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Abstract

Neural networks have been shown to be vulnerable towards small, barely visible alter-

ations of input images that lead to misclassi�cations, so-called adversarial examples.

There has been a lot of research on creating adversarial examples and how to defend

nets against them. Usually, those methods perturb images' RGB pixel representations.

We propose applying perturbations straight on JPEG coe�cients. Our method allows to

control the perturbation applied on each YCbCr channel and each DCT frequency. We

�nd that adversarial perturbation is often most e�cient when it is applied on medium

DCT frequencies, with e�ciency being de�ned as the proportion of success rate and per-

ceived distances. The superiority of medium-frequency perturbations is especially clear

when JPEG compression is used in defense. We also show that, for maximum-con�dence

attacks, perturbing JPEG coe�cients is more e�cient than the state-of-the-art attacks

that mainly apply the alterations in RGB pixel space, which is reasoned in using the

YCbCr color model allowing us to limit the perturbation to the luma channel where it is

more e�cient but also controlling the perturbation applied on each frequency. By weight-

ing multiple JPEG attacks that concentrate their perturbations on di�erent parts of the

DCT frequency spectrum during adversarial training, we are able to train a net that

is robust against perturbations on the whole frequency spectrum and RGB and YCbCr

pixel attacks as well which shows that JPEG coe�cients are a representation that is

well-suited to achieve more generalizing robustness against unforeseen threat models as

well.
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Kurzzusammenfassung

Kleine, kaum sichtbare Veränderungen, sogenannte Adversarial Examples, können zur

falschen Klassi�kation durch neuronale Netze führen. Es wurden bereits viele Methoden

zur Erstellung solcher Adversarial Examples und zur Verteidigung entworfen. Üblicher-

weise verändern diese die Bilder in ihrer RGB-Pixelrepräsentation. In dieser Thesis

werden diese Veränderungen direkt auf JPEG Koe�zienten durchgeführt. Dabei kann

die Stärke der Veränderung auf jedem YCbCr-Kanal sowie jeder DCT-Frequenz einzeln

kontrolliert werden. Wir zeigen, dass Veränderungen auf mittleren Frequenzen am ef-

�zientesten sind, wobei die E�zienz als Verhältnis von Erfolgsrate und wahrgenommener

Distanz de�niert ist. Die Überlegenheit der Veränderungen auf mittleren Frequenzen gilt

insbesondere dann, wenn JPEG compression zur Verteidigung genutzt wird. Zusätzlich

zeigen wir, dass JPEG Koe�zienten grundsätzlich die e�zientere Representation für

Maximum-Con�dence-Attacks als RGB-Pixel sind. Dies ist sowohl durch die Nutzung des

YCbCr-Farbmodells begründet, was ermöglicht, nur Luminanz-Informationen zu verän-

dern, als auch durch die Nutzung der DCT Koe�zienten, wodurch die Veränderungen

manuell auf das Frequenzspektrum verteilt werden kann. Mithilfe der Gewichtung ver-

schiedener solcher Angri�e, die jeweils unterschiedliche Teile des Frequenzspektrums an-

visieren, trainieren wir mit Adversarial Training ein Netz, welches sowohl gegen JPEG

Angri�e auf unterschiedlichen Frequenzen als auch gegen Angri�e auf RGB- und YCbCr-

Pixeln robust ist.
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1 Introduction

The performance of neural networks has signi�cantly increased in recent years in many use

cases in image processing, such as object detection [60, 103], generative methods [16, 49]

or image classi�cation where it reached similar accuracies as humans [37, 78]. However,

Szegedy et al. [91] have shown in 2014 that a neural net's classi�cation cannot be trusted

as they are vulnerable against perturbation on the input that is speci�cally crafted to

fool them. These malicious input images are called adversarial examples.

Figure 1.1: Example of a well-known adversarial image from [33]. The adversarial noise
shown in the middle image is applied to the original image on the left to
receive a misclassi�ed image.

Figure 1.1 shows a well-known adversarial example where a panda from the Imagenet [18]

dataset is misclassi�ed as a gibbon despite looking indistinguishable from the original

image after adding the adversarial noise. This obviously has strong implications on the

use of neural networks in a real-world scenario as the predictions of a net cannot be

trusted.

Since the vulnerability towards such adversarial perturbations has been discovered, there

has been a large amount of research on methods that create such perturbations, so-called

adversarial attacks, and how to defend neural nets against them [5, 33, 45, 56, 55, 65,

80, 91, 93].

1



1 Introduction

The vulnerability of neural networks shows that neural networks have not �obtained a

true human-level understanding� [32, p. 265]. But how can a model be trained so that

it aligns better with human perception and is thus robust against adversarial attacks?

A well-known method to make neural networks more robust towards these attacks is

adversarial training, where adversarial examples are added to the training set during

training [33]. And while it has been shown that this method can signi�cantly increase

robustness [65] and make the nets use features that are more aligned with the human

perception [93], the resulting nets still tend to be vulnerable towards threat models that

are unseen during training and often do not generalize well [48, 58].

Usually, the images that are created by adversarial attacks and included in the training

process, are represented as RGB pixels and the perturbations are limited by Lp distances

measured in RGB pixel space, which results in a colored noise added to the image, as

can be seen in �g. 1.1.

In contrast, we perturb the images straight on JPEG coe�cients. The motivation is as

follows: As neural networks trained on benign datasets use properties of the data that are

di�erent from those used by humans, it could be advantageous for adversarial attacks to

use a data representation that separates perceptible parts from imperceptible parts of the

data. From an o�ensive point of view, one could then exploit the neural network's reliance

on imperceptible parts of the data by slightly perturbing exactly those imperceptible

parts and thereby hiding the perturbation. From a defensive point of view, the net

could be forced to use perceivable parts of the data. As a lossy compression algorithm,

JPEG compression does exactly this by converting the images to frequency space, where

the highest frequencies are usually assumed to be less perceivable for humans. Using

our attacks, one can manually weight the perturbation applied on each frequency and

thus, presumably force the model to use frequencies that are also used by the human

perception. Thus, we believe that our JPEG attacks can be the basis for training a net

that is better aligned with human perception and thus more robust against unseen threat

models as well.

A similar idea is also used by methods that apply JPEG compression in defense. Here,

the imperceptible parts are automatically removed during the compression, which tries

to force the net to use features that are visible for humans as well. However, this is

known to be a weak defense only [17, 22, 35, 77].

Additionally, allowing to distribute across frequencies and the three YCbCr color channels

could lead to the JPEG attacks being more e�cient than RGB attacks as well, where the

2



1 Introduction

Original RGB YCbCrεY εY medium

Figure 1.2: Minimum perturbation required for a misclassi�cation by the Densenetjq50.
Images are created on a Resnet. The picture on the right was created using
our JPEG attack with the perturbation concentrated in medium frequencies.
Note that our attack as well as the YCbCr attack only perturbed the luma
channel.

e�ciency is measured as a rate of the attack's success and the created perceived distance.

For example, by attacking medium frequencies one could avoid a visible high-frequency

noise, or the noise can be forced to be grayscale which is usually less visible than colored

noise, as illustrated in �g. 1.2.

This work's main purposes are:

� Developing an attack that perturbs the JPEG coe�cients directly instead of relying

on perturbations made in RGB representation, and exploring the e�ciency of our

attack for various parameters,

� examining whether, compared to other attacks, our attack's perturbations are more

robust against JPEG compression used in the defense,

� determining on which part of the frequency spectrum our attacks are most e�cient

on di�erent nets,

� analyzing how the defense method in�uences the net's vulnerability across the

frequency spectrum,

3



1 Introduction

� testing whether our JPEG attacks can indeed increase the robustness and general-

ization across the whole frequency spectrum and against RGB attacks as well,

� and discussing the state of current defenses and how our results could help improve

them.

This thesis is structured as follows: First, all necessary background on adversarial attacks

and defenses, JPEG compression and perceptual metrics will be provided in chapter 2.

Then, we will describe our proposed method in chapter 3, followed by our experiments

and results in chapter 4. At last, chapter 5 will summarize and discuss our results.

Some parts of this work have already been submitted as a conference paper simultane-

ously to the work on this thesis and are currently under review [89]. The conference paper

includes the results on maximum-con�dence attacks, the comparison between RGB and

JPEG attacks and on adversarial training using our JPEG attacks.

4



2 Background

This chapter will cover all necessary background for our JPEG attacks. It starts with

an overview on adversarial attacks, their explanations and implications in section 2.1,

followed by a summary of JPEG compression and how it is related to adversarial attacks

in section 2.2. As adversarial examples are intended to be close to the original input,

measuring the perceived distortion using perceptual metrics is an important part of

research on adversarial attacks. Some of these metrics will be detailed in section 2.3.

Then, section 2.4 covers defense methods against adversarial perturbations. Finally,

section 2.5 will discuss adversarial attacks and robustness from a frequency perspective.

2.1 Adversarial Attacks

Adversarial examples are input samples that have been altered with nearly impercep-

tible or natural looking perturbations to fool machine learning models such as neural

networks. Adversarial examples can, for example, be textual [59], auditory [15], graph-

structured [105] or visual data [33, 91] such as images which will be this work's focus.

The vulnerability of neural networks to such adversarial perturbations was �rst identi�ed

by Szegedy et al. [91]. They showed that by maximizing the network's loss adversarial

images that look very similar to benign samples can be found. Some examples have been

shown in �gs. 1.1 and 1.2.

The existence of adversarial examples has strong implications for the use of machine

learning models in applications where correct classi�cation is necessary for safety reasons,

such as autonomous driving [19] or medical diagnosis [29]. While the safety risks can be

prevented in some applications such as medical diagnosis, where the net's classi�cation

is only used to support the human expert's decision and are ideally explained using

Explainable AI methods [41, 92], more automated domains such as autonomic driving

require the classi�cation to be correct or the classi�er has to be able to state when its

5



2 Background

prediction cannot be relied upon to enable the car to react accordingly in an automated

process. Thus, detecting and preventing adversarial examples from being successful is a

major task in machine learning research.

Mathematically, an adversarial example can be de�ned in several ways. First, one can

limit the allowed perturbation of an adversarial example. Then, an image x′ = x + δ is

called an adversarial example, if and only if

D(x′, x) ≤ ε ∧ C(x′) ̸= y, (2.1)

where D is some distance metric, C(x) is the neural net's predicted class for input x, y

is the image's ground-truth label and ε limits the allowed perturbation [80].

This de�nition is used in maximum-con�dence [75] attacks, which are limited by the

allowed perturbations ε and try to perturb the image in a way that it is misclassi�ed by

some neural net. The de�nition above describes an untargeted attack setting. A targeted

attack would then be de�ned by replacing the second term by C(x′) ̸= yt, where yt is

the target label. In this work, we will focus on untargeted attacks though.

Second, one can de�ne the misclassi�cation by a neural net as the only condition. Attacks

that rely on this de�nition, usually minimize the distance measured using the distance

metric D subject to the image being misclassi�ed. Those attacks are called minimum-

norm [75] attacks.

The �rst (targeted) adversarial attack, proposed by Szegedy et al. [91], follows the second

de�nition. They formulate the following optimization problem:

minimize ||δ||2
subject to C(x+ δ) = yt

xi + δi ∈ [0, 255]∀i (2.2)

However, they approximate the optimization problem by using a box-constrained L-

BFGS [104] to

minimize c · ||δ||2 + J(x+ δ, yt)

subject to xi + δi ∈ [0, 255]∀i (2.3)
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where J denotes the categorical crossentropy loss. While the attack is very successful, it

is computationally expensive due to the L-BFGS optimization and thus, has soon been

replaced by more e�cient attacks for both attacking and defending neural nets.

In this work, we consider attacks that apply noise on the whole image. The considered at-

tacks, which usually use RGB representations of images, will be described in section 2.1.4

for maximum-con�dence and section 2.1.5 for minimum-norm attacks. The attacks that

already use JPEG or perceptual metrics will be covered later, in sections 2.2 and 2.3,

as they require knowledge of JPEG compression and perceptual metrics. First, however,

we will give an overview on attacks, their applications and explain the implications for

the usage of AI systems and for necessary research in section 2.1.1, and address possi-

ble explanations for the vulnerability of neural nets against adversarial perturbations in

section 2.1.2.

2.1.1 Overview on Attacks, Applications and Implications

In order to understand the state-of-the-art of adversarial attacks and defenses and why

research on both is important for being able to use machine learning models safely in a

real-world scenario, it is important to give a short overview of attacks and applications

in which adversarial attacks are problematic. We begin with an overview on the attacks

that are not considered in detail in this work but help to understand why adversarial

attacks are more than a theoretical problem.

Attacks

There are various types of adversarial attacks on images. In this work, we will focus on

attacks that put some adversarial noise on the whole image. This has been de�ned by

Laidlaw and Feizi [57] as the additive threat model, where the input data is perturbed

by

(x1, . . . , xn) → (x1 + δ1, . . . , xn + δn). (2.4)

There will be more information on those attacks later in sections 2.1.3 to 2.1.5.

Now, we will give a short overview on attacks that use di�erent threat models but are not

considered in detail in this work. For example, attacks can only be allowed to perturb

some parts of images. These perturbations are called adversarial patches [9]. Sharif et al.

[82] showed that adding eyeglasses to a portrait can prevent people from being recognized
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Figure 2.1: Impersonation-Attack from [82]. The attack is performed by adding eye-
glasses to the person on the left, who is then recognized as the person on the
right.

Figure 2.2: Real gra�ti and adversarial stickers from [27]. The perturbations are designed
to imitate gra�ti such that they are unsuspicious for humans.

or allows them to impersonate another person in a targeted attack. Figure 2.1 shows

an example where an image of an actress that was perturbed by adding eyeglasses was

misclassi�ed as another actress. The attack was also successfully tested in a physical

setting where eyeglasses were created using a 3D-printer. As they are often easy to

apply in the physical world, adversarial patches can be considered a practical threat in

security-critical applications, e.g. for face-recognition or autonomous driving systems.

For the latter, there is a well-known example, shown in �g. 2.2 of physical perturbations

on stop signs, where the targeted attack proposed by Eykholt et al. [27] achieved 100

% success rate on road sign classi�ers by simply mounting white and black stickers on

signs. Another example of adversarial attacks that only perturb certain parts of images

are L0 attacks. The L0-norm measures the number of pixels that di�er from the original
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Figure 2.3: Adversarial geometric transformations from [25].

images, such that only a certain number of images is allowed to change. An example for

such an attack has been proposed by Carlini and Wagner [13].

Some attacks using the spatial threat model [57] also try to force a misclassi�cation by

applying simple geometric transformations [25, 98]. E.g., Engstrom et al. [25] showed

that transformations such as translations and rotations can fool neural networks. They

de�ne the transformation as moving the pixel (u, v) to the position[
u′

v′

]
=

[
cos θ − sin θ

sin θ cos θ

]
·

[
u

v

]
+

[
δv

δv

]
, (2.5)

where θ de�nes the degree by which the image is rotated and δu, δv de�ne the translation.

Then, they try to �nd the parameters θ, δu, δv that maximize the model loss, for example

by ascending the loss gradient. Examples for successful attacks are shown in �g. 2.3.

Laidlaw and Feizi [57] proposed functional adversarial attacks that limit the threat model

by the condition that all pixels have to be perturbed by the same function h. In contrast

to the additive threat model from eq. (2.4), they de�ne the functional threat model as

(x1, . . . , xn) → (h(x1), . . . , h(xn)). (2.6)

Using this threat model, they de�ne the ReColorAdv attack that transforms input

colors to output colors. ReColorAdv regularizes the function h such that similar

input colors result in similar output colors as well. Thereby, the neighbouring pixels in

their adversarial examples tend to have similar colors, which leads to them looking very

natural, as illustrated in �g. 2.4.
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Figure 2.4: Adversarial Example created with the ReColorAdv. Figure from [57].

Applications and Implications

Applying adversarial attacks in a physical setting, where the input to the classi�er can

not be controlled directly, seems like a di�cult task as the success depends on the cam-

era's or, in general, the sensor's properties such as the resolution or the viewing angle.

Correspondingly, Lu et al. [61] show that viewing the adversarial image from a di�er-

ent angle or distance can decrease the success rate signi�cantly using the example of

autonomous vehicles. They print and attach adversarial stop signs to real-world stop

signs and try to detect them using a YOLO object detector [79]. They �nd that the

adversarial images �cannot reliably fool object detectors across a scale of di�erent dis-

tances and angles� [61] and state that �we might not need to worry about it in many

real circumstances� [61]. They use simple gradient ascent methods like FGSM and BIM

for their experiments. Both perturb the image by applying an adversarial noise to the

whole image. They will be explained in detail in section 2.1.4. However, it has been

shown that other adversarial attacks can indeed be successful in such physical settings.

As explained above, Eykholt et al. [27] show that applying adversarial stickers to stop

signs can successfully fool classi�cation models, and their attacks worked for a variety of

viewing angles and distances. In [26], Eykholt et al. extend their work by applying the

attack on object detectors. They include epoch-wise randomly chosen object rotation

and position in their attack to make the adversarial images more robust against changes

in viewing angle and distance changes. They also propose a disappearance attack that

tries to avoid that the signs are recognized by the object detector at all.

Another example of an attack that has been applied successfully in a physical setting

is given by Kurakin et al. [56]. They print an adversarial image and use a smartphone

camera to classify it. Indeed, the attack is successful as the classi�cation was correct
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for the original, but not for the adversarial image.1 In this case, the viewing angle

is unchanged, but it still shows that camera properties such as the resolution are not

necessarily preventing the failure of the machine learning model and that adversarial

attacks can indeed be applied physically. Athalye et al. [6] are able to use 3d-printers

to create physical adversarial objects that can often fool Imagenet [18] classi�ers and

their attack is robust against changes in viewing distance and angles. So, while the

viewing angle and distance can decrease the success of some attacks, more sophisticated

approaches are still able to fool object detectors and classi�ers. In applications where

the cost of a single failure is high, such as autonomous driving or medical diagnosis, the

existence of adversarial examples can signi�cantly compromise the safety of using machine

learning models. For autonomous driving, there is a lot of further research on adversarial

attacks: For example, Deng et al. [19] analyze multiple attacks and defenses when applied

to autonomous driving models that computes the steering angle based on camera images.

Kong et al. [52] propose an attack that is aimed at fooling autonomous steering systems.

The attack perturbs advertising posters which are then printed and physically mounted

in a real-world scenario. The computed steering angles di�er signi�cantly between benign

and adversarial samples. Cao et al. [11] analyze the security of LiDAR based perception

systems of autonomous vehicles.2 They perform an attack that creates spoofed obstacles

and leads to an emergency break by the simulated autonomous vehicle. In [12], Cao et al.

create adversarial objects in a simulation that resulted in LiDAR sensors measuring point

clouds that prevented the object from being detected by the ML model.

Another application where adversarial examples can have severe consequences is medical

diagnostics. Several papers have focused on adversarial attacks on medical machine

learning models. Finlayson et al. [29] show an example where an original image of a

melanocytic nevus is classi�ed as benign, while an indistinguishable adversarial example

is classi�ed as malignant, and discuss the implications of adversarial examples for medical

diagnostics. Ma et al. [63] state that adversarial attacks are even easier to create in the

medical domain. They argue that this is because of the characteristics of medical images,

where small changes can change the model's prediction signi�cantly. However, they

argue that adversarial examples that are small and imperceptible to human observers,

could naturally be unable to fool the human medical expert and state that more subtle

1A video of their experiment is available at https://www.youtube.com/watch?v=zQ_uMenoBCk.
2Light Detection And Ranging (LiDAR) is a sensor that measures the time of �ight a laser needs to
travel from the sensor to an object and back. Usually, the laser is redirected using a rotating mirror.
Thereby, the distance of objects around the sensor can be measured and a 3D point cloud can be
created [87].
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perturbations would be required to also fool the expert. Thus, as long as a human expert

is included in the process, an adversarial attack leading to an incorrect diagnosis is seen as

unlikely. Currently, AI systems are only used to support the human expert in his decision

such that the expert can still intervene. However, as the accuracy of AI systems as well

as their explainability increases and medical experts' trust in the model's predictions

increases, this might lead to over-reliance issues [10] which increases the importance of

reliable predictions.

The two examples - autonomous driving and medical diagnostics - show that adversarial

attacks are not just a problem in theory, but can also be used to cause signi�cant damage

in practice. This demonstrates the importance of research in the defence of machine

learning models. In both �elds of application, the aim is to develop a model that acts

like a human would do. This raises the question to what extent neural networks use

other information than humans and how this can be harmonized. In the following section,

section 2.1.2, we will discuss explanations for the existence of adversarial examples which

will lead us to the question of what neural networks learn and how this is di�erent from

human perception.

2.1.2 Explanations for the Vulnerability of Neural Nets

Explaining why adversarial examples exist is an important part of research on adversar-

ial attacks. The explanations indicate how neural networks learn and how the learned

classi�ers are di�erent from human perception. Thus, they allow to �nd methods that

might overcome these di�erences to make the models more robust and more aligned to

the human perception. We will discuss two well-known explanations in the following:

The explanation of linearity from Goodfellow et al. [33] and the non-robust features

hypothesis from Ilyas et al. [45].

Linearity of Neural Networks

Goodfellow et al. [33] name the linearity of neural networks as an explanation for the

existence of adversarial examples. Depending on the activation function, every neuron in

a neural network can be a linear component itself, so a neural network is build of a very

high number of linear components. Usually, neural networks use activation functions like

ReLU that are �intentionally designed to behave in very linear ways, so that they are
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easier to optimize� [33]. So, while neural networks do not necessarily implicate linear

behavior, and �are able to represent functions that can range from nearly linear to nearly

locally constant� [32, p. 262], the choice of activation functions and the optimization

often forces the linear behaviour. For ReLU networks, Hein et al. [39] show that they

result in piecewise linear classi�cation functions indeed.

