn maneuver starts to cut the corner,
which also exceeds the termination threshold of 70 mm. The left turn maneuver keeps
the right lane for the longest time but then also turns into the right lane with a high
heading error.

5.3.2 RL in Real-World

The Knuffingen environment in the Miniatur Wunderland Hamburg does not contain a
tracking system for the cars which could be used for the benchmarking. Therefore the
car is only tested in the HAW Hamburg environment, for the real-world tests. This also
means that for the following tests, the td3 actor which was trained in the simulation
using the HAW environment track will be used. This actor will be tested first in the
real-world environment without any modifications besided swapping the encoder with
the real-world trained encoder, from Section 5.2.2. The benchmarking is the same as in
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(a) Straight
(b) Right

(c) Left

(d) Knuffingen Left

Figure 5.8: Positions while driving in the simulation with td3 actor. The light gray lines
show the ground truth trajectories and the blue line shows the actual driven
path. The other colors visualize the lane lines. The figure shows that even
though every maneuver is executed correctly, the car always starts oscillating.
The right turn maneuver also cuts the corner, crossing the outer edge of the
road. In Knuffingen the same behavior can be seen centimeters before the
car is supposed to make a left turn.

(a) Straight (b) Right

(c) Left

Figure 5.9: Positions while driving the td3 actor in the simulation in Knuffingen. The
figure shows an intersection where the car always takes the right turn lane,
regardless of the maneuver. The episodes are all terminated after the cross
track error is above 70 mm.
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Figure 5.10: Histogram of the experience buffer used to train the actor in the real-world.
The figure shows the number of steering angles in the buffer for each ma-
neuver. The buffer comes from the td3 training in the simulation. It was
cleaned afterwards, by skipping the first 100,000 episodes which mostly con-
sists of steering angles either -1 or 1. Since the action space is continuous,
the steering angles are quantized into 0.01 steps.

previous sections, where the car is driven for 5000 steps for each maneuver and the CTE
and H-Error are calculated for each step.

After that the car is trained in the real-world with the same hyperparameters as for the
simulation (Section 5.3.1). Only the number of episodes will be changed from 1000 to 300
episodes. Figure 5.11 shows the rewards per episode during the training process. The
rewards are averaged over the last 10 episodes. In the beginning the rewards rapidly go
down to values below 0. Over time however, they increase on average. But the rewards
are still not near the maximum possible reward of 1000.

The experience buffer collected during the training process in the simulation is used to
train the actor in the real-world. This should avoid a catastrophic forgetting otherwise
experienced. The buffer is cleaned by skipping the first 100,000 episodes, which mostly
consist of steering angles either -1 or 1. Figure 5.10 shows the histogram of the experience
buffer.

During the 300 training episodes, the automatic repositioning successfully brings the car
back to the track in 48 cases. This makes a success rate of 84 % for the repositioning.

Comparing the drive benchmark results from Table 5.8 with the simulation benchmark
results (Table 5.7) shows that the real-world driving performance is worse than in the
simulation. The CTE and H-Error are higher for every maneuver. The performance
after training the actor in the real-world does not change for the straight maneuver, gets
better for the left maneuver and worse for the right maneuver.
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Figure 5.11: Episodic reward during training in the real-world at HAW Hamburg for 300
episodes. The actor is pretrained in the simulation for 1000 episodes. The
encoder is different when pretrained, but both encoders are trained with the
same supervised learned actor. The rewards are averaged over the last 10
episodes.

Phase Maneuver CTE Avg CTE Std Dev H-Error Avg H-Error Std Dev
[mm] [mm] [deg] [deg]

Straight 29.646 22.848 19.543 18.513
Before Right 29.395 22.410 22.863 22.450

Left 38.137 28.070 33.879 24.004
Straight 29.267 22.360 22.554 22.055

After Right 49.846 29.333 31.331 20.243
Left 26.979 24.065 22.534 21.993

Table 5.8: Benchmark drive with the td3 actor in the real world in the HAW environment.
The before phase is the actor which is trained in the simulation using only the
real encoder. The after phase is the actor which is trained for another 400
episodes in the real-world. It is based of the actor from before phase with the
same encoder.
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(a) Before Straight

(b) After Straight

Figure 5.12: Positions while driving in the the real-world in the HAW environment with
two td3 actors. The before phase is the actor which is trained in the sim-
ulation using only the real encoder. The after phase is the actor which is
trained for another 400 episodes in the real-world. The light gray lines show
the ground truth trajectories and the blue line shows the actual driven path.
The other colors visualize the lane lines.

