Result Assessment Tool (RAT):
Peer | empowering search engine data analysis

Sebastian Stinkler', Dirk Lewandowski'?, Sebastian Schultheif3' and Nurce Yagci'

! Department of Information, Media and Communication, Hamburg University of Applied Sciences,
Hamburg, Germany

? Department of Computer Science and Applied Cognitive Science, University of Duisburg-Essen, Duisburg,
Germany

ABSTRACT

The Result Assessment Tool (RAT) is a Python-based software toolkit that enables
researchers to analyze results from commercial search engines, social media platforms,
and library search systems. RAT provides an integrated environment for designing
studies, collecting results, and performing automated analysis. The software consists
of two main modules: RAT Frontend and RAT Backend. RAT Frontend uses Flask to
provide a researcher view for designing studies and an evaluation view for collecting
ratings from study participants. RAT Backend includes modules for collecting search
results, extracting source code, and adding classifiers for automated analysis. The
system has been used in various studies, including search engine effectiveness studies,
interactive information retrieval studies, and classification studies.

Subjects World Wide Web and Web Science, Software Engineering

Keywords Search engine evaluation, Web scraping, Retrieval tests, Retrieval effectiveness studies,
Search engines, Search engine optimization, Information science, Health information, Open
source, Python

INTRODUCTION
Submitted 5 March 2024 The aim of developing the Result As‘sessment Tool (RAT) software' is to allow res.earchers
Accepted 26 May 2025 to access and analyze results from different search systems. Collecting and analyzing such
Published 8 July 2025 data is essential to researchers from various fields, including information science, health
Corresponding author information, computer science, computational social sciences, and more.
Dirk Lewandowski,

For researchers to understand the modern information environment, access to
data from platforms such as Facebook, Google, and X (Twitter) is paramount. While

dirk.lewandowski@haw-hamburg.de

Academic editor

Marco Piangerelli some of these platforms allow (paid) access to at least some of their data, search
Additional Information and engine data is not available satisfactorily. Microsoft Bing is the only major search
Declarations can be found on engine that provides interested parties with an application programming interface
page 28

(https:/mwww.microsoft.com/en-usbing/apisbing-web-search-api). However, as Google
dominates the search engine market with 91 percent of global searches (StatCounter, 2024),

© Copyright researchers are interested in seeing which results users face and need access to Google data.
2025 Stinkler et al.

DOI 10.7717/peerj-cs.2962

Furthermore, many other search systems apart from web search engines do not provide
Distributed under access to their data but may interest researchers.
Creative Commons CC-BY 4.0 In the following, we will speak of search engines when a search system collects data

OPEN ACCESS from the web (for definitions, see Lewandowski, 2023). The more general term search

How to cite this article Siinkler S, Lewandowski D, Schulthei8 S, Yagci N. 2025. Result Assessment Tool (RAT): empowering search en-
gine data analysis. Peer] Comput. Sci. 11:¢2962 http://doi.org/10.7717/peerj-cs.2962

https://peerj.com/computer-science
mailto:dirk.lewandowski@haw-hamburg.de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2962
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
http://doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

system refers to any information retrieval system that allows a user to search a data
collection through a web interface. It can refer to any website that incorporates a
search functionality. Some examples of search systems include library search systems
(https:/catalog.loc.goviwebviearchBrowse), product search (https:/www.amazon.com/),
social media networks (Twitter), and local search functions on any website.

Researchers may have different interests when it comes to studying search systems. On
the one hand, they might focus on the results generated by a specific search system. In
addition to general-purpose web search engines, these can include, among others, library
search systems, news search engines, or video search engines. Here, researchers may be
interested in the results a particular search system shows its users. On the other hand,
researchers may want to compare different systems. For instance, researchers can compare
two or more web search engines, vertical search engines (such as different news search
engines), or web search engines with more specialized systems. These cases frequently
include evaluating the retrieval effectiveness of various search engines and search systems
and are common scenarios in the field of information science (e.g., Lewandowski, 2015;
Shafi & Ali, 2019; Gul, Ali & Hussain, 2020; Zeynali Tazehkandi ¢» Nowkarizi, 2021; Maillé
et al., 2022). Researchers would benefit from an integrated system for the cases mentioned,
allowing them to design studies, collect results from different search systems, synthesize
findings, and conduct analyses. We designed RAT to meet these needs.

However, RAT is not limited to evaluating search systems; it could also support research
in various fields. For instance, in the health sector, RAT could assist in quality evaluations
(e.g., Janssen et al., 2018) and content analyses (e.g., Rachul et al., 2020) of health-related
search results. In media and communication studies, RAT could help classify content types
and assess ideological bias (e.g., Ballatore, 2015). The Results section provides a detailed
description of how RAT could have been applied in these studies.

A significant methodological challenge in search engine research involves detecting
and addressing biases in search results. Traditional manual collection methods often
create three key problems: (1) temporal inconsistency, as results change over time; (2)
sampling limitations that prevent statistical power; and (3) potential researcher bias in
collection and classification. RAT directly addresses these methodological challenges in
several ways. It enables researchers to systematically collect large datasets from multiple
search engines simultaneously, capturing results precisely as they appear at a specific
moment, and its standardized assessment interface ensures all evaluators apply consistent
criteria when classifying content. RAT also offers manual and automated analysis tools that
detect patterns across significant result sets that would be impossible to identify manually.
These capabilities have been demonstrated in studies like Yagci et al. (2022) and Norocel
& Lewandowski (2023), which used RAT to analyze source diversity and the presence of
extreme content in mainstream search results—analyses that would be impractical with
traditional methods. The classification studies section provides additional examples of how
RAT addresses these methodological challenges.

These methodological advantages of RAT open new possibilities for researchers,
particularly given the existing challenges of data access. We see great potential for RAT, as
research utilizing search results often relies on limited samples collected, evaluated, and

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 2/32

https://peerj.com
https://catalog.loc.gov/vwebv/searchBrowse
https://www.amazon.com/
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

analyzed manually. This is particularly true for studies examining results from commercial
search engines since researchers usually lack access to such data, as mentioned above.
When scientists cannot obtain a search engine provider’s data, questions arise on the
evidential significance of the conclusions acquired using these restricted data collections.
These restrictions stem from multiple barriers. First, search engine companies treat their
ranking algorithms and result data as core intellectual property and competitive advantages,
making them reluctant to share comprehensive datasets that could reveal insights about
their systems. Second, even when APIs are available (like Microsoft Bing API), they typically
impose rate limits, substantial costs for high-volume access, and restrictions on data storage
and redistribution. These barriers particularly impact academic researchers with limited
resources compared to commercial entities, making it difficult to conduct large-scale
studies that could provide more comprehensive insights into search engine behavior and
impact. Such access would help conduct studies that search engine providers do not carry
out. These studies could cover information retrieval aspects and areas where the search
engine providers are vested in keeping the results hidden because they may contradict their
self-interests. The term “self-interest” refers to the primary financial motivations of search
engine companies, which can conflict with decisions about relevance or user interests.
Self-interest is evident in Google’s tendency to prioritize its content over its competitors
(Lewandowski, Siinkler ¢» Schultheifs, 2020). For instance, a competitive investigation by the
European Commission led to a record-breaking fine of 2.4 billion euros for Google due to
its preference for promoting its shopping results over those of other businesses (European
Commission, 2017). Independent studies such as that of (Lewandowski ¢~ Siinkler, 2013a)
that explore these issues are crucial, as Google is unlikely to make information that
contradicts its interests readily accessible (Lewandowski, Siinkler & Schultheifs, 2020).
Apart from addressing the problem of search engine data accessibility, RAT significantly
enhances research scalability. The system enables researchers to overcome previous
limitations by automating what was once labor-intensive human work, allowing studies
to expand from tiny sample sizes to comprehensive datasets. Researchers can define any
number of queries and search engines, facilitating more robust and generalizable findings
that were previously unattainable through manual methods. The tool automatically queries
the selected search engines and grabs the results, removing the bottleneck in manually
collecting search results. While automatically collecting results increases the sample size of
studies, researchers still need to recruit participants and compensate them for their work if
they decide to have results assessed. Even though software cannot remove this barrier, RAT
makes assessing results efficient by removing duplicates from the results, providing a user
interface for study participants, and storing and summarizing the collected assessments.
Study participants can be any individuals recruited by researchers to evaluate search
results—from domain experts conducting quality assessments to students performing
relevance judgments to crowd workers classifying content. These participants access RAT
through a dedicated web-based assessment interface where they can view search results
and respond to researcher-defined questions. The interface streamlines the assessment
process by presenting results in a standardized format, tracking progress automatically,
and ensuring consistent data collection across all participants. Researchers can customize

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 3/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

the evaluation criteria and questions based on their study objectives, whether they are
conducting relevance assessments, content analysis, or bias detection studies.

Some software tools that at least cover some of RAT’s functionality have been developed
in the past. However, these tools have either been developed for a single study only
(e.g., Tawileh, Griesbaum ¢ Mandl, 2010; Bar-Ilan & Levene, 2011; Trielli & Diakopoulos,
2020), have not been updated, and therefore have become outdated (Lingnau et al., 2010;
Renaud & Azzopardi, 2012), do not offer the flexibility to conduct studies of different types
or have been developed for narrowly limited use cases (e.g., Thelwall, 2009; Digitalmethods,
2024). Additionally, proprietary online tools provide scraping capabilities for gathering
search results (Oxylabs, 2025; ScraperAPI, 2025). Nevertheless, these services are not open
source, which leads to a lack of transparency regarding the technologies and algorithms
used and limited configuration options.

To achieve the best possible flexibility, RAT is divided into modules for designing
tests, search result scraping, study participant-based evaluations, automatic analysis, and
research data download. The scraping module can connect to any web page with a search
box, although scrapers must be developed individually for each system (see section Search
Engine Scrapers). The scrapers extract structured data from the found search engine result
pages (e.g., result descriptions, URLs, position) for further processing. Furthermore, RAT
stores the HTML code of all found documents (i.e., search results) and makes screenshots of
them for further processing. In addition to the modules mentioned, RAT allows researchers
to develop extensions, e.g., for data analysis not covered in the current system.

RAT already has a long history, with the prototype being used in 2012 and referred to
as the Relevance Assessment Tool (Lewandowski ¢~ Siinkler, 2013b). However, the project
faced software aging problems that are typical when software is developed and maintained
in research projects without particular funding for the software. This situation changed
in 2021 when we got funding to develop the new version of RAT from scratch. This
redevelopment was required as the field’s technological state of the art had changed.