The explanation of linearity now argues that even small perturbations can have a sig-

ni�cant impact because of the very high number of dimensions. Goodfellow et al. [33]

illustrate this by using an example: Let w be the n-dimensional vector of weights of a

linear function and x′ = x+ sign(w) · ε.3 The linear function's output is determined by

the dot product of inputs and weights. The output for the perturbed input,

w ◦ x′ = w ◦ x+ w ◦ (sign(w) · ε), (2.7)

di�ers from the output for the original input w ◦ x by w ◦ (sign(w) · ε). Assuming an

average weight of m, this di�erence sums up to nmε. So, even a small perturbation in

the input can force a high di�erence in the output value, if the number of dimensions n

is high. Thus, even a small perturbation on images can cause a misclassi�cation.

The explanation of linearity implicates that adversarial examples can also be created in

a simple, linear way. Goodfellow et al. designed such an attack, the Fast Gradient

Sign Method that builds on the linearity of neural networks. It will be explained in

detail in section 2.1.4.

Non-robust features

Another explanation for the existence of adversarial examples has been that neural net-

works rely on non-robust features for class�cation. Ilyas et al. [45] distinguished between

useful, robust and non-robust features. A useful feature is one that is correlated with the

ground-truth label. In a binary classi�cation problem, where y ∈ {−1, 1}, this is de�ned
as

E(x,y)∼D[y · f(x)] ≥ ρ, (2.8)

where f : X → R is the feature that maps the input space to real numbers.

A robust feature (γ-robustly useful feature) is a useful feature, if the feature remains

γ-useful when adversarially perturbed within a set of valid perturbations ∆. This is

3The selection of δ = sign(w) · ε maximizes the L1 di�erence in the output.
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mathematically de�ned as

E(x,y)∼D[ inf
δ∈∆(x)

y · f(x+ δ)] ≥ y. (2.9)

A non-robust feature, on the other hand, is de�ned as a useful feature that is not γ-robust

for any γ > 0 though. These non-robust features can explain the existence of adversarial

examples, as neural networks are trained to minimize the classi�cation loss and will

use any useful feature, independent of whether it is robust or not, and independent of

whether the feature is useful or even visible for humans. So, when an adversarial attack

perturbs exactly those non-robust features, the classi�er can be fooled with only small

perturbations. In a discussion4 following the publication of the paper, the authors state

that

�adversarial vulnerability can arise from �ipping features in the data that are

useful for classi�cation of correct inputs.� [24].

We do not see this explanation as contradictory to the linearity explanation, but as

complementary. The explanation of non-robust features is more speci�c on where the

linear behavior of neural networks can be exploited. When many non-robust features are

slightly perturbed, this has a big impact on the output due to the linearity.

The existence of non-robust features also explains the transferability of adversarial exam-

ples: As similar optimization and loss functions are used, neural networks tend to learn

the same non-robust features from the same or similar datasets. Ilyas et al. also argue

that the existence of adversarial examples is thus a consequence of the used datasets.

They collect datasets of Cifar10 images that contain either preferably robust or non-

robust features, respectively, and �nd that when training on robust features, the nets

tend to be more robust against adversarial attacks. Examples of images that contain

robust and non-robust features, respectively, can be found in �g. C.2.

There has been a very active discussion [24]4 on this paper following its publication in

which Gilmer and Hendrycks [31] state that Ilyas et al.'s main point is a special case of

the fact that a neural network � latches onto super�cial statistics in the data� [31] that

might be unintuitive for humans. As an example, they name a paper from Yin et al.

[99] in which the authors analyze model robustness from a fourier perspective. They

found that a neural network can be successfully trained when only using high-frequency

4https://distill.pub/2019/advex-bugs-discussion/
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information that is barely visible to humans. Similar �ndings have been made by Abello

et al. [2] and Wang et al. [96].

These �ndings suggest that to improve the adversarial robustness, neural networks should

use similar features for classi�cation as the humans perception does. If a classi�er would

use exactly the same, robust features as humans, this would contradict the existence of

adversarial examples. We will discuss adversarial defenses that try to force a net to use

similar features as humans in section 2.4. The robust features show much more abstract,

coarse structures.

2.1.3 Terminology of Adversarial Attacks

Now, we will provide a brief terminology related to adversarial attacks. First, a distinc-

tion is made between di�erent settings, which de�ne what knowledge is available about

the machine learning model targeted by the attack. In a white-box setting, the attacker

has full access to and knowledge about the target model, including its architecture and

parameters. The target model is generally de�ned as the model that is aimed to be fooled

by the attacker. In a black-box setting, the target model's structure and its parameters

are unknown. It is often assumed that the attacker still has access to the target model's

predictions [80]. However, there are query-limited settings where the number of queries

on the target model is limited, or label-only setting where only the label of the current

classi�cation is known, but probabilities are not [44]. In this work, we will generally

assume a black-box setting with no knowledge about the target model and where the

attack is not able to react to its predictions: The attack itself is usually performed on a

ResNet [38], and then the success rate is measured on both the same ResNet (white-box-

setting) and some (partially defended) DenseNets [42]. The success rate on the DenseNet

is also referred to as transferability. We train both nets on the same, full dataset for Ci-

far10 [53] or use pretrained models for Imagenet [18]. The net on which the images

are crafted, the ResNet in this case, is called the source model. In the black-box setting,

this model is also called substitute [71] or surrogate [80] model. In the gray-box setting,

which is not considered in this work, some knowledge about the target model, such as

its archtitecture, is available, while other information, such as its weights, is not [80].

As mentioned before, we will limit our work to attacks that perturb the whole images us-

ing the additive threat model. They can be divided into two types: Maximum-con�dence

and minimum-norm attacks. Maximum-con�dence attacks are adversarial attacks that
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maximize the con�dence of the misclassi�cation given a budget ε of allowed perturbation

measured with distance metric D [75]. Usually, Lp norms are used as distance metric.

The Lp-distance between two images x, x′ is de�ned as5

||x− x′||p = (
n∑

i=1

|xi − x′i|p)
1
p . (2.10)

The perturbation budget is often described as an Lp-ball around the original image.

In contrast, minimum-norm attacks try to �nd a misclassi�ed image with the smallest

perturbation [75]. Often, the con�dence c with which the image has to be misclassi�ed

can also be determined, which is useful especially in black-box settings. The con�dence is

usually computed as the di�erence in logits of the ground-truth class and the highest logit

of an incorrect class (in an untargeted setting). More details will follow in section 2.1.5.

Figure 2.5 compares the settings of maximum-con�dence and minimum-norm attacks.

While minimum-norm attacks aim at �nding a minimal perturbation that is leading to a

wrong classi�cation, maximum-con�dence attacks try to maximize the model's loss while

staying inside the Lp-ball. Maximum-con�dence attacks are therefore easy to implement

and usually very e�cient, since they only have to maximize the model loss while staying

inside the Lp-ball, which can easily be accomplished by selecting an appropriate step

size or by clipping the image back inside the Lp-ball. It is noteworthy that the ideal

adversarial image does not always have to be on the bounds of the Lp-ball, as is the case

in the simpli�ed 2D-illustration.

2.1.4 Maximum-Con�dence-Attacks

Now, we will explain some well-known maximum-con�dence attacks [75] that maximize

the con�dence of the misclassi�cation given a budget ε of allowed perturbation measured

with distance metric D. Here, we will only describe attacks that originally use RGB

images. Our proposed JPEG versions will be introduced later in chapter 3.

Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) was proposed by Goodfellow et al. [33].

The attack exploits the explanation of linearity of neural networks by performing a single

5For the L0-norm, assume 1
0
= 1, such that the number of di�erent entries is measured.
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Figure 2.5: Illustation of maximum-con�dence (left) and minimum-norm (right) attacks.
The shaded areas represent the correctly classi�ed input spaces, the red circle
visualizes the Lp-ball, the arrows direct towards the attacks' targets.

step of gradient ascent on the model's loss gradients. Thereby, the source model's loss6

is maximized and the image potentially misclassi�ed. The potential adversarial example

x′ is obtained by

x′ = x+ ε · sign(∇x J(x, y)) (2.11)

for original RGB image7 x, ground-truth label y and step size and perturbation bound

ε. The equation above de�nes the untargeted version. To perform a targeted attack,

the loss would have to be computed for the target label yt and would be descended by

reversing the sign of the perturbation. In this case, every pixel value is altered by ε, the

attack is therefore limited by the L∞ norm that is used as distance metric D such that

||x′ − x||∞ ≤ ε. (2.12)

All the maximum-con�dence attacks covered in this work, usually use the L∞-norm.

FGSM is a simple and very e�ective attack but often leads to more perturbation than

needed to force an incorrect classi�cation as it always uses the full perturbation budget

ε and, as only one gradient descent step is performed, the output is unlikely to be close

to the loss function's optimum but given its simplicity it is surprising how successful the

attack has been and

6usually, crossentropy is used
7For RGB images, we generally assume the pixel values to be in the interval [0, 255].
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�the fact that these simple, cheap algorithms are able to generate misclassi-

�ed examples serves as evidence in favor of our interpretation of adversarial

examples as a result of linearity� [33].

Basic Iterative Method

Kurakin et al. [56] proposed an iterative version of FGSM, called Basic Iterative

Method (BIM)8. Starting from x′0 = x, the image gets perturbed by a smaller step size

α repeatedly for T iterations by

x′t = x′t−1 + α · sign(∇x′
t−1

J(x′t−1, y))

x′t = min(x+ ε, max(x− ε, x′t)), (2.13)

where the �rst equation does the perturbation and the second clips the image back inside

the L∞-ball. In the original paper, they use α = 1 and T = min(ε+ 4, 1.25ε) to be able

to reach the edge of the L∞-ball but also keep the number of iterations small enough to

receive a computationally e�cient attack. Our selection of parameters will be detailed

in the experimental setup in section 4.1.

BIM is known to be a very successful attack that uses the neural net's linearity in the

same way that FGSM does but for multiple iterations. Because it does multiple iterations

it usually gets closer to the loss function's optimum and does not perturb the image as

much as FGSM does. However, this can also lead to over�tting to the source model

which leads to great performance in the white-box setting but is often less successful

than FGSM in the black-box setting as found by Kurakin et al. [55].

Momentum Iterative Fast Gradient Sign Method

To improve the transferability on black-box models Dong et al. [21] proposed the Mo-

mentum Iterative Fast Gradient Sign Method (MI-FGSM). The attack is very

similar to BIM as it iteratively perturbs the image by a small step size α with the only

di�erence that the direction of the perturbation is not determined by the gradient's sign,

8The attack is also known as Projected Gradient Descent (PGD) [65]
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but by the sign of the momentum gt to prevent over�tting on the source model and force

a higher transferability. The momentum is computed by

gt = µ · gt−1 +
∇x J(x

′
t−1, y)

L1(∇x J(x′t−1, y))
(2.14)

in every iteration t = 1, . . . , T . The authors recommend to use µ = 1.0 as the decay

factor, which we follow. The perturbation itself is then applied by

xt = x′t−1 + α · sign(gt). (2.15)

The authors show that, in dependence of the perturbation budget ε, MI-FGSM indeed

outperforms the Basic Iterative Method in the black-box setting as it prevents

over�tting to the source model, as explained above [21].

2.1.5 Minimum-Norm-Attacks

Now, we will discuss minimum-norm attacks that try to �nd an adversarial image with

a minimal perturbation that can be measured by any distance metric D. However, we

will only cover attacks that minimize Lp norms of RGB representations in this section.

In section 2.3, another minimum-norm attack that uses a perceptual color model will be

described.

Note that all maximum-con�dence attacks described above can be transformed to a

minimum-norm attack by performing a binary search over ε in some interval [εmin, εmax].

Carlini-Wagner Attacks

Carlini and Wagner [13] propose attacks that minimized the L0-, L2- and L∞-norms.

We will focus on the L2-attack as it is their most popular attack and most suitable to

minimize the perceptual distance compared to the L0- and L∞-norms. The Carlini-

Wagner L2 - Attack (C&W-L2) was initially proposed as a targeted attack. However,

we will describe the untargeted version here.
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They formulate the optimization problem as9

minimize D(x, x+ δ) + c · f(x+ δ)

subject to xi + δi ∈ [0, 1]∀i. (2.16)

D is one of the distance norms mentioned above, c > 0 is some constant that is determined

in a binary search during the attack and f(x) is some objective function that uses the

neural net's prediction for input x and meets the condition that f(x+ δ) ≤ 0 if and only

if C(x+ δ) = t. They propose and analyze a number of functions but decide to use

f(x) = (max
i ̸=t

(Z(x)i)− Z(x)t)
+ (2.17)

in the targeted version, where Z(x)i is de�ned as the model's logit for class i. The

objective function basically checks whether the target class's logit is the highest and, if

not, returns the di�erence. In the untargeted version, f has to be adopted such that

f(x+ δ) ≤ 0 if and only if C(x+ δ) ̸= y. This can be accomplished by just replacing the

target class t by ground-truth label y and swapping minuend and subtrahend:

f(x) = (Z(x)y −max
i ̸=y

(Z(x)i))
+ (2.18)

In fact, they use a slightly modi�ed version of this attack function, as they add a con-

�dence parameter κ that allows them to control the di�erence in logits required for the

image to count as adversarial. Especially in the black-box setting, this is a very impor-

tant extension because otherwise the adversarial images would be perturbed just enough

to be misclassi�ed on the source model, which leads to barely any success on black-box

models. This con�dence parameter is thus used in most minimum-norm attacks ever

since. The modi�ed version of the objective function is then de�ned by

f(x) = max(Z(x)y −max
i ̸=y

(Z(x)i),−κ) (2.19)

in the untargeted case.

Carlini and Wagner [13] use tanh to eliminate the box-constraint from the initial opti-

mization problem by de�ning the perturbation

δi =
1

2
(tanh(wi) + 1)− xi. (2.20)

9In di�erence to our usual notation, this attack assumes pixel values between 0 and 1.

20



2 Background

The optimization is then performed over w. Then, xi + δi ∈ [0, 1] is always valid since

−1 ≤ tanh(wi) ≤ 1. With this change, the authors were able to use optimization

functions that do not support box-constraints such as the Adam [50] optimizer.

While C&W-L2 guarantees success in the white-box setting when doing enough inner

and outer iterations and is also transferable to black-box models using the con�dence

parameter, the optimization process is very time-consuming: In their experiments, Carlini

and Wagner [13] search for the optimal c in 20 steps of binary search. For every c, they

perform 10 000 steps with the Adam optimizer. Although the optimizer's number of

iterations can be decreased with the attack still being very successful, the binary search

over c still results in a very high runtime.

Decoupled Direction and Norm Attack

As explained in section 2.1.3, performing maximum-con�dence attacks is usually easier

than performing minimum-norm attacks, as the condition that the image lays within the

Lp-ball can usually be satis�ed by simply projecting the image back into the Lp-ball. For

minimum-norm attacks, the condition that the image is adversarial is dependent on the

neural network's output and cannot be easily forced. Therefore, minimum-norm attacks

usually use a penalty in the optimization function instead of a condition, as we have seen

for both L-BFGS and C&W-L2. However, �nding the optimal weight for the image's

distance to the original and the model's loss is di�cult and it varies at lot between

images, as shown in [81], such that it requires time-consuming image-wise search, such

as the binary search in C&W-L2.

Thus, Rony et al. [81] propose theDecoupled Direction and Norm Attack (DDN).

The attack does not impose a penalty on the optimization function but instead constraint

the image by projecting it into the L2-ball, similar to BIM, which uses L∞ though.

The second, and more important di�erence to BIM is that the allowed perturbation is

adjusted in every iteration, depending on whether the current image is adversarial or

not, as visualized in �g. 2.6. When the current image is adversarial, the current epsilon

is decreased by

εt = (1− γ) · εt−1, (2.21)

otherwise, it is increased by

εt = (1 + γ) · εt−1 (2.22)
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Figure 2.6: Illustration of the DDN attack [81]. The gray area denotes the correctly
classi�ed input space. When the current image is not adversarial, the norm
is increased (a). When it is adversarial, the norm is decreased (b).

for some factor γ.

The image perturbation itself is then performed by updating the current δ with

δt = δt−1 + α ·
∇xt−1 J(xt−1, y)

||∇xt−1 J(xt−1, y)||2
(2.23)

and projecting the image back into the current L2-ball using

xt = x+ εt ·
δt

||δt||2
. (2.24)

Out of all images that were adversarial, the attack returns the one with the smallest

L2 norm after T iterations. Whether an image is adversarial or not, can be determined

using the con�dence function from eq. (2.19), such that the adversarial images will be

misclassi�ed by the source model with some con�dence κ. In their experiments, Rony

et al. �nd that DDN results in perturbations of similar size as C&W-L2 does, measured

using the RGB L2 distance, but in much fewer iterations, which allows the attack to be

used in adversarial training [81].

The attacks mentioned here perform perturbations in the images' RGB pixel represen-

tation and are also limited by L∞ norms or try to minimize the L2 norm. Attacks
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that partially perturb in frequency space or are related to JPEG compression, or try to

minimize a perceptual distance, will be explained in the following sections.

2.2 JPEG Compression

In general, image compression algorithms aim to separate relevant from irrelevant and

redundant information which can the be removed to reduce the amount of data. Platanio-

tis and Venetsanopoulos [76] distinguish between three types of compression algorithms:

Lossless compression, lossy compression and perceptually lossless compression. While

JPEG is a lossy compression algorithm that can lead to heavily perceptible alterations,

especially for low JPEG qualities, it also uses some ideas from perceptually lossless com-

pression algorithms to make the alterations as subtle as possible. It tries to remove both

spatial redundancy that is described as the �correlation among neighboring pixels� [76, p.

280] and observable redundancy, i.e. the part of �the visual data that is irrelevant from

a perceptual point of view � [76, p. 280]. In general, perceptually lossless compression

algorithms �make use of the properties of the human visual system to improve further the

compression ratio� [76, p. 281]. JPEG uses two properties of the human visual system

to make the compression loss acceptable: First, due to the distribution of rods and cones

on the retina, humans are more responsive to brightness than to color changes as the

brightness perception is of higher resolution [76]. This is because the information is pro-

cessed by di�erent neural channels and these channels �di�er in their sensitivity to spatial

patterns (known as spatial contrast sensitivity)� [64], with the luminance channel having

the highest sensitivity [64]. Thus, chrominance information is (usually) downsampled

in JPEG compression. Second, due to the di�erent resolution on spatial frequencies,

JPEG removes information from some frequencies that might be less important for hu-

man perception. Plataniotis and Venetsanopoulos state in relation to the perceptually

lossless compression that �an appropriate frequency weighting scheme can be introduced

during the encoding process� [76, p. 281], which is very similar to what the lossy JPEG

compression algorithm does.

We will now explain the processing steps of JPEG compression in detail in section 2.2.1

before discussing work on adversarial attacks that is related to JPEG compression in

section 2.2.2.
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Figure 2.7: Processing steps of a JPEG encoder [95]. These steps are repeated for each
channel in a YCbCr image.

(a) The DCT's two-
dimensional spatial
frequencies [34].

(b) Zig-Zag processing of a 8×
8 coe�cient matrix.

(c) Indices of Coe�cients after
the zig-zag ordering.

Figure 2.8: DCT frequencies and coe�cients.

2.2.1 Processing Steps

The JPEG compression algorithm consists of 7 steps. From the third step onwards, they

are visualized in �g. 2.7. See [95] for details on each step.

1. In general, the JPEG standard does not specify which color space to use. All

channels are processed separately and can be recombined after decoding them.

However, usually the YCbCr color channel is and should be used as its channels

are uncorrelated and thus, well suited for separate processing [76]. Therefore, the

RGB pixels are �rst transformed to YCbCr pixels.
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2. The color channels are usually downsampled by a factor of 2 since the human

perception is more sensitive to brightness than to color changes [64, 76], as stated

above. The chroma subsampling is the �rst step of data reduction. There are also

versions of JPEG that do not use chroma subsampling.

3. Each channel is then divided into blocks of size 8× 8.

4. For each block, the forward discrete cosine transform (DCT) [3] is performed. The

DCT transforms the 64 pixel values into 64 coe�cients that are amplitudes for co-

sine functions with 64 unique two-dimensional spatial frequencies [95]. The spatial

frequencies are illustrated in �g. 2.8a. The DCT � lays the foundation for achieving

data compression by concentrating most of the signal in the lower spatial frequen-

cies� [95] as high-frequency coe�cients which often have value 0 can be encoded

very e�ciently later in the compression algorithm.

5. The coe�cients are then quantized using some 8× 8 quantization matrix. Assum-

ing that F (u, v) with u, v ∈ {1, . . . , 8} are unquantized coe�cients, the quantized

coe�cients are computed by

FQ(u, v) =
⌊ F (u, v)

Qjq(u, v)

⌉
, (2.25)

where Qjq is the quantization matrix for JPEG quality jq [95] and ⌊x⌉ rounds x

to the nearest integer. Usually, the values in the quantization matrix for high-

frequency coe�cients are much higher than for low-frequency coe�cients. This

is because human perception is less sensitive to changes on high frequencies and

thus, high-frequency information can often be removed. The quantization matrix

is dependent of the JPEG quality. A low JPEG quality results in higher values

in the matrix and thus, smaller resolution. Usually, one quantization matrix is

used for the luma (Y) channel, while another is used for both chroma (Cb, Cr)

channels. The JPEG standard does not specify which quantization matrices to use

for which quality in general. We use quantization matrices from Tensor�ow [1].10

The tables 2.1 and 2.2 show an example of a quantization matrix for each the luma

and the chroma channels. In combination with the entropy encoding (the last step),

this irreversible step accounts for the majority of the data reduction [76, 95].

