
BACHELOR THESIS

Jan Christopher Werner

A Block-Based Approach for
Modeling Buildings Using the
CGA Shape Grammar

Faculty of Engineering and Computer Science

Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Bachelor thesis submitted for examination in Bachelor´s degree

in the study course Bachelor of Science Angewandte Informatik

at the Department Computer Science

at the Faculty of Engineering and Computer Science

at University of Applied Science Hamburg

Supervisor: Prof. Dr. Philipp Jenke

Supervisor: Prof. Dr. Bettina Buth

Submitted on: 17st of June, 2024

Jan Christopher Werner

A Block-Based Approach for Modeling Buildings
Using the CGA Shape Grammar

Jan Christopher Werner

Thema der Arbeit

A Block-Based Approach for Modeling Buildings Using the CGA Shape Grammar

Stichworte

Kurzzusammenfassung

Diese Thesis präsentiert eine blockbasierte Herangehensweise für die CGA Shape Gram-

matik. Kern der Arbeit war die Konzeptualisierung einer visuellen Programmiersprache.

Eine Prototyp Anwendung wurde entwickelt, um die praktische Anwendbarkeit des

Konzepts zu demonstrieren und eine Bewertung zu ermöglichen. Der Prototyp inte-

griert die block-basierte Sprache mit einem existierenden CGA Shape Framework, um

dem Nutzer jederzeit eine 3D-Szene mit der resultierenden Struktur darstellen zu kön-

nen. Dabei wurde Wert darauf gelegt, dass das Grundgerüst der blockbasierten Sprache

und der visuelle Editor als eigenständige Komponente wiederverwendet werden können.

Hierfür wurde die domänenspezi�sche Logik von der allgemeinen Struktur der visuellen

Sprache getrennt gehalten. Die visuelle Sprache unterscheidet sich von typischen block-

basierten Sprachen in dem Punkt, dass sie beide verfügbaren Dimensionen nutzt, um die

baumartige Struktur der Grammatik zu verdeutlichen. Die Sprache und der Prototyp

wurden mit einer heuristischen Evaluierung bewertet, um die Gebrauchstauglichkeit und

Funktionalität zu beurteilen.

Jan Christopher Werner

Title of Thesis

A Block-Based Approach for Modeling Buildings Using the CGA Shape Grammar

Keywords

CGA Shape Grammar, 3D Modeling, Buildings, Procedural Modeling

Abstract

iii

This thesis presents a block-based approach for the CGA shape grammar. The core of this

work is the conception of a visual programming language. A prototype application was

developed to demonstrate the practical application of the visual language. The prototype

integrates the language with an existing CGA shape framework, in order to render a 3D

scene of the resulting structure. The visual editor of the application was developed with

reusability in mind. I architecturally separated the editor from the domain speci�c logic

in order to obtain a visual editor framework for block-based languages. The block-based

language di�ers from typical block-based languages in the sense that it utilizes both

available dimensions to re�ect the tree-like structure, which the rules of the grammar

form. The language and prototype were evaluated with a heuristic approach to assess its

usability and functionality.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Formulation . 2

1.2.1 Contextualizing the Problem . 2

1.2.2 Wider Relevance . 3

1.3 Research Goal . 3

1.4 Structure of this Thesis . 4

2 Basics 5

2.1 Introduction to Procedural Modeling and the CGA Shape Grammar . . . 5

2.1.1 L-Systems . 6

2.1.2 Shape Grammar . 9

2.1.3 Split Grammar . 10

2.1.4 CGA Shape Grammar . 10

2.2 Introduction to Visual Programming Languages 10

2.2.1 Form-Based Programming . 11

2.2.2 Icon-Based Programming . 11

2.2.3 Diagram-Based Programming . 11

2.2.4 Block-Based Languages . 11

2.3 Related Work . 12

3 Concept 13

3.1 Decision on the type of VPL . 13

3.2 Design Principles . 15

3.3 Functional Design Requirements for the VPL 17

v

Contents

3.4 Non Functional Requirements . 19

3.5 Designing the VPL . 19

3.5.1 Key concepts of the CGA shape grammar 19

3.5.2 VPL Elements . 20

4 Realization of the Prototype 27

4.1 User Stories . 27

4.2 Development Environment and Tools . 29

4.2.1 Programming Language . 29

4.2.2 Versioning System . 29

4.2.3 Build Tool . 30

4.2.4 Development Environment . 30

4.2.5 Libraries and Frameworks . 30

4.3 Design Patterns . 31

4.3.1 MVC Pattern . 31

4.3.2 Observer Pattern . 31

4.3.3 Composite Pattern . 32

4.4 Software Architecture . 32

4.4.1 External Components . 32

4.4.2 Internal Component Structure . 33

4.5 Implementation . 35

4.5.1 Implementation of the View Component 35

4.5.2 Implementation of the Model Component 37

4.5.3 Implementation of the Controller Component 38

4.5.4 Implementation of the User Interface 38

4.5.5 Connection to the CGA Shape Grammar 40

5 Evaluation of the VPL 41

5.1 Methodology . 41

5.2 De�nition of the Evaluation Heuristics . 42

5.3 Carrying out the Evaluation . 43

6 Conclusion 48

6.1 Summary of the achieved Goals . 48

6.2 Lookout for possible further Development 48

Bibliography 50

vi

Contents

A Appendix 53

A.1 Source Code . 53

Declaration of Authorship 54

vii

List of Figures

2.1 Koch snow�akes generated using Inkscape's L-system tool. 9

3.1 Example connection between a shape block with a single action block

attached. The action block has multiple shape blocks attached to it which

con�gure the number of successor shapes.. 21

3.2 Di�erent block variants showcasing the connectors 24

3.3 Split block draft showcasing a con�guration parameter and two length

parameters speci�c to the added successor shapes. 25

4.1 User Story Map showing the scope of the prototype application 28

4.2 Component diagram describing the relation of the software system to its

neighboring systems. 33

4.3 Component diagram describing the internal architecture of the prototype. 34

4.4 Screenshot of the �nal prototype showing an example program in the de-

signed VPL. 39

viii

List of Tables

3.1 Requirements for the Visual Programming Language 18

3.2 Action-Shape Compatibility Matrix . 23

ix

1 Introduction

1.1 Motivation

In the landscape of computer graphics, the demand for e�cient and user-friendly model-

ing tools has been on the rise. Traditional modeling software incorporates direct visual

editing of 3D models by directly manipulating them in a 3D view. But modeling individ-

ual structures this way takes a lot of human e�ort, especially when the goal is to model

entire cities. Although grammars capable of easing the workload by procedurally gen-

erating shapes, or even buildings and cities with a rule-based approach were introduced

quite some time ago, it is still common to model cities building by building.

Procedural content generation is the research �eld that works on reducing the e�ort and

opening new modeling opportunities. A part of this research �eld is the research of shape

grammars. Signi�cant progress has been made in this �eld, but a recent study identi�ed

a gap between the state of the art research and the level of applicability for them to be

an attractive design tool for non-experts [3].

The �eld originated from L-Systems. They were originally meant to model the organic

structure of �lamentous organisms, but they also proved useful to also generate com-

pelling representations of much larger organic shapes like weeds, plants and even trees.

Shape grammars then further built on the idea of using rules and combined them with

simple shapes, to then generate more complex structures. One of these shape grammars

is the CGA shape grammar. The CGA shape grammar generates buildings and urban

environments in this rule-based way, while being way more e�cient than the traditional

3D modeling tools. This is because the rule based approach allows the user to de�ne the

characteristics of a building rather than a speci�c manifestation of those characteristics.

In this thesis I want to present a block-based approach that tries to improve the usability

of shape grammars especially for people novice to this concept.

1

1 Introduction

1.2 Problem Formulation

Formal grammars evolved from the idea of generating strings with rules. The shape

grammars added a powerful visual interpretation of these strings, but like programming

languages they are completely text-based. New users have to learn the syntax and

semantics of a grammar in order to use it. This is a barrier of entry especially for

non-programmers which are not used to writing grammar code. Furthermore, shape

grammars also usually have very speci�c use cases, limiting the reward of learning them

in the �rst place. This barrier of entry might be one of the reasons that limited the

adoption of shape grammars.

Enabling non-programmers to code has become its own research �eld. There are ap-

proaches to lower the amount of necessary code which is called low-code. Other ap-

proaches avoid coding completely, those are referred to as no-code solutions. One way

to avoid text-based coding entirely is to replace it with a visual approach that utilizes

patterns already known by non-programmers. One such approach is visual programming.

Visual programming replaces the text-based approach with visual elements that can be

arranged with drag and drop. The resulting visual language is therefore referred to as a

visual programming language (VPL). A VPL type that is known to be very easy to use

is block-based programming, which harnesses the fact that people already know how to

arrange jigsaw puzzle-like pieces.

Modeling buildings is a common process in city and urban landscape design, and the CGA

Shape Grammar is a powerful tool for generating diverse structures and cities through

rule-based design. However, like any text-based grammar or programming language,

e�ective use of CGA Shape Grammar requires learning its syntax and semantics.

I want to explore to lower the barrier of entry and make it more appealing for new

users to explore the possibilities of procedural building generation using the CGA shape

grammar. In this thesis I therefore present an approach for simplifying the process of

generating buildings or other urban 3D structures through the integration of block-based

programming with the CGA shape grammar.

1.2.1 Contextualizing the Problem

End-User Development is a research �eld that is concerned with enabling end users to

develop software systems [8]. This �eld is currently experiencing signi�cant growth. No-

2

1 Introduction

tably, major players like Google and Microsoft are investing heavily in low-code solutions,

exempli�ed by products such as Microsoft PowerApps and Google AppSheet. Visual Pro-

gramming is a technique in the End-User Development �eld that allows users to develop

software systems using already well known patterns like drag and drop and their domain

speci�c knowledge.