This is also visible in the positions during the benchmark drive, as shown in Figure 5.12.
The positions of the car show that in both phases the car struggles to keep itself straight
and in the center of the lane. For both maneuvers the average CTE and standard devia-
tion is the same in the before and after phase. Training in the real-world does not improve
the driving performance using the real-world encoder and td3 learning algorithm.

To test if the oberservation space might be the problem for the td3 actor in the real-
world, another actor is trained using raw camera data. So instead of using the lane
segmentation, the 3 channel RGB image from the camera is fed into a seperate trained
encoder and then into the actor. The encoder is trained with the same hyperparameters
as the encoder trained with the lane segmentation. The same goes for the actor, which
is trained for 400 episodes. Since the model does not use lane segmentation as input, the
actor can not be pretrained in the simulation. Figure 5.13 shows the rewards per episode
during the training process. The rewards are averaged over the last 10 episodes. Same
as for the training with lane segmentation, the rewards increase over time on average but
do not come close to the rewards in the simulation training. Since the episodic reward
does not improve compared to the actor with lane segmentation, a drive benchmark is
not conducted.
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Figure 5.13: Episodic reward during training in the real-world with raw camera data.
Input data is not the lane segmentation but the raw 3 channel RGB image
from the camera. The actor is trained for 400 episodes without using a
pretrained actor or existing replay buffer. The rewards are averaged over
the last 10 episodes.
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Setup Mean Max Std Dev
Independent 1.143 10.084 0.071

Mixed 0.679 7.486 0.093
Shared Actor 0.636 6.035 0.056

Shared Actor RL Update 0.631 5.355 0.057

Table 5.9: Difference between feature vectors of 2 different encoders respectively. Input
images are of same location but one from the real-world environment and the
other simulated. A low difference means a very similar feature vector for the
same scene represented, either in simulation or real-world. The values are the
same as in Table 5.5 but with the encoder update setup included. The update
is similar to the shared actor setup, but instead of the supervised trained actor
with the td3 trained one.

5.3.3 Encoder Update with RL Actor

The results above show a significant decrease of average cross track error and heading
error when using the pretrained actor from the simulation in the real world. Therefore,
another test is conducted to see if the performance can be enhanced by training the
encoder again with the td3 actor. The encoder is trained for 10,000 steps with the same
hyperparameters as in Section 5.2. The encoder is trained with the same data as before,
but this time the weights of the td3 actor from the simulation are used. The old encoder
is then compared to the new updated encoder by using the same td3 actor from the
simulation in the real-world.

Additionaly, the differences between the feature vectors from the simulation and real-
world are compared, similar to Table 5.5. As references, the feature vector differences
of this table are also included. The results are shown in Table 5.9 and are similar to
the shared actor setup, but with a slightly lower max value. This behavior is expected
though, since using a different actor for the encoder update should not change the overall
feature vector differences too much. Therefore the driving performance with this encoder
update should be tested to see if there is an improvement in the features generated.

Table 5.10 shows the results of the benchmark drive with the td3 actor in the real-world
using the encoder update. The average CTE is worse for all maneuvers compared to
using the not updated encoder. Even though, the loss curve during the encoder training
process (Figure 5.14) shows a similar behavior as in the encoder training process with
the supervised learned actor (Figure 5.3). The loss curve shows a significant decrease
over time, expecting a better performance in the benchmark drive.
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Phase Maneuver CTE Avg CTE Std Dev H-Error Avg H-Error Std Dev
[mm] [mm] [deg] [deg]

Straight 29.646 22.848 19.543 18.513
Before Right 29.395 22.410 22.863 22.450

Left 38.137 28.070 33.879 24.004
Straight 31.536 26.273 24.394 18.444

After Right 34.583 23.967 20.088 17.428
Left 41.079 25.405 20.990 18.676

Table 5.10: Benchmark drive with the td3 actor in the real world in the HAW environ-
ment. The before phase is the actor which is trained in the simulation using
only the real encoder. The values are the same as in Table 5.8. The after
phase is the same actor but with the encoder updated with this actor. The
encoder is trained for 10,000 steps with the same hyperparameters as in Sec-
tion 5.2.