The funded project covers software development and supports researchers interested
in conducting RAT studies. This is especially important as many researchers from non-
technical fields are not used to utilizing software like RAT for their research. Another part
of the RAT project is building a community of interested researchers and developers.

In this article, we describe RAT in detail. First, we describe the user journey in the
software and then explain all modules with the respective technical implementations
to show how the journey is realized. Secondly, we show how we handle research data
generated in the software and implement software quality assurance. Thirdly, we show the
possibilities for RAT in research by presenting possible use cases and examples of realized
studies. We conclude the paper with a summary and discussion, including a discussion of
the limitations of the software.

THE RESULT ASSESSMENT TOOL

RAT is a versatile web-based software toolkit built in Python that uses the PostgreSQL
database and Selenium, a software package for conducting automated web browser tests.

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 4/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

While study participants use the RAT Assessment Interface to assess copies of search results
and answer predetermined questions related to them, researchers can use it to create studies
and use classifiers to analyze search results automatically.

The flexible nature of the toolkit enables the execution of practically all types of studies
based on search results. In addition to traditional information retrieval (IR) research,
classification studies, such as data and qualitative content analyses, are conceivable. RAT
consists of several modules that form a toolkit for conducting the abovementioned studies.
For example, all available modules are relevant for performing IR studies as they scrape
search systems for defined search tasks and search queries. The source texts are then
saved, and screenshots are generated, which will be evaluated by study participants in the
Assessment Interface. The entire data can then be downloaded and further evaluated. This
is a great advantage, as all the procedures required for such studies are available in RAT.

However, the flexibility also allows the conduct of studies that do not require all modules.
For example, scraping the systems without storing the source texts and recording ratings
would be sufficient to measure the overlapping of search results in search systems or
different country versions of the systems. In the case of studies for qualitative content
analysis or classification tasks, all modules could be helpful, as the evaluation could also
be done directly in RAT if the researchers want to carry out evaluations themselves or if
they want to distribute them to other people. RAT also allows uploading lists of URLs not
gathered by RAT, but whose results can still be scraped. In addition, the source texts and
screenshots can be downloaded for further evaluation. A list of studies that have already
been conducted and types of studies that would have benefited from using RAT can be
found in the Results section.

A demo of RAT is available at https:/rat-software.org/and is ready to use to design and
conduct studies based on search engine data. The demo version is limited to a sample of
search engines concerning the number of search queries since a free selection and number
of queries could lead to a high expenditure of computing capacity. However, the demo
allows researchers to test the software. For access to the full version, researchers can contact
the research team, and they will get full access after a review. We also offer the possibility
of installing the software toolkit on self-operated servers (https:/github.com/rat-software).

In the following, we describe the user journey, the modules and applications, the
technologies used, and how these technologies interact with each other and the end users.
We also show how we handle research data generated in RAT and ensure the software’s

quality.

User journey in RAT
RAT has two user groups: researchers who design studies and study participants who assess
web pages. A typical user flow in the software for a study consists of four steps (Fig. 1).

1. Create study: The researcher selects the search systems to be analyzed. RAT offers a
search engine scraper capable of collecting data from various providers (e.g., Google,
Microsoft, DuckDuckGo), including several country-specific versions. This feature
supports studies that compare search results across different regions. Additionally, the
scraper can extract results from any search system, allowing researchers to specify the

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 5/32

https://peerj.com
https://rat-software.org/
https://github.com/rat-software
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

1. Create study 2. Collect search results 3. Evaluate & analyze 4. Export results

« Select search engines results

« Adjust results options
« Set search queries

« Scrape search engines
« Store copies of search results
« Get live updates of scraping

« Download search results,
participants assessments and

« Create questions +
analytics

 Invite participants
+ Automatic analysis
« Get statistics for the study

Figure 1 User journeyin RAT.
Full-size & DOI: 10.7717/peerjcs.2962/fig-1

types of results they wish to acquire, such as organic search results, snippets, universal
search results (e.g., news, images, videos), and advertising. Once the search systems
and result types are selected, researchers define the search queries to gather the desired
data in the subsequent step.

2. Collect search results: The search queries are automatically sent to the selected search
system(s). With the help of Selenium, we simulate the search engine calls and save
the returned search results. The metadata for each result, such as its position, URL,
and description (snippet), is kept in the database. In addition, a copy of the source
code and a screenshot of every result document (i.e., the full text of the document, not
only the information from the search engine result page) will be created. Live updates
on the current status of the scraping process are displayed in the user interface. We
have created scrapers for two library search systems; however, additional scrapers may
be implemented to facilitate investigations of additional search systems. For instance,
scrapers could be implemented to acquire data from social media platforms such as
Facebook or X (Twitter), regardless of whether they provide paid access to their data.
The benefit of extracting content from the website rather than utilizing the API is that
the latter can limit access to specific data. In contrast, the former can be employed
to obtain a more significant amount of authentic data. RAT also has the advantage
of storing the data content (source code and text) and taking screenshots, which can
be used to collect assessments from participants in studies. When scraping search
engines or systems, we refrain from using methods that circumvent automated queries’
limitations, such as automatically solving CAPTCHAS. We do not overload search
engines or systems with automated queries. We encrypt the screenshots and texts of
websites before saving them in the database. We only send individual requests to the
websites’ servers to avoid overloading them. We use the information generated during
data collection exclusively for research purposes and in no other context.

3. Evaluate and analyze results: Researchers can analyze the collected results or create
questionnaires to pass on to study participants. For this purpose, researchers can define
questions and invite the participants. Study participants evaluate the collected search
results on different levels, e.g., assess their relevance to a specific search task or perform
classification tasks. For example, a researcher who wants to compare the sources and
relevance of Google and Bing results on a particular topic would need to design a test,
then use the queries to search for results in both search engines, copy the URLs from
the results pages, randomize the URL lists, distribute the URLs to the participants for
evaluation, create a list of all domains found in the results, and compare them between

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 6/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2962/fig-1
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

the two search engines. To analyze the results, the RAT calculates statistics that can
be displayed in the user interface. RAT also offers the possibility of using self-defined
classifiers to analyze search results automatically. A search engine optimization (SEO)
classifier is implemented at this point. SEO is “all measures suitable for improving the
position of Web pages in search engine rankings” (Lewandowski, 2023, p. 175). The
SEO classifier calculates the probability of using SEO for a specific URL. It is possible
to add further classifiers using the templates provided by RAT.

4. Exportresults: RAT allows researchers to download and process the results of the
scraping processes, analyses, and evaluations by study participants at any time. For this
purpose, the data is exported from the database and made available as downloadable
CSV files.

Modular structure of RAT

The software is divided into two applications that can be installed on different computers
and are connected via the PostgreSQL database. This approach allows researchers to share
resources from time-consuming and computationally intensive processes. One application
is RAT Backend, which provides the scraping processes and classification tasks; the other is
RAT Frontend, which serves as a graphical user interface for researchers to design studies
and for study participants to evaluate search results. We also offer an infrastructure and a
dedicated repository (https:/github.com/rat-extensions/) for developers and researchers to
build extensions for RAT using the data provided through the database. The overview of
the software is shown in Fig. 2.

RAT Frontend

RAT Frontend is developed in Flask, a micro-web framework written in Python, and it
is the GUI of RAT. We use Flask because of its functionality and flexibility in meeting
our software requirements. These requirements include a secure, lightweight application
framework that can scale up to complex applications. Its architecture also supports the
development of controllers and views, making the source code more sustainable and
extending the software easily. We also use several Flask extensions, like Flask-SQLAlchemy
(support for SQLAlchemy to connect to the PostgreSQL Database), Flask-Login (user
session management), Flask-Mail (interface to set up SMTP), and Flask-WTF (integration
with WTForms for secure forms with CSRF token and file upload management) which
offer all the basic functionalities of usable and secure web-based software. Researchers and
study participants interact with RAT via RAT Frontend, which includes a Researcher View
(Fig. 3) for designing studies and analyzing study results (Fig. 4) as well as an Evaluation
View (Fig. 5) for collecting study participants’ assessments or assessments by researchers.

Researcher view

Researcher View gives access to Study Designer, Analyzer, and Data Exporter through

a dashboard. Study Designer is the basic module researchers use to specify the study
parameters, search tasks, search queries, search engines, search result options, and manage
study participant access.

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 7132

https://peerj.com
https://github.com/rat-extensions/
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

RAT Frontend
Researcher View Evaluation View
A4 o v
- - "'I
| J— —_— '"I |J
— —
| — L J e |m
Study Designer Analyzer Data Exporter Assessment Interface .
Researcher Participants

| — ﬂ
< >
- —

Data.base RAT Extensions
RAT Backend
Backend Modules (Server 1) Backend Modules (Server 2)
Search Engine Scraper Source Scraper ﬁmr Search Engine Scraper Source Scraper ﬁ;;r

Figure 2 Overview of the applications and their modules in RAT.
Full-size Gl DOI: 10.7717/peerjcs.2962/fig-2

< Back to Dashboard

SEARCH RESULTS COLLECTION SEARCH TASKS & QUESTIONS PARTICIPANTS
Status: Collection finished. 17 Results collected. 1Question Number of registered participants: 25
v || gy rrsaen] || ¢y £ coritvatonto

A)

STUDY SUMMARY

Rammstein_DE

STUDY TYPE RESULT TYPE RESULT COUNT
Relevance Assessment Organic Results 10

SEARCH ENGINES

SEARCH TASK
Please rate the article's stance towards the persons mentioned in the article.

SEARCH QUERIES

D)
ANALYSIS EXPORT
Find general study statistics and additional data about SEO analysis and source overlap. Download results as Excel Tables for further use and research data management.

liView Analysis B Download Results
) A

Figure 3 Researcher view in RAT.
Full-size Gal DOI: 10.7717/peerjcs.2962/fig-3

Siinkler et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2962 8/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2962/fig-2
https://doi.org/10.7717/peerjcs.2962/fig-3
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

< Backto Study

RESULTS STATISTICS EVALUATION STATISTICS

Queries 1 Participants
Search Engines 2 Questions 4
Results to Collect per Query 10 Evaluations per Participant 80
Collection Status 100% Evaluation Status 8%
A) B)

RESULTS OVERLAP

SEO ANALYSIS @

Class Total Percentage
Most probably optimized 18 0.9 Search Engine Pair SE 1 exlusive SE 2 exclusive Overlap Total
Probably optimized 0 0.0 Google_SE-Bing_DE 8 7 2 w
Probably not optimized 2 0.1 D)

Most probably not optimized 0 0.0

Error 0 0.0
)

Figure 4 Results and statistics from the analyzer module in RAT.
Full-size Gal DOI: 10.7717/peerjcs.2962/fig-4

=
MepicaALNEwWsToODAY Health Conditions v Health Products v Discover v Tools v ¢
In the following, you see the results for the
query prevention of adolescent obesity. o
Please rate the results using the questions
below: A) Get the MNT newsletter A B)
Subscribe to receive our top news articles. S

Is the result relevant to the query?

o s : Medicall d by Jorge Moreno, MD
e A guide to preventing i o A S ey
O Yes ° . 19,2023
childhood obesity
Next Skip C)

How can we prevent it? | Why is it important? | Diet

Exercise | Sleep | Preventiontips | Summary

Childhood obesity is a chronic disease that can
affect growth and overall health. Preventing
childhood obesity can help avoid health issues
in adulthood.