CGA Shape Grammar stands out as a powerful tool for generating architectural models

for computer games, movies, and urban design, but like all text-based programming

languages and grammars, there is a learning curve before someone can use it e�ectively.

Speci�cally, students at HAW Hamburg studying applied computer sciences, who delve

into computer graphics, may �nd it daunting to �rst learn how to write CGA Shape

Grammar in order to experience its capabilities.

1.2.2 Wider Relevance

While visual programming languages (VPLs) weren't able to challenge text-based pro-

gramming languages in professional software development, they still have become widespread

in use when non-programmers are the target group. Especially in popular modeling tools

like for example Blender VPLs are utilized to allow designers fast and e�cient usage of

powerful functions without writing any code.

In the architecture domain algorithmic design has become a major in�uence and archi-

tects also seem to favor visual approaches over text-based languages [16].

With the rise of touch-based devices, VPLs may also be better suited to provide an

intuitive introduction to the CGA shape grammar, than a text-based approach could

provide on these devices.

1.3 Research Goal

I want to empower individuals unfamiliar with the CGA Shape Grammar, particularly

students at HAW studying applied computer sciences, to explore its possibilities and

utilize it for designing structures and buildings. The goal of this thesis is to achieve this

by improving the usability of the CGA shape grammar, optimizing the �rst-time user

experience, and designing a visual programming language that comprehensively maps all

of the existing features of the CGA shape grammar. Through this, I seek to contribute to

3

1 Introduction

the broader discourse on the evolution and application of visual programming languages

in the realm of computer graphics and urban design.

1.4 Structure of this Thesis

The thesis is structured as follows. First I cover the necessary basics my work is based

on and my search for similar works in the domain. Assuming these basics are known,

I then walk the reader through the concept of the VPL I designed for the CGA shape

grammar. To aid the evaluation of the VPL, I implemented a prototype application.

The application, its structure and the engineering process is outlined in the realization

chapter. The evaluation assesses the VPL and the prototype to determine if the research

goal was ful�lled and to identify areas for improvement in both the VPL design and the

prototype. Finally I summarize the �ndings in the conclusion chapter and provide my

perspective on how the prototype could be further developed and improved.

4

2 Basics

2.1 Introduction to Procedural Modeling and the CGA

Shape Grammar

This section introduces the formal approaches that led up to the development of CGA

Shape Grammar.

Procedural modeling, also referred to as generative modeling, is the research �eld in

computer graphics where models and textures are generated using algorithms rather than

manual editing. It has been developed in order to be able to generate highly complex

objects based on a set of formal rules [6].

The idea is that manually modeling takes a lot of time and most visual objects share

similarities that can be generalized by rules. Today, procedural modeling plays a huge

role in urban design, the �lm industry, and video games. Procedural modeling is ca-

pable of creating compelling visual representations of plants, textures, buildings, cities,

landscapes, planets and even star systems. An example of state of the art procedural

modeling is the procedural content generation in Unreal Engine 5. It allows artists to

combine visual modeling with procedural modeling [17].

The origins of generative modeling lie in the 1950s. Back then the linguist Noam Chomsky

attempted to give a precise characterization of the structure of natural languages. The

work he undertook initiated a new research �eld called formal language theory. Formal

grammars are a central part of procedural modeling, as they are the foundation for

the rule-based approach. Although formal grammars were not able to describe natural

languages, they have since been widely employed to describe the syntax of programming

languages [4].

5

2 Basics

In the following subsection I want to show you a special formal grammar, which de-

scribes the growth of plants. This work laid the foundation for using formal grammars

to procedurally generate visual structures with string rewriting rules.

2.1.1 L-Systems

Lindenmayer Systems (generally referred to as L-Systems) are a type of string rewrite

mechanism introduced by Astrid Lindenmayer in 1968. Lindenmayer was a biologist and

his intention was to develop a mathematical formalism of how �lamentous organisms

grow and branch cells [9]. The theory proved not only useful for its intended purpose of

modeling the neighborhood relations between cells in small organisms like for example

algae, but also for bigger ones like weeds and trees. A popular method to interpret

the strings created by L-systems in a visual sense is the turtle geometry. Using turtle

geometry together with L-systems results in compelling two and three dimensional visual

representations of plants [18].

L-systems can be categorized into di�erent classes. In the following two sections, I am

going to describe to you the key concepts of how L-systems work to then de�ne the

DOL-system class, the simplest form of an L-system. Understanding the concept of how

L-systems work is key to understanding how shape grammars work.

Description

To understand L-systems one needs to know the terminology and key concepts �rst. Like

all formal grammars, L-systems operate on a string of letters and apply an algorithm to

generate a new string. Lindenmayer refers to these strings as words. L-systems are

divided into di�erent classes of systems. The simplest class are those systems which are

deterministic and context-free. This class is referred to as DOL-systems. The D stands

for deterministic, which means the result will always be the same.

I will now give an informal description of the terminology and of how L-systems operate.

The set of all letters, which can appear in such a string is often referred to as the

alphabet. In this context the alphabet can also include other symbols like for example

square brackets, they still get referred to as letters. L-systems require an initial string

of these letters, this string is referred to as the axiom. L-systems then consist of a set of

6

2 Basics

production rules. A production rule is a mechanism that describes how a symbol should

be replaced. They are able to replace a letter with a string. L-systems apply these

production rules in iterative steps. During an iterative step, every production rule gets

applied to every character of the string. After this step, the L-systems generated a new

string. We refer to these generated strings by naming them after the amount of iterative

steps that were needed to generate them.

Next I provide a more formal de�nition of the DOL-system class.

De�nition of DOL-systems

Prusinkiewicz und Lindenmayer de�nes the DOL-system class in the book `The algorith-

mic Beauty of Plants' as follows. [19].

A string OL-system is an ordered triplet.

G = (V,w, P) (2.1)

where

� V is a collection of letters the system operates on called the alphabet.

� w is a non-empty string made out of letters from the alphabet. This is the starting

word of the system which is referred to as the axiom.

� P is a �nite set of productions. Productions are rules which de�ne how the letters

of a string are going to be rewritten.

A Production is de�ned as following:

a → χ (2.2)

where

� a is a letter from the alphabet V

� χ is a string made of letters from the alphabet. χ can be empty.

7

2 Basics

The rule says the letter a is rewritten by the string χ.

Every OL-system that has not more than one rule for each letter in the alphabet is

deterministic and is referred to as a DOL-system. If there is no rule for a letter the identity

rule is applied which replaces the letter by itself which ultimately changes nothing.

A derivation is de�ned as following:

µ ⇒ υ (2.3)

which reads υ is directly derived from µ.

where

� µ is an arbitrary word made out of letters from the alphabet.

� υ is a word that is the result of the concatenation of the applied productions to

each letter in µ. Special to L-Systems compared to Chomsky grammars is that

productions are applied in parallel.

The derivation can again be applied to v.

Deriving w results in a derivation of length 1. Deriving the result again results in a

derivation of length 2. This way it is possible to refer to a derived string by how many

derivations were necessary to generate it from the axiom w

Turtle Interpretation of Strings created by L-Systems

The letters of L-systems can be interpreted in di�erent ways. A sophisticated but easy

to understand method to interpret them is the turtle interpretation. To understand the

idea of turtle interpretation, the turtle can be visually �gured as a metaphor. The turtle

has a state, which is de�ned by a position and a heading of where the head of the turtle

is facing. Given a speci�ed step size and angle increment, the turtle can respond to

commands represented by letters of a de�ned alphabet. The alphabet consists of four

letters. The letter `F ' means to move forward a step while drawing a line as a trail. `f '

means to move forward without drawing. `+' means to turn left by the speci�ed angle

and `−' means to turn right vise versa.

8

2 Basics

Figure 2.1: Koch snow�akes generated using Inkscape's L-system tool.

Given an initial state of the turtle, it can interpret a word of the alphabet letter by letter

to draw a set of lines.

This enables L-systems to draw fractal curves like for example the Koch snow�ake. The

Koch snow�ake can be de�ned by the following L-system using a single production rule.

w : F −−F −−F (2.4)

p : F ⇒ F + F −−F + F (2.5)

Interpreting the words using turtle graphics interpretation results in a snow�ake-like

curve, when using an angle of 60 degrees. Figure 2.1 shows this interpretation of the

axiom and the generated words after three iterations.

2.1.2 Shape Grammar

Shape grammars were introduced in 1971 by Stiny und Gips. The paper de�ned shape

grammars as sets of rules for generating shapes. These grammars used painting rules to

paint the areas contained in a shape and sculpting rules to modify shapes. The shape

grammars were meant to use formal, generative techniques to generate art and to develop

an understanding of what makes good art objects [20].

9

2 Basics

2.1.3 Split Grammar

In 2003 Wonka et al. introduced split grammars as a novel method to generate buildings.

The presented split grammar was based on shape grammars, but focused on the idea of

splitting existing shapes into smaller ones in order to create details. This approach was

very successful at generating city-like facades for buildings.

For this they used two grammars that worked in conjunction. A design grammar referred

to as split grammar and a control grammar. The split grammar only allowed a certain

type of rules, while the control grammar handled spatial distribution of the design ideas

like for example setting di�erent attributes for di�erent �oors of a building. Users of

the grammar can in�uence the generation process by directly modifying both the split

grammar and the control grammar, or by modifying attribute values that in�uence the

generation process [21].

2.1.4 CGA Shape Grammar

The CGA shape grammar was presented by Müller et al. as a combination of the ideas

of the previous work by Parish und Müller and Wonka et al.. Parish und Müller had

presented an approach to build urban environments by placing simple mass models and

using shaders to add details, while the split grammar presented by Wonka et al. was able

to generate geometric details for an individual building. The CGA shape grammar is

able to generate complex mass models with detailed surfaces. It does this by starting

with a building lot. Mass models can then be added to the lot using rules like split,

extrude, rotate or translate. These rules allow switching between a 2D and 3D context

which enables creating complex mass models. To then allow for a consistent detailing of

these mass models, the grammar has context sensitive rules like the repeated-split, which

allow placement of doors and windows without intersecting walls. [13].