10We save images using Tensor�ow's tf.io.encode_jpeg-function and extract the quantization matrices
using torchjpeg [23].
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6. The current 8× 8 coe�cient matrix is then transformed to a sequence of length 64

by performing a zig-zag reordering which is shown in �g. 2.8. This step orders the

coe�cients by its frequency such that high spatial frequencies are placed towards

the end of the sequence. As high frequencies often have an amplitude of 0, especially

after quantization, the zig-zag ordering leads to a long sequence of zeros at the end

of the sequence.

7. This sequence can then be used by an entropy encoder, which can now save the

number of zeros instead of individual numbers and thus save the sequence e�-

ciently. Usually, Hu�man coding is used in this step which also just saves the

di�erence between coe�cients instead of their actual values, since their di�erence

is represented by much smaller values [76]. However, as we will work on coe�cients

of step 6, we will not discuss the entropy encoding in detail.

8 6 5 8 12 20 26 31

6 6 7 10 13 29 30 28

7 7 8 12 20 29 35 28

7 9 11 15 26 44 40 31

9 11 19 28 34 55 52 39

12 18 28 32 41 52 57 46

25 32 39 44 52 61 60 51

36 46 48 49 56 50 52 50

Table 2.1: Luminance quantization table:
JPEG quality 75, from Tensor-
�ow [1].

9 9 12 24 50 50 50 50

9 11 13 33 50 50 50 50

12 13 28 50 50 50 50 50

24 33 50 50 50 50 50 50

50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50

Table 2.2: Chrominance quantization ta-
ble: JPEG quality 75, from
Tensor�ow [1].

2.2.2 JPEG-resistant Adversarial Attacks

There have been some attacks that already use JPEG or try to bypass JPEG compression,

which is a technique to defend against adversarial attacks. More information on JPEG

compression as an adversarial defense technique will follow in section 2.4.

Kang et al.'s JPEG attack

Kang et al. [48] were the �rst to adversarially perturb JPEG coe�cients. They were

analyzing the robustness of adversarially trained nets against unforeseen threat models
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including a JPEG attack in which they perturb unquantized coe�cients by the L∞-

constrained BIM, quantize them and then transform the coe�cients to RGB pixel values.

They �nd the attack to be very e�ective against the adversarial training nets that were

trained with other threat models, e.g. RGB L∞ attacks. However, they do not explain

how they weight perturbations across frequencies and thus, we assume they perturbed

all coe�cients by the same, absolute value. Accordingly, they also did not analyze the

e�ect of weighting perturbations di�erently across frequencies which is one of the major

motivations for this work.

Shin & Song's JPEG-resistant adversarial attack

Shin and Song [86] propose a method that still perturbs the image's RGB representation

but tries to bypass JPEG compression in defense by including an approximation of JPEG

compression in the target model. The perturbation of their FGSM variant is de�ned by

x′ = x+ ε · sign(∇x J(JPEGjq
approx(x), y)), (2.26)

where JPEGjq
approx(x) is an approximation of JPEG compression for quality jq that

receives and returns RGB data. In fact, only the rounding step to the nearest integer

during the quantization step is replaced by the di�erentiable operation

⌊x⌉approx = ⌊x⌉+ (x− ⌊x⌉)3. (2.27)

Including the approximation of JPEG compression signi�cantly increases the attack's

success on models defended with JPEG compression. However, the perturbation itself is

still applied on RGB images.

As they �nd that their attack over�ts to the JPEG quality used in attack and thus, is

often not transferable when other JPEG qualities are used in defense, they also propose

an ensemble attack that combines the gradients for multiple JPEG qualities by

gens =
∑
i

(1− exp(Li)∑
i exp(Li)

)∇xLi, (2.28)

where Li = J(JPEGqi
approx(x), y) is the loss for JPEG quality qi. Indeed, the ensemble

attack leads to better generalization [86].
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Shi et al.'s Adversarial Rounding Attacks

An approach that receives RGB images as input but returns JPEG coe�cients was

recently proposed by Shi et al. [85]. Their attack �rst executes an RGB attack. They

use FGSM or BIM but it can be replaced by any RGB attack. Then, it converts the

RGB pixels to intermediate DCT coe�cients that are already divided by the quantization

matrix, but not rounded. To return rounded coe�cients, they propose a rounding scheme

that aims at rounding each coe�cient in the direction that maximizes the attack's success

without leading to large perturbations instead of just rounding to the nearest integer. In

untargeted attacks, they only use a fast adversarial rounding scheme in which they �rst

compute the coe�cient's gradients on the source model's loss function, and round every

coe�cient, where the nearest integer is consistent with the gradient's direction, in that

direction. In a second step, they measure the importance of the remaining intermediate

coe�cients F i for the attack's success using the update gradients g′ as

τ =
|g′|

((f+ − f−) · q)2
, (2.29)

where q is the entry of the Quantization matrix Q and f+ = ⌈f i⌉ − f i, f− = f i − ⌊f i⌋.
Then, they round the η · 100 percent coe�cients with the highest importance value τ

in the gradient's direction, while the others are set to the nearest integer. For targeted

attacks, they also propose an iterative rounding scheme which will not be detailed here.

Despite showing good performance compared to traditional RGB attacks, the majority

of the perturbation is still performed inside the RGB attack and only the quantization

step is made straight on JPEG coe�cients.
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2.3 Perceptual Metrics

With adversarial examples ideally looking indistinguishable from original images, mea-

suring perceived di�erence between images is an important part of research on adversarial

attacks. While for a long time only Lp norms, measured in the images' RGB representa-

tions, were used to measure the perturbations and, as explained in section 2.1, minimize

the distance made by an attack, research has developed into using metrics that might

be more suitable for measuring human perception. In section 2.3.1, we will explain how

suitable RGB Lp norms are to measure human perception. Alternatives are explained in

section 2.3.2, followed by a summary on how the suitability of a perceptual metric can

be quanti�ed in section 2.3.3. Finally, section 2.3.4 will be about adversarial attacks that

already use perceptual metrics.

2.3.1 The Suitability of RGB Lp-Norms as Perceptual Metrics

The reason for RGB Lp-norms being used as a distance measure and limit for adversarial

perturbations is mainly its simplicity: Perturbations can be easily controlled and pro-

jected back into the Lp-ball and. In a real-world scenario, though, the suitability of RGB

Lp norms, and Lp norms in general, can be doubted. Adversarial examples are de�ned

as images with ideally imperceptible perturbations from the benign samples. Therefore,

an ideal distance metric that is used for attacks, but also for comparing attacks, would

be as close as possible to the human perception. While initially the focus has been on

the pixel-wise Lp-norms as a distance metric for adversarial attacks, there has been some

research on the suitability of Lp-norms and possible alternatives.

Sharif et al. [83] have analysed the suitability of RGB Lp-norms for adversarial images.

They conducted user studies in which images from L0-, L2- and L∞-attacks were exam-

ined by letting the participants classify the images. For all three norms, they found that

a small Lp distance is not necessary for perceptual similarity and does also not imply it

such that there can be images with a big Lp distance that are perceptually very similar,

but there also are examples of images with a small Lp distance that look strongly dis-

turbed. As a suitable example for a small Lp distance not being a necessary condition

for perceptual similarity, they name geometric transformations which tend to have very

high Lp distances as they use pixel-wise di�erences. Figure 2.9 shows an example, where

an Imagenet sample image was transformed in four di�erent ways. The one that was

shifted to the left and �lled with the nearest pixels on the right, looks the most similar to
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0.00

Original

10415.901

Shifted

2374.964

Grayscale

2632.3826

Random Hue

Figure 2.9: An Imagenet [18] sample is transformed by shifting the image to the left,
transforming it to grayscale by setting all three channels to the average of
the RGB-channels, and applying a random hue transformation. The numbers
below the images are the L2 distances from the original image, measured in
the RGB representation.

the original images, but has by far the highest Lp distance. Geometric transformations

are a great example for the unsuitabilty of Lp-norms and it has been shown that they

can also be used for successful adversarial attacks [25].

An example for the unsuitability of RGB Lp-norms that is much closer to what is looked

at in this work, since it is about noise, is shown in �g. 2.10. The right and middle image

have the same Lp-distance from the original image, as both have been perturbed by the

same noise but in di�erent channels. The right image looks indistinguishable from the

original, while the perturbations in the middle image are very obvious, what illustrates

the unsuitability of RGB Lp norms for measuring human perception.

One reason for RGB Lp norms not successfully measuring human perception is that RGB

is not based on the human perception, but on physiological properties, namely the three

types of cones in the human retina: L (red), M (green) and S (blue) [76]. This makes

RGB well-suited for displays, as it is an additive color model and �the perceived red,

green, and blue intensities are approximately related � [76, p. 20] to the values of the

three channels, when using the non-linear RGB space. But RGB

�isn't perceptually uniform, meaning that one unit of coordinate distance doesn't

correspond to the same perceived color di�erence in all regions of the color

space� [64].

Thus, di�erences in RGB pixel values, as used in the Lp-norms, are not always related

to perceptual di�erences.
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Figure 2.10: Example for the unsuitability of RGB Lp-norms to measure human percep-
tion [102]. Left: Original RGB Image. Middle: RGB image perturbed in
the G channel by some random noise. Right: RGB image perturbed in the
B channel by the same noise. As both are perturbed with the same noise,
they have the same RGB Lp distances to the original image.

Additionally, the human visual system uses three neural channels (luminance, red-green,

yellow-blue). A corresponding color model would therefore be structured as in �g. 2.11.

The model has three pairs of elementary colors and thus, three dimensions: lightness,

colorfulness and hue. The RGB color space, though, does not correspond with these

three dimensions and thus, with the human perceptual system [64].

Another reason are the Lp-norms itself which use pixel-wise di�erences leading to a strong

concentration on high-frequencies. However, it has been shown that �the human vision

system is not sensitive to high spatial frequencies� [76, p. 293], such that lower frequencies

are more important for human perception. However, the di�erence on lower frequencies

cannot be noted by pixel-wise di�erences such as the Lp-norms. The same applies to the

relationship between neighbouring pixels and regions. For example, a colored foreground

looks darker on a white than on a black background [64], as shown in �g. 2.12.

The failure of pixel-based distance metrics for measuring human perception also shows

when zooming out of an image. This e�ect is, for example, visible in hybrid images,

proposed by Oliva et al. [70]: Hybrid images are images consisting of two images, where

one is located in high- and one in low-frequency space. As high frequencies become less

important when increasing the distances, the visible content changes when zooming out.

An example of such an image is shown in �g. 2.13.

So, an alternative for RGB Lp-norms should ideally
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Figure 2.11: A perceptual color model
with three axes and six el-
ementary colors. Figure
from [64].

Figure 2.12: A colored foreground looks
darker on a white than on a
black background. Figure
from [64].

1. be able to measure structural and not just pixel-wise di�erences, since they are

focused on high-frequency di�erences,

2. not use RGB color space, but, if the distance is computed pixel-wise, a more per-

ceptual one.

2.3.2 Alternative Metrics

Due to the limitations of the RGB color model and the pixel-wise Lp-norms in general,

research has developed towards evaluating adversarial attacks using more perceptual

metrics in recent years [28, 58, 102]. Some alternatives will be discussed in this section.

There are color spaces that are more suitable for measuring the human perception than

RGB. One of these color spaces is CIELAB [67], which is a perceptually uniform model. It

consists of a lightness (L∗) component and two color axes - a∗ that represents the green-

red color channel and b∗ that represents the yellow-blue color channel from �g. 2.11.

As it corresponds with human neural channels, CIELAB is designed and also known to

be useful for measuring the human perception. A perceptual color di�erence formula

that is based on CIELAB is CIEDE2000 [62]. CIEDE2000 includes lightness, chroma

and hue and is known to be closer to the human perception than the euclidean distance

in CIELAB color space [102]. But, both are still pixel-wise and are thus not able to
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(a) When zooming out, an elephant gets
visible instead of the tiger that is vis-
ible from close range.

(b) From close range, the image is perceived
as a tiger. When zooming out, a chee-
tah becomes visible.

Figure 2.13: Two examples of hybrid images. When zooming out, the visible content
changes. Both images are from [70].

measure low-frequency di�erences. Furthermore, similarity metrics such as the structural

similarity index measure (SSIM) [97] have been used. SSIM does not correspond to

human perception signi�cantly better than the RGB L2 distance though [101].

Motivated by the fact that pixel-wise distances such as the Lp-norms are not suitable

to measure structural di�erences, perceptual losses have been proposed. They use dif-

ferences in neural networks' feature spaces to quantify the perceptual distance between

images.

The perceptual loss function that will be used in this work was proposed by Zhang et al.

[101] and is called Learned Perceptual Image Patch Similarity (LPIPS). An overview of

the loss function is shown in �g. 2.14: Two images x, x0 are passed through a pretrained

model F , and the activations ŷl, ŷ0l ∈ RHl×Wl×Cl of some layers l ∈ L are unit-normalized

in the channel dimension and then used to compute the distance

d(x, x0) =
∑
l

1

Hl ·Wl

∑
h,w

||wl ⊙ (ŷlhw − ŷo
l
hw)||22, (2.30)

where the weights wl ∈ RCl determine the importance of each layer and channel for the

perceptual loss. They are trained using the right part of �g. 2.14, a model G that takes
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Figure 2.14: Computation of the LPIPS perceptual distance. The part to the left of the
dashed line computes the perceptual distance of two images. The part to
the right is used to train the weights w.

two distances and consists of two dense layers with 32 neurons, and a dense layer with

1 neuron and sigmoid activation such that it returns some score ĥ ∈ [0, 1]. The training

itself is then done using their proposed AFC2 dataset, which consists of 3-tuples of images:

An original reference image r and two perturbed image patches p0, p1. Additionally, each

entry contains the percentage of humans that decided that p1 is closer to the original.

By training the model G, they perform a �perceptual calibration� [101] of the weights

wl. Zhang et al. experiment with whether the loss network F should be �xed during

training. The results vary slightly between tasks. In our experiments, we will freeze F

during training.

The use of this perceptual loss is motivated by its ability to better capture structural

di�erences. While perceptual color distances such as CIEDE2000 are limited by their

pixel-wise computation, a perceptual loss function can capture structural di�erences and

dependencies such as edges between pixels. Figures 2.15 and 2.16 illustrate the suitability

of LPIPS as a perceptual metric. In both �gures, the perturbed images contain exactly

the same pixel-di�erences from the reference image but the arrangement varies. As it

is a pixel-based distance metric, the CIEDE2000 L2 values are identical. However, the

perceived distance is higher for the images that are perturbed with the structural noise,

i.e. the chessboard. In the images perturbed with a chessboard noise the pixel values

often vary between neighbouring pixels, especially in �g. 2.16 where the chessboard is

applied pixel-wise. Thus, they include many visible edges that are visible to the human

observer.

The right image in �g. 2.16 is generated by minimizing the LPIPS distance in 1000 steps

of gradient descent. The condition that half of the pixels are perturbed by addition and

the other half by subtraction, is enforced every 10 steps. The optimization results in two
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396.26
0.67

Chessboard

CIEDE2000 L2

LPIPS

Reference

396.26
0.28

Random

Figure 2.15: The reference image's unicolored background was perturbed with some noise,
by adding or subtracting 3 from each RGB channel value. On the left image,
the direction of the perturbation is arranged as a chessboard. On the right
image, the direction was determined randomly, but half of the pixels are
perturbed by subtraction and the other half by addition of 3. Thus, the
background contains the same pixels on both perturbed images, but the
arrangement varies, which leads to the same CIEDE2000 L2 distances, but
corresponding to human perception, the LPIPS distances vary.

blocks: The lower left of the image is brighter than the upper right. Due to the small

number of edges, the image is perceptually very similar to the reference image, which is

captured by the LPIPS distance function, but not by the CIEDE2000 L2 distance. This

shows that, unlike pixel-based distance metrics, the perceptual loss (LPIPS) is able to

measure such di�erences and interdependencies between pixels and is thus better suited

for measuring human perception.

2.3.3 Evaluating Perceptual Metrics

Perceptual Metrics can also be evaluated quantitatively with regard to their suitability

for measuring human perception using the datasets proposed by Zhang et al. [101]: First,

they published a two alternative forced choice (2AFC) dataset that was already men-

tioned in the previous section. Second, they proposed a just noticeable di�erence (JND)

Dataset: The dataset entries consist of two images p0, p1, and the study participants

decided whether they are the same or not leading to a score, which is the percentage of

humans who think p0 and p1 are the same. For the evaluation of the datasets, Zhang

et al. propose to use the following scores:
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8.23
0.106
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CIEDE2000 L2
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Reference
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Figure 2.16: A 16x16 unicolored reference image (RGB: 5, 5, 250) was perturbed by
adding or subtracting 3 to each channel's value. On the left, the perturba-
tion's direction was determined by a pixel-wise chessboard. On the right,
the direction was optimized in a gradient descent that minimized the LPIPS
distance, which leads to hardly noticeable uniform areas in which the pixel
values are either subtracted or added. Again, the two images contain the
exactly same pixels, but in a di�erent order. The CIEDE2000 L2 distance
is thus not able to measure the perceptual distance, but LPIPS is.

For the 2AFC dataset, which is split into a train and a test dataset, a distance metric D

can be evaluated by computing the distances d0 = D(r, p0), d1 = D(r, p1) and scores

score =


1− s, if d0 < d1

s, if d0 > d1

0.5, otherwise,

(2.31)

where r is the reference image, p0, p1 are the perturbed patches, and s is the percentage

of participants that decided that p1 is closer to the original than p0. The scores can then

be averaged across the dataset. For the JND dataset, the evaluation is performed by

computing the area under the precision-recall curve.

The perturbed images in Zhang et al.'s dataset are generated by various distortions.

Among others, these include traditional distortions such as blur, shifting, uniform white

noise, cnn-based distortions from autoencoding or super-resolution networks. However,

perturbations from adversarial attacks are not included in the dataset. Thus, although

these datasets can be used to measure whether distance metrics are suitable to measure

human perception in general, this does not apply to adversarial attacks [101]. A similar
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JND dataset for adversarial attacks has been proposed by Laidlaw et al. [58] though.

They collect images from various attacks including BIM and JPEG attack from [48].

Zhang et al. [101] analyze the performance of various architectures like VGG16 [90],

AlexNet [54] and SqueezeNet [43]. The AlexNet shows the best average performance and

clearly outperforms traditional distance metrics such as L2 or SSIM. However, in our

experiments we will use the VGG16 which shows similar performance since an AlexNet

pretrained on Imagenet is not available for Tensor�ow [1].

2.3.4 Perceptual Metrics and Adversarial Attacks

In recent years, perceptual color models and perceptual losses have already been used in

the context of adversarial attacks. Zhao et al. [102] proposed two attacks that are based

on C&W-L2 and DDN, respectively, but try to minimize the CIEDE2000 L2 distance

instead of the RGB L2 distance to receive less perceived perturbation. For the reasons

already mentioned regarding the C&W-L2-attack, namely the high runtime due to the bi-

nary search, we will focus on their second attack, called Perceptual Color Distance

Alternating Loss (PerC-AL). As in DDN, the step in each iteration is dependent on

whether the current image is adversarial or not. In DDN, the allowed perturbation et was

decreased in case the current image is adversarial. At each iteration's end, the image was

projected back into the current L2-ball. As the image representation and the representa-

tion used for the projection was RGB, this could be easily accomplished. Because Zhao

et al. [102] want to minimize the CIEDE2000 distance, this step cannot be performed in

the same way. Thus, they do not decrease the allowed norm in case the current image is

adversarial, but they minimize the CIEDE2000 distance. So, if the current image x′t−1

is not adversarial, the perturbation in iteration t is updated by

g = ∇x′
t−1

J(x′t−1, y)

δt = δt−1 + αl ·
g

||g||2
(2.32)

and if the image is adversarial, it is updated by

d = −|| ciede2000(x, x′t−1)||2
g = ∇x′

t−1
d

δt = δt−1 + αc ·
g

||g||2
, (2.33)
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where al, ac are step sizes and usually, the step size for minimizing the perceptual color

distance should be smaller. They �nd that their attacks do result in larger RGB L2

perturbations but are less perceivable.

The LPIPS distance was �rst used to quantify and evaluate adversarial distortions by

Jordan et al. They combine various attacks such as L∞-attacks and spatial transfor-

mations and state that nets defended against a particular style are not robust against

unseen threat models [47]. To defend against unseen threat models, Laidlaw et al. pro-

posed a perceptual threat model, which limits the allowed perturbation using the LPIPS

distance. We will not explain their attacks in detail as they are not directly related to

the idea of attacking JPEG coe�cients, but their proposed defenses, which have been

found to generalize well to other threat models and thus, got closer to human perception,

will be part of our experiments and will be explained in section 2.4.

2.4 Adversarial Defenses

As mentioned before, the existence of adversarial examples prevents the use of machine

learning models in safety-critical applications. Thus, research tries to �nd ways to make

models more robust such that the output complies with the human expectation. To

achieve this, various defense techniques have been published. Some of these methods

try to detect adversarial examples such that the user can be warned and the wrong

classi�cation can possibly be prevented [4, 14], which is useful in applications where

a human expert can intervene. In this work, we will focus on defenses that try to

classify correctly despite a malicious input. The aim of such methods is basically to

receive predictions that are as robust and accurate as human predictions. Thus, it

would seem obvious that the net should also use similar features/information as humans

do. For standard nets this is not the case. It has been shown that they often use

non-robust features [45] and rely on high-frequency information that is barely visible to

humans [96, 99]. In fact, these two examples are related, as we will show later.

