
BACHELOR THESIS
David Kurniadi Weinardy

Progressive Web Apps for
Data Visualization: A
Business Intelligence
Perspective

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of Science Wirtschaftsinformatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Stefan Sarstedt
Supervisor: Prof. Dr. Martin Schultz

Submitted on: 15. April 2024

David Kurniadi Weinardy

Progressive Web Apps for Data Visualization: A
Business Intelligence Perspective

David Kurniadi Weinardy

Thema der Arbeit

Progressive Web Apps for Data Visualization: A Business Intelligence Perspective

Stichworte

Progressive Web Application, Data Visualization, Business Intelligence

Kurzzusammenfassung

Um auf dem Markt bestehen zu können, sollten sich Unternehmen und Firmen auf
das wichtigste ökonomische Prinzip besinnen: die Gewinnmaximierung bei gleichzeit-
iger Minimierung von Verlusten. Business Intelligence (BI)-Dashboards haben sich nach-
weislich als hilfreich für Entscheidungsträger erwiesen, da sie durch die Visualisierung
von Geschäftsdaten in Form von Diagrammen und Grafiken Trends im Unternehmen
analysieren können. Diese Arbeit schlägt vor, die Kosten für solche Tools zu senken,
indem man sich die Vorteile von Progressive Web Application (PWA) zunutze macht,
die mit einer einzigen Codebasis eine Alternative zu nativen Anwendungen bieten. Um
dies zu belegen, wird im Rahmen dieser Arbeit ein Prototyp erstellt. Dazu werden
zunächst die relevanten Forschungsfragen als Einleitung formuliert und die Prototyping-
Methodik angewendet. Die Anforderungen an den Prototyp werden aus verwandten Ar-
beiten und bisherigen Erkenntnissen abgeleitet. Danach werden die Code-Infrastruktur
und die Architektur des Prototyps detailliert vorgestellt. Abschließend werden Diskus-
sionen, Schlussfolgerungen und alle relevanten Links, wie z.B. der Zugang zum Prototyp,
am Ende der Arbeit eingefügt.

David Kurniadi Weinardy

Title of Thesis

Progressive Web Apps for Data Visualization: A Business Intelligence Perspective

Keywords

Progressive Web Application, Data Visualization, Business Intelligence

iii

Abstract

Businesses and Companies may want to apply the most important principle to survive:
maximizing profits and minimizing losses. BI dashboards have been proven to help the
decision makers to analyse and companies’ trends, through the visualization of business
data in form of charts and diagrams. A way to cut down the cost for such tool is, proposed
by this thesis, to take the advantage of the PWA, that offers an alternative choice for
native applications by having only one code base. To come to proof, a prototype is built
along with this thesis, by arranging the relevant research questions as an introduction,
and applying the prototyping methodology. The requirements for the prototype are
defined from related works and previous findings. Then, the thesis will go in the details
by presenting the code infrastructure and the architecture of the prototype. Finally,
discussions, conclusions and all relevant links such as where to access the prototype are
included at the end of this thesis.

iv

Contents

List of Figures viii

List of Tables x

Acronyms xi

1 Introduction 1
1.1 Motivation . 1
1.2 Purpose Statement . 3
1.3 Research Gap . 3
1.4 Methodology . 4
1.5 Structure . 6

2 Related Works 7
2.1 MyBI . 7

3 Theoretical Background 10
3.1 Progressive Web Application . 10

3.1.1 PWA Requirements . 11
3.1.2 Caching Strategies . 14

3.2 Business Data Visualisation . 15
3.2.1 Forms . 17

3.3 Data Integration . 17
3.4 Dashboard . 19

4 Software Requirements 21
4.1 Functional Requirements . 21
4.2 Non-Functional Requirements . 24

v

Contents

5 System Design 25
5.1 Architecture . 25
5.2 REST(ful) API . 27
5.3 Database . 29
5.4 Frameworks and Libraries . 30

5.4.1 Flask . 30
5.4.2 Meltano . 31
5.4.3 React . 31
5.4.4 VitePWA . 32
5.4.5 Workbox . 32
5.4.6 Tremor . 32

5.5 Deployment . 33

6 Implementation 34
6.1 File Structure . 34

6.1.1 Front End . 35
6.1.2 Back End . 36

6.2 Manifest . 37
6.3 Service Worker . 39

6.3.1 Registration . 40
6.3.2 Caching Strategy . 42

6.4 Installation . 43
6.4.1 Desktop . 44
6.4.2 Mobile . 45

6.5 Data Processing . 46
6.5.1 Data Source . 47
6.5.2 Extract . 48
6.5.3 Load . 49
6.5.4 Transform . 50
6.5.5 Execution . 51

6.6 Data Visualisation . 51
6.6.1 Diagrams . 52
6.6.2 Global Time Filter . 55

6.7 Notification . 56
6.8 Offline Mode . 58

vi

Contents

7 Discussion 59
7.1 Research Questions Evaluation . 59
7.2 Requirements Fulfilment . 60

8 Conclusion 63
8.1 Conclusion . 63
8.2 Limitations and Future Research . 64

9 Links 66

Bibliography 67

A Anhang 73
Declaration of Autorship . 74

vii

List of Figures

1.1 Revenue Development of BI Software. Adapted from [42] 2
1.2 Market Shares of BI Software. Adapted from [42] 2
1.3 Typical prototyping processes. Adapted from [36] 5
1.4 Throwaway and Evolutionary Prototyping. Adapted from [23] 5

2.1 Screenshots of MyBI Desktop. Adapted from [5]. 7
2.2 Screenshots of the MyBI PWA on a mobile device. 8

3.1 A simple graph of the Service Worker (SW) life cycle. 13
3.2 OLAP = on-line data processing, CRM=customer relationship manage-

ment, DSS= decision support systems, GIS = geographic information sys-
tems. Adapted from [30] . 16

3.3 Two common practices of the data processing. The Extract Transfer Load
(ETL) (above) and the Extract Load Transfer (ELT) architecture. 19

5.1 Overview of the encrypted contents in a Hypertext Transfer Protocol Se-
cure (HTTPS) request from an unencrypted Hypertext Transfer Protocol
(HTTP) request. Adapted from [14] . 26

5.2 The architecture of the prototype and the components in each tier. . . . 27
5.3 The structure of the tables in the database. 29

6.1 Two different displays of the prototype’s icon in two major Operating Sys-
tem (OS)s after installation. The left icon is the masked icon on Android
and the right icon is the masked icon on iOS. 38

6.2 An active SW of the prototype. 40
6.3 The update dialog on the prototype. 41
6.4 The market share of major browsers for all platforms from January 2020

until December 2023. Adapted from [39]. 43
6.5 The install prompt in Chrome desktop. 44

viii

List of Figures

6.6 The Add to Dock dialog in Safari desktop. 44
6.7 The prototype’s installation steps in Chrome mobile. 45
6.8 The prototype’s installation steps in Safari mobile. 46
6.9 The Upload feature of the PWA. The first image (left) shows the state of

the PWA, after a file is given. If the upload is successful, then the screen
will change to the second image (middle). The third image on the right
indicates the behaviour of the PWA, if a false formatted file is given. . . 48

6.10 A successful run of the Data Build Tool (DBT) transformation process in
the server. 51

6.11 The big number chart of the prototype. 52
6.12 The bar diagram of the prototype. 52
6.13 The line diagram of the prototype. 53
6.14 The donut diagram of the prototype. 54
6.15 The donut diagram of the prototype. 54
6.16 An example of a time filtered request. 55
6.17 The dashboard before (left) and after (right) the global time filter is applied. 55
6.18 The push notification on iOS and on Android. 56
6.19 The notifications in desktop (macOS). 57
6.20 The offline mode indicator below the navigation bar of the PWA 58

ix

List of Tables

3.1 The various fields of the manifest. 11
3.2 The different forms of the business data visualisation. Adapted from [48]. 17

4.1 Functional Requirements . 23
4.2 Non-funtional Requirements . 24

6.1 The meltano plugins of the prototype. 47
6.2 The properties of a table object. 49
6.3 The configuration properties of the target_postgres plugin. 49

7.1 Requirements Fulfilment . 62

x

Acronyms

AI Artificial Intelligence.

API Application Programming Interface.

BI Business Intelligence.

CLI Command Line Interface.

CRUD Create Read Update Delete.

CSS Cascading Style Sheets.

CSV Comma Separated Value.

DBT Data Build Tool.

DOM Document Object Model.

DV Data Visualisation.

ELT Extract Load Transfer.

ETL Extract Transfer Load.

FK Foreign Key.

HATEOAS Hypermedia as the engine of application state.

HCI Human Computer Interaction.

HTML HyperText Markup Language.

xi

Acronyms

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

JS JavaScript.

JSON JavaScript Object Notation.

KPI Key performance Indicator.

MiTM man-in-the-middle.

OLAP Online Analytical Processing.

ORM Object Relational Mapping.

OS Operating System.

PK Primary Key.

PWA Progressive Web Application.

RDBMS Relational Database Management System.

REST Representational State Transfer.

RIA Rich Internet Application.

SQL Structured Query Language.

SSL Secure Sockets Layer.

SW Service Worker.

TLS Transport Layer Security.

UI User Interface.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

xii

Acronyms

UX User Experience.

VAPID Voluntary Application Server Identification.

xiii

1 Introduction

1.1 Motivation

When developing strategies for a company to survive in, or even to surpass the market,
an analysis of not only the company’s overall performance, but also each department’s
performance, is often vital and needed by the decision makers such as CEOs and man-
agers. The analysis, that is not different from gathered and processed business data, will
be handed as information in form of reports through multiple processes of BI [30]. Owing
to this reason, the information has to be useful in a way, so that the decision makers
could retract and utilize them to determine the next possible action. For example, a raw
table of 10,000 orders with quantities and revenues would be hard to understand and is
minimally helpful.

In 2022, Huang et al.[17] studied the impact of BI on the financial performance of total
250 startup CEOs, and experts. They concluded that although BI does not show a direct
impact on the financial performance, BI have a significant impact on the innovation, and
network learning capabilities of the studied startups, which confirmed to have a direct
impact on financial performance. In other words, being the meditating role, BI indirectly
helps companies to gain financial performance. Statista shows a positive revenue devel-
opment of BI Software in Europe as well as worldwide over the years, and predicted to
grow statically until 2028 (Figure 1.1). These increasing demands confirm the necessity
of BI Software.

1

1 Introduction

Figure 1.1: Revenue Development of BI Software. Adapted from [42]

Figure 1.2: Market Shares of BI Software. Adapted from [42]

Statista also shows the worldwide market shares of BI software in Figure 1.2, with SAS
Institute (Visual Analytics), SAP (Cognos Analytics), and Microsoft (Power BI) as the

2

1 Introduction

top 3 biggest holders. These software offer excellence solutions for companies to be able
to experience the advantages of BI, and are implemented as native applications. A native
application is a software program developers build for use on a particular platform or
device [13], which focus on user experiences, especially on presenting Data Visualisation
(DV)s, and native device features such as file access, Bluetooth, etc. Developing a native
application is not an easy matter, as the developers have to constantly monitor, and
maintain more than one code base, which when combined with the development of the
BI system, could result in a relatively high cost of development, and hence the cost of
subscription to such services. The author believes that the web technology PWA could
be a promising solution for this issue.

PWAs are fundamentally enhanced web applications, that offer users a native-application-
like experience, and work across devices, regardless of the OS. Unlike native applications,
PWAs could be installed directly from browsers, and can be built on standard technolo-
gies for websites such as HyperText Markup Language (HTML), Cascading Style Sheets
(CSS), and JavaScript (JS). This benefits both the developers and the stakeholders, as
the idea of maintaining one code base will reduce the development time, hence minimizing
the cost and increase the production rate of features and bug fixes.

1.2 Purpose Statement

Paired with the state-of-the-art web technologies, increasing supports from operating
systems, and modern BI architecture, it is the author’s intention to give an outlook
through this thesis within a prototype, that:

RQ1 : PWA technology and its features are able to act as a cross-platform medium for
DV in the context of BI application.