2.2 Introduction to Visual Programming Languages

Kuhail et al. combined the widely known taxonomies in order to get a taxonomy that

is able to characterize every VPL while also avoiding similar categories. They came up

with four di�erent categories. In this section I give a short description of these categories

so that I will later be able to explain why I chose a block-based approach [7].

10

2 Basics

2.2.1 Form-Based Programming

Form-based programming is a method to create and manipulate software applications

by con�guring a form. Users are able to create and con�gure cells in that form and

add actions and triggers using drop-down menus or drag and drop. This approach is

for example often used in the smart home context, where users can specify what devices

should do when an event happens.

2.2.2 Icon-Based Programming

Icon-based languages capitalize on the use of icons to represent objects or actions. There

are di�erent types of icons. Elementary icons represent objects or actions. Complex icons

are compositions of these elementary icons and allow for creation of visual sentences [1].

2.2.3 Diagram-Based Programming

Kuhail et al. categorize languages as diagram-based if they allow users to place graphical

objects on a canvas using drag and drop. The user can then connect the objects with

arrows or lines to create relations between the objects. Some of these languages are

also generally referred to as �ow-based languages, because the lines represent a directed

data �ow between these objects where the output of one object serves as the data input

for others. Diagram-based languages are very versatile because they allow users a lot

of freedom in placing objects and deciding how to connect them. A problem with this

approach is that they are not able to provide a clear visual hint which connections are

valid.

2.2.4 Block-Based Languages

The main characterization of block-based languages is that they allow the user to drag

and drop blocks out of a prede�ned list into a workspace. Then the user is able to

use these blocks to piece together a program kind of like a jigsaw puzzle which was the

main inspiration for this type of VPL. The idea is that the user can build upon the well

known concept of jigsaw puzzles and therefore focus on the concept of the programming

language rather than the syntax. In fact the paradigm is able to completely prevent

syntax errors. Popular block-based languages are Scratch [12] and Google Blockly [2].

11

2 Basics

2.3 Related Work

Lipp et al. introduced an interactive visual editing approach to the CGA shape grammar.

The Approach introduced a solution for selecting components in the 3D view or in a

tree-view. These components can then be modi�ed using buttons to add rules. Rule

parameters can be modi�ed in a separate form using sliders, checkboxes and text �elds

[10]. This approach's main di�erence to the one introduced in this paper is that it does

not utilize a VPL in any way.

Another approach was conducted by Patow. He identi�ed that users need to traverse

grammars similar to the CGA shape grammar as a graph. The author then introduced

a graph-based method to enable user-friendly procedural modeling of buildings, which

uses a grammar that loosely follows the notation of the CGA shape grammar. The result

is a visual language for editing grammars that could be categorized as diagram-based

programming [15].

12

3 Concept

In this chapter I lay out the conception of the VPL. I already set the research goal in the

Introduction, which was to improve the usability of the CGA shape grammar in order to

make it easier for users unfamiliar with the CGA shape grammar to get started learning

its capabilities to build urban structures.

My approach to create the VPL was to �nd a suitable visual representation capable of

mapping the essence of the CGA shape grammar to objects and connections.

The �rst step to do this was to decide which VPL approach would be the most suitable

for mapping the grammar. I then list design principles that I used to guide the design

and implementation process to ensure that the visual language has a good usability for

novice users. These principles gave a necessary foundation to make user-friendly design

decisions. After that section I go through the requirements for the VPL. In the �nal

section of this chapter I conceptualized the VPL by identifying the concepts of the CGA

shape grammar which I then transferred into the VPL.

3.1 Decision on the type of VPL

In this section I explain why I chose the block-based approach over other possible VPLs.

The VPL should be able to map all aspects of the CGA shape grammar but the focus is

to maximize the �rst time user experience for new users not familiar with the grammar.

When writing multiple rules for the CGA shape grammar they form a tree-like structure.

The outcome of a rule is largely in�uenced on where the rule is located in that tree.

Rules that are located near the axiom shape will have a greater impact on the overall

shape of the end result than those located way down the chain of rules. This is why I

consider this tree-structure a very important thing I want the VPL to express.

13

3 Concept

There are two di�erent classes of VPLs that excel at visualizing tree-like structures, the

diagram-based and the block-based VPLs.

Diagram-based VPLs consist of visual objects and lines or arrows. The objects can be

freely arranged on a canvas and the lines or arrows express the relation between the

objects. This makes them very �exible to adapt to a lot of di�erent domains. They

are able to represent a tree-like structure, but they are also able to visualize other more

complex structures. This �exibility and power of expression makes them a popular choice

in a lot of projects.

Block-based VPLs consist of visual blocks. These blocks feature di�erent connector types

that express which blocks are compatible with each other and in what manner. They

are also able to express tree-like structures. Popular Block-based languages target a

novice audience, teaching them the key concepts of programming, without messing with

syntax.

The �exibility of diagram-based approaches comes with added complexity to the user.

The user is responsible for arranging the objects and then adding connections. It requires

the user to repeatedly rearrange objects in order to keep them neatly arranged and avoid

lines crossing other elements. Diagram-based VPLs are not able to visually express which

connections are valid like block-based languages are able to with their connectors. Block-

based VPLs excel at this. This makes connecting elements really easy. The block-based

approach also allows the user to add new blocks directly to existing ones, which is simpler

than adding the elements and then connecting and rearranging them afterwards. The

blocks clearly express their compatibility through the shape of their connectors. Although

the block-based approach is more limited than the diagram-based, the capabilities are

certainly enough to enable non-expert users to generate structures. The limitation being

that context sensitive blocks might not be possible. Block-based programming usually

avoids context-sensitive structures in order to maximize usability for non-expert users.

Since the block-based approach has unique features targeted at reducing the cognitive

load of the user, I choose this one over the diagram-based approach. The diagram-based

approach provides more �exibility but at the cost of being more complex to con�gure.

It requires the user to �rst place the objects to then create the necessary connections.

The block-based approach is able to clearly express the compatibility of blocks through

the connectors with each other using the connector shapes. This will ensure that the

resulting visual language will be as easy as possible to use.

14

3 Concept

3.2 Design Principles

Design principles are a great way to avoid mistakes other people already have made and

learned from. They provide guidance during the design process and a good foundation

to base design decisions on. In the book �User-Centered Design� Lowdermilk elaborated

on a number of important design principles. I will mainly use the following principles to

justify my design decisions. [11]

Principle of Proximity

The principle of proximity states that we perceive relationships between objects that are

closer together. This principle was useful to have in mind especially when deciding how

and where to handle parameter editing.

Visibility, Visual Feedback and Visual Prominence

Visibility is when the application provides a visual focus to an element.This can be done

using color, di�erent sizes or typefaces. It can also be done using a loading indicator.

Visibility is there to guide the user. Visibility can also be used to provide feedback to

the user. For example in a form color can be used to signal an illegal status of a text

�eld. This principle for example in�uenced my decision on how to communicate if an

object has valid parameters.

Mental Models and Metaphors

A new user of an application will use his existing knowledge of how the application might

work. During the design a developer should consider this and choose icons, language and

behavioral patterns for the application that do not confuse but help the user understand

the application. This principle is always important to keep in mind, when designing user

interfaces.

15

3 Concept

Progressive Disclosure

It can be helpful to hide things in order to reduce the users' cognitive load. An example is

to gray out options in a menu. I used this principle to avoid overloading the objects with

input �elds that would sometimes have no e�ect depending on the speci�c con�guration

situation of the parameters.

Consistency

The principle of consistency says that users learn and understand an application more

easily when it is consistent with what they already know. This principle in�uenced the

decision which VPL should be best suited for a novice user to the CGA shape grammar.

A�ordance and Constraints

Real world objects are often designed in a way that constraints the user to use them

improperly. Designing software in a way that limits the options or makes it impossible

to do the wrong thing avoids confusion and frustration. This principle also in�uenced

the decision of which VPL would be best suited and how to design it.

Hick's Law

The user will need exponentially more time to make a decision the more options the

system presents to him. This is good to keep in mind when populating a menu with

items. The more items there are the longer the user needs to �nd the right item. I kept

this in mind, when deciding which and how many input �elds would be acceptable.

Fitt's Law

The farther the user must travel between two objects, the less precise the user will be

when reaching his target. This law can help determine the necessary size of an UI element.

This principle in�uenced the size and margins of the VPL objects so that the user would

be able to easily grab them using drag and drop.

16

3 Concept

3.3 Functional Design Requirements for the VPL

To design the VPL for the CGA shape grammar, I de�ne requirements that the VPL

concept then must ful�ll in order to be able to maintain the capabilities of the grammar.

In this project I use user stories to set the focus and scope of the prototype but I also

have set the goal to design a VPL that is capable of most or even all of the features

that the CGA shape grammar has. In order to do that I need to analyze the existing

grammar and make sure that the VPL has the same capabilities. For this I analyze the

existing grammar and formulate design requirements that the VPL would need to ful�ll

to get feature parity.

I also list additional design requirements that stem from a combination of the require-

ments the existing grammar has and the design principles for creating a user-friendly

block-based VPL.

17

3 Concept

Table 3.1: Requirements for the Visual Programming Language

R01 For each operation and for each shape there must be a visual block.

R02 Every block should have an identifying name that clearly describes what it does.

R03 A block must be able to have children blocks. Children blocks are blocks that

got attached to a socket of the block.

R04 Blocks that require a minimum number of children blocks must always provide

at least this amount of sockets so that the user can see that there are missing

blocks.