In general, defenses basically try to regularize neural networks such that their predic-

tions aligns with the human perception. In this section, we will discuss some of those

approaches. First, we will focus on some simple input transformations in section 2.4.1,

then adversarial training will be explained in section 2.4.2. An overview of further defense

techniques and an analysis of their robustness can be found in [6].
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2.4.1 Input Transformations

Input transformations can alter the input by either removing the adversarial pertur-

bations or making the perturbations less suited for the target model. Das et al. [17]

proposed to use JPEG compression to defend against adversarial attacks. As explained

in section 2.2, JPEG compression tries to remove information that is imperceptible for

human observers. Adversarial attacks aim to make imperceptible perturbations on im-

ages. Consequently, it is plausible that at least some of the adversarial perturbation is

removed in the quantization step, especially on high frequencies. First, they only carry

out the JPEG compression on the input of a pretrained model and �nd that this does

decrease the success rate signi�cantly but can also reduce the accuracy on the benign

images. Second, they �vaccinate� [17] the neural networks by using JPEG compressed

images during training which increases the robustness of their models even more [17].

Similar results have been presented by Dziugaite et al. [22] who have found that small

perturbations are often reversed by JPEG compression.

Further input transformations that have been used for defending neural nets include bit-

depth reduction that can remove perturbations similarly to JPEG compression, image-

cropping, which can change the positioning of perturbations, and image quilting, which is

de�ned as replacing parts of images by patches from benign samples from a dataset [35].

Ra� et al. proposed a Barrage of Random Transforms for Adversarially Robust Defense

(BaRT) [77] combining multiple weak defense approaches to form a strong one. They

state that if the set of transformations is large and they are combined randomly, their

method is robust against iterative attacks such as BIM, even for large perturbations.

Since it does not require special training, BaRT and other input transformations, are

also useful for large datasets, such as Imagenet.

Out of the input transformation methods, we will only consider JPEG compression in

our experiments, since it seems possible that by attacking straight on JPEG coe�cients,

one might bypass this defense: As JPEG compression mostly removes high-frequency

perturbations, concentrating the perturbations on lower frequencies might circumvent

the defense.
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2.4.2 Adversarial Training

Adversarial training is a very prominent defense for neural networks that adds adversarial

examples to the training set. It was �rst proposed by Goodfellow et al. [33] and can be

seen as a regularization technique that

�discourages this highly sensitive locally linear behavior by encouraging the

network to be locally constant in the neighborhood of the training data.� [32,

p. 262].

In this thesis, we will need two versions of adversarial training.

Madry et al.'s Adversarial Training

Madry et al. [65] proposed to use BIM to create adversarial examples during training.

They found that when using random initialization inside the L∞-ball, the loss often

converges to a similar loss value. Thus, they argue that BIM (or PGD) is a universal �rst-

order adversary meaning that �robustness against the PGD adversary yields robustness

against all �rst-order adversaries, i.e., attacks that rely only on �rst-order information.

As long as the adversary only uses gradients of the loss function with respect to the

input, we conjecture that it will not �nd signi�cantly better local maxima than PGD� [65].

So, attacking with other �rst-order attacks like FGSM and MI-FGSM should be little

successful if the net is robust against BIM. During the adversarial training, they initialize

the adversarial image randomly inside the L∞-ball and add the adversarial images to the

training set.

In some cases, adversarial training can even increase the accuracy on the benign test set.

Correspondingly, adversarial training is sometimes seen as a data augmentation method

that regularizes the output of neural networks and that prevents over�tting on the train-

ing data [33, 32]. However, Tsipras et al. [93] have shown that this e�ect is mainly

apparent when training with few benign samples. When the training data is increased,

they show that adversarial training often reduces the accuracy on the benign images.

They explain this with the fact that neural networks often classify by using features

that are only weakly correlated with the ground-truth label. In a benign setting, using

a combination of features that are weakly correlated with the label, which they call a

�meta-feature� [93], is often su�cient for a correct classi�cation. In an adversarial set-

ting, though, the classi�er cannot rely on those weakly correlated or non-robust features,
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Figure 2.17: Visualizations of the loss gradients for various nets trained with standard
or adversarial training. The adversarially trained nets tend to use features
similar to the human perception. Figure from [93].

as these are usually attacked because they tend to be unrecognizable for humans and

have to be perturbed only slightly in contrast to more correlated, robust features. Thus,

they argue that �robustness may be at odds with accuracy� [93]. This argument is in line

with the explanation of linearity from section 2.1.2: A slight perturbation on the input

can signi�cantly alter the activations on the weakly correlated features, consequently the

meta-feature, and the model's prediction. Note that these weakly correlated features

seem to be strongly connected to the non-robust features de�ned by Ilyas et al. [45].

Additionally, Tsipras et al. show that adversarial training leads to networks that rely on

similar features for classi�cations as humans do. In �g. 2.17, they visualized how adver-

sarial training in�uences the loss gradients. The �gure shows that adversarially trained

nets correspond better to human perception than nets trained with original images only.

This is in fact a very intuitive observation: Adversarial training tries to make the model

robust against perturbations that are not or barely visible for humans. Thus, the net

should also rely more on the same features as humans do [93].

Perceptual Adversarial Training

Laidlaw et al. [58] tried to overcome the problem of neural nets that are vulnerable

towards unseen threat models by proposing Perceptual Adversarial Training (PAT). They

use the LPIPS distance to de�ne the Neural Perceptual Threat Model, where an image
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x′ is adversarial, if and only if

C(x′) ̸= y and lpips(x,′ ) ≤ ε. (2.34)

They propose several attacks for this threat model which will not be covered in detail

here. For the PAT, they use the a simpli�ed version of the Lagrangian Perceptual

Attack, which is based on the C&W-L2 and optimizes

max
x′

J(x′, y)− λmax(0, lpips(x, x′)− ε). (2.35)

The simpli�ed version, FastLPA, which is only used for adversarial training, does not

search over λ and does not include a projection step. They �nd that PAT leads to a

better generalization of the model against unseen threat models. As Lp distances can

vary a lot between threat models, even if the images look very similar (see �g. 2.9), while

the LPIPS distances re�ect the peceived distortion much better, the perceptual attacks

can lead to perturbations that are similar to those of di�erent threat models and the

PAT generalizes better [58].

2.5 Adversarial Attacks and Defenses: A Frequency

Perspective

In this section, we will discuss papers that have already looked at attacks and robustness

from the perspective of frequencies. They mainly use coe�cients from the discrete fourier

transform (DFT) or discrete cosine transform (DCT), but no JPEG coe�cients itself.

By analyzing how adding noise to each frequency in�uences the output, Tsuzuku and

Sato [94] found that neural networks are sensitive to the directions of fourier basis func-

tions. The sensitivity on each frequency depends on the dataset and the architecture.

For Cifar10 most of the tested networks are more sensitive to noise on high and medium

frequencies, while for SVHN [69], for example, the low frequencies are most sensitive.

They use this observation to propose a universal attack that adds a uniform pattern to

the image. Additionally, they analyze where adversarial perturbations are located in the

frequency spectrum. When applying the FGSM attack, the perturbations are concen-

trated in those frequencies that the net is sensitive against. Thus, the perturbations are

not necessarily concentrated in high frequencies but it depends on the net's architecture
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Figure 2.18: An example for an adversarial attack on low frequencies from [36].

and the dataset. For Cifar10, it has been observed by Tsuzuku and Sato [94] and oth-

ers [8, 66] that high-frequency components are usually more important for neural nets.

Deng and Karam [20] propose a universal adversarial attack that uses DCT frequency-

wise JND thresholds that are based on the sensitivity of the human perception. They

�nd that their attack is more e�cient than the baseline method. As it is an universal

attack, they do not analyze di�erent distributions of perturbations across frequencies

however [20].

Guo et al. [36] have proposed black-box adversarial attacks that are limited to perturbing

low spatial DCT frequencies. The perturbation is applied to RGB pixels, but the gradient

is converted to the frequency domain using DCT. Then, high frequencies are masked out

and the inverse DCT is applied. This leads to colorful blotches in the image, as shown

in �g. 2.18. Guo et al. state that their attack can circumvent defenses that build on

removing high-frequency components such as JPEG compression. However, they do not

do a perceptual evaluation of their attack, as they only use MSE distances.

Sharma et al. [84] analyzed the e�ectiveness of very similar low-frequency perturbations.

Again, the perturbation is applied to RGB pixels. In this case, the δ is transformed to

DCT coe�cients, then a boolean mask is applied, and the delta is converted to pixel

space by the IDCT. This masking is denoted as FreqMask. Then they compute the

gradients as ∇δJ(x + FreqMask(δ), y). They �nd that perturbing low frequencies is

more e�ective in the defended black-box setting, but not in undefended settings. Again,

they do not use a perceptual metric but only the input parameter ε to compare attacks.

Especially when attacking di�erent frequencies, it is questionable how meaningful this is

as low-frequency attacks yield very di�erent perturbations, as �g. 2.18 and the sample

images in [84] show.
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In section 2.4, we already mentioned that the explanation of non-robust features [45]

and networks relying on high frequencies that are barely recognisable for humans [99]

are related. Remember that non-robust features are features that are useful in a benign

setting, such that a neural network can and will use them for optimization in such

settings. When those features are slightly perturbed, though, they are not positively

correlated with the ground-truth label anymore. In the discussion to the paper on non-

robust features, Gilmer and Hendrycks [31] state that the main argument in [45], that

neural networks rely on non-robust data that is not important for human perception, but

useful to maximize the classi�cation accuracy on unperturbed data, is a

�special case of a more general principle that is commonly accepted in the

robustness to distributional shift literature: a model's lack of robustness is

largely because the model latches onto super�cial statistics in the data. In the

image domain, these statistics may be unused by and unintuitive to humans,

yet they may be useful for generalization in i.i.d. settings� [31].

Gilmer and Hendrycks name the reliance of neural networks on high frequencies, as shown

in [99], as another example. Yin et al. [99] analyzed the robustness of neural networks

from a fourier perspective. They make some interesting �ndings on how adversarial at-

tacks and model robustness are related to spatial frequencies. They train neural networks

using only high-frequency information that is barely visible to humans and are able to

reach more than 50% accuracy on Imagenet. This shows that neural nets can use infor-

mation that is of little importance to humans and that they often rely on high-frequency

information that is not important for human perception. Adversarial perturbations that

are crafted on undefended nets are usually concentrated in high frequencies11, as neural

networks often rely on high-frequency information that is not visible to humans. The fact

that neural networks use such invisible high-frequency information has also been found

by Wang et al. [96].

However, there might be a bigger connection between these two examples than just being

two examples of neural networks learning from �super�cial statistics� [31]. Figure 2.19

shows heatmaps of the distribution of normalized coe�cients for each frequency for all

images in the non-robust and in the robust dataset from Ilyas et al. [45], respectively.

At least for Cifar10, the non-robust features seem to consist of higher frequency infor-

mation, as they have much higher coe�cients on the high frequencies, while the images

11Experimental evidence is given later in chapter 4.
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(a) non-robust (b) robust

Figure 2.19: Frequency-wise average absolute normalized coe�cients of the robust and
non-robust Cifar10 datasets from [45]. Both datasets are normalized by
subtracting the frequency-wise mean and standard deviation of the original
Cifar10 dataset. The non-robust features are more concentrated in high
frequencies, while robust features are concentrated in low and medium fre-
quencies, at least for Cifar10.

from the robust dataset have higher coe�cients on the lower frequencies. This con�rms

that neural networks relying on non-robust features and nets relying on high frequencies

are not just two independent examples of nets using information that is not useful to

humans, but these two examples can describe the same problem: Neural nets often rely

on high-frequency information that is not useful and barely recognisable for humans, as

already stated by Yin et al. [99]. In the literature on adversarial attacks from a frequency

perspective, this very intuitive relation has been discussed before. For example, Bern-

hard et al. state that high spatial frequencies �are predominantly non robust� [8]. Yin

et al. state that �it seems likely that these invisible high-frequency features are related to

the experiments of [45, citation adapted] � [99]. However, to the best of our knowledge,

this relation has not been proofed experimentally before.

Yin et al. have also shown that standard adversarial training makes the net biased towards

using low-frequency information and thus more robust to high-frequency perturbation by

forcing it to avoid using the non-robust features that are mainly located on high frequen-

cies. Training the net using JPEG compressed images or just using JPEG compressed

images at inference time, as proposed by Dziugaite et al. [22], aims at the same thing:

Forcing the net to use more low-frequency information, as humans do, and thus, making
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the net more robust against high-frequency perturbation which is often unrecognizable

to humans.

However, making the net more robust against high-frequency perturbation is not su�-

cient. Yin et al. [99] state that while standard adversarial training results in the net

being more robust against high-frequency perturbations, it also gets more vulnerable

towards perturbations in low frequencies. They also state that adversarial perturbations

tend to be more concentrated in lower and medium frequencies when they are created

on an adversarially trained net, which is a direct consequence of the nets relying on low-

frequency information. So, adversarial examples are not necessarily concentrated in high

frequencies, but it depends on the source model.

Similar �ndings have been made by several other researchers: Tsuzuku and Sato state

�that adversarial perturbations do not necessarily lie in a high-frequency area, which de-

nies a common myth that adversarial perturbations tend to be high-frequency� [94], while

Bernhard et al. add that �adversarial perturbation[s] are not e�cient when focused only

on HSF [high spatial frequencies] � [8], meaning that adversarial attacks have to perturb

a �wide part of the spectrum� [8] to be e�cient. The success of low-frequency pertur-

bations [36, 84] also supports the hypothesis that adversarial perturbations are not nec-

essarily a high-frequency phenomenon [66] and that robustness against high-frequency

perturbations is not su�cient.

Other papers [8, 66] looked at adversarial robustness from a frequency perspective. Again,

both �nd signi�cant di�erences between datasets as Cifar10 models are more sensitive

towards high-frequency information than models trained with other datasets. Bernhard

et al. [8] use various fourier �lters during training. Using low-pass �ltered images in train-

ing leads to less vulnerability towards high-frequency perturbations. They only evaluate

their defenses against standard BIM, though, and do not use a perceptual distance, but

the input parameter ε, although the structure of the created adversarial examples should

di�er signi�cantly as they use di�erent source models (low-, high-pass �ltered, un�ltered

images in training). In general, they �nd a two-way transferability between the low-pass

�ltered and the base classi�cation task. A stronger low-pass �lter during training leads to

less transferability. They state that �this indicates that the regular classi�cation task and

the LSF task share predominantly robust useful features� [8] which means that robustness

is strongly related to low-frequency features [8]. The intuition behind this is that hu-

mans mainly rely on low-frequency information too and, as explained before, a classi�er

that is more aligned with the human perception should generally be more robust. This
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could be accomplished by forcing a class�er to use low-frequency information instead

of high-frequency components that are barely visible for humans. However, as stated

before, adversarial examples are not necessarily a high-frequency phenomenon such that

relying on low-frequency information only is not expected to yield a perfectly robust clas-

si�er either. Maiya et al. [66] emphasize that in which frequencies adversarial examples

are concentrated depends on the dataset. Again, they use an attack that perturbs on

RGB but transforms the gradients using DCT, masks out some frequencies, and applies

IDCT. By attacking individual frequencies, they measure how sensitive models are for

perturbations on each frequency. For Cifar10, the undefended models are most sensitive

on high frequencies, while for Imagenet they are most sensitive for lower frequencies.

The adversarially trained model for Cifar10 reverses the sensitivity towards the low fre-

quencies, while the adversarially trained Imagenet model is still most sensitive towards

low-frequency perturbations, but the robustness across the whole spectrum increases.

Despite the di�erences between datasets, this still leaves the question of how to make

the model more robust against low-frequency perturbations, where standard adversarial

training does not seem to be e�cient.

While these works give an overview on the models' sensitivity of di�erent frequencies for

di�erent datasets as well as the role of frequencies for adversarial robustness, none of these

works [8, 20, 36, 66, 84, 99] is JPEG-related as they mainly perturb images in their RGB

pixel representations and just mask the gradients of some DCT/DFT frequencies.

47



3 Adversarial Perturbations straight on

JPEG coe�cients

There are four main motivations for us to execute adversarial attacks straight on JPEG

coe�cients. First, JPEG (usually) uses the YCbCr color space instead of RGB. The

existing JPEG and frequency attacks that were described in sections 2.2.2 and 2.5 still

(mainly) apply the perturbation on the RGB pixel representation. Recently, Pestana

et al. [74] analyzed the importance of the luma channel for adversarial attacks. They

found that when attacking in the RGB domain, the perturbations are concentrated in

the luma channel and when perturbing only the luma channel, the success rate is higher.

They explain this by neural nets mainly relying on textures for their predictions and the

fact that those shapes and textures are more concentrated in the luma channel. Therefore,

attacking the YCbCr channels independently is a main motivation for attacking on JPEG

coe�cients.

The second motivation is the fact that lossy image compression algorithms try to sep-

arate perceivable from imperceptible data. JPEG compression does so by the chroma

subsampling and, more importantly, separating low frequencies from high frequencies

that are less important for human perception to enable an e�cient entropy encoding. As

explained in section 2.2.2, some attacks related to JPEG compression use RGB pixel and

include an approximation of JPEG compression in the target model [86], or only trans-

form to JPEG coe�cients after the main perturbation has happened on RGB pixels [85].

While there have been some works that perturbed straight on JPEG coe�cients [48, 58],

they only use it as one example of many to simulate a threat model that has been un-

seen during training. Works that analyzed the e�ect of perturbing spatial frequencies

di�erently for attacks and defenses [8, 20, 36, 66, 84] are often limited by only allowing

boolean masking vectors and use the RGB pixel representation which means that some

perturbations will be removed during JPEG compression. Additionally, those works do

not contain a quantitative evaluation of the perceptual distance. They mainly use the
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input parameter ε to compare the attacks' success which is problematic especially when

perturbing di�erent frequencies.

Third, one major advantage of perturbing straight on JPEG coe�cients is that the

transformation of JPEG coe�cients to RGB pixels is di�erentiable, because RGB pixel

values do not necessarily have to be rounded: Although some works quantize the RGB

output of the attacks, e.g. [81], to simulate saving the images, we assume the data to

be saved in JPEG format and thus, the RGB data can be unquantized. Therefore, we

can perturb on JPEG coe�cients but integrate the JPEG to RGB transformation into

the source model, and use a standard RGB net. This could be especially advantageous

when perturbing coe�cients of lower quality to bypass JPEG compression in defense, as

the rounding approximation has a bigger impact here than for quality 100.

At last, we believe that the variability of our attack that follows from using channel-wise

perturbation budgets, and the masking vectors that allow to perturb di�erent frequencies,

can help making adversarially trained nets more robust against perturbations on all

frequencies, and thus, can lead to better generalization.

We will now de�ne the technical details of our proposed attack method. To be able to

compute gradients for JPEG coe�cients, we design a di�erentiable conversion of JPEG

coe�cients to RGB pixels. In Shin and Song [86]'s paper, the reverse approach is applied,

which requires the use of a rounding approximation. As the di�erentiable JPEG to RGB

conversion allows us to attack straight on JPEG coe�cients, there is no need to include

an approximation of JPEG compression into the source model as in [86] or, make the

perturbation robust towards JPEG compression by a sophisticated rounding scheme as

in [85]. Thus, our method is technically straightforward.

To convert JPEG into RGB, we build a neural network of convolutional layers of �xed

weights. First, the Coe�cients are reordered using a 1 × 1 convolution with 64 output

channels, reversing the zig-zag. Then, the 64 coe�cients are reshaped as an 8×8 matrix.

For every channel, the coe�cients are then dequantized by multiplying them with the

corresponding quantization matrix Qjq. In the next step, the inverse discrete cosine

transform computes pixel values from coe�cients. The blocks are then put together

using a transposed convolution with 1 �lter, 8 × 8 kernel size and 8 × 8 strides for the

luma channel and 16× 16 for the chroma channels, if they are downsampled (and 8× 8

otherwise). Now, a YCbCr image was reconstructed and can then be converted to RGB.

In the following, we will denote this transformation as rgb(x) for JPEG image x. The
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reverse transformation can be implemented correspondingly, but the coe�cients have to

be rounded after quantization.

We de�ne JPEG versions of both maximum-con�dence and minimum-norm attacks that

perturb the coe�cients of step 6 of the compression procedure explained in section 2.2.1.

So, let

xjq = (Y,Cb, Cr) (3.1)

a quantized JPEG image of quality jq. For an image of shape h× w, the luma channel

Y has shape (h/8, w/8, 64), the chroma channel has shape (h/16, w/16, 64) if chroma

subsampling is used, and (h/8, w/8, 64) if not. The main di�erence in implementation

between RGB attacks and JPEG attacks is that the gradients have to be computed for

all three variables Y,Cb, Cr
1 and separate update steps are made for the three channels

using di�erent step sizes.

3.1 Maximum-Con�dence JPEG attacks

In maximum-con�dence attacks, the perturbation is limited by some Lp-ball. To enable

individual control over the perturbation made on each channel, we de�ne three Lp-balls.

