

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Bachelorarbeit

Schagajeg Masoudi

Konstruktion einer verkürzten Variante eines Undulators unter Berücksichtigung des Verformungsverhaltens

Fakultät Technik und Informatik Department Maschinenbau und Produktion Faculty of Engineering and Computer Science Department of Mechanical Engineering and Production Management

Schagajeg Masoudi

Konstruktion einer verkürzten Variante eines Undulators unter Berücksichtigung des Verformungsverhaltens

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Maschinenbau / Entwicklung und Konstruktion am Department Maschinenbau und Produktion der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

in Zusammenarbeit mit: Deutsches Elektronen-Synchrotron DESY Zentrale Konstruktion ZM1 Notkestraße 85 22607 Hamburg

Erstprüfer: Prof. Dr.-Ing. habil. Frank Helmut Schäfer Zweitprüfer: Dipl.-Ing. Cornelius Martens

Abgabedatum: 15.07.2022

Zusammenfassung

Schagajeg Masoudi

Thema der Bachelorthesis

Konstruktion einer verkürzten Variante eines Undulators unter Berücksichtigung des Verformungsverhaltens

Stichworte

Undulator, FEM-Analyse, PETRA IV, Änderungskonstruktion

Kurzzusammenfassung

Diese Bachelorthesis umfasst die Änderungskonstruktion einer verkürzten Variante eines 5m-Undulators unter Berücksichtigung des Magnetträger-Verformungsverhaltens. Die Magnetträger sind symmetrisch, maximal zu kürzen. Alle weiteren Komponenten sollen möglichst unverändert bleiben. Vorbereitend wurden analytische Berechnungen der ungekürzten und der gekürzten Magnetträgervarianten gegenübergestellt. Die erweiterte Berechnung der Schub- und Biegeverformung wurde mit der FEM-Analyse und mit analytischen Differentialgleichungen durchgeführt. Die Verfahren wurden miteinander verglichen. Das Ergebnis der Analysen der Magnetträger-Kürzung ergab, dass sich der Belastungszustand ändert. Dieses wirkt sich auf tragende Undulator-Komponenten und auf den Biegelinienverlauf der Magnetträger aus. Damit die Funktion des Undulators gewährleistet ist, wurden konstruktive Lösungen vorgeschlagen, bewertet und ausgewählt.

Schagajeg Masoudi

Title of the paper

Construction of a shortened variant of an undulator considering the deformation behaviour

Keywords

Undulator, FEM analysis, PETRA IV, change construction

Abstract

This bachelor thesis includes the modification design of a shortened version of a 5m undulator considering the magnet carrier deformation behavior. The magnet carriers are to be symmetrically, maximally shortened. All other components are to remain unchanged as far as possible. Analytical calculations of the un-shortened and the shortened magnet carrier variants were compared in preparation. The extended calculation of the shear and bending deformation was carried out with the FEM analysis and with analytical differential equations. The methods were compared with each other. The result of the analyses of the magnetic beam shortening showed that the loading condition changes. This affects load-bearing undulator components and the bending line of the magnet carriers. In order to ensure the function of the undulator, design solutions were proposed, evaluated and selected.

Danksagung

Moin,

ich danke allen die mich auf meinen Bildungsmarathon begleitet haben, ohne euch hätte ich es nie geschafft!!

Also fettes DANKE an all die, die:

- mich organisatorisch unterstützt haben
- mir seelischen Beistand geleistet haben
- mich bestärkt und bestätigt haben
- mit mir gelacht und geweint haben
- mir fachlich beiseite standen
- meine schriftlichen Ausarbeitungen (immer fleißig!) korrigierten haben
- immer ein offenes Ohr für mich hatten
- an mich geglaubt haben

Schagajeg Masoudi

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Maschinenbau und Produktion

Aufgabenstellung

für die Bachelorthesis

von Frau Schagajeg Masoudi

Matrikel-Nummer:

Thema: Konstruktion einer verkürzten Variante eines Undulators unter Berücksichtigung des Verformungsverhaltens

Die Undulatoren sind wesentliche Komponenten der Synchrotron- und Röntgenlaserquellen an modernen Speicherringen und Linearbeschleunigern. Auf den zwei zur Strahlachse gegenüberliegenden Magnetträgern der Undulatoren sind periodisch angeordnete Permanentmagnetstrukturen befestigt. Die magnetischen Dipolfelder wirken auf den Elektronenstrahl und sind maßgeblich für die Erzeugung der Synchrotronstrahlung verantwortlich.

Es sollen verkürzte Varianten der 5m-Undulatoren (siehe Abbildung 1) konstruiert werden, indem die Magnetträger symmetrisch, maximal gekürzt werden. Als Trägermaterial existieren Edelstahl- und Aluminiumwerkstoffe. Die Periodizität der Permanentmagnetanordnungen, das Lagerungs- und Aufhängungsprinzip der Zwischenträger sowie die Anordnung bestimmter Funktionsflächen und der Befestigungsbohrungen für die Träger-Positionsmessung müssen dabei beachtet werden. Alle weiteren Komponenten sollen möglichst unverändert bleiben.

Neben der kontinuierlichen Streckenlast aufgrund der Eigenegewichte werden die Magnetträger entlang der Strahlachse durch periodische Magnetkräfte belastet, deren Größe (wiederum) abhängig vom einstellbaren Magnetträgerabstand ist. Das Verformungsverhalten und die Größe der maximalen Verformung sollen jeweils durch Finite-Elemente Analysen bestimmt und optimiert werden.

Die Kürzung der Magnetträger und das Trägermaterial wirken sich auf die Aufstellung der Undulatoren aus. Die Reaktionskräfte und die Auswirkung auf die Standsicherheit sind zu bestimmen.

Der Einfluss durch Verformungen aufgrund der Eigenspannungen der nachträglich mechanisch bearbeiteten Strukturen soll betrachtet (diskutiert) werden.

Abbildung 1: 5m-Undulator 3D-Modell

Schwerpunkte:

- Finite Element Methode
- Methodische Produktentwicklung
- Konstruktion

Datum

Erstprüfer/in

Inhaltsverzeichnis

Sy	mbo	lverzeic	hnis										VIII
Al	okürz	ungsve	rzeichnis										XI
Та	belle	enverzei	chnis										XII
Al	obildu	ungsver	zeichnis										xıv
1	Einl	eitung											1
	1.1	Vorste	llung des Unternehmens		•								 1
	1.2	Motiva	ation und Aufgabenstellung	•	•	•		•	•	•	•	•	 2
2	Sta	nd der	Technik										5
	2.1	Einsat	z und Funktion eines Undulators \hdots		•					•			 5
		2.1.1	Brillanz	•	•					•			 8
		2.1.2	Magnetkraft	•	• •					•			 9
	2.2	Undul	ator Bauteile	•	•			•	•	•	•	•	 9
		2.2.1	Mechanische Komponenten	•	•	•		•	•	•	•	•	 11
		2.2.2	Magnetstruktur	•	•	•		•	•	•	•	•	 12
	2.3	Konsti	ruktive Besonderheiten	•	•	•	• •	•	•	•	•	•	 13
		2.3.1	Gestell und Magnetträger	•	•	·	• •	•	•	•	•	·	 13
		2.3.2	Lagerung der Magnetträger	•	•	·	• •	•	•	•	•	·	 14
		2.3.3	Lagerung der Zwischenträger	•	•	•	• •	•	•	•	•	•	 17
3	Änd	lerungs	konstruktion										18
	3.1	Konsti	ruktive Berechnungen	•	•				•	•		•	 18
		3.1.1	Berechnung der Kürzung der Magnetträger	•	•	•		•		•	•	•	 18
		3.1.2	Berechnung der Magnetträger-Belastungen	•	•	·	• •	•	•	•	•	•	 20
		3.1.3	Berechnung der Kegelpressverbindung	•	•	·	• •	•	•	•	•	•	 23
	3.2	Schwei	rpunktbetrachtung	•	•	•		•	•	•	•	•	 31
	3.3	Beschr	reibung der konstruktiven Umsetzung	•	•	•		•	•	•	•	•	 32
4	Ver	formun	gsanalyse										34
	4.1	Verfor	mungsanalyse mittels Biegelinie	•	•				•	•			 35
		4.1.1	Differentialgleichung der Biegelinie	•	•	•			•	•			 35
		4.1.2	MDESIGN Biegelinie		•								 37

		4.1.3 Gegenüberstellung der Ergebnisse	41
	4.2	Erweiterte Verformungsanalyse	42
		4.2.1 Differentialgleichung der Biegelinie (Biegeanteil)	42
		4.2.2 Ansys	44
		4.2.3 Gegenüberstellung der Ergebnisse	50
	4.3	Vergleich der unterschiedlichen Berechnungsansätze	51
5	Disk	ussion der konstruktiven Änderung	52
	5.1	Randbedingungen / Kriterien	52
	5.2	Gegenüberstellung der Ansätze zur Optimierung der Biegelinie	52
	5.3	Lösungsauswahl und Begründung	54
6	Zusa	ammenfassung und Fazit	55
7	Lite	ratur- und Quellenverzeichnis	57
Α	Eide	sstattliche Erklärung	59
В	Tecl	nnische Daten	61
С	Date	enblätter	63
D	Kon	struktive Berechnungen	69
	D.1	Berechnung der Magnetträger-Belastungen	70
	D.2	Berechnung der Kegelpressverbindung	79
	D.3	Schwerpunktbetrachtung	83
Е	Ana	lytische Berechnungen	85
F	MD	ESIGN Protokoll	93

Symbolverzeichnis

Symbol	Bedeutung	Einheit
A_{eff}	effektive Emissions-Fläche	m^2
A_p^{-jj}	Polfläche	m^2
Ă	Magnetträger Querschnittsfläche	m^2
В	magnetische Flussdichte	Т
B_0	Amplitude der magnetischen Flussdichte	Т
B_{0eff}	Effektivwert der magnetischen Flussdichte	Т
B_{lz}	Brillanz	Sch
b	Magnetträgerbreite	m
c	Lichtgeschwindigkeit	m/s
C	Kegelverhältnis	_
c_L	Lagerabstandslänge der Zwischenträger	m
c	Halber Mittenabstand	m
C_3	Integrationskonstante II (Stützabstand)	$\mathrm{kgm}^3/\mathrm{s}^2$
d_2	Flankendurchmesser	m
D_{mF}	mittlerer Kegel-Fugendurchmesser	m
D_1	großer Kegel-Durchmesser	m
D_2	kleiner Kegel-Durchmersser	m
d_k	wirksamer Reibungsdurchmesser (Schraubenkopf-	m
	oder Mutterauflage)	
d	Stützabstand	m
D_3	Integrationskonstante Bereich III (Kragarm)	$\mathrm{kgm}^3/\mathrm{s}^2$
e	Elementarladung	\mathbf{C}
E_t	Energie des Teilchens	eV
E	Elastizitätsmodul	N/mm^2
e	Kragarmlänge	m
F_{LC}	Gewichtskraft des Linearencoders	Ν
F_{MS}	Gewichtskraft der Magnetstruktur	Ν
F_{MT}	Gewichtskraft der Magnetträger	Ν
F_{MK}	Magnetkraft	Ν
F_{VM}	Montagevorspannkraft	Ν
F_A	axiale Einpresskraft	Ν
F_N	Normalkraft (Anpresskraft)	Ν
F_R	Reibkraft	Ν

T 1	1.	• 1	•
Inha	tsver	zeich	nig
ma		JOICH.	m

Symbol	Bedeutung	Einheit
$F_{1_{o}} - F_{4_{o}}$	vertikale Lagerkräfte des obereren Magnetträgers	Ν
$F_{1_u} - F_{4_u}$	vertikale Lagerkräfte des unteren Magnetträgers	Ν
$F_a\&F_b$	Lagerreaktionen der rechten Magnetträgerhälfte	Ν
g	Gap	m
G	Gleitmodul	N/mm^2
h	Magnetträgerhöhe	m
I_y	Flächenträgheitsmoment	m^4
K	Undulator- oder Wigglerparameter	_
L_{M16}	M16-Bohrtiefe	m
L_v	ungekürzte Magnetträgerlänge	m
L_{Zwt}	Maß von Mittellinie bis Zwischenträger-Außenkante	m
L_H	Hälfte der kompletten Magnetträgerlänge	m
L_N	gekürzte Magnetträgerlänge	m
m_e	Elektronenmasse	kg
m_0	Ruhemasse des Teilchens	kg
M_R	Kegelreibungsmoment	Nm
M_A	Anzugsmoment	$\mathrm{N}\mathrm{m}$
M_L	Lastmoment	Nm
$M_{L_A} - M_{L_E}$	Lastmomente an den Kegelpressverbindungen	Nm
m_{AL}	Masse der Aluminium Magnetträger	kg
m_{VA}	Masse der Edelstahl Magnetträger	kg
M_0	auftretendes Moment in der Trägermitte	Nm
ΔN	Anzahl der Photonen	_
P_s	Strahlungsleistung	W
q	Elektrische Ladung	As
q_{MS}	Streckenlast der Magnetstruktur	N/m
q_{MT}	Streckenlast der Magnetträger	N/m
q_{MK}	maximale Streckenlast der Magnetkraft	N/m
q_{ges_o}	Gesamt-Streckenlast des oberen Magentträgers	N/m
q_{ges_u}	Gesamt-Streckenlast des unteren Magentträgers	N/m
q_0	Streckenlast	N/m
R	Bahnradius	m
R_m	Zugfestigkeit	N/mm^2
R_e	Streckgrenze	$ m N/mm^2$
Δt	Zeitintervall	\mathbf{S}
w_{b01}	maximale Durchbiegung Bereich I (Mitte)	m
w_{b1}	Durchbiegung Bereich I (Mitte)	m
w_{b2}	Durchbiegung Bereich II (Stützabstand)	m
w_{b3}	Durchbiegung Bereich III (Kragarm)	m
w_{s1}	Schubdurchsenkung Bereich I (Mitte)	m
w_{s2}	Schubdurchsenkung Bereich II (Stützabstand)	m
w_{s3}	Schubdurchsenkung Bereich III (Kragarm)	m

T 1	1 /		•	
Inha	Its	verz	eici	hnis
m	100	V OI Z	0101	

Symbol	Bedeutung	Einheit
w_1	Gesamtdurchbiegung Bereich I (Mitte)	m
w_2	Gesamtdurchbiegung Bereich II (Stützabstand)	m
w_3	Gesamtdurchbiegung Bereich III (Kragarm)	m
$w_{b_{max}}$	max. Durchbiegung (Biegeanteil)	m
w_{max}	max. Gesamtdurchbiegung (Biege- & Schubanteil)	m
x	Halbes Kürzmaß	m
x_1	Laufkordienate Bereich I	m
x_2	Laufkordienate Bereich II	m
x_3	Laufkordienate Bereich II	m
$lpha_{syn}$	Öffnungswinkel der Synchrotronstrahlung	0
α	Kegel-Neigungswinkel	0
ε_0	Dielektrizitätskonstante	As/Vm
γ	Größe der Elektronenmaschine	_
λ_0	insertion devices Periodenlänge	m
$\Delta\lambda/\lambda$	Bandbreite	_
μ_0	magnetische Feldkonstante	N/A^2
μ_r	relative Permeabilität	_
μ_k	Reibungszahl in der Kopf- bzw. Mutterauflage	_
μ	Haftbeiwert gegen Rutschen	_
ν	Querkontraktionszahl	_
Ω	Raumwinkel	mrad^2
φ	Gewindesteigungswinkel	0
ho	Gewindereibungswinkel	0
$ ho_i$	Dichte	kg/m^3
Θ_w	Elektronen Ablenkungswinkel	0
χ	Formzahl (Schub)	_

Abkürzungsverzeichnis

DESY	Deutsche Elektronen-Synchrotron
CoFe	Kobalt-Eisen
EG	Magnetträger-Eigengewicht
MBA	Multibend Achromat-Technologie
NdFeB	Neodym-Eisen-Bor
PETRA III	Positron-Elektron-Tandem-Ring-Anlage III
PETRA IV	Positron-Elektron-Tandem-Ring-Anlage IV

Tabellenverzeichnis

3.1 3.2 3.3 3.4 3.5 3.6	Werte für den 5 m Edelstahl Magnetträger	 21 22 22 22 22 22 22 22
3.7	Lagerreaktionen (MDESIGN) und die daraus berechneten Lastmomente M_{L_i} an den unteren Zwischenträgern	28
3.8	Lagerreaktionen (Ansys) und die daraus berechneten Lastmomente M_{L_i} an den oberen Zwischenträgern	29
3.9	Lagerreaktionen (Ansys) und die daraus berechneten Lastmomente M_{L_i} an den unteren Zwischenträgern	29
3.10	Gegenüberstellung der (MDESIGN) Ergebnisse für Reib- und Lastmo- ment an den oberen und unteren Zwischenträgern	30
3.11	Gegenüberstellung der (Ansys) Ergebnisse für Reib- und Lastmoment an den oberen und unteren Zwischenträgern	30
4.1	Lagerposition für die ungekürzten und gekürzten Magnetträger	34
$4.1 \\ 4.2$	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	$\frac{34}{35}$
$4.1 \\ 4.2 \\ 4.3$	Lagerposition für die ungekürzten und gekürzten MagnetträgerWerkstoffkennwerteMDESIGN - maximale Durchbiegung $w_{b_{max}}$	34 35 38
4.1 4.2 4.3 4.4	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	34 35 38 41
$ \begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \end{array} $	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	 34 35 38 41 42
 4.1 4.2 4.3 4.4 4.5 4.6 	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	 34 35 38 41 42 44
$ \begin{array}{r} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ \end{array} $	Lagerposition für die ungekürzten und gekürzten MagnetträgerWerkstoffkennwerteMDESIGN - maximale Durchbiegung $w_{b_{max}}$ MDESIGN - Faktor der maximalen Durchbiegung $w_{b_{max}}$ (Vergleich 4,3 mzu 5 m Magnetträger)Cegenüberstellung der Ergebnisse (Durchbiegung w_{b_i}) von MDESIGNund der DGLAnzahl der Knoten und Elemente bei der VernetzungAnsys - maximale Gesamtdurchbiegung w_{max}	 34 35 38 41 42 44 46
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \end{array}$	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	 34 35 38 41 42 44 46
$ \begin{array}{r} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ \end{array} $	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	34 35 38 41 42 44 46 47
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Lagerposition für die ungekürzten und gekürzten MagnetträgerWerkstoffkennwerteMDESIGN - maximale Durchbiegung $w_{b_{max}}$ MDESIGN - Faktor der maximalen Durchbiegung $w_{b_{max}}$ (Vergleich 4,3 mzu 5 m Magnetträger)Gegenüberstellung der Ergebnisse (Durchbiegung w_{b_i}) von MDESIGNund der DGLAnzahl der Knoten und Elemente bei der VernetzungAnsys - maximale Gesamtdurchbiegung w_{max} (Vergleich 4,3 mzu 5 m Magnetträger)Ansys - Faktor der maximalen Gesamtdurchbiegung w_{max} (Vergleich 4,3 mzu 5 m Magnetträger)Ansys - Gesamtdurchbiegung an den Magnetträgerenden $w_{Kragarm}$	34 35 38 41 42 44 46 47 47 47
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \end{array}$	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	$ \begin{array}{r} 34 \\ 35 \\ 38 \\ 41 \\ 42 \\ 44 \\ 46 \\ 47 \\ 47 \\ 47 \\ 1 \end{array} $
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \end{array}$	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	34 35 38 41 42 44 46 47 47 47 47
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \end{array}$	Lagerposition für die ungekürzten und gekürzten MagnetträgerWerkstoffkennwerteMDESIGN - maximale Durchbiegung $w_{b_{max}}$ MDESIGN - Faktor der maximalen Durchbiegung $w_{b_{max}}$ (Vergleich 4,3 mzu 5 m Magnetträger)cu 5 m Magnetträger)und der DGLAnzahl der Knoten und Elemente bei der VernetzungAnsys - maximale Gesamtdurchbiegung w_{max} (Vergleich 4,3 mzu 5 m Magnetträger)Ansys - Faktor der maximalen Gesamtdurchbiegung w_{max} (Vergleich 4,3 mZu 5 m Magnetträger)Ansys - Faktor der maximalen Gesamtdurchbiegung w_{max} (Vergleich 4,3 mZu 5 m Magnetträger)Ansys - Gesamtdurchbiegung an den Magnetträgerenden $w_{Kragarm}$ Ansys - Faktor der Gesamtdurchbiegung an den Magnetträgerenden $w_{Kragarm}$ (Vergleich 4,3 m zu 5 m Magnetträger)Ergebnisse für die Schubdurchsenkung w_{si}	34 35 38 41 42 44 46 47 47 47 50
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \end{array}$	Lagerposition für die ungekürzten und gekürzten Magnetträger Werkstoffkennwerte	34 35 38 41 42 44 46 47 47 47 50