R05 Blocks must always provide at least one empty socket unless there is a maximum

capacity of attachable blocks.

R06 Every block must have exactly one plug which can be used to connect the block

to a socket of another one.

R07 The parent blocks in the block language must adjust their size in order to be

big enough to match the total size of the children blocks that got attached to

it.

R08 When dragging a block with the mouse, the block must move accordingly

R09 blocks that are attached to a block that gets dragged must also get dragged so

their position relative to the parent block position stays intact.

R10 When dragging a block and then releasing it onto the canvas the block gets

either added to the canvas or to the closest compatible socket of an existing

block.

R11 sockets and plugs that share the same geometry, must be attachable to each

other.

R12 Blocks must be able to be in an invalid state, when the current information

provided by the user is not enough to generate a rule.

R13 Blocks that are in an invalid state should provide the user hints on what to do

in order to get into an complete state.

R14 The system must ignore invalid blocks for rendering.

R15 There must be a list of blocks from which the user can drag new blocks onto

the canvas.

R16 The List of blocks must not change when the user drags a block from it.

R17 There must be a way for the user to remove blocks from the workspace.

R18 Operation blocks should be visually distinguishable from shape blocks.

R19 The user must be able to set a tree as the active one that gets rendered

18

3 Concept

3.4 Non Functional Requirements

It should be way faster to build a structure using the VPL compared to writing the rules

in an editor. The user interface of the system should always feel responsive even when

it is busy generating the 3D visualization. The VPL should be reusable for other future

projects. Ideally the VPL design should be capable of preserving all of the features the

CGA shape grammar has.

3.5 Designing the VPL

In the previous section I explained why I use a block-based VPL. In order to be able

to design and implement a prototype of the VPL I used these design principles and the

requirements. But �rst I needed to identify the key concepts of the CGA shape grammar

to then build the key elements of the VPL.

3.5.1 Key concepts of the CGA shape grammar

The key concept of the CGA shape grammar is the rule. The grammar starts with an

initial shape referred to as the Axiom. Rules are then used to alter existing shapes and

generate new ones. The rule itself is made out of multiple components I will go into now.

Here you can see the structure of the rule, square brackets are not actually part of the

rule but I use them to mark optional parts.

predecessor-id [: condition] --> action [action ...] [: probability]

� predecessor-id is a string of characters which refers to the shape the rule is

executed on.

� condition is an optional precondition that must be met in order for the rule to be

able to be executed.

� action refers to the action to perform when the rule is executed.

� action . . . means that a rule can perform more than one action.

19

3 Concept

� probability a probability can be used in order to declare multiple di�erent rules

that refer to the same predecessor-id. The probabilities of those rules must add up

to 1.

Like the rule actions are furthermore made of a sum of parts.

name([argument, ...]) {successor-id, ...}

� name The name of the action

� argument A comma separated list of arguments.

� successor-id A list of ids for the successor shapes

In order to design the VPL I need to identify the two most important concepts of CGA

shape grammar and look at how to turn them into the basic elements of a block-based

language. Next I used this information to create the key elements of the block-based

VPL.

3.5.2 VPL Elements

Blocks

The fundamental elements of the VPL are the blocks. Therefore I �rst identi�ed which

types of blocks the VPL should have. A VPL with feature parity would de�nitely require

a Rule block. But I do not think the concepts of rules �t well to the mental model a new

user has. The visual feedback principle states the importance of providing immediate

visual feedback. I want the user to have immediate visual feedback in the 3D model he

creates. A rule block would not be able to be used to generate any output until an action

would be attached to it. Also in my testing of how the grammar behaves most rules

actually only housed a single action. So in order to create a VPL that is as intuitive

to use as possible, I identi�ed the actions as the most important concept that is able to

generate immediate results in the 3D view.

The other very important concept is the shape. The shapes are what the actions operate

on. They provide scope and context for the actions and the �nal shapes are also directly

visible in the 3D view. The user is expected to use them to identify where to apply an

action in order to change the resulting model. Actions of the CGA shape grammar also

20

3 Concept

Figure 3.1: Example connection between a shape block with a single action block at-
tached. The action block has multiple shape blocks attached to it which
con�gure the number of successor shapes..

determine their behavior based on the amount of resulting shapes. I want the user to be

able to add shape blocks to an action block to increase the amount of resulting shapes.

A very good example of this is the split action. The grammar determines the amount of

splits based on the amount of resulting shape ids.

These two block types, the action blocks and the shape blocks are what I chose to be the

key blocks of the VPL. Using shapes and actions I want the user to be able to have a

strong mental connection between the structure of the blocks and the resulting 3D view.

Not having rule blocks creates a limitation, but that �ts to the a�ordance and constraint

principle. The user will still be able to generate more than enough structures. In case

this limitation would not be considered worth it in the future, it would still be possible

to introduce a rule block in the future to enable having multiple actions in a single rule

and unlocking the full capabilities of the CGA shape grammar. The other principle I

applied was the mental model, when I considered which concepts of the grammar should

be re�ected as block elements in the VPL.

The user will be able to arrange these block types like in the following draft.

Action blocks provide the ability to add multiple shape blocks so that the user can

increase the number of successor shapes. On the other hand, shape blocks provide the

21

3 Concept

optional ability to add multiple action blocks to ful�ll the probability part of the CGA

shape grammar rule. When a probability is added to a rule, at least one other rule needs

to exist which targets the same shape. In the visual language the equivalent is to add

multiple actions to the same shape and give them a probability parameter. I will draft

the parameter handling later on in more detail.

Block Connectors

Block connectors de�ne which blocks are able to get connected. They can communicate

these limitations to the user through their shape. It is important to only use visually

distinct shapes. There is only a limited amount of visually distinct connector types one

can imagine without confusing the user. This is a big limitation for block-based languages

in general. It is not a problem to use distinct connectors to avoid the user being able

to connect shape blocks with other shape blocks and action blocks with other action

blocks. Trying to then also �nd distinct connectors for every shape the grammar o�ers

is problematic, because having dedicated connectors for every single shape would require

a large amount of di�erent connectors. According to Hick's Law this results in the user

requiring a large amount of time in order to �nd the correct block.

The compatibility of shapes and actions is determined by the constraints of the CGA

shape actions. Table 3.2 is a matrix that displays the compatibility of actions with

shapes.

22

3 Concept

Table 3.2: Action-Shape Compatibility Matrix

Shape

A
ct
io
n

d
et
ai
lS
h
ap
e

ro
of
S
h
ap
e

d
or
m
er
S
h
ap
e

ga
b
le
S
h
ap
e

ga
b
le
O
rn
am

en
tS
h
ap
e

p
ri
sm

S
h
ap
e

su
b
d
iv
S
h
ap
e

ge
om

et
ry
S
h
ap
e

p
ol
y
go
n
S
h
ap
e

detail X

extrude X

gable X

gable_ornament X

dormer X

remove X X X X X X X X X

subdiv X

roof X

transformation X X X X X X X X X

expand X

split X X

repeated_split X X

component_split X X X X

I used Table 3.2 to search for patterns which shapes really need di�erent connectors.

From the matrix it became clear that the most important shapes for the actions are the

polygon shape and the prism shape. To keep the number of blocks and the number of

connectors manageable, I decided to limit the VPL to only these two shapes since they

are enough to use most actions. I consider this limitation to be acceptable to evaluate

the suitability of a block-based VPL for the CGA shape grammar.

Figure 3.2 shows the connectors I decided to use. There are two di�erent types of

connector shapes, one for 2D polygon shapes and another one for 3D prism shapes. For

each of these types I then created two di�erent variants. These variants ensure that shape

blocks are not compatible with other shape blocks. Instead they are only compatible with

action blocks and vice versa. The two variants are similar but easily distinguishable. This

23

3 Concept

Figure 3.2: Di�erent block variants showcasing the connectors

provides a visual hint to distinguish shape blocks from action blocks. Another visual hint

I added is that connectors for 2D shapes have two corners, while connectors for 3D shapes

have three corners. The actions capable of operating on both shape types get two blocks,

one for every di�erent shape type.

Parameters

The CGA shape grammar has a number of di�erent parameters, which the VPL must

be able to handle. There are di�erent approaches to allowing the user access to the

parameters of the grammar rules. Some block-based languages use blocks to let the

user con�gure the parameters, but having dedicated blocks for expressions, variables and

operations would dramatically increase the complexity of the VPL. Another solution

would be to have a panel either as a popup or beside the workspace where the user could

edit and con�gure the block parameters of the currently selected block. I consider having

a popup interrupting the user not suitable for good usability. A dedicated panel would

o�er a lot of space to use for con�guration. The downside of that is that the parameters

are only visible for a single block at a time. Another option would be to add the panel

for editing parameters into the blocks themselves. I want to try this approach since it

allows the user quick access to all the parameters. It also ensures that the information of a

block is close to the block itself, helping the user perceive a close relationship between the

parameters of a block and the block itself as the Principle of Proximity states. Something

to be careful about is to keep the number of options to a minimum. The user could feel

overwhelmed by options and the size of blocks could become very large.

24

3 Concept

Figure 3.3: Split block draft showcasing a con�guration parameter and two length pa-
rameters speci�c to the added successor shapes.

Shape blocks are the simplest. They only require an id parameter for the shape they

represent.

Action blocks are more complicated. They need di�erent kinds of parameters. They need

to distinguish between parameters that con�gure the action in general and parameters

that relate to successor shapes. I arranged con�gurational parameters in a vertical list

inside the action block. Parameters that relate to successor shapes are arranged above

the socket of the successor shape they in�uence. An example of these two di�erent kinds

of parameters can be seen in Figure 3.3.

There are a number of parameter types. There are numbers and prede�ned strings.

Numbers can be absolute or relative. I decided that the user can change between relative

or absolute interpretation by ticking a box next to the number which then enables relative

interpretation when available. When only one interpretation is allowed the �eld is grayed

out. For the selection of the prede�ned strings I decided on drop down selection menus.