In the case of L∞-attacks, which we will focus on in this section, we thus de�ne six

variables, three relative perturbation budgets εrelY , εrelCb
, εrelCr

∈ R≥0 and three masking

vectors λY , λCb
, λCr ∈ [0, 1]64 that limit the relative perturbation made on each channel,

where the ε values control the amount of perturbation made on each channel and the λ

values determine how much perturbation is permitted for every frequency2.

From these relative budgets and the masking vectors, we then compute absolute limits

by

εabsY = εrelY · λY ·max(|Y |, 1)

εabsCb
= εrelCb

· λCb
·max(|Cb|, 1)

εabsCr
= εrelCr

· λCr ·max(|Cr|, 1). (3.2)

1The reasons for this are practical, as tensors of di�erent shapes (luma, chroma) cannot be combined
to a single tensor. When not using chroma subsampling, it would be possible to implement it using
one gradient computation only. However, we use the same implementation for both versions.

2In our experiments, we will denote the relative budgets as ε as well.
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3 Adversarial Perturbations straight on JPEG coe�cients

We use the maximum of the original coe�cients and 1 as the coe�cients to allow per-

turbation even if the original coe�cient is 0.

Alternatively, the coe�cients with value 0 can also be �xed by computing the absolute

perturbation budgets by

εabsY = εrelY · λY · |Y |

εabsCb
= εrelCb

· λCb
· |Cb|

εabsCr
= εrelCr

· λCr · |Cr|. (3.3)

We will compare the success of both versions in our experiments. For iterative attacks,

the relative step sizes are converted to absolute ones in the same way using αs instead

of εs.

These values εabsY , εabsCb
, εabsCr

∈ R(h/8)×(w/8)×64
≥0 , 3 then have the same shape as the corre-

sponding coe�cient vectors and limit the perturbation by

LB
∞(

Y − Y ′

Y
) ≤ ⌈εrelY λY ⌉

LB
∞(

Cb − C ′
b

Cb
) ≤ ⌈εrelCb

λCb
⌉

LB
∞(

Cr − C ′
r

Cr
) ≤ ⌈εrelCr

λCr⌉, (3.4)

where LB
∞ computes the norm across all 8× 8 block for each frequency separately.

In a previous work [88], we used an absolute ε only. This led to much more di�cult

control of the perturbation across frequencies as low-frequency coe�cients usually have

a much higher absolute value and when the lambda values had higher values on low

frequencies this did not lead to the strongest relative perturbation being made on these

frequencies, which made argumentation more di�cult. Details on this problem can be

found in appendix A.

3Note that this assumes that chroma subsampling is not used. Otherwise, εabsCb
, εabsCr

∈ R(h/16)×(w/16)×64
≥0 .
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3 Adversarial Perturbations straight on JPEG coe�cients

For BIM, a single perturbation step is de�ned by

Y ′
t = Y ′

t−1 + sign(∇Y ′
t−1

(J(rgb(x′t), y))) · αabs
Y

Cb
′
t = Cb

′
t−1 + sign(∇Cb

′
t−1

(J(rgb(x′t), y))) · αabs
Cb

Cr
′
t = Cr

′
t−1 + sign(∇Cr

′
t−1

(J(rgb(x′t), y))) · αabs
Cr

, (3.5)

where rgb(x) denotes the transformation from JPEG to unquantized RGB data for JPEG

image x.

After the T iterations, the coe�cients are projected into each Lp-ball. Then, they are

rounded, either to the nearest integer, or using the fast adversarial rounding scheme

from [85]. We will analyze the e�ect of both in the experiments.

3.2 Minimum-Norm JPEG attacks

We convert only one of the minimum-norm attacks mentioned in chapter 2 to JPEG:

The PerC-AL by Zhao et al. [102]. The PerC-AL does not require projection into some

Lp-ball, which would be di�cult to design with the three independent YCbCr chan-

nels, and is usually quicker than the C&W-L2-attack. Remember that the PerC-AL

used two step sizes αl, αc for the two alternating steps - maximizing the model loss

and minimizing the distance (see eqs. (2.32) and (2.33)). As we still want to control

the perturbation for each channel and frequency individually, we assume six input step

sizes αl,rel
Y , αl,rel

Cb
, αl,rel

Cr
, αc,rel

Y , αc,rel
Cb

, αc,rel
Cr

and three masking vectors λY , λCb
, λCr . The in-

put step sizes are then converted to absolute step sizes in the same way as before (see

eq. (3.2). If the image is adversarial, the luma channel is updated by

gY = ∇Y ′
t−1

J(rgb(x′t−1), y)

δY,t = δY,t−1 + αl,abs
Y · gY

||gY ||2
, (3.6)
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3 Adversarial Perturbations straight on JPEG coe�cients

and correspondingly for both chroma channels. If the current image x′t−1 is not adver-

sarial, though, it is updated by

d = −|| ciede2000(rgb(x′t−1), rgb(x))||2
gY = ∇Y ′

t−1
d

δY,t = δY,t−1 + αc,abs
Y · gY

||gY ||2
. (3.7)

The PerC-AL-Attack can be easily adapted such that it minimizes the LPIPS distance

instead of CIEDE2000, which is still a pixel-wise distance metric. Thus, we implement a

variant of PerC-AL, LPIPS Alternating Loss (LPIPS-AL), for both RGB and JPEG

and include it in our experiments.
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4 Experiments and Results

In this chapter, we will analyze the e�ciency of our method for various parameters, com-

pare it to state-of-the-art attacks and measure its suitability for adversarial training. We

start with describing our experimental setup in section 4.1. Then we will evaluate the

suitability of some perceptual metrics in section 4.2, followed by the main part of our ex-

periments where we will �rst address maximum-con�dence attacks in section 4.3 and then

minimum-norm attacks in section 4.4. Finally, section 4.5 will focus on whether using

our JPEG attacks during adversarial training can increase the model's robustness.

4.1 Implementation and Experimental Setup

All our main experiments are generally implemented in Tensor�ow [1]. When models are

only available for PyTorch [73], such as the Perceptual Adversarial Training model [58],

we convert the net's input to PyTorch and convert the output back to Tensor�ow such

that we can evaluate the results. Our code and notebooks, including all our experiments,

are available at https://github.com/KoljaSmn/jpeg-adversarial-attack-

masterthesis.

Neural Networks & Adversarial Training For our experiments, we generally use

ResNets [38] and DenseNets [42]. ForCifar10, we use a ResNet56-V2 and a DenseNet100,

both implemented by [7]. For Imagenet, we use the pretrained ResNet152-V2 and

DenseNet201 implementations from Tensor�ow [1].

For adversarial training, we generally use batches that consist of half original and half

adversarial images as proposed by [55]. Other researchers often use batches that only

contain adversarial images, which leads to better robustness but worse accuracy on the

original images. Tsipras et al. [93] compared both versions.
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4 Experiments and Results

We use the adversarial training from Madry et al. [65] that uses the Basic Iterative

Method to create adversarial examples. For the standard RGB training, we use ε = 8,

α = ε
4 and T = 7. The nets are pretrained on the original data. The Cifar10 net is

trained for 100 epochs, but only the net with the lowest validation loss is saved. The

same applies for Imagenet, where the training runs for only 20 epochs though.

A DenseNet defended with Madry et al.'s RGB adversarial training, is denoted as

DensenetRGB
M . A DenseNet that is defended by applying JPEG compression to the

input at inference time is called Densenetjq75, where 75 would be the jpeg quality in this

example.

LPIPS For our LPIPS version, we use a pretrained VGG16 model from Tensor�ow1.

The net expects input of shape 224 × 224 × 3. Thus, the input images (e.g., 32 × 32

Cifar10 images) are reshaped using bilinear interpolation.

The LPIPS model is then trained by �xing the VGG16's weights and adding the distance

computation from eq. (2.30). The distances are then put into the trainer model G that

is built exactly as described in section 2.3.2 which enables training on the 2AFC dataset

from [101].

As in the original implementation2, we use an initial learning rate of 1e−4 that is linearly

decayed. The model is trained for 5 epochs.

Attack Implementation and Parameters We generally use our own implementa-

tions for the attacks. The DDN and PerC-AL implementations are converted to Tensor-

�ow from the original PyTorch implementations3. For C&W-L2, we use the implemen-

tation from Cleverhans [72].

For minimum-norm attacks, we generally use the default parameters. For DDN and

PerC-AL we limit the number of iterations to 100.

1As in the original implementation, the following layers are used to compute the distances: block1_-
conv2, block2_conv2, block3_conv3, block4_conv3, block5_conv3

2https://github.com/richzhang/PerceptualSimilarity/blob/master/lpips/
trainer.py

3DDN: https://github.com/jeromerony/adversarial-library/blob/main/adv_lib/
attacks/decoupled_direction_norm.py,
PerC-AL: https://github.com/ZhengyuZhao/PerC-Adversarial/blob/master/perc_
al.py
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4 Experiments and Results

For the maximum-con�dence attacks, our parameter selection di�ers from the original

one. For BIM, Kurakin et al. [56] recommended to use α = 1 and T = min{ε+4, 1.25ε}.
Such a natural α selection does not exist for our JPEG attacks, though, as it is a relative

perturbation budget that also di�ers across frequencies. Thus, for our experiments, we

use a constant number of iterations T = 10 for both RGB and JPEG attacks and set

α = ε
T .

For the minimum-norm attacks, we use T = 100 iterations for all attacks. For the C&W-

L2, 5 binary search steps are executed. All RGB attacks use the original step sizes.

The step size selection for the JPEG attacks will be explained later. For Cifar10, the

attacks are performed using four con�dence values: 0, 10, 20, 40. For Imagenet, only

one attack with con�dence κ = 0 is performed.

Whenever we do not specify a JPEG quality for our JPEG attacks, quality 100 is used

such that every entry in the quantization matrices equals 1.

Attack Evaluation As mentioned before, comparing attacks using the perturbation

budget does not �t the actual goal of adversarial attacks which is being perceptually close

to some original image. Additionally, as the input parameters for RGB and coe�cient

attacks are not comparable we are also forced to use perceptual distances to compare

the attacks' success. In our experiments, we generally increase some parameter (e.g. the

perturbation budget), measure the resulting perceptual distance and the success rate

and then plot the success rate in dependence of the perceptual distance. We also call the

relation between the attack's success and the perceptual distance the e�ciency of the

attack.

For Cifar10, we always use the complete test dataset consisting of 10000 images for

our experiments. For Imagenet, we only use 10000 of 50000 images from the validation

dataset. The classes are equally distributed such that each of the 1000 classes occurs ten

times in the dataset.

4.2 Perceptual Metrics

In this section, we will evaluate our perceptual metrics' suitability for measuring human

perception. We use the same evaluation metrics as used in the original LPIPS paper [101].

They were already described in section 2.3.3. For the 2AFC datasets, where each entry
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contains the reference image r, two image patches p0, p1, and the percentage of humans

p that perceived patch 1 as closer to the reference image than patch 0, the perceptual

metric receives score p if d(r, p0) < d(r, p1), and 1 − p otherwise. For the JND dataset,

the score computes the area under the precision-recall curve.

Additionally, we will measure the correlation between the distances and the human judge-

ment scores. Correlation has the advantage that it does not only consider which distance

is smaller, but also the di�erences between the distances. In addition to SSIM, RGB L2

and our trained LPIPS version, which were already evaluated in [101], we will also include

L2 distances for CIEDE2000 and CIELAB. For the 2AFC dataset, table 4.1 shows the

results. The human score is computed as in [101]: If p percent of the humans perceive

patch 1 as closer to the reference image than patch 0, a human would be expected to

achieve a score of p2+(1−p)2. As already mentioned, the RGB L2 distance is not a good

measure of human perception. In terms of both the score and the correlation, it does not

perform well. The same applies to SSIM, which has a better correlation than RGB L2

though. CIELAB L2 and CIEDE2000 L2 perform similarly as CIELAB yields the better

score, but CIEDE2000 correlates better. Overall, all L2 distances as well as SSIM achieve

very similar scores. The LPIPS distance, which is based on a VGG16 net, outperforms

all of them signi�cantly and almost reaches the score expected for humans.

Metric Score Correlation
SSIM 0.681 0.467
RGB L2 0.687 0.417
CIELAB L2 0.705 0.498
CIEDE2000 L2 0.697 0.500
LPIPS 0.763 0.684
Human 0.826 1.

Table 4.1: Evaluation of perceptual met-
rics on the 2AFC dataset
from [101].

Metric Score Correlation
SSIM 0.565 -0.505
RGB L2 0.618 -0.465
CIELAB L2 0.582 -0.438
CIEDE2000 L2 0.590 -0.482
LPIPS 0.673 -0.615

Table 4.2: Evaluation of perceptual
metrics on the JND dataset
from [101].

The results for the JND dataset are shown in Table 4.2. In this case, the RGB L2 distance

achieves a better score than CIELAB and CIEDE2000 L2. However, the CIEDE2000 L2

distance's correlation is better. Again, LPIPS achieves the best results by far.

For the adversarial JND dataset from [58], we only use those entries where the images are

not identical. Table 4.3 shows the corresponding results. Again, LPIPS performs best

by far. In this case it is followed by the RGB L2 distance. Overall, it is surprising how
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Metric Score Correlation
SSIM 0.877 -0.495
RGB L2 0.887 -0.616
CIELAB L2 0.881 -0.570
CIEDE2000 L2 0.882 -0.573
LPIPS 0.901 -0.688

Table 4.3: Evaluation of perceptual metrics on the adversarial JND dataset from [58].

close the 3 L2 distances are as we expected RGB L2 to perform signi�cantly worse. The

performance depends on how the dataset is constructed. If every (perturbed) image in

the dataset is perturbed in RGB space, the RGB Lp distance could possibly be a decent

measure. If however, e.g., YCbCr is used, RGB might not be a well-suited color model for

measuring the distance. This is supported by the superior performance of CIEDE2000

on the 2AFC dataset from Zhang et al. [101] which is created by perturbing images in

various ways. Thus, collecting a 2AFC dataset of adversarial images that were perturbed

on di�erent color channels, might be an interesting topic for future work. Following

these results, we will mainly use the LPIPS distance in our experiments. However, when

there are signi�cant di�erences between the results using the LPIPS distance and the

CIEDE2000 L2 distance, we will touch upon that.
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4.3 Maximum-Con�dence Attacks

Signi�cant parts of this section have already been addressed in our previous work [88].

The most important di�erences are that we now use relative change budgets instead of ab-

solute ones, distinguish between white-box and black-box attacks, use LPIPS in addition

to CIEDE2000 L2 distance, and have added some further experiments. Although these

changes cause signi�cant di�erences in the results, some arguments and justi�cations,

especially with regard to the success of di�erent weighting vectors and the comparison

with YCbCr and RGB attacks, are very similar and some are completely adopted and

only supplemented.

Here, we start with comparing the RGB attacks FGSM, BIM and MI-FGSM. Figure 4.1

shows the results. In dependence of the input parameter ε, MI-FGSM is the most suc-

cessful attack in the black-box setting, which it was designed for as well. However, when

perceptual color distance is used for comparison, BIM is slightly more successful. This

is because MI-FGSM changes the direction of optimization less often since it uses the

cumulated gradients instead of the current ones, and thus, leads to more perceived distor-

tion. So, while MI-FGSM maximizes the success in dependence of ε, it also increases the

perceptual distance. This illustrates the unsuitability of the L∞ distance for comparing

attacks. As we try to maximize the relation between success and the perceptual distance,

we will use BIM in the following.

4.3.1 Optimizing parameters to �nd our best attack

Before comparing our best attack with state-of-the-art attacks in section 4.3.2, we will

�rst analyze various parameter selection for our attack regarding their e�ciency in several

settings. First, we will examine di�erences between perturbation on the three YCbCr

color channels and how chroma subsampling a�ects the attack's e�ciency. Then, we

will analyze whether it is advantageous to attack unquantized coe�cients instead of

quantized JPEG coe�cients, followed by an experiment on how fast adversarial rounding

in�uences the e�ciency of the attack. Subsequently, we determine in which parts of

the frequency spectrum the perturbation should be concentrated in order to optimize

the attack's success. This will be split into two parts in which we �rst use manually

de�ned frequency weighting vectors and then try to learn optimal weighting vectors.

Then, we try to remove visible JPEG blocks to improve the JPEG adversarial examples'
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Figure 4.1: Cifar10 - Comparison of RGB maximum-con�dence attacks. Adversarial
images are created on an undefended Resnet. Success rates are measured on
an undefended Densenet.

perceptual quality. Finally, we analyze how �xing 0-coe�cients in�uences the e�ciency

of the attack.

Varying Luma and Chroma Perturbations

First, we analyze how successful attacks are across color channels. For this, we perform

attacks for which one of εrelY , εrelCb
, εrelCr

is gradually increased, while the other two are set

to zero. Additionally, an attack with εrelall = εrelY = εrelCb
= εrelCr

is performed, where εrelall

is gradually increased. The results are illustrated in �g. 4.2. For now, the attacks are

unmasked such that λall = 1.

The same process is carried out for YCbCr pixel attacks. They are de�ned in a similar

way as our JPEG attacks: We still use three variables for the three channels. However,

the perturbation is applied pixel-wise as for RGB attacks. Thus, we do not need the

distinction between relative and absolute perturbation budgets. Later, de�ning these

YCbCr attacks will allow us to analyze whether the advantages or disadvantages that

JPEG attacks have compared to RGB are reasoned in the use of the YCbCr color model

or the use of coe�cients.
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Figure 4.2: Cifar10 - Success rates for unmasked BIM on an undefended DenseNet.
Images are created on a ResNet. The JPEG attacks use chroma subsampling,
which shifts the graph on the x-axis. For comparison, attacking images with
RGB FGSM and ε = 8 results in an average CIEDE2000 L2 distance of 187.

In this case, the results di�er depending on which perceptual distance is used. In de-

pendence of the CIEDE2000 L2 distance, perturbing the luma channel is most successful

while perturbing only one chroma channel barely in�uences the net's accuracy, even when

it is undefended. This is consisitent with the results presented by Pestana et al. [74] re-

garding YCbCr attacks and implies that the DenseNet mainly uses luma information for

classi�cation, including the main information for shapes and textures, which are known

to be most relevant for neural nets' classi�cations [30, 74] and the human perception,

which is why the chroma channel is usually subsampled in JPEG compression. An ex-

ample is shown in �g. 4.3. The three YCbCr channels are visualized for two images. The

luma channel contains much more detailed information that is much more useful and

in these cases su�cient for detecting the object, while the information in the chroma

channels is more blurry, especially for the Imagenet example.

In dependence of the LPIPS distance though, the εall- and εY -attacks are much closer

in terms of success. In case of the JPEG attacks, the εall-attack is even slightly more

successful. So, CIEDE2000 seems to weight chroma perturbations stronger than luma

perturbations in comparison to LPIPS. Still, the di�erence between luma/all perturba-

tions and chroma perturbations remains big.
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Full Image Y Cb Cr

Figure 4.3: Illustration of YCbCr channels for a Cifar10 (top) and an Imagenet (bot-
tom) image.

Another interesting �nding is that for JPEG attacks the di�erence between only perturb-

ing the luma channels and perturbing all three channels is much smaller than for YCbCr

pixel attacks. We explain this by applying relative perturbations. When applying abso-

lute perturbations for JPEG attacks, the di�erence was much bigger as well, as shown

in �g. A.1 in appendix A. This is only logical as chroma coe�cients usually have much

smaller absolute values (see �g. C.1) such that perturbing them by the same absolute

value as the luma channel is not reasonable. Thus, using a relative εrelall leads to more

successful attacks. So, in general adversarial perturbations should be concentrated in the

luma channel. When attacking all channels, the chroma perturbations should be smaller

than on the luma channel. By using the relative perturbation budgets, our JPEG attacks

ensure this implicitly.

Until now, we either set εrelY = εrelCb
= εrelCr

or two of them were set to 0. Now, to

examine whether the success can be maximized by choosing εrelY > εrelCb
, εrelCr

> 0, we make

an experiment where εrelCb
, εrelCr

= γεrelY and γ is continuously increased. The results are

visualized for both CIEDE2000 and LPIPS in �g. 4.4. Again, we make the observation

that the CIEDE2000 metric puts less weight to luma perturbations: In dependence of

the CIEDE2000 L2 distance, the strongest attack only perturbs the luma channel, as just

increasing εY results in a better ratio between success and distance than increasing γ. In
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Figure 4.4: Cifar10 - Success rates for unmasked JPEG BIM in dependence of the per-
ceptual distance. For the fraction attacks, the fraction γ ∈ [0, 1] is increased
further and further, and εrelCb

, εrelCr
= γεrelY . The results di�er depending on the

distance metric used.

dependence of the LPIPS distance though, increasing γ yields a slightly better relation

than increasing εY for luma-only attacks, at least for the undefended net.

Chroma Subsampling

While in the previous experiment we used JPEG coe�cients whose chroma channels were

subsampled, this led to a signi�cant perceived perturbation even if εrelall = 0, which caused

the shift on the x-axis. There are versions of JPEG that allow the chroma channel not to

be subsampled. When using such a version in attack, the perceived distance is lowered,

as �g. 4.5 suggests. For bigger distances, the success rates of both versions converge.