Figure 5 Evaluation view in RAT.
Full-size Gal DOI: 10.7717/peerjcs.2962/fig-5

In Researcher View, researchers also define the questions that will be asked in Assessment
Interface. Researchers launch the search engine scraper in RAT Backend here (Fig. 3A) and
receive real-time information about the scraping progress. Regarding question design,
RAT is quite adaptable (Fig. 3B). Open-ended questions, Likert scales, sliders, and
multiple-choice questions are examples of question types. The questions are presented
using Bootstrap (https:/getbootstrap.com/docs/4.0/components/forms/). Bootstrap is an

Siinkler et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2962 9/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2962/fig-4
https://doi.org/10.7717/peerjcs.2962/fig-5
https://getbootstrap.com/docs/4.0/components/forms/
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

open-source CSS framework for creating responsive web applications. Bootstrap provides
templates with classes for forms to display all question types available in RAT. Such
questions could include, for example, “How relevant is the result shown here?”’; “Would
you see this result coming from a reputable source?”; and “Is this text well-written?” In this
view, the participants are also managed (Fig. 3C). Figure 3D shows an overview including
the selected search engines, defined search queries, and the study type. All these options
can be changed if scraping has not yet begun.

Analyzer (Fig. 3E) and Data Exporter (Fig. 3F) are additional modules in Researcher
View. Analyzer provides tools for automatically analyzing search results. Figure 4 shows
some examples of processed data. In addition to statistics on the scraping progress (Fig. 4A),
it also provides information on the evaluation process (Fig. 4B). These statistics are essential
for tracking the study’s progress. The figure also shows an example of an implemented
classifier that determines the probability of SEO on the search results collected (Fig. 4C).
Another standard analysis measures the overlap between the results from different search
engines in a study (Fig. 4D). Open-ended questions, Likert scales, sliders, and multiple-
choice questions are examples of question types.

Evaluation view

Another view in RAT Frontend is the Evaluation View (Fig. 5). Participants register through
alink provided by the researchers. This process creates credentials for the study participants
so they can log in to work on the given tasks. Another scenario is the researchers creating
credentials to evaluate or classify the collected search results. In general, this approach
allows anonymous access for participation in studies. We also do not collect data that
makes participants identifiable. However, researchers could send the link to registration to
individuals, e.g., to conduct group comparisons or distribute incentives.

In Assessment Interface, study participants or researchers navigate through the copies
of the search results related to the search task (Fig. 5A). To ensure clarity, the term
“participants” will refer to external participants and researchers conducting the assessments
themselves in the following text. Respondents reply to the defined questions (Fig. 5B) using
a screenshot of the search result or an uploaded document (Fig. 5C). The procedure
in the Assessment Interface is identical for each evaluator. The participant first uses
their previously generated individual login credentials to log in, after which they see a
questionnaire with a saved screenshot of a search result. The questionnaire is made up of
the questions that were previously defined in the Study Designer. The reviewer can now
answer these questions or skip the assessment if there are uncertainties or display errors.
A progress bar provides information on how far the assessments have already progressed.
Participants also have the option of pausing the assessments at any time and resuming
them at a later date. When designing the interface, we prioritized ease of use and followed
standard online survey conventions to ensure straightforward access. Researchers who wish
to use this interface to collect ratings from external study participants can also directly enter
a procedure description. The database stores the answers, enabling investigators to access
them through Data Exporter (Fig. 3E) and download the participant assessments. Data
Exporter produces multiple Excel tables, which the research team can utilize for additional

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 10/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

WP Job Tables
~—

Scheduler

Reset

Figure 6 Scheduler and job management in RAT.
Full-size Gal DOI: 10.7717/peerjcs.2962/fig-6

analysis. In addition to the assessments, the table includes a list of gathered search results
and predetermined questions.

RAT BACKEND

The other application of RAT is RAT Backend, which utilizes the database to receive and
process the inputs from Researcher View in RAT Frontend. It is a collection of modules
to (1) collect search results (Search Engine Scraper), (2) extract the source code and take
screenshots of the search results (Source Scraper), and (3) a framework to add classifiers to
RAT (Classifier) for automatic analysis processes based on the search results. In contrast to
the RAT Frontend, no graphical user interface is available; all configurations are realized
through JSON files.

The core architecture of RAT Backend is built on an integrated job management system
utilizing the Advanced Python Scheduler (APScheduler) library. Figure 6 illustrates the job
management process in RAT.

This system coordinates all automated processes through controllers that handle the
scraping of search results, storage of source code and screenshots, and classification tasks
based on configuration files and researcher input from the RAT Frontend. Each module
works with special request tables in the database that create processing dependencies:
Unprocessed search queries trigger the scraping process of the search system, which
then activates the source scraper as soon as the results are saved and finally initiates
classification as soon as content is available. With built-in error handling that resets
and reschedules unsuccessful jobs, the system automatically plans, executes, and tracks
job status. Regardless of the precise tasks being carried out, this architecture guarantees
effective resource allocation while preserving a consistent workflow across all modules.

Search engine scrapers
In RAT, research is conducted using search results collected through an automated scraper.
Once implemented, this system allows researchers to define search queries and select

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 11/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2962/fig-6
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

= Pl

ol

5

i,

— []]|
-—» "Il—> —_—

-0
RAT Database Search queries ‘ .‘ Scheduler ‘ \‘ lo

Jobs Selemum Search engmes\

RAT Database

I

Search results

Figure 7 Search engine scraper in RAT.
Full-size Gal DOI: 10.7717/peerjcs.2962/fig-7

various search engines (e.g., Google, Microsoft Bing) or any web-accessible search system,
including social media platforms like X (Twitter) and Facebook, as well as on-page search
functionalities (e.g., https:/www.haw-hamburg.de/en/search/). Unlike traditional APIs, our
scraper mimics a user’s actions in a browser, which allows for fewer restrictions on the
data collected. We selected our scrapers based on the popularity of commercial search
engines and tested Google and Bing against alternatives such as Ecosia and DuckDuckGo.
In addition, our software is designed to be flexible, allowing researchers to add custom
scrapers tailored to their specific studies. This flexibility ensures that the current selection
of search engine scrapers does not limit research.

Search Engine Scraper (Fig. 7) is a crucial module in RAT Backend that is responsible
for the automatic collection of search results.

The module creates jobs from the queries and search engines selected to collect results
from these engines and writes them into a job table. A scheduler regularly checks for open
jobs and starts Selenium, a suite to automate tests for web applications. Its capabilities also
allow the simulation of browser interactions with any URL by providing web drivers for all
major browsers (https:/www.selenium.dev/documentationwebdriver/). When searching,
we can simulate user input to send the query, allowing us to obtain the search engine
result page (SERP). The module reads the page content and uses a parser to extract
the search results by identifying specific CSS selectors for the title, description, and
URLs. Since every search engine and retrieval system employs different styles for their
SERPs, it is necessary to identify the relevant CSS selectors individually. Additionally,
scrapers must be adjusted to collect results beyond the first page. This can be done
by extracting links from the pagination or simulating interactions, such as scrolling
down when the search system uses continuous scrolling to display more results. We also
provide a script to add the new scraper to the database (https:/github.com/rat-software/rat-
softwareblob/maintemplates/add_scraper to_database.ipynb) Usually, the parameters
listed in Table 1 need to be defined for a scraper in RAT.

However, there are exceptions, as search engines may deliver search results in non-
standard formats. For instance, results from a library system might include additional

Siinkler et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2962 12/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2962/fig-7
https://www.haw-hamburg.de/en/search/
https://www.selenium.dev/documentation/webdriver/
https://github.com/rat-software/rat-software/blob/main/templates/add_scraper_to_database.ipynb
https://github.com/rat-software/rat-software/blob/main/templates/add_scraper_to_database.ipynb
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Table 1 Parameters for search engine scraper in RAT.

Parameter Description For instance (Google Germany)
SEARCH_URL URL of the search engine with optional GET-parameters https:/www.google.dewebhp?hl=de

provided by the search engine (e.g., to set a language

parameter)
SEARCH_BOX Input element in a form to enter a search query. <textarea class="gLFyf” name="q” </textarea>
CAPTCHA Source code hint to find a CAPTCHA element. g-recaptcha
NEXT_PAGE CSS element for a click button to navigate to the next search //a[@aria-label="{}’]

RESULTS_NUMBER
PAGE
CSS_RESULT

CSS_TITLE
CSS_DESCRIPTION

CSS_URL

engine result page (SERP)
Parameter to initialize the number of the first result.
Parameter for the first SERP.

CSS class for each div container with a result consisting of a
title, description, and URL.

CSS class of header for a title in a result container.

CSS class for the description. A description is part of the
search result.

CSS class for the URL in a result container.

0
0
“div”, class_=[“tF2Cxc”]

“h3”, class_=[“LC20lb MBeuO DKV0OMd”]
“div”, class_=[“VwiC3b”]

“h3”, class_=[“LC20lb MBeuO DKVOMd”]

metadata, such as book authors, publisher information, and more, beyond the typical title,
description, and URL. This additional information must be summarized and stored in the
standard description column within the table used for storing scraped search results.

Each scraper needs its own script in order to function. We offer a template script for
creating new scrapers (https:/github.com/fat-softwarefrat-softwareblob/main/backend/
scraper/scrapersftemplate_new_scraper.py) and Jupyter Notebook (https:/github.com/rat-
softwarefrat-softwareblob/mainftemplatesmew_scraper.ipynb) for on-the-fly development
and testing. It is also important to note that RAT was developed specifically for HTML-based
web interfaces and is not suitable for non-web-based search systems.

Search engine scrapers need to be updated frequently, as search engine operators
regularly change the format of their SERPs or their methods of delivering search results,
such as using pagination or continuous scrolling. To address this, RAT provides a daily
job to test the functionality of the implemented scrapers. If a scraper test fails, the scraper
is stored in the database and marked as unavailable for further studies. Researchers who
developed the scrapers are notified via email when their scraper stops working, prompting
them to fix the issue. This notification indicates that something, such as the HTML or CSS
code on a SERP, has changed, requiring the scraper to be updated accordingly. Testing all
scrapers before beginning a new study is highly recommended to ensure their functionality.