The advantage of these is that the user is not able to input invalid values and also he

does not need to memorize the values. In some actions the selected option in the drop

down menu in�uences the number of parameters of the action. Switching between these

options hides the parameters that are not relevant in this case.

25

3 Concept

Since I decided against a dedicated rule block I also decided against adding the rule

speci�c precondition or probability parameters. These are advanced concepts, which

would be best housed inside a dedicated rule block in a possible future expansion of the

VPL.

VPL Editor

The VPL editor consists of a block palette, a canvas and a 3D view. The palette houses

all the blocks available to the user. The user can drag and drop new blocks from the

palette onto the canvas. On the canvas blocks can get connected to existing ones in order

to build a tree of blocks. I decided that it should be possible to build multiple trees of

blocks. This enables maximum �exibility to not get in the way of how the user wants

to arrange blocks. The 3D View is where the user is able to see the resulting model.

Because of how the existing CGA shape grammar pipeline works the 3D view is only

capable of rendering one tree of blocks at a time. This makes it necessary to distinguish

between active and inactive block trees. The VPL is therefore able to highlight the active

tree using color. The active tree is the one which got changed most recently.

26

4 Realization of the Prototype

This chapter presents the development and the implementation of this prototype.

With the Concept done the next task was to engineer and implement a prototype capable

of showcasing the capabilities of the VPL design. Implementing the full concept for every

action of the CGA shape grammar would have been too big of a task. I broke down the

task into smaller chunks using user stories. I then arranged these in a user story map to

de�ne the scope of what the prototype should achieve. This was necessary to ensure that

the prototype would be best �tted to support the evaluation of the block-based language.

To develop the software I utilized a number of tools and design patterns. I will shortly

introduce these �rst before then presenting the architecture for the prototype. The

last section of this chapter focuses on the implementation of the prototype's individual

components.

4.1 User Stories

To develop a prototype application for the block-based language, I �rst needed to set goals

for what the prototype should achieve. I used an agile software development approach

to develop the prototype. In agile development the application is developed in small

iterative steps known as sprints. Sprints have a �xed timeline, at the end of which a new

deployable version of the application should be ready. To de�ne the goals for each sprint,

I used user stories. User stories describe features from a users point of view and attach

the value those features provide to the user. This approach helped me break down the

overall task into smaller, manageable chunks which could be completed during a sprint.

The value-oriented nature of user stories allowed for prioritizing features based on user

value. To organize the user stories, I created a user story map.

Figure 4.1 shows the user story map. In this map I de�ned two sets of features for the

prototype. A minimum set of features the prototype must provide in order to be evaluable

27

4 Realization of the Prototype

Figure 4.1: User Story Map showing the scope of the prototype application

28

4 Realization of the Prototype

later on and a set of features that would be nice to have but considered optional in case

the time would not allow to implement all of them.

4.2 Development Environment and Tools

In this section, I go through the technical environment my project is based in. The

prototype was developed to be part of the procedural content generation (PCG) project.

It is a shared project that houses a collection of applications related to PCG. This project

enables sharing knowledge and building on top of previous work. The main reason for

being part of the PCG project was that it is home to the CGA shape framework that I

required to implement the VPL. This had a big in�uence on the development environment

and tools I used. In the following subsections I will detail these tools, their functions and

how they contributed to my project.

4.2.1 Programming Language

The PCG project is written in Java. At the time of writing this the recommended version

to build the project was Java 17. This meant that in order to be compatible with the

existing project I also used this version to build the application. Another reason to use

Java 17 was that it is a long term support version, which will still receive security updates

during the next few years.

4.2.2 Versioning System

Multiple people work on the PCG project at the same time. This requires a mechanism

to apply changes in a controlled manner. Git provides this mechanism. It allows for

everyone to commit their changes on their own branch. The diverging branches then

can be merged to end up with a version that contains all the changes. It highlights

when there are con�icting changes and o�ers mechanisms to resolve them. It also allows

reverting to a previous version in case a change breaks the software. I ensured to only

commit the software in a working condition, because that simpli�es backtracking of bugs

down to the commit that �rst introduced them.

29

4 Realization of the Prototype

4.2.3 Build Tool

The project uses Gradle as the build tool. Gradle allows to exactly specify the depen-

dencies required to build the project. This allows other programmers to also build the

application from the command line without having to worry about downloading and set-

ting up the right dependencies �rst. It also enables future use of continuous integration.

Continuous Integration can automatically build and test the application every time a

commit is uploaded and notify the developers if there is an issue.

4.2.4 Development Environment

I decided to use Intellij IDEA as the integrated development environment (IDE). It o�ers

a single user interface to con�gure the compiler, the versioning system and the build tool,

while o�ering a source code editor with extensive linting and debugging capabilities. This

simpli�ed the setup of the development environment and o�ered helpful tools to increase

productivity and ensure software quality.

4.2.5 Libraries and Frameworks

The most important framework I built upon was the CGA shape framework, which is

part of the PCG project. This framework enabled me to focus on implementing the visual

language. The CGA shape framework is able to generate the CGA shape grammar and

further process it into a triangle mesh representation. To render this representation, I

used the jMonkeyEngine. This engine can render the triangles generated by the CGA

shape framework to present the user a 3D view of the resulting model. It also handles

user input, allowing the user to change the camera view and look at the model from

di�erent angles. Another important framework I used was Java Swing, which provided

the basis for the VPL and the user interface of the application. Although Java Swing has

been superseded by the more capable JavaFX, I decided to use it because it is already a

dependency of the PCG project and works well in conjunction with the jMonkeyEngine.

30

4 Realization of the Prototype

4.3 Design Patterns

Design patterns are standard solutions for common software engineering problems. It is

good practice to use them whenever they provide a good �t to a problem. This improves

maintainability since most software engineers know these patterns. It also enables us to

talk about the software since they introduce terminology. I used several design patterns

to develop the prototype. In this section I describe the most important patterns I used

and how they helped me develop the prototype.

4.3.1 MVC Pattern

The Model-view-controller Pattern (MVC Pattern) is a software design pattern. It can

be used on di�erent scales, on an architectural level for the entire application, but also

on a smaller scale for designing a smaller component. In the case of the prototype the

pattern is used for the overall architecture of the prototype.

The pattern separates an application into three main components. These components

are the model, the view and the controller. This separation used to manage complexity

by dividing three main responsibilities into separate components. This positively a�ects

reusability of the code and helps structure it in an understandable manner. It is a

commonly known pattern, which further improves the maintainability when multiple

developers need to understand the software.

There are di�erent interpretations of this pattern, but all agree that the model is respon-

sible for managing data, to encapsulate the application's state. The view is responsible

to display data to the user and to receive user input. The controller is the central com-

ponent that initializes all the other components and connects to them. It is responsible

to handle the user input and then apply the necessary changes to the model.

4.3.2 Observer Pattern

The observer pattern works kind of similar to how newspapers get distributed. The

people that write and publish the newspapers do not need to know who is reading the

newspapers. They only have to provide a subscription mechanism. The people who

want to receive newspapers use this subscription mechanism to announce that they want

31

4 Realization of the Prototype

to receive them. If someone doesn't want to receive newspapers anymore he then can

unsubscribe by himself.

This can be translated to software components. There are observer and observable com-

ponents. Observable components provide a subscription mechanism to subscribe and

unsubscribe and they update the observer when necessary. Using Interfaces for observer

and observable enables to hide any implementation details of the observers from the

observables.

I used this mechanism to let the model update views directly instead of letting the con-

troller handle both of this. This reduced the complexity of the controller while still hiding

implementation details of the views from the model. It also allows adding additional ob-

servers.

4.3.3 Composite Pattern

The composite pattern allows to compose objects into trees and then operate on every

possible subtree as if it was a single object. The Swing framework uses this pattern to

build user interfaces by nesting components. This allows Swing to handle the resulting

trees of components as if they were a single component. The framework is built and

optimized around this idea, therefore I utilized this to implement the block-based VPL

in a way that is easier to handle, �exible and e�cient to render.

4.4 Software Architecture

4.4.1 External Components

As I mentioned before when describing the libraries and frameworks, I used other software

libraries and frameworks to develop the prototype. I will now describe how the prototype

connects to these external components.

As you can see in Figure 4.2, I decided to base my application on the CG3DApplication

class. This is an implementation for handling 3D scenes with the jMonkeyEngine. It

is used by many other applications in the PCG project. This aligns the behavior of

how the 3D scene is displayed and how user input speci�c to it is handled. This means

the application also uses Swing and the jMonkeyEngine. Swing is used for the user

32

4 Realization of the Prototype

Figure 4.2: Component diagram describing the relation of the software system to its
neighboring systems.

interface. Since Swing is only capable of handling 2D content, the jMonkeyEngine is

used to display the 3D scene. The jMonkeyEngine is designed in such a way that the

scene can be embedded inside a Swing component. The application uses the cgashape

library to build the grammar and generate the 3D scene.

4.4.2 Internal Component Structure

For the internal structure of the prototype I separated the block-based editor into an

independent component. This is because I want the block-based editor to be reusable

as a framework for other applications that might need a block-based editor. The editor

provides the abstract structure and behavior of how blocks look and behave, but it

does not know the blocks' semantics. The semantics are added by the application that

uses the editor. In my case the application extends the abstract blocks with CGA shape

speci�c ones and adds the grammar builder as the component that speci�es the semantics.

The GrammarBuilder observes the canvas and translates a tree of blocks to CGA shape

grammar using the cgashape framework.