RQ2 : PWA could be an affordable technology of choice to deliver a client-side appli-
cation of a BI software.

1.3 Research Gap

Until the time this paper is written, there is no scientific research that study this partic-
ular subject of matter.

3

1 Introduction

1.4 Methodology

This study chose prototyping as its research methodology. IEEE defined prototyping as:
”A type of development in which emphasis is placed on developing prototypes early in the
development process to permit early feedback and analysis in support of the development
process” [18]. (General) Prototyping could be summarized in five iterative phases and
one final phase [35]:

1. Requirement Analysis. In this phase, the requirements of the software prototype
will be analysed. Ways to achieve this phase can be e.g. implementing use case
scenarios, establishing a list of requirements, or interviewing a set of users for their
expectations towards the application.

2. Quick Design. The second phase will provide the system’s basic design. However,
the design should not be complete, instead it should give a quick overview of the
system.

3. Build. This phase consist of building the prototype itself, with the requirements
and the formed design from phase one and two.

4. Evaluation. This phase requires users’ input and feedback. There are two out-
comes of this phase. Either users are unsatisfied with the prototype, thus the pro-
totype has to be reviewed in phase five, or the prototype meets the requirements
and users’ expectation.

5. Refinement. In this phase, users’ feedback from phase four will be reviewed and
refined, resulting in new refined requirements. The build phase will then start
again, however, based on the refined requirements.

6. Implement Product. If the requirements are met and users approve the proto-
type, the development of the product will begin.

4

1 Introduction

Figure 1.3: Typical prototyping processes. Adapted from [36]

Kordon et al. differentiate prototyping into two approaches [23]. The evolutionary ap-
proach, which mirrors the complete iteration of prototyping, produces a system design
and a code base, that will be primarily used in the production, resulting in the necessity
of more and better resources. On the contrary, the throw-away approach is used, if the
available resources are limited and the ability to communicate the advantages of a new
approach with a low-cost demonstration can be critical for creating a new project, so the
produced code base and system design may or may not be used later in the production.

Figure 1.4: Throwaway and Evolutionary Prototyping. Adapted from [23]

This study aims to analyse and demonstrate the combination of BI and PWA technology
with limited resources on time and cost. Thus, the author will conduct the throwaway
approach of prototyping, where the development will focus mainly on the requirements
stated in the fourth chapter 4, and feedback are gathered from self evaluation and the

5

1 Introduction

supervisors of this thesis. Then, for future development, depending on the feasibility of
this concept, the prototype could be used as a base for forthcoming enhancements and
optimizations.

1.5 Structure

Consisting of eight chapters, the first chapter of this bachelor thesis outlines the mo-
tivation, where the research gap lies, and the purpose statement. The second chapter
provides an overview about a related work that includes some key information about
how to build a BI PWA, and where this thesis could complement that work. The third
chapter underlies the theoretical backgrounds of PWA, and BI. This chapter also gives
an idea to the readers of what the main concerns of this thesis are. The fourth chapter
describes the functional as well as the non-functional requirements, derived from the pur-
pose statement in 1.2. The design details of the prototype, important snippets, and the
implementation processes, which are based on the theoretical backgrounds, are included
in the fifth chapter. Then, the sixth chapter exposes the results of the implementation
in form of snapshots. Here, a short hint for the readers to be able to experience the
app directly is also given. In the seventh chapter, a discussion about whether the results
provide an answer to the research questions, and if the requirements are all effectively
fulfilled. Lastly, this bachelor thesis is concluded in the eighth chapter. In this final
chapter, the author gives wthe limitations of this work, and at the same time, some
insights for future researches that can be done based on this thesis.

6

2 Related Works

2.1 MyBI

In 2018, Castilho[5] published an article with the title of Building a Business Intelligence
Progressive Web Application. As the title of the article said, he, and his team built a
BI PWA named MyBI, using User Interface (UI) components from Wijmo [19]. MyBI
was built without any external library or framework. The reason is that the creators of
MyBI wanted to keep the construction of MyBI simple. This resulted in the application
size of 20k. Unfortunately, a valid unit for the application size was not provided. The
screenshots of the app were provided in Figure 2.1, and the link to the demo application
is also available [47].

Figure 2.1: Screenshots of MyBI Desktop. Adapted from [5].

7

2 Related Works

Figure 2.2: Screenshots of the MyBI PWA on a mobile device.

When examining MyBI through the developer tool on Chrome browser, MyBI comes with
a service worker file named serviceWorker.js and a manifest file named manifest.json ,
which is why the author could install MyBI as a standalone application on laptop (ma-
cOS) and smartphone (Android). In depth explanations of service worker and manifest
can be respectively found in the subsubsection 3.1.1 and the subsubsection 3.1.1. Fur-
thermore, Castilho included precaching of some static files in the service worker, so that
MyBI works offline (Listing 2.1).

As from the interface, the author could conclude that MyBI was already designed to be
responsive, i.e. the interface adapts to the screen size of the device, whether installed or
not. The main page is a single page, that turns into sections, once the screen width is
under 501 pixels(px), and the page become horizontally scrollable instead. The icons in
the menu bar refer to the three DV components; a section of two gauge charts, a section
of two line charts, and a section of a table. It is also worth mentioning, that Castilho
uses the scroll-snap-type CSS property, to make the scrolling experience of the charts
feels more like a native application than just a website.

Unfortunately, Castilho did not publish the data integration process of MyBI nor the
application architecture, e.g. and as can be seen in Figure 2.2, MyBI does not display
the existence of any data to analyse. The network requests to the data source gave back
the HTTP status code of 410, which means that the access to the target resource is no

8

2 Related Works

longer available at the origin server and that this condition is likely to be permanent [28].
Thus, an analysis of MyBI’s functionality could not be done.

1 // initialize cache when app is installed

2 self.addEventListener('install', async e => {

3 const cache = await caches.open('mybi-static');

4 await cache.addAll([

5 './',

6 './styles/app.css',

7 './scripts/app.js',

8 './scripts/vendor/wijmo.theme.material.min.css',

9 './scripts/vendor/wijmo-bundle.min.js',

10 './resources/home.svg',

11 './resources/current.svg',

12 './resources/trends.svg',

13 './resources/details.svg',

14 './resources/options.svg',

15 './resources/wijmo-logo.png'

16]);

17 });

Listing 2.1: MyBI’s Precaching Event Listener in Its Service Worker. Adapted from [5]

Despite the insufficient details on the functionality, the article depicts some core ideas on
how to build a performant PWA, which inspired the author to give the reader an even
more thorough research on this particular matter.

9

3 Theoretical Background

3.1 Progressive Web Application

In contrary to a website or a web page, which is usually a static HTML file displayed on
a web browser (document-oriented), a web application offers more aspects of a software
rather than a textual depiction (application-oriented). Taivalsaari et al.[44][43] divided
the web development unto phases three. In the first phase (1990s), the Web is seen only as
a distribution environment for documents. In the second phase (2000s), the Web leaned
towards the application of the software development disciplines and capabilities. The
third phase (2010s and so on), which is occurring as this thesis is written, is the phase
where the term Rich Internet Application (RIA) came in. RIA is generally another name
for desktop-style web applications, which is also referred to as the Web 2.0 technologies,
where it is not required to reload a whole web page for a single change in a UI component
any more, making it dynamic. In this phase, the Web is rather seen as a choice or an
alternative to the native application development.

Web applications are available to the end users on browsers, assuming to be built on
top of HTML, CSS and JS. Thus, unlike native applications, they should not depend on
any OS, as long as these OSs actively support web browsers. Luckily, the three main
used OSs on the planet, as of now, macOS, Android and Windows do support mostly all
known web browsers, which also indirectly support the development of web applications
[41]. The Web Application Programming Interface (API) plays a major role in providing
all kinds of implementation for various purposes and functionalities.

From the definition, PWA itself is a web application, yet with the progressive enhance-
ment of the Web. The term progressive points to the goal of the PWA, which is to
bridge the gap between the native application and the web application.To distinct itself
from usual web applications, Lepage, Pete et al.[26] summarize the three most important
concepts that a PWA should mirror:

10

3 Theoretical Background

1. Capability. A PWA should be capable to project functions that a platform-specific
application does in its own right.

2. Reliability. A PWA has to give users a good, fast, and reliable experience, re-
gardless of the network connection speed.

3. Installability. Users could install a PWA on any device with a browser. So instead
of running as a tab in a browser, the PWA runs as a standalone window, that users
can launch directly, and therefore, be a part of the device they are installed on.

3.1.1 PWA Requirements

To invoke the progressiveness of a web application, a manifest file and at least one service
worker script are needed.

Manifest

(Web App) Manifest acts as a bare bone or a skeleton of the PWA, by providing all the
necessary information for the OS to represent the PWA. Usually, a manifest is provided
as a single .webmanifest file in the root folder of a project, and takes the form of a
JavaScript Object Notation (JSON) file structure. Without a manifest, it is impossible to
install a web application, as it contains some required fields for the installation process.

Category Fields
Basic name , short_name , icons , start_url ,

display , id

Recommended theme_color , background_color , scope

Extended lang , dir , orientation

Promotional description , screenshots , categories ,
iarc_rating_id

Capabilities shortcuts , share_target ,
display_overrides

Table 3.1: The various fields of the manifest.

A use case example for the manifest is the splash screen. The splash screen appears,
once an application on the mobile environment opens. The basic fields in the Table 3.1

11

3 Theoretical Background

provide exactly the properties that are needed for the splash screen in the context of a
PWA. Providing a splash screen also contributes to the reliability aspect of the PWA,
and delivers a good User Experience (UX), so that users will not think that the PWA is
stop working or stalling [2].

Service Workers

On the contrary to the manifest, SWs are scripts, that are separated from the web page,
so they are rather running in the background. Instead of providing static information for
the formation of the "shell" of a PWA, SWs and their API facilitate the functionality
capabilities. That said, SWs have the major role in deciding the offline capability of a
PWA.

There are many use cases and benefits in using SWs within a PWA. The core objectives
in using one are:

• Network Proxy. An active SW can listen to requests and responses of the PWA.
The listening SW can also determine the next action it wants to take as the next
step.

• Precaching and caching. Persisting cached copies for offline capability is one of
many jobs of the SW.

• Push Notifications. Like native applications, through an active SW, notifications
can be shown in all devices across all platforms.

• Background Activities. A SW can also manage background activities, e.g.
downloading a file while the PWA, in which the SW works, is closed.

Running separately from a PWA’s code base runtime, SWs possess their own life cycle.
Understanding the life cycle of SW helps to determine, which strategy is best to provide
a better UX than a normal web application presents. The life cycle of a SW can be
broken down into five stages or phases.

• Registration. A SW has to be firstly registered to the browser. This is typically
done by running a registration script while the initiation of the PWA occurs.

12

3 Theoretical Background

• Installation. After a successful registration process, the SW will go into the
installation phase. In this phase, the SW can perform the precaching mechanism
of resources to support the offline capability.

• Installed. This phase is reached after a complete installation process.

• Activation. A new SW does not automatically control the page that falls within
its scope. This phase is great for invalidating old caches and other resources.

• Activated. This phase indicates, that a SW is in control and ready to handle
events.

• Idle. If after some time the SW does not receive any event, it will enter the
idle state, where it could either be activated again upon receiving an event, or
terminated.

Figure 3.1: A simple graph of the SW life cycle.

13

3 Theoretical Background

3.1.2 Caching Strategies

As stated above, PWAs with the help of SWs utilize cache to facilitate an offline expe-
rience. Cache data are typically key-value based, and stored in the browser, locally in
the device system. Depending on the use case, there are strategies for caching assets and
resources. In his book, Hajian[15] clustered the caching strategies into six patterns.

Cache-Only

In this strategy, the SW will intercept outgoing requests, and match them with the value
stored in the cache storage. Practically, the SW will firstly precache all resources in its
installation phase. The fallback of a fail match in this strategy is an error message, and
updates will come on the next deployment of the PWA.