Apart from structural modifications to SERPs, a major difficulty in large-scale search
engine research is negotiating the several protective policies put in place by search engines.
Most search engines block automated access by means of anti-bot policies and rate limits.
Search engine operators may momentarily block the scraper’s IP address if they notice
several requests from the same server, therefore failing jobs. RAT solves this problem
using various technical tools. First, the system distributes requests over time to avoid
activating rate limit protections by automatically resetting and restarting failed jobs after a
configurable waiting period. RAT also enables proxy server integration so researchers may

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 13/32

https://peerj.com
https://www.google.de/webhp?hl=de
https://github.com/rat-software/rat-software/blob/main/backend/scraper/scrapers/template_new_scraper.py
https://github.com/rat-software/rat-software/blob/main/backend/scraper/scrapers/template_new_scraper.py
https://github.com/rat-software/rat-software/blob/main/templates/new_scraper.ipynb
https://github.com/rat-software/rat-software/blob/main/templates/new_scraper.ipynb
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

set up rotating proxy lists spreading requests over several IP addresses. This greatly raises
the amount of data that can be gathered before running into blocks.

Although these policies greatly enhance data collecting capacity, search engines always
change their detection techniques, and sometimes finding and blocking even advanced
methods using Selenium. RAT keeps thorough error codes for failed jobs in the database
to preserve research integrity, therefore giving researchers the knowledge required to
grasp collection constraints and modify their approach as appropriate. Moreover, RAT’s
distributed architecture lets several instances run concurrently while coordinating via the
centralized job management system, so allowing large-scale data collecting activities to be
spread across several networks and geographic areas.

With respect to CAPTCHASs, we use ethical scraping techniques. The system records
the occurrence of a CAPTCHA and puts the job back in the queue for a later retry instead
of trying to bypass these safeguards. Jobs that regularly set off CAPTCHAs are marked
for researcher review since this could suggest a need to change collection parameters or
timing. We follow reasonable rates of collection that honor search engine resources and
use adjustable delays between requests. Even with these protections, we understand that
search engines might put fresh anti-scraping policies that might compromise collection
completeness. RAT records all collection problems to keep openness regarding these
constraints, therefore enabling academics to record and compensate for any systematic
deficiencies. By respecting the search engine’s protective measures, this strategy preserves
ethical integrity; by correctly recording collection limits instead of presenting incomplete
data as complete, it preserves methodological integrity.

Source scraper

Source Scraper is the module responsible for fetching the content of search result documents
or submitted URLs and storing the source code and screenshots in the database. We use
Selenium WebDriver for this task because it provides the necessary functionalities to
interact with a web page (e.g., scrolling) and execute JavaScript, which is crucial for
gathering dynamic content. These capabilities are essential for two reasons. First, we want
study participants to evaluate documents in the same format they would receive when
using a web browser. Second, we need to capture the entire HTML source code, including
all content, for classification purposes. For instance, the SEO classifier requires all HTML
tags, and if some texts are only rendered by scrolling, these must be captured to accurately
assess the web page’s readability.

Other web parsers, such as BeautifulSoup or cURL, are not suitable for this task because
they do not support server-side rendering and cannot fetch all content from a web page.
Additionally, the module takes screenshots of the URLs, which are made available to study
participants in Assessment Interface. This process occurs at a specific time, ensuring that
study participants always see the content as it was when scraped, preventing issues such
as 404 errors or viewing documents that have been modified since the study was designed
and the data collected.

Source Scraper employs the same job management architecture as other RAT modules to
systematically collect and process content. The system anticipates various failure scenarios,

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 14/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

such as temporarily inaccessible URLs, and implements automatic retry mechanisms
scheduled at configurable intervals. To minimize potential biases, we have incorporated
several features. The proxy architecture established for search engine scraping extends to
source collection, ensuring content is fetched from the appropriate geographic region to
match the country version of the search engine being studied. This prevents the inadvertent
collection of automatically translated versions of websites that could introduce language
bias into the research data. Furthermore, we utilize the browser extension “I Still Don’t
Care About Cookies” (https:/github.com/OhMyGuus/-Still-Dont- Care- About-Cookies)
to bypass cookie consent banners and notifications that might otherwise obscure important
content during capture. The system also automatically simulates scrolling behavior to
ensure a comprehensive collection of lazy-loaded content that only appears as users
navigate down a page. Together, these measures help ensure that collected data accurately
represents what real users would encounter, addressing potential sampling biases that
could arise from incomplete or geographically inconsistent content collection.

Classifier

Using the classification module allows for automatic classifications based on the
data collected by RAT. The classification is always executed on a search result or a
URL uploaded to RAT. RAT allows for adding any classifiers using templates and
the database. Templates and examples such as Jupyter Notebooks are available at
https:/github.com/rat-software/rat-software/ree/mainftemplates (README.MD includes
a tutorial on how to use the notebooks). After testing classifiers, they can be added to
the database by using the script provided. All classifiers can use the data RAT currently
provides:

e URL of a web page
e Domain of the web page

Position in search engine ranking
Title from the search result snippet
Description from the search result snippet

IP address of a web page

Source code from a web page

Screenshot of a web page
e Search query from which the result originates

The classification result from any classifier will be stored in the database as key-value
pairs concerning the search result. One classifier already available in RAT is the SEO
classifier to estimate the probability that has been used on a website (Lewandowski, Siinkler
¢ Yagci, 2021) (https:/github.com/rat-softwarefrat-softwarefree/mainbackend/classifier/
classifiersiseo_rule_based).

The system automatically retries failed classification jobs up to a maximum number
of attempts, which the researcher can configure. Researchers can set custom parameters
for each automated classification job that define when a job should be considered failed.
The classification process is determined by the classifiers assigned to a study—the system

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 15/32

https://peerj.com
https://github.com/OhMyGuus/I-Still-Dont-Care-About-Cookies
https://github.com/rat-software/rat-software/tree/main/templates
https://github.com/rat-software/rat-software/tree/main/backend/classifier/classifiers/seo_rule_based
https://github.com/rat-software/rat-software/tree/main/backend/classifier/classifiers/seo_rule_based
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

identifies these assigned classifiers and initiates the corresponding jobs. All classifiers use
the provided information in the database, like the stored content of a web page, screenshots,
or metadata about collected search results.

RAT extensions

We have already mentioned some possibilities for extending RAT by adding new search
engine scrapers and classifiers. However, RAT is also extendable by developing software
that utilizes the RAT Database. These add-ons include a web browser plugins such as the
Explicit and Implicit Logger (EI Logger) for determining the use of search engines for
conducting interactive information retrieval (IIR) studies, a scraper for extracting contact
data from content providers’ legal notice pages, and a tool for calculating a readability score
for the text of a web page. All add-ons are connected to the RAT database and tables, so that
the data generated from the extensions can be added (https:/github.com/rat-extensions/).
Table 2 gives details on some of these extensions.

Handling of research data generated by RAT

RAT generates data by scraping search results (i.e., copies of web pages in HTML form and
as screenshots), collecting participant evaluations (i.e., answers to questionnaire items),
and computing indicators, classification results, and scores in automatic analysis. Data
management plans (Rat fiir Sozial- und Wirtschaftsdaten, 2018) are prepared to describe the
research data comprehensibly, explaining details such as the software and version numbers
required for reusing the data. We also follow the Findable, Accessible, Interoperable,
Reusable (FAIR) guiding principles for scientific data management and stewardship (Chue
Hong et al., 2021). Furthermore, since RAT is research software, we adhere to the FAIR
principles for research software (FAIR4RS Principles; Chue Hong et al., 2021), a revised
and extended version of the general FAIR principles. We follow the FAIR4RS principles,
as detailed in Table 3.

In addition, regular plausibility checks further ensure data quality during the data
collection phases. We make all non-personal research data we generate when conducting
studies in the research group permanently available. The data is available to other
researchers via the Open Science Framework (OSF) (https:/ost.io/t3hg9/). All software
components developed in the project are available via GitHub (https:/github.com/rat-
software/). No retention periods exist, so the data is made available immediately after
collection and processing (e.g., pseudonymization). In addition, we support and advise
researchers who use the software in their research to publish the data they generate with
RAT.

Software quality assurance

We ensure software quality through both technical and human-centered testing approaches.
On the technical side, we have built a software quality assurance framework that involves
regular testing with pytest for all RAT modules. We routinely run automated tests for the
search engine scrapers, classifiers, and frontend to identify technical issues and bugs before
they affect real research.

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 16/32

https://peerj.com
https://github.com/rat-extensions/
https://osf.io/t3hg9/
https://github.com/rat-software/
https://github.com/rat-software/
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Table 2 RAT extensions.

Extension Programming Description Availability

languages

Imprint crawler Java A web crawler that is able to https:/github.com/rat-
automatically extract legal notice extensionsAmprint-crawler
information from websites while taking
German legal aspects into account.

Readability score Python A Python tool that extracts the main text https:/github.com/rat-
content of a web document and ana- extensions/readability-score
lyzes its readability. Input data: URL or/

Search Query. Output data: For a URL,
the output includes the detected language
and the readability score, calculated using
different formulae, along with the aver-
age reading time.

Forum scraper Python An extension to extract comments from https:/github.com/rat-
German online news services. extensions/forum-scraper

EI logger Typescript, Java A browser extension for conducting https:/github.com/rat-
interactive information retrieval studies. extensions/EI_Logger_ BA
With this extension, study participants
can work on search tasks with search
engines of their choice and both the
search queries and the clicks on search
results are saved.

Identifying affiliate Python A Python tool that extracts all affiliate https:/github.com/rat-

links in web pages links of a web document and scores this extensions/Identifying-affiliate-
web page according to its number and links-in-webpages
prominence of affiliate links.

App reviews scraper Python These app scrapes reviews, that will https:/github.com/rat-
visit designated URLs of a set of extensions/app-reviews-scraper
applications and export
the scraped reviews and
relevant information.

Visualizations of IR measures Python This add-on aids researchers to have https:/github.com/rat-
some initial visualizations based on the extensions/ir-evaluation
standard IR evaluation measures. There
is a config.toml file for the theme.