The block-based editor uses the MVC pattern to separate presentation related logic

from editor and block behavior and state. The pattern divided the editor into three

components, the model, the view and the controller. The model contains the state of the

editor. It does not know of any of the other components, which makes it easier to design

33

4 Realization of the Prototype

Figure 4.3: Component diagram describing the internal architecture of the prototype.

and test. I combined this MVC architecture with the observer pattern to make the model

observable and further reduce the responsibilities of the controller. I did this because it

makes it easier to add application speci�c models without modifying the controller. It

also added the possibility for the application to observe the model to get noti�ed when

the model changes. I used this mechanism to connect the grammar builder component

to the model.

MVC Architecture

I chose a Model-view-controller (MVC) architectural design pattern for the block-editor

framework to separate the responsibilities of the application into three main components,

model, view and controller. This makes it easier for other developers to understand the

structure of the code, which improves maintainability and reusability. As you can see in

Figure 4.3 the architecture of the framework also a�ects the architecture for the overall

application, since the application extends the framework with logic related to the CGA

shape grammar.

I accompanied the MVC pattern with an observer pattern for the model, to further

reduce the responsibilities of the controller. The intention was to enable applications to

de�ne speci�c views and models while keeping the controller application independent.

By making the model observable I not only ensured views could update as soon as the

model changed, I also provided a mechanism for the application to hook into for adding

34

4 Realization of the Prototype

the application logic. The builder component uses this mechanism to get noti�ed when

the model changes to then build and set a new grammar.

I implemented the observer pattern with interfaces. One de�nes the observer behavior

and another one the observable behavior. These interfaces hide observer's speci�cs from

the model, which is why the application can hook in additional observers. But there is a

cost attached to the observer pattern. When using it one needs to be careful to make sure

that views correctly unsubscribe to avoid issues like memory leaks or null pointer errors.

The life cycles of block views and models are controlled by the controller component

of the block framework. I did not want applications having to extend the controller

to encapsulate the subscribing and unsubscribing part of the pattern. Applications can

subscribe to the canvas model instead, which does not require unsubscribing as long as

the editor and the subscribing component have the same life cycle as the application. In

the case of the prototype this is the builder component, which uses the canvas model to

get a tree of blocks and translate it into the CGA shape grammar.

4.5 Implementation

4.5.1 Implementation of the View Component

I used Swing to implement the user interface. The framework provided me with the tools

and components to build most of the interface, but it provided no high level components

speci�c to visual editors. I had to implement custom components for the canvas and

the blocks. To implement both of these I basically had two options. One option would

have been to use a custom component for the canvas view and override its draw method

to then build the block views based on custom drawing objects. Option two was to use

custom Swing components for the blocks instead.

While the argument could be made that it's more e�cient to implement a lightweight

way to draw custom, lightweight blocks on the canvas, that option would require a lot

of work, since the blocks have a lot of requirements to ful�ll. Instead, I also used Swing

components for the block views. This enabled both nesting them inside other Swing

components and also nesting Swing components inside the block views, which made the

blocks �exible to use for di�erent contexts.

35

4 Realization of the Prototype

The canvas view was quite simple to implement, it is just a JPanel without a layoutman-

ager. The layoutmanager is missing because the blocks need to be able to increase their

size and set their position themselves.

The block view was more complicated. Swing is capable of �nding the deepest component

at a speci�c position and it is also able to check if components are intersecting. These

are very important functionalities for a VPL and utilizing Swing's built in functionalities

to ful�ll them meant that I was able to keep the model way simpler.

In Swing user interfaces are built by nesting components, which results in a tree of

components. It then utilizes the composite pattern to make sure that every subtree of

components can be treated like a single one. The framework is optimized around this

idea. It is very e�cient at drawing and moving nested trees of components.

For the block-based language I also needed the capability to move trees of block views.

By extending the JComponent class, block views gained the same advantage as long as

attached blocks would be added as subcomponents. This way Swing can treat a tree of

blocks just like a single block, which makes dragging a tree of blocks just as e�cient as

dragging a single one.

But block views also had to be able to correctly position attached block views. Therefore

I extended the JPanel instead. JPanels are Swing components that use a layout manager

to set the size and position of nested components. What the user will perceive as a block

will internally actually only be a small part of what the block view actually consists of.

The rest of the space is reserved for the attached blocks.

The problem with Swings layout managers was that they are designed with a top down

approach in mind. Components have to stay within their bounds. Therefore parent

components tell the child components to �t into a maximum dimension. The problem

with this is that block-based languages work the other way around. The size of a block is

determined by the sizes of the attached blocks. To achieve this behavior I had to write a

custom layout manager. It determines the width of a block based on the necessary width

to �t all attached blocks. It then positions both the visible block and the attached ones

inside these dimensions. Because of the top down behavior of Swing I had to trigger the

layouting process twice when attaching a block to another one. First the block that got

a new one attached, needed to be laid out to determine its required dimensions. With

this information set, the root block then had to be laid out in order to update the layout

36

4 Realization of the Prototype

of the whole tree. The last step then was to set the dimensions of the root block and

trigger a repaint over the area covered by the tree.

There was actually another reason to use a custom layout manager. The blocks had

to be able to visually interlock sockets and plugs. But Swing assumes components to

be of rectangular shape and that those rectangles do not overlap. Drawing outside

this rectangular bounding box would result in unde�ned behavior. But Swing allows

components to announce that they are not fully opaque. Therefore my solution was to

stay within the bounding box of the parent block but to use the transparency mechanism

to draw the plug and the sockets. The custom layout manager then overlaps child

components but stays within the bounding box of the parent. I then took control of

the drawing in this overlapping area by overriding the responsible method. This way I

was able to visually interlock sockets and plugs without compromising the assumptions

of the Swing framework.

Since this made the visible area of blocks smaller than the bounding box, I also had to

override the contains method to take the custom shape into account. This method is

used by Swing to �nd the component that receives the events when the user presses the

mouse.

4.5.2 Implementation of the Model Component

The model represents the state of the application. Although there are interpretations of

the MVC pattern, where the model also is responsible for de�ning the behavior of the

application, in this case that proved to add unnecessary complexity. Swing provides very

useful functionalities for VPLs, but to use them I had to move some of the logic to the

view. An example is that Swing is capable of detecting the deepest component at a given

location. Another one is the capability of detecting if two components intersect with each

other. To avoid reimplementation of these functionalities in the model, I handle logic

related to which blocks interact with each other in the controller instead. This keeps

the model quite simple. It holds information of which blocks exist and what information

they need to store. The framework itself does not have a lot of block information. The

application must extend the abstract models provided to add application speci�c blocks.

It has to add a single instance of these blocks once to the block drawer. The framework

then is able to create new Instances of them using the factory method pattern. This is

why every block model is forced to provide a public method to create a new instance.

37

4 Realization of the Prototype

The block model holds references to parent and child blocks so that the application can

work with this structure. It also determines which plug and sockets a block uses, to

de�ne the connectability with other blocks.

The canvas model holds references to blocks that are placed on the canvas directly. This

list is sorted by the order in which they were changed. The most recently changed tree

gets highlighted. This allows the application to only use the most recently changed tree.

I introduced this behavior because the CGA shape grammar pipeline I use is only capable

of rendering a single grammar at a time. This way the user can still work on multiple

trees of blocks in the editor, while the application only renders the tree that is actively

worked on.

4.5.3 Implementation of the Controller Component

The controller receives input events from the view and chooses how to respond to them.

When an user input event is registered the controller uses Swing's capabilities to deter-

mine which views need to be part of the event. It then applies the necessary changes to

these views and models. This means that the controller is in control of the life cycle of

individual view and model instances.

Canvas and blocks require very di�erent controller logic. Therefore I applied the separa-

tion of concern principle and introduced a separate controller for each of them.

The canvas controller handles user input events related to adding or moving blocks on the

canvas. It checks if blocks should get added to the canvas or if they should get attached

and then either handles them directly or delegates the task to the block controller if a

block should get connected to another one.

The block controller on the other hand is only concerned with logic related to how blocks

interact with each other and then performs the necessary actions to attach, detach,

initialize or destruct block views and models accordingly.

4.5.4 Implementation of the User Interface

As stated before the user interface was realized using the Swing framework. I have

already mentioned the architectural details of the block view component. Now I will go

into the details of the applications user interface and its layout.

38

4 Realization of the Prototype

Figure 4.4: Screenshot of the �nal prototype showing an example program in the designed
VPL.

Figure 4.4 shows that the editor is composed of three main components, canvas, block

drawer and the 3D modeling preview. The canvas is the main workspace where the user

arranges blocks. I utilized a scrolling mechanism for this component and gave it a size

much larger than the available screen space on a 1080p display, allowing the user to

create larger block trees than the available space permits. North of the canvas is the

block drawer. This is the place where the user is able to draw new blocks from. Its size

is dependent on the size of the blocks it houses, allowing for larger blocks in the future.

East of both of these views is the modeling preview. To enable the user to balance the

available space between the preview and the canvas, I made the border between them

slidable. This helps mitigate the limitation of the available screen space in conjunction

with the growing nature of the block widths. A very useful feature to further lessen

this limitation would be to allow for zooming of the canvas. Unfortunately, Swing o�ers

no built-in feature to resize all subcomponents of a view. It is possible to resize the

drawing of an individual component, but this process was infeasible to get working with

components like text �elds and drop-down menus. The best compromise would properly

be to base all the sizes of the block views on the text sizes of their contents. This way,

the resizes could be done by incrementally resizing the text.

39

4 Realization of the Prototype

4.5.5 Connection to the CGA Shape Grammar

The grammar builder component is responsible for connecting the VPL to the existing

CGA shape grammar framework. I hooked it into the block-based framework by utilizing

the observer pattern the model already implements. The builder component observes the

canvas model and starts the building process when the active tree has changed.