Figure 5.14: Loss curve during training process of the encoder with the td3 actor. The
loss function is mean squared error, which is averaged over the last 10 values
and plotted every 10th step. The training data used is the dataset consisting
of only manually driven images in the real-world. The weights of the shared
actor encoder used before are used as starting weights for this updated
encoder.
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This chapter discusses the results of the experiments and the overall project. The main
goal of this thesis was to train a reinforcement learning model in a simulated environment
and transfer it to the real world. The model should be able to drive the car autonomously
on the track and handle intersections by executing the chosen maneuver. Additionaly
the model should be able to generalize to the real world and adapt to the real-world
conditions.

This chapter uses the same main structure as the results chapter. It starts with a
discussion of the environment. Especially how useful it is for the reinforcement learning
task. The following section discusses the encoder with its improvements and the overall
ability to minimize a sim-to-real gap. The actor is discussed in the next section with the
results of the actual real-world reinforcement learning.

6.1 Environment

The gymnasium environment includes both the simulation of the car and the digital twin
for the real-world. Especially the abilities of the real-world environment are interesting to
see if there are big differences to the simulation and if the real-time aspects and tracking
system work as intended.

Figure 4.6 shows that the simulated camera matches the real camera image quite well.
The simulated image does not take lens distortion into account and the base info of lane
lines in the map are a list of straight lines, which could never match the curvature of the
road completly. However, the difference between the simulated lane segmentation and
the real lane segmentation, from the neural network, is more significant. It can be seen
in Figure 6.1 that the real lane segmentation is more noisy and has more false positives.
This could be due to the neural network not being accurate enough and needing more
training data than the 708 images it was trained on [27]. The given lane segmentation
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(a) Simulated (b) Real

Figure 6.1: Example of the difference between the simulated lane segmentation and the
real lane segmentation. The input for the real lane segmentation is at the
exact same location and orientation as the simulated image. The real lane
segmentation is done by a neural network.

model was already trained with additional 324 images taken with the new tinycar. Both
in the HAW environemt as well as Knuffingen. This step seems necessary since the images
taken for the old lane segmentation model were taken with a complete different camera
and car. The still resulting difference between the simulated and real lane segmentations
are tried to be minimzed by the encoder, which the actor uses as input. This will be
discussed in the next section.

Table 5.1 and Table 5.2 show the latencies of the tinycar and the tracking system. The
biggest latency and bottleneck of the system is the tinycar latency. As expected has the
lowest camera resolution the lowest latency. With the encoder using this lowest resolution
of 160x120 pixels one could argue that this resolution is sufficient to use. However, the
difference between the 320x240 to the 160x120 resolution is not as big as between the
other resolutions and since the lane segmentation model performs better IOU scores with
a bigger resolution [27], the 320x240 resolution is used. With the latency for a training
step, the whole latency for one step is 101 ms. This is quite high but with the speed of
0.03 m/s set, the car would travel 3 mm in one step. As later results show, where the car
drives with an artifical delay using the supervised learned actor, this delay might bring
some problems but is no breakpoint.

The latency for the tracking system does not matter as much as the latency for the
tinycar, which is systemically relevant. The overhead camera resolution of 640x480 pixels
is used, since it is the middle ground between high accuracy and reasonable latency. Even
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though there is a 24 ms latency, it is only the half of the tinycar latency. Using the higher
accuracy with 1.1 mm would result in a latency of 42.3 ms with which it would not be
able to maintain the rate of 30 Hz. Therefore 640x480 pixels is used.

As Table 5.3 can show, the false positive rate of the tracking system lies between 1.7
and 3.4 percent. Together with the standard deviation for the position and orientation,
the tracking systems accuracy is enough for the task. This is also demonstrated in the
results where the car drives autonomously on the track steered by a stanley controller
solely based on the tracking system. With the presenence of false positives however, an
improvement could be made which finds false positives and predicts a location in that
cases. The termination conditions, when training in the real-world, already take false
positives into account by checking if the condition is met for a certain amount of time.
This is done to prevent the car from stopping when a false positive occurs. The reward
shaping however does not take false positives into account. This could be a possible
improvement for the future.