When JPEG compression is used as a defense technique and εrelCb
, εrelCr

̸= 0, using chroma

subsampling in the attack can be useful as well. Otherwise, some perturbations might

be removed during the subsampling process. Figure 4.5b illustrates the e�ect of chroma

subsampling on a net defended with JPEG compression. For the attack on all channels,

the success of the attack using chroma subsampling exceeds the success when not using

chroma subsampling for bigger perturbations. For small perturbations, the distance that

results from the chroma subsampling itself leads to the attack being less successful in
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Figure 4.5: Cifar10 - Success rates for unmasked BIM in dependence of the LPIPS
distance on an undefended DenseNet, with and without chroma subsampling.
Images are created on a Resnet.

dependence of the perceptual distance. However, one can question whether it makes sense

to measure distances between, on the one hand, an original, uncompressed image, and on

the other hand, an adversarial, compressed image. In practice, a classi�er would probably

either expect compressed JPEG images, which implies that the original image would be

compressed as well, or uncompressed images. Whether to measure the distance between

two compressed images or a compressed and an uncompressed one is thus dependent on

how the attack is performed practically.

In the following, we will disable the use of chroma subsampling in the attack since we

try to measure the adversarial perturbation only. Using chroma subsampling would only

slightly shift the curves though, as shown in �g. 4.5.

Quantized vs. Unquantized Coe�cients

As described in section 2.2.1, most of the compression takes place through the quantiza-

tion of the coe�cients. When attacking quantized coe�cients, this leads to a signi�cant

perceptual distance for lower JPEG qualities even if no adversarial perturbation is ap-

plied. Thus, this experiment analyzes whether and when it can be bene�cial to attack

unquantized coe�cients. So, we work on coe�cients that are computed in the same way

as explained in section 2.2.1, but without the rounding in eq. (2.25).
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Figure 4.6: Cifar10 - Success rates on various nets for unmasked BIM on the luma
channel in dependence of the LPIPS distance. The attacks are performed on
quantized or unquantized coe�cients, and for two jpeg qualities. Images are
created on a Resnet.

Figure 4.6 illustrates the e�ectiveness of unmasked JPEG attacks on unquantized and

quantized coe�cients for jpeg qualities 75 and 100, in the white-box setting (�g. 4.6a)

and in the black-box settings for two models defended with JPEG compression (�gs. 4.6b

and 4.6c, respectively). In the white-box setting, the attack on unquantized coe�cients

of quality 75 is most successful, and surprisingly, more successful than the attack on

unquantized coe�cients of quality 100 as well. Possibly, this is due to the distribution

of perturbations on frequencies: From the computation of the absolute perturbation

budgets in eq. (3.2) follows that the absolute budgets on higher frequencies that have

amplitude 0 are set to 1. Thus, the absolute perturbation budgets decrease for low

frequencies when the JPEG quality is lowered but often remain 1 on high frequencies.

Therefore, perturbations should be more concentrated in high frequencies, which might

increase the success on the undefended net as we will analyze later. The same e�ect

should apply to quantized coe�cients of quality 75 as well, but here, the quantization

leads to a signi�cant shift on the x-axis already.

For the black-box setting, we measured success rates on two models defended with JPEG

compression, one with quality 75 and one with quality 50. For attacks using quality 100,

the di�erence is only minimal. When using quality 75 in the attack, the perceptual

di�erence that results from the quantization step signi�cantly shifts the curves on the

x-axis. Surprisingly, even when using JPEG compression in defense, the use of quantized

coe�cients does not necessarily imply a higher success rate. Only when the quality used

in defense is low enough (50), the attack on quantized coe�cients is more successful,
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and only for bigger perturbations. As in the previous experiment, we have to mention

that it is di�cult to compare compressed (quantized) and uncompressed (unquantized)

data, as a classi�er would expect either compressed or uncompressed data in a practical

setting.

If only the relationship between success and distance is to be optimized, these results

imply that unquantized coe�cients should always be used. However, if a classi�er expects

compressed data in practice, the distance between the uncompressed original and the

compressed adversarial image becomes irrelevant and, quantized coe�cients should be

used. As this work is about JPEG coe�cients, we will focus on quantized coe�cients in

the following.

Fast Adversarial Rounding

Until now we rounded the coe�cients to the nearest integer at the end of the attack.

Rounding at least some coe�cients in the gradient's direction using Shi et al.'s fast

adversarial rounding [85] might lead to bigger success though. Figure �g. 4.7 compares

JPEG attacks without fast adversarial rounding to those where fast adversarial rounding

is enabled. For FGSM, fast adversarial rounding slightly improves the attack's e�ciency.

For BIM, however, both versions are equally successful. Possibly, this is because the

coe�cients are already near to their local optimum using theBasic Iterative Method.

Thus, the fast adversarial rounding rounds most of the gradients to the nearest integer

anyway. Using the one-step method FGSM, the coe�cients are usually not as close to

their local optimum. Therefore, the fast adversarial rounding makes more of a di�erence

here.

It should be mentioned that we only experimented using one η value, 0.05, and there

might be other choices that slightly improve the attacks' success, especially for FGSM.

However, we would not expect a signi�cant improvement from these results. For that

reason, we disable the fast adversarial rounding in our JPEG attacks in the following

experiments.

Varying perturbations across frequencies

Being able to control how the perturbations are distributed across frequencies was a

major motivation for proposing JPEG attacks. Here, we will analyze on which frequencies
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Figure 4.7: Cifar10 - Success rates for unmasked JPEG attacks in dependence of the
LPIPS distance on the Densenetjq50, with and without fast adversarial round-
ing (FAR). Images are created on a Resnet.

the perturbations must be concentrated to receive the most e�cient attack on di�erent

models.

Usually, adversarial attacks are assumed to be a high-frequency phenomenon as adver-

sarial perturbations on RGB images are concentrated in high frequencies and, thus, as

high frequencies are known to be less important than lower frequencies for human per-

ception, one could argue that adversarial attacks that mainly perturb high frequencies

could change a net's classi�cation without being visible to humans as they could be

perceived as noise and therefore be more e�cient. This does however assume that for

neural nets higher frequencies are more important for the classi�cation process than for

human perception. Otherwise, small perturbations made on high frequencies might not

impact the net's classi�cation signi�cantly. Indeed, Yin et al. have shown that neural

nets can rely on high-frequency components that are barely visible for human beings [99],

However, which frequencies the net relies on depends on the dataset and how the net

was trained. For example, adversarial training can lead to the model relying more on

low frequencies [66, 99].

The previous works [8, 36, 66, 84] that analyzed the success of adversarial attacks on

di�erent frequencies only used the input parameter ε and L2 distances to compare the

success but did not quantify the perceptual distance of attacks on di�erent frequencies.

Thus, it also seems possible that perturbations that are concentrated in lower frequen-
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Figure 4.8: Cifar10 - Average relative perturbations made by RGB BIM (ε = 8) on
JPEG frequencies for the Cifar10 dataset on di�erent source models. The
numbers on the x-axis describe the post zig-zag order of frequencies. The
attacked images and the original were converted to JPEG images and the
relative perturbation is the given by |Y ′−Y

Y+1 | for luma and correspondingly for
chroma channels.

cies are actually more perceptually similar, given that low-frequency components are

perceived as less prominent when high-frequency components are visible at the same

time, which is the basis of the hybrid images [70] mentioned before. This could lead to

higher e�ciency when stronger perturbations are made on low frequencies. Thus, we

believe the analysis of the e�ect of controlling the perturbations across frequencies could

yield interesting results, especially in combination with using a distance metric that is

not pixel-based.

Additionally, we hope that low- or medium-frequency attacks are capable of bypassing

JPEG compression used in defense, as JPEG compression predominantly eliminates high-

frequency perturbations.

First, we will analyze how perturbations made by RGB BIM are distributed across fre-

quencies. Note that similar experiments have been mentioned in the related work in

section 2.5 already.

Figure 4.8 illustrates the relative perturbation on each frequency made by RGB BIM

when images are crafted on the undefended or on the the adversarially trained Densenet.

The undefended net is sensitive towards high-frequency perturbations forCifar10. Thus,

the perturbations are concentrated in high frequencies. The defended net, however, is

used to high-frequency perturbations and is therefore more reliant on low frequencies

which leads to more sensitivity on low frequencies. In the chroma channels, the per-

turbations are basically uniformly distributed when crafted on the adversarially trained

net. In the luma channel, the general structure is unchanged as the most relative pertur-

bations are still concentrated in high frequencies, but the ascent is much smaller. This

experiment complements recent �ndings made by, e.g. Yin et al. [99] and Maiya et al. [66]
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(a) qm ascent (b) medium (c) qm descent (d) unmasked

Figure 4.9: Frequency weighting vectors (λ). Unzigzagged.

who state that adversarial training might lead to robustness on high, but vulnerability

on low frequencies, at least for Cifar10.

To examine how these results transfer to our JPEG attack and how they could be used

to achieve better robustness with adversarial training, we further analyze the success

of attacks using di�erent frequency weighting vectors. We use the following weighting

vectors:

� unmasked, λ = (1, . . . , 1),

� qm ascent, which is based on the quantization matrix4 for quality 50, and computed

by dividing each entry by the maximum entry, λ = zigzag( Q
max(Q)),

� qm descent, computed by

v = 1 +min(Q)−Q

λ = zigzag(
v

max(v)
),

� medium, which concentrates the perturbations in medium frequencies. When using

absolute perturbations, the linear descent masking vector was the most successful

one. As absolute coe�cients are usually highest for low frequencies, this led to

perturbations that were concentrated in medium frequencies. We extracted the

resulting average relative perturbations, which resulted in this medium masking

vector.

The weighting vectors are illustrated in �g. 4.9. Figure 4.10 shows how the selection of the

masking vectors a�ects the actual relative perturbation on the coe�cients. In comparison

4We use the luma quantization matrix for all three channels.
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with RGB attacks (see �g. 4.8), where the distribution of perturbations across frequencies

depends on the source model, it is now manually controllable.

Figures 4.11 and 4.12 compare the e�ciency of each of these masking vectors in the black-

box setting, when used for luma attacks5. Figure 4.11 shows the e�ciency regarding the

LPIPS distance, �g. 4.12 uses the CIEDE2000 L2 distance. Each �gure includes the

results for Cifar10 and Imagenet. We start with analyzing the results for Cifar10.

On the undefended Densenet, applying stronger perturbations to high frequencies results

in the highest e�ciency for both LPIPS and CIEDE2000 L2. Stronger perturbations

on medium frequencies yield the second-strongest attack. Perturbations that are con-

centrated in low frequencies are the least e�ective in this setting. This corresponds to

the results from the analysis of the perturbations of the RGB attacks from above. The

undefended net is most sensitive towards high-frequency perturbations. Therefore, the

greatest success follows from these high-frequency perturbations.

Contrary, when JPEG compression is used in defense, concentrating the perturbations

in high frequencies is least e�cient in dependence of the LPIPS distance. In dependence

of the CIEDE2000 L2 distance, the ascent vector is still more successful than the descent

vector. However, the perturbations on medium frequencies are now the most successful

in both cases. This behaviour is as expected since the JPEG compression in defense

mainly removes high-frequency perturbations. The di�erences between the used distance

metrics imply that the CIEDE2000 L2 distance is implicitly more sensitive towards low-

frequency perturbations. On the adversarially trained net, the results also slightly di�er

depending on the distance metric used: Using the LPIPS distance, the success of the

weighting vectors is inverted compared to the undefended net: Stronger perturbations on

low frequencies now yield the e�ciency, while perturbations that are concentrated in high

frequencies result in the lowest e�ciency. Using the CIEDE2000 L2 distance, the general

trend of the results remains the same: The net is now more robust against high-frequency

perturbations, but here the most e�ective frequency weighting vector is the medium

vector. So, again, it seems that the LPIPS distance gives less weight to changes at lower

frequencies. Possibly, the low-frequency perturbations result in signi�cant di�erences in

the values of certain pixels which are less noticeable when the picture is viewed as a

whole. Thus, the CIEDE2000 L2 distance is quite high, while the LPIPS distance is not,

as has been shown in the example in �g. 2.15.

5Figure C.3 in appendix C shows the same plots for attacks on all three channels, but the results do
not di�er signi�cantly.
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Figure 4.10: Cifar10 - Average relative perturbations for JPEG and YCbCr BIM when
a relative perturbation budget is used, given by |Y ′−Y

Y+1 | for luma and cor-
respondingly for chroma channels, images are created on an undefended
ResNet. The x-axis represents the frequencies' post-zig-zag order.
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Figure 4.11: LPIPS e�ciency of JPEG BIM luma attacks with di�erent frequency weight-
ing vectors. The weighting vectors are illustrated in �g. 4.9.

In the white-box setting, we observe equivalent results, as shown in �g. 4.13. Again, the

ascent vector is the most successful on the undefended net. On the adversarially trained

net, it is the least successful though. In this case, however, the strong perturbations on

medium frequencies yield the highest success, even when measuring success in dependence

of the LPIPS distance. In general, the relative results should not di�er signi�cantly

between white-box and black-box settings when the nets are trained on the same original

datasets. As explained in section 2.1.2, the existence of adversarial examples is probably

due to non-robust, but useful features [45]. Thus, two nets that are trained on the same

datasets would be expected to learn similar non-robust features. In the case of Cifar10,

these are located mainly on high frequencies such that classi�ers that are trained using the

benign Cifar10 dataset are usually sensitive towards perturbations on high frequencies.

So, we can analyze results in the black-box settings and usually draw conclusions for

white-box settings as well.

In summary, for Cifar10, the adversarial training seems to bias the neural net to-

wards using more low-frequency information, such that high-frequency perturbations

have less in�uence on the model's output, but the net is now more vulnerable towards
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Figure 4.12: CIEDE2000 e�ciency of JPEG BIM luma attacks with di�erent frequency
weighting vectors. The weighting vectors are illustrated in �g. 4.9.
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Figure 4.13: Cifar10 - White-box success rates for JPEG BIM with perturbations on
the luma channel only, in dependence of the LPIPS distance.
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low-frequency perturbations, as already stated in [66, 99]. It has to be mentioned though

that the adversarial training is e�ective against low-frequency perturbations as well, as

the success rate for small and medium perturbations is reduced signi�cantly. This leads

us to asking whether a net can be trained to show more robustness on all frequencies,

and on which frequencies a net should ideally rely on. In general, a net should rely on

the same features as humans do to achieve robustness as a net that relies on exactly

the same features as humans would contradict the existence of adversarial examples. As

shown in �g. 2.17, the net trained with RGB adversarial training is already close to

human perception. Whether controlling perturbations across frequencies when creating

the images during adversarial training can lead to robustness across all frequencies and

thus, better generalization, will be analyzed in section 4.5.

For Imagenet, in contrast to Cifar10, the medium vector is signi�cantly more suc-

cessful than the ascent vector on the undefended net already (�g. 4.11). This indicates

that nets trained with Imagenet tend to rely more on lower and medium frequencies,

and thus they are more sensitive towards perturbations on those frequencies as already

pointed out by Maiya et al. [66]. On the net defended with JPEG compression, the

ascent attack is slightly less successful, which becomes more visible in dependence of the

CIEDE2000 L2 distance (�g. 4.12). However, when the perturbation is concentrated in

medium or low frequencies, JPEG compression is not an e�ective defense technique at

all, at least not when using JPEG quality 50.

On the adversarially trained net, the medium and ascent attacks are similarly unsuccess-

ful. The same applies to the descent attack as well, but in dependence of the CIEDE2000

distance, it is now slightly more successful than the medium and ascent attack. This is

surprising as for Cifar10, the LPIPS distance seemed to put less weight on low-frequency

perturbation than the CIEDE2000 distance does implicitly. This could be explained in

the sizes of the images. As the LPIPS distance uses a VGG-16 net, trained on Ima-

genet, the Cifar10 images are resized using bilinear interpolation, which could a�ect

the loss network's output.

For both distance metrics we again observe the trend that the adversarial training leads to

high robustness on high and medium frequencies, but the net is more vulnerable towards

low-frequency perturbations. So, while the Maiya et al.'s [66] argument that sensitivity

on each frequency is dataset dependent is correct, adversarial training still seems to

bias the net towards using even more low-frequency information, for both Cifar10 and

Imagenet.
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In summary, these experiments show that adversarial perturbations are not necessarily a

high-frequency phenomenon, as also stated in by Maiya et al. [66]. In fact, perturbations

that are concentrated in medium frequencies are more e�cient on all Imagenet nets

considered. The same applies for the Cifar10 nets defended by JPEG compression and

adversarial training, while they are just slightly less e�cient than the ascent attack on

the undefended net.

Learning Frequency Weighting Vectors

In the previous section, we used very simple frequency weighting vectors. Now, we try

to learn an optimal masking vector using a neural network. The net receives a fake

input which is just a single 1 and consists of only three dense layers with 64 neurons

each, which do not use bias or activations. By using 1 as input for the dense layers,

they just return their weights. We denote the weights as λnn
Y , λnn

Cb
, λnn

Cr
∈ [0, 1]64 and

λnn = (λnn
Y , λnn

Cb
, λnn

Cr
). Correspondingly, let ε = (εrelY , εrelCb

, εrelCr
).

The main target of learning the masking vectors is the maximization of the ratio between

the success rate or the model's loss and the perceptual distance, which is in this case

measured using the CIEDE2000 L2 distance. As maximizing the ratio would lead to

the distance being reduced by setting all weights to 0, we experiment with two di�erent

functions that constraint the weights vectors after each step of gradient descent. Both

have in common that they are �rst clipped to be ≥ 0. Then, the �rst option is to norm

the weights by dividing them by their maximum. The second option is to force them to

have a mean higher than some constant, we use 0.5. The model can then be trained in

di�erent ways:

The One-Step Ratio Trainer (OSR) uses the ratio of the model's loss and the image

distance as loss, which is de�ned as

− JTM(ADVSM,λnn,ε(x, y), y)

d(FGSMλnn,ε(x, y), x)
. (4.1)

As for every following trainer, ε is chosen randomly batch-wise and ADV is some adver-

sarial attack that is performed on some source model SM. The loss J can be evaluated on

di�erent model TM, but TM = SM is possible too. Then, the lambda model's weights λnn

are updated by descending the losses gradient. Distance function d uses the CIEDE2000
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L2 norm, but divides the CIEDE2000 distances by 120, which is chosen experimentally,

before computing the L2 distance.

TheOne-Step Sum Ratio Trainer (OSS) is a very similar trainer. The only di�erence

is that instead of the ratio, a sum,

− J(ADVλnn,ε(x, y), y) + d(FGSMλnn,ε(x, y), x). (4.2)

is optimized.

The Two-Step Trainer (TS) performs two steps of gradient descent in every iteration,

one for ascending the model's loss, and one for descending the image distance. Both

steps use the same step size.

We train nets for both an undefended white-box, and a defended black-box setting. For

the �rst case, TM = SM corresponds to an undefended ResNet. In the second case

the source model is the undefended ResNet, while the target model is an adversarially

defended DenseNet. We mainly use FGSM to create the adversarial images. All FGSM-

nets are trained for 10 epochs using batch size 100. Additionally, we use the FGSM

binary search for the One-Step Ratio Trainer (OSRBS). This could be bene�cial as the

binary search automatically minimizes the RGB L∞ distance, but guarantees success.

Thus, we can use the One-Step Ratio Trainer without worrying that just the distance is

minimized to maximize the relation of success and distance. However, this only works

for the white-box settings. The nets using binary search are trained for just 5 epochs

with a batch size of 20.

Table 4.4 summarizes how each model was trained and how the models are denoted.

First, we will analyze the weights that were learned by each trainer. They are illustrated

in �g. 4.14.

The e�ciency of each weighting vector is illustrated in �g. 4.15 for all trainers using the

max norm, and in �g. 4.16 for all trainers using the mean norm. Because of the high

number of trainers and results, we will only discuss the most interesting observations.

The success of all white-box trainers is virtually the same on the undefended DenseNet.

All of them concentrate the luma perturbation in high frequencies which is where the

undefended DenseNet is most vulnerable against, as already discussed. The perturba-

tion on the chroma channels varies between the trainers but is less important for the

misclassi�cation and, thus, the success varies only little.
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Figure 4.14: Learned frequency weighting vectors.
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Notation Attack Trainer Norm Source Model Target Model
OSRmax

wb FGSM One-Step Ratio max Resnet Resnet
OSSmax

wb FGSM One-Step Sum max Resnet Resnet
TSmax

wb FGSM Two-Step max Resnet Resnet
OSRmean

wb FGSM One-Step Ratio mean Resnet Resnet
OSSmean

wb FGSM One-Step Sum mean Resnet Resnet
TSmean

wb FGSM Two-Step mean Resnet Resnet
OSRmax

bb FGSM One-Step Ratio mean Resnet DensenetRGB
M

OSSmax
bb FGSM One-Step Sum mean Resnet DensenetRGB

M

TSmax
bb FGSM Two-Step mean Resnet DensenetRGB

M

OSRmean
bb FGSM One-Step Ratio mean Resnet DensenetRGB

M

OSSmean
bb FGSM One-Step Sum mean Resnet DensenetRGB

M

TSmean
bb FGSM Two-Step mean Resnet DensenetRGB

M

OSRBSmax
wb FGSM binary search One-Step Ratio max Resnet Resnet

OSRBSmean
wb FGSM binary search One-Step Ratio mean Resnet Resnet

Table 4.4: Notation of learned frequency weighting vectors.
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Figure 4.15: Cifar10 - LPIPS e�ciency of learned frequency weighting vectors for εall
attacks. All trainers that used the max norm are shown here, all that used
the mean norm are shown in �g. 4.16.
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Figure 4.16: Cifar10 - LPIPS e�ciency of learned frequency weighting vectors for εall
attacks. All trainers that used the max mean are shown here, all that used
the max norm are shown in �g. 4.15.

From the trainers trained for the white-box setting, the binary search trainers are the

most e�cient, for all three target models. Here, we do not have the problem that only

the distance or the success is optimized, as the binary-search attack implicitly chooses

the perturbation that causes minimal L∞ distortion to �nd a misclassi�cation. Despite

using one of the norms, using the One-Step Sum/Ratio Trainers could still favour one

over the other.