The grammar builder then initializes a new empty grammar to replace the existing one

that currently gets rendered by the existing CGA shape pipeline. The CGA shape

framework works in a similar way. It observes changes to the grammar and automatically

triggers the pipeline to generate a new 3D model. The CGA shape grammar framework

is capable of handling newly added grammar rules instantly, but I found no mechanism

to remove rules. Instead of adding this functionality I decided that the builder handles

VPL changes by replacing the previous grammar with a new one. This approach is easier

to test and verify to work correctly.

The builder uses the following algorithm to obtain the grammar. It �rst initializes a

fresh grammar instance and walks through the active block tree in a depth-�rst search,

starting from the root block. It then only searches for action block models, since in the

VPL action blocks directly relate to grammar rules. The builder calls a method of the

action block model that returns the grammar rule. There is a chance that the model is

not able to generate a rule. In that case the builder will mark this block model to be in

an invalid state to signal the user that he must modify a parameter or add additional

shape blocks. The builder skips invalid blocks and the entire subtree behind them, to

maintain a valid grammar.

On completion the algorithm provides a valid grammar. The builder then replaces the

existing grammar of the cgaShapeParams instance. The CGA shape framework will then

further process it automatically to render a new 3D view.

40

5 Evaluation of the VPL

In this chapter I will �rst introduce the heuristic evaluation method and its set of heuris-

tics, carry out an evaluation of the prototype and then summarize the results of the

evaluation.

Evaluation is crucial to enable assessment of the functionality of the approach. It also

allows for the validation of the design decisions whether or not they were able to suc-

cessfully address the problem they were intended to solve. I decided to use an heuristic

approach, because a heuristic provides a standardized set of criteria, making it easier to

objectively assess and compare against other approaches.

Kölling und McKay proposed a domain speci�c heuristic evaluation method for evaluating

novice programming tools like for example VPLs. They saw the need of improving on

previous sets of heuristics, which lacked to provide some useful information since they

were not speci�c to this domain [5].

Making use of this set of heuristics will ensure a comprehensive evaluation, capable of

identifying all major issues.

5.1 Methodology

To develop the set of heuristics, Kölling und McKay balanced the goal of maximizing

fault detection with the need of being practical and manageable in size.

Speci�cally they de�ned two criteria that each individual heuristic had to ful�ll. The

�rst one was that each heuristic had to be able to uniquely identify a set of actual known

issues in existing systems of the target domain. The second one was that each heuristic

had to avoid ambiguity in classi�cation of identi�ed faults.

41

5 Evaluation of the VPL

They also de�ned two criteria that the set as a whole should ful�ll. It had to be small

enough in size to remain manageable and it also had to identify all major known issues

found in the domain.

With these criteria in mind, they came up with thirteen evaluation heuristics, which I

will introduce in the next section.

5.2 De�nition of the Evaluation Heuristics

This section introduces the set of heuristics Kölling und McKay proposed for evaluating

novice programming tools [5].

1. Engagement: The system should engage and motivate the intended audience of

learners. It should stimulate learners' interest or sense of fun.

2. Non-threatening: The system should not appear threatening in its appearance

or behavior. Users should feel safe in the knowledge that they can experiment

without breaking the system, or losing data.

3. Minimal language redundancy: The programming language should minimize

redundancy in its language constructs and libraries.

4. Learner-appropriate abstractions: The system should use abstractions that

are at the appropriate level for the learner and task. Abstractions should be driven

by pedagogy, not by the underlying machine.

5. Consistency: The model, language and interface presentation should be consistent

both internally and with each other. Concepts used in the programming model

should be represented in the system interface consistently.

6. Visibility: The user should always be aware of system status and progress. It

should be simple to navigate to parts of the system displaying other relevant data,

such as other parts of a program under development.

7. Secondary notations: The system should automatically provide secondary nota-

tions where this is helpful, and users should be allowed to add their own secondary

notations where practical.

42

5 Evaluation of the VPL

8. Clarity: The presentation should maintain simplicity and clarity, avoiding inter-

face elements of the environment.

9. Human-centric syntax: The program notation should use human-centric syntax.

Syntactic elements should be easily readable, avoiding terminology obscure to the

target audience.

10. Edit-order freedom: The interface should allow the user freedom in the order

they choose to work. Users should be able to leave tasks partially �nished, and

come back to them later.

11. Minimal viscosity: The system should minimize viscosity in program entry and

manipulation. Making common changes to program text should be as easy as

possible.

12. Error-avoidance: Preference should be given to preventing errors over reporting

them. If the system can prevent, or work around an error, it should.

13. Feedback: The system should provide timely and constructive feedback. The

feedback should indicate the source of a problem and o�er solutions.

5.3 Carrying out the Evaluation

Engagement

I targeted an audience of computer science students that might not be familiar with the

CGA shape grammar yet, but might have heard of its capabilities of generating architec-

ture and structures. The prototype tries to engage with this audience by providing it with

the fundamental tools of that grammar to enable them to rapidly build the mass model

of a structure, hoping that it might spark the creative interest of creating or recreating

an architecture.

Non-threatening

The system reduces the complexity of the CGA shape grammar by hiding the more

advanced concepts like branching rules and preconditions. The blocks provide easy access

to the parameters that the user can change. The prototype further reduces complexity by

43

5 Evaluation of the VPL

limiting the functionality to the core actions of the grammar. This reduced complexity

avoids intimidating the user. The problem with the prototype is that the user has no

capability of saving the progress to avoid loss of data. Therefore the user is always

threatened by the fact that his creations will get deleted when the application exits. The

CGA shape grammar would have the capability to be saved to a text-based format, but

the prototype is missing this functionality.

Minimal language redundancy

The actions of the CGA shape grammar have quite distinct functions, therefore conveying

them into blocks resulted in equally distinct visual actions. The most similar actions

are the split and the repeated-split actions. But there is a very important distinction

between them. The user has to provide a �xed amount of splits to the split action, while

the repeated-split action only uses a length parameter to determine the amount of splits

depending on the available scope. This makes this action context aware and enables users

to assume that the resulting scopes will roughly have the given split length afterwards.

This is an important feature to place details like windows and doors. Therefore I assess

that the VPL has a minimal language redundancy.

Learner-appropriate abstractions

The language is targeted towards novice users of the CGA shape grammar. This was

the reason to avoid more technical abstractions like rule blocks, which resulted in a more

beginner friendly visual language. For the prototype I implemented the most elemental

actions only, the split and the extrude actions. These give novice users enough tools to

build rectangle based mass models and even allows for adding some details like windows.

This will de�nitely result in the users outgrowing the prototype, which is currently lacking

more advanced actions of the CGA shape grammar. Adding new actions and abstractions

in the future always needs careful consideration which abstraction will add bene�t to

novice users and which might overwhelm them, or if the language should also target

more advanced use cases.

44

5 Evaluation of the VPL

Consistency

An example for an inconsistent behavior would be the di�erences of the Java language

regarding object types and primitive types. Those types require di�erent operators to

do similar tasks. The minimal redundancy of the developed VPL also leads to a good

consistency. Since there are no similar abstractions there are also no inconsistent but

similar methods of achieving a similar task.

Visibility

Visibility was an important factor when developing the prototype. The system tries to

keep the user informed about the status of the system by highlighting blocks that it is

not able to process. A better but little more sophisticated method would be to not only

highlight the parameter �eld instead, but to also give hints why the value is invalid. In

this respect the prototype is lacking important functionality that would greatly improve

the users awareness of the systems status.

Secondary notations

The system provides every block with an unique id as its name when being placed. But

the user is able to change this id into something that is more meaningful at communi-

cating his intent. For example he could name an action block `window', to note that

this subtree of actions creates a window-like structure. These notations are important

to enable users to navigate the arising tree structures when connecting blocks.

Clarity

The biggest threat to maintaining simplicity and clarity are the block trees. The decision

to align the blocks in a 2 dimensional tree-like structure, in�uences the size of root blocks

exponentially in regard to the depth of their tree. This was the reason to constrain the

blocks to elemental parameters, since every parameter that would increase the size of a

block has a largely greater impact on the root block. To enable users to construct more

complex structures a mechanism is needed that reduces visual complexity and size of the

tree structure.

45

5 Evaluation of the VPL

Human-centric syntax

All block types feature a keyword that expresses their meaning towards the user. This is

important to allow readability of what a block actually does. The CGA shape grammar

has a lot of di�erent actions and shapes, therefore I considered the usage of keywords

favorable over the more compact option of icons. The action keywords of the grammar

were already very descriptive so using them for the blocks was �ne. The grammar

keywords for shapes are also descriptive but they are very technical. For the prototype

I simpli�ed the amount of shapes and used the keywords `surface' and `body' instead of

`polygon shape' and `prism shape', to use a more novice friendly terminology.

Edit-order freedom

In order to ful�ll the requirements of the CGA shape grammar to add an unlimited

amount of shapes to an action, it was important that the amount of block-connectors

would grow and shrink depending on the amount of added shapes. Although there are

mechanisms possible to insert a block in between two existing ones, this functionality was

outside of the reasonable scope for the prototype. This is a problem for the edit-order

freedom. To reorganize shapes, users need to unlink all of them �rst and reconnect them

in the favored order. The a�ected action will forget the set parameters for these shapes

in the process. This is an issue in regards to the edit-order freedom heuristic.

Minimal viscosity

Viscosity in the context of a block-based editor refers to the resistance of change when

adding or modifying the existing structure. Apart from the issue mentioned regarding

the edit-order freedom, the VPL improves this viscosity quite a bit over the text-based

grammar. Changing the id of a shape block is a simple process that requires no further

adjustments in other places, since the link to the id is provided by the connection hier-

archy of the blocks instead. Adding another output shape to an action is as simple as

adding another compatible shape block using an empty socket.

46

5 Evaluation of the VPL

Error-avoidance

Error avoidance was one of the reasons to favor a block-based approach over a diagram-

based one. The block-based VPL is able to avoid syntactic errors regarding the connection

of blocks. Although the feature unfortunately did not make it into the prototype, the

concept includes an approach to using the connector shapes to ensure this functionality.