5.1 Gegenüberstellung der Ansätze unter Berücksichtigung der Kriterien $\ .$. 54

Abbildungsverzeichnis

1.1	DESY-Gelände und dessen Beschleunigeranlagen [3]
1.2	Wirkung eines einzelnen Elektrons (a) und eines Elektronenpakets mit
	geringer Brillanz (b) und hoher Brillanz (c) [14]
1.3	Multibend Achromat-Technologie [14]
2.1	Undulator Funktionsprinzip [12]
2.2	Elektronenbahn. Strahlungskegel und Strahlungsspektrum für Wiggler
	(oben) und Undulator (unten) $[1]$
2.3	Permanentmagnet-Struktur (Halbach I) [9, 12]
2.4	Hybrid-Struktur (Halbach II) [8, 12]
2.5	5 m-Undulator Vorderseite [6]
2.6	5 m-Undulator Rückseite [6]
2.7	Magnetstruktur [6]
2.8	Pol Höhenverstellung [6]
2.9	Magnetträger Lagerung [6]
2.10	Schnitt durch Magnetträger Lagerung (Kreuzgelenkeinsatz) [6] 16
2 11	Schnitt durch Zwischenträger Lagerung (Kegelpressverbindung) [6] 17
4.11	
3.1	Prinzipskizze Kürzmaß
3.1 3.2	Prinzipskizze Kürzmaß
3.1 3.2 3.3	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen unten 21 5 m-Magnetträger Belastungen unten 22
2.11 3.1 3.2 3.3 3.4	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 23
2.11 3.1 3.2 3.3 3.4 3.5	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 23 Detailansicht Kräfte am Kegel 24
2.11 3.1 3.2 3.3 3.4 3.5 3.6	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 23 Detailansicht Kräfte am Kegel 24 Kräfte an den Zwischenträgern 25
2.11 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 23 Detailansicht Kräfte am Kegel 24 Kräfte an den Zwischenträger 25 Lastmoment am Zwischenträger 26
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 23 Detailansicht Kräfte am Kegel 24 Kräfte an den Zwischenträgern 25 Lastmoment am Zwischenträger 26 Undulator Schwerpunkt 6
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Prinzipskizze Kürzmaß195 m-Magnetträger Belastungen oben215 m-Magnetträger Belastungen unten22Kegel Geometrie und Kräfte23Detailansicht Kräfte am Kegel24Kräfte an den Zwischenträgern25Lastmoment am Zwischenträger26Undulator Schwerpunkt [6]314,3 m-Undulator Vorderseite [6]35
2.11 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 23 Detailansicht Kräfte am Kegel 24 Kräfte an den Zwischenträgern 25 Lastmoment am Zwischenträger 26 Undulator Schwerpunkt [6] 31 4,3 m-Undulator Vorderseite [6] 36
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1 4.2	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 23 Detailansicht Kräfte am Kegel 24 Kräfte an den Zwischenträgern 24 Lastmoment am Zwischenträger 26 Undulator Schwerpunkt [6] 31 4,3 m-Undulator Vorderseite [6] 35 Magnetträger Freikörperbild (Symmetrie) 36 MDESIGN Verformung der 5 m-Magnetträger 37
2.11 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1 4.2 4.3	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 22 Kegel Geometrie und Kräfte 23 Detailansicht Kräfte am Kegel 24 Kräfte an den Zwischenträgern 25 Lastmoment am Zwischenträger 26 Undulator Schwerpunkt [6] 31 4,3 m-Undulator Vorderseite [6] 36 Magnetträger Freikörperbild (Symmetrie) 36 MDESIGN Verformung der 5 m-Magnetträger 36 MDESIGN Verformung der 4.3 m-Magnetträger 40
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1 4.2 4.3 4.4	Prinzipskizze Kürzmaß195 m-Magnetträger Belastungen oben215 m-Magnetträger Belastungen unten22Kegel Geometrie und Kräfte22Kegel Geometrie und Kräfte23Detailansicht Kräfte am Kegel24Kräfte an den Zwischenträgern25Lastmoment am Zwischenträger26Undulator Schwerpunkt [6]314,3 m-Undulator Vorderseite [6]36Magnetträger Freikörperbild (Symmetrie)36MDESIGN Verformung der 5 m-Magnetträger36MDESIGN Verformung der 4,3 m-Magnetträger40Vernetzung 4.3 m-Magnetträger [6]44
$\begin{array}{c} 3.1\\ 3.2\\ 3.3\\ 3.4\\ 3.5\\ 3.6\\ 3.7\\ 3.8\\ 3.9\\ 4.1\\ 4.2\\ 4.3\\ 4.4\\ 4.5\end{array}$	Prinzipskizze Kürzmaß165 m-Magnetträger Belastungen oben215 m-Magnetträger Belastungen unten22Kegel Geometrie und Kräfte23Detailansicht Kräfte am Kegel24Kräfte an den Zwischenträgern24Kräfte an den Zwischenträger26Undulator Schwerpunkt [6]314,3 m-Undulator Vorderseite [6]36Magnetträger Freikörperbild (Symmetrie)36MDESIGN Verformung der 5 m-Magnetträger36MDESIGN Verformung der 4,3 m-Magnetträger46Vernetzung 4,3 m-Magnetträger [6]45
$\begin{array}{c} 3.1\\ 3.2\\ 3.3\\ 3.4\\ 3.5\\ 3.6\\ 3.7\\ 3.8\\ 3.9\\ 4.1\\ 4.2\\ 4.3\\ 4.4\\ 4.5\\ 4.6\end{array}$	Prinzipskizze Kürzmaß 19 5 m-Magnetträger Belastungen oben 21 5 m-Magnetträger Belastungen unten 22 Kegel Geometrie und Kräfte 22 Detailansicht Kräfte am Kegel 24 Kräfte an den Zwischenträgern 24 Kräfte and Zwischenträgern 26 Undulator Schwerpunkt [6] 31 4,3 m-Undulator Vorderseite [6] 35 Magnetträger Freikörperbild (Symmetrie) 36 MDESIGN Verformung der 5 m-Magnetträger 36 Vernetzung 4,3 m-Magnetträger [6] 44 Randbedingung 4,3 m-Magnetträger [6] 45 Ansys Verformung der 5 m-Magnetträger 48

6.1 Offset Prinzipdarstellung des oberen $4,3\,\mathrm{m}\text{-}\mathrm{Magnetträgers}$ (Aluminium) .56

1 Einleitung

1.1 Vorstellung des Unternehmens

Das Deutsche Elektronen-Synchrotron (DESY) wurde im Jahre 1959 in Hamburg gegründet und ist ein Forschungszentrum der Helmholtz-Gemeinschaft. Mittlerweile ist DESY an zwei Standorten vertreten. In Hamburg liegt der Schwerpunkt auf dem Beschleunigerbau, der Forschung mit Photonen und der Teilchenphysik. Am Standort Zeuthen in Brandenburg wird hauptsächlich Astrophysik betrieben. DESY zählt heute bei der Entwicklung und dem Bau von Beschleunigern und Nachweisinstrumenten zu den weltweit führenden Beschleunigerzentren. Die Belegschaft umfasst ungefähr 2700 Mitarbeiter*innen, zu denen jährlich mehr als 3000 Gastforscher*innen aus 40 Ländern im Forschungszentrum dazu kommen. Finanziert wird DESY aus öffentlichen Mitteln des Bundes, der Stadt Hamburg und dem Land Brandenburg. [5]

Die nachfolgende Abb. 1.1 zeigt die derzeit betriebenen Beschleunigeranlagen am DESY-Standort Hamburg.

Abbildung 1.1: DESY-Gelände und dessen Beschleunigeranlagen [3]

1.2 Motivation und Aufgabenstellung

DESY betreibt mit der Positron-Elektron-Tandem-Ring-Anlage III (PETRA III) eine der derzeit brillantesten Speicherring-Röntgenstrahlungsquellen weltweit. Das intensive Röntgenlicht wird von internationalen Forschungsgruppen für ihre Experimente genutzt. Das stark gebündelte, sehr kurzwellige Röntgenlicht eignet sich besonders für die Analyse von sehr kleinen Proben, da diese Strahlen besonders tief in die Materie eindringen. Synchrotronstrahlung entsteht, wenn elektrisch geladene Teilchen, nahezu auf Lichtgeschwindigkeit beschleunigt, durch ein Magnetfeld aus ihrer Flugbahn abgelenkt werden. Dabei strahlen die Elektronen Licht (Photonen) tangential zu ihrer Bewegungsrichtung ab. Das Wellenlängenspektrum des erzeugten Lichts geht von Infrarotlicht bis hin zu Röntgenstrahlung. Hohe Brillanz bedeutet in diesem Fall, dass ein intensiver Strahl, der von einer kleinen Strahlquelle ausgeht, ein feines fast paralleles Lichtbündel bildet. Der Elektronenstrahl besteht aus einer Vielzahl einzelner Elektronen, die einen transversale Lage- und Winkelabweichung aufweisen. Dieses wird mit dem Begriff Emittanz beschrieben. Die Begriffe Brillanz und die Emittanz sind voneinander abhängig: Je höher die Brillanz, desto geringer ist die Emittanz. Dies ist in Abb. 1.2 dargestellt. In Abschnitt 2.1.1 wird die Definition der Brillanz näher erläutert. Die Ausdehnung der Elektronenpakete (des Röntgenstrahls) ist bei PETRA III in verti-

Abbildung 1.2: Wirkung eines einzelnen Elektrons (a) und eines Elektronenpakets mit geringer Brillanz (b) und hoher Brillanz (c) [14]

kaler Richtung gering, jedoch in horizontaler Richtung groß, sodass sich der Strahl nicht gut genug fokussieren lässt, um punktgenau kleine Strukturen abzutasten. Diese Einschränkung führt dazu, dass feinste Details nicht zu erkennen sind. Durch den Umbau der PETRA III soll dies verbessert werden. Die Ausdehnung der Elektronenpakete (des Röntgenstrahls) soll sowohl in horizontaler als auch in vertikaler Richtung geringer werden (Abb. 1.3), sodass der Strahl sich somit auch weiter fokussieren lässt. Dies wird mit der Multibend Achromat-Technologie (MBA) realisiert, in dem viele kleine Magnete den Teilchenstrahl im Speicherring lenken und somit eine extrem hohe Qualität der beschleunigten Elektronenpakete liefern. Dieser Effekt wird verstärkt, je größer der Speicherring ist, sodass die Elektronenpakete nahezu paralleles Licht abgeben. Dadurch werden bei der Positron-Elektron-Tandem-Ring-Anlage IV (PETRA IV) 100-mal schnellere Experimente und 100-mal genauere, detailschärfere Bilder ermöglicht. Der Umbau in das 3D-Röntgenmikroskop PETRA IV ermöglicht, dass Materie mit einer Größe bis hin zu einem Zehntel Nanometer in 3D sichtbar werden. [2, 4]

Abbildung 1.3: Multibend Achromat-Technologie [14]

Zusätzlich zu dieser Verbesserung werden neue Experimentierhallen gebaut. Dort sind die geraden Driftstrecken der PETRA IV-Strahlführungen nicht mehr so lang wie bei den PETRA III-Strahlführungen. Diese bauliche Begrenzungen haben zur Folge, dass Platz eingespart werden muss. Da einige Komponenten aus anderen Beschleunigerbereichen übernommen werden, müssen diese nachträglich angepasst werden. Eine dieser Komponenten ist der 5m-Undulator, dieser muss in der geraden Driftstrecke Platz zwischen zwei Ablenkmagneten finden und gekürzt werden.

Diese Arbeit beschäftigt sich mit der Fragestellung, was für Auswirkungen das Kürzen der Magnetträger des 5m-Undulators auf die Undulator-Kippsicherheit und das Magnetträger-Verformungsverhalten unter Berücksichtigung der unterschiedlichen Magnetträger-Werkstoffe hat.

Das Ziel der Arbeit ist es, eine verkürzte Variante der 5m-Undulatoren zu konstruieren, indem die Magnetträger symmetrisch, maximal gekürzt werden. Die Periodizität der Permanentmagnetanordnungen, das Lagerungs- und Aufhängungsprinzip der Zwischenträger sowie die Anordnung bestimmter Funktionsflächen und der Befestigungsbohrungen für die Träger-Positionsmessung müssen dabei berücksichtigt werden. Alle weiteren Komponenten sollen möglichst unverändert bleiben.

2 Stand der Technik

2.1 Einsatz und Funktion eines Undulators

Undulatoren, sogenannte *insertion devices*, werden als Synchrotronstrahlungsquelle in Teilchenbeschleunigern in den geraden Stücken zwischen zwei Dipolmagneten eingesetzt. Wenn sich leichte, elektrisch geladene Teilchen nahezu mit Lichtgeschwindigkeit durch ein Magnetfeld bewegen, werden sie abgelenkt. Dabei emittieren die Teilchen elektromagnetische Strahlung (Synchrotronstrahlung) tangential zu ihrer Bewegungsrichtung. Als leichte Teilchen werden Elektronen und Positronen verwendet, da durch die Verwendung von elektrisch geladenen Teilchen mit höheren Massen die Strahlungsleistung reduziert werden würde. Dies wird deutlich bei der Berechnung der Strahlungsleistung P_s , da dort die Ruhemasse m_0 des Teilchens mit der vierten Potenz im Nenner eingeht.

$$P_s = \frac{c \cdot q^2}{6 \cdot \pi \cdot \varepsilon_0 (m_0 \cdot c^2)^4} \cdot \frac{E_t^4}{R^2} = \frac{c^3 \cdot q^4 \cdot E_t^2 \cdot B^2}{6 \cdot \pi \cdot \varepsilon_0 (m_0 \cdot c^2)^4}$$
(2.1)

Mit $1/R = c \cdot q \cdot B/E_t$ lässt sich die Strahlungsleistung P_s aus Gleichung (2.1) mit folgenden Variablen berechnen: c der Lichtgeschwindigkeit, q der Ladung, E_t der Energie des Teilchens, ε_0 der Dielektrizitätskonstante, R dem Bahnradius, B der magnetischen Flussdichte. [11]

Abb. 2.1 veranschaulicht den sinusförmigen Verlauf der Elektronen, der aufgrund der alternierenden Anordnung der gegenüberliegenden Dipole entsteht. Bei jeder Krümmung wird tangential zur Bahn Synchrotronstrahlung emittiert. Die Periodenlänge λ_0 entspricht der Länge, nach der sich Nord- und Südpole wiederholen. Θ_w ist der Ablenkwinkel der Elektronen innerhalb der Magnetstruktur. Der Abstand g zwischen den Magnetträgern wird als Gap bezeichnet. Mit der Größe des Gaps kann die magnetische Flussdichte B variiert werden, welches eine direkte Auswirkung auf die Magnetkraft F_{MK} hat. Je

kleiner das Gap ist, desto größer ist die Magnetkraft. Dies führt zu einer stärkeren Auslenkung des Elektrons, woraus eine in eine höhere Photonenenergie resultiert.

Abbildung 2.1: Undulator Funktionsprinzip [12]

Ein insertion device kann je nach Auslegung ein Undulator (lat. undula = kleine Welle) oder ein Wiggler (engl. wiggle = wackeln) sein. Der Unterschied wird durch den dimensionslosen Undulator- oder Wigglerparameter (deflection parameter) K beschrieben. Der K-Parameter dient als Maß für die Stärke der insertion devices und beschreibt die maximale Ablenkung des Elektrons. Aus der Größe der Ablenkung des Elektrons lässt sich auf die Größe des Ablenkungswinkels $\Theta_w = K/\gamma = K \cdot \alpha_{syn}$ schließen. Der Öffnungswinkel der Synchrotronstrahlung $\alpha_{syn} = 1/\gamma$ ist maßgebend für das entstehende Spektrum des Photonenstrahls. γ ist eine Größe der Elektronenmaschine.

$$K = \frac{e \cdot B_0 \cdot \lambda_0}{2\pi \cdot m_e \cdot c} \tag{2.2}$$

Aus Gleichung (2.2) kann der K-Parameter mit den folgenden Variablen berechnet werden: e der Elementarladung, B_0 der Amplitude der magnetischen Flussdichte, λ_0 der Periodenlänge des *insertion devices*, m_e der Elektronenmasse, c der Lichtgeschwindigkeit.

Bei einem Undulator (K < 1) werden schwächere Magnete als bei einem Wiggler verwendet, wodurch die Elektronen eine geringere Auslenkung (kleinerer Ablenkungswinkel) erfahren. Dies führt letztendlich zu einer geringeren Photonenenergie. Jedoch können sich die Photonenkegel (Synchrotronstrahlungkegel) überlagern. Das führt zu einer konstruktiven Interferenz, welches ein schmales (monochromatisches) Spektrum (Abb. 2.2) erzeugt und somit zu einer höheren Brillanz führt. Um die gleiche Photonenenergie wie beim Wiggler zu erzeugen, werden die Elektronenpakete auf eine höhere Energie beschleunigt. Undulatoren kommen in Synchrotronstrahlungsquellen / Speicherringen der dritten und vierten Generation zum Einsatz.

Bei einem Wiggler (K>1) werden durch die stärkeren Magnete die Elektronen stark ausgelenkt, welches zu einer hohen Photonenenergie führt. Durch den größeren Öffnungswinkel der Synchrotronstrahlung können sich die verschiedenen Photonenkegel nicht überlagern, sodass sie nicht miteinander interferieren, woraufhin ein breites (kontinuierliches) Spektrum folgt.

Abbildung 2.2: Elektronenbahn, Strahlungskegel und Strahlungsspektrum für Wiggler (oben) und Undulator (unten) [1]

Die Unterscheidung der *insertion devices* wird also anhand der Art (Spektrum) der Photonenstrahlung gemacht. Der Spektralbereich der erzeugten Synchrotronstrahlung umfasst das infrarote (IR), das sichtbare Licht (VIS), das ultraviolette- (UV) und vakuumultraviolette (VUV) Licht bis hin zur harten Röntgen-Strahlung (XR).

Der Aufbau der Magnetstruktur der *insertion devices* entspricht einer linearen Folge von abwechselnd gepolten Dipolmagneten. Dieser Aufbau wird mit permanentmagnetischen oder elektromagnetischen Strukturen realisiert. Bei den Permanentmagnet-Strukturen unterscheidet man reine Permanentmagnet-Strukturen und hybride Magnetstrukturen. Bei der reinen Permanentmagnet-Struktur (Abb. 2.3) wird das Magnetfeld durch vier Permanentmagnete (pro Periode und Magnetstruktur-Hälfte), die um 90° zueinander verdreht sind, erzeugt. Das Magnetfeld wird bei der hybriden Magnetstruktur (Abb. 2.4)

Abbildung 2.3: Permanentmagnet-Struktur (Halbach I) [9, 12]

durch die Kombination von Permanentmagneten, die parallel zum Gap einen magnetischen Fluss aufbauen und somit die weichmagnetischen Pole magnetisieren, erzeugt. Hybride Strukturen eignen sich gut für anspruchsvolle Anwendungen, bei denen hohe Feldstärken benötigt werden. [12, 13]

Abbildung 2.4: Hybrid-Struktur (Halbach II) [8, 12]

2.1.1 Brillanz

Die Brillanz dient zur Beschreibung der Leistungsfähigkeit der Synchrotronstrahlungsquelle als Maß dafür, wie viel Licht (intensiv und stark gerichtete Synchrotronstrahlung) in einem kleinen Leuchtfleck konzentriert werden kann.

$$B_{lz} = \frac{\Delta N}{\Delta t \cdot A_{eff} \cdot \Omega \cdot \frac{\Delta \lambda}{\lambda}}$$
(2.3)

Die Brillanz B_{lz} kann als die Phasenraumdichte der Photonen verstanden werden. Sie ist definiert durch die Anzahl der Photonen ΔN pro Zeitintervall Δt , pro effektiver Emissions-Fläche A_{eff} , pro Raumwinkel Ω und Bandbreite ($\Delta \lambda / \lambda$). [12]

2.1.2 Magnetkraft

Zwischen den Magnet- bzw. Polstrukturen wirkt eine magnetische Kraft F_{MK} , die umso größer ist, je höher die magnetische Flußdichte B im Luftspalt ist. Da die Flußdichte aber im Wesentlichen von der Spalthöhe abhängig ist, steigt die magnetische Kraft mit geringerer Spaltbreite bzw. dem dadurch zunehmenden magnetischen Fluss.

$$F_{MK} = \frac{B_{0eff}^2 \cdot A_p}{2 \cdot \mu_0 \cdot \mu_r} \tag{2.4}$$

mit: Mit dem Effektivwert der magnetischen Flussdichte B_{0eff} , der Polfläche A_p , der magnetischen Feldkonstante μ_0 und der relativen Permeabilität μ_r .

2.2 Undulator Bauteile

Abbildung 2.5: 5 m-Undulator Vorderseite [6]

Der aktuelle Ist-Zustand des 5 m-Undulators mit Bezeichnung der Komponenten ist in Abb. 2.5 und 2.6 dargestellt. Der Undulator steht mit drei Füßen (Höhenjustage) auf den Scheiben der Bodenjustierung. Durch die Lenker (Justage in der Ebene) kann die Position des Gestells eingestellt werden. Der maximale Verstellweg ist durch das Spiel in der Gleitplatte, in den Lenkern und in der Fußschraube beschränkt. An dem Gestell sind die vier Führungseinheiten montiert. Mit ihnen werden die Magnetträger in vertikaler Richtung verfahren. Die Zwischenträger sind durch eine Kegelverbindung (Kegelpressverbindung) an der Aufnahmeplatte, die an der Führungseinheit sitzt, montiert. Die Magnetträger sind auf den Aufnahmebolzen, die an den Zwischenträgern verschraubt sind, mit den Halbkreuzgelenken durch die Spannsätze verspannt. Auf den Magnetträgern sitzen die Magnetstrukturen.

Abbildung 2.6: 5 m-Undulator Rückseite [6]

Im Folgenden wird auf die in dieser Arbeit bearbeiteten Bauteile und die weiteren relevanten Teile näher eingegangen. Eine Unterteilung sowohl in mechanische als auch in magnetische Komponenten dient der besseren Übersicht.

2.2.1 Mechanische Komponenten

Gestell

Für das Gestell wird unlegierter Baustahl S235JR (1.0037) als Werkstoff verwendet. Das Gestell ist eine Schweißkonstruktion, die nach dem Spannungsarmglühen zerspanend bearbeitet wird. Die Masse des Gestells beträgt ca. 2973 kg. Es besteht Kippgefahr, da der Masseschwerpunkt des Gestells außerhalb der Schwerpunkt-Begrenzung liegt. Das Gestell kippt bei Lagerung auf drei Füßen, daher sind während der Montage/Fertigung die Stützfüße zu verwenden. Für den Krantransport sind Transportlaschen vorhanden. Das Gestell besteht aus folgenden Komponenten: Träger links, Träger rechts, Strebe oben, Strebe unten, 2 x Vierkantrohr, 2 x Lasche gebogen, 2 x Lasche lang, 8 x Rippe (klein), 12 x Rippe (groß), 2 x Grundplatte S, 2 x Grundplatte S1.

Führungseinheit

Mit den Führungseinheiten werden die Magnetträger in vertikaler Richtung verfahren. Dadurch wird das Gap zwischen den Magnetträgern eingestellt. Der Servomotor setzt über das Getriebe die Spindel in Bewegung. Durch die Rotation der Spindel wird eine Flanschmutter, die auf der Spindel sitzt, vertikal verfahren. Eine Adapterplatte verbindet Flanschmutter und Aufnahmeplatte miteinander. Auf der Aufnahmeplatte sitzt der Zwischenträger, an dem der Magnetträger montiert ist. Dadurch wird das Verfahren der Magnetträger in vertikaler Richtung realisiert. Die Aufnahmeplatte sitzt zur Stützung zusätzlich auf vier Führungswagen, die auf zwei parallelen Führungsschienen präzise geführt werden. Die Schalteinheit besteht aus zwei Schaltern, die die Endlagen der vertikalen Bewegung begrenzen und einem Positionsschalter, der die Lage der Magnetträger wiedergibt. Die Führungseinheit setzt sich aus den folgenden Komponenten zusammen: Getriebemotor (Getriebe + Servomotor), Spindel, Flanschmutter, Aufnahmeplatte, Rollenschienenführung, Schalteinheit zur Fahrwegbegrenzung und Positionsmessung.

Zwischenträger

Die Zwischenträger sind das Verbindungsglied zwischen der Führungseinheit und den Magnetträgern. Es wird austenitischer, korrosionsbeständiger Edelstahl X5CrNi18-10 (1.4301) verwendet, die Masse beträgt ca. 129 kg.

Magnetträger

Die Magnetträger sind so konstruiert, dass die Durchbiegung über die Länge (5 m) der Magnetträger gleichmäßig minimal ist. Dies hat den Vorteil, dass die Magnetstruktur bzw. die Permanentmagnete und Pole einen geringeren Versatz untereinander haben. Dadurch muss beim späteren Einstellen nicht so viel austariert werden. Es werden zwei unterschiedliche Magnetträger-Werkstoffe verwendet: Eine Aluminiumlegierung AlMg4,5Mn0,7 (3.3547) mit der Masse von ca. 707 kg und ein austenitischer, korrosionsbeständiger Edelstahl X2CrNiMoN17-13-3 (1.4429) mit der Masse von ca. 2173 kg.