Network-Only

This strategy does not make use of the cache storage, or rather, the SW does not intercept
any request. With that said, using this strategy makes it impossible to provide an offline
environment, and depends on the default offline indicator of the browser.

Cache-First

Here, the SW firstly prioritizes the value of a request in the cache storage. If the match
fails, the SW will fire the request to the network. This strategy is basically the dynamic
approach to the Cache-Only strategy.

Network-First

In this strategy, the SW will always fire requests to the network, and update the value
in the cache storage for each request. The SW will only match the request if a network
failure occurs as a fallback.

14

3 Theoretical Background

Cache and Network

This strategy expects real-time updates, by firing and matching requests at the same
time, asynchronously. An ideal environment to apply this pattern requires a guaranteed
response for each request.

Generic Fallback

This strategy provides a guaranteed fallback upon cache and network failure, e.g. by
precaching a default offline HTML file.

3.2 Business Data Visualisation

DV is a broad concept, that has been an essential part of the human communication
system, especially in the digitalisation era. For example, the weather application widget
in commercial smartphones uses different sets of images to represent the weather condi-
tion, without having to break the details down in a text form. As defined by Kirk [22],
the goal of DV is to facilitate understanding by visually representing data, and being a
presentation of data. DV can also be seen as a practice of using graphical representation
to provide visual insights in sets of data [12][27].

BI systems as a whole generate insights by utilizing analytical techniques, and then
visualizing the insights in the form of dashboards to support decision-making [34]. In
other words, DV is an integral part of BI systems, that collaboratively works with other
sub-systems. Negash [30] summarizes possibilities of sub-systems within a BI system as
seen in Figure 3.2.

15

3 Theoretical Background

Figure 3.2: OLAP = on-line data processing, CRM=customer relationship management,
DSS= decision support systems, GIS = geographic information systems.
Adapted from [30]

Now, the concept of Business DV specifies, which type of data are being represented.
Zheng [48] describes the characteristics of business data as such:

• Abstract. Business data mostly narrates abstract activities and processes, which
will then be represented as metaphors in an abstract level, e.g. sales, product
movement, customer behaviour, etc.

• Quantitative. Most of the case, business data are quantitative data, that will
later be qualitatively interpreted through analysation processes.

• Structured or semi-structured. Business data share common attributes, thus
are often structured.

• Multidimensional. Consisting of business operation measurements, facts are
commonly found in business data, and can be analysed through different dimen-
sions, e.g. time, location, etc.

• Atomic. Raw business data, that are based on business transactions, can be
understood independently

• Comprehendible. Business data can be understood within a certain domain of
knowledge in a relatively short timespan.

16

3 Theoretical Background

3.2.1 Forms

Business data visualisation has many forms and representations, depending on the scope
of the visualisation. Zheng [48] also groups the forms of the visualisation in BI reporting
and analytics unto three categories.

Form Definition
Embedded Visu-
als

Embedded visuals are visualisations that are em-
bedded on top of other bigger visualisation, and
can be achieved through the use of conditional
formattings or spark lines. For example, to indi-
cate trends that are going downwards, the colour
red could be used as font colour to indicate loss.
Key performance Indicator (KPI)s are also in
this category.

Block Visual Block visuals stand independently in form of dia-
grams and charts. Depending on its complexity,
a block visual can also be a part of a standalone
visual.

Standalone Visual Standalone visuals act as an application, rather
than only an ink on the paper visualisation,
where users can also interact with the block vi-
suals within. Examples of the implementation
for this form are dashboards and complex maps.

Table 3.2: The different forms of the business data visualisation. Adapted from [48].

3.3 Data Integration

Coming from various sources, the (business) data will be marked as raw data, and inte-
grated into a system called the data warehouse. Raw data can have different metadata,
characteristics and forms, e.g. a dataset could be either relational or non-relational data.
To make operations on these data, which includes the visualizing process, the differences
have to be somewhat tackled by integrating these data onto some level, so that the
quality of the raw data can be enhanced, and thus making it reliable and trustworthy.

17

3 Theoretical Background

This strategy is a concept in the data warehousing called the data integration. The ELT
process is one of two data integration strategies in the data warehouse.

As the name suggest, the raw data will go through three stages of integration:

• Extract. The raw data will be extracted from their sources. The sources could be
another application, files or databases.

• Load. The extracted data will then be loaded or written in the data warehouse,
still as raw data. The loaded data will land in a temporary data storage called the
staging area.

• Transformation. From the point that the raw data are done loaded, the transfor-
mation process will be done iteratively in the data warehouse. The transformation
process includes data cleansing, data scrubbing, data deduplication and normal-
ization. In a Relational Database Management System (RDBMS) for example, the
transformation process ends with the data being stored in tables or views with
defined logical structures and relationships.

18

3 Theoretical Background

Figure 3.3: Two common practices of the data processing. The ETL (above) and the ELT
architecture.

3.4 Dashboard

In the context of BI, dashboards serve as a standalone visual application or the front-end
of the BI software, as described in the Table 3.2, by combining the concept of the data
visualisation and the UI design principles [48]. By maximizing the best practices of the
UI principles directly, the effectiveness of human understanding of the dashboard can be
enhanced, hence resulting in a form of support for the objective of the DV. For example,
Kirk[22] emphasized the effective use of colour in DV for the better understanding process
of users and analysers. Providing tooltips and pop-ups for data details also helps to make
a more comfortable environment for users to dwell in [37].

Often, users can also find some sort of filtering tools in an interactive dashboard. Fil-
ter helps users to highlight some focus points in the dashboard. The mechanism that
the filtering tools use is known as Online Analytical Processing (OLAP), an important

19

3 Theoretical Background

concept in the BI plane. OLAP operates on dimensional levels, which business data are.
The OLAP operations include Roll-Up, Drill-Down, Slice, Dice and Pivot.

20

4 Software Requirements

This chapter introduces the functional requirements as well as the non-functional re-
quirements for a prototype of BI PWA. These requirements are derived from the research
questions in the purpose statement subsection 1.2 and the theoretical background in the
chapter 3.

4.1 Functional Requirements

Reference Name Description
FR1 The PWA runs on a se-

cure connection
The essential part of designing a PWA
is the user experience (UX) on trust
[26]. In the context of web applica-
tions, a secure environment could be
achieved through a secure connection
and/ or communication protocol like
the HTTPS. HTTPS ensures protec-
tion against eavesdroppers and man-
in-the-middle (MiTM) attacks, by us-
ing block ciphers and a digital certifi-
cate which is verified and then trusted
[4][3]. This tremendously helps to gain
user’s confidence in e.g. installing the
PWA on devices or consenting to web
features.

21

4 Software Requirements

FR2 Dashboarding The prototype should be able to facili-
tate data collection, analysis and infor-
mation delivery, which are designed to
support decision-making [34]. This can
be accomplished through visually rep-
resenting KPI with charts and graphs.

FR3 Installability on various
OS

One of the main goals of choosing PWA
as a technology of choice, is its cross-
platform capability, despite acquiring
one code base only. With the help of
a dedicated manifest file and service
workers [3], the PWA should always be
ready to be installed anywhere and any-
time.

FR4 Notification The PWA, like any other applications,
is able to reach users through notifica-
tions. A good use case for this require-
ment is, for example, when the PWA
gets an update. Then, we could notify
users to open and update the applica-
tion.

FR5 Data collection For data collection purposes, the PWA
should provide an approach where users
i.e. companies could upload raw data
to then be processed in the system.

FR6 Data processing The PWA needs to be able to host data
processing operations.

22

4 Software Requirements

FR7 Filtering Transformed company data usually
contain multiple models and dimen-
sions. Thus, analysing charts in a BI
application could be a challenging task.
Data filtering helps an analyser to fo-
cus on one or some categories. Elias[9]
stated, that all participants in one of
the studies conducted by her, found
data filtering to be required for ad-
vanced analysis.

FR8 User feedback Feedback in Human Computer Interac-
tion (HCI) has been recognized as an
importance in improving user perfor-
mance and satisfaction [38]. In the con-
text of web applications, feedback of-
ten come to users as messages, whether
they are error or success messages.
In a study concerning error messages
and affective response by Kukka et al.
[25], it is indicated, that friendly and
neutral error messages positively affect
human’s affective states, which con-
tributes in the effort of achieving a good
UX of the PWA.

FR9 Offline capability Another key factor that separates
PWAs from the other web applications
is, that PWAs could work with the ab-
sence of the internet. This also prevents
users from coming across the default
fallback page of browsers, which is bad,
because most native applications have
their own mechanism in handling poor
connection.

Table 4.1: Functional Requirements

23

4 Software Requirements

4.2 Non-Functional Requirements

Reference Name Description
NFR1 Users know how to in-

stall the PWA
Installing PWA from different browsers
on different OSs still unfortunately pos-
sesses differences. For example, the in-
stallation of PWA in Safari takes more
steps than the one in Google Chrome.
Thus, users may need somewhat of a
guide to install the PWA.

NFR2 The PWA should feel
more like a native appli-
cation than a website

Because the UI components of a PWA
are rendered through browsers, there
will always be a performance gap in
many aspects between PWAs and na-
tive applications. For instance, in a
comparison study done by Fournier,
Camille, mobile or native applications
are shown to outperform PWAs in gen-
eral in terms of smoothness [11]. This
does not imply, that the gap can not be
closed in on. Aside from service work-
ers, advanced web API and CSS could
support PWA developers to tackle this
problem with creativity.

Table 4.2: Non-funtional Requirements

24

5 System Design

This chapter covers the system design details of the built prototype. Through this chap-
ter, readers will be able to find out, on which frameworks and libraries the prototype
are based on, and how these technologies helped to fulfil the functional as well as non-
functional requirements on the previous chapter. Furthermore, this chapter also provides
all technical strategies on caching and UI design of the prototype.

5.1 Architecture

At this point, the prototype could be broken down into three main components:

• Presentation Unit. A component, where all user interactions occur and therefore,
visualisation is one of the important concerns in this unit.

• Processing Unit. This component includes all relevant BI processes, such as ELT
and Create Read Update Delete (CRUD) operations.

• Data Storage. Finally, a concern where the unprocessed as well as processed data
will be persisted, makes it possible to access the data anytime ideally.

Each component contains a complexity on its own, and each complexity adds weight to
the prototype. Therefore, on the architectural level, it is rather wise to separate these
components to not only increase the maintainability of the prototype, but also to decrease
its complexity by clustering or separating the concerns of each component. The two-tier
architecture could satisfy this purpose.

The two-tier architecture is a variant of the client/ server architecture, where processes of
an application are separated into two concerns, simplifying the development process and
communication on both ends, and thus, being a suitable architecture for prototyping in a
resource-limited environment [20]. The client side of this architecture consists of elements

25

5 System Design

that are relevant for presentation purposes, e.g. in the context of web applications, the
code base of this tier usually contains HTML, CSS and JS. Whereas the second tier deals
with the business logics of the application or deals directly with the database, which runs
on a different server or machine than the first tier.

There are several preferences when it comes to web communication protocols. Although
not every website is applied with HTTPS, it is the fundamental cryptographic protocol
to secure information in transit, and to ensure data integrity and privacy between two
communicating parties [24]. HTTPS, in combination with the Transport Layer Security
(TLS) network protocol, encrypts the header and body content of HTTP’s requests and
responses, avoiding the modifications of the contents through the MiTM attacks. Also,
to make the prototype installable, it has to be secured over HTTPS, which makes it a
win-win situation.

Figure 5.1: Overview of the encrypted contents in a HTTPS request from an unencrypted
HTTP request. Adapted from [14]

The difference of HTTP and HTTPS lies in the availability of the Secure Sockets Layer
(SSL) certificate. For manually hosted sites, which is the server side of the prototype, the
certificate can be obtained through Let’s Encrypt, an open source certificate authority.
The certificate then will be applied to the configuration file of the web server software.
The illustration of the architecture can be seen in Figure 5.2.