The shape of these connectors distinguishes between two dimensional and three dimen-

sional shapes while also ensuring that shapes can only get connected to actions and vice

versa.

Feedback

The feedback capabilities of the prototype are lacking in regards to the parameter input

�elds. They require careful consideration of whether values inside the input �elds are of

valid type and inside valid and meaningful bounds. For every input �eld there should

be a feedback mechanism that not only highlights an invalid status, but also provides a

meaningful hint to direct users towards the solution of the problem.

47

6 Conclusion

6.1 Summary of the achieved Goals

This thesis had the goal to develop a user-friendly VPL for the CGA shape grammar.

From the results of the evaluation I conclude that this goal was achieved, although the

developed prototype leaves room for future improvements which I will describe in the

next section. The VPL is able to provide novice users with a tool to get to know the CGA

shape grammar in an easy and fast manner. Utilizing a block-based approach meant that

users could focus on their design ideas and learn about the capabilities of utilizing shape

grammars for generalized visual modeling rather than modeling individual buildings.

The VPL approach allows users to focus on the design rather than having to learn the

syntax of the text-based grammar �rst. The design decision to use an action oriented

mental model rather than the rule-based model made it easier for novice users to learn

about the actions, but it limits the capabilities. My initial theory was that shape blocks

could be augmented with the capabilities of the branching parameters like probability

and condition. This theory proved wrong during the design processes of the VPL as it

became clear that this would add a confusing characteristic to the shape blocks. In my

opinion the best approach to add the full capabilities of the CGA shape grammar to a

VPL would be the introduction of dedicated rule blocks. The current approach allows

users to create a rule-based building that adapts to di�erent lot sizes. A dedicated rule

block would expand this idea further to also allow for variance even with a �xed lot

size.

6.2 Lookout for possible further Development

The heuristic evaluation identi�ed that the exponential growth of root blocks, related to

the depth of the tree-like block structure is a huge concern. Solving this issue would be

48

6 Conclusion

of high priority for a possible further development of the VPL. A solution that reduces

both visual clutter and the size could be the ability to collapse a subtree down to a single

block. This could also be a �rst step towards letting users create their own reusable

action blocks based on their needs.

Another issue identi�ed by the evaluation was the edit-order freedom when connecting

blocks. The missing feature negatively a�ects the user-experience. An important ad-

vancement for the prototype would be to add the feature to insert a block in between

two existing ones.

Implementing the di�erent connector types designed in the concept would dramatically

improve the user experience. This would be an important addition to further develop the

prototype. The prototype would also bene�t from adding the identi�ed missing feature

of providing useful feedback to guide users towards entering valid values to input �elds.

This requires further development in order to get the prototype closer towards a useful

product.

Another useful addition to the VPL would be to add dedicated rule blocks, instead

of hiding the rule concept from the users. While this makes it more complicated for

novice users, they will likely outgrow the capabilities of a visual language without these

concepts. The addition of dedicated rule blocks would allow for mapping the probability

and condition parameters. These would expand the VPL to a point where users would

be able to learn the advanced concepts of the grammar.

49

Bibliography

[1] Chang, Shi-Kuo: Icon semantics�a formal approach to icon system design. In:

International Journal of Pattern Recognition and Arti�cial Intelligence 1 (1987),

Nr. 01, S. 103�120

[2] Google Blocky. https://developers.google.com/blockly. � Accessed:

2024-04-16

[3] Haakonsen, Sverre M. ; Rønnquist, Anders ; Labonnote, Nathalie: Fifty years

of shape grammars: A systematic mapping of its application in engineering and

architecture. In: International Journal of Architectural Computing 21 (2023), Nr. 1,

S. 5�22

[4] Jiang, Tao ; Li, Ming ; Ravikumar, Bala ; Regan, KennethW.: Formal grammars

and languages. In: Algorithms and Theory of Computation Handbook, Volume 1.

Chapman and Hall/CRC, 2009, S. 549�574

[5] Kölling, Michael ; McKay, Fraser: Heuristic evaluation for novice programming

systems. In: ACM Transactions on Computing Education (TOCE) 16 (2016), Nr. 3,

S. 1�30

[6] Krispel, Ulrich ; Schinko, Christoph ; Ullrich, Torsten: The Rules Behind�

Tutorial on Generative Modeling. In: Proceedings of Symposium on Geometry Pro-

cessing/Graduate School Bd. 12, 2014, S. 1�2

[7] Kuhail, Mohammad A. ; Farooq, Shahbano ; Hammad, Rawad ; Bahja, Mo-

hammed: Characterizing visual programming approaches for end-user developers:

A systematic review. In: IEEE Access 9 (2021), S. 14181�14202

[8] Lieberman, Henry ; Paternò, Fabio ; Klann, Markus ;Wulf, Volker: End-User

Development: An Emerging Paradigm. S. 1�8. In: Lieberman, Henry (Hrsg.) ; Pa-

ternò, Fabio (Hrsg.) ; Wulf, Volker (Hrsg.): End User Development. Dordrecht :

50

https://developers.google.com/blockly

Bibliography

Springer Netherlands, 2006. � URL https://doi.org/10.1007/1-4020-538

6-X_1. � ISBN 978-1-4020-5386-3

[9] Lindenmayer, Aristid: Mathematical models for cellular interactions in develop-

ment I. Filaments with one-sided inputs. In: Journal of theoretical biology 18 (1968),

Nr. 3, S. 280�299

[10] Lipp, Markus ; Wonka, Peter ; Wimmer, Michael: Interactive visual editing of

grammars for procedural architecture. In: ACM SIGGRAPH 2008 papers. 2008,

S. 1�10

[11] Lowdermilk, Travis: User-centered design: a developer's guide to building user-

friendly applications. " O'Reilly Media, Inc.", 2013

[12] Maloney, John ; Resnick, Mitchel ; Rusk, Natalie ; Silverman, Brian ; East-

mond, Evelyn: The scratch programming language and environment. In: ACM

Transactions on Computing Education (TOCE) 10 (2010), Nr. 4, S. 1�15

[13] Müller, Pascal ; Wonka, Peter ; Haegler, Simon ; Ulmer, Andreas ;

Van Gool, Luc: Procedural modeling of buildings. In: ACM SIGGRAPH 2006

Papers. 2006, S. 614�623

[14] Parish, Yoav I. ;Müller, Pascal: Procedural modeling of cities. In: Proceedings of

the 28th annual conference on Computer graphics and interactive techniques, 2001,

S. 301�308

[15] Patow, Gustavo: User-Friendly Graph Editing for Procedural Modeling of Build-

ings. In: IEEE Computer Graphics and Applications 32 (2012), Nr. 2, S. 66�75

[16] Popularity of Rhino Grasshopper. https://aecmag.com/news/rhino-grass

hopper/. � Accessed: 2024-05-13

[17] Procedural Content Generation in Unreal Engine 5. https://www.youtube.co

m/watch?v=aoCGLW53fZg. � Accessed: 2024-02-13

[18] Prusinkiewicz, Przemyslaw ; Hammel, Mark ; Hanan, Jim ; Mech, Radomir:

L-systems: from the theory to visual models of plants. In: Proceedings of the 2nd

CSIRO Symposium on Computational Challenges in Life Sciences Bd. 3 Citeseer

(Veranst.), 1996, S. 1�32

[19] Prusinkiewicz, Przemyslaw ; Lindenmayer, Aristid: The algorithmic beauty of

plants. 1990

51

https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1007/1-4020-5386-X_1
https://aecmag.com/news/rhino-grasshopper/
https://aecmag.com/news/rhino-grasshopper/
https://www.youtube.com/watch?v=aoCGLW53fZg
https://www.youtube.com/watch?v=aoCGLW53fZg

Bibliography

[20] Stiny, George ; Gips, James: Shape grammars and the generative speci�cation of

painting and sculpture. In: IFIP congress (2) Bd. 2, 1971, S. 125�135

[21] Wonka, Peter ; Wimmer, Michael ; Sillion, François ; Ribarsky, William:

Instant architecture. In: ACM Transactions on Graphics (TOG) 22 (2003), Nr. 3,

S. 669�677

52

A Appendix

A.1 Source Code

The source code to the thesis is available on CD and can be requested from the primary

supervisor.

Der Anhang zur Arbeit be�ndet sich auf CD und kann beim Erstgutachter eingesehen

werden.

53

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig

verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original

54

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Formulation
	Contextualizing the Problem
	Wider Relevance

	Research Goal
	Structure of this Thesis

	Basics
	Introduction to Procedural Modeling and the CGA Shape Grammar
	L-Systems
	Shape Grammar
	Split Grammar
	CGA Shape Grammar

	Introduction to Visual Programming Languages
	Form-Based Programming
	Icon-Based Programming
	Diagram-Based Programming
	Block-Based Languages

	Related Work

	Concept
	Decision on the type of VPL
	Design Principles
	Functional Design Requirements for the VPL
	Non Functional Requirements
	Designing the VPL
	Key concepts of the CGA shape grammar
	VPL Elements

	Realization of the Prototype
	User Stories
	Development Environment and Tools
	Programming Language
	Versioning System
	Build Tool
	Development Environment
	Libraries and Frameworks

	Design Patterns
	MVC Pattern
	Observer Pattern
	Composite Pattern

	Software Architecture
	External Components
	Internal Component Structure

	Implementation
	Implementation of the View Component
	Implementation of the Model Component
	Implementation of the Controller Component
	Implementation of the User Interface
	Connection to the CGA Shape Grammar

	Evaluation of the VPL
	Methodology
	Definition of the Evaluation Heuristics
	Carrying out the Evaluation

	Conclusion
	Summary of the achieved Goals
	Lookout for possible further Development

	Bibliography
	Appendix
	Source Code

	Declaration of Authorship