2.2.2 Magnetstruktur

Abbildung 2.7: Magnetstruktur [6]

Eine Magnetstruktur (siehe Abb. 2.7) besteht aus fünf (langen) Magnetmodulen und einem (kurzen) Ausgleichsmodul. An jedem Ende befinden sich jeweils noch ein Randpol und eine Basisplatte. Der Aufbau der Magnetstruktur des Undulators entspricht der vorher erläuterten Hybridstruktur mit Kobalt-Eisen (CoFe)-Polen und Neodym-Eisen-Bor (NdFeB)-Permanentmagneten. Ein Magnetmodul ist abwechselnd mit 52 CoFe-Polen und 52 NdFeB-Magneten bestückt. Beim Ausgleichsmodul wechseln sich 12 CoFe-Pole und 12 NdFeB-Magnete ab. Die Randpole sind mit drei CoFe-Polen und zwei NdFeB-Magneten bestückt, wobei sich die Magnete in Größe und Form unterscheiden. Die Basisplatten, die jeweils am Ende der Magnetstruktur befestigt sind, besitzen vielzählige Bohrungen, in denen Stiftmagnete eingesetzt sind. Die Aufgabe der Randpole und Basisplatten (Stiftmagnete) ist das sanfte Ein- und Auskoppeln des Elektronenstrahls in axialer Richtung. Die Permanentmagnete sitzen fest in dem Modul, lediglich die Pole sind in der Höhe verstellbar. Durch die Höhenverstellung der Pole kann das Magnetfeld optimal eingestellt werden. Dies ist in Abb. 2.8 dargestellt. Aufgrund der Magnetkraft neigen die Pole dazu, aus dem Modul (hoch) zu wandern. Daher werden die Pole durch die Einstellschrauben auf die gewünschte Position runtergedrückt und anschließend durch die Konterschrauben fixiert. Um ein konstantes Magnetfeld über die komplette Länge der Magnetstruktur zu gewährleisten, werden die Undulatoren auf einer Messbank magnetisch vermessen.

Abbildung 2.8: Pol Höhenverstellung [6]

2.3 Konstruktive Besonderheiten

In diesem Abschnitt wird näher auf die konstruktiven Besonderheiten des Undulators, dessen Komponenten und deren Funktionen eingegangen.

2.3.1 Gestell und Magnetträger

Die Magnetkraft ist vom Gap (Abstand zwischen den Magnetträgern) abhängig. Je kleiner das Gap, desto höher ist die magnetische Flussdichte und somit auch die Magnetkraft. Daraus folgt, dass bei kleinstem Gap die Magnetkräfte so hoch sind, dass sich die Magnetträger leicht verdrehen können. Das würde jedoch das Magnetfeld und somit den Verlauf des Elektronenstrahls beeinflussen. Um dies zu kompensieren sind die Magnetträger drehbar gelagert. Genauere Angaben zur Lagerung sind im nächsten Abschnitt erläutert. Die Magnetträger werden mit Hilfe von "Abdrückschrauben" (Rollwinkeljustage) um den Betrag des Versatzes zurückgedrückt.

2.3.2 Lagerung der Magnetträger

Die Magnetträger sind mit einer Lagerpatrone (Kreuzgelenkeinsatz), die aus einer Spannund Lagereinheit besteht, auf dem Aufnahmebolzen (siehe Abb. 2.10) an dem Zwischenträger montiert. Durch die Kreuzgelenke ist eine leichte Drehbewegung der Magnetträger um die Strahlachse möglich. Die Lagerung der Magnetträger ist in Abb. 2.9 dargestellt. Bei dem oberen Magnetträger ist das erste (von links nach rechts gesehen) Lager ein reines Festlager. Sowohl die Lager als auch das Gehäuse des Kreuzgelenkeinsatzes lassen keine Verschiebung in axialer Richtung zu. Die nächsten drei Lager sind reine Loslager, das Gehäuse (Kreuzgelenkeinsatz) ist fix, die Lager haben jedoch Spiel in axialer Richtung. Die Lagerung des unteren Magnetträgers ähnelt der des oberen Magnetträgers, mit einem Unterschied, dass das erste Lager ein Fest-Loslager ist. Bei dem Fest-Loslager hat das Lager in axialer Richtung kein Spiel und das Gehäuse ist in axialer Richtung verschiebbar. So wird gewährleistet, dass sich die Magnetträger (Magnetfelder) zueinander ausrichten lassen.

Abbildung 2.9: Magnetträger Lagerung [6]

Im weiteren Verlauf werden relevante Bauteile, die bei der Lagerung der Magnetträger zum Einsatz kommen, noch einmal aufgeführt und genauer erläutert.

Loslager

Das einreihige Zylinderrollenlager (Typ: FAG NU2206E.TVP2) mit Käfig ist für hohe radiale Belastungen geeignet. Die Bauart NU besitzt am Außenring zwei feste Borde, der Innenring ist bordlos und lässt sich somit in axialer Richtung verschieben, wodurch das Lager keiner axialen Belastungen standhält. Das Datenblatt ist dem Anhang C zu entnehmen. [15]

Festlager

Das zweireihige Pendelrollenlager (Typ: FAG 22206E) ist für hohe radiale und axiale Belastungen geeignet. Es besitzt zwei Reihen symmetrischer Tonnenrollen, die in der hohlkugeligen Laufbahn des Außenrings sitzen. Dadurch sind sie winkeleinstellbar und können somit winklige Wellenlagerungen sowie Fluchtungsfehler der Lagersitzstellen ausgleichen. Die Kennzeichnung E steht für eine verstärkte Ausführung, sie besitzt am Innenring kein Mittelbord, wodurch längere Tonnenrollen und damit höhere Tragzahlen möglich sind. Das Datenblatt ist dem Anhang C zu entnehmen. [15]

Kreuzgelenkeinsatz (80F, 80L, 80FL)

Ein Kreuzgelenkeinsatz ist ein Paket, das in die Taschen des Magnetträgers geschoben wird. Es besteht aus Gehäuse, Achse, Wälzlager, Spannsatz und Normteilen. Wie bereits erläutert, ermöglichen die Kreuzgelenkeinsätze eine leichte Drehbewegung der Magnetträger um die Verbindungsachse der vier Lager. In Abb. 2.10 ist exemplarisch eine Variante der Kreuzgelenkeinsätze dargestellt, nämlich das Loslager mit fixem Gehäuse.

Folgende Varianten der Kreuzgelenkeinsätze (Lagertypen) sind vorhanden:

- 80 F: reines Festlager \rightarrow Festlager mit fixem Gehäuse
- 80L: reines Loslager \rightarrow Loslager mit fixem Gehäuse
- 80 FL: Fest-Loslager \rightarrow Fest
lager mit in Strahlrichtung verschiebbarem Gehäuse

Abbildung 2.10: Schnitt durch Magnetträger Lagerung (Kreuzgelenkeinsatz) [6]

Spannsatz

Mit dem Spannsatz PSV 2005 50x80 wird der Magnetträger über den Aufnahmebolzen auf den Zwischenträger gespannt. Das maximal übertragbare Drehmoment beträgt 4120 Nm. Das Datenblatt ist dem Anhang C zu entnehmen.

Aufnahmebolzen

Der Aufnahmebolzen dient als Verbindungsstück zwischen Magnetträger und Zwischenträger. Er ist an dem Zwischenträger mit Schrauben befestigt, der Magnetträger wird mittels Kreuzgelenkeinsatz (Spannsatz) auf dem Aufnahmebolzen montiert / gespannt. Als Werkstoff wird legierter Vergütungsstahl (vergütet $\text{Rm} = 1000 \text{ N/mm}^2$) 42CrMo4 (1.7225) mit einer Masse von ca. 10 kg verwendet.

Biegelinie der Magnetträger

Der jetzige Undulator mit 5 m Länge ist so konstruiert, dass die Durchbiegung gleichmäßig minimal über die gesamte Länge des Magnetträgers ist. Dies wird durch die optimale Positionierung der Lagerabstände realisiert. Diese Orte werden auch als Bessel-Punkte

bezeichnet. Sie geben die Position der Lager an, an denen die Durchbiegung über die gesamte Länge des Magnetträgers ein Minimum erreicht.

2.3.3 Lagerung der Zwischenträger

Die Zwischenträger sind durch eine Kegelpressverbindung (Abb. 2.11) mit der Aufnahmeplatte, die über die Führungseinheit am Gestell befestigt ist, verbunden. Der Kegel befindet sich auf der Aufnahmeplatte, die Kegelbohrung ist im Zwischenträger. Der für die Aufnahmeplatte verwendete Werkstoff ist E335 (St60-2).

Abbildung 2.11: Schnitt durch Zwischenträger Lagerung (Kegelpressverbindung) [6]

3 Änderungskonstruktion

3.1 Konstruktive Berechnungen

In diesem Abschnitt sind Berechnungen aufgeführt, die im Laufe der Konstruktion notwendig waren.

3.1.1 Berechnung der Kürzung der Magnetträger

Um die Kürzung des Undulators zu realisieren, wird die Kürzung an den Magnetträgern vorgenommen. Alle weiteren Komponenten sollen möglichst nicht verändert werden. Die Berechnung für die maximal mögliche Kürzung der Magnetträger wird aufgrund der Symmetrie zunächst für eine Hälfte durchgeführt. Anschließend wird die maximale Kürzung auf die komplette Länge der Magnetträger bezogen. Theoretisch könnten die Magnetträger bis zur Außenkante des Zwischenträgers gekürzt werden, jedoch gibt es am Magnetträger stirnseitig Bohrungen, die mit anderen Bohrungen kollidieren könnten. Daher muss das Maß um den Betrag der stirnseitigen Bohrungen, die für die Befestigung der Linearencoder benötigt werden, vergrößert werden. Die für die Rechnung relevanten Längen (Abb. 3.1) sind die tiefste stirnseitige Bohrung L_{M16} , die der Länge der M16 Gewindebohrung entspricht, und die komplette ungekürzte Magnetträgerlänge L_V , die Hälfte der kompletten Länge der Magnetträger L_H und das Maß L_{Zwt} , welches von der Mittellinie bis zur Zwischenträger-Außenkante geht.

Längen

 $L_{M16} = 50 \text{ mm}$ $L_V = 5000 \text{ mm}$ $L_{Zwt} = 2097,5 \text{ mm}$ $L_H = \frac{L_V}{2} = 2500 \text{ mm}$

Berechnung der Länge x, um die der Magnetträger gekürzt werden kann:

$$x = L_H - (L_{Zwt} + L_{M16})$$

$$x = 2500 \text{ mm} - (2097,5 \text{ mm} + 50 \text{ mm})$$

$$x = 352,5 \text{ mm}$$

Berechnung der effektiv bleibenden Länge L_N des Undulators nach der Kürzung:

$$L_N = L_V - (2 \cdot x)$$

 $L_N = 5000 \,\mathrm{mm} - (2 \cdot 352,5 \,\mathrm{mm})$
 $L_N = 4295 \,\mathrm{mm}$

Das Ergebnis der gekürzten Magnetträgerlänge ist $L_N = 4295 \,\mathrm{mm}$. Dieser Wert wird aufgerundet, sodass im weiteren Verlauf für die gekürzte Undulatorlänge das Maß von $4300 \,\mathrm{mm}$ verwendet wird.

3.1.2 Berechnung der Magnetträger-Belastungen

Für die analytische Berechnung der Biegelinie der Magnetträger mit MDESIGN, Ansys und der Differentialgleichung des Biegebalkens war die Berechnung von folgenden Belastungen für die Magnetträger notwendig. Die berechneten Belastungen sind die durch den Linearencoder entstehende Gewichtskraft F_{LC} an den Enden der Magnetträger, die aus der Gewichtskraft entstehenden Streckenlasten für die Magnetstrukturen q_{MS} und die Magnetträger q_{MT} sowie die Streckenlast q_{MK} , resultierend aus der maximalen Magnetkraft. Die Berechnungen wurden für den oberen und unteren Magnetträger jeweils mit den unterschiedlichen Werkstoffen (Aluminium und Edelstahl) und unterschiedlichen Längen (5 m und 4,3 m) durchgeführt. Im Folgenden ist das Schema für die Berechnung der Belastungen aufgeführt. Die Ergebnisse für den jeweiligen Magnetträger sind in den Tabellen 3.1 bis 3.4 und die der Gestamtstreckenlasten in der Tabelle 3.5 dargestellt. Die kompletten Rechenwege sind dem Anhang D.1 zu entnehmen. In Tabelle 3.5 sind die unterschiedlichen Magnetträger, Werkstoffe und Längen aufgeführt. Mit einer Unterteilung der Spalten in oberen und unteren Magnetträger (jeweils mit und ohne Magnetträger-Eigengewicht (EG)).

Wie in Abschnitt 2.3.2 erläutert, ist bei dem unteren Magnetträger ein Fest-Loslager vorhanden. Um die analytische Berechnung zu vereinfachen, wurde das Fest-Loslager als ein Festlager angenommen.

Kräfte

Die Gewichtskräfte F_i für die Magnetstruktur F_{MS} , den Magnetträger F_{MT} und den Linearencoder F_{LC} werden mit der Gleichung (3.1) berechnet. Die Masse der Magnetträger ist mittels der Geometrie (Volumen) und der Dichte der unterschiedlichen Werkstoffe berechnet. Bei komplexen Strukturen wie bei der Magnetstruktur wurde die Masse der Zeichnung entnommen. Die Gewichtskraft $F_{LC} = 147,10$ N der Linearencoder ist unabhängig von der Länge und dem Werkstoff des Magnetträgers. Die Magnetkraft F_{MK} wird mit der Gleichung (3.2) berechnet: Mit dem Effektivwert der magnetischen Flussdichte B_{0eff} , der Polfläche A_p , der magnetischen Feldkonstante μ_0 und der relativen Permeabilität μ_r .
$$F_i = m_i \cdot g \tag{3.1}$$

$$F_{MK} = \frac{B_{0eff}^2 \cdot A_p}{2 \cdot \mu_0 \cdot \mu_r} \tag{3.2}$$

Streckenlasten

Die Streckenlasten q_i für die Magnetstruktur q_{MS} , den Magnetträger q_{MT} und der Magnetkraft q_{MK} werden mit der Gleichung (3.3) berechnet. Für die analytische Berechnung der Biegelinie der Magnetträger wird aus den einzelnen Streckenlasten q_i die Summe der Gesamt-Streckenlast q_{ges} für den oberen q_{ges_o} (Abb. 3.2) und unteren q_{ges_u} (Abb. 3.3) Magnetträger mit den Gleichungen (3.4) und (3.5) gebildet. Da die Streckenlast q_{MK} aufgrund der Magnetkraft bei dem unteren Magnetträger entgegengesetzt der Schwerkraft nach oben zeigt, wird sie bei der Berechnung von q_{ges_u} abgezogen. Die daraus resultierende Gesamt-Streckenlast q_{ges_u} zeigt in die entgegengesetzte Richtung von q_{ges_o} .

$$q_i = \frac{F_i}{L_i} \tag{3.3}$$

$$q_{ges_o} = q_{MT} + q_{MS} + q_{MK} \tag{3.4}$$

$$q_{ges_u} = q_{MT} + q_{MS} - q_{MK} ag{3.5}$$

Abbildung 3.2: 5 m-Magnetträger Belastungen oben

	Kraft [N]	Streckenlast $[N/m]$
Magnet-	34144,21	6828,84
Magnetträger-	21574,63	4314,93
Magnetstruktur-	3151, 31	630,26

Tabelle 3.1: Werte für den 5 m Edelstahl Magnetträger

Abbildung 3.3: 5 m-Magnetträger Belastungen unten

	Kraft [N]	Streckenlast $[N/m]$
Magnet-	34144,21	6828,84
Magnetträger-	$7281,\!44$	$1456,\!29$
Magnetstruktur-	3151,31	630,26

Tabelle 3.2: Werte für den 5 m Aluminium Magnetträger

	Kraft [N]	Streckenlast $[N/m]$
Magnet-	29364,02	6828,84
Magnetträger-	18554,18	4314,93
Magnetstruktur-	2710,12	630,26

Tabelle 3.3: Werte für den 4,3 m Edelstahl Magnetträger

	Kraft [N]	Streckenlast $[N/m]$
Magnet-	29364,02	6828,84
Magnetträger-	$6262,\!04$	$1456,\!29$
Magnetstruktur-	2710, 12	630,26

Tabelle 3.4: Werte für den 4,3 m Aluminium Magnetträger

	mit	EG	ohn	e EG
	oben $[N/m]$	unten [N/m]	oben $[N/m]$	unten $[N/m]$
5 m-Edelstahl	$11774,\!03$	-1883,65	7459,10	-6199,58
$5\mathrm{m} ext{-Aluminium}$	$8915,\!39$	-4742,29	$7459,\!10$	-6199,58
$4,3\mathrm{m} ext{-}\mathrm{Edelstahl}$	$11774,\!03$	$-1883,\!65$	$7459,\!10$	-6199,58
$4,3\mathrm{m} ext{-Aluminium}$	$8915,\!39$	-4742,29	7459,10	-6199,58

Tabelle 3.5: Ergebnisse der Gesamt-Streckenlasten q_{ges_i}

3.1.3 Berechnung der Kegelpressverbindung

Durch die Berechnung des Verhältnisses von Kegelreibungsmoment M_R und Lastmoment M_L wird überprüft, ob die Kegelverbindung den äußeren Belastungen standhält und somit als starre Verbindung angesehen werden kann. Das Reibmoment M_R am Kegel wird durch einige Zwischenschritte aus dem Anzugsmoment M_A der Schraube, welche für die Montage gegeben ist, berechnet. Das Lastmoment M_L lässt sich aus der Differenz der Lagerreaktion um den Kegel mit der Hebellänge zur Kegelmitte berechnen.

Berechnung des Reibmoments M_R am Kegel

Hier sind exemplarisch Auszüge aus der Berechnung des Kegelreibmoments M_R dargestellt, der komplette Rechenweg ist dem Anhang D.2 zu entnehmen. Durch das gegebene Anzugsmoment M_A wird die Montagevorspannkraft F_{VM} der Schraube mit der Gleichung (3.6) berechnet. Die Montagevorspannkraft F_{VM} entspricht der axialen Einpresskraft F_A , mit der durch die Keilwirkung (Abb. 3.4) des Kegels die erforderliche Anpresskraft (=Normalkraft) F_N erzeugt wird. Abb. 3.5 veranschaulicht das in Gleichung (3.7) aufgestellte Kräftegleichgewicht in x-Richtung, wodurch nach Umstellung die Normalkraft F_N durch Gleichung (3.10) berechnet wird. Mit der Gleichung (3.11) wird über die Normalkraft F_N das Reibmoment M_R am Kegel berechnet. [15]

Abbildung 3.4: Kegel Geometrie und Kräfte

Berechnung der Montagevorspannkraft F_{VM} aus dem Anzugsmoment M_A :

$$F_{VM} = \frac{M_A}{\frac{d_2}{2} \cdot \tan(\varphi + \rho) + \mu_K \cdot \frac{d_k}{2}} = 51\,308,12\,\mathrm{N}$$
(3.6)

mit: Flankendurchmesser d_2 , Gewindesteigungswinkel φ , Gewindereibungswinkel ρ , Reibungszahl μ_k in der Kopf- bzw. Mutterauflage, wirksamer Reibungsdurchmesser d_k (Schraubenkopf- oder Mutterauflage).

Berechnung der Normalkraft F_N aus der axialen Einpresskraft $F_A = F_{VM}$:

$$\sum F_x : 0 = F_A - F_R \cdot \cos\left(\frac{\alpha}{2}\right) - F_N \cdot \sin\left(\frac{\alpha}{2}\right)$$
(3.7)

$$0 = F_A - F_N \cdot \mu \cdot \cos\left(\frac{\alpha}{2}\right) - F_N \cdot \sin\left(\frac{\alpha}{2}\right)$$
(3.8)

$$F_A = F_N \cdot \left[\mu \cdot \cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right)\right] \tag{3.9}$$

$$F_N = \frac{F_A}{\mu \cdot \cos(\frac{\alpha}{2}) + \sin(\frac{\alpha}{2})} = 312\,416,26\,\mathrm{N} \tag{3.10}$$

mit: Haftbeiwert gegen Rutschen μ , Kegel-Neigungswinkel α .

Berechnung des Kegelreibmoments ${\cal M}_R$ aus der Normalkraft ${\cal F}_N:$

$$M_R = F_R \cdot \frac{D_{mF}}{2} = F_N \cdot \mu \cdot \frac{D_{mF}}{2} = 1088,24 \,\mathrm{N\,m}$$
(3.11)

mit: mittlerer Kegel-Fugendurchmesser D_{mF} , Reibkraft $F_R = F_N \cdot \mu$.

Abbildung 3.5: Detailansicht Kräfte am Kegel

Aus Gleichung (3.11) folgt, dass die Kegelverbindung ein maximales Moment von 1088,24 N m

übertragen kann.

Die Selbsthemmung der Schraubenverbindung besteht, wenn der Gewindesteigungswinkel φ kleiner ist als der Gewindereibungswinkel ρ . Bei der Sechskantschraube ISO 4018 M30x80 - A2 ist der Gewindesteigungswinkel $\varphi = 2, 3^{\circ}$ und der Gewindereibungswinkel $\rho = 6, 6^{\circ}$. Aus $\varphi < \rho$ folgt, dass die Schraubenverbindung selbsthemmend ist. [15]

Der Richtwert für die Selbsthemmung bei Kegelpressverbänden liegt bei einem Kegelverhältnis von $C \leq 1$: 5. Hier ist das Kegelverhältnis C = 0, 21. Daraus folgt, dass es eine leicht lösbare Kegelverbindung ist. [15]

Berechnung des Lastmoments M_L am Kegel

Mit den Ergebnissen für die Lagerreaktionskräfte aus Abschnitt 4.1.2 der analytischen Berechnung der Biegelinie für die Magnetträger mit den unterschiedlichen Längen und Werkstoffen kann das Lastmoment M_L am Kegel berechnet werden. In Abb. 3.6 sind die Lagerreaktionskräfte an den Zwischenträgern dargestellt. Die mit A und B bezeichneten Zwischenträger sitzen am oberen Magnetträger und die mit D und E gekennzeichneten Zwischenträger sitzen am unteren Magnetträger. Die Anordnung der Zwischenträger entspricht der gleichen Folge wie in Abb. 2.9.