The stanley controller tested shows that the accuracy of the tracking system is enough
to autonomously drive the car. It also shows that the latency introduced by the tracking
algorithm is not a problem. The average cross track errors are within reason, especially
for the right maneuver. As Figure 5.2 shows, the higher CTEs for the left and straight
maneuver most probably occur due to tracking issues in a certain area. Table 5.3 also
showed that problem in the Location 5 row, which is in that direction. Figure 6.2 zoomes
into the problematic intersection and reveals the most probable cause of the problem,
which is the wait line. Since the wait lines are white and much thicker than normal
dashed or solid lines, this could be the cause of the tracking system losing the car. The
markers which are used by the tracking system are white as well. This behavior however
only occurs during specific lightning conditions. The white tones of the street markings
and markers on the car are not completly the same, which the tracking algorithm can
distinct through filtering. But sometime when the lightning conditions are not optimal,
the tracking system produces these false positives more often causing big runaways as
seen in Figure 5.2. For later tests, this was fixed by changing the color filter thresholds
to meet with the current lightning conditions. A more robust solution would be to use
a different color for the markers on the car, which are completly different from all the
colors seen in the environemt.
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Figure 6.2: Excerpt from Figure 5.2 showing the problematic intersection zoomed in.
Before the big runaway, the tracking system lost the car and produces false
positives at the wait line above. Same can be seen more left at the wait line.

6.2 Encoder

As shown above, the real lane segmentation model is not as accurate as the simulated
lane segmentation. The encoder, which takes these images and produces a small feature
vectors, should minimize this problem by some factor. So that the feature vectors for
the actor are more similar. This way the actor only has to handle a smaller difference
between the simulated and real-world data, ultimetaly reducing the sim-to-real gap.

As Table 5.5 shows, through different techniques the encoders can be improved to produce
more similar feature vectors. Even though the difference between training one encoder
with both datasets or two encoders with a distinct dataset but share weights of the actor
does not show a big difference. However, the standard deviation using the technique with
the shared actor weights is smaller by 50 %. The reason why they do not produce more
similar feature vectors might be due to the wrong training process. When training the
two encoders with the shared actor weights, the loss function only tries to minimize the
difference in the steering angles but not of the feature vectors. Because the real training
data does not have an exact replica with simulated images, the loss function could not
be used to minimize the difference in the feature vectors. This would only be possible
if at one training step the network would get both a simulated and a real image at the
exact same location and orientation. This can be done in the HAW environment where a
tracking system is installed but not in Knuffingen which lacks such a system. This could
however be a major improvement for the future. The steering angle should still be used
in the loss function since otherwise the encoder could produce always the same feature
vector or feature vectors which do not differ enough to drive a car autonomously.
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The side product of training the encoders is an actor which can be used to drive the car.
The actor trained with the shared actor weights technique is used to drive the car in the
real-world, as seen in Table 5.6. The benchmark shows that the encoder trained with
the real-world data is in fact able to drive the car with an actor trained with simulation
data. This is expected though, since the encoder is just trained to create feature vectors
for the actor, which generates steering angles similar to the correct ones from the real-
world training data. The weight setup of the actor does not matter that much since
the encoder would just produce feature vectors which could potentially overcome any
issues. However, the results also show that in both environments the car struggles with
the left and straight maneuver more than with the right maneuver. This is the same
behavior seen with the stanley controller. With the stanley controller the problem was
the false positives of the tracking system. The training data for the encoder however
does not need the tracking system at all. The intersection, which creates problems for
the stanley controller, does not create any for the supervised learned actor and encoder.
As Figure 5.4 shows, the problem is an overshooting in the steering when approaching
the t-intersections from a certain direction, where the car does have to turn left or right.
Since the straight maneuver always has to turn left at these situation (it is a rule set
in the simulation), the problem not only occurs for the left maneuver but also straight.
This would explain why the left and straight maneuver show the same results, especially
when approaching the intersection from that direction. For the overshooting no plausible
explaination could be found, since the training data does not contain this behavior. The
training data for the simulation is generated by the stanley controller, which does not
show this behavior, as seen above.