Scraping news articles Python This Python tool retrieves the homepages https:/github.com/rat-

of given news portals and scrapes the
HTML text of the articles found. Each
text is saved in a separate file. For each
portal, an overview file is created, which
contains the metadata of the articles and
the corresponding file paths.

extensions/NewsArticlesScraper

On the human side of testing approaches, we develop RAT according to the user-centered
design (UCD) principles (International Organization for Standardization, 2010, p. 11). A
crucial component of the UCD process is the evaluation of the design. These evaluations
include tests of paper prototypes and mockups, heuristic evaluations, and usability tests.
Subjects for the usability tests are researchers from the different user groups, as mentioned
in the results section below. Subjects participate in the lab or remotely, depending on their

Siinkler et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2962 17/32

https://peerj.com
https://github.com/rat-extensions/imprint-crawler
https://github.com/rat-extensions/imprint-crawler
https://github.com/rat-extensions/readability-score
https://github.com/rat-extensions/readability-score
https://github.com/rat-extensions/forum-scraper
https://github.com/rat-extensions/forum-scraper
https://github.com/rat-extensions/EI_Logger_BA
https://github.com/rat-extensions/EI_Logger_BA
https://github.com/rat-extensions/Identifying-affiliate-links-in-webpages
https://github.com/rat-extensions/Identifying-affiliate-links-in-webpages
https://github.com/rat-extensions/Identifying-affiliate-links-in-webpages
https://github.com/rat-extensions/app-reviews-scraper
https://github.com/rat-extensions/app-reviews-scraper
https://github.com/rat-extensions/ir-evaluation
https://github.com/rat-extensions/ir-evaluation
https://github.com/rat-extensions/NewsArticlesScraper
https://github.com/rat-extensions/NewsArticlesScraper
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Table 3 FAIR4RS for RAT.

Findable: Software, and its associated metadata, is easy for both humans and machines to find.

F1: Software is assigned a globally unique and persistent identifier: We use Zenodo to create unique
and persistent DOIs for our releases in GitHub. Zenodo offers an integration of GitHub to create

DOIs automatically when a release is published.

F2: Software is described with rich metadata: We use the citation file format CITATION.cff in our
GitHub repository for describing the software with rich metadata.

F3: Metadata clearly and explicitly include the identifier of the software they describe: CITATION.cff

has a field for including the identifiers of the releases clearly and explictitly.

F4: Metadata are FAIR, searchable and indexable: The use of Zenodo and CITATION.cff ensures
that the metadata are FAIR, searchable and indexable.

Accessible: Software, and its metadata, is retrievable via standardized protocols.

Al: Software is retrievable by its identifier using a standardized communications protocol: The
software is retrievable by its persistent identifier from Zenodo and the URL to the GitHub
repository. This allows researchers to download and install the software on a (local) webserver.
A2: Metadata are accessible, even when the software is no longer available: The software is acces-

sible on several websites and repositories over https. While the software and source code are
available without further authorization, using the software as a service will be possible through a

closed authentication procedure. We ensure that metadata will remain accessible by sharing it on

Zenodo and using CITATION.cff.

Interoperable: Software interoperates with other software by exchanging data and/or meta-
data, and/or through interaction via application programming interfaces (APIs), described
through standards.

I1: Software reads, writes and exchanges data in a way that meets domain-relevant community
standards: Domain-relevant community standards cannot be applied to the software because
we use a specific schema to store the result types in RAT (search results, results from the
automatic analysis and classifications). However, we integrated search engine APIs, e.g.,
Microsoft Bing and Google Keyword Planner, to retrieve results from these services. We will
write extensive documentation how to use these APIs in RAT. We also plan to develop a
RAT-API for researchers, and we will evaluate the FAIRsharing standards to meet relevant
community standards.

I2: Software includes qualified references to other objects: There are several qualified references to
external data objects required to execute the software. The most important qualifiers are that
RAT is implemented using Python and uses PostgreSQL.

Reusable: Software is both usable (can be executed) and reusable (can be understood, modi-
fied, built upon, or incorporated into other software).

RI: Software is described with a plurality of accurate and relevant attributes: We decided to
publish the software under the GPL-3.0 license to give it a clear and accessible license. As for
the provenance, we added descriptions to our metadata about the intent and origin behind the
software development.

R2: Software includes qualified references to other software: There are several qualified references to

other software. The most important is using Selenium Project to scrape search systems and web
content.

R3: Software meets domain-relevant community standards: We decided to use a popular and
regularly maintained programming language (Python) and database (PostgreSQL) to develop
the software. The decision to use Selenium as the main program for scraping web content was
made because it is the de facto standard for automated web testing and has a large developer
community. We also plan to offer parts of RAT as packages via PyP], as this is the community
standard for package management in Python.

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962

18/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

accessibility. The entire development process is accompanied by evaluations of the design,
with the results of the evaluations being used to increase the usability of RAT.

In addition to design evaluations, RAT provides a feedback management system.
This feature allows RAT users to provide input while using the software, helping to
uncover technical and logical software errors. The feedback system has been actively
used by researchers and students conducting studies with RAT. Their feedback primarily
highlighted technical errors in data export and scraping and suggestions for enhancing
the software’s frontend. One of the examples is that we gathered ideas for improving the
frontend, such as adding a button for study participants to return to a previously evaluated
result and ensuring the evaluation question remains fixed while scrolling in the Assessment
Interface.

Another significant example of how our quality assurance process improved data
collection reliability involved the Google scraper. We discovered an issue where the scraper
returned fewer results than specified—e.g., scraping only 24 results when the limit was
set to 30. While search engines commonly return fewer results than requested for various
legitimate reasons (such as query specificity, limited matching content, algorithms, filters,
or rate limits), our investigation revealed a technical bug in the Google scraper that
artificially limits results across queries regardless of content availability.

The bug was initially identified through systematic data validation. We observed
inconsistent result counts across similar queries and noticed that this pattern occurred
unpredictably across query types rather than correlating with query content or complexity.
To isolate the issue, we ran the scraper in non-headless mode (with a visible browser
interface) and observed its behavior directly. This revealed that our scraper was failing to
properly handle Google’s dynamic loading mechanism, where additional results are loaded
as users scroll down the page rather than through traditional pagination links that our
scraper was designed to detect.

This premature termination of the scraping process raised concerns about potential
research implications. The artificial limitation could introduce systematic bias if specific
results typically appear lower in the ranking positions. In comparative studies, having fewer
data points than planned could reduce the statistical significance of findings. Additionally,
when comparing results across different search engines, the bug could create inconsistencies
where one engine returns the complete requested set while another is artificially limited.

After fixing the bug by implementing detection for both pagination and infinite scrolling
result presentation methods, we validated the solution through several measures:

1. We retested the same queries that previously showed limited results to confirm that
the scraper now retrieved the expected number of results.

2. We implemented automated validation tests that verify result counts against expected
thresholds.

3. We added logging to record result count discrepancies for researcher review
specifically.

Beyond this specific issue, we continuously monitor for other potential biases in data
collection. Search engines frequently modify their algorithms and interface elements,
affecting scraping reliability. To address this challenge, our daily automated scraper tests

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 19/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

detect when search providers change their SERP structure, allowing us to update scrapers
promptly. We also track search engine algorithm updates through industry resources,
verify our collection methods after significant changes, and implement geographic diversity
through our proxy configuration to prevent region-specific biases.

From a methodological perspective, we ensure integrity by documenting all collection
parameters, including rate limits, timeouts, and error-handling procedures, so researchers
can fully disclose these details in their publications. This documentation is critical for
research replicability and understanding potential systemic biases in the collected data.

RESULTS

In this section, we outline RAT use cases with studies that have already been conducted
using the software and studies that could have benefited from it. We searched literature
to identify potential use cases and understand the use context, a fundamental step in the
user-centered design (UCD) process (International Organization for Standardization, 2010,
p. 11).

In Scopus (https:/www.scopus.com/), we searched for studies published between 2016
and 2021 in which search results were evaluated (evaluate, rate, assess, or other synonyms).
We limited the literature search to studies using data from commercial search engines and
library search systems. RAT was explicitly designed to analyze data from web-based search
interfaces that provide ranked results to user queries. This focus stems from the challenges
researchers face when studying these systems: unlike social media platforms or specialized
databases that often provide APIs, major search engines rarely offer systematic access to
their results data.

RAT addresses this gap by providing tools to systematically collect, store, and analyze
results from any web-based search interface. By “systematic collection”, we mean that RAT
employs a structured approach to gathering search data beyond simple HTML scraping.
The system captures three key data types: (1) metadata from search engine result pages
(including titles, descriptions, URLSs, and ranking positions), (2) the complete HTML
source code of both the SERP and each result document, and (3) visual screenshots of how
each page appears to users. This comprehensive collection enables researchers to analyze
what results are returned, how they are presented, and what content they contain.

For example, when analyzing information across search engines, a researcher could use
RAT to simultaneously collect results from Google, Bing, and specialized search systems
for identical queries, store normalized data in consistent formats, capture the full text and
visual presentation of each result page, and then systematically assess these results using
either human evaluators or automated classifiers. This structured approach ensures that
all data points are collected using identical parameters and stored in standardized formats,
enabling valid cross-system comparisons.

We first screened the publications by study type and discipline based on the abstract.
Then we checked the paper for methodological details, such as the search engines and the
number of queries employed for result assessment. We did not conduct a systematic
literature review but synthesized different RAT use cases, checking results until no

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 20/32

https://peerj.com
https://www.scopus.com/
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

fundamentally new use case could be identified. This approach resulted in a thorough
evaluation of 36 publications describing studies that RAT could have supported.

Our literature review revealed that traditional approaches to search engine research face
significant limitations. Researchers typically collect search results manually by copying
and pasting from search engine result pages or using basic web scraping scripts that need
frequent maintenance. This process is time-consuming, error-prone, and severely limits
sample sizes. Studies in our review were limited to analyzing fewer than 100 queries due to
constraints of human-conducted data collection

RAT addresses these limitations through automated collection and systematic processing.
While automation introduces its challenges—such as navigating anti-bot measures and
ensuring consistent data quality—RAT implements specific technical solutions like proxy
rotation and automatic error recovery to maintain data integrity. Where traditional
methods might take weeks to collect a few hundred results, RAT can gather thousands of
results in hours while capturing screenshots and source codes for future reference. For
instance, Yagci et al. (2022) were able to analyze over 141,000 results from multiple search
engines—a scale that would be impractical with traditional methods. While large datasets
are valuable for many research questions, RAT’s flexibility also supports smaller-scale
studies requiring more focused qualitative analysis.

The following presents RAT use cases, covering studies that have already been conducted
with RAT and studies that could have been supported by RAT, as identified in the literature
search. In Table 4, we summarize the studies. In the next sections, we describe the studies
grouped by study type.