Abbildung 3.6: Kräfte an den Zwischenträgern

Zur Veranschaulichung wird die Berechnung des mit A gekennzeichneten Zwischenträgers (Abb. 3.7) am oberen Magnetträger aufgeführt. Die Lastmomente an den restlichen Kegelverbindungen können nach dem gleichen Schema berechnet werden. Die vom Magnetträger auf den Zwischenträger übertragenen vertikalen Kräfte sind, F_{1_o} vom Festlager und F_{2_o} vom Loslager. Nach Aufstellen der Momentengleichung Gleichung (3.12) kann nach Umstellen das Lastmoment M_{L_A} mit der Gleichung (3.13) berechnet werden. Zur besseren Übersicht sind die mit MDESIGN berechneten Lagerreaktionen und die daraus resultierenden Lastmomente M_{L_i} um den Kegel in den Tabellen 3.6 und 3.7 aufgeführt. Dasselbe ist auch für die mit Ansys berechneten Lagerreaktionen und die daraus resultierenden Lastmomente (Tabellen 3.8 und 3.9) durchgeführt worden. Die unterschiedlichen Vorzeichen resultieren daraus, dass bei den Programmen eine unterschiedliche positive Koordinatenrichtung vorhanden ist. Da in Abb. 3.6 die Kraftrichtungen dargestellt sind, wird im Folgenden für die Berechnung der Lastmomente an den Lagern mit den Beträgen der Kräfte gerechnet. Das Maß der Lagerabstandslänge c_L der Zwischenträger beträgt $c_L = 1312,5 \,\mathrm{mm}$.

Abbildung 3.7: Lastmoment am Zwischenträger

Berechnung des Lastmoments M_{L_A} am Kegel:

$$\sum M_A : 0 = M_{L_A} + F_{1_o} \cdot \frac{c_L}{2} - F_{2_o} \cdot \frac{c_L}{2}$$
(3.12)

$$M_{L_A} = \frac{c_L}{2} \cdot (F_{2_o} - F_{1_o}) \tag{3.13}$$

Die restlichen Momentengleichungen:

$$M_{L_B} = \frac{c_L}{2} \cdot (F_{3_o} - F_{4_o}) \tag{3.14}$$

$$M_{L_D} = \frac{c_L}{2} \cdot (F_{2_u} - F_{1_u}) \tag{3.15}$$

$$M_{L_E} = \frac{c_L}{2} \cdot (F_{3_u} - F_{4_u}) \tag{3.16}$$

Gegenüberstellung der Ergebnisse

Das am Kegel maximal mögliche übertragbare Moment ist $M_R = 1088,24$ N m. In Tabelle 3.10 sind nochmals die Werte (MDESIGN) für die Lastmomente der oberen und unteren Zwischenträger aufgeführt. Dort ist jeweils nur ein Wert für das Lastmoment aufgrund der Beziehung $M_{L_A} = M_{L_B}$ und $M_{L_D} = M_{L_E}$ aufgeführt. Es wird ersichtlich, dass durch die Kürzung der Magnetträger das durch die Kegelpressverbindung erzeugte Reibmoment M_R nicht dem durch die äußere Belastung entstehende Lastmoment M_L standhält. Daher kann die Kegelpressverbindung nicht als starre Verbindung angenommen werden. Bei der Gegenüberstellung der Lastmomente, siehe Tabelle 3.11, die aus den Lagerreaktionen aus Ansys errechneten wurden, sieht es ähnlich aus. Die gekürzte Variante hält der äußeren Belastung nicht stand, sodass dort keine starre Kegelpressverbindung vorhanden ist.

		agerkräfte		Lastmoment		agerkräfte		Lastmoment
	F_{1_o} []	N F_{i}	2 ₀ [N]	M_{L_A} [N m]	F_{3_o} [N]	F.	$[4_o[N]]$	M_{L_B} [N m]
5 m-Edelstahl	-13999,2	8 -1	5582,94	1039,28	-15582,94	-1396	<u> 99,28</u>	1039,28
5 m-Aluminium	-10653,1	-1	1782,48	741,15	-11782,48	-1065	53,11	741,15
$4,3 \mathrm{m} ext{-} \mathrm{Edelstahl}$	-8523,8	-1 -1	6937, 49	5521,48	-16937,49	-852	23,81	5521,48
4,3 m-Aluminium	-6495,6	-1-	2819,57	4150,09	-12819,57	-646	95,63	4150,09
								1
		Lager	·kräfte	Lastmomen	t Lageı	rkräfte	Lastmome	nt
		F_{1_u} [N]	F_{2u} [N]	$M_{L_D} [\mathrm{Nm}]$	F_{3_u} [N]	F_{4_u} [N]	M_{L_E} [N m	
5 m-Ec	lelstahl	1988,76	2575,72	385,19	2575,72	1988,76	385,19	
5 m-Al	uminium	5334,93	6376, 18	683, 32	6376, 18	5334,93	683, 32	
$4,3 { m m-l}$	Edelstahl	1166, 85	2738,01	1031,07	2738,01	1166,85	1031,07	
$4.3 \mathrm{m}$ -1	Aluminium	3195.03	6855.93	2402.47	6855.93	3195.03	2402.47	

Tabelle 3.7: Lagerreaktionen (MDESIGN) und die daraus berechneten Lastmomente M_{L_i} an den unteren Zwischenträgern

	rager)		
	F_{1_o} [N]	F_{2_o} [N]	M_{L_A} [N m]	F_{3_o} [N]	F_{4_o} [N]	M_{L_B} [N m]
5 m-Edelstahl	13998,50	15582, 29	1039, 37	15586,46	13997, 10	1043,02
5 m-Aluminium	10660,79	11773,76	730, 39	$11\ 776, 87$	10659,74	733,11
$4,3 \mathrm{m} ext{-} \mathrm{Edelstahl}$	8691, 92	16773, 15	5303, 31	16761,68	8695, 77	5293, 25
4,3 m-Aluminium	6631, 59	12686,44	3973, 49	12677,86	6634, 48	3965,97

	Lagerk	räfte	Lastmoment	Lage	erkräfte	Lastmoment
	F_{1_u} [N]	F_{2_u} [N]	$M_{L_D} [\mathrm{Nm}]$	F_{3_u} [N]	F_{4_u} [N]	$M_{L_E} [\rm Nm]$
5 m-Edelstahl	-2028,57	-2533,23	331, 18	-2533,91	-2028,35	331,78
5 m-Aluminium	-5365,47	-6342,60	641, 24	-6344,28	-5364,91	642, 72
$4,3 \mathrm{m} ext{-} \mathrm{Edelstahl}$	-1230,11	-2673,25	947,06	-2671,43	-1230,73	945,46
4,3 m-Aluminium	-3288,97	-6761,38	2278, 77	-6756,82	-3290,50	2274, 77

Tabelle 3.9: Lagerreaktionen (Ansys) und die daraus berechneten Lastmomente M_{L_i} an den unteren Zwischenträgern

Änderungskonstruktion

			ope	n	unte	n			
			$M_{L_A} [\mathrm{Nm}]$	Status	M_{L_D} [N m]	Status			
	5 m-Edel	lstahl	1039, 28	ok	385, 19	ok			
	5 m-Aluı	minium	741,15	ok	683, 32	ok			
	$4,3 \mathrm{m-Ec}$	lelstahl	5521, 48	nicht ok	1031,07	ok			
	4,3 m-Al	uminium	4150,09	nicht ok	2402, 47	nicht ok			
Tabelle 3.10: Gegenübers	stellung der (MDESIGN) Ergebnisse	tür Reib-	und Lastmo	ment an de	en oberen ur	id unteren Zw	·
schenträger	n.		0						
		obe	en			unt	en		
	M_{L_A} [N m]	Status	M_{L_B} [N m]	Status	M_{L_D} [N m]	Status	$M_{L_E} [\mathrm{Nm}]$	Status	
5 m-Edelstahl	1039, 37	ok	1043,02	ok	331,18	ok	331,78	ok	
5 m-Aluminium	730, 39	ok	733,11	ok	641, 24	ok	642,72	ok	
$4,3 \mathrm{m} ext{-} \mathrm{Edelstahl}$	5303, 31	nicht ok	5293, 25	nicht ok	947,06	ok	945,46	ok	
4,3 m-Aluminium	3973, 49	nicht ok	3965,97	nicht ok	2278, 77	nicht ok	2274,77	nicht ok	
Tahalla 3 11. Camuihars	talling dar (1	Answed Era	abnissa für R	aih- und L	actmoment a	n dan ahar	nnd unter	an Zwischantr	:0
Idouite U.I.I. Ocgumuure gern		girt (cherry	T THI ACCITION				TANTIN MITA		5
)									

3.2 Schwerpunktbetrachtung

Die Schwerpunktbegrenzung des 5 m-Undulators ist durch das rote Dreieck in Abb. 3.8 dargestellt. Der Undulator-Massenschwerpunkt befindet sich in diesem Dreieck. Durch das Kürzen wird Material an den Seiten der Magnetträger abgetragen. Die abgetragene Masse setzt sich aus Magnetstruktur- und Magnetträgermasse zusammen. Sie entspricht bei den Undulatoren mit Aluminiumträgern $m_{AL} = 253$ kg und bei den Edelstahlträgern $m_{VA} = 661$ kg. Die Berechnung ist dem Anhang D.3 zu entnehmen. Sie ist im Verhältnis zu der Undulatormasse von ca. 8000 kg vernachlässigbar klein. Daher kann gesagt werden, dass die Position des Masseschwerpunkts sich geringfügig ändert, sich jedoch nicht aus dem Dreieck herausbewegt. Zusätzlich sichern die Stützfüße den Undulator vor dem Kippen.

Abbildung 3.8: Undulator Schwerpunkt [6]

3.3 Beschreibung der konstruktiven Umsetzung

Anpassung des Modells im CAD

Mit dem errechneten Wert aus Abschnitt 3.1.1 für die Kürzung des Unulators wurde das CAD-Modell in NX angepasst, indem die Magnetträger symmetrisch auf das Maß 4300 mm gekürzt wurden. Durch das Kürzen mussten Funktionsflächen, die durch den Materialabtrag nicht mehr vorhanden sind, neu angeordnet werden. Der gekürzte Undulator ist in Abb. 3.9 dargestellt.

Im Folgenden wird auf die Funktionsflächen, die neu positioniert werden mussten, eingegangen. Die fein bearbeiteten Flächen für die Wasserwaage, die zum Ausrichten des Undulators genutzt werden, mussten neu angeordnet werden. Ebenso mussten die Messnester, die bei der Vermessung im Tunnel gebraucht werden, um den Undulator im Beschleuniger optimal zu positionieren, neu angeordnet werden. Die durch den Materialabtrag nicht mehr vorhandenen stirnseitigen Gewindebohrungen zum Befestigen der Linearencoder am Magnetträger mussten neu eingefügt werden. Die M4-Gewindebohrungen, die für die Befestigung von Temperaturfühlern gedacht sind, mussten neu positioniert werden.

Nachfolgend sind die neu zugeordneten Zwangsbedingungen aufgelistet. Durch die Magnetträgerkürzung mussten verlorengegangene Zwangsbedingungen von angrenzenden Bauteilen im 3D-Modell neu zugeordnet werden. Die Linearencoder, die außen an den Stirnseiten des Undulators befestigt waren, mussten an den durch die Kürzung neu entstandenen Stirnflächen positioniert werden. Durch die Kürzung ist eine Lücke in der Magnetstruktur entstanden, sodass die Magnetmodule neu angeordnet werden mussten. Außerdem wurde ein Ausgleichsmodul zum Schließen der Lücke eingesetzt. Da auf die komplette Länge des Magnetträgers nicht mehr als fünf (lange) Magnetmodule passen, jedoch durch das Kürzen eine Lücke entstanden ist, wird sie mit Hilfe des Ausgleichmoduls geschlossen.

Gewindebohrungen

4 Verformungsanalyse

Mit den aus Abschnitt 3.1.2 errechneten Belastungen wurde die Biegelinie für die unterschiedlichen Magnetträgerlängen (5 m und 4,3 m) und -Werkstoffe (Aluminium und Edelstahl) jeweils für den oberen und unteren Magnetträger berechnet. Zur Berechnung der Biegelinie sind die Berechnungsprogramme MDESIGN und Ansys zum Einsatz gekommen. Die mit MDESIGN errechneten Werte sind mit Ansys überprüft worden. Die Werte wichen stark voneinander ab. Da MDESIGN im Gegensatz zu Ansys die Schubdurchsenkung nicht mit abbildet, wurde deutlich, dass die Schubdurchsenkung einen wesentlichen Beitrag zur Durchbiegung leistet. Um dennoch die Werte zu überprüfen, wurden die Differentialgleichungen für die Durchbiegung und die Schubdurchsenkung ermittelt. Die Ergebnisse von MDESIGN wurden mit den Ergebnissen der Differentialgleichung des Biegebalkens überprüft. [10] Durch Superposition der Differentialgleichung der Durchbiegung und der Schubdurchsenkung wurden die Werte von Ansys überprüft. [7]

Damit die Ergebnisse der Berechnung durch MDESIGN, Ansys und der analytischen Handrechnung der Differentialgleichung miteinander verglichen werden können, wurde überall mit den gleichen Werten gerechnet. Die Werkstoffkennwerte und die Position der Lager sind in den Tabellen 4.1 und 4.2 dargestellt. Die Querschnittsmaße des Magnetträgers sind für die Höhe h = 550 mm und für die Breite b = 100 mm.

Lager	ungekürzt [mm]	gekürzt [mm]
1	$522,\!5$	172,5
2	1835	1485
3	3165	2815
4	4477,5	4127,5

Tabelle 4.1: Lagerposition für die ungekürzten und gekürzten Magnetträger

	Aluminium	Edelstahl
Streckgrenze	$110 \mathrm{MPa}$	$270 \mathrm{MPa}$
Zugfestigkeit	$270 \mathrm{MPa}$	$580 \mathrm{MPa}$
Elastizitätsmodul	$70000 \mathrm{MPa}$	$200000~\mathrm{MPa}$
Querkontraktionszahl	0,33	0,3
Dichte	2700 kg/m^3	8000 kg/m^3

4 Verformungsanalyse

 Tabelle 4.2: Werkstoffkennwerte

4.1 Verformungsanalyse mittels Biegelinie

Hier die Betrachtung des schubstarren Biegebalkens nach der Bernoulli-Hypothese.

4.1.1 Differentialgleichung der Biegelinie

Die Differentialgleichung des Biegebalkens wurde aufgrund der Symmetrie des Magnetträgers nur für eine Hälfte erstellt. Das Freikörperbild der rechten Magnetträgerhälfte ist in Abb. 4.1 dargestellt. Der Balken wurde in der Mitte geschnitten und das auftretende Moment M_0 dort angetragen. Die äußeren Lasten sind durch die Streckenlast q_0 und die Gewichtskraft des Liniearencoders F_{LC} gegeben. Für die Streckenlast q_0 werden die Gesamt-Streckenlasten q_{ges_i} aus Tabelle 3.5 eingesetzt. Die Lagerreaktionen von der rechten Magnetträgerhälfte sind F_a und F_b . Die rechte Magnetträgerhälfte ist in drei Bereiche aufgeteilt, wobei c = 665 mm und d = 1312,5 mm unveränderlich sind und e = L/2 - c - d sich durch das Kürzen des Magnetträgers ändert. Um die Ergebnisse von MDESIGN zu überprüfen, wurde an bestimmten Stellen (horizontale x-Koordinate) die Durchbiegung mit den Gleichungen (4.5), (4.7) und (4.9) berechnet. Diese Ergebnisse sind in Tabelle 4.5 dargestellt. Die komplette Rechnung ist dem Anhang E zu entnehmen.

Gleichungen

Moment M_0 :

$$M_0 = \frac{d}{6 \cdot c + 2 \cdot d} \cdot \left(q_0 \cdot d^2 \left(\left(\frac{c}{d}\right)^3 + \left(\frac{c}{d}\right)^2 + \frac{1}{2} \cdot \left(\frac{e}{d}\right)^2 - \frac{1}{4} \right) + F_{LC} \cdot e \right)$$
(4.1)

Abbildung 4.1: Magnetträger Freikörperbild (Symmetrie)

Lagerkräfte ${\cal F}_a$ und ${\cal F}_b$:

$$F_a = q_0 \cdot d \cdot \left(\left(\frac{c}{d}\right)^3 + \frac{3}{2} \cdot \left(\frac{c}{d}\right)^2 + \left(\frac{c}{d}\right) + \frac{1}{4}\right) - \frac{M_0}{d} \cdot \left(3 + 6 \cdot \frac{c}{d}\right)$$
(4.2)

$$F_b = q_0 \cdot (c + d + e) + F_{LC} - F_a \tag{4.3}$$

maximale Durchbiegung w_{b01} Bereich I (Mitte):

$$w_{b01} = \frac{c^2}{2 \cdot E \cdot I_y} \cdot \left(M_0 - \frac{q_0 \cdot c^2}{12} \right)$$
(4.4)

Durchbiegung w_{b1} Bereich I (Mitte):

$$w_{b1}(x_1) = \frac{1}{E \cdot I_y} \cdot \left(\frac{q_0 \cdot x_1^4}{24} - \frac{1}{2} \cdot M_0 \cdot x_1^2 + E \cdot I_y \cdot w_{b01} \right)$$
(4.5)

Integrationskonstante c_3 Bereich II (Stützabstand):

$$c_3 = \frac{q_0 \cdot c^3}{6} - M_0 \cdot c \tag{4.6}$$

Durchbiegung w_{b2} Bereich II (Stützabstand):

$$w_{b2}(x_2) = \frac{1}{E \cdot I_y} \cdot \left(q_0 \cdot \left(\frac{x_2^4}{24} + \frac{c \cdot x_2^3}{6} + \frac{c^2 \cdot x_2^2}{4} \right) - \frac{F_a \cdot x_2^3}{6} - \frac{M_0 \cdot x_2^2}{2} + c_3 \cdot x_2 \right)$$
(4.7)

Integrationskonstante D_3 Bereich III (Kragarm):

$$D_3 = \frac{q_0}{2} \cdot \left(\frac{1}{3} \cdot \left(c^3 + d^3\right) + \left(c \cdot d^2 + c^2 \cdot d\right)\right) - \frac{1}{2} \cdot F_a \cdot d^2 - M_0 \cdot (c+d)$$
(4.8)

Durchbiegung w_{b3} Bereich III (Kragarm):

$$w_{b3}(x_3) = \frac{1}{E \cdot I_y} \cdot \left(\frac{q_0 \cdot x_3^4}{24} + \frac{q_0 \cdot e^2 \cdot x_3^2}{4} - \frac{q_0 \cdot e \cdot x_3^3}{6} - \frac{F_{LC} \cdot x_3^3}{6} + \frac{F_{LC} \cdot e \cdot x_3^2}{2} + D_3 \cdot x_3\right)$$
(4.9)

4.1.2 MDESIGN Biegelinie

Damit das Programm MDESIGN die Berechnung durchführen kann, müssen folgende Daten für die ungekürzten und gekürzten Magnetträger eingepflegt werden:

- die Abmaße (Höhe, Breite, Länge) der Magnetträger
- die Position der Magnetträger-Lager (Tabelle 4.1) in horizontaler Richtung
- die Belastungen, die auf den Magnetträger wirken, mit den Gesamtstreckenlasten aus Tabelle 3.5 (ohne Eigengewicht, da MDESIGN das selber berechnet)
- die Gewichtskraft des Linearencoders $F_{LC}=147,\!10\,\mathrm{N}$ aus Abschnitt 3.1.2

Durch die Wahl des Werkstoffs aus der Werkstoffdatenbank des Programms werden die Werkstoffkennwerte aus Tabelle 4.2 in die Berechnung mit einbezogen.

Darstellung der Biegelinien

Die Biegelinien für den ungekürzten Magnetträger sind in Abb. 4.2, für den oberen und unteren Magnetträger jeweils mit den unterschiedlichen Werkstoffen dargestellt. Es ist ersichtlich, dass durch die optimale Wahl der Lagerstellen (Bessel-Punkte), für diesen Belastungsfall eine minimal konstante Durchbiegung über die komplette Länge des Magnetträgers vorhanden ist. Hierbei ist die Durchbiegung vom oberen Magnetträger (Abb. 4.2a und 4.2b) größer als die vom unteren Magnetträger (Abb. 4.2c und 4.2d). Dies resultiert daraus, dass die Gesamt-Streckenlast, wie in Abschnitt 3.1.2 beschrieben, beim oberen Magnetträger größer ist als beim unteren Magnetträger.

Die Biegelinien der gekürzten Magnetträger sind in Abb. 4.3 dargestellt. Durch den Materialabtrag an den Enden der Magnetträger hat sich der Belastungszustand geändert, sodass die Durchbiegung nicht mehr so gleichmäßig ist wie vorher. Auch hier sind die Durchbiegungen vom oberen Magnetträger (Abb. 4.3a und 4.3b) aufgrund der höheren Belastung größer als beim unteren Magnetträger (Abb. 4.3c und 4.3d).

In Tabelle 4.3 sind die maximalen Werte für die Durchbiegung der Magnetträger dargestellt. Die Werte wurden aus den Verläufen der Biegelinen Abb. 4.2 und 4.3 abgelesen. Es wird deutlich, dass die Werte für die maximale Durchbiegung bei den gekürzten Magnetträgern um einen gewissen Faktor größer sind. Dieser Faktor ist in Tabelle 4.4 dargestellt.

	w_b	Omax
	oben [μ m]	unten $[\mu m]$
5 m-Edelstahl	0,43	-0,08
$5\mathrm{m} ext{-Aluminium}$	1	-0,45
$4,3\mathrm{m} ext{-}\mathrm{Edelstahl}$	0,8	-0,14
$4,3\mathrm{m} ext{-Aluminium}$	1,7	-0,95

Tabelle 4.3: MDESIGN - maximale Durchbiegung $w_{b_{max}}$

40

	Faktor			
	oben unten			
Edelstahl	1,8	1,75		
Aluminium	1,7	2,1		

Tabelle 4.4: MDESIGN - Faktor der maximalen Durchbiegung $w_{b_{max}}$ (Vergleich 4,3 m zu 5 m Magnetträger)

4.1.3 Gegenüberstellung der Ergebnisse

Damit die Werte miteinander verglichen werden können, sind bei der Berechnung der Durchbiegung die gleichen Stellen (horizontale x-Koordinate) gewählt worden. Der Vergleich ist mit dem oberem 5 m langen Magnetträger aus Aluminium durchgeführt worden. Da das Schema beider Rechenoptionen sich nicht verändert, reicht eine Kontrollrechnung. Bei der Differentialgleichung sind jeweils die Werte der Bereiche (c, d, e) für die horizontale Koordinate eingesetzt worden. Bei MDESIGN wurde die Durchlaufkoordinate in horizontaler Richtung als Wert genutzt, um die Durchbiegung an der Stelle zu erfassen. Damit beim Ablesen keine Fehler auftreten, wurde aus MDESIGN eine Wertetabelle ausgegeben, woraus dann die Werte der Durchbiegung abgelesen wurden. Die Werte der Durchbiegung sind in Tabelle 4.5 dargestellt. Der Vollständigkeit halber sind an den Lager-Übergängen die Durchbiegung beider Bereiche ausgerechnet worden. Dort müssten die Ergebnisse identisch sein. In diesem Fall müsste sich bei den Lagerstellen eine Durchbiegung von Null Millimeter ergeben; dies ist nicht so. Jedoch kann ein niedriger Wert, wie z.B. bei $w_{b1}(c) = -1.46 \cdot 10^{-19}$ mm, die Durchbiegung nahezu als Null angenommen werden. Die Werte weichen nach einigen Nachkommastellen (nach der sechsten Stelle) voneinander ab, was aber so gering ist, dass es bei dieser Betrachtung vernachlässigt werden kann. Somit kann davon asugegangen werden, dass die Werte übereinstimmen.