Another problem the left and straight maneuver have is driving right curves, as seen in
Figure 5.5. Only when choosing the right maneuver, the car makes that turn without
leaving its lane. Even though the simulation training data is perfectly distributed with
the same areas driven with every maneuver, the real-world training data is not. A lack of
the problematic curve with left and straight maneuver compared to other curves, might
be the cause of the problem. The simulation data is collected by driving with a stanley
controller. For each spawn point the same amount of steps is driven with each maneuver.
The real-world data is collected by manually driving the car. Every section of the track is
included in this dataset with every maneuver. But it might be that the left and straight
maneuver need more data for the problematic curve since driving right curves is not
as common as driving left curves for these two maneuvers. This could be a possible
explanation for the problem.
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6.3 Actor

The actor is the main part of the reinforcement learning model. It takes the feature
vectors from the encoder and produces steering angles. The actor is trained with the
TD3 algorithm in the simulation and the real world.

Training the encoder in the simulation in the HAW environment and Knuffingen shows
an improvement in the reward taken per episode over the time. The episodic rewards in
the HAW environment shows an smoother curve than in Knuffingen, as seen in Figure
5.7. This could mean a better performance of the actor in the HAW environment which
is also a much simpler track layout. Table 5.7 shows the results of the benchmarking
drives of these two actors. It also shows that the actor in the HAW environment performs
better than in Knuffingen. The reason for this could be the more complex track layout in
Knuffingen with bigger intersections, as Figure 5.6 shows. The presented intersection has
distinct lanes for keeping straight or turning. The intersections in the HAW environment
are much simpler, smaller and do not have distinct lanes. They can be more compared
to intersections found in suburban areas. The actor in Knuffingen has to make a decision
which lane to take based on the given maneuver before the intersection is even in sight.
This also means that during that time, 3 lanes have to be considered, from which one is
the oncoming traffic. The actor has to make a decision based solely on the lane markings
and the given maneuver, with no context information. This can be even challenging for a
human driver. This can already indicate that just lane segmentation images might not be
enough to handle more complex environments as Knuffingen. Unfortunately, this is hard
to test further since accurate results in the real-world would need a tracking system.

Results from the simulation, as shown in Figure 5.8d, show that the actor has the same
problems in Knuffingen as in the HAW environment. Both tend to start oscillating near a
decision needed intersection. But while the actor in the HAW environment still executes
the right maneuver, in Knuffingen it tends to execute the wrong one, as seen in Figure
5.9. On this intersection coming from this direction, the actors always chooses to take the
very right lane, even though a left maneuver might be chosen. During the training the
spawn points are set to intersections only, so that the actor learns these in particular. But
still the training episodes might not be enough for a complex environemt like Knuffingen
or the lane segmentation is simply the wrong approach. When looking further into the
intersection in Figure 5.9 it can be seen that the straight lane does not have a dashed
nor solid line to the oncomimg traffic lane. This could be a problem for the actor since it
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maybe does not know it can drive in that area based on the lane segmentation only. This
is one example making it hard to drive in Knuffingen with lane segmentation only.

For the training in the real-world the actor used the experience buffer from the simulation
training as a starting point to prevent catastrophic forgetting. Even though the episodic
rewards increase over time, the overall performance is not near the performance in the
simulation. The used pretrained model does also underperform the simulation actor by
a big factor indicating a too big sim-to-real gap in the first place. For training the model
in real-world would probably need a good working pretrained model first. Otherwise
using a pretrained model does not make sense if the model as so start from the beginning
nonethless. Training the real-world actor for more than 2000 episodes might give better
results, since a general lerarning curve is existent, but that is not feasible with the current
setup due to time constraints and recharging the car.