Retrieval effectiveness studies

As described in the Introduction, the early version of RAT was developed for conducting
retrieval effectiveness studies and was consequently referred to as the Relevance
Assessment Tool. One exemplary study conducted with this early RAT version is the
work of Lewandowski (2015) on the retrieval effectiveness of Google and Bing. Using

a crowdsourcing approach, study participants evaluated results for 1,000 queries with
informational and navigational intent each. The query samples were taken from a
transaction log of the T-Online search engine. The results showed that Google outperformed
Bing for both search intents tested, although results for navigational and informational
queries differed significantly. The main RAT components of RAT Frontend (Researcher
View for designing the study, Evaluation View for completing the assessments) and RAT
Backend (Search Engine Scraper and Source Scraper) are used in retrieval effectiveness
studies.

Interactive information retrieval studies

Studies from the field of interactive information retrieval (IIR) require the logging of user
interactions with search engines. An extension called Search Logger (Singer et al., 2011) was
used for that purpose. The work by Siinkler ¢ Lewandowski (2017) serves as an example of
an IIR study conducted with the early RAT version. In the study, N = 64 subjects worked
on search tasks while the Search Logger recorded data such as the search engine used, the

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 21/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Table 4 RAT use cases.

Study type Field Search engine and Number of Evaluation Classifier Reference
source scrapers search results view or extension
Conducted with Classification Political Organic results 1,372 None SEO Hinz, Siinkler & Lewandowski (2023)
current RAT study (automatic) science from Google classifier
version
Content Library and Results from 5,948 Biases in None unpublished
analysis information SUB University library student work”
science Hamburg library catalogues
system
Media and Organic results 5,710 None Query Ekstrom & Tattersall Wallin (2023),
communication from Google sampler Haider et al. (2023)
science extension
Source Information Organic results 141,480 None None Yagci et al. (2022)
distribution science from Google, Bing,
analysis DuckDuckGo,
and MetaGer
Organic results 378,581 None None Norocel ¢ Lewandowski (2023)
from Google
Conducted with Interactive Information Organic results 2,288 Relevance Search Siinkler ¢ Lewandowski (2017)
previous RAT Information retrieval from Google assessments logger
version retrieval study and Bing extension
Retrieval Information Organic results 22,000 Relevance None Lewandowski (2015)
effectiveness retrieval from Google assessments
study and Bing
Organic results 750 Relevance None Schaer et al. (2016)
form Million assessments
Short
Organic results 20,000 Relevance None Lewandowski (2013)
from Google assessments
and Bing
Results from 35,158 Relevance None Behnert (2015),
EconBiz library assessments Behnert & Plassmeier (2016)
system
Not conducted Information Health Organic results 49 Quality None Janssen et al. (2019)
with RAT, but quality study from Google, assessments
could have been Yahoo, and Bing
supported by
RAT
Information Organic results 60 Quality SEO Schultheif$ (2023)
science from Google assessments classifier
Classification Health Organic results 540 Classification None Ddiring (2017)
study from Google of source types
(manually)
Media and Organic results 3,350 Classification None Mazzeo, Rapisarda & Giuffrida (2021)
communication from several of fake news
science search engines
Content Health Organic results 227 E.g., portrayal None Rachul et al. (2020)
analysis from Google of immune
boosting
Notes.

*This study serves as a representative of the large number of student work supported by RAT. For more student work, see https:/searchstudies.org/fesearch/rat/.

Siinkler et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2962

22/32

https://peerj.com
https://searchstudies.org/research/rat/
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

search queries entered, and the search results selected. RAT then collected the first ten
results for each search query entered by the participants and asked the same participants
to evaluate the relevance of the collected results. This approach is particularly interesting
as it allows researchers to ask study participants for relevance judgments to results for the
same participants’ queries (instead of asking them to assess results for queries predefined
by researchers). This allowed analyses such as measuring the precision and relevance of
selected search results. The study findings show that subjects primarily selected results they
later assessed as relevant, indicating that snippets provided by the search engines prove
useful in IIR settings.

Classification studies

RAT supports both manual (i.e., conducted by study participants or researchers themselves)
and automatic search result classifications. The works of Diring (2017), Mazzeo,
Rapisarda & Giuffrida (2021), and Ballatore (2015) provide examples of human-conducted
classification studies that could have benefited from RAT had it been available at the time.

In these studies, researchers faced methodological challenges. Diring (2017) and
Ballatore (2015) manually collected, saved, and classified search results—a labor-intensive
process prone to inconsistencies. Ballatore (2015) specifically invested substantial effort
attempting to minimize temporal and spatial biases by utilizing the Tor browser and
conducting multiple searches with no integrated tool support. Similarly, Mazzeo, Rapisarda
& Giuffrida (2021) had to develop a custom approach to collect search results for their
manual labeling process.

Had RAT been available, these researchers could have streamlined their workflows
considerably. Instead of developing ad hoc methods, they could have employed RAT’s
integrated process for scraping data from various locations and time periods while applying
classification procedures tailored to their specific criteria. The benefits would have been
substantial:

RAT improves upon these earlier classification methods in several key ways. Unlike
the fragmented approaches these studies had to devise, RAT offers a consistent, replicable
framework that lowers methodological inconsistencies throughout the research process.
These previous studies depended on separate data collection, storage, and classification
solutions, leading to potential data transfer errors and compatibility issues. RAT’s integrated
environment eliminates these problems entirely.

Furthermore, while Ballatore (2015) had to manually configure Tor for geographic
variation and schedule repeated searches, RAT’s built-in scheduling and proxy setup
capabilities would have automated these processes. The platform’s structured assessment
interface would have enabled a more consistent application of classification criteria and
simpler validation of inter-rater reliability when multiple researchers participated in studies
like Doring (2017).

In practice, RAT would have allowed these researchers to categorize search results based
on their specific criteria—source types (Ddring, 2017), ideological bias (Ballatore, 2015), or
misinformation indicators (Mazzeo, Rapisarda ¢ Giuffrida, 2021)—with greater efficiency
and reliability. Studies without external participants would have benefited from RAT’s

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 23/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

'Note that for the Haider et al. (2023) study,
the data initially provided by RAT for
query generation and initial scraping
was supplemented by a separate scraping
process for news articles conducted by the
authors. Since RAT could have performed
both steps, this distinction is not further
elaborated in our overview of studies (e.g.,
Table 4).

Evaluation View for direct classification. The proxy settings and scheduling features would
have provided systematic data collection capabilities far beyond what was possible with
their manual methods.

For a concrete example of RAT’s capabilities in automatic classification, we can refer
to the study by Hinz, Siinkler ¢ Lewandowski (2023), which actually did use RAT. In this
study, the authors analyzed SEO usage on candidates’ personal websites during the 2021
German federal election. The SEO classifier, described in the Classifier section, was used to
identify SEO on 93% of the 1,372 websites examined. Unlike the earlier examples, this study
did not require evaluation by human assessors, as the SEO classification was performed
automatically, forming the final study result.

Content analyses

RAT can also support content analyses based on search results. RAT can demonstrate its
strength in content analyses by automatically collecting the search results, integrating all
necessary study steps, and eliminating the need for additional coding tools.

Two studies involving content analyses have already been conducted with RAT. In a
student research project (unpublished), biases in library catalogs were explored. For this
purpose, 5,948 search results were scraped from SUB University Hamburg library system
for 100 thematically diverse queries. The search results were coded by author gender,
location of the item, and other categories. A second study conducted with RAT is the work
by Haider et al. (2023). For the Swedish term for wind power (vindkraft), the query sampler
extension described by SchultheifS et al. (2023) generated 252 queries for which RAT scraped
5,710 Google results. The authors analyzed the queries for monthly average searches and
classified the search results according to source types, such as energy companies or news
media. Additionally, the authors coded news articles regarding their favorable, general, and
unfavorable depictions of wind power.'

A content analysis that would have benefited from RAT is the work of Rachul et al.
(2020) from the health field. The authors manually collected 227 COVID-19-related search
results from Google in Canada and the US. The results were coded, among other things,
according to how immune-boosting and supplements are portrayed and whether an
immune-boosting product or service is being sold or advertised. Utilizing RAT would have
benefited the study by automatically gathering the search results, removing the need for
data collection by hand. Furthermore, the content analysis could also have been performed
within the RAT interface, enhancing the overall efficiency of the analysis process.

Information quality studies

Studies on the quality assessment of online information are prevalent in the health
field. Researchers typically use DISCERN (Charnock et al., 1999) or other standardized
questionnaires to evaluate patient information. DISCERN contains 16 questions, such
as “Is it balanced and unbiased?” which are to be answered on a scale from 1 (no) via 3
(partially) to 5 (yes). DISCERN is intended for experts, i.e., information producers and
health professionals, as well as laypersons, i.e., patients (Charnock et al., 1999). DISCERN
is widely used, for example, in studies on quality assessment of patient information on the

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 24/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

web about prostate cancer (Janssen et al., 2019). Questionnaires such as DISCERN can be
easily integrated into RAT as a template that can be selected by the researchers in the study
design.

Besides health information, information quality can also be investigated in any other
research context, such as in the field of information science or media communication.
For example, RAT can assist in assessing whether there are quality differences between
web pages that use SEO and those that do not (Schultheif, 2023). This study example
demonstrates the flexibility of RAT, allowing the usage of its components like the SEO
classification at different stages in study design. The study by Hinz, Siinkler ¢ Lewandowski
(2023) shows that the SEO classification of politicians’ websites was the final study result
without a subsequent user evaluation. In contrast, in the case of the study example by
Schultheifs (2023), the SEO classification serves as an intermediate step that determines
which search results are forwarded for quality evaluation by study participants.

Source distribution analyses

Another study type supported by RAT is source distribution analyses, such as comparisons
between search engines and countries where no result evaluation by human participants is
included.

The study by Yagci et al. (2022) analyzed the source diversity of Google and alternative
search engines and to what extent the root domains overlap between the top results from
these search engines. For 3,537 queries taken from Google Trends in Germany and the US,
the top 10 search results from Google, Bing, DuckDuckGo, and MetaGer were scraped,
totaling 141,480 results. Analysis of the root domains revealed a significant presence of
Wikipedia and news services across the search engines. In addition, only a tiny overlap was
found between Google and the alternative search engines (24 to 28%). A higher overlap
was found among the alternative search engines (up to 70%), which might be explained by
their integration of results from Bing. The study by Norocel ¢» Lewandowski (2023) analyzed
search queries on a continuum between mainstream and extreme-right vocabularies for
Germany and Sweden. For 21,105 queries, 378,581 Google results were scraped using RAT.
An evaluation of the source types showed that popular sites for user-generated content,
such as Facebook, are highly ranked for all queries in both countries, allowing extreme-right
fringe entities to become visible with their content in the search results.