DGL		MDESIGN		
$x \; [mm]$	w_{bi} [mm]	$x \; [\mathrm{mm}]$	$w_{bi} \; [\mathrm{mm}]$	Ort
$w_{b1}(0)$	$7{,}86\cdot10^{-4}$	$w_b(2500)$	$7{,}86\cdot10^{-4}$	Symmetrieachse
$w_{b1}(c)$	$-1,46 \cdot 10^{-19}$	$w_b(3165)$	0	Lager 3
$w_{b2}(0)$	0	$w_b(3165)$	0	Lager 3
$w_{b2}(656)$	$6,74 \cdot 10^{-4}$	$w_b(3821)$	$6,72\cdot10^{-4}$	Mitte Lager 3 & 4
$w_{b2}(d)$	$-2,5\cdot 10^{-17}$	$w_b(4477, 5)$	0	Lager 4
$w_{b3}(0)$	0	$w_b(4477, 5)$	0	Lager 4
$w_{b3}(e)$	$9,82\cdot10^{-4}$	$w_b(5000)$	$9,82\cdot10^{-4}$	Träger ende

4 Verformungsanalyse

Tabelle 4.5: Gegenüberstellung der Ergebnisse (Durchbiegung $w_{b_i})$ von MDESIGN und der DGL

4.2 Erweiterte Verformungsanalyse

Hier erfolgt die Betrachtung der Gesamtdurchbiegung w, die sich aus der Durchbiegung w_b des schubstarren Balkens (Biegeanteil) und der Schubdurchsenkung w_s (Schubanteil) zusammensetzt.

4.2.1 Differentialgleichung der Biegelinie (Biegeanteil)

Die Gesamtdurchbiegung $w_i(x_i)$ wird durch Superposition der Durchbiegung $w_{bi}(x_i)$ aus den Gleichungen (4.5), (4.7) und (4.9) und der Schubdurchsenkung $w_{si}(x_i)$ mit den Gleichungen (4.10) bis (4.12) berechnet. Auch hier sind die gleichen Stellen (horizontale x-Koordinate) wie aus Tabelle 4.5 gewählt worden. Die Ergebnisse für die Schubdurchsenkung und die Gesamtdurchbiegung sind in Abschnitt 4.2.3 dargestellt.

Schubdurchsenkung $w_{si}(x_i)$

Schubdurchsenkung w_{s1} Bereich I (Mitte):

$$w_{s1}(x_1) = -\left(\frac{\chi \cdot q_0 \cdot c^2}{2 \cdot G \cdot A}\right) \cdot \left(\left(\frac{x_1}{c}\right)^2 - 1\right)$$
(4.10)

Schubdurchsenkung w_{s2} Bereich II (Stützabstand):

$$w_{s2}(x_2) = -\left(\frac{\chi \cdot q_0 \cdot d^2}{2 \cdot G \cdot A}\right) \cdot \left(\left(\frac{x_2}{d}\right)^2 - 2 \cdot \left(\frac{x_2}{d}\right)\right)$$
(4.11)

Schubdurchsenkung w_{s3} Bereich III (Kragarm):

$$w_{s3}(x_3) = -\left(\frac{\chi \cdot q_0 \cdot e^2}{2 \cdot G \cdot A}\right) \cdot \left(\left(\frac{x_3}{e}\right)^2 - 2 \cdot \left(\frac{x_3}{e}\right)\right) + \frac{\chi \cdot F_{LC} \cdot x_3}{G \cdot A}$$
(4.12)

Gesamtdurchbiegung $w_{si}(x_i)$

Gesamtdurchbiegung w_1 Bereich I (Mitte):

$$w_1(x_1) = w_{b1}(x_1) + w_{s1}(x_1) \tag{4.13}$$

Gesamtdurchbiegung w_2 Bereich II (Stützabstand):

$$w_2(x_2) = w_{b2}(x_2) + w_{s2}(x_2) \tag{4.14}$$

Gesamtdurchbiegung w_3 Bereich III (Kragarm):

$$w_3(x_3) = w_{b3}(x_3) + w_{s3}(x_3) \tag{4.15}$$

4.2.2 Ansys

Vernetzung

Abbildung 4.4: Vernetzung 4,3 m-Magnetträger [6]

Die Vernetzung ist wie in Abb. 4.4 dargestellt für alle weiteren Magnetträger durchgeführt worden. Die Anzahl für die Knoten und die Elemente für den oberen und unteren Magnetträger ist für die unterschiedlichen Werkstoffe und Längen in Tabelle 4.6 aufgeführt.

	oben Knoten Elemente		ur	nten
			Knoten	Elemente
5 m-Edelstahl	244430	55692	244430	55692
$5\mathrm{m} ext{-Aluminium}$	244430	55692	244430	55692
$4,3\mathrm{m} ext{-}\mathrm{Edelstahl}$	218133	49728	218133	49728
$4,3\mathrm{m} ext{-Aluminium}$	218133	49728	218133	49728

Tabelle 4.6: Anzahl der Knoten und Elemente bei der Vernetzung

Randbedingungen

Abbildung 4.5: Randbedingung 4,3 m-Magnetträger [6]

Damit die Berechnungen miteinander verglichen werden können, ist das Ansys-Modell so aufgebaut, dass es der analytischen Handrechnung (DGL) ähnelt. Abb. 4.5 stellt exemplarisch den Modellaufbau in Ansys dar, hier ist der gekürzte obere Magnetträger aus Aluminium dargestellt. Die Belastungen für die Magnetkraft (Pos. B) und die Magnetstrukturkraft (Pos. E) sind der Tabelle 3.4 entnommen. Sie sind auf der unteren Fläche des Magnetträgers aufgetragen, sodass sie als Streckenlasten mit einbezogen werden. Die Gewichtskraft (Streckenlast) durch den Magnetträger (Pos. A) wird von Ansys berechnet. Die Kräfte für die Liniearencoder (Pos. C und D) sind an den Magnetträgerenden positioniert. Die segmentweise Einteilung des Magenträgers, gekennzeichnet durch die unterschiedlichen Farben, dient dazu, die Lager einfacher positionieren zu können. Sie sind auf der unteren Fläche des Magnetträgers als Linien-Kontakt positioniert. Das Festlager hat die Position F und die drei Loslager die Positionen G, H und I.

Ein Test hat ergeben, dass es keinen großen Unterschied macht, ob die Kräfte (Streckenlasten) bei dem Magnetträger an der unteren oder oberen Fläche angesetzt werden. Die Werte der Biegelinie unterscheiden sich erst in der sechsten Nachkommastelle.

Darstellung der Biegelinien

Die Biegelinien sind hier nach dem gleichen Schema wie in Abschnitt 4.1.2 dargestellt. Es ist ersichtlich, dass bei den ungekürzten Magnetträgern (Abb. 4.6) durch die optimale Wahl der Lagerstellen (Bessel-Punkte) eine minimal gleichmäßige Gesamtdurchbiegung über die komplette Magnetträgerlänge vorhanden ist. Hier ist die Gesamtdurchbiegung der oberen Magnetträger (Abb. 4.6a und 4.6b) durch die unterschiedliche Belastung größer als bei den unteren Magnetträgern (Abb. 4.6c und 4.6d).

Ähnlich wie in Abschnitt 4.1.2 beschrieben, verändert sich auch hier durch die Kürzung der Magnetträger der Belastungszustand und demnach auch die Biegelinie; sie ist nicht mehr so gleichmäßig wie vor dem Kürzen. Auch hier ist die Gesamtdurchbiegung der oberen Magnetträger (Abb. 4.7a und 4.7b) größer als die der unteren Magnetträger (Abb. 4.7c und 4.7d).

In Tabelle 4.7 sind die aus den Biegeverläufen (Abb. 4.6 und 4.7) abgelesenen maximalen Gesamtdurchbiegungen dargestellt. Die Werte der maximalen Gesamtdurchbiegung, der unterschiedlichen Magnetträgerlängen, weisen kaum eine Abweichung auf. Der Faktor ist in Tabelle 4.8 dargestellt. Der Unterschied wird bei der Betrachtung der Gesamtdurchbiegung an den Magnetträgerenden (Kragarm) deutlich. Die Werte, die in Tabelle 4.9 aufgeführt sind, entsprechen dem Wert, an dem der Graph die y-Achse schneidet. Durch diese Betrachtung wird veranschaulicht, dass die gekürzten Magnetträger an diesen Positionen einen um den in Tabelle 4.10 gegebenen Faktor kleinere Gesamtdurchbiegung aufweisen.

	w_{max}			
	oben $[\mu m]$ unten $[\mu m]$			
5 m-Edelstahl	-3	0,49		
$5\mathrm{m} ext{-Aluminium}$	-6,5	3,4		
$4,3\mathrm{m} ext{-}\mathrm{Edelstahl}$	-3,2	$0,\!5$		
$4,3\mathrm{m} ext{-Aluminium}$	-6,8	3,6		

Tabelle 4.7: Ansys - maximale Gesamtdurchbiegung w_{max}

	Faktor		
	oben unten		
Edelstahl	1,06	$1,\!02$	
Aluminium	$1,\!05$	$1,\!06$	

Tabelle 4.8: Ansys - Faktor der maximalen Gesamtdurchbiegung w_{max} (Vergleich 4,3 m zu 5 m Magnetträger)

	$w_{Kragarm}$		
	oben $[\mu m]$ unten $[\mu m]$		
5 m-Edelstahl	-2,5	$0,\!29$	
$5\mathrm{m} ext{-Aluminium}$	$-5,\!6$	2,4	
$4,3\mathrm{m} ext{-}\mathrm{Edelstahl}$	$-0,\!55$	$0,\!06$	
4,3 m-Aluminium	-1,2	$0,\!5$	

Tabelle 4.9: Ansys - Gesamtdurchbiegung an den Magnetträgerenden $w_{Kragarm}$

	Faktor		
	oben unten		
Edelstahl	4,55	4,83	
Aluminium	4,6 4,8		

Tabelle 4.10: Ansys - Faktor der Gesamtdurchbiegung an den Magnetträgerenden $w_{Kragarm}$ (Vergleich 4,3 m zu 5 m Magnetträger)

4 Verformungsanalyse

4 Verformungsanalyse

4.2.3 Gegenüberstellung der Ergebnisse

Die Ergebnisse der Schubdurchsenkung $w_{si}(x_i)$ aus Abschnitt 4.2.1 sind nochmals gesondert von der Gesamtdurchbiegung in der Tabelle 4.11 dargestellt. Die Berechnung ist, ähnlich wie in Abschnitt 4.1.3, für den oberen 5 m langen Magnetträger aus Aluminium an den gleichen Stellen (horizontale x-Koordinate) durchgeführt worden. Bei der Betrachtung der Lagerstellen ist zu erkennen, dass dort unabhängig von welchem Bereich (Gleichung), die Schubdurchsenkung gleich Null ist.

	DGL	
$x \; [\mathrm{mm}]$	$w_{si} \; [\mathrm{mm}]$	Ort
$w_{s1}(0)$	$9{,}05\cdot10^{-4}$	Symmetrieachse
$w_{s1}(c)$	0	Lager 3
$w_{s2}(0)$	0	Lager 3
$w_{s2}(656)$	$8,82 \cdot 10^{-4}$	Mitte Lager 3 & 4
$w_{s2}(d)$	0	Lager 4
$w_{s3}(0)$	0	Lager 4
$w_{s3}(e)$	$5{,}94\cdot10^{-4}$	Träger ende

Tabelle 4.11: Ergebnisse für die Schubdurchsenkung w_{s_i}

Nach demselben Prinzip, wie in Abschnitt 4.1.3 werden hier die Ergebnisse für die Gesamtdurchbiegung $w_i(x_i)$ verglichen. In Tabelle 4.12 sind die Werte aus Superposition der Differentialgleichungen und die Werte aus Ansys gegenübergestellt. Bei der Betrachtung der Lagerstellen wird ersichtlich, dass die Werte der Gesamtdurchbiegung von beiden Berechnungsverfahren übereinstimmen. Die Gesamtdurchbiegung von beispielsweise $w_2(d) = -2.5 \cdot 10^{-17}$ mm ist so gering, dass sie vernachlässigt werden kann. Die anderen Werte weisen eine Abweichung auf. Die mit Ansys errechneten Werte sind ca. um das 3,5-Fache höher als die durch die Differentialgleichung errechneten Werte.

Mögliche Gründe für die Abweichung könnten sein:

- ungeeignete Annahmen in der analytischen Berechnung, z.B. die nicht berücksichtigte Lagersteifigkeit
- fehlende Annahmen, z.B. im Ansatz der Superposition
- die Wahl der Randbedingungen in ANSYS

4	Verformungsanal	lyse
---	-----------------	------

DGL		Ansys		
x [mm]	$w_i \; [\mathrm{mm}]$	$x \; [\mathrm{mm}]$	$w \; [\mathrm{mm}]$	Ort
$w_1(0)$	$1,\!69\cdot 10^{-3}$	w(2500)	$6,\!47\cdot10^{-3}$	Symmetrieachse
$w_1(c)$	$-1,46 \cdot 10^{-19}$	w(3165)	0	Lager 3
$w_2(0)$	0	w(3165)	0	Lager 3
$w_2(656)$	$1,56 \cdot 10^{-3}$	w(3821)	$6,\!10\cdot10^{-3}$	Mitte Lager 3 & 4
$w_2(d)$	$-2,5 \cdot 10^{-17}$	w(4477, 5)	0	Lager 4
$w_{3}(0)$	0	w(4477, 5)	0	Lager 4
$w_3(e)$	$1,58 \cdot 10^{-3}$	w(5000)	$5{,}57\cdot10^{-3}$	Träger ende

Tabelle 4.12: Gegenüberstellung der Ergebnisse (Gesamtdurchbiegung w_i) von Ansys und der DGL

4.3 Vergleich der unterschiedlichen Berechnungsansätze

Beim Vergleich zwischen den Ergebnissen in Ansys und den analytischen Verfahren wird deutlich, dass die Schubanteile in den Berechnungen sowohl qualitativ als auch quantitativ nicht zu vernachlässigen sind. Diese wird aus den Verläufen der Verformungskurven deutlich. Hier zeichnen sich deutliche Schubverformungen ab. Allerdings zeigen sich auch große Abweichungen in den Berechnungsergebnissen zwischen Ansys und den analytischen Verfahren. Diese Abweichungen resultieren unter anderem daraus, dass die Randbedingungen bei den Modellen unterschiedlich sind. Bei der analytischen Differentialgleichung und MDESIGN sind die Lagerstellen als unendlich steif definiert. Dies wird deutlich durch den gleichmäßig fallenden Verlauf der Biegelinie an den freien Trägerenden. Bei Ansys sind die Lagerstellen geometrisch abgebildet und besitzen eine gewisse Nachgiebigkeit. Das hat zur Folge, dass die Kurven an den freien Enden erwartungsgemäß fallen, dann an den Lagern aber wieder stark ansteigen. Als Ursache hierfür kann der in Ansys definierte Linienkontakt mit verhältnismäßig großer Nachgiebigkeit gesehen werden, der zu stark abfallenden Verformungskurven an den Lagerstellen führt. Dadurch wird das Ergebnis um eine gewisse Differenz verfälscht. Diese Differenz entspricht der Verformung aufgrund des Linienkontakts der Lager.

5 Diskussion der konstruktiven Änderung

Die Abschnitte 3.1.3 und 4.2.3 verdeutlichen, dass die Durchbiegung der 4,3 m-Magnetträger nicht optimal ist und dass in mehreren Fällen die Kegelpressverbindung versagt. Daher werden hier Konzepte dargestellt, die dies verbessern sollen. Diese Konzepte werden diskutiert und es wird eine optimale Lösung zur Umsetzung der Problematik vorgeschlagen.

5.1 Randbedingungen / Kriterien

Die Aufgabe der Kürzung des Undulators soll durch eine minimale konstruktive Änderung und einen geringen Aufwand gewährleistet sein. Dabei soll die Durchbiegung über die gesamte Länge des Magnetträgers gleichmäßig minimal sein. Das Drehmoment am Kegel soll minimal sein, um eine unkontrollierte Durchbiegung zu verhindern.

5.2 Gegenüberstellung der Ansätze zur Optimierung der Biegelinie

Die Berechnungen haben gezeigt, dass die Kürzung der Magnetträger einen sehr großen Einfluss auf die Durchbiegung und das Drehmoment haben. Daher sollen die Möglichkeiten der Änderungen und des Änderungsumfangs hier dargestellt werden. Damit die Lösungsansätze miteinander verglichen werden können, sind sie nach demselben Schema aufgebaut. Das Schema ist, dass zur Optimierung bei allen Ansätzen die Veränderung an den gleichen Komponenten vorgenommen werden. Diese Komponenten sind der Magnetträger, die Zwischenträger, (die Aufnahmeplatte) und das Undulatorgestell. Es werden nur die Komponenten beschrieben, die verändert werden Komponenten, die nicht beschrieben werden, bleiben unverändert.

Ansatz 1: Hebelvariation

Durch Variation der Hebel-Längen um die Kegelverbindung am Zwischenträger (Verschiebung des Kraftangriffs) wird erreicht, dass das Drehmoment um den Kegel gleich Null ist. Die Kegelverbindung kann dann als starre Verbindung angesehen werden, da sie durch keine äußere Belastung beansprucht wird. Die Komponenten, die verändert werden, sind der Zwischenträger und das Undulatorgestell. Die Kegelbohrung an den Zwischenträgern müssten neu positioniert werden. Da sich der Achsabstand dadurch ändert, müsste das Undulatorgestell um den gleichen Betrag angepasst werden.

Ansatz 2: Neuanordnung der Lagerpositionen

Erzeugen einer minimal gleichmäßigen Durchbiegung über die komplette Magnetträgerlänge durch Neuanordnung der Lagerpositionen (Bessel-Punkte) in den Magnetträgern. Die Kegelverbindung ist hier keine starre Verbindung (M > 0), somit sind die Zwischenträger drehbar gelagert. Änderungskonstruktion des Magnetträgers aufgrund neuer Lagerstellen und des Undulatorgestells aufgrund des neuen Achsabstandes.

Ansatz 3: starrer Zwischenträger

Eine minimale Durchbiegung wird hier erreicht, indem das System mit einem durchgängigen Zwischenträger verspannt wird. Die Kegelverbindung ist hier eine starre Verbindung, die große Momente (M >> 0) aufnehmen muss. Änderungskonstruktion des Zwischenträgers mit einer Länge, die der Magnetträgerlänge entspricht.

Ansatz 4: alles unverändert

Nichts wird zur Optimierung der Durchbiegung unternommen, alle Komponenten bleiben unverändert. Die auftretenden Momente am Kegel sind hier sehr groß (M >> 0), sodass die Funktion nicht sichergestellt ist und ein Kippen der Zwischenträger zur folge hat.

Ansatz 5: alles ändert sich

Alle Komponenten werden optimiert, sodass die Durchbiegung über die komplette Magnetträgerlänge und das Drehmoment an dem Kegel minimal werden. Dies wird realisiert durch eine Änderungskonstruktion der Magnetträger mittels Neuanordnung der Lagerpositionen, der Hebelvariation an den Zwischenträgern, durch Neupositionierung der Kegelbohrung, was eine Anpassung des Undulator-Achsabstandes zur folge hat.

5.3 Lösungsauswahl und Begründung

Zur Veranschaulichung sind die Ansätze aus Abschnitt 5.2 mit den Kriterien aus Abschnitt 5.1 in Tabelle 5.1 dargestellt. Unter Berücksichtigung der Kriterien, eine minimale konstruktive Änderung unter einem geringen Aufwand, die eine minimale Durchbiegung und ein minimales Drehmoment fordern, wird deutlich, dass der Ansatz 3, der starre Zwischenträger, die optimale Wahl ist.

	Ansatz				
Kriterien	1	2	3	4	5
minimale konstruktive Änderung geringer Aufwand minimale Durchbiegung minimales Drehmoment	Nein Nein Nein Ja	Nein Nein Ja Nein	Ja Ja Ja Nein	Ja Ja Nein Nein	Nein Nein Ja Ja

Tabelle 5.1: Gegenüberstellung der Ansätze unter Berücksichtigung der Kriterien

6 Zusammenfassung und Fazit

Diese Arbeit beschäftigt sich mit der Fragestellung, welche Auswirkungen das Kürzen der Magnetträger des 5m-Undulators auf die Undulator-Kippsicherheit und das Magnetträger-Verformungsverhalten unter Berücksichtigung der unterschiedlichen Magnetträger-Werkstoffe hat. Die Magnetträger sind symmetrisch, maximal zu kürzen, alle weiteren Komponenten sollen möglichst unverändert bleiben.

Um die Kürzung des Undulators zu realisieren, wurde unter Berücksichtigung der Funktionsflächen eine Länge für den gekürzten Magnetträgern berechnet. Zur Vorbereitung der späteren Analysen wurden die Belastungen, die am Magnetträger wirken, für die unterschiedlichen Träger-Werkstoffe und -Längen berechnet. Die Belastungen sind für die oberen und unteren Magnetträger aufgrund der entgegengesetzt wirkenden Magnetkräfte unterschiedlich. Mit der neuen Länge der gekürzten Magnetträger wurden die 3D-Modelle angepasst. Es wurde geprüft, ob die Kegelpressverbindungen den durch die Kürzung veränderten Belastungen standhalten, indem das Kegelreibmoment dem Belastungsmoment gegenübergestellt wurde. Durch die Schwerpunktbetrachtung wurde erläutert, ob der Undulatorschwerpunkt sich noch innerhalb der Kippgrenzen befindet. Das Verformungsverhalten der ungekürzten und gekürzten Magnetträger wurde mit unterschiedlichen Berechnungsverfahren (Ansätzen) untersucht und die daraus resultierenden Ergebnisse miteinander verglichen. Die unterschiedlichen Berechnungsverfahren (Ansätze) wurden durch eine Kontrollrechnung validiert.

Das Ergebnis der Untersuchung ist, dass durch die Kürzung der Magnetträger die Kegelpressverbindungen den Belastungen nicht standhalten. Die Durchbiegung der ungekürzten Magnetträger ist über die gesamte Magnetträgerlänge gleichmäßig minimal. Dies ist nach dem Kürzen nicht mehr gegeben. Es wurden konstruktive Ansätze zur Optimierung der Durchbiegung aufgezeigt und eine Variante als Lösung vorgeschlagen. Durch die unterschiedlichen Berechnungsansätze wurde deutlich, dass der Schubanteil bei der Durchbiegung einen wesentlichen Einfluss hat. Bei der Kontrollberechnung der Gesamtdurchbiegung infolge Biege- und Schubanteil wurde ersichtlich, dass es zum Teil starke Abweichungen zwischen der analytischen Differentialgleichung und den mit Ansys berechneten Ergebnissen gibt. Ein Teil der Abweichungen entsteht durch die Berücksichtigung des Schubanteile. Andererseits ergeben sich aufgrund der Randbedingungen (Lager als Linienkontakt) die Offsets der Verformungswerte. Der Vergleich der Ergebnisse führt zu der Erkenntnis, dass die Lagernachgiebigkeit bei der Verformung in diesen kleinen Größenordnungen einen beachtlichen Einfluss hatten.