The Two-Step Trainer does not have these shortcomings as well. When trained for the

black-box setting, its e�ciency is the highest on the adversarially trained net for both

norms and the highest on the net defended with JPEG compression when the mean

norm is used. It stands out that for the black-box two-step trainers the learned weights

vary signi�cantly across the channels: While on the luma channel the weights are the

highest on the lowest frequencies, they are the highest on the higher frequencies for both

chroma channels. The former is in accordance to the results from the previous section

that showed that the adversarially trained net is vulnerable on low frequencies. But

apparently, this vulnerability is exclusively or predominantly on the luma channel. So,

using di�erent weighting vectors for luma and chroma channels, contrary to what we did

until now, might lead to even higher success.
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Trying to improve perceptual similarity

A problem of our attacks is that the created images sometimes contain clearly visible

JPEG blocks. Usually, this applies to images of a low JPEG quality. But when the

coe�cients are perturbed, this is also the case when using JPEG quality 100. As �g. 4.17

shows, these blocks mainly occur when lower frequencies are perturbed.

Original εY ascent εY medium εY descent εall ascent εall medium εall descent

Figure 4.17: Minimum perturbation required for a misclassi�cation by the Densenetjq50.
Images are created on a Resnet. Some images show clearly visible 8×8 jpeg
blocks.

We make various attempts to overcome this problem. First, we aim to reduce the per-

ceived distortion in regions of the image where it does not signi�cantly a�ect the predic-

tion. As our attack uses the gradient's sign only and not its absolute value, coe�cients

in �irrelevant� regions of the image are perturbed using the same relative step sizes as in

more important regions. This becomes problematic especially when the same frequency

is perturbed in di�erent directions for neighbouring blocks. In a �rst attempt to reduce

this distortion, we try to ensure that frequencies are not perturbed in di�erent directions

across the blocks. For that, we set every gradient that has a sign that is di�erent from

the one of the coe�cient with the maximum absolute value for the same frequency to 0.

Thus, for every frequency, every gradient is perturbed in the direction of the coe�cient

with the maximum absoulte value or it is not perturbed at all. We denote this method

as max direction or zero.

A second attempt (one block per frequency) is to only perturb one block per frequency in

each iteration. Frequency-wise, the block with the highest absolute value is perturbed,

while the other gradients are set to 0 again. Hereby, we try to avoid perturbations in

regions of the image where it barely a�ects the prediction.
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Figure 4.18: Cifar10 - LPIPS e�ciency on an undefended Densenet for attempts to
norm gradients to reduce perceived distortion.

In a third attempt (distribute across blocks), which is very di�erent from the others, we

do not use the sign of the gradient for perturbation, but its normed values. To avoid

strong perturbation in �irrelevant� regions of the image, we normalize the gradients in

the block dimension by dividing by the maximum for each frequency. So, the λ vector

is still used to distribute perturbations across frequencies, but now, the perturbation is

automatically distributed across the JPEG blocks using the values of the gradient.

Figure 4.18 compares the three attempts to the standard attack. The �rst two ap-

proaches, max direction or zero and one block per frequency are less e�cient than the

standard attack. The limitations on the attack's action space seem to be too strong for

e�cient perturbations. The third approach is slightly more e�ective than the standard

attacks, for all three weighted vectors. Here, the action space is not limited at all. In

fact, it is bigger than for the standard attack as the step size is adjusted automatically

based on the gradient's absolute value. Thereby, the attack can reduce the distortions

in regions of the image that are less relevant for the prediction. Figure 4.19 illustrates

in which blocks the standard attack and the distribute across blocks attack performs the

most relative perturbation. The distribute across blocks attack concentrated the per-

turbation in central regions of the images, while the standard attacks distributes them

uniformly across the JPEG blocks. As the relevant object is usually located in the center

of the images, the distribute across blocks can signi�cantly alter the model's prediction

without including irrelevant distortions in the background.
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(a) Standard Attack

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8)

(b) Distribute Across Blocks

Figure 4.19: Cifar10 - Distribution of average relative luma perturbation across blocks
for every frequency on the main diagonal in �g. 2.8a. Both vertical and
horizontal indices are given below the heatmaps. Size images have size
32 × 32, thus there are 4 × 4 blocks. The attacks were executed on 1000
Cifar10 images.

Another reason for the visible JPEG blocks can be that too much perturbation is ap-

plied to the lowest frequencies. Thus, �g. 4.20 shows an experiment where the �rst x

frequencies (in zig-zag order) where masked when applying the perturbation. However,

we cannot make general observations regarding the success of this attempt. The success

seems to depend on the target model and which frequencies it is vulnerable on towards

perturbations rather than the masking itself: On the undefended net, which is vulnerable

towards high-frequency perturbations, masking the lowest frequencies results in higher

e�ciency, but on the adversarially trained net it results in less e�ciency as the model is

vulnerable towards perturbation on exactly those low frequencies. On the net defended

with JPEG compression, the results depend on the weighting vector that is used, so we

cannot make a general statement.
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Figure 4.20: Cifar10 - LPIPS e�ciency on an undefended Densenet when masking per-
turbations on the lowest frequencies. Results are shown for the medium
(top) and the qm descent (bottom) weighting vector.

standard mdoz obpf dab mask 1 mask 3 mask 6

Figure 4.21: Minimum perturbation required for a misclassi�cation by the Densenetjq50.
Images have been created on a Resnet. The medium weighting vector was
used for all of the images. Perturbations are limited to the luma channel.
mdoz := max direction or zero, obpf := one block per frequency, dab :=
distribute across blocks.
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Figure 4.21 shows some sample images for all attemps discussed in this section. Indeed,

distributing the perturbation across blocks can reduce the perceived distortion in com-

parison to the standard attack signi�cantly as it avoids unnecessary perturbation in the

background which is especially clear in the top left of the second image where the JPEG

block is much less visible. Despite its e�ciency, we do not use the distribute across blocks

attack in the following, but the standard attack. In this example, masking the lowest

frequencies does indeed increase the perceptual similarity. However, as we have seen in

the quantitative results this is dependent on the target model and not a general fact.

Trying to bypass JPEG compression

In this section, we will try to �nd ideal parameters for bypassing JPEG compression in

defense. As we have already shown that luma attacks are stronger when JPEG compres-

sion is used in defense, we will focus on those.

As mentioned in chapter 3, we use two alternative ways of computing absolute from

relative perturbation budgets. Here, we will compare these two alternatives. Figure 4.22

illustrates the experiment for three JPEG qualities (100, 75, 50) used in attack. The

defense uses JPEG compression with JPEG quality 50. When not �xing coe�cients that

have value 0 (the dotted lines), the ascent attack is generally the weakest one, especially

for lower qualities. For JPEG quality 100, the medium masking vector is still the most

successful. The lower the JPEG quality used in the attack is, the more successful the

descent vector becomes, though. We think this is because of how we compute absolute

perturbation budgets from relative ones, because the perturbation budgets for high fre-

quencies increase in relative terms as the JPEG qualities increase. The same explanation

applies to the decrease of the ascent vector's success, as the perturbations concentrate

even more in high frequencies, such that they are removed during the JPEG compression

in defense.

In comparison to the attacks with �xed 0-coe�cients, there is barely any di�erences in

e�ciency between the two settings for JPEG quality 100. For lower qualities though, the

success rate for all weighting vectors is improved signi�cantly when �xing coe�cients of

value 0. And the medium and ascent masking vectors remain the most successful ones for

lower qualities. Changing coe�cient values that were 0 obviously has a big in�uence on

the perceptual distance, especially on low JPEG qualities. Thus, we assume that �xing

those leads to less perceptual distance and more e�ciency of the attack. Additionally,
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Figure 4.22: Cifar10 - Black-box success rates on the Densenetjq50 for JPEG BIM with
perturbations on the luma channel only, in dependence of LPIPS distance,
for di�erent JPEG qualities. The attack qualities (100, 75, 50) vary between
the sub�gures. For the solid lines, zero coe�cients are �xed (eq. (3.3) is
used), while for the dotted lines, eq. (3.2) is used. Images were created on
a Resnet.

the e�ect that perturbations are implicitly concentrated in high frequencies due to the

computation of absolute perturbation budgets with eq. (3.2) is prevented by �xing 0-

coe�cients. Therefore, the distribution of the perturbations across frequencies is closer

to what was intended by the weighting vector λ. And, since the undefended Densenet

is sensitive towards high- and medium-frequency perturbation, the ascent and medium

weighting vectors are the most successful ones.

When �xing 0-coe�cients, it is interesting that the ascent vector is less successful than

the descent vector for JPEG quality 100 but more successful for lower qualities. Pre-

sumably, this is because the perturbation made on high frequencies for JPEG quality

100 is removed in defense by the JPEG compression anyway. On lower qualities, these

perturbations are not made by the attack as high-frequency coe�cients often have value

0. Thus, these unnecessary perturbations are not being made.

To verify whether �xing 0-coe�cients does lead to a distribution of the perturbation that

is closer to the weighting vector, we illustrate the average relative luma perturbation

when �xing 0-coe�cients compared to when they are not �xed in �g. 4.23. JPEG quality

75 was used in attack in this example. Indeed, not �xing 0-coe�cients leads to the

perturbation being concentrated in higher frequencies than intended by the weighting

vector λY . However, �xing 0-coe�cients does not exactly correspond to the weighting
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Figure 4.23: Average relative luma perturbations when a relative perturbation budget is
used, given by |Y ′−Y

Y+1 | for luma and correspondingly for chroma channels,
made by JPEG and YCbCr BIM on JPEG frequencies for Cifar10 on an
undefended ResNet. Quality 75 was used in attack. On the left, eq. (3.2)
is used, i.e. 0-coe�cients are not �xed, while on the right, eq. (3.3) is used
such that they are �xed. The x-axis represents the frequencies' post zig-zag
order.

vector as well. In fact, it shifts the perturbation towards lower or medium frequencies.

Presumably, this is because many of the high-frequency coe�cients have value 0 for lower

JPEG qualities and since they cannot be changed, the average perturbation decreases

on those frequencies. Although the perturbation still does not perfectly correspond with

the weighting vectors for lower JPEG qualities, we will use this version in the following

experiments, as it is closer to the intended distribution, increases the success and we

cannot come up with a better solution since having many 0-coe�cients for lower JPEG

qualities will always distort the distribution of perturbations.
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4.3.2 Comparison with state-of-the-art attacks

In section 4.3.1, we tried to �nd the best parameters for our attacks. Now, we will

compare our most successful attacks to state-of-the-art attacks: First, we will compare

with the corresponding RGB and YCbCr attacks, and then, with the attacks that try

to bypass JPEG compression, proposed by Shin and Song [86] and Shi et al. [85]. As it

yielded superior results, we use eq. (3.3) to compute the absolute perturbation budgets,

i.e., coe�cients that have an amplitude of 0 remain unchanged.

For our most successful attacks, we disable chroma subsampling and fast adversarial

rounding. We analyze perturbations on both the luma channel and all three YCbCr

channels and also use various masking vectors, as their success depends on the model.

As our attacks return compressed JPEG data, while other attacks yield uncompressed

RGB data, the distances between the original images and the adversarial images created

by our or, respectively those, attacks would not be comparable. In a real-world scenario,

either compressed or uncompressed data would be expected. To make the attacks com-

parable, we compress the data from the standard RGB and YCbCr attacks as well as

[86]'s attacks to the same JPEG quality. Chroma subsampling is not used either for the

purpose of a fair comparison.

Comparison with RGB and YCbCr attacks

This section will compare the e�ciency of our JPEG attacks with RGB and YCbCr pixel

attacks and thus analyze whether JPEG coe�cients are more suited for adversarial at-

tacks than the usually used pixel representations. Figure 4.24 illustrates this comparison

for JPEG luma attacks. A comparison with εall-attacks is shown in �g. 4.25, but only

for Cifar10.

For Cifar10, we observe that on the undefended nets, both our luma- and all-JPEG

attacks are more successful than RGB attacks. Compared to YCbCr attacks, our as-

cent and medium attacks are slightly more successful when attacking luma information

only, but signi�cantly more successful when attacking all three channels. As mentioned

before, we believe that this is because we use relative perturbation budgets. So, it is

possible that YCbCr attacks on all three channels are similarly successful when using

smaller perturbation budgets for the chroma channels than for the luma channel. Our
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Figure 4.24: Success rates in dependence of the LPIPS distance for our JPEG BIM at-
tacks (jpeg quality 100), RGB BIM and YCbCr BIM. For JPEG and YCbCr

attacks, only the luma channels are perturbed.
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Figure 4.25: Cifar10 - Success rates in dependence of the LPIPS distance for our JPEG
BIM attacks (jpeg quality 100), RGB BIM and YCbCr BIM. For JPEG and
YCbCr attacks, all three channels are perturbed using the same ε. Images
are created on a Resnet.
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Figure 4.26: Imagenet - Success rates in dependence of the CIEDE2000 L2 distance for
our JPEG BIM attacks (jpeg quality 100), RGB BIM and YCbCr BIM. For
JPEG and YCbCr attacks, only the luma channels are perturbed. Images
are created on an undefended Resnet.

relative perturbation budgets implicitly use the fact that color information is less impor-

tant for human perception and, for neural networks, as the perturbation is relative to

the generally smaller amplitudes of chroma coe�cients. When the same absolute pixel

perturbations are applied to all three YCbCr channels, the color information is perturbed

disproportionately strong. As mentioned before, neural nets mainly use the information

from the luma channel, shapes and textures for classi�cation [30, 74]. So, strongly per-

turbing all three YCbCr channels leads to color distortions that are not necessary for an

incorrect classi�cation and, thus, an ine�cient attack. The relative JPEG perturbations

can overcome this problem without a sophisticated selection of perturbation budgets.

The same reason also explains the superiority of both JPEG and YCbCr luma attacks

over RGB attacks: When attacking in JPEG or YCbCr representation, attacking only

the luma channel can prevent these ine�cient distortions. When attacking RGB pixels,

though, the shapes and textures are more distributed across the channels such that the

perturbation also e�ects color information that does not need be perturbed. Thus, the

perceived distance is higher than needed.

On the net defended with JPEG compression, the di�erence to YCbCr and RGB attacks

becomes much more signi�cant. The perturbations created by the RGB and YCbCr pixel

attacks are now signi�cantly less e�cient, while the JPEG attacks still reach similar levels

of success as before, meaning that JPEG compression is basically ine�ective against

them, at least when perturbing medium and low frequencies stronger. There are two

reasons why the RGB and YCbCr attacks are less e�ective when JPEG compression
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is used in defense: First, for RGB attacks, signi�cant parts of the color perturbations

are removed by the chroma subsampling during the JPEG compression anyway, which

makes the attack even less e�cient. The same e�ect can be seen with JPEG εall-attacks

in �g. C.3, where the e�ciency on the net using JPEG compression in defense is reduced

much more from the undefended net than for pure luma attacks (�g. 4.11), and also for

YCbCr all-attacks: They are much less successful on the net using JPEG compression

than luma attacks. The di�erence is even bigger than for JPEG εall-attacks, which

is due to disproportionately strong perturbations on the chroma channels, which are

prevented for JPEG attacks by the relative perturbation budgets, as argued before for the

undefended net. But when using JPEG compression, the chroma subsampling removes

the perturbation on chroma channels and thus results in the color perturbation being

even less e�cient. So, independent of which color model is used, color perturbations

always seem to be ine�cient when JPEG compression, or chroma subsampling, is used

in defense. Second, both RGB and YCbCr attacks concentrate perturbations in higher

frequencies, as already shown in �g. 4.8 and respectively, �g. 4.10. For the most part,

those perturbations are removed during JPEG compression as well. The same e�ect is

visible for JPEG ascent attack, for which the decrease of e�ciency on the net defended

with JPEG compression is much stronger than for descent/medium attacks.

On the adversarially trained net (DensenetRGB
M ), we observe that the net has built good

robustness against RGB attacks and YCbCr pixel attacks on all three channels, but also

the luma channel exclusively. Against JPEG attacks though, the robustness is much

smaller, and as mentioned before, the net is vulnerable especially against low-frequency

perturbations. While this is not a surprising result in general, as adversarially trained

networks are known to be vulnerable towards unseen threat models [48, 58], the di�erence

between the e�ciency of JPEG and YCbCr luma attacks is still interesting as both only

perturb the luma information. The reason why the net also builds robustness against

YCbCr pixel attacks is that they concentrate in high frequencies as well, just as the

RGB attacks. Our JPEG attacks can thus circumvent the defense by concentrating

the perturbation in medium or lower frequencies, where the adversarially trained net

is sensitive towards distortions. Again, that leads to the question whether our JPEG

attacks can help to achieve robustness against perturbations on all frequencies and thus,

towards RGB and YCbCr pixel attacks as well.

For Imagenet, the LPIPS e�ciency is also displayed in �g. 4.24. Additionally, �g. 4.26

shows the CIEDE2000 e�ciency. For LPIPS, the JPEG medium attack is the most

successful attack in the undefended setting. However, the distance to RGB and YCbCr
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attacks is relatively small. The di�erence becomes much clearer when the defense uses

JPEG compression which partially removes the pixel-wise perturbations, and the RGB

attack's color perturbations. On the adversarially trained net, all JPEG attacks are

slightly more successful than the pixel-wise RGB and YCbCr attacks.

When using the CIEDE2000 L2 distance for comparison though (�g. 4.26), the YCbCr

attack is the most e�cient, while the RGB attack is even less successful on all three

nets. The latter again indicates that the CIEDE2000 L2 puts more weight to chroma

perturbations. The former might be reasoned by the fact that the pixel-based distance

is not able to quantify structural changes as illustrated in �gs. 2.15 and 2.16. The gray

pixel-wise, high-frequency noise might result in only little pixel-based distance but very

visible structural changes. While we do not know for sure that LPIPS is better aligned

with human perception, the results from section 4.2 and [101] indicate that it is. Thus, we

believe that our JPEG medium attack is more successful than the YCbCr in dependence

of the true perceptual distance for Imagenet as well.

In summary, due to the superiority regarding the LPIPS e�ciency on all three nets,

and the results for Cifar10 as well, it can be stated that our JPEG attacks o�er much

higher �exibility, as they allow to control perturbations across channels and frequencies.

Concentrating the perturbation on medium frequencies seems to be a universal choice and

is more e�cient than RGB and YCbCr pixel attacks in all black-box settings considered.

Thus, JPEG coe�cients seem to be the superior representation for creating adversarial

examples compared to RGB and YCbCr pixel representations and it is likely, that that

they can also be the basis for more generalising defenses. This will be analyzed later in

section 4.5.

Comparison with JPEG-resistant attacks

One of our main motivations for proposing attacks straight on JPEG coe�cients was

bypassing JPEG compression in defense or when saving the adversarial images. While

we already tried to determine how to set up our attacks to bypass JPEG compression

in section 4.3.1, we will now compare our attacks to the approaches that speci�cally

try to bypass JPEG compression, proposed by Shin and Song [86] and Shi et al. [85].

Again, one has to remember that some of these attacks yield compressed data (ours, Shi

et al.'s) which shifts the plots on the x-axis, while others do not (RGB, YCbCr, Shin and

Song). Thus, all uncompressed outputs are JPEG compressed to the same quality that
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Figure 4.27: LPIPS e�ciency on the Densenetjq50 and the undefended (ud) DenseNet for
BIM attacks, for di�erent JPEG qualities (100, 75, 50) used in the attack.

we use for our attacks (100, 75, 50). Note that for a fair comparison, we also disable

chroma subsampling in the output of those attacks. In the internal JPEG compression

approximation in Shin and Song's [86] attack, chroma subsampling is enabled however.

As it performs well for all tested JPEG qualities, we will use the medium weighting

vector in the following comparison. This comparison is illustrated for both Cifar10 and

Imagenet in �g. 4.27.

In internal experiments, it stood out that Shin and Song's standard attack is only suc-

cessful when applied on a net that uses the same quality in defense. Their ensemble

attack does indeed circumvent this problem, as already stated by Shin and Song [86].

We thus only include the ensemble attack in the �gure to keep things clear. When

JPEG compression is used in defense, we observe that their attack is more successful

for JPEG quality 100 for Cifar10. For lower qualities, the e�ciency of their attack is

higher for small perturbations but for bigger perturbations our attack is advantageous.

For Imagenet, the general trend remains: For bigger perturbations, our attack is more
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e�cient, but for small perturbations, the ensemble attack from Shin and Song [86] is

more successful. For Imagenet, the gaps are generally less clear and the e�ciency on

JPEG quality 100 barely di�ers between the two attacks. When using CIEDE2000 as a

distance metric (�g. C.5), our attacks performs better, relatively speaking. Again, this is

because CIEDE2000 weights color perturbations higher than LPIPS and the attack from

Shin and Song is applied in the RGB representation, which results in color perturbation

that can be prevented using our JPEG attacks.

Despite the generally balanced performance between the attacks on nets defended with

JPEG compression, there are several advantages of our method: First, our attack sig-

ni�cantly outperforms Shin and Song's ensemble attack when the net is undefended.

Possibly, the ensemble attack induces color perturbations that are ideal to fool nets that

use chroma subsampling in defense, as in the net defended with JPEG compression, but

not in the undefended net. In a black-box setting though, it would be unknown whether

and how the target model is defended. Therefore, generalization across multiple models

is an important measure of a black-box attack's success. In fact, our JPEG attack seems

to generalize very well, as it performs well on both undefended and defended nets, and

e�ciency barely di�ers between the attack qualities used in attack. Second, their ensem-

ble attack is much more time-consuming as it requires multiple gradient computations in

every iteration, one for each JPEG quality. On an NVIDIA P6000, attacking the whole

Cifar10 test dataset took 218 seconds for Shin and Song ensemble attack, but only 72

seconds for our JPEG luma attack. Both were executed for 10 iterations.