Currently, RAT specifically assists source distribution analyses by automatically
measuring domain overlap between search engines as part of the analysis module. The
results of the overlap analysis are shown in Researcher View (see ‘Researcher View’).

DISCUSSION AND CONCLUSION

In summary, RAT enables the efficient conducting of diverse studies based on results
from search engines and other search systems. The software has the potential to transform
the way researchers work with search data, ranging from retrieval effectiveness studies
in information retrieval to information quality assessments in domains like health
information. By automating processes traditionally performed manually—such as

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 25/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

collecting and distributing results to study participants—RAT creates significant efficiency
gains for researchers.

While RAT significantly enhances the research scale through automation, we recognize
that larger datasets do not automatically yield better research. RAT’s methodological
advantages stem from systematically addressing common biases in human-conducted
collection. The system’s error recovery mechanisms, standardized assessment interfaces,
and comprehensive documentation ensure data quality beyond quantity. The ability to
capture search results at a specific moment across all queries eliminates the temporal
inconsistency that plagues traditional collection approaches spread across days or weeks.
This temporal consistency is particularly valuable in studying rapidly evolving search
landscapes where results can change significantly over short periods.

RAT’s primary strength lies in enabling research questions that were previously
impractical to investigate. Studies examining source distribution patterns across multiple
search engines or tracking result consistency over time require analyzing tens or hundreds
of thousands of results. This scale would be prohibitively resource-intensive with
non-automated methods. RAT’s approach combines the methodological advantages
of automated collection with the capabilities of human assessment, allowing researchers to
apply their expertise to analyzing patterns rather than spending it on repetitive collection
tasks.

Traditional methods may still be preferable for small-scale exploratory research,
specialized assessments requiring deep domain expertise, or studies focusing on unique
interface elements that automated tools might miss. RAT is designed to complement rather
than replace researcher judgment, providing a methodological infrastructure that supports
both quantitative scale and qualitative depth while reducing known sources of bias.

A critical consideration in automated data collection is whether the process introduces
methodological biases. For instance, automated scraping could favor specific query
structures or miss context-dependent results that human researchers might notice. RAT
addresses these concerns through several mechanisms. First, the system allows researchers
to define queries precisely as they would be entered by human users, preserving natural
language patterns and query structures. Second, RAT’s proxy configuration enables results
collection from different geographic locations, preventing the regional bias that often affects
single-point collection. Third, the software captures screenshots and full HTML content,
preserving contextual elements like featured snippets, knowledge panels, and multimedia
content that might be missed by API-based collection. Finally, RAT’s documentation of
the entire collection process creates transparency that allows researchers to identify and
account for any systematic limitations in their methodology. These safeguards ensure
that automation enhances rather than compromises data quality, while the standardized
collection process reduces the subjective biases affecting manual collection methods.

RAT supports both human-based and automatic analysis pathways. As a web-based
platform, human participants can be easily invited to participate in studies. The Assessment
Interface offers researchers a structured environment to evaluate results obtained from
search engines, either through participant recruitment or direct researcher assessment.
The software provides integrated modules like the SEO classifier and overlap analysis for

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 26/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

automatic analysis. The modular architecture facilitates straightforward integration of new
analysis capabilities, demonstrating the framework’s adaptability. Researchers can also
extend RAT’s functionality by adding custom scrapers for search systems not yet supported
in the core software.

A key strength of RAT is its accessibility to researchers beyond technical disciplines.
While the system offers sophisticated capabilities for information science researchers, we
designed the platform to support social scientists and researchers from other fields without
requiring advanced technical knowledge. Extensive usability testing and active support for
researchers from diverse disciplines help promote search engine data analysis as a viable
research approach across fields. Offering RAT as a service is particularly important, as
many researchers may be unwilling or unable to manage their installation, especially when
conducting a single study. These accessibility measures strengthen the interdisciplinary
community of search engine researchers.

To ensure that RAT remains viable over the long term, we invest in building both a user
community and a developer ecosystem. By encouraging extensions to RAT and inviting
participation in software maintenance, we create a sustainable model for the platform’s
evolution. Every component of RAT is open source, enabling any interested researcher or
developer to contribute to or build upon the framework.

While highlighting RAT’s capabilities, we must acknowledge the limitations of our
approach. Scraping search engine results requires ongoing maintenance as search providers
frequently modify the structure of their search engine result pages, necessitating continuous
scraper adjustments. Capturing full content from result documents presents additional
challenges, particularly when websites implement dynamic content loading through user
interactions like scrolling. This is especially prevalent in news services and social media
platforms that progressively load content as users navigate pages.

In future development, we plan to integrate RAT with complementary research tools to
create a more comprehensive ecosystem. Integration with participant recruitment platforms
like Prolific would streamline participant management for researchers conducting
evaluation studies. Connections to data analysis platforms such as KNIME would enhance
post-collection analysis capabilities. As search engines increasingly incorporate large
language model-generated responses alongside conventional results, we aim to develop
specialized scrapers for collecting and analyzing these new result formats.

These ongoing developments reflect our commitment to evolving RAT alongside
changing search technologies and research methodologies, ensuring that the platform
remains valuable to researchers investigating how search engines shape information access

in the digital age.

ACKNOWLEDGEMENTS

We want to thank the following students and staff for their cooperation and support:
Tuhina Kumar, Helena Hiuf3ler, Daniela Sygulla, Sonja von Mach, Sophia Bosnak,
Veronika Samostrol, Lena Haberzettl, Metehan Giines, Quang Duc Tran. We would also
like to thank students from University Duisburg-Essen for developing extensions for RAT:

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 27/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Hossam Al Mustafa, Mohamed Elnaggar, Paul Kirch, Marius Messer, Philipp Krueger,
Tanveer Ahmed, Ritu Suhas Shetkar, and Esther von der Weiden. Finally, we would like to
thank the researchers who used an early version of RAT for their work and gave us valuable
feedback: Malte Rodl, Jutta Haider, Bjorn Ekstrom, Kay Hinz, Ov Cristian Norocel, Olof
Sundin, and Kristofer Soderstrom. We utilized the Al tools DeepL to translate text from
German to English, Grammarly to check grammar and spelling, and Claude LLM to edit
text.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was funded by the German Research Foundation (Deutsche Forschungsgemein-
schaft (DFG); Grant No. 460676551). We received support for the article processing charge
from the Open Access Publication Fund of Hamburg University of Applied Sciences. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

German Research Foundation (Deutsche Forschungsgemeinschaft (DFG): No. 460676551.
Open Access Publication Fund of Hamburg University of Applied Sciences.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Sebastian Siinkler conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Dirk Lewandowski conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

e Sebastian Schultheifl conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

e Nurce Yagci conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code is available at Zenodo: Lewandowski, D., Siinkler, S., & Yagci, N. (2024).
Result Assessment Tool (RAT) (1.2). Zenodo. https:/doi.org/10.5281/zenodo.14049811.

Siinkler et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2962 28/32

https://peerj.com
https://doi.org/10.5281/zenodo.14049811
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

REFERENCES

Ballatore A. 2015. Google chemtrails: a methodology to analyze topic representation in
search engine results. First Monday 20 DOI 10.5210/fm.v20i7.5597.

Bar-Ilan J, Levene M. 2011. A method to assess search engine results. Online Information
Review 35:854-868 DOI 10.1108/14684521111193166.

Behnert C. 2015. LibRank: new approaches for relevance ranking in library information
systems. In: Pehar F, Schlogl C, Wolff C, eds. Re:inventing Information Science in the
Networked Society. Proceedings of the 14th International Symposium on Information
Science (ISI 2015), Zadar, Croatia, 19-21 May 2015. Verlag Werner Hiilsbusch,
570-572.

Behnert C, Plassmeier K. 2016. Results of evaluation runs and data analysis in the
LibRank project DOI 10.5281/zenodo.4911463.

Charnock D, Shepperd S, Needham G, Gann R. 1999. DISCERN: an instrument
for judging the quality of written consumer health information on treat-
ment choices. Journal of Epidemiology & Community Health 53:105-111
DOI 10.1136/jech.53.2.105.

Chue Hong NP, Katz DS, Barker M, Lamprecht A-L, Martinez C, Psomopoulos FE,
Harrow J, Castro L], Gruenpeter M, Martinez PA, Honeyman T, Struck A, Lee A,
Loewe A, van Werkhoven B, Jones C, Garijo D, Plomp E, Genova F, Shanahan H,
LengJ, Hellstrom M, Sandstrom M, Sinha M, Kuzak M, Herterich P, Zhang Q,
Islam S, Sansone S-A, Pollard T, Atmojo UD, Williams A, Czemiak A, Niehues
A, Fouilloux AC, Desinghu B, Goble C, Richard C, Gray C, Erdmann C, Niist
D, Tartarini D, Ranguelova E, Anzt H, Todorov I, McNally J, Moldon J, Burnett
J, Garrido-Sanchez J, Belhajjame K, Sesink L, Hwang L, Tovani-Palone MR,
Wilinson MD, Servillat M, Liffers M, Fox M, Miljkovi¢ N, Lynch N, Martinez
Lavanchy P, Gesing S, Stevens S, Martinez Cuesta S, Peroni S, Soiland-Reyes S,
Bakker T, Rabemanantsoa T, Sochat V, Yehudi Y, Research Data Alliance (RDA)
FAIR for Research Software (FAIR4RS) Working Group. 2021. FAIR Principles for
Research Software (FAIR4RS Principles) DOI 10.15497/RDA00068.

Digitalmethods. 2024. DMI Tools. Available at https://wiki.digitalmethods.net/Dmi/
ToolDatabase (accessed on 10 July 2024).

Doring N. 2017. Online sex education. Federal health gazette - health research - health
protection 60:1016-1026 (In German) DOI 10.1007/s00103-017-2591-0.

Ekstrom B, Tattersall Wallin E. 2023. Simple questions for complex matters?: An
enquiry into Swedish Google search queries on wind power. Nordic Journal of Library
and Information Studies 4(1):34-50 DOI 10.7146/njlis.v4i1.136246.

European Commission. 2017. Antitrust: commission fines Google €2.42 billion for
abusing dominance as search engine by giving illegal advantage to own comparison
shopping service - Factsheet. Available at https://ec.europa.eu/commission/presscorner/
detail/en/memo_17_1785 (accessed on 17 March 2025).