Zur Verdeutlichung des Einflusses ist die Verfomungskurve des oberen 4,3 m langen Aluminium Magnetträgers in Abb. 6.1 dargestellt. Dort ist das Prinzip des Einschneidens aufgrund der weichen Auflagestellen, abgebildet und somit das Offset (grüne Linie) verdeutlicht. Durch das neue Nullniveau nähert die Verformungskurve sich der Kurve von MDESIGN aus Abb. 4.3b an.

Abbildung 6.1: Offset Prinzipdarstellung des oberen 4,3 m-Magnetträgers (Aluminium)

Perspektivisch kann die Überarbeitung des FEM-Modells, speziell der Auflagerbedingungen, verbesserte Werte für die Gesamtdurchbiegung ergeben. Des Weiteren kann die Spannsatzverbindung an den Zwischenträgern genauer überprüft werden, indem betrachtet wird, ob diese der äußeren Belastungen standhalten.
7 Literatur- und Quellenverzeichnis

- David Attwood. "Synchrotron Radiation for Materials Science Applications-Lecture 1: Introduction to Synchrotron Radiation. Lecture Slides, UC Berkeley. Spring 2007". In: URL http://www.coe.berkeley.edu/AST/srms (2007).
- [2] Deutsches Elektronen-Synchrotron. 3D-Röntgenmikroskop PETRA IV. URL: https://www.desy.de/petra4 (besucht am 19.04.2022).
- [3] Deutsches Elektronen-Synchrotron. *DESY-Luftbild*. URL: https://photon-science. desy.de/facilities/european_xfel/index_eng.html (besucht am 09.06.2022).
- [4] Deutsches Elektronen-Synchrotron. Röntgenstrahlungsquelle PETRA III. URL: https: //www.desy.de/forschung/anlagen_projekte/petra_iii/index_ger.html (besucht am 19.04.2022).
- [5] Deutsches Elektronen-Synchrotron. Über DESY. URL: https://www.desy.de/ ueber_desy/desy/index_ger.html (besucht am 11.04.2022).
- [6] Deutsches Elektronen-Synchrotron. "Undulator-P3-U36 (Baugruppe)". nicht veröffentlicht. 2015.
- [7] Peter Gummert und Karl-August Reckling. Mechanik. Bd. 2. Springer-Verlag, 1987, S. 358–362.
- [8] Klaus Halbach. "Permanent magnet undulators". In: Le Journal de Physique Colloques 44.C1 (1983), S. C1–211.
- Klaus Halbach. "Physical and optical properties of rare earth cobalt magnets". In: Nuclear Instruments and Methods in Physics Research 187.1 (1981), S. 109–117.
- [10] Uller Jarecki und Hans-Joachim Schulz. Dubbel Mathematik: eine kompakte Ingenieurmathematik zum Nachschlagen. Bd. 23. Springer-Verlag, 2011, S. C18–C22.
- [11] Shaukat Khan. Beschleunigerphysik Teil 2. Vorlesungsskript. 2020.

- [12] Carsten Kuhn. "Entwicklung von Fertigungsverfahren für einen kryogenen Undulator sowie deren Validierung durch magnetische Messungen an einem Prototypen". Diss. Technische Universität Berlin, 2016.
- U. Schindler. Ein supraleitender Undulator mit elektrisch umschaltbarer Helizität. Techn. Ber. 55.01.01; LK 01; Wissenschaftliche Berichte, FZKA-6997 (August 2004). 2004. DOI: 10.5445/IR/270058615.
- [14] Christian G. Schroer und Hamburg DESY Dt. Elektr.-Synchr. PETRA IV: upgrade of PETRA III to the Ultimate 3D X-ray microscope. Conceptual Design Report. Hrsg. von Ralf Roehlsberger u. a. Hamburg: Deutsches Elektronen-Synchrotron DESY, 2019, 259 pages : illustrations, diagrams. ISBN: 9783945931264. DOI: 10. 3204/PUBDB-2019-03613. URL: https://bib-pubdb1.desy.de/record/426140.
- [15] Herbert Wittel u. a. Roloff/Matek Maschinenelemente: Normung Berechnung Gestaltung. Bd. 21. Springer-Verlag, 2013.

Anhang A

Eidesstattliche Erklärung

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit "– bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich zu machen."

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Dieses Blatt, mit der folgenden Erklärung, ist nach Fertigstellung der Abschlussarbeit durch den Studierenden auszufüllen und jeweils mit Originalunterschrift als <u>letztes Blatt</u> in das Prüfungsexemplar der Abschlussarbeit einzubinden.

Eine unrichtig abgegebene Erklärung kann -auch nachträglich- zur Ungültigkeit des Studienabschlusses führen.

Erklärung zur selbstständigen Bearbeitung der Arbeit							
Hiermit ver	sichere ich,						
Name:	Schagajeg						
Vorname:	Masoudi						
dass ich die gekennzeic	e vorliegende Bachelorarbei hneten Teile der Arbeit – ı	t 💽 bzw. bei einer G mit dem Thema:	ruppenarbeit die entsprechend				
Konstruktio	n einer verkürzten Variante ein	es Undulators unter Berü	cksichtigung des Verformungsverha	altens			
ohne fremo benutzt hal Angabe de	ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.						
Die Kennzeichnung der von mir erstellten und verantworteten Teile der -bitte auswählen- ist erfolgt durch:							
	Hamburg	14.07.2022					
	Ort	Datum	Unterschrift im Original				

Anhang B

Technische Daten

Führungseinheit

- Technische Daten der Führungseinheit
 - Tragfähigkeit je Führungseinheit: 50 kN
 - Verstellgeschwindigkeit: 0 mm/s bis 8,56 mm/s
 - Verstellbereich: 9 mm bis 220 mm
- Technische Daten des Getriebemotors (Getriebe + Servomotor)
 - Getriebe-Alpha VDH 080
 - Abtriebsmoment = 170 N m
 - Nominale Drehzahl = 89,2 U/min
 - Übersetzung i = 28
 - Wirkungsgrad $\eta = 0.86$
 - Abtriebseite O
 - Einbaulage OE
- Technische Daten des Servomotors
 - Servomotor-Beckhoff AM 3052-0G01 (mit Bremse)
 - Nenndrehmoment = 7,06 N m (U = 400)
 - Nenndrehzahl = 2500 U/min

Anhang C

Datenblätter

Technische Informationen

Hauptabmessungen und Leistungsdaten

d	30 mm	Bohrungsdurchmesser
D	62 mm	Außendurchmesser
В	20 mm	Breite
C _r	58.000 N	Dynamische Tragzahl, radial
C _{0r}	50.000 N	Statische Tragzahl, radial
C _{ur}	8.000 N	Ermüdungsgrenzbelastung, radial
n _G	16.300 1/min	Grenzdrehzahl
n _{ϑr}	8.000 1/min	Bezugsdrehzahl
	0,265 kg	Gewicht

Anschlußmaße

d _{a min}	34 mm	Minimaler Anlagedurchmesser Wellenschulter
d _{a max}	37 mm	Maximaler Durchmesser der Wellenschulter
d _{b min}	40 mm	Minimaler Wellenabsatz
D _{a max}	56 mm	Maximaler Durchmesser der Gehäuseschulter
r _{a max}	1 mm	Maximaler Freistichradius
r _{a1 max}	0,6 mm	Maximaler Freistichradius

Abmessungen

r _{min}	1 mm	Minimaler Kantenabstand
r _{1 min}	0,6 mm	Minimaler Kantenabstand
S	1,6 mm	axialer Verschiebeweg
E	55,5 mm	Laufbahndurchmesser des Außenringes
F	37,5 mm	Laufbahndurchmesser des Innenringes
D _{1 min}	52,5 mm	Minimaler Borddurchmesser des Außenringes
Temperaturber	eich	
T _{min}	-30 °C	Betriebstemperatur min.
T _{max}	120 °C	Betriebstemperatur max.

Das Datenblatt beinhaltet nur eine Übersicht über die Abmessungen und der Tragzahl des ausgewählten Produkts. Bitte beachten Sie die weitere Dokumentation zu diesem Produkt. Für weitere Informationen benutzen Sie bitte folgenden Link auf unserer Website: contact form

SCHAEFFLER

Technische Informationen

Hauptabmessungen und Leistungsdaten

d	30 mm	Bohrungsdurchmesser
D	62 mm	Außendurchmesser
В	20 mm	Breite
C _r	64.000 N	Dynamische Tragzahl, radial
C _{0r}	57.000 N	Statische Tragzahl, radial
C _{ur}	7.000 N	Ermüdungsgrenzbelastung, radial
n _G	12.500 1/min	Grenzdrehzahl
n _{ər}	7.800 1/min	Bezugsdrehzahl
	0,277 kg	Gewicht

Anschlußmaße

d _{a min}	35,6 mm	Minimaler Anlagedurchmesser Wellenschulter
D _{a max}	56,4 mm	Maximaler Durchmesser der Gehäuseschulter
r _{a max}	1 mm	Maximaler Freistichradius

Abmessungen

r _{min}	1 mm	Minimaler Kantenabstand
D ₁	53,7 mm	Bohrungsdurchmesser des Außenringes
d ₂	38,1 mm	Laufbahndurchmesser des Innenringes
d s	3,2 mm	Durchmesser Schmierbohrung
n _s	4,8 mm	Schmiernutbreite

Temperaturbereich

T _{min}	-30 °C	Betriebstemperatur min.
T _{max}	200 °C	Betriebstemperatur max.

SCHAEFFLER

Berechnungsfaktoren

е	0,3	Grenzwert für Fa/Fr für die Anwendbarkeit der
		versch. Werte der Faktoren X und Y
Y ₁	2,26	Dynamischer Axiallastfaktor
Y ₂	3,37	Dynamischer Axiallastfaktor
Υ ₀	2,21	Statischer Axiallastfaktor

Locking Assembly PSV 2005

Advantages

- transmission of high torque values
- robust design

Shaft sizes up to 200 mm Torque up to 151.000 Nm

Technical Data and Dimensions

Locking As	ssembly Din	nensions			Transmissible Torque	Axial Force	Conctact surface ween locking as Shaft	e pressure bet- sembly and Hub	Locking screws	Tightening torque of screws
Ød	ØD	L	L ₂	L ₄	Т	F _{ax}	Pw	PN	G	T _A
mm	mm	mm	mm	mm	Nm	kN	N/mm ²	N/mm ²	DIN 912	Nm
24	55	32	40	46	800	66.800	308	134	M6	17
25	55	32	40	46	840	66.800	295	134	M6	17
28	55	32	40	46	940	66.800	264	134	M6	17
30	55	32	40	46	1.000	66.800	246	134	M6	17
35	60	44	54	60	1.360	78.000	174	101	M6	17
40	75	44	54	62	2.880	144.000	281	150	M8	41
45	75	11	54	62	3,240	144,000	250	150	149	41
50	80	56	64	72	4.120	165.000	198	124	M8	41
	00	- 30	04	12	0.090	100.000	203	151	/٧١٥	41
60	90	56	64	72	6.170	206.000	207	138	M8	41
65	95	56	64	72	6.690	206.000	191	131	M8	41
70	110	70	78	88	11.800	338.000	229	145	M10	83
75	115	70	78	88	12.700	338.000	213	139	M10	83
80	120	70	78	88	14.900	372.000	220	147	M10	83
85	125	70	78	88	15.800	372.000	207	141	M10	83
90	130	70	78	88	18.200	405.000	213	148	M10	83
95	135	70	78	88	19.300	405.000	202	142	M10	83
100	145	90	101	113	27.700	555.000	210	145	M12	145
110	155	90	101	113	33.300	605.000	209	148	M12	145
120	165	90	101	113	42.400	706.000	223	162	M12	145
140	190	104	116	130	67.400	963.000	217	160	M14	230
160	210	104	116	130	88.100	1.101.000	217	166	M14	230
180	235	134	148	164	127.000	1.416.000	190	145	M16	355
200	260	134	148	164	151.000	1.511.000	182	140	M16	355

Additional diameters available upon request. Technical Specifications subject to change without notice.

Order data:							
24	x	55	PSV 2005				
d	х	D	Туре				

Applications

- drives in mechanical presses
- shredders
- rock crushers
- similar applications with high torque requirements

Technical Details

- self-centering
- tolerances H8/h8
- surface roughness
 R_t max 16μm for shaft and hub

Anhang D

Konstruktive Berechnungen

D.1 Berechnung der Magnetträger-Belastungen

Kräfte Berechnung - 5m-Magnetträger (X2CrNiMoN17-13-3)

Kräfte Berechnung - 5m-Magnetträger (X2CrNiMoN17-13-3)

Träger Geometrie

L := 5000 mmh := 550 mmb := 100 mm

Träger Querschnitt

Polbreite $b_p := 55 \text{ mm}$ Polfläche $A_p := L \cdot b_p = 0.28 \text{ m}^2$

relative Permeabilität des Materials zw. den

Trägern, hier Luft

 $\mu_r\!\coloneqq\!1$

magnetische Feldkonstante

 $\mu_0 = (1.256637061 \cdot 10^{-6}) \frac{kg \cdot m}{s^2 \cdot A^2}$

$A \coloneqq h \cdot b = 0.06 \ \boldsymbol{m}^2$

Träger Dichte

 $\rho_{V\!A} \! \coloneqq \! 8000 \, \frac{\textit{kg}}{\textit{m}^3}$

$$B_0 := 0.79 \ T$$

Scheitelwert / Amplitude

Flussdichte

Effektivwert

$$B_{0eff} \coloneqq \frac{B_0}{\sqrt{2}} = 0.56 \ T$$

$$g = 9.81 \frac{m}{s^2}$$

Magnetkraft Streckenlast

$$F_{MK} \coloneqq \frac{B_{0eff}^{2} \cdot A_{p}}{2 \cdot \mu_{0} \cdot \mu_{r}} = 34144.206 N$$

$$q_{MK} \coloneqq \frac{F_{MK}}{L} = 6828.84 \frac{N}{m}$$

Magnetträger Streckenlast

$$V_{MT} \coloneqq A \cdot L = 0.28 \ \boldsymbol{m}^{3}$$
$$m_{MT} \coloneqq V_{MT} \cdot \rho_{VA} = 2200 \ \boldsymbol{kg}$$
$$F_{MT} \coloneqq m_{MT} \cdot \boldsymbol{g} = 21574.63 \ \boldsymbol{N}$$

$$q_{MT} \coloneqq \frac{F_{MT}}{L} = 4314.93 \frac{N}{m}$$

Magnetstruktur Streckenlast

$$m_{MS} \approx 321.344 \ kg$$
 (Masse aus Zeichnung abgelesen)

$$F_{MS} := m_{MS} \cdot g = 3151.31 \ N$$

$$q_{MS} \coloneqq \frac{F_{MS}}{L} = 630.26 \frac{N}{m}$$

Seite 1 von 2

Gesamt Streckenlast Magnetträger oben

$$q_{ges_oben_m} := q_{MS} + q_{MT} + q_{MK} = 11774.03 \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

 $q_{ges_oben_o}\!\coloneqq\!q_{MS}\!+\!q_{M\!K}\!=\!7459.1\;\frac{N}{m}$

(Ohne Magnetträger Eigengewicht)

Gesamt Streckenlast Magnetträger unten

$$q_{ges_unten_m} \coloneqq q_{MS} + q_{MT} - q_{MK} = -1883.65 \frac{N}{m}$$

$$q_{ges_unten_o} \coloneqq q_{MS} - q_{MK} = -6198.58 \; rac{N}{m}$$

(Mit Magnetträger Eigengewicht)

(Ohne Magnetträger Eigengewicht)

Linearencoder Gewichtskraft

$$m_{LC} \coloneqq 15 \ kg$$

$$F_{LC} \coloneqq m_{LC} \cdot \boldsymbol{g} = 147.1 \ \boldsymbol{N}$$

Kräfte Berechnung - 5m-Magnetträger (AlMg4,5Mn0,7)

Kräfte Berechnung - 5m-Magnetträger (AlMg4,5Mn0,7)

Träger Geometrie

L := 5000 mmh := 550 mmb := 100 mm Polbreite $b_p \coloneqq 55 \text{ mm}$ Polfläche $A_p \coloneqq L \cdot b_p = 0.28 \text{ m}^2$

$$\mu_0 = (1.256637061 \cdot 10^{-6}) \frac{kg \cdot m}{s^2 \cdot A^2}$$
relative Permeabilität

magnetische Feldkonstante

Träger Querschnitt $A \coloneqq h \cdot b = 0.06 \ m^2$

Träger Dichte

 $\rho_{AL} \! \coloneqq \! 2700 \, \frac{\textit{kg}}{\textit{m}^3}$

Scheitelwert / Amplitude
$$B_0\!\coloneqq\!0.79~{\it T}$$

Flussdichte

$$\mu_r \coloneqq 1$$

$$g = 9.81 \frac{m}{s^2}$$

des Materials zw. den

Trägern, hier Luft

Magnetkraft Streckenlast

$$F_{MK} \coloneqq \frac{B_{0eff}^{2} \cdot A_{p}}{2 \cdot \mu_{0} \cdot \mu_{r}} = 34144.206 \ N$$

$$q_{MK} \coloneqq \frac{F_{MK}}{L} = 6828.84 \frac{N}{m}$$

Magnetträger Streckenlast

$$V_{MT} := A \cdot L = 0.28 \ m^3$$

 $m_{MT} := V_{MT} \cdot \rho_{AL} = 742.5 \ kg$
 $F_{MT} := m_{MT} \cdot g = 7281.438 \ N$

$$q_{MT} \coloneqq \frac{F_{MT}}{L} = 1456.29 \frac{N}{m}$$

Magnetstruktur Streckenlast

$$m_{MS} \approx 321.344 \ kg$$
 (Masse aus Zeichnung abgelesen)

$$F_{MS} := m_{MS} \cdot g = 3151.31 \ N$$

$$q_{MS} \coloneqq \frac{F_{MS}}{L} = 630.26 \frac{N}{m}$$

Seite 1 von 2

$$B_{0eff} \coloneqq \frac{B_0}{\sqrt{2}} = 0.56 \ T$$

Gesamt Streckenlast Magnetträger oben

$$q_{ges_oben_m} := q_{MS} + q_{MT} + q_{MK} = 8915.39 \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

 $q_{ges_oben_o}\!\coloneqq\!q_{MS}\!+\!q_{MK}\!=\!7459.1\;\frac{N}{m}$

(Ohne Magnetträger Eigengewicht)

Gesamt Streckenlast Magnetträger unten

$$q_{ges_unten_m} := q_{MS} + q_{MT} - q_{MK} = -4742.29 \frac{N}{m}$$

$$q_{ges_unten_o} := q_{MS} - q_{MK} = -6198.58 \ \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

(Ohne Magnetträger Eigengewicht)

Linearencoder Gewichtskraft

$$m_{LC} \coloneqq 15 \ \textit{kg}$$

$$F_{LC} \coloneqq m_{LC} \cdot \boldsymbol{g} = 147.1 \ \boldsymbol{N}$$

Kräfte Berechnung - 4,3m-Magnetträger (X2CrNiMoN17-13-3)

Träger Geometrie

L := 4300 mmh := 550 mmb := 100 mm

Träger Querschnitt

Polbreite $b_p := 55 \text{ mm}$ Polfläche $A_p := L \cdot b_p = 0.24 \text{ m}^2$

relative Permeabilität des Materials zw. den

Trägern, hier Luft

 $\mu_r\!\coloneqq\!1$

magnetische Feldkonstante

 $\mu_0 = (1.256637061 \cdot 10^{-6}) \frac{kg \cdot m}{s^2 \cdot A^2}$

$A \coloneqq h \cdot b = 0.06 \ \boldsymbol{m}^2$

Träger Dichte

 $\rho_{V\!A} \! \coloneqq \! 8000 \, \frac{\textit{kg}}{\textit{m}^3}$

Effektivwert

 $B_0 = 0.79 \, T$

Flussdichte

$$B_{0eff} := \frac{B_0}{\sqrt{2}} = 0.56 \ T$$

Scheitelwert / Amplitude

$$g = 9.81 \frac{m}{s^2}$$

Magnetkraft Streckenlast

$$F_{MK} \coloneqq \frac{B_{0eff}^{2} \cdot A_{p}}{2 \cdot \mu_{0} \cdot \mu_{r}} = 29364.017 N$$

$$q_{MK} \coloneqq \frac{F_{MK}}{L} = 6828.84 \frac{N}{m}$$

Magnetträger Streckenlast

$$V_{MT} \coloneqq A \cdot L = 0.24 \ \boldsymbol{m}^{3}$$
$$m_{MT} \coloneqq V_{MT} \cdot \rho_{VA} = 1892 \ \boldsymbol{kg}$$
$$F_{MT} \coloneqq m_{MT} \cdot \boldsymbol{g} = 18554.182 \ \boldsymbol{N}$$

$$q_{MT} \coloneqq \frac{F_{MT}}{L} = 4314.93 \frac{N}{m}$$

Magnetstruktur Masse für gekürzten Magnetträger

$$\begin{split} m_{MS_5m} &\coloneqq 321.344 \ \textit{kg} & (\text{Masse aus Zeichnung für 5m Länge abgelesen}) \\ m_{MS_1m} &\coloneqq \frac{m_{MS_5m}}{5} = 64.27 \ \textit{kg} & (\text{Masse für 1m Länge}) \\ m_{MS_4.3m} &\coloneqq m_{MS_1m} \cdot 4.3 = 276.36 \ \textit{kg} & (\text{Masse für 4,3m Länge}) \end{split}$$

Magnetstruktur Streckenlast

$$m_{MS} \coloneqq m_{MS_4.3m} = 276.36 \ kg$$

$$F_{MS} := m_{MS} \cdot g = 2710.12$$
N

$$q_{MS} \coloneqq \frac{F_{MS}}{L} = 630.26 \frac{N}{m}$$

Gesamt Streckenlast Magnetträger oben

$$q_{ges_oben_m} := q_{MS} + q_{MT} + q_{MK} = 11774.03 \frac{N}{m}$$

$$q_{ges_oben_o} \coloneqq q_{MS} + q_{MK} = 7459.1 \ \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

(Ohne Magnetträger Eigengewicht)

Gesamt Streckenlast Magnetträger unten

$$q_{ges_unten_m} \coloneqq q_{MS} + q_{MT} - q_{MK} = -1883.65 \frac{N}{m}$$

$$q_{ges_unten_o} := q_{MS} - q_{MK} = -6198.58 \ \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

(Ohne Magnetträger Eigengewicht)

Linearencoder Gewichtskraft

$$m_{LC}\!\coloneqq\!15~{\it kg}$$

$$F_{LC} \coloneqq m_{LC} \cdot \boldsymbol{g} = 147.1 \ \boldsymbol{N}$$

Kräfte Berechnung - 4,3m-Magnetträger (AlMg4,5Mn0,7)

Kräfte Berechnung - 4,3m-Magnetträger (AlMg4,5Mn0,7)