For Shi et al.'s [85] attacks, we already observe a signi�cant perceptual distance even if

ε = 0. So, the fast adversarial rounding alone already disturbs the images heavily, as the

perceptual distance is much bigger than for our JPEG attacks which also return com-

pressed data, especially for low JPEG qualities. As Shi et al. only used the input ε and

Peak signal-to-noise ratio (PSNR) to compare the attacks' success, they did not measure

the actual perceptual distance created by the fast adversarial rounding. Their attack

only improves the success in dependence of the ε, which again shows the unsuitability

of the L∞ norm as a perceptual metric. Proof that the attack improves the success in

dependence of the ε is given in �g. C.4 in appendix C. The success of their attacks rises

quickly in dependence of the perceptual distance though, which implies that although it

induces a signi�cant perceptual distortion, the fast adversarial rounding can indeed make

the perturbations more robust against JPEG compression, and experimenting with more

η's might actually improve the e�ciency as well. When experimenting with fast adver-

sarial rounding for our JPEG attacks, we mentioned that we believe that the coe�cients
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are already close to their local optima, such that the fast adversarial rounding does not

have much in�uence on the attack's output. Since the main perturbation is applied in

RGB pixel representations for Shi et al.'s attacks, and the images are then converted

to JPEG coe�cients, they might not be that close to local optima, such that the fast

adversarial rounding is more e�ective here. In comparison with Shi et al.'s attacks, ours

always show superior e�ciency for Cifar10 though, on both the undefended net the one

defended with JPEG compression. Apart from only attacking the luma channel, this is

reasoned by the fact that the perturbation was applied straight on coe�cients and not on

pixel values, which allows us to concentrate perturbations in medium frequencies. This

is advantageous as high-frequency perturbations tend to be removed during the JPEG

compression in defense, as argued before.

Thus, our attack provides many options to control the perturbation and can be more ef-

�cient than state-of-the-art attacks when JPEG compressed data is required, while being

technically much more straightforward as we do not have to include an approximation

of JPEG compression into the target model, or design a sophisticated rounding scheme

as the coe�cients are already close to the local optima before rounding to the nearest

integer.

4.3.3 Sample Images

Now we compare our attacks with standard RGB and YCbCr pixel attacks as well as Shi

et al.'s and Shin and Song's methods using sample images.

The former comparison is illustrated in �g. 4.28 and �g. 4.29 for Imagenet and Cifar10,

respectively. The images generally support the quantitative results from the previous

sections. Attacks that perturb color information (RGB, YCbCr εall, JPEG εall) result in

a colored, and often very visible noise. The luma perturbations, though, are generally less

visible, especially when they are concentrated in medium frequencies. All JPEG attacks

sometimes create images that contain visible JPEG blocks. Generally, this becomes

especially clear when the lowest frequencies are perturbed the most. However, the ascent

attack (where the highest frequencies are perturbed the most) often shows these artefacts

as well. The images are the minimum perturbation for each attack that results in a

misclassi�cation on the Densenetjq50. Thus, the ascent vector is very ine�ective as the

high-frequency perturbation is removed during the JPEG compression. This results in the

attack requiring very high ε values to be successful, which leads to strong perturbations on
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low frequencies as well despite concentrating the perturbation in high frequencies. Note

that distributing the perturbations across blocks could reduce the visibility of JPEG

blocks in the background, as shown before.

The latter comparison is illustrated in �g. 4.30 for Imagenet and �g. 4.31 for Cifar10.

Again, we observe that Shi et al.'s and Shin and Song's attacks result in a colored noise.

However, the noise created by Shin and Song's attacks is less obvious. Presumably, this

is due to the inclusion of JPEG compression (and chroma subsampling) in the target

model. Thus, Shin and Song's images do often look similarly close to the original as the

images created by our JPEG medium attack, which again corresponds to the quantitative

results.
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Figure 4.28: Imagenet - Minimum BIM perturbation required for a misclassi�cation by
the Densenetjq50, for our JPEG attacks and RGB and YCbCr pixel attacks.
Images are created on a Resnet. The LPIPS distance is given below the
images.
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Figure 4.29: Cifar10 - Minimum BIM perturbation required for a misclassi�cation by
the Densenetjq50, for our JPEG attacks and RGB and YCbCr pixel attacks.
Images are created on a Resnet. The LPIPS distance is given below the
images.
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Figure 4.30: Imagenet - Minimum BIM perturbation required for a misclassi�cation by
the Densenetjq50, for our JPEG attacks and Shi et al. [85]'s and Shin and
Song's attacks. Images are created on a Resnet. The LPIPS distance is
given below the images. JPEG quality 50 is used in the attacks.
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Figure 4.31: Cifar10 - Minimum BIM perturbation required for a misclassi�cation by
the Densenetjq50, for our JPEG attacks and Shi et al. [85]'s and Shin and
Song's attacks. Images are created on a Resnet. The LPIPS distance is
given below the images. JPEG quality 50 is used in the attacks.
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4.4 Minimum-Norm Attacks

This section will be about our experiments on minimum-norm attacks. Until now, the

attacks always tried to maximize the con�dence of the wrong prediction but we still mea-

sured the e�ciency of attacks as the ratio of success and perceived distortion. Now, we

analyze whether JPEG is also a superior representation for attacks that try to minimize

the distortion. As the attacks search for the minimum distortion, it could be possi-

ble that they automatically distribute the perturbations di�erently across frequencies as

maximum-con�dence attacks, which is our main motivation for also considering these

minimum-norm attacks.

As explained in chapter 3, we design two minimum-norm attacks that perturb straight

on JPEG coe�cients: The PerC-AL, which minimizes the CIEDE2000 distance, and

the LPIPS-AL, which minimizes the LPIPS distance. Both attacks are also included as

RGB versions. Only the PerC-AL attack has been proposed by Zhao et al. [102], but

the extension to use the LPIPS distance is straightforward. In the original paper on the

PerC-AL, Zhao et al. used αl = 1 as a step size for maximizing the model's loss and

αc = 0.1 for minimizing the distortion. Following an experiment on the step sizes, we

use αl,rel
Y = 2, αc,rel

Y = 0.2 as step sizes for our JPEG attacks. However, it has to be

mentioned that the results of this experiment are limited to the undefended Resnet, such

that we cannot state that our selection is optimal in other settings. Due to the high

computation time, we only consider JPEG luma minimum-norm attacks.

As mentioned in chapter 2, minimum-norm attacks are most relevant for white-box set-

tings as they try to �nd the minimum perturbation that leads to a misclassi�cation and

this minimum perturbation is often not su�cient to fool the unknown black-box model.

However, the undefended white-box setting is di�cult to analyze as all the attacks are

able to fool the net with very little perturbation and there are barely any di�erences

that can be observed. The fact that the RGB attacks return uncompressed data while

our attacks return JPEG coe�cients makes the comparison even more di�cult. For the

maximum-con�dence attacks we were able to simply compress the output. In this case

though, as the minimum required perturbation is computed, compressing the output

would usually lead to the attack not being successful anymore. Thus, we have to com-

pare uncompressed RGB data to compressed JPEG coe�cients (of quality 100). This

induces a slight increase of the perceptual distance for our JPEG attacks that has to be

kept in mind. When the images are not perturbed, the JPEG compression to quality
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100 (no chroma subsampling) results in an average LPIPS distance of 0.00497 on the

Cifar10 test dataset.

We will analyze both white- and black-box settings where the images are created on

the undefended Resnet. White-box attacks on adversarially trained nets will then be

considered later in the section on adversarial training (4.5). Generally, in di�erence to

the maximum-con�dence attacks, where we incrementally increased the input ε's, we now

increase the con�dence parameter κ, and measure success rate and perceptual distance.

As the white-box success-rate almost always reaches 100 %, we will use tables to visualize

the corresponding white-box results.

To �rst determine which RGB attack is most suited to minimize the perceptual distance,

we start with comparing the RGB attacks. The white-box results on the undefended

Resnet are presented in table 4.5.

Success Rate CIEDE2000 L2 RGB L2 LPIPS
PerC-AL 100% 8.74 48.03 0.048
LPIPS-AL 100% 20.81 72.94 0.0057
DDN 100% 8.31 15.96 0.0068
C&W-L2 100% 40.54 75.52 0.094

Table 4.5: Cifar10 - White-box results for RGB minimum-norm attacks on the unde-
fended Resnet. κ = 0 was used for all attacks.

While PerC-AL shows a low CIEDE2000 L2 distance, the LPIPS distance is much higher

than for LPIPS-AL and DDN. Surprisingly, and contrary to the results from the original

paper [102], DDN also outperforms PerC-AL in terms of the CIEDE2000 L2 distance,

but only slightly. The C&W-L2 achieves the worst results. Presumably, this is due to the

reduced number of iterations as the original paper used 1000 internal iterations instead

of 100.

The LPIPS-AL attack results in the lowest LPIPS distance, but very high L2 distances

for both CIEDE2000 and RGB. Presumably, this can be explained by e�ects similar

to those illustrated in �gs. 2.15 and 2.16 which result in big pixel-wise, but only little

perceptual distances. As they try to reduce the perceived distortion, this section will

focus on PerC-AL and LPIPS-AL.
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Figure 4.32: Cifar10 - Black-box e�ciency for JPEG and RGB PerC-AL. The JPEG
attacks only perturbed the luma channel. Images were created on a ResNet.

4.4.1 Varying Perturbations across frequencies

We will now compare minimum-norm attacks when they distribute their perturbations

di�erently across the frequency spectrum. For the undefended white-box settings, ta-

ble 4.6 shows the results for Cifar10. As mentioned before, the di�erences between

the attacks are only minimal in the undefended black-box setting. However, the descent

attacks, as expected, perform worst, since the undefended net is least vulnerable towards

low-frequency perturbations, while the ascent attacks perform best.

Success Rate CIEDE2000 L2 LPIPS
LPIPS-AL medium 100% 15.93 0.011
LPIPS-AL ascent 100% 15.065 0.011
LPIPS-AL descent 100% 17.39 0.012
PerC-AL medium 100% 13.72 0.022
PerC-AL ascent 100% 13.70 0.020
PerC-AL descent 100% 13.99 0.024

Table 4.6: Cifar10 - White-box results for JPEG minimum-norm attacks on the unde-
fended Resnet. κ = 0 was used for all attacks.

The black-box setting allows us to determine the di�erences between the weighting vec-

tors much better. The corresponding results are shown in �gs. 4.32 and 4.33 for PerC-AL

and, respectively, LPIPS-AL. The �gure also includes the RGB curves for the comparison

in the following subsection. For now, we will focus on the comparison between our JPEG

attacks, though.

The general observations are the same as for the maximum-con�dence attacks. On the

undefended net, the ascent vector performs best as it concentrates the perturbation in
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Figure 4.33: Cifar10 - Black-box e�ciency for JPEG and RGB LPIPS-AL. The JPEG
attacks only perturbed the luma channel. Images were created on a ResNet.

high frequencies. On the Densenetjq50 though, the medium and descent vectors are more

e�cient as the high-frequency perturbations are removed during the JPEG compression.

So, there are no signi�cant di�erences to the maximum-con�dence attacks.

4.4.2 Comparison with RGB attacks

Now we compare our JPEG attacks to the RGB attacks. Again, see �gs. 4.32 and 4.33

for the Cifar10 results for PerC-AL and LPIPS-AL, respectively. On the undefended

net, both RGB attacks seem to be more successful than the corresponding JPEG attacks

regarding the distance that is minimized by the attack, which is a signi�cant di�erence

to the results we obtained for the maximum-con�dence attacks. This is also supported

by the white-box results presented in tables 4.5 and 4.6. Because of the amount of

the di�erence between the RGB and JPEG attacks, this can not exclusively be due to

comparing uncompressed RGB data with compressed JPEG data.

Instead, it seems that by minimizing the distortion, the RGB attack is able to reduce the

amount of ine�cient perturbation, while for maximum-con�dence attacks only the loss

was maximized which also led to perturbation that in�uenced the prediction only slightly

and ine�ectively. Here, however, this ine�ective distortion is avoided by the minimization.

For example, this could be achieved by automatically avoiding color perturbation which

we showed to be ine�ective. To determine whether this is indeed the case, we again

plot the average relative perturbation for every channel and frequency in �g. 4.34. When

comparing this with the results for the RGB BIM attack in �g. 4.8, one can conclude that
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Figure 4.34: Cifar10 - Average relative perturbations made by RGB PerC-AL and
LPIPS-AL on JPEG frequencies for the Cifar10 dataset on the undefended
Densenet.

the color perturbation is indeed much smaller than the luma perturbation for minimum-

norm attacks, which proves the assumption. So, small color perturbations seem to be

e�ective. As the JPEG attacks only perturb the luma channel, their scope is more

limited.

The JPEG attacks are also limited by the quantization but also the weighting vectors

which manually distribute perturbations across frequencies. The RGB attack, though,

automatically distributes the perturbation where it is most e�cient.

This can be a big advantage in settings where the source model relies on the same features

and frequencies as the target model but it has been shown that it is a disadvantage

otherwise. The same applies here: On the Densenetjq50, the RGB attacks are much

less e�cient than the JPEG attacks as the high-frequency perturbation that was very

e�cient on the undefended model is not e�ective anymore. This is the same e�ect that

also applies to the JPEG ascent attack, but less strongly, which could be reasoned in

the RGB attack applying chroma perturbations that are removed during the chroma

subsampling in the JPEG compression.

An interesting observation from this comparison is that the RGB attacks are only e�cient

regarding the distance metric that is minimized during the attack: The RGB LPIPS-AL

attack is very ine�cient regarding the CIEDE2000 L2 distance and the RGB PerC-AL

attack is very ine�cient regarding LPIPS. This does not apply to the JPEG attacks at

all though. A possible explanation could be that the RGB attacks are able to use the

properties of each distance metric better as they are less limited than the JPEG attacks

and can, e.g., optimally distribute the perturbations across frequencies, which can lead to

more e�ciency regarding the distance metric used in the attack. One could describe this

phenomenon as over�tting. The JPEG attack, on the other hand, is regularized by the

masking vector that limits the scope of the attack and thus, the e�ciency on the distance
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metric used in the attack, but avoids over�tting and leads to better generalization which

has been a major advantage of our JPEG maximum-con�dence attacks as well.

As mentioned earlier, we only perform white-box experiments using con�dence κ = 0 for

Imagenet. For the undefended Resnet, the results are presented in table 4.7 for LPIPS-

AL. None of the attacks reaches 100% success rate which indicates that the parameter

selection was not optimal. Presumably, the number of iterations has to be increased.

The implementation of both RGB and JPEG attacks return the image with the best

con�dence value in case the target con�dence, which is 0 in this case, is not reached.

Thus, the distances are still more or less comparable even if not every image is adversar-

ial. We observe that for Imagenet, the JPEG LPIPS-AL is far more e�cient than on

RGB pixels, regarding both CIEDE2000 and LPIPS. Especially the medium weighting

vector results in only little distortion. As for Cifar10, there will be experiments on the

adversarially defended white-box setting later in section 4.5.

In summary, the results for minimum-norm attacks are less promising for Cifar10 as

the JPEG representation seems to limit the attack's scope too much. For Imagenet,

however, minimum-norm attacks on JPEG coe�cients are more e�cient than on RGB

pixels. Possibly, the di�erences between Cifar10 and Imagenet results are due to the

relative size of each JPEG block in each image. For Cifar10, there are only 16 JPEG

blocks and, as we have seen before, they can be clearly visible if perturbed enough. For

Imagenet, speci�c blocks are much less visible. Thus, the JPEG representation itself

does not account for as much perceptual distance as for Cifar10.

Success Rate CIEDE2000 L2 LPIPS
LPIPS-AL RGB 99.83% 265.11 0.088
LPIPS-AL medium 96.46% 88.78 0.0022
LPIPS-AL ascent 95.35% 90.35 0.0041
LPIPS-AL descent 97.05% 96.35 0.0049

Table 4.7: Imagenet - White-box results for LPIPS-AL on the undefended Resnet. κ =
0 was used for all attacks.
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Figure 4.35: Cifar10 - Minimum-norm attacks applied on the DensenetRGB
M . The LPIPS

distance is given below each image. LP-AL = LPIPS-AL. P-AL = PerC-AL.

4.4.3 Sample Images

Figures 4.35 and 4.36 show sample images for minimum-norm attacks created on the

DensenetRGB
M . Even though the net is adversarially defended, minimum-norm attacks in

the white-box setting are able to �nd perturbations that are barely visible. There are

barely any di�erences between the attacks that can be seen.
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Figure 4.36: Imagenet - Minimum-norm attacks applied on the DensenetRGB
M . The

LPIPS distance is given below each image. LP-AL = LPIPS-AL. P-AL =
PerC-AL.

For the Cifar10 image, the example re�ects the general result that the RGB attacks are

more e�cient than JPEG attacks due to the reasons named in the previous subsections.

For one of the Imagenet samples, the LPIPS distance of the perturbation created by the

JPEG LPIPS-AL is slightly smaller than for the RGB attack. Again, no actual distortion

can be observed, though.
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4.5 Adversarial Training

As explained in chapter 2, adversarial training has shown to be a strong defense against

adversarial attacks [55, 65, 68] and increases the similarity to human perception [93].

However, it is also known to be vulnerable against unseen threat models [48, 58]. In

the previous sections, we have shown that nets defended with RGB adversarial training

tend to be vulnerable against perturbations on low frequencies. In this section, we will

analyze whether the variability of our attacks, which follows from using channel-wise

perturbation budgets and manually distributing the perturbations across DCT frequen-

cies, can increase the net's robustness across the whole frequency spectrum, the ability

to generalize and thus, the robustness against unforeseen threat models.

4.5.1 JPEG Adversarial Training

The idea that our attacks could form the basis for an adversarial training method that

overcomes the problem of adversarial training leading to more vulnerability on lower

frequencies and leads to nets being more robust against perturbations on all frequencies

and thus, generalize better, is mainly reasoned by controlling the perturbations applied

across frequencies. Thereby, we believe the net can be forced to use similar features as

the human perception does, such that it is better aligned with human perception and

generalizes better.

We use both εall- and εY -attacks during the adversarial training. The relative εs are

selected to lead to a similar average LPIPS distance as the RGB BIM with ε = 8, which

is ∼ 0.6 for Cifar10 and ∼ 0.4 for Imagenet. They are shown in tables 4.8 and 4.9 for

each dataset. The corresponding weights are presented in table 4.10. They were chosen

more experimentally than analytically as they led to strong robustness on all frequencies

for Cifar10. To also achieve robustness against attacks that perturb color information

(such as RGB attacks), the εall-attacks are weighted twice as much as εY -attacks. Using

the percentages from table 4.10, one attack is randomly chosen for each batch during the

adversarial training. The medium vector is weighted the most, followed by the ascent

and descent attacks. The resulting net is denoted as DensenetJPEG
M .

108



4 Experiments and Results

λ εY εall
medium 1.2 0.9
qm descent 0.6 0.45
qm ascent 2.7 2.0
unmasked 0.5 0.4

Table 4.8: JPEG adversarial train-
ing: εs - Cifar10.

λ εY εall
medium 1.0 0.8
qm descent 0.2 0.15
qm ascent 1.5 1.0
unmasked 0.2 0.15

Table 4.9: JPEG adversarial training: εs
- Imagenet.

λ εY εall
medium 14.81% 29.63%
qm descent 7.41% 14.81%
qm ascent 9.26% 18.52%
unmasked 1.85% 3.70%

Table 4.10: JPEG adversarial training: Weights.

4.5.2 Evaluation

As explained in section 2.4 and by Tsipras et al. [93], RGB adversarial training leads to

the net using features that are more similar to those used by humans. They proved this by

visualizing the loss gradients of di�erent nets, as shown in �g. 2.17. To examine di�erences

between standard RGB and our JPEG adversarial training, we will now complement this

comparison by our DensenetJPEG
M for Cifar10. Figure 4.37 visualizes the loss gradients

in the same way as in [93].

As in [93], the loss gradients of the undefended net are noisy and barely show any struc-

ture. Both adversarially trained nets yield loss gradients that are much better aligned

with human perception. There are signi�cant di�erences between the DensenetRGB
M and

the DensenetJPEG
M , though. The loss gradients of the DensenetRGB

M are much more �ne-

grain and contain regions of uniform color, while the gradients of the DensenetJPEG
M

show much coarser structures and the colors change where it would not necessarily be

expected.

Another way of illustrating the features that a net associates with each label is to learn

images that reduce the model's loss for each label, which has been done for �g. 4.38 for

the undefended Resnet and both adversarially trained nets. Corresponding to the results

from above, the images created to minimize the DensenetJPEG
M 's crossentropy loss can be

described as much more abstract and contain less sharp edges compared to those created

for the DensenetRGB
M . This is especially visible for the deer and the horse.
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Densenet DensenetRGB
M Original DensenetJPEG

M

Figure 4.37: Loss gradients for some Cifar10 images for the undefended Densenet and
the adversarially trained DensenetRGB

M and DensenetJPEG
M . The gradients

are normalized as in [93].
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Densenet

DensenetRGB
M

Y

DensenetJPEG
M

Cb Cr

Figure 4.39: Loss gradient distribution for di�erent nets. The frequency-wise mean ab-
solute gradients are divided by