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 29/32

https://peerj.com
http://dx.doi.org/10.5210/fm.v20i7.5597
http://dx.doi.org/10.1108/14684521111193166
http://dx.doi.org/10.5281/zenodo.4911463
http://dx.doi.org/10.1136/jech.53.2.105
http://dx.doi.org/10.15497/RDA00068
https://wiki.digitalmethods.net/Dmi/ToolDatabase
https://wiki.digitalmethods.net/Dmi/ToolDatabase
http://dx.doi.org/10.1007/s00103-017-2591-0
http://dx.doi.org/10.7146/njlis.v4i1.136246
https://ec.europa.eu/commission/presscorner/detail/en/memo_17_1785
https://ec.europa.eu/commission/presscorner/detail/en/memo_17_1785
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Gul S, Ali S, Hussain A. 2020. Retrieval performance of Google, Yahoo and Bing for
navigational queries in the field of life science and biomedicine. Data Technologies
and Applications 54:133—150 DOI 10.1108/DTA-05-2019-0083.

Haider], Ekstrom B, Tattersall Wallin E, Gunnarsson Lorentzen D, R6dl M, Sderberg
N. 2023. Tracing online information about wind power in Sweden: an exploratory
quantitative study of broader trends. Working paper by the University of Bords in
Sweden.

Hinz K, Siinkler S, Lewandowski D. 2023. SEO in the election campaign. In: Korte
K-R, Schiffers M, von Schuckmann A, Pliimer S, eds. The 2021 federal election:
analyses of election, party, communication, and government research. Cham: Springer
Fachmedien Wiesbaden, 1-28 (in German).

International Organization for Standardization. 2010. Ergonomics of human—system
interaction - Part 210: Human-centred design for interactive systems. Geneva,
Switzerland: International Organization for Standardization.

Janssen S, Fahlbusch FB, Kdsmann L, Rades D, Vordermark D. 2019. Radiotherapy for
prostate cancer: DISCERN quality assessment of patient-oriented websites in 2018.
BMC Urology 19:42 DOI 10.1186/512894-019-0474-4.

Janssen S, Kismann L, Fahlbusch FB, Rades D, Vordermark D. 2018. Side effects
of radiotherapy in breast cancer patients: the Internet as an information source.
Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschafft... [et Al]
194:136-142 DOI 10.1007/s00066-017-1197-7.

Lewandowski D. 2013. Verwendung von Skalenbewertungen in der Evaluierung von
Web-Suchmaschinen. In: Hobohm H-C, ed. Informationswissenschaft zwischen
virtueller Infrastruktur und materiellen Lebenswelten: Proceedings des 13. Interna-
tionalen Symposiums fiir Informationswissenschaft (ISI 2013), Potsdam, Germany, 19-
22 March 2013. Verlag Werner Hiilsbusch, 339-348.

Lewandowski D. 2015. Evaluating the retrieval effectiveness of web search engines using
a representative query sample. Journal of the Association for Information Science and
Technology 66:1763—1775 DOI 10.1002/as1.23304.

Lewandowski D. 2023. Understanding search engines. Cham: Springer International
Publishing DOI 10.1007/978-3-031-22789-9.

Lewandowski D, Siinkler S. 2013a. Representative online study to evaluate the revised
commitments proposed by Google on 21 2013 as part of EU competition investiga-
tion AT.39740-Google: Country comparison report. Hamburg.

Lewandowski D, Siinkler S. 2013b. Designing search engine retrieval effectiveness tests
with RAT. Information Services ¢ Use 33:53-59 DOI 10.3233/ISU-130691.

Lewandowski D, Siinkler S, Schultheif3 S. 2020. Studies on search: designing mean-
ingful IIR studies on commercial search engines. Datenbank-Spektrum 20:5-15
DOI10.1007/s13222-020-00331-1.

Lewandowski D, Siinkler S, Yagci N. 2021. The influence of search engine optimization
on Google’s results. In: 13th ACM web science conference 2021. New York, NY, USA:
ACM, 12-20 DOI 10.1145/3447535.3462479.

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 30/32

https://peerj.com
http://dx.doi.org/10.1108/DTA-05-2019-0083
http://dx.doi.org/10.1186/s12894-019-0474-4
http://dx.doi.org/10.1007/s00066-017-1197-7
http://dx.doi.org/10.1002/asi.23304
http://dx.doi.org/10.1007/978-3-031-22789-9
http://dx.doi.org/10.3233/ISU-130691
http://dx.doi.org/10.1007/s13222-020-00331-1
http://dx.doi.org/10.1145/3447535.3462479
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Lingnau A, Ruthven I, Landoni M, van der Sluis F. 2010. Interactive search inter-
faces for young children - the PuppyIR approach. In: 2010 10th IEEE interna-
tional conference on advanced learning technologies. Piscataway: IEEE, 389-390
DOI 10.1109/ICALT.2010.111.

Maillé P, Maudet G, Simon M, Tuffin B. 2022. Are search engines biased? Detecting
and reducing bias using meta search engines. Electronic Commerce Research and
Applications Epub ahead of print Feb 25 2022 DOI 10.1016/j.elerap.2022.101132.

Mazzeo V, Rapisarda A, Giuffrida G. 2021. Detection of fake news on COVID-19 on
Web search engines. Frontiers in Physics 9:1-14 DOT 10.3389/fphy.2021.685730.

Norocel OC, Lewandowski D. 2023. Google, data voids, and the dynamics of the politics
of exclusion. Big Data & Society 10:1-14 DOI 10.1177/20539517221149099.

Oxylabs. 2025. Web Scraper APL. Available at https://oxylabs.io/products/scraper-api/web
(accessed on 10 July 2024).

Rachul C, Marcon AR, Collins B, Caulfield T. 2020. COVID-19 and ‘immune boosting’
on the internet: a content analysis of Google search results. BMJ Open 10:¢040989
DOI 10.1136/bmjopen-2020-040989.

Renaud G, Azzopardi L. 2012. SCAMP: a tool for conducting interactive information
retrieval experiments. In: Proceedings of the 4th information interaction in context
symposium on - IIIX "12. New York, New York, USA: ACM Press, 286—289
DOI 10.1145/2362724.2362776.

Schaer P, Mayr P, Siinkler S, Lewandowski D. 2016. How relevant is the long tail? In:
Fuhr N, Quaresma P, Gongalves T, Larsen B, Balog K, Macdonald C, Cappellato L,
Ferro N, eds. CLEF 2016. Vol. 9822. Springer International Publishing, 227-233
DOI10.1007/978-3-319-44564-9_20.

Schultheif3 S. 2023. How search engine marketing influences user knowledge gain:
development and empirical testing of an information search behavior model.

In: ACM SIGIR conference on human information interaction and retrieval
(CHIIR ’23), March (2023) 19-23, Austin, TX, USA. New York, NY, USA: ACM,
DOI 10.1145/3576840.3578297.

Schultheif S, Lewandowski D, Von Mach S, Yagci N. 2023. Query sampler: generating
query sets for analyzing search engines using keyword research tools. Computer
Science 9 DOI 10.7717/peerj-cs.1421.

ScraperAPI. 2025. ScraperAPI - The Proxy API For Web Scraping. Available at https:
//www.scraperapi.com/ (accessed on 10 July 2024).

Shafi SM, Ali S. 2019. Retrieval performance of select search engines in the field of
physical sciences. Annals of Library and Information Studies 66(3):117—-122.

Singer G, Norbisrath U, Vainikko E, Kikkas H, Lewandowski D. 2011. Search-logger
analyzing exploratory search tasks. In: Proceedings of the ACM symposium on applied
computing DOI 10.1145/1982185.1982350.

StatCounter. 2024. Search engine market share worldwide. Available at https://gs.

statcounter.com/search-engine-market-share/ (accessed on 9 July 2024).

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 31/32

https://peerj.com
http://dx.doi.org/10.1109/ICALT.2010.111
http://dx.doi.org/10.1016/j.elerap.2022.101132
http://dx.doi.org/10.3389/fphy.2021.685730
http://dx.doi.org/10.1177/20539517221149099
https://oxylabs.io/products/scraper-api/web
http://dx.doi.org/10.1136/bmjopen-2020-040989
http://dx.doi.org/10.1145/2362724.2362776
http://dx.doi.org/10.1007/978-3-319-44564-9_20
http://dx.doi.org/10.1145/3576840.3578297
http://dx.doi.org/10.7717/peerj-cs.1421
https://www.scraperapi.com/
https://www.scraperapi.com/
http://dx.doi.org/10.1145/1982185.1982350
https://gs.statcounter.com/search-engine-market-share/
https://gs.statcounter.com/search-engine-market-share/
http://dx.doi.org/10.7717/peerj-cs.2962

PeerJ Computer Science

Siinkler S, Lewandowski D. 2017. Does it matter which search engine is used? A user
study using post-task relevance judgments. Proceedings of the Association for Infor-
mation Science and Technology 54:405—414 DOI 10.1002/pra2.2017.14505401044.

Tawileh W, Griesbaum J, Mandl T. 2010. Evaluation of five web search engines in
Arabic language. In: Atzmiiller M, Benz D, Hotho A, Stumme G, eds. Proceedings of
LWA2010. Kassel, Germany, 1-8.

Thelwall M. 2009. Introduction to webometrics: quantitative web research for the
social sciences. Synthesis Lectures on Information Concepts, Retrieval, and Services
DOI 10.2200/s00176ed1v01y200903icr004.

Trielli D, Diakopoulos N. 2020. Partisan search behavior and Google results in the
2018 U.S. midterm elections. Information, Communication & Society 25:145-161
DOI10.1080/1369118X.2020.1764605.

Rat fiir Sozial-und Wirtschaftsdaten. 2018. Research data management in the social,
behavioral, and economic sciences: Guidance for the application and review of data-
generating and data-using research projects. Berlin: Rat fiir Sozial- und Wirtschafts-
daten (RatSWD) (in German) DOT 10.17620/02671.7.

Yagci N, Siinkler S, Haufller H, Lewandowski D. 2022. A comparison of source distri-
bution and result overlap in web search engines. In: Proceedings of the 85th annual
meeting of the association of information science and technology, Pittsburgh, PA. Wiley
DOI10.1002/pra2.758.

Zeynali Tazehkandi M, Nowkarizi M. 2021. Evaluating the effectiveness of Google,
Parsijoo, Rismoon, and Yooz to retrieve Persian documents. Library Hi Tech
39:166-189 DOI 10.1108/LHT-11-2019-0229.

Sinkler et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2962 32/32

https://peerj.com
http://dx.doi.org/10.1002/pra2.2017.14505401044
http://dx.doi.org/10.2200/s00176ed1v01y200903icr004
http://dx.doi.org/10.1080/1369118X.2020.1764605
http://dx.doi.org/10.17620/02671.7
http://dx.doi.org/10.1002/pra2.758
http://dx.doi.org/10.1108/LHT-11-2019-0229
http://dx.doi.org/10.7717/peerj-cs.2962