Träger Geometrie

L := 4300 mmh := 550 mmb := 100 mm Polbreite $b_p \coloneqq 55 \text{ mm}$ Polfläche $A_p \coloneqq L \cdot b_p = 0.24 \text{ m}^2$

$$\mu_0 = (1.256637061 \cdot 10^{-6}) \frac{kg \cdot m}{s^2 \cdot A^2}$$
relative Permeabilität

magnetische Feldkonstante

Träger Querschnitt $A \coloneqq h \cdot b = 0.06 \ m^2$

 $A = h \cdot 0 = 0.00$

Träger Dichte

 ho_{AL} :=2700 $rac{kg}{m^3}$

$$B_0 \coloneqq 0.79 \ T$$
Effektivwert

Scheitelwert / Amplitude

 $B_{0eff} \! \coloneqq \! \frac{B_0}{\sqrt{2}} \! = \! 0.56 \ \textbf{\textit{T}}$

Flussdichte

$$\mu_r\!\coloneqq\!1$$

des Materials zw. den

Trägern, hier Luft

 $g = 9.81 \frac{m}{s^2}$

Magnetkraft Streckenlast

$$F_{MK} \coloneqq \frac{B_{0eff}^{2} \cdot A_{p}}{2 \cdot \mu_{0} \cdot \mu_{r}} = 29364.017 \ N$$

$$q_{MK} \coloneqq \frac{F_{MK}}{L} = 6828.84 \frac{N}{m}$$

Magnetträger Streckenlast

$$V_{MT} := A \cdot L = 0.24 \ m^3$$

 $m_{MT} := V_{MT} \cdot \rho_{AL} = 638.55 \ kg$
 $F_{MT} := m_{MT} \cdot g = 6262.036 \ N$

$$q_{MT} \coloneqq \frac{F_{MT}}{L} = 1456.29 \ \frac{N}{m}$$

Magnetstruktur Masse für gekürzten Magnetträger

$$\begin{split} m_{MS_5m} &\coloneqq 321.344 \ \textit{kg} & (\text{Masse aus Zeichnung für 5m Länge abgelesen}) \\ m_{MS_1m} &\coloneqq \frac{m_{MS_5m}}{5} = 64.27 \ \textit{kg} & (\text{Masse für 1m Länge}) \\ m_{MS_4.3m} &\coloneqq m_{MS_1m} \cdot 4.3 = 276.36 \ \textit{kg} & (\text{Masse für 4,3m Länge}) \end{split}$$

Magnetstruktur Streckenlast

$$m_{MS} \coloneqq m_{MS_4.3m} = 276.36 \ kg$$

$$F_{MS} \coloneqq m_{MS} \cdot g = 2710.12 \ N$$

$$q_{MS} \coloneqq \frac{F_{MS}}{L} = 630.26 \frac{N}{m}$$

Gesamt Streckenlast Magnetträger oben

$$q_{ges_oben_m} \coloneqq q_{MS} + q_{MT} + q_{MK} \equiv 8915.39 \ \frac{N}{m}$$

$$q_{ges_oben_o} := q_{MS} + q_{MK} = 7459.1 \ \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

(Ohne Magnetträger Eigengewicht)

Gesamt Streckenlast Magnetträger unten

$$q_{ges_unten_m} := q_{MS} + q_{MT} - q_{MK} = -4742.29 \frac{N}{m}$$

$$q_{ges_unten_o} := q_{MS} - q_{MK} = -6198.58 \ \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

(Ohne Magnetträger Eigengewicht)

Linearencoder Gewichtskraft

$$m_{LC}\!\coloneqq\!15~{\it kg}$$

$$F_{LC} \coloneqq m_{LC} \cdot \boldsymbol{g} = 147.1 \ \boldsymbol{N}$$

D.2 Berechnung der Kegelpressverbindung

Kegelpressverband

Anzugsmoment M_A

 $M_A \! \coloneqq \! 210 \; \pmb{N} \! \cdot \! \pmb{m}$

Werte der Sechskantschraube ISO 4018 M30*80 - A2

Flankendurchmesser d_2	Steigung P	Flankenwinkel β
$d_2 \! \coloneqq \! 27.727 mm$	$P \coloneqq 3.5 \ mm$	$\beta \coloneqq 60^{\circ}$

Steigungswinkel φ des Gewindes

$$\varphi \coloneqq \operatorname{atan}\left(\frac{P}{d_2 \cdot \boldsymbol{\pi}}\right) = 2.3$$

Reibungswinkel ρ des Gewindes

$$\mu_G \coloneqq 0.1$$

Reibungszahl μ_G im Gewinde (RM-TB 8-12b)

 $\rho \coloneqq \operatorname{atan}\left(\frac{\mu_G}{\cos\left(\frac{\beta}{2}\right)}\right) = 6.58678 \text{ }^\circ \qquad \text{Formel: RM; S. 249; im Text}$

Schraubenverbindung Selbsthemmend?

Selbsthemmend wenn: Gewindesteigungswinkel φ < Gewindereibwinkel ρ

 $\varphi < \rho \Rightarrow$ Selbsthemmend

Wirksamer Reibungsdurchmesser d_k (Schraubenkopf- oder Mutterauflage)

Außendurchmesser d_w der ebenen Kopfauflage Durchgangsloch Durchmesser d_h $d_w \coloneqq 46 \ mm$ $d_h \coloneqq 31 \ mm$

$$d_k \coloneqq \frac{d_w + d_h}{2} = 38.5 \ mm$$

Formel: RM; S. 249; im Text

Montagevorspannkraft F_{VM} aus Anzugsmoment M_A

Reibungszahl in der Kopf- bzw. Mutterauflage (RM-TB 8-12c)

$$\mu_K \coloneqq 0.1$$

$$F_{VM} \coloneqq \frac{M_A}{\frac{d_2}{2} \cdot \tan\left(\varphi + \rho\right) + \mu_K \cdot \frac{d_k}{2}} = 51308.12 \text{ N}$$

Formel: RM; S. 249; Gl. (8.24)

Kegel Geometrie

großer Kegel-Durchmesser D_1 $D_1 := 120 \ mm$

kleiner Kegel-Durchmesser D_2 $D_2 \coloneqq 112.22 \text{ } mm$

tragende Kegellänge ll := 37 mm

mittlerer Kegel-Fugendurchmesser D_{mF}

 $D_{mF} := \frac{D_1 + D_2}{2} = 0.12 \ m$

Formel: RM; S.399

Kegelverhältnis C

 $C \coloneqq \frac{D_1 - D_2}{l} = 0.21$ Formel: RM; S.398; Gl. (12.25)

Kegelverbindung Selbsthemmend?

Selbsthemmung bei Kegelpressverbänden wenn: $C \le \frac{1}{5}$ $\frac{1}{5} = 0.2$

 $0.21\!>\!0.2$

daraus folgt das es sich hier um eine leicht lösbare Kegelverbindung handelt

Kegel-Neigungswinkel α

$$\alpha := 2 \cdot \operatorname{atan}\left(\frac{D_1 - D_2}{2 \cdot l}\right) = 12.004$$
 ° Formel: RM; S.398; Gl. (12.26)

Haftbeiwert gegen Rutschen μ

Haftbeiwert für Längs- und Umfangsbelastungen μ = 0,06 ... 0,07 (RM-TB 12-6a)

 $\mu = 0.06$

Normalkraft F_N aus Montagevorspannkraft F_{VM}

$$\begin{split} F_A &:= F_{VM} & \text{mit } F_a = F_A \\ \sum F_x &= 0 = F_A - F_R \cdot \cos\left(\frac{\alpha}{2}\right) - F_N \cdot \sin\left(\frac{\alpha}{2}\right) & \text{mit } F_R = F_N \cdot \mu \\ \sum F_x &= 0 = F_A - F_N \cdot \mu \cdot \cos\left(\frac{\alpha}{2}\right) - F_N \cdot \sin\left(\frac{\alpha}{2}\right) \\ F_A &= F_N \cdot \left[\mu \cdot \cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right)\right] \\ F_N &= \frac{F_A}{\mu \cdot \cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right)} \end{split}$$

$$F_N \coloneqq \frac{F_A}{\mu \cdot \cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right)} = 312416.26 \ \mathbf{N}$$

Reibmoment M_R aus Normalkraft F_N

$$M_R := F_N \cdot \mu \cdot \frac{D_{mF}}{2} = 1088.24 \ N \cdot m$$
 Formel: RM; S. 400; im Text

D.3 Schwerpunktbetrachtung

Berechnung der abgetrennten Masse an den Kragarmen

gekürzte Länge (insgesamt pro Träger) $l \coloneqq 0.7 \ m$	Träger Höhe $h \coloneqq 550 \ mm$	Träger Breite b≔100 mm
gekürztes Volumen pro Träger $V \coloneqq l \cdot b \cdot h = 0.039 \ m^3$	Dichte Aluminium	Dichte Edelstahl
	$ ho_{AL}$:= 2700 $rac{m{kg}}{m{m}^3}$	$ ho_{VA}$:= 8000 $rac{m{kg}}{m{m}^3}$

Abgetrennte Magnetstruktur Masse pro Träger

m_{MS_5m} := 321.344 kg	(Masse aus Zeichnung für 5m Länge abgelesen)
$m_{\!MS_1m}\!\coloneqq\!rac{m_{\!MS_5m}}{5}\!=\!64.27{m kg}$	(Masse für 1m Länge)
$m_{MS_0.7m}$:= $m_{MS_1m} \cdot 0.7 = 44.99 \ kg$	(Masse für 0,7m Länge)

Abgetrennte Masse Aluminium für beide Träger

 $m_{AL} := 2 \cdot V \cdot \rho_{AL} = 207.9 \ kg$

Abgetrennte Masse Edelstahl für beide Träger

 $m_{VA} \coloneqq 2 \cdot V \cdot \rho_{VA} \equiv 616 \ kg$

Abgetrennte Masse für den Undulator mit Aluminium Trägern

 $m_{U_AL} \coloneqq m_{AL} + m_{MS_0.7m} = 252.89 \ kg$

Abgetrennte Masse für den Undulator mit Edelstahl Trägern

 $m_{U_VA} := m_{VA} + m_{MS_0.7m} = 660.99 \ kg$

Anhang E

Analytische Berechnungen

Kräfte Berechnung - 5m-Magnetträger (AlMg4,5Mn0,7)

Träger Geometrie *L* := 5000 *mm*

h ≔ 550 *mm*

b := 100 *mm*

Polbreite

 $b_p \coloneqq 55 \ mm$ Polfläche $A_p \coloneqq L \cdot b_p = 0.28 \ \mathbf{m}^2$

$$\mu_0 = (1.256637061 \cdot 10^{-6}) \frac{kg \cdot m}{2}$$

magnetische Feldkonstante

$$= (1.256637061 \cdot 10^{-6}) \frac{\mathbf{kg} \cdot \mathbf{m}}{\mathbf{s}^2 \cdot \mathbf{A}^2}$$

Träger Querschnitt

 $A \coloneqq h \cdot b \equiv 0.06 \ \mathbf{m}^2$

Träger Dichte

 $\rho_{AL} \coloneqq 2700 \ \frac{kg}{m^3}$

Flussdichte
Scheitelwert / Amplitude
$$B_0 \coloneqq 0.79 \ T$$

relative Permeabilität des Materials zw. den Trägern, hier Luft

Effektivwert

$$B_{0eff} := \frac{B_0}{\sqrt{2}} = 0.56 \frac{kg}{s^2 \cdot A}$$
 $g = 9.81 \frac{m}{s^2}$

 $\mu_r \! \coloneqq \! 1$

Magnetkraft Streckenlast

$$F_{MK} \coloneqq \frac{B_{0eff}^{2} \cdot A_{p}}{2 \cdot \mu_{0} \cdot \mu_{r}} = 34144.206 \frac{kg \cdot m}{s^{2}}$$

$$q_{MK} \coloneqq \frac{F_{MK}}{L} = 6828.84 \frac{\textit{N}}{\textit{m}}$$

Magnetträger Streckenlast

$$V_{MT} \coloneqq A \cdot L = 0.28 \ m^3$$
$$m_{MT} \coloneqq V_{MT} \cdot \rho_{AL} = 742.5 \ kg$$
$$F_{MT} \coloneqq m_{MT} \cdot g = 7281.438 \ \frac{kg \cdot m}{s^2}$$

$$q_{MT} \coloneqq \frac{F_{MT}}{L} = 1456.29 \frac{N}{m}$$

Magnetstruktur Streckenlast

$$m_{MS} \coloneqq 321.344 \ kg$$
 (Masse aus Zeichnung abgelesen)
 $F_{MS} \coloneqq m_{MS} \cdot g = 3151.31 \ \frac{kg \cdot m}{s^2}$
 $F_{MS} \qquad N$

$$q_{MS} \coloneqq \frac{F_{MS}}{L} = 630.26 \frac{N}{m}$$

Seite 1 von 7

Gesamt Streckenlast Magnetträger oben

$$q_{ges_oben_m} := q_{MS} + q_{MT} + q_{MK} = 8915.39 \frac{N}{m}$$

(Mit Magnetträger Eigengewicht)

 $q_{ges_oben_o}\!\coloneqq\!q_{MS}\!+\!q_{MK}\!=\!7459.1\;\frac{N}{m}$

(Ohne Magnetträger Eigengewicht)

Gesamt Streckenlast Magnetträger unten

$$\begin{split} q_{ges_unten_m} &\coloneqq q_{MS} + q_{MT} - q_{MK} \!=\! -4742.29 \; \frac{N}{m} \\ q_{ges_unten_o} &\coloneqq q_{MS} \!-\! q_{MK} \!=\! -6198.58 \; \frac{N}{m} \end{split}$$

(Mit Magnetträger Eigengewicht)

(Ohne Magnetträger Eigengewicht)

Linearencoder Gewichtskraft

$$m_{LC} \coloneqq 15 \ \textbf{kg}$$

$$F_{LC} \coloneqq m_{LC} \cdot \textbf{g} = 147.1 \ \frac{\textbf{kg} \cdot \textbf{m}}{\textbf{s}^2}$$

Berechnung der Biegelinie

Werte

Flächenträgheitsmoment $I_y := \frac{b \cdot h^3}{12} = 1386458333.33 \ mm^4$

.

Streckenlast

$$q_{0} \coloneqq q_{ges_oben_m} = 8915.39 \frac{kg}{s^{2}}$$
 (Mit Magnetträger Eigengewicht)

$$q_{0} \coloneqq q_{ges_oben_o} = 7460.39 \frac{kg}{s^{2}}$$
 (Ohne Magnetträger Eigengewicht)

$$q_{0} \coloneqq q_{ges_unten_m} = -4741.01 \frac{kg}{s^{2}}$$
 (Mit Magnetträger Eigengewicht)

$$q_{0} \coloneqq q_{ges_unten_m} = -6197.29 \frac{kg}{s^{2}}$$
 (Ohne Magnetträger Eigengewicht)

Halber Mittenabstand (Bereich 1)

Stützabstand (Bereich 2)

Kragarmlänge (Bereich 3)

 $c \coloneqq \frac{1330 \ mm}{2} = 665 \ mm$

$$e \coloneqq \frac{L}{2} - c - d = 522.5 \ mm$$

$$E \coloneqq 70000 \ \frac{N}{mm^2}$$

Querkontraktionszahl

$$\nu \! := \! 0.32$$

 $\chi \coloneqq 1.3$

Gleitmodul

$$G \coloneqq \frac{E}{2 \cdot (1 - \nu)} = 51470.59 \, MPa$$

Schubdurchsenkung

$$\chi = 1.3 \qquad q_0 = 8915.39 \frac{kg}{s^2} \qquad G = 51470.59 \ MPa \qquad A = 0.06 \ m^2$$

$$c = 665 \ mm \qquad d = 1312.5 \ mm \qquad e = 522.5 \ mm$$

Laufkoordinaten (Wertebereich):

 $\begin{array}{l} x_1 \coloneqq 0 \; \textit{mm}, 1 \; \textit{mm}...665 \; \textit{mm} \\ x_2 \coloneqq 665 \; \textit{mm}, 666 \; \textit{mm}...1977.5 \; \textit{mm} \\ x_3 \coloneqq 1977.5 \; \textit{mm}, 1978.5 \; \textit{mm}...2500 \; \textit{mm} \end{array}$

$$\begin{split} w_{s1}\left(x_{1}\right) &\coloneqq -\left(\frac{\chi \cdot q_{0} \cdot c^{2}}{2 \cdot G \cdot A}\right) \cdot \left(\left(\frac{x_{1}}{c}\right)^{2} - 1\right) \\ w_{s2}\left(x_{2}\right) &\coloneqq -\left(\frac{\chi \cdot q_{0} \cdot d^{2}}{2 \cdot G \cdot A}\right) \cdot \left(\left(\frac{x_{2}}{d}\right)^{2} - \left(\frac{x_{2}}{d}\right)\right) \\ w_{s3}\left(x_{3}\right) &\coloneqq -\left(\frac{\chi \cdot q_{0} \cdot e^{2}}{2 \cdot G \cdot A}\right) \cdot \left(\left(\frac{x_{3}}{e}\right)^{2} - 2\left(\frac{x_{3}}{e}\right)\right) + \frac{\chi \cdot F_{LC} \cdot x_{3}}{G \cdot A} \end{split}$$

Signifikante Stellen der Schubdurchsenkung Bereich 1: 0mm<c<665 mm

$$w_{s1}(0 \ mm) = (9.05263878 \cdot 10^{-4}) \ mm$$

 $w_{s1}(665 \ mm) = 0 \ mm$ $w_{s1}(c) = 0 \ mm$

Signifikante Stellen der Schubdurchsenkung Bereich 2: 0mm<d<1312,5 mm

$$egin{aligned} &w_{s2}(0 \ \textit{mm}) \!=\! 0 \ \textit{mm} \ &w_{s2}(656 \ \textit{mm}) \!=\! (8.81597745 \cdot 10^{-4}) \ \textit{mm} \ &w_{s2}(1312.5 \ \textit{mm}) \!=\! 0 \ \textit{mm} \ &w_{s2}(d) \!=\! 0 \ \textit{mm} \end{aligned}$$

Signifikante Stellen der Schubdurchsenkung Bereich 3: 0mm<e<522,5 mm

$$w_{s3}(0 \ mm) = 0 \ mm$$

 $w_{s3}(522.5 \ mm) = (5.94157418 \cdot 10^{-4}) \ mm$ $w_{s3}(e) = (5.94 \cdot 10^{-4}) \ mm$

Durchbiegung

Kräfte und Momente (Lagerreaktionen & Biegemoment aufgrund von symmetrie Berechnung)

$$\begin{split} M_{0} &\coloneqq \frac{d}{6 \cdot c + 2 \cdot d} \cdot \left(q_{0} \cdot d^{2} \cdot \left(\left(\frac{c}{d} \right)^{3} + \left(\frac{c}{d} \right)^{2} + \frac{1}{2} \left(\frac{e}{d} \right)^{2} - \frac{1}{4} \right) + F_{LC} \cdot e \right) = 673.51 \ \mathbf{N} \cdot \mathbf{m} \\ F_{a} &\coloneqq q_{0} \cdot d \cdot \left(\left(\frac{c}{d} \right)^{3} + \frac{3}{2} \cdot \left(\frac{c}{d} \right)^{2} + \left(\frac{c}{d} \right) + \frac{1}{4} \right) - \frac{M_{0}}{d} \cdot \left(3 + 6 \cdot \frac{c}{d} \right) = 11782.47 \ \mathbf{N} \\ F_{b} &\coloneqq q_{0} \cdot \left(c + d + e \right) + F_{LC} - F_{a} = 10653.1 \ \mathbf{N} \end{split}$$

Bereich 1 (Mitte):

maximale Durchbiegung:

$$w_{b01} \coloneqq \frac{c^2}{2 \cdot E \cdot I_y} \cdot \left(M_0 - \frac{q_0 \cdot c^2}{12} \right) = (7.859 \cdot 10^{-7}) \ \boldsymbol{m}$$

Durchbiegung an der Stelle x_1 :

$$w_{b1}(x_1) \coloneqq \frac{1}{E \cdot I_y} \cdot \left(\frac{q_0 \cdot x_1^4}{24} - \frac{1}{2} \cdot M_0 \cdot x_1^2 + E \cdot I_y \cdot w_{b01} \right)$$

Bereich 2 (Stützabstand):

$$c_3 \coloneqq \frac{q_0 \cdot c^3}{6} - M_0 \cdot c = -10.91 \frac{kg \cdot m^3}{s^2}$$

Durchbiegung an der Stelle x_2 :

$$w_{b2}(x_2) \coloneqq \frac{1}{E \cdot I_y} \cdot \left(q_0 \cdot \left(\frac{x_2^4}{24} + \frac{c \cdot x_2^3}{6} + \frac{c^2 \cdot x_2^2}{4} \right) - \frac{F_a \cdot x_2^3}{6} - \frac{M_0 \cdot x_2^2}{2} + c_3 \cdot x_2 \right)$$

Bereich 3 (Kragarm):

$$D_{3} \coloneqq \frac{q_{0}}{2} \cdot \left(\frac{1}{3} \cdot \left(c^{3} + d^{3}\right) + \left(c \cdot d^{2} + c^{2} \cdot d\right)\right) - \frac{1}{2} \cdot F_{a} \cdot d^{2} - M_{0} \cdot \left(c + d\right) = 10.05 \frac{kg \cdot m^{3}}{s^{2}}$$

maximale Durchbiegung:

$$w_{b03} \coloneqq \frac{1}{E \cdot I_y} \cdot \left(\frac{q_0 \cdot e^4}{8} + \frac{F_{LC} \cdot e^3}{3} + D_3 \cdot e \right) = (9.82 \cdot 10^{-7}) \ m$$

Durchbiegung an der Stelle x_3 :

$$w_{b3}(x_3) \coloneqq \frac{1}{E \cdot I_y} \cdot \left(\frac{q_0 \cdot x_3^{-4}}{24} + \frac{q_0 \cdot e^2 \cdot x_3^{-2}}{4} - \frac{q_0 \cdot e \cdot x_3^{-3}}{6} - \frac{F_{LC} \cdot x_3^{-3}}{6} + \frac{F_{LC} \cdot e \cdot x_3^{-2}}{2} + D_3 \cdot x_3 \right)$$

Signifikante Stellen der Durchbiegung Bereich 1: 0mm<c<665 mm

$$w_{b1}(0 \ \textit{mm}) = (7.85919186 \cdot 10^{-4}) \ \textit{mm}$$

 $w_{b1}(665 \ \textit{mm}) = -1.46425035 \cdot 10^{-19} \ \textit{mm}$ $w_{b1}(c) = -1.46 \cdot 10^{-19} \ \textit{mm}$

Signifikante Stellen der Durchbiegung Bereich 2: 0mm<d<1312,5 mm

$$w_{b2}(0 \ mm) = 0 \ mm$$

 $w_{b2}(656 \ mm) = (6.74474309 \cdot 10^{-4}) \ mm$
 $w_{b2}(1312.5 \ mm) = -2.50020748 \cdot 10^{-17} \ mm$ $w_{b2}(d) = -2.5 \cdot 10^{-17} \ mm$