The pretrained actor might struggle in the real-world because the differences in the
feature vectors ars still too prominent. The encoder does not minimize the sim-to-real
gap enough. Using the supervised trained actor in the real-world works well however.
As said before, this is probably because the encoder just learns feature vectors which
activate certain neurons to give the correct steering angle. Using the same technique was
also tested with the pretrained actor, as presented in Section 5.3.3. But the new updated
encoder even performs worse than the encoder used before. Even though the loss curve
and results of the feature vector differneces look promising. Maybe the actor utilizes the
feature vectors in a different way than the supervised learned actor. One could argue
that the lane segmentation input is not enough for the actor to make a decision. But
the lane segmentation input works for the actor in the simulation and for the supervised
learned actor in the real-world. Using raw camera image for the actor in the real-world
also shows no improvement and the same results. Because the raw image actor cannot
use a pretrained model, the episodes it was trained might just be not enough. That
however would show, that the actor in the real-world using the lane segmentation can
not use the experience and knowledge of the simulation actor at all and also has to start
from the beginning. In the end, the cause could either be that the td3 learning algorithm
with the exploration noise used is not suitable for the problem in the real world and/or
that the encoder/lane segmentation sim-to-real gap is too big to start with.
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In the scope of this thesis a complete system to test and train machine learning and
reinforcement learning models for autonomous driving in a miniature environment was
developed. The system consists of a digital twin of the real 1:87 city environemt at HAW
Hamburg. Using a simulation of the car and the environment, different tests and trainings
can be conducted, including the training of a reinforcement learning policy. With a setup
of overhead cameras above the real track the position and orientation of the real car is
known after every step. This way the reinforcement learning can also be done in the
real-world, transfering the models from the simulation. The tinycar, which was also
developed for this thesis, is a 1:87 scaled car that can be controlled by a computer and is
equipped with a camera to perceive the environment and lane markings. By streaming
the camera data to the computer running the digital twin and reinforcement learning
algorithms, the images can be used as an observation for these models.

The first results show, that the whole system is capable of training neural networks to
autonomously drive the tinycar to even handle intersections. The latencies of the tinycar
with the camera stream over a wireless network are low enough to be used for accurately
controlling the car. The tracking system is able to track the car with a high accuracy
and a low latency. During the reinforcement learning training process, the automatic
repositioning, which uses the tracking systems data to steer the car onto the track using
a stanley controller, is able to conduct the necessary episode reset automatically. In
84 % of the cases the car is able to reposition itself onto the track without any human
intervention, drastically reducing the time needed for training.

Using encoders to reduce the dimensionality of input data for the actor reduces the
training time in the real-world, which needs to work in real-time, and can minimze the
sim-to-real gap early on. The supervised trained models, from which the encoders are
ectracted, also showed promising results in controlling the car autonomously. With a
given maneuver, which is set to either straight, right or left, the car is able to handle
intersections and take the right exit. Its performance in the real-world, using an actor
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trained in the simulation, is also similar to results driving the car with a stanley controller.
The supervised actor is able to drive the car on the track without leaving it or colliding
with obstacles.

The reinforcement learning models, which are trained in the simulation, are able to handle
the same intersections in the simulation, even though problems like oscillations occur.
In the complex environment of Knuffingen, the actor struggles to take the right lane
when approaching an intersection. Taking these models to the real-world shows however,
that they do not generalize well enough to stay within the lane. Even after training for
another 400 episodes in the real-world, the models do not improve significantly.

Altogether, this thesis still presents a system usable to further test and investigate the
challenges of reinforcement learning in the real-world and to bridge its sim-to-real gap.
Using several experiments, it can be shown that the chosen observation and action space
is sufficient for this task, while the chosen algorithms and model architectures might
not.

7.1 Outlook

Further improvements can be made for the tracking system, which is only able to track
the car with certain markers on top. Especially the white markers used, sometimes are
mistaken for the white wait line markings. Using a different color and better filtering
techniques can improve the false positives rate of the tracking system. Other approaches
might be the usage of neural networks to detect and track the car. Especially to distinct
different cars on the track, so that multiple cars can be used at the same time. That
can open more doors to even simulate traffic scenarios and more complex interactions
between the cars.

The gym environment can be extended to include more complex scenarios, such as traffic
lights, car or other obstacles. This can be used to train the models to even drive within
the full traffic simulation in Knuffingen at the Miniatur Wunderland Hamburg.

The sim-to-real gap in the perception can also be improved by maybe using a completly
different approach. Instead of having a distinct model for the lane segmentation task
and a model as an encoder, which encodes these lane segmentation images into a feature
vector, an autoencoder setup could be used. The autoencoder can be trained in the
same way as the lane segmentation model, however, the bottleneck of the autoencoder
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can be trained to create the same features for real images as for simulated ones. This
way the idea of simulating only lane segmentation images can still persist, which is a lot
easier than to simulate real photorealistic images, but the features extracted from these
images can be used in the real-world as well. This might reduce the sim-to-real gap in
the perception part of the system and make the actor trained in the simulation be useful
in the real-world as well.
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