26

5 System Design

Figure 5.2: The architecture of the prototype and the components in each tier.

Figure 5.2 also shows, that there are basically two data sources. One being the database
itself in the server tier, and one being the cache storage in the client tier. This means,
that not all the requests coming from the client are being sent to the server, but will
be intercepted by the service worker. This plays a huge role in realising the idea of an
offline PWA as an answer for the requirement 4.1. More on the (pre-)caching strategy of
the prototype can be found in the section 6.8.

5.2 REST(ful) API

The prototype is implemented with the Representational State Transfer (REST) API
(also known as RESTful API) on top of the HTTPS communication protocol. RESTful
architecture puts it main concern on transferring complete resources over the web, with-
out managing any state on the server, as stated on the introduction of REST by Fielding[10].
In other words, a response from the server contains all information that a request needs.
In the frame of the prototype, the responses will be obtained as JSON strings.

Now, in the maturity model of REST APIs defined by Richardson[33], the full maturity
is obtained, if:

• the request uses HTTP connection (Level 0),

27

5 System Design

• the Uniform Resource Identifier (URI) of the response utilizes unique identifications
to allocate resources (Level 1),

• the request HTTP verbs (Level 2), and

• the next state is controlled by including Hypermedia as the engine of application
state (HATEOAS) links in the response (Level 3).

The requests and responses of the prototype’s API can be classified to the level 2 Richard-
son maturity level, as there is no necessity in the requirements, where the server deter-
mines the next possible action for the client. Moreover, the PWA (client) is capable of
managing its own state through runtime and browser sessions, and depending on HA-
TEOAS will rather make the PWA static, which is a counter-productive approach in
realising an application-like feeling for the PWA.

1 // Request

2 GET /crossbi/v1/api/views/2 HTTP/1.1

3
4 // Response

5 {

6 "data": {

7 "aggregate": "sum",

8 "categories": null,

9 "dashboard_id": 1,

10 "date_column": "transaction_date",

11 "diagramm_type": 1,

12 "id": 2,

13 "name": "annual_revenue",

14 "title": "Total Revenue 2011 - 2014",

15 "updated_at": "Sat, 30 Sep 2023 00:00:00 GMT",

16 "workspace_id": 1,

17 "x_axis": "transaction_year",

18 "y_axis": "total_revenue"

19 },

20 "message": null

21 }

Listing 5.1: An example of typical request and response of the prototype.

28

5 System Design

5.3 Database

BI environments are tightly connected with RDBMS, which is desired, because it is known
to provide tools, that can be utilized during the ELT processes [8]. One of the widely
used RDBMS in the development world is PostgreSQL. As an open-source RDBMS,
PostgreSQL offers proven data integrity and robustness, that is perfect from small to
enterprise level projects. Because PostgreSQL also always tries to conform to the Struc-
tured Query Language (SQL) standards (SQL:2023 Core conformance), it holds a good
developer experience. In the prototype, the PostgreSQL instance is fetched as a Docker
image and runs in the same network as the backend instance. The prototype utilizes
tables to structure day-to-day and raw data, and views to structure the transformed
data from the ELT process. Views will then be referenced as sources for the DV part.
Figure 5.3 shows the structure of the tables, each with a Primary Key (PK) and Foreign
Key (FK)(s), if needed.

Figure 5.3: The structure of the tables in the database.

Organizationally, the prototype manages its users by assigning them to workspaces, which
can be observed in the table cb_user_workspace , where the PK of the table is a unique
combination of a user ID and a workspace ID. Each user possesses a hashed password,
stored in the cb_password table, and referenced as the password_id FK.

29

5 System Design

While a workspace’s existence is more straightforward, a dashboard (cb_dashboard) is
a more flexible concept. Dashboards are meant to group the instruments of the DV
into focused clusters, e.g. a dashboard that is focused on the production department
of a company will only show data or KPIs, that are relevant to that department. A
workspace can have several dashboards, as well as views (cb_view). A view table con-
tains all information about a literal view object of the PostgreSQL, i.g. the title of a
graph, categorization of the data, etc. The information from the view table will then
be interpreted by the backend code to serve the actual data from the view object to the
client. cb_diagramm_type is there to assure the consistency of the diagram types both
in the client and the server. The cb_incident table holds urgent messages and alerts,
whereas the cb_pushsubscription contains all registered devices, that are consenting to
receive push notifications.

5.4 Frameworks and Libraries

This section hands out all the relevant libraries and frameworks, that helped the devel-
opment process of the prototype. It is important to note, that the dependencies in the
backend are installed within a python virtual environment. This ensures that the root
system’s dependencies and python version of the server are isolated from those on the
backend.

5.4.1 Flask

Flask is a python micro web framework, that is known for its lightweight and least
opinionated upbringing, as it initially depends on only two python libraries, Jinja and
Werkzeug. Thus, it also offers flexibility in terms of how the framework is being used, by
adding the necessary extensions. For example, to connect with the prototype’s RDBMS,
the package flask-sqlalchemy is added as an Object Relational Mapping (ORM) library,
so that the backend could build connections, map tables into entities (classes), and
execute transactions into the RDBMS. With that said, the code in the backend uses the
object-oriented approach.

Since the backend code contains business logics to process data, it is implemented with
the controller-service-repository architecture, and follows the repository pattern as a
complementary to the architecture. In this architecture, the requests from the PWA will

30

5 System Design

be received firstly by the controller. For CRUD operations, the controller will retrieve
resources directly from the repository. If a request acquires a complex business logic,
the controller will firstly call methods from the service, where all business logics exist.
This allows an abstraction of the objects and reduces repetition of the code, resulting
in decoupling of dependencies between modules [31]. Since abstraction and decoupling
are broad concepts on their own, it is out of the scope for this thesis to dwell further on
those topics.

5.4.2 Meltano

Often used to optimize and schedule ELT pipelines for BI and Artificial Intelligence
(AI) applications, Meltano is an open-source data integration tool, that orchestrates
extractors, loaders and transformers for ELT processes. Meltano is also a Command Line
Interface (CLI) based automation tool and prioritizes configurations in its workflow.

The extractors and loaders in Meltano are called taps and targets, concepts that are
derived from Singer, an open-source standard for writing scripts to move data. So,
taps will extract data from data sources and targets will load them. The communica-
tion between singer taps and targets is intermediated with JSON. Because Singer has
an active and growing community, there are wide-ranging preset taps for various data
sources and targets for loading media. As a demonstration, the prototype uses the
tap-spreadsheet-anywhere package, an extractor that pulls out data from Comma Sep-
arated Value (CSV) or Excel files, and the target-postgres , a loader that loads data
to a PostgreSQL instance.

As for the transformer, Meltano adapted DBT to translate the raw extracted data from
previous steps into meaningful information (business queries) and materialize them into
tables or views. With DBT, the transformation process could be well implemented
into software engineering concepts, such as reusability and modularity. For that, the
dbt-postgres plugin will be combined with both the extractor and the loader. The
ELT workflow will be discussed in section 6.5.

5.4.3 React

As a JS library, React helps developers to build responsive websites whilst maintaining
the website’s performance, by introducing the virtual Document Object Model (DOM).

31

5 System Design

DOM is created by the browser once a webpage is loaded, and can be altered by JS [45].
In React, virtual DOMs are created as a lightweight copy of every actual DOM object.
When a DOM object is updated, React firstly updates the entire virtual DOM. Then,
React compares the virtual DOM with the last snapshot of the actual DOM, to detect
which object that needs to be altered. This way, instead of re-rendering all actual DOM
objects of the webpage, React only applies the change, where it is really needed. This
advantage could be used to implement a good and responsive UX for the prototype.

5.4.4 VitePWA

A complex client-side code contains a huge amount of JS for the mentioned reasons.
That is why, JS developers will often need a bundler to translate the written code, that
they understand, to a bundled, packaged and minified version of the code, that browsers
understand (static files). Examples of known JS bundlers in the front-end community,
are Webpack, Parcels and Rollup. The prototype will use Vite (based on Rollup) as
its bundler. Beside of the fast build-time for production, Vite actively uses native Ec-
maScript modules and Hot Module Reload (HMR) technology, which in consequence,
establishes a fast development server and thus, a suitable bundler for a rapid develop-
ment environment. VitePWA is an extension of the Vite bundler and helps developers
tremendously in implementing concepts of PWA such as the Web App Manifest and pre-
caching, with a minimal configuration. VitePWA also makes it possible to enable PWA
development in a local system.

5.4.5 Workbox

As a JS library, Workbox makes the development of SW easier and more interactive, by
providing different kinds of approaches to generate SWs almost automatically. This way,
developers can flexibly decide which approach is best for the generation of the SW in their
application. VitePWA utilizes and integrates Workbox methods into their workflow.

5.4.6 Tremor

Tremor is a component-based and open-source library for analytical UIs, crucial for the
DV of the prototype. Because Tremor is built on top of React, the library could be
integrated quite well and fast. To match with the mechanism of Tremor, the prototype

32

5 System Design

needs to alter the data, that comes from the API, by wrapping each UI component inside
a compatible React component.

5.5 Deployment

Both sides of the prototype need to be opened up to the public, so that it is available
for any device at any time. To demonstrate the two-tier architecture, the prototype’s
server-side and client-side are deployed on two different environments.

The prototype’s server-side (the backend and the database) was deployed as a docker
container in a virtual server and is available on the subdomain https://api.crossbi.de .
Managing the opened ports of the docker images and the routing mechanism on the server
is Nginx, a web server software natively installed on the virtual server. To establish this,
the author needed to apply some routing configurations on the Nginx config file. The
SSL certificate is also applied on the config file. On the other hand, the client-side is
deployed on Netlify, an automated platform for deploying and hosting websites. Netlify
has a built-in integration with GitHub, where the repositories of the prototype could be
found. The client can be accessed on the address of https://app.crossbi.de .

For debugging and administration processes, the database’s administration tool (PgAd-
min) is available at http://database.crossbi.de and will not be exposed to the public.
Although theoretically anyone could open the database’ address on a browser, the in-
stance is layered with Basic Auth security and admin login authorisation, to ensure that
only the author has access to this tool.

33

6 Implementation

This chapter covers the implementation of the prototype. The chapter goes about the
backbone of the PWA, then explains the workflow of the ELT process in the server, and
finally clarifies the useful features of the PWA, that helps to satisfy the requirements
in the chapter 4. The implementation stemmed on the theoretical background in the
chapter 3. This chapter also includes screenshots and code snippets of the prototype.

6.1 File Structure

To understand and grasp the substantial elements of the prototype, the author needs
to hand out the file and folder structure from both the frontend and the backend code,
which can be observed below. The structures will only include folders or files that are
necessary for the subchapters after the current one. The remaining folders and files can
be found in the source code in 9.

34

6 Implementation

6.1.1 Front End

c ros s−bi−f rontend
|−− s r c
| |−− a s s e t s
| |−− components
| |−− context s
| |−− hooks
| |−− pages
| |−− s t y l e s
| |−− types
| |−− App . t sx
| |−− enums . t s
| |−− index . c s s
| `−− main . t sx
|−− pub l i c
|−− s t a t i c s
| |−− mani fe s t . j s on
| `−− topo j son . j son
|−− . env
|−− index . html
|−− package . j son
|−− registerSW . t s
|−− sw . j s
|−− v i t e . c on f i g . t s
`−− . . .

Listing 6.1: The file structure of the front end code.

35

6 Implementation

6.1.2 Back End

c ros s−bi−backend
|−− . db
|−− . meltano
| |−− e x t r a c t o r s
| |−− f i l e s
| |−− l o ad e r s
| |−− l o g s
| |−− run
| |−− t rans f o rmer s
| `−− . . .
|−− a s s e t s
|−− s r c
| |−− c o n t r o l l e r s
| |−− r e p o s i t o r i e s
| |−− s e r v i c e s
| |−− auth . py
| |−− models . py
| `−− . . .
|−− trans form
| |−− macros
| |−− models
| |−− p r o f i l e s
| | `−− pos tg r e s
| | `−− p r o f i l e s . yml
| `−− dbt_project . yml
|−− app . py
|−− c on f i g . j s on
|−− docker−compose . yml
|−− Dock e r f i l e
|−− i n i t . s q l
|−− meltano . yml
|−− requ i rements . txt
`−− . . .

Listing 6.2: The file structure of the back end code.

36

6 Implementation

6.2 Manifest

As described in the chapter 3, the manifest is needed as some sort of metadata to convert
a web application into a PWA. With that said, the manifest file of the client side of the
prototype is stored in the repository as a JSON file. In regard to the VitePWA plugin, the
manifest file has to be imported as a JS object in the vite.config.ts . The Listing 6.3
shows the content of the manifest file of the PWA.

1 {

2 "name": "Cross BI",

3 "short_name": "Cross BI",

4 "description": "Your Cross Plattform Business Intelligence App",

5 "id": "/",

6 "theme_color": "#fff",

7 "background_color": "#fff",

8 "display": "standalone",

9 "start_url": "/",

10 "icons": [

11 {

12 "src": "pwa-192x192.png",

13 "sizes": "192x192",

14 "type": "image/png",

15 "purpose": "any"

16 },

17 {

18 "src": "pwa-512x512.png",

19 "sizes": "512x512",

20 "type": "any maskable",

21 "purpose": "any"

22 },

23 {

24 "src": "pwa-192x192.png",

25 "sizes": "192x192",

26 "type": "image/png",

27 "purpose": "maskable"

28 },

29 {

30 "src": "pwa-512x512.png",

31 "sizes": "512x512",

32 "type": "image/png",

33 "purpose": "maskable"

34 }

37

6 Implementation

35],

36 "related_applications": [{

37 "platform": "webapp",

38 "url": "https://app.crossbi.de/manifest.json"

39 }],

40 "screenshots": [

41 {

42 "src": "/sc-portrait.png",

43 "sizes": "778x1684",

44 "type": "image/png"

45 }

46]

47 }

Listing 6.3: The content of the manifest file

The manifest members are typically shown in the developer tools’ of the browser. Chrome
and Firefox interactively show the manifest, by grouping the manifest members into sec-
tions. Because each browser may or may not support some features, the sections can
also vary. For example, aside from the identity, display and icons sections, the Chrome
browser also shows some experimental members such as related_applications and
screenshots . Unfortunately, the Safari browser does not have this feature, and there-
fore show the manifest rather as a plain JSON object. For Chromium browsers (Chrome,
Edge and Opera), two sizes of icons (192x192 pixel and 512x512px) are desired, as it will
resize the icons automatically to fit the device [1]. The maskable purpose in the icon
specification tells the device, that the actual graphic of the icon is within the safe zone,
and therefore, can be masked.

Figure 6.1: Two different displays of the prototype’s icon in two major OSs after instal-
lation. The left icon is the masked icon on Android and the right icon is the
masked icon on iOS.

38

6 Implementation

It is also noticeable from the manifest, that the author picked Cross BI as the prototype’s
name and the prototype’s display will be standalone, as an answer to the second non-
functional requirement 4.2. By setting the display as standalone, the installed prototype
will have its own window toolbar in the desktop, and in all devices, the prototype will
not be opened as a browser tab, but as a conventional application.

6.3 Service Worker

The SW is also part of the front end code base. In the Listing 6.1, the SW can be spotted
with the name of sw.js . The file is then to be registered in the VitePWA configuration,
as seen in the Listing 6.4 on the seventh code line below. The registerSW.js file is
needed to initiate the registration of the SW. The initiation begins after all the resources
of the application page are loaded, in which the load event of the browser’s window

object will then be fired.

1 ...

2 VitePWA({

3 manifest: manifestObject,

4 registerType: 'autoUpdate',

5 strategies: 'injectManifest',

6 srcDir: '.',

7 filename: 'sw.js',

8 injectRegister: null,

9 workbox: {

10 globPatterns: ['**/*.{js,css,html,ico,png,svg}']

11 },

12 devOptions: {

13 navigateFallbackAllowlist: [/^index.html$/],

14 enabled: true,

15 type: 'module',

16 },

17 selfDestroying: shouldSelfDestroy == 'true'

18 }),

19 ...

Listing 6.4: The configuration bit of the VitePWA plugin.

39

6 Implementation

6.3.1 Registration

There are two approaches in Workbox to register a SW for an application. One be-
ing the generateSW approach, where Workbox automatically creates a SW file. While
this approach is able to provide precaching process and runtime caching, developers can
not alter the file, which makes it impossible to utilize further SW features. The other
approach is the injectManifest approach, which consecutively offers precaching pro-
cess, runtime caching and the flexibility to obtain SW features, resulting in a steeper
learning curve in the SW development. To be able to make the best of existing PWA
features, which is needed to answer the research question item RQ1, the author chose
the injectManifest approach for the prototype. This approach has also to be defined
in the VitePWA configuration file, as seen on the fifth line of the Listing 6.4.

Same as the manifest, a successful SW registration could be indicated through the de-
veloper tool of a browser. If the registration is unsuccessful, the developer tool will point
out the cause in the SW.

Figure 6.2: An active SW of the prototype.

A change in the SW creates a new version of the SW, which makes the old version out-
dated. If the new version is successfully registered, browsers will first compare the newly
registered SW with the old one. If there is a difference between the two, browsers will
outdate the old one and substitute it with the new version. Though, the update does
not happen instantly, as users will need to manually reload the browser to let the new
SW have control over the client. There are some mechanisms to update the SW provided
by Workbox. The registerType: autoUpdate key-value in the Figure 6.2 for example,
tells the browser to automatically update the SW. Additionally, the two lines of code in
the Listing 6.5 have to be present on the top level of the SW file.

40

6 Implementation

1 ...

2 self.skipWaiting();

3 clientsClaim();

4 ...

Listing 6.5: skipWaiting() is used to pass through the waiting phase of the SW, while
the Workbox method clientsClaim() is used to let the changes on browsers
instantly.

While this sounds practical, users might still get confused because of the sudden update.
Thus, the prototype provides a mechanism, by listening to the updatefound event of the
ServiceWorkerRegistration type [29]. If the event occurs, a dialog element will appear
on the screen to notify users about the ongoing update, as can be noticed in the Figure 6.3.

Figure 6.3: The update dialog on the prototype.

41

6 Implementation

6.3.2 Caching Strategy

To facilitate the offline functionality off the prototype, the network first caching strategy
is implemented in the SW.

1 ...

2 self.addEventListener('fetch', (event) => {

3 let url = event.request.url;

4
5 if (!url.startsWith('http') || event.request.method !== 'GET') {

6 return;

7 }

8
9 event.respondWith(

10 caches.open(CACHE_NAME).then(async (cache) => {

11 const headers = new Headers();

12 headers.append('x-api-key', API_KEY);

13 headers.append('Content-Type', 'appplication/json');

14
15 return fetch(url, { headers: headers })

16 .then((fetched) => {

17 cache.put(event.request, fetched.clone());

18 return fetched;

19 })

20 .catch(() => {

21 return cache.match(url);

22 });

23 })

24);

25 });

26 ...

Listing 6.6: A fetch event interceptor in the SW.

The SW listens to the fetch event, i.g. the outgoing requests from the prototype to the
server. However, not all requests are intercepted. The SW practically ignores all requests
that are not HTTP, or all requests that are not using the GET method. Otherwise, the
SW will fire the request further, and add or update the cache value with the Uniform
Resource Locator (URL) as its key. This way, the cached response, e.g. the data of a
particular view, will always be overwritten, until the prototype must switch to the offline
mode because of network absence, where the SW only retrieves data from cache.

42

6 Implementation

6.4 Installation

To see, if the prototype is installable in all existing browsers, could be a challenging task.
The data in the Figure 6.4 gives a hindsight on how to tackle this.

Figure 6.4: The market share of major browsers for all platforms from January 2020 until
December 2023. Adapted from [39].

From the chart above, it can be concluded that the Chrome browser dominates the mar-
ket share of browsers for all platforms worldwide, until now. Having roughly 65% of the
browsers market share, Chrome is built based on the chromium engine, which browsers
like Edge, Opera and Samsung Internet also are. If combined, Chromium browsers take
more than 70% of the market share. This is rather not shocking, because all android
devices come with pre-installed Chrome. In terms of the PWA development, Chromium
browsers are friendlier towards developers, as most of the experimental features are al-
ready available in them, both in desktop and mobile devices.

Also, due to the 18.5% worldwide market share the Safari browser possesses, it is ben-
eficial to review the installation of the prototype in Safari. While Chromium browsers
take most of the browser’s market share, according to Statcounter, Apple devices lead
the mobile vendor market share worldwide with a percentage of 29.32% (until January
2024) [40]. Apple devices (iOS) comes with Safari, and it is the default native browser
on these devices. Therefore, contributing to the functional requirement 4.1, an overview

43

6 Implementation

of the installation of the prototype in desktop with Chrome and Safari, in android with
Chrome Mobile and in iOS with Safari is provided in this section.

6.4.1 Desktop

Chrome

After navigating to the PWA link on the chapter 9 through Chrome, users will be greeted
by the installable indicator in the URL input section. By clicking the indicator and
agreeing to the installation prompt, the prototype will be installed on the device, and it
is ready to use.

Figure 6.5: The install prompt in Chrome desktop.

Safari

The installation on safari takes a few more steps than Chrome. In the toolbar, users will
need to click on the share button. From there, users will be provided with the Add to
Dock option. By clicking the option and the add button on the Add to Dock dialog as
seen on the Figure 6.6, the prototype will be added into the device as an application.

Figure 6.6: The Add to Dock dialog in Safari desktop.

44

6 Implementation

6.4.2 Mobile

Chrome Mobile on Android

Unlike the desktop version, the mobile version of Chrome does not prompt the avail-
ability of the prototype’s installation. Users will need to press on the menu (the three
dots on the right) and then install the prototype. Additionally, Chrome provides an
experimental feature to preview the application before installing. This can be achieved
through the screenshots property in the manifest file.

Figure 6.7: The prototype’s installation steps in Chrome mobile.

45

6 Implementation

Safari Mobile on iOS

On the other hand, the installation in Safari mobile does not expose too much of a differ-
ence with the desktop version. On Safari mobile, instead of clicking Add to Dock, users
will need to choose the Add to Home Screen option.

Figure 6.8: The prototype’s installation steps in Safari mobile.

6.5 Data Processing

As mentioned, the ELT process is one of the core processes of the prototype, and it will
be executed by the Meltano framework. To engage in this process and to perform the
ELT operation, the author has to namely access the remote server. The plugins, which
are added through the CLI meltano add <plugin> , can be summarized as follows:

46

6 Implementation

Role Plugin Description
Extractor tap-spreadsheets-

anywhere
extracts data that comes from CSV
or Excel files.

Loader target-postgres loads the extracted data to the Post-
greSQL instance of the prototype.

Transformer dbt-postgres transforms, cleanses, and refines the
data modularly.

Table 6.1: The meltano plugins of the prototype.

By successfully running the meltano add command line, Meltano will alter the content
of the meltano.yml file. From there, some configurations will also need to be manually
re-configured to adapt to the file structure and workflow of the prototype. The details
of the plugins will be elaborated in the next subsections.

6.5.1 Data Source

The data source is taken from Kaggle, a platform to find various datasets. Since BI is
business related, the author sampled the Retail Case Study Data dataset, whose link can
be found in the chapter 9 below. The initial dataset contains three CSV files:

• Customer.csv contains information about the customers of the retail, which are
customer_id , DOB , gender , and city_code .

• Transactions.csv acts as the "fact" data, that gathers all information about the
transactions’ history of the retail. This includes the customer ID, the transaction
date, product category code, etc. There are 23,054 recorded unique transactions in
the file.

• prod_cat_info.csv yields the code and description of the category, as well as
the sub category of the products available.

The author added the Cities.csv file as an extra data source, that describes the cities
and countries of each code in the Customer.csv file. The files are located in the assets

folder (Listing 6.2) and are organized based on the workspace_id they are assigned to.

47

https://www.kaggle.com/

6 Implementation

The PWA also offers users the ability to upload CSV or Excel files through the Upload
section.

Figure 6.9: The Upload feature of the PWA. The first image (left) shows the state of the
PWA, after a file is given. If the upload is successful, then the screen will
change to the second image (middle). The third image on the right indicates
the behaviour of the PWA, if a false formatted file is given.

6.5.2 Extract

The tap-spreadsheets-anywhere extractor needs an array of objects called "tables" in
its configuration. Each object of the array describes the required and optional properties
of each data source, or in this case each file. The properties, that are used in the
implementation, can be observed in the Table 6.2 below.

Property Necessity Description
delimiter Optional The delimiter in the raw CSV files.
key_properties Required Unique identifier(s) of the data, that will

eventually be used as the primary key of
the target connector.

48

6 Implementation

name Required Name of the extraction, or in other words
the Singer stream. The defined name will
be used by the target as the name of the
table.

path Required The directory of the source file.
pattern Required The name of the file in regular expression.
quotechar Optional A specific character surrounding a string

that contains a delimiter character.
start_date Required The start date that the tap uses to filter

the files, based on the last modified date
of the files.

Table 6.2: The properties of a table object.

6.5.3 Load

Listening to the Singer Stream produced by the tap, is the target. Thus, the target can
not be executed without the tap, as this will result in an infinite loop in the algorithm.
A minimal configuration properties of the target-postgres , that leads to successful
writings of the stream into the database, are as follows:

Property Necessity Description
database Required The name of the database inside Post-

greSQL instance.
default_target_schema Required The default schema of the target, for in-

stance the PUBLIC schema.
host Required The reachable address of the instance.
port Required The port of the host.
user Required A username of a privileged user. The role

of the user can be defined in the Post-
greSQL instance.

password Required The password of the given username.

Table 6.3: The configuration properties of the target_postgres plugin.

49

6 Implementation

6.5.4 Transform

The DBT transformation concept is based on building recyclable models. Two ways to
define a DBT model are through defining SQL models with SQL files, or python models
with python files. To avoid adding more package to the current python environment, the
author chose to define the SQL methods to define the DBT models. As recommended
by DBT, the models are separated into three folders:

• Staging. The folder for the DBT models that select, cleanse and transform the
raw generated tables from the database/ data warehouse.

• Intermediate. The folder for more focused and granular models.

• Marts. Refined and meaningful models that satisfy specific business queries and
requirements.

The models in the Intermediate and Marts folder usually need to reference the models
in the Staging model. For this, DBT provides the ref() function, that receives the
file name of a model as its parameter. The usage of ref() contributes to the idea
of the modularity of the models, as developers will not need to write the same SQL
code over and over again, resulting in redundant and dirty code practice. By default,
the transformed models will be materialized as views, and will be updated after each
transformation run. As for the configuration, dbt-postgres accepts almost the same
values as target-postgres in the subsection 6.5.3.

WITH monthly_revenue AS (
SELECT

extract (year from t ransact ion_date) as transact ion_year ,
extract (month from t ransact ion_date) as transaction_month ,
sum(total_amount) as monthly_revenue

FROM
{{ r e f (" stg_1__transactions ")}}

group by transact ion_year , transaction_month
order by transact ion_year , transaction_month

)

SELECT ∗ FROM monthly_revenue

Listing 6.7: An example of a DBT model in the intermediate folder. This model will be
materialized in the PostgreSQL instance as a monthly_revenue view.

50

6 Implementation

6.5.5 Execution

To execute the ELT process, Meltano provides the run or the invoke command, fol-
lowed by the plugins, that are to be included. So, taking account of the previous sub-
chapters, the complete ELT workflow command of the prototype will be meltano run

tap-spreadsheets-anywhere target-postgres dbt-postgres:run . Meltano also allows
developers to set frequently occurring jobs. For example, if the system requires the trans-
formation to run on a daily basis. Since there will be no changes on the data source, the
author will not be dwelling further on this matter.

Figure 6.10: A successful run of the DBT transformation process in the server.

6.6 Data Visualisation

After the data processing has been initially done, i.g. there are some generated views
in the database, the transformed data are then to be visualized in the PWA. As stated
in the section 5.3, a request of a view will trigger the server to refer the cb_view table
to pass the data back as a response. This section elaborates how data are visualized in
the prototype, specifically in the PWA, and which diagrams are used to support further
analyzations and decision-making processes.

51

6 Implementation

6.6.1 Diagrams

Big Number

Big numbers in dashboards attract the attention of users, because they contain mostly
important key numbers of a dataset. The big number chart in the prototype shows
aggregated numerical data. Aggregated data are collective data, through the utility of
operators such as summations and averages. An example is shown in the Figure 6.11,
where the total revenue of the sampled retail data over the years are added. Optionally,
the big number chart also shows the trend of the data.

Figure 6.11: The big number chart of the prototype.

Bar Diagram

Bar charts/ diagrams show the comparison of various data categories, and can also subtly
show a trend, based on the same value that those categories possess. In the Figure 6.12,
the revenue of each year of the sampled dataset is projected with a bar diagram. Yet
in this case, the trend of the dataset is not easily interpreted, as the dataset contain
incomplete data from the year 2014.

Figure 6.12: The bar diagram of the prototype.

52

6 Implementation

Line Diagram

Line diagrams/ charts are suited to project timeline data and its fluctuation over time.
In the prototype, the line diagram can also show the timeline data of various categories.
The line diagram in Figure 6.13 for example, shows the revenue of each country over
time. The categories can then also be filtered independently, to help to improve the data
visualization.

Figure 6.13: The line diagram of the prototype.

Donut Diagram

As a relative to the pie chart, the donut diagram/ chart shows the part of each category
as percentages. Like the line diagram, the donut diagram in the prototype comes with a
filter option.

53

6 Implementation

Figure 6.14: The donut diagram of the prototype.

Map Diagram

The visualization of geological representation as a map diagram is also included in the
prototype. For this diagram, the author made use of the react-simple-maps library, and
provided a static file topojson.json for its source of longitude and latitude. Because of
the limited resources, the map works currently at country level.

Figure 6.15: The donut diagram of the prototype.

54

6 Implementation

6.6.2 Global Time Filter

To enhance the visualization, specifically in the time dimension, the prototype is com-
plemented with a global time filter. By specifying the From Date and the To Date with
a native date picker, the filter will apply to all the diagrams available, containing filter-
able timeline data. Is this the case, then the data of the diagrams will be updated and
refreshed, which means, that the PWA will send some requests to the backend with the
date filter as query parameter of the requests.

https://api.crossbi.de/crossbi/v1/api/views/inspect/2?from=2012-09-16

&to=2023-09-17

Figure 6.16: An example of a time filtered request.

That said, due to the infinite combinations of such requests, it is impossible to cache
them in the device’s storage. This implies, that the filter only works within a working
internet connection. The steps of how the global time filter works, can be briefly seen in
the Figure 6.17.

Figure 6.17: The dashboard before (left) and after (right) the global time filter is applied.

55

6 Implementation

6.7 Notification

The notification feature in the web development could be achieved through the use of the
Notifications API and the Push API. The Notifications API allows a web page to have a
control over the system notification, whereas the Push API grants the ability to receive
push messages from a server asynchronously. This feature of the web bridges the gap
between web and native applications, as it increases the engagement of the application
to users, and it is an implementation of a real-time data visualization. For a working
web push notification system, both in computer or mobile devices, some requirements
have to be fulfilled to achieve a secure context and environment.

• A Service Worker. The SW listens to the push event that is generated by the
server, and triggers the notification to be shown on the respected device.

• A TLS connection. The web push only works on HTTPS connection. This
guarantees the security context of the application upon using the feature.

• Voluntary Application Server Identification (VAPID) keys. The existence
of VAPID keys acts as an authentication mechanism between the two sides of an
application, and helps the server to identify its web push receiver and vice versa.

Figure 6.18: The push notification on iOS and on Android.

56

6 Implementation

In the prototype, upon a successful first login attempt, users will be asked about the
permission of allowing notification through the prototype. If allowed, the SW will send
a subscription request and its details to the server. The details contain the informa-
tion about the endpoint of the subscription and the public key (VAPID), to then later
be paired with the private key in the server. This information will be stored in the
cb_pushsubscription table from the Figure 5.3. A use case example would be, if an
incident has occurred, then an incident object is created and persisted in the respected
table. This will trigger the server to send notifications to all the subscribed endpoints.
Naturally, the notification will then only appear, if the PWA is working under a working
internet connection.

Figure 6.19: The notifications in desktop (macOS).

As seen in the Listing 6.8, the SW in the PWA listens to the push event. The payload of
the event will be firstly parsed into a JSON object. Then, the waitUntil() method tells
the browser, that a work is ongoing and therefore not to terminate the process occurring
in the SW. Required are the title and the body properties, which are sent from the
server as a payload, and an icon. The icon should ideally be the icon of the application
itself. The vibrate and badge properties are included as experimental complement
features that temporarily only work in Chromium browsers.

1 ...

2 self.addEventListener('push', (event) => {

3 const pushData = event.data.text();

4 const data = JSON.parse(pushData);

5
6 event.waitUntil(

7 self.registration.showNotification(data.title, {

8 body: data.body,

9 icon: '/pwa-192x192.png',

10 vibrate: [200, 100, 200, 100, 200, 100, 200],

11 badge: '/pwa-192x192.png'

12 })

57

6 Implementation

13);

14 });

15 ...

Listing 6.8: A push event listener in the SW.

6.8 Offline Mode

The PWA generally detects the absence of an internet connection. In this case, an offline
indicator in the menu bar will appear, so that users will know if they currently do not
have a proper internet connection. The visualisations will still be able to be seen, as
the recent data of the charts are cached in the device’s storage. As explained in the
subsection 6.3.2, failed fetch requests will be directed to their recent responses in the
cache storage. In conclusion, all precached and cached assets, including images and icons,
will appear normally offline as it is. In the offline mode, users can upload a file nor make
a change in the charts, as it will fire a POST request, that is ignored by the caching
mechanism.

Figure 6.20: The offline mode indicator below the navigation bar of the PWA

58

7 Discussion

This chapter gives a discussion about how the prototype provide answers to the research
questions in the section 1.2. Additionally, readers will find a list of the implementations
to each functional and non-functional requirement in the chapter 4.

7.1 Research Questions Evaluation

To answer the first research question (RQ1), the author implemented and deployed a
prototype consisting of a client side application, which is the PWA itself, and a server-side
application to support the data processing activities, and the communication between
the client and the server through API services. Upon using modern web technologies
such as React and Vite, which are widely used and are proven to show high performance
many aspects of software development [21], the author is able to deliver some of the most
important diagram and chart types in the PWA to support further analysis of business
data and the decision-making process. The PWA is also occupied with notable features
of a common native application, resulting in a slight difference between the PWA and
other native applications. It is also worth mentioning, that the VitePWA library also
helps to make the development of the manifest and service workers a better experience for
developers. Furthermore, because the PWA relies significantly more on browsers instead
of OSs, users can install the PWA on various devices that have the common OSs. In
conclusion, the PWA can be classified as a cross-platform application, which therefore
answers the first research question.

There are few arguments based on the prototype and its system architecture, that can
be used to give some insights for the second research question (RQ2).

• The PWA possess only one code base, that fits for all platforms, which, considering
the normal native application development that consists of at least two code bases
for Windows, Android, and Apple OSs. This means that the development of PWA

59

7 Discussion

cuts down for at least 50% of the development complexity, implying that it will
need less resources.

• Instead of being deployed in the application store of each OS, the PWA could be
conveniently deployed over the web. This automatically reduces the complexity of
e.g. the DevOps activities in an agile environment, resulting in the need for even
less resources.

• ELT is a relatively new data processing discipline, that is meant to be used on par
with modern data warehouse technologies. To compare the performance of both
methods, Ranjan [32] carried out three data push down experiments, resulting in a
performance gain for the ELT. Also, in a qualitative study by Haryono et al. [16],
ELT is suggested to have the advantage of being a low-cost alternative than ETL.
However, the results of the recent studies mentioned should be taken with a grain
of salt, as a consequence of the lack of a standard benchmark for both disciplines
[46].

Therefore, the second research questions can not yet be fully answered through this thesis
due to the limitations that the author had at the time this work is being written. More
limitations of the prototype can be found in the chapter 8.

7.2 Requirements Fulfilment

This section will discuss, whether the prototype as a whole does fulfil each requirement
in the chapter 4.

Requirement Interpretation
FR1 This requirement is fulfilled by installing SSL certifi-

cates on both client- and server-side of the prototype.
Not only is this required for the PWA to be installable,
but also it guarantees an encryption between data ex-
change through the API. Furthermore, the prototype
is implemented with user registration system with en-
crypted passwords, to add to the security aspects.

60

7 Discussion

FR2 The Tremor library is used on top of React to sup-
port the DV mechanism. The dashboard feature shows
common diagrams and charts, that are useful for the
decision-making process and further analysis.

FR3 With the existence of the manifest, service workers and
HTTPS connections, the PWA is ready to installed
from any commonly used browsers on any common
OS.

FR4 The PWA is equipped with the web push feature that
allows the display of notifications for updates or in-
cidents. Upon logging-in, users will need to allow the
notification permission to get any notification onwards.
In this way, the prototype only allows registered users
to use its notification service.

FR5 Users can upload some sort of data source in form of
CSV or Excel (ẋlsx) file on the upload section of the
PWA.

FR6 The server side of the prototype could extract, load
and transform (ELT) the available (business) data into
views. The transformation process occurs in the data
warehouse, which in the case of the prototype is the
PostgreSQL RDBMS instance.

FR7 Some charts and diagrams on the client-side are
equipped with the filter function. Additionally, the
PWA allows users to filter the time range of the charts
globally.

FR8 User interactions could trigger the PWA to briefly
show a UI element called toasts. The toasts act as
success and error feedback, maintaining a good UX
overall.

61

7 Discussion

FR9 Logged-in users can still open the PWA even without
having an internet connection. This happens because
the installed service worker will cache all static files
and responses to the latest update. However, since
this is the case for the PWA, users have to initially
navigate to all available pages to be able to get the
cached responses into the offline mode. Also, in the
offline mode, users cannot make changes to the appli-
cation. If there is no network, users will also be notified
in the PWA.

NFR1 In the settings section, users will find a small guide to
install the PWA. In addition, when using the Google
Chrome browser, users will be prompted to install the
PWA, so that it can also be done automatically.

NFR2 Other than applying all the best practices of the PWA
development, some styling decisions using the CSS are
made. As suggested in a quantitative study about
PWA by Diekmann et al. [6], the PWA of the pro-
totype uses an explicit navigation element to avoid
navigation dead end. Additionally, the PWA also uses
the device’s system font to keep the appearance of the
PWA to be as familiar as possible.

Table 7.1: Requirements Fulfilment

62

8 Conclusion

8.1 Conclusion

It is an importance for companies in the current competitive economy, to be able to mon-
itor, analyse and improve the company’s performance, which could be done by adopting
BI software, that integrates and visualizes the (business) data of the companies, such as
sales, customer movement and production data. The visual representation of the data
will then later be analysed for further strategy decisions and innovations. This bachelor
thesis challenges the idea of presenting the DV aspect of BI, by prototyping a technology
alternative towards native applications called the PWA. The development of PWAs is
less complicated than the development of native applications, due to the fact that it
consists of one code base only. This advantage could benefit not only small and medium
companies, but also bigger enterprises that want to cut expenses.

The thesis starts by handing off an introduction to the problem, describing the research
methodology, and formulating the research questions. Then, an analysis of a related
work, that the author found to be relevant and helpful for this thesis, is provided. Next,
deriving from the theoretical background, the requirements are defined and divided into
functional and non-functional requirements. The thesis then proceeds with the system
design and architecture, and the result of the implementation with some screenshots of
the prototype in use.

The prototype itself is a client-server system, that utilizes the HTTP protocol and an
SSL certificate to communicate with each other. The server consists of a PostgreSQL
database/ data warehouse, a flask application for managing communication, and the
Meltano framework for the data processing, which implements the ELT discipline as its
workflow. The PWA on the other hand, lies in the client side of the prototype. The
PWA is built on top of the widely used React library and the VitePWA, a Vite plugin
that helps to manage the development process of the PWA.

63

8 Conclusion

As a result, the prototype could provide a full answer for the first research question
(RQ1). The PWA is proven to be able to act as a standalone application on various
devices, and to visualise business data with heterogeneous charts and diagrams. How-
ever, although the prototype could give some positive insights for the second research
question (RQ2), a quantitative study with larger resources can be conducted to gain the
confidence level of the answer.

8.2 Limitations and Future Research

While the results of the implementation leave positive remarks on the research questions,
this bachelor thesis imposes some limitations and potential future researches, that can be
done based on this work. The first limitation is the subjectivity of the UX towards the
prototype, as the evaluation relied on primarily self-evaluated data and previous findings.
For that, a thorough quantitative study could be done to boost the confidence of the find-
ings. Another limitation was, that the system infrastructure of the prototype was funded
by the author because of the absence of technical resources from the academic institu-
tion. This was caused by a technical incident that occurred while this thesis was being
written. Thus, a proceeding research that tests the prototype on a bigger scale could
produce a more comprehensive result. Another recommendations on a related future
research that focus on the infrastructure of the prototype, can also be the performance
study on an N-Tier architecture instead of a two-tier architecture, which enhances the
performance of the prototype, by focusing on the paradigm of the separations of concern
(SOC). A comparative performance study between the implementation of the PWA on
other front-end libraries and frameworks, e.g. Vue, Svelte, Angular etc, could also be
useful to determine a better choice for the front-end technology [7]. This thesis and the
prototype are also limited to set its focus on the data visualisation aspect of BI, which
sets aside the other disciplines such as data mining and Customer Relationship Man-
agement (CRM) Marketing as seen in the Figure 3.2, which could also act as a base for
forthcoming studies in combination with the ELT discipline.

Another limitation of the PWA that troubles the author, is that, to be able to see the
charts and diagrams, users have to open all available pages, so that the responses are
then cached by the PWA, which is a bit unpractical. It is safe to say, that this is also a
problem for some PWAs out in the web. Further research on a better caching strategy
will be a major resolve for this issue.

64

8 Conclusion

All in all, PWA is a rapidly growing ecosystem with advancements in technologies and
user expectations. Future researches will always be necessary to monitor the evolving
environment of PWAs and how they influence user experience. By addressing these
limitations, the author encourages further exploration and development of this technology
implementation proposal.

65

9 Links

1. PWA: https://app.crossbi.de

2. API Endpoint: https://api.crossbi.de

3. Front End Repository: https://github.com/dvdkwei/cross-bi-frontend

4. Back End Repository: https://github.com/dvdkwei/cross-bi-backend

5. Data Source: https://www.kaggle.com/datasets/amark720/retail-
shop-case-study-dataset

66

https://app.crossbi.de
https://api.crossbi.de
https://github.com/dvdkwei/cross-bi-frontend
https://github.com/dvdkwei/cross-bi-backend
https://www.kaggle.com/datasets/amark720/retail-shop-case-study-dataset
https://www.kaggle.com/datasets/amark720/retail-shop-case-study-dataset

Bibliography

[1] Beaufort, François ; LePage, Pete ; Steiner, Thomas ; Rodionov, Alexey: Add
a web app manifest | Articles | web.dev. https://web.dev/articles/add-

manifest. – (Accessed on 01/21/2024)

[2] Beaufort, François ; LePage, Pete ; Steiner, Thomas ; Rodionov, Alexey: Add
a web app manifest | Articles | web.dev. https://web.dev/articles/add-
manifest#splash-screen. – (Accessed on 02/28/2024)

[3] Biørn-Hansen, Andreas ; Majchrzak, Tim A. ; Grønli, Tor-Morten: Pro-
gressive Web Apps: The Possible Web-native Unifier for Mobile Development.
In: Proceedings of the 13th International Conference on Web Information Sys-
tems and Technologies (WEBIST 2017) (2017), 1, S. 344–351. – URL https:

//doi.org/10.5220/0006353703440351

[4] Buitrón-Dámaso, I. ; Morales-Luna, G.: HTTPS connections over Android.
In: 2011 8th International Conference on Electrical Engineering, Computing Science
and Automatic Control, 2011, S. 1–4

[5] Castilho, Bernardo: Building a Business Intelligence Progressive Web Applica-
tion - CodeProject. https://www.codeproject.com/Articles/1257952/

Building-a-Business-Intelligence-Progressive-Web-2. 8 2018. –
(Accessed on 10/21/2023)

[6] "Diekmann, Julian ; Eggert, Mathias": "Is a Progressive Web App an Alternative
for Native App Development? - A prototype-based usability evaluation of a health
insurance app". "3. Wissenschaftsforum: Digitale Transformation (WiFo21)". 2021

[7] Diniz-Junior, Raimundo N. ; Figueiredo, Caio César L. ; De S.Russo, Gilson ;
Bahiense-Junior, Marcos Roberto G. ; Arbex, Mateus V. ; Dos Santos,
Lanier M. ; Da Rocha, Raimundo F. ; Bezerra, Renan R. ; Giuntini, Felipe T.:

67

https://web.dev/articles/add-manifest
https://web.dev/articles/add-manifest
https://web.dev/articles/add-manifest#splash-screen
https://web.dev/articles/add-manifest#splash-screen
https://doi.org/10.5220/0006353703440351
https://doi.org/10.5220/0006353703440351
https://www.codeproject.com/Articles/1257952/Building-a-Business-Intelligence-Progressive-Web-2
https://www.codeproject.com/Articles/1257952/Building-a-Business-Intelligence-Progressive-Web-2

Bibliography

Evaluating the performance of web rendering technologies based on JavaScript: An-
gular, React, and Vue. In: 2022 XVLIII Latin American Computer Conference
(CLEI), 2022, S. 1–9

[8] Duda, Jerzy: Business intelligence and NoSQL databases. In: Information Systems
Management 1 (2012), 1, Nr. 1, S. 25–37. – URL http://cejsh.icm.edu.pl/

cejsh/element/bwmeta1.element.desklight-18861c48-494a-457a-

b06a-77e9478aed49/c/ISIM_Vol_1_1__25-37.pdf

[9] Elias, Micheline: Enhancing User Interaction with Business Intelligence Dash-
boards, Ecole Centrale Paris, Dissertation, 10 2012. – URL https://theses.

hal.science/tel-00969170

[10] Fielding, Roy T.: Fielding Dissertation: CHAPTER 5: Representational State
Transfer (REST). 2000. – URL https://ics.uci.edu/~fielding/pubs/

dissertation/rest_arch_style.htm

[11] Fournier, Camille: Comparison of smoothness in progressive web apps and mobile
applications on Android, KTH ROYAL INSTITUTE OF TECHNOLOGY, Diplo-
marbeit, 2020. – URL https://www.diva-portal.org/smash/record.

jsf?pid=diva2%3A1474729&dswid=7415

[12] Friendly, Michael ; Denis, Daniel J.: Milestones in the history of thematic
cartography, statistical graphics, and data visualization. 2001. – URL http:

//www.datavis.ca/milestones/

[13] Gillis, Alexander S.: What is native app? | Definition from
TechTarget. https://www.techtarget.com/searchsoftwarequality/

definition/native-application-native-app. December 2022. – (Ac-
cessed on 10/18/2023)

[14] Government, The United S.: The HTTPS-Only Standard - Introduction to
HTTPS. https://https.cio.gov/faq/. – (Accessed on 12/26/2023)

[15] Hajian, Majid: Progressive Web Apps with Angular. Apress, 1 2019. – URL
https://doi.org/10.1007/978-1-4842-4448-7

[16] Haryono, Edward M. ; Fahmi ; Tri W, Adi S. ; Gunawan, Indra ; Nizar Hi-

dayanto, Achmad ; Rahardja, Untung: Comparison of the E-LT vs ETL Method
in Data Warehouse Implementation: A Qualitative Study. In: 2020 International

68

http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-18861c48-494a-457a-b06a-77e9478aed49/c/ISIM_Vol_1_1__25-37.pdf
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-18861c48-494a-457a-b06a-77e9478aed49/c/ISIM_Vol_1_1__25-37.pdf
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-18861c48-494a-457a-b06a-77e9478aed49/c/ISIM_Vol_1_1__25-37.pdf
https://theses.hal.science/tel-00969170
https://theses.hal.science/tel-00969170
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1474729&dswid=7415
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1474729&dswid=7415
http://www.datavis.ca/milestones/
http://www.datavis.ca/milestones/
https://www.techtarget.com/searchsoftwarequality/definition/native-application-native-app
https://www.techtarget.com/searchsoftwarequality/definition/native-application-native-app
https://https.cio.gov/faq/
https://doi.org/10.1007/978-1-4842-4448-7

Bibliography

Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS),
2020, S. 115–120

[17] Huang, Zhongdong ; Savita, K.S. ; Zhong-Jie, Jiang: The Business Intelligence
impact on the financial performance of start-ups. In: Information Processing and
Management 59 (2022), 1, Nr. 1, S. 102761. – URL https://doi.org/10.

1016/j.ipm.2021.102761

[18] Booth, Christopher J. (Hrsg.): The new IEEE standard dictionary of electrical and
electronics terms : (including abstracts of all current IEEE standards) / Gediminas
P. Kurpis, chair ; Christopher J. Booth, editor. 5th ed. Institute of Electrical and
Electronics Engineers, 1993. – ISBN 1559372400

[19] inc., MESCIUS: JavaScript UI Components | Powerful UI Controls for Web
Applications | Wijmo. https://www.grapecity.com/wijmo?utm_source=

CodeProject&utm_medium=Dynamic&utm_campaign=PWA-Article-

August-2018. – (Accessed on 10/21/2023)

[20] javaatpoint: 2 Tier Architecture in DBMS - javatpoint. https://

www.javatpoint.com/2-tier-architecture-in-dbms. – (Accessed on
12/23/2023)

[21] Kaushalya, Thilanka ; Perera, Indika: Framework to Migrate AngularJS Based
Legacy Web Application to React Component Architecture. In: 2021 Moratuwa
Engineering Research Conference (MERCon), 2021, S. 693–698

[22] Kirk, Andy: Data Visualisation. SAGE Publications Limited, 9 2019

[23] Kordon, Fabrice ; Luqi: An introduction to rapid system prototyping. In: IEEE
Transactions on Software Engineering 28 (2002), 9, Nr. 9, S. 817–821. – URL
https://doi.org/10.1109/tse.2002.1033222

[24] Krombholz, Katharina ; Busse, Karoline ; Pfeffer, Katharina ; Smith,
Matthew ; Zezschwitz, Emanuel von: "If HTTPS Were Secure, I Wouldn’t Need
2FA" - End User and Administrator Mental Models of HTTPS. In: 2019 IEEE
Symposium on Security and Privacy (SP), 2019, S. 246–263

[25] Kukka, Hannu ; Goncalves, Jorge ; Heikkinen, Tommi ; Suua, Olli-Pekka ;
Zuo, Yifei ; Raappana, Hannu ; Abdellatif, Mohamed ; Okkonen, Olli ;
Jiménez, Raúl ; Ojala, Timo: Touch OK to Continue: Error Messages and

69

https://doi.org/10.1016/j.ipm.2021.102761
https://doi.org/10.1016/j.ipm.2021.102761
https://www.grapecity.com/wijmo?utm_source=CodeProject&utm_medium=Dynamic&utm_campaign=PWA-Article-August-2018
https://www.grapecity.com/wijmo?utm_source=CodeProject&utm_medium=Dynamic&utm_campaign=PWA-Article-August-2018
https://www.grapecity.com/wijmo?utm_source=CodeProject&utm_medium=Dynamic&utm_campaign=PWA-Article-August-2018
https://www.javatpoint.com/2-tier-architecture-in-dbms
https://www.javatpoint.com/2-tier-architecture-in-dbms
https://doi.org/10.1109/tse.2002.1033222

Bibliography

Affective Response on Interactive Public Displays. In: Proceedings of the 4th In-
ternational Symposium on Pervasive Displays. New York, NY, USA : Associa-
tion for Computing Machinery, 2015 (PerDis ’15), S. 99–105. – URL https:

//doi.org/10.1145/2757710.2757723. – ISBN 9781450336086

[26] LePage, Pete ; Richard, Sam: What are Progressive Web Apps? | Articles
| web.dev. https://web.dev/articles/what-are-pwas. 6 2020. – (Ac-
cessed on 10/20/2023)

[27] Masud, Luca ; Valsecchi, Francesca ; Ciuccarelli, Paolo ; Ricci, Donato ;
Caviglia, Giorgio: From Data to Knowledge - Visualizations as Transformation
Processes within the Data-Information-Knowledge Continuum, 07 2010, S. 445–449

[28] 410 Gone - HTTP | MDN. https://developer.mozilla.org/en-US/docs/
Web/HTTP/Status/410. – (Accessed on 12/02/2023)

[29] ServiceWorkerRegistration - Web APIs | MDN. https://developer.

mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration?

retiredLocale=de. 1 2024. – (Accessed on 01/27/2024)

[30] Negash, Solomon: Business intelligence. In: Communications of the Association
for Information Systems 13 (2004), 1. – URL https://doi.org/10.17705/

1cais.01315

[31] Percival, Harry ; Gregory, Bob: Architekturpatterns mit Python. 7 2021

[32] Ranjan, Vikash: A Comparative Study between ETL (Extract-Transform-
Load) and ELT (Extract-Load-Transform) approach for loading data into a
Data Warehouse By, URL https://api.semanticscholar.org/CorpusID:

10204240, 2009

[33] Richardson, Leonard: JWTUMOIM: Act 3. 2008. – URL https://www.

crummy.com/writing/speaking/2008-QCon/act3.html

[34] Ríkharðsson, Páll ; Yigitbasioglu, Ogan: Business intelligence I& analytics
in management accounting research: Status and future focus. In: International
Journal of Accounting Information Systems 29 (2018), 6, S. 37–58. – URL https:

//doi.org/10.1016/j.accinf.2018.03.001

[35] Sahu, Naimish: Software Prototyping Model and Phases - Geeks-
forGeeks. https://www.geeksforgeeks.org/software-prototyping-

model-and-phases/. – (Accessed on 12/09/2023)

70

https://doi.org/10.1145/2757710.2757723
https://doi.org/10.1145/2757710.2757723
https://web.dev/articles/what-are-pwas
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/410
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/410
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration?retiredLocale=de
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration?retiredLocale=de
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration?retiredLocale=de
https://doi.org/10.17705/1cais.01315
https://doi.org/10.17705/1cais.01315
https://api.semanticscholar.org/CorpusID:10204240
https://api.semanticscholar.org/CorpusID:10204240
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://doi.org/10.1016/j.accinf.2018.03.001
https://doi.org/10.1016/j.accinf.2018.03.001
https://www.geeksforgeeks.org/software-prototyping-model-and-phases/
https://www.geeksforgeeks.org/software-prototyping-model-and-phases/

Bibliography

[36] Sharp, Helen ; Preece, Jennifer ; Rogers, Yvonne: Interaction design. John
Wiley & Sons, 5 2019

[37] Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, 1996,
S. 336–343

[38] Shneiderman, Ben: Designing the User Interface: Strategies for Effective Human-
Computer Interaction. 3rd. USA : Addison-Wesley Longman Publishing Co., Inc.,
1997. – ISBN 0201694972

[39] StatCounter: Browser Market Share Worldwide | Statcounter Global Stats.
https://gs.statcounter.com/browser-market-share#monthly-

202001-202401. – (Accessed on 01/29/2024)

[40] StatCounter: Mobile Vendor Market Share Worldwide | Statcounter Global
Stats. https://gs.statcounter.com/vendor-market-share/mobile#

monthly-202001-202401. – (Accessed on 01/29/2024)

[41] StatCounter: Operating System Market Share Worldwide | Statcounter Global
Stats. https://gs.statcounter.com/os-market-share#monthly-

202001-202401. – (Accessed on 02/28/2024)

[42] Statista: Business Intelligence Software - Global | Market Forecast. – URL
https://www.statista.com/outlook/tmo/software/enterprise-

software/business-intelligence-software/worldwide

[43] Taivalsaari, Antero ; Mikkonen, Tommi: The Web as an Application Plat-
form: The Saga Continues. In: 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, 2011, S. 170–174

[44] Taivalsaari, Antero ; Mikkonen, Tommi ; Ingalls, Dan ; Palacz, Krzysztof:
Web Browser as an Application Platform. In: 2008 34th Euromicro Conference
Software Engineering and Advanced Applications, 2008, S. 293–302

[45] W3schools: JavaScript HTML DOM. https://www.w3schools.com/js/

js_htmldom.asp. – (Accessed on 01/06/2024)

[46] Waas, Florian ; Wrembel, Robert ; Freudenreich, Tobias ; Thiele, Maik ;
Koncilia, Christian ; Furtado, Pedro: On-Demand ELT Architecture for Right-
Time BI: Extending the Vision. In: International Journal of Data Warehousing and
Mining 9 (2013), 04, S. 21–38

71

https://gs.statcounter.com/browser-market-share#monthly-202001-202401
https://gs.statcounter.com/browser-market-share#monthly-202001-202401
https://gs.statcounter.com/vendor-market-share/mobile#monthly-202001-202401
https://gs.statcounter.com/vendor-market-share/mobile#monthly-202001-202401
https://gs.statcounter.com/os-market-share#monthly-202001-202401
https://gs.statcounter.com/os-market-share#monthly-202001-202401
https://www.statista.com/outlook/tmo/software/enterprise-software/business-intelligence-software/worldwide
https://www.statista.com/outlook/tmo/software/enterprise-software/business-intelligence-software/worldwide
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp

Bibliography

[47] Wijmo: MyBI | Business Intelligence PWA with Wijmo. – URL https://demos.

wijmo.com/5/PureJS/MyBI/MyBI/

[48] Zheng, Jack: Data visualization in business intelligence. Taylor & Francis, 11 2017.
– 67–81 S. – URL https://doi.org/10.4324/9781315471136-6

72

https://demos.wijmo.com/5/PureJS/MyBI/MyBI/
https://demos.wijmo.com/5/PureJS/MyBI/MyBI/
https://doi.org/10.4324/9781315471136-6

A Anhang

73

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

74

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Purpose Statement
	Research Gap
	Methodology
	Structure

	Related Works
	MyBI

	Theoretical Background
	Progressive Web Application
	PWA Requirements
	Caching Strategies

	Business Data Visualisation
	Forms

	Data Integration
	Dashboard

	Software Requirements
	Functional Requirements
	Non-Functional Requirements

	System Design
	Architecture
	REST(ful) API
	Database
	Frameworks and Libraries
	Flask
	Meltano
	React
	VitePWA
	Workbox
	Tremor

	Deployment

	Implementation
	File Structure
	Front End
	Back End

	Manifest
	Service Worker
	Registration
	Caching Strategy

	Installation
	Desktop
	Mobile

	Data Processing
	Data Source
	Extract
	Load
	Transform
	Execution

	Data Visualisation
	Diagrams
	Global Time Filter

	Notification
	Offline Mode

	Discussion
	Research Questions Evaluation
	Requirements Fulfilment

	Conclusion
	Conclusion
	Limitations and Future Research

	Links
	Bibliography
	Anhang
	Declaration of Autorship