Signifikante Stellen der Durchbiegung Bereich 3: 0mm<e<522,5 mm

 $w_{b3}(0 \ mm) = 0 \ mm$

$$w_{b3}(522.5 \ \textit{mm}) = (9.81997266 \cdot 10^{-4}) \ \textit{mm} \qquad w_{b3}(e) = (9.82 \cdot 10^{-4}) \ \textit{mm}$$

Superposition von Durchbiegung und Schubdurchsenkung

Durchbiegung (Superposition) Bereich 1: 0mm<c<665 mm

 $w_1(x_1) \coloneqq w_{b1}(x_1) + w_{s1}(x_1)$

Durchbiegung (Superposition) Bereich 2: 0mm<d<1312,5 mm

 $w_{2}(x_{2}) \coloneqq w_{b2}(x_{2}) + w_{s2}(x_{2})$

Durchbiegung (Superposition) Bereich 3: 0mm<e<522,5 mm

$$w_3\left(x_3\right) \coloneqq w_{b3}\left(x_3\right) + w_{s3}\left(x_3\right)$$

Signifikante Stellen der Durchbiegung (Superposition) Bereich 1: 0mm<c<665 mm

$$w_1(0 \ mm) \!=\! \left(\! 1.69118306 \!\cdot\! 10^{-3}\!
ight) \, mm$$

 $w_1(665 \ \textit{mm}) = -1.46425035 \cdot 10^{-19} \ \textit{mm}$ $w_1(c) = -1.46 \cdot 10^{-19} \ \textit{mm}$

Signifikante Stellen Durchbiegung (Superposition) Bereich 2: 0mm<d<1312,5 mm

$$w_2(0 \ mm) = 0 \ mm$$

 $w_2(656 \ mm) = (1.55607205 \cdot 10^{-3}) \ mm$
 $w_2(1312.5 \ mm) = -2.50020748 \cdot 10^{-17} \ mm$ $w_2(d) = -2.5 \cdot 10^{-17} \ mm$

Signifikante Stellen der Durchbiegung (Superposition) Bereich 3: 0mm<e<522,5 mm

$$w_3(0 \ mm) = 0 \ mm$$

 $w_3(522.5 \ mm) = (1.57615468 \cdot 10^{-3}) \ mm$ $w_3(e) = (1.58 \cdot 10^{-3}) \ mm$
Anhang F

MDESIGN Protokoll

	St	udienversion	l i i i i i i i i i i i i i i i i i i i
Programm : MDESIGN 2020	Verfasser	: Masoudi	Kunde : Tischer
Nodulversion : 18.0	Datum	: 25.04.2022	Projekt : Bachelorarbeit
		Träger	i
Mit diesem Programm kann basierend auf de	r Finiten Eleme	nte Methode der statisch	e Festigkeitsnachweis von Trägern durchgeführt
werden.			
Die Ergebnisse von Querkraft-, Biegemoment Sicherheitsverlauf können tabellarisch und gr	en-, Biegespar afisch ausgege	nnungs- und Schubspannu ben werden.	ungs-verlauf sowie Biegelinie und statischem
<u>Berechnungsgrundlage</u>			
Die Berechnungsgrundlage für das Modul 'Tra	ägerberechnun	g' ist die Finite Elemente	Methode.
Geltungsbereich			
Belastungen:			
- Axialkräfte (zentrisch, exzentrisch) Fa	max. 20	
- Radialkräfte	Fr	max. 20	
- Streckenlasten	9	max. 20	
- Biegemomente	МЬ	max. 10	
- Torsionsmomente	Т	max. 10	
Bei der Berechnung des Träger	s auf eingeschi	änkte Torsion gelten folg	ende Beschränkungen:
1. Der Träger soll einen konsta	anten Längsqu	erschnitt aufweisen.	
2. Der Träger darf nicht mehr	als eine Öffnur	ng haben.	
3. Als Stützen eines Trägers m	it einer Öffnun	ig können zwei Scharniere	e bzw. zwei Klemmen dienen.
4. Die Berechnung erfolgt mit orsto Einstufung der Bolasti	genaherten Wi	iderstandsmomenten naci zon Aufgrund örtlichor Ef	h "IM Prof. Dr. Wandinger", die Ergebnisse sind als fokto. Wölbung und der Abhängigkeit des
Lastangriffs weichen die Erd	jebnisse im Ve	raleich zu einer örtlichen	Betrachtung mit Hilfe FEM Berechnung teils stark
ab.	,		Ş
Lagerstellen			
- maximale Anzahl der Lager: 10			
- starre oder nachgiebige Lager (Vo	orgabe der Lag	ersteifigkeiten in den jewe	eiligen Freiheitsgraden)
- Festlager, Loslager, Stütze, Feste	Einspannung		
Ermittlung der max. Durchbiegung			
Ermittlung der Neigungswinkel an den La optionale Berücksichtigung des Trägereis	gerstellen engewichte		
 optionale berucksichligung des mägereig Frmittlung der Schnittgrößen für heliebig 	e Trägernositio	n (Momente, Spannunger	n. Durchbieauna. Neiaunaswinkel)
Ermittlung der statischen Sicherheit ^{5f}	rugerpositio	a (Fromence, opunnunger	, earchbiogang, noigangaminicij
max. 50 Trägerabschnitte	Y		
Vorfügbaro Trägorprofilo:			

- Flachstähle, warm DIN EN 10058
- Gleichschenklige Winkel DIN EN 10056-1
- I-Träger, I-Reihe DIN 1025-1
- I-Träger, IPB-Reihe DIN 1025-2
- I-Träger, IPBI-Reihe DIN 1025-3
- I-Träger, IPBv-Reihe DIN 1025-4
- I-Träger, IPE-Reihe DIN 1025-5
- Quadratische, kalt Hohlprofile DIN EN 10219-2
- Quadratische, warm Hohlprofile DIN EN 10210-2*
- Rechteckige, kalt Hohlprofile DIN EN 10219-2
- Rechteckige, warm Hohlprofile DIN EN 10210-2*
- Runde, kalt Hohlprofile DIN EN 10219-2

		St	udienversion	1
Programm	: MDESIGN 2020	Verfasser	: Masoudi	Kunde : Tischer
1 odulversion	: 18.0	Datum	: 25.04.2022	Projekt : Bachelorarbeit
			Träger	
-	Runde, warm Hohlprofile	DIN EN 10210-2	2*	
-	T-Stabl gerundet DIN EN	10055		
-	Unaleichschenklige Winke	10055 DIN EN 10056	-1	
-	U-Profil, geneigter Flansch	DIN 1026-1	-	
-	U-Profil, gerader Flansch I	DIN 1026-2		
-	Vierkantstäbe, warm DIN	EN 10059		
-	Z-Stahl, warm DIN 1027			
* Profile, de	ren Kurzzeichen das Suffix ,	,(1997)" enthalt	ren, sind nicht mehr Teil d	ler aktuellen Ausgabe der Norm DIN EN 10210-2.
Ċ				

								S	Stud	die	nv	er	sio	n										
gram	m	: MDI	SIG	N 20)20		Ver	fasse	er :	Mas	souc	di				K	unc	le	: Ti	sche	er			
dulve	rsion	: 18.0)				Dat	um	:	25.0	04.2	202	2			P	roje	ekt	: Ba	iche	lora	arbe	eit	
										Tr	äg	er												
ingab	edate	1 .																						
								Tra	igert	oere	chn	ung												
ieome	trie																							
Träg	gergeo	netrie																						
Geo	metrie	schema																gesa	amte	r Trä	iger			
Deta	ailbered	hnung	für St	elle													x =	522,	,5		I	mm		
Beri	ücksich	tigung	Eigen	gewio	cht													ja						
Träge	rabscl	nnitte												7	1									
Nr P	rofil K	ur Dat	en I	h	b	d	D	s t	r	r ₁	r ₂	α	с _у	C _Z	A	Iy IC	I _η [C		I _ζ	Wy	W	S _y	S _z	Ge
•	cł	iel que	ne m		n mr	nmn	nmm	mmn	nmm		nmr		cm	cm	2 2	m4	m4	m4	m4	2 [Cfi]	[c	m ³	m ³	etr
	n]]]]	-	m ³]]]	eb
																2 4	2 4	2 4	CM 4					ere ch
																								nu
					10								•	•				450		50.				ng
1 Fi	tähl x	50 Eige	en 43 00	0 0	10	0	0	0 0		9	0	0	0	0	55 0	138 645		458 3,3	0	504 1,6	916 66,	3/8 1,2	,5 68	ја
e	0	Prof	ild						4							,83		333	;	666	, 666	5 5		
		ater	1													33		33		67	67			
								y																
Lage	er																							
Nr.	Positi	on x	Lage	erstei	ifigke	eit	Lage	rsteif	igkeit	La	gers	teifi	gkeit	Ki	ppst	eifigl	keit '	T Ki	ppst	eifigl	keit T	Γ _z		
	mm		C _X				Cy N/m	m		C _Z	mm			y N				N	·m/º					
1	1		_ IN/M	<u>ui</u>			in/ml	П			mm				,			_						
1	172 5		-1				-1			-1				0				0						

Lastdaten

2

3

4

1485

2815

4127,5

0

0

-1

-1

-1

-1

-1

0

0

0

0

	•		Stl	lDL	enversi	JU			
ram	m : MDESI	GN 2020	erfasser	: M	asoudi		Kunde	: Tischer	
ulve	ersion : 18.0	D	atum	: 25	5.04.2022		Projekt	: Bachelo	rarbeit
				Т	räger				
Rad	ialkräfte F _r								
Nr.	Position x	Betrag F _r		Win	ikel α				
	mm	N		0					
1	0	147,1		0					
2	4300	147,1		0					y
Stre	eckenlast q		_				6		
Nr.	Position x	Betrag q ₁	Betrag o	2	Länge I	Winkel α			
<u> </u>			IN/III		111111	Ŭ			
1	0	7459,1	7459,1		4300	0			
1 erks	0 toffdaten	7459,1	7459,1		4300	0	Y		
1 erks We	0 toffdaten rkstoff (Festigkeits	werte) nach	7459,1		4300	0	MDES	IGN Datenb	ank
erks We Inte	0 toffdaten rkstoff (Festigkeits ernationale Werkst	verte) nach	7459,1		4300	0	MDES neir	IGN Datenb า	ank
erks We Inte	0 toffdaten rkstoff (Festigkeits ernationale Werkst	verte) nach	7459,1		4300	0	MDES neir	IGN Datenb า	ank
1 erks We Inte	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung	verte) nach	7459,1		4300	0	MDES neir EN [AIM	IGN Datenb n AW-5083 lg4,5Mn0,7]	ank H111
1 erks We Inte We	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer	yverte) nach toffe	7459,1		4300	0	MDES neir EN [AIM 3.3!	IGN Datenb n AW-5083 lg4,5Mn0,7] 547	ank H111
1 erks We Inte We We	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer	yverte) nach toffe	7459,1		4300	0	MDES neir EN [AlM 3.3! Aluminiumk stranggepre	IGN Datenb n AW-5083 Ig4,5Mn0,7] 547 netwerkstof esst)	ank H111
1 erks We Inte We We Wa	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer rkstoffgruppe rmebehandlung / 2	7459,1 swerte) nach toffe g	7459,1		4300	0 0 ((MDES neir EN [AlM 3.3! Aluminiumk stranggepre geglüht und altverfestig	IGN Datenb n AW-5083 Ig4,5Mn0,7] 547 netwerkstof esst) I geringfügig t	ank H111 f
1 erks We Inte We We Wa Nor	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer rkstoffgruppe rmebehandlung / 2 rmabmessung	zustand	7459,1		4300	0 V k	MDES neir EN [AlM 3.3 Aluminiumk stranggepre geglüht und altverfestig d _{Nm} = 200	IGN Datenb AW-5083 lg4,5Mn0,7] 547 netwerkstof esst) d geringfügig t	ank H111 f J mm
1 erks We Inte We We Wa Nor Nor	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer rkstoffgruppe rmebehandlung / 2 rmabmessung rmabmessung	Zustand	7459,1		4300	0 ((k	MDES neir EN [AlM 3.3! Aluminiumk stranggepre geglüht und altverfestig d _{Nm} = 200 d _{Np} = 200	IGN Datenb AW-5083 Ig4,5Mn0,7] 547 netwerkstof esst) I geringfügig t	ank H111 f mm mm
1 erks We We We Wa Nor Nor Zuc	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer rkstoffgruppe rmebehandlung / 2 rmabmessung gestigkeit für d _{Nm}	Zustand	7459,1		4300	0 ((MDES neir EN [AlM 3.3] Aluminiumk stranggepre geglüht und altverfestig $d_{Nm} = 200$ $d_{Np} = 200$ $R_{mN} = 270$	IGN Datenb AW-5083 g4,5Mn0,7] 547 netwerkstof esst) d geringfügig t	ank H111 f mm mm N/mm ²
I erks We We We Wa Wa Nor Nor Zu <u>c</u>	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer rkstoffgruppe rmebehandlung / 2 rmabmessung gfestigkeit für d _{Nm} eßgrenze für d _{Np} etizitätemodul	zustand	7459,1		4300	0 (, , ,	MDES neir EN [AlM 3.3] Aluminiumk stranggepre geglüht unc altverfestig $d_{Nm} = 200$ $d_{Np} = 200$ $R_{mN} = 270$ $R_{pN} = 110$ E = 700	IGN Datenb AW-5083 Ig4,5Mn0,7] 547 netwerkstof esst) I geringfügig t	ank H111 f mm N/mm ² N/mm ²
I erks We Inte We We Wa Nor Zu <u>c</u> Flie Ela:	0 toffdaten rkstoff (Festigkeits ernationale Werkst rkstoffbezeichnung rkstoffnummer rkstoffgruppe rmebehandlung / 2 rmabmessung gfestigkeit für d _{Nm} aßgrenze für d _{Np} stizitätsmodul sson-Zahl	Zustand	7459,1		4300	0 ((MDES neir EN [AlM 3.3] Aluminiumk stranggepre geglüht und altverfestig $d_{Np} = 200$ $d_{Np} = 200$ $R_{mN} = 270$ $R_{pN} = 110$ E = 700 v = 0.3	IGN Datenb AW-5083 lg4,5Mn0,7] 547 netwerkstof esst) l geringfügig t	ank H111 f mm mm N/mm ² N/mm ² N/mm ²

	Studi	enversion	
Programm : MDESIGN 2020	Verfasser : Ma	asoudi	Kunde : Tischer
Modulversion : 18.0	Datum : 25	.04.2022	Projekt : Bachelorarbeit
	Т	räger	
Temperatur			T = 20 °C
Werkstoff randschichtgehärtet			nein
Beanspruchungen vorwiegend quer z	ur bevorzugten Be	arbeitungs(Walz)richtung	ja

		Stu	Idienve	ersion			
Programm	: MDESIGN 2020	Verfasser	: Masoud		Kunde :	Tischer	
Modulversion	: 18.0	Datum	: 25.04.20	022	Projekt :	Bachelora	arbeit
			Träge	er	i		
Freedories							
Ergebnisse:							
Geometrie	der Träger	1		_	4300	mm	
Gesantmasse	der Träger	'g m		_	638 55	ka	
Desition des S	s der Trager			_	2150	ny mm	
FOSILION des 5	chwerpunktes auf der b	-Actise x _s		-	2150		
Verwendete	Trägerprofile						,
Absobaitt N	Nr Trägorprofil	Kurzzoichon	Broito	Höbo	Durchmoscor	Elanoch	Stordicko
Abschillter		Ruizzeichen	b	h	(Abstand der Achse	(dicke)	steguicke
			mm	mm	d	t	mm
					mm	mm	

Trägerabschnitte

1

Flachstähle

Nr	l _i mm	A cm²	I _y cm⁴	I _z cm⁴	W _y cm ³	W _z cm ³	S _y cm³	S _z cm³
1	4300	550	138645,833	4583,333	5041,667	916,667	3781,25	<mark>687,5</mark>

100

100x550

550

0

0

0

Lastdaten

Lagerreaktionskräfte

Nr	Тур	Position x mm	R _y N	R _z N	R N	R _{ax} N	OX o
1	Festlager	172,5	0	-6495,63	6495,63	0	0
2	Loslager	1485	0	-12819,57	12819,57	0	0
3	Loslager	2815	0	-12819,57	12819,57	0	0
4	Loslager	4127,5	0	-6495,63	6495,63	0	0

Berechnungsergebnisse maximaler Belastungen und Beanspruchungen

Maximale Biegemomente

max. Biegemoment um y-Achse:				
Position	x	=	1485	mm
Betrag	M _{ymax}	=	1523,155	N'm

max. Biegemoment um z-Achse:

		Studie	nversi	ion	
rogramm :	MDESIGN 2020	Verfasser : Mas	oudi	Kunde : Ti	scher
odulversion :	18.0	Datum : 25.0	4.2022	Projekt : Ba	chelorarbeit
	1	Tra	äger		
			-		
Position		x	=	0	mm
Betrag		M _{zmax}	=	0	N·m
Res. max Bieger	moment:				
Position		x	=	1485	mm
Betrag		M _{bmax}	=	1523,155	N·m
Result. max. Zu	g-Druckspannung:				
Position		x	=	0	mm
Betrag		σ_{zdmax}	=	0	N/mm ²
Maximale Nor	malspannung				
Eckpunkt	Zug-Druckspannung	Biegespannung	infolge	Biegespannung infolge	Resultierende
	σ _{zd} N/mm²	^M ymax (Μηη	nax)	^M zmax (^M ζmax)	normalspannung
		N/mmax N/mm²		N/mm ²	N/mm ²
P1	0	0		0,3	0,3
P2	0	0		0	0
P3	0	0		-0,3	-0,3
P3*	0	0		-0,3	-0,3
P4	0	0		-0,3	-0,3
P5*	0	0		-0,3	-0,3
P5	0	0		-0,3	-0,3
P6	0	0	/	0	0
P7	0	0		0,3	0,3
P7*	0	0		0,3	0,3
P8	0	0		0,3	0,3
D1*	0			03	0.3

Maximal resultierende Normalspannung

Position	x	=	1485	mm
Betrag	σ_{resmax}	=	0,302	N/mm ²

		Studienv	ersio	on	
ogramm : MDE	SIGN 2020 Verf	asser : Masou	di	Kunde :	Tischer
dulversion: 18.0	Datu	ım : 25.04.	2022	Projekt :	Bachelorarbeit
		Träc	ier		
			,		
Maximale Schubsp	annung				
Eckpunkt	Schubspannung infolge F _z ^τ _{zmax} N/mm²	Schubspannu infolge F _y T _{ymax} N/mm²	ing	Spannungen aus Torsionsmoment τ N/mm²	Resultierende Schubspannung T _{res} N/mm²
P1	0	0		0	0
P2	0,19	0		0	0,19
P3	0	0		0	0
P3*	0	0		0	0
P4	0	0		0	0
P5*	0	0		0	0
P5	0	0		0	0
P6	0,19	0		0	0,19
P7	0	0		0	0
P7*	0	0		0	0
P8	0	0		0	0
P1*	0	0		0	0
Maximal resultierende	Schubspannung				
Position		x	=	1485	mm
Betrag		τ _{resmax}	=	0,188	N/mm ²
Maximal resultierende	Vergleichsspannung:				
Position		×	=	1485	mm
Betrag	0	σ _{vxmax}	=	0,326	N/mm ²
Min. Sicherheit geg. F	ließen:				
Position		x	=	1485	mm
Betrag		S _{Fmin}	=	337,934	
Maximale Durchbie	egung				
Maximal resultierende	e Durchbiegung				
Position		x	=	747,826	mm
Betrag		v _{max}	=	0,002	mm
Winkel der maximaler	Durchbiegung				
Position		x	=	747,826	mm
Betrag			=	0,000009	o
Borochnungsorgoh	nisse für Stelle	x	=	522,5	mm

		S	tudien	versio	on		
Programm : MDESIGN 2020 Verfa			asser : Masoudi		Kunde : Tischer		
Modulversion : 18.0 Datu			: 25.04	.2022	Projekt :	Bachelorarbeit	
			Trä	aer			
				5			
Biegemoment um y-Achse			My	=	0	N·m	
Biegemoment um z-Achse			Mz	=	-978,2	N'm	
Result. max. Biegemoment			Mb	=	978,2	N'm	
Zug-Druck-Spannung			σ _{zdx}	=	0	N/mm²	
Normalspannun	g						
Eckpunkt Zug-Druckspannung σ_{zd} N/mm ²		nung	Biegespannung infolge M _y (M _η) σ _η N/mm²		Biegespannung infolge M _z (M _ζ) σ _ζ N/mm²	Resultierende Normalspannung Ø _{res} N/mm²	
D1			0		-0.19	-0.19	
P2	0		0		0,15	0	
P3	0		0		0.19	0,19	
P3*	0		0		0.19	0.19	
P4	0		0		0,19	0,19	
P5*	0		0		0,19	0,19	
P5	0		0		0,19	0,19	
P6	0		0		0	0	
P7	0		0		-0,19	-0,19	
P7*	0		0		-0,19	-0,19	
P8	0		0		-0,19	-0,19	
P1*	0		0		-0,19	-0,19	
Maximal resultiere	nde Normalspannun	g	σ _{res}	=	0,194	N/mm²	

Iramm · MDE			Vunda - Tisshar		
ulversion : 18 (atum : 25 (14 2022	Ruilde . Tischel Projekt : Bachelorarheit	
10.0		. 25.0	51.2022		
		Tr	äger		
Schubspannung					
Eckpunkt	Schubspannung infolge F _z ^T z N/mm²	Schubspa infolge ^T y N/mn	nnung PFy n²	Spannungen aus Torsionsmoment τ N/mm²	Resultierende Schubspannung t $ au_{res}^{res}$ N/mm²
P1	0	0		0	0
P2	-0,05	0		0	-0,05
P3	0	0		0	0
P3*	0	0		0	0
P4	0	0		0	0
P5*	0	0		0	0
P5	0	0		0	0
P6	-0,05	0		0	-0,05
P7	0	0		0	0
P7*	0	0		0	0
P8	0	0		0	0
P1*	0	0		0	0
1aximal resultierende	e Schubspannung	τ_{res}		0,046	N/mm ²
/ergleichsspannung		σ_{vx}	=	0,21	N/mm²
Sicherheit gegen Fliel	ßen	S _F	=	524,286	
Resultierende Durchb	iegung	v	=	0,001	mm
Vinkel der Durchbieg	jung		=	0,000154	o
/erkstoffdaten					
Verkstoffkenndaten f	für	x	=	522,5	mm
ffektiver Durchmess	er	d _{eff}	=	100	mm
lugfestigkeit		R _m	=	270	N/mm ²
Streckgrenze		R _e	=	110	N/mm ²

Studienversion								
Programm : MDESIGN 2020	Verfasser : Masoudi	Kunde : Tischer						
Modulversion : 18.0	Datum : 25.04.2022	Projekt : Bachelorarbeit						
Träger								
Spannungen aus Biegem	omenten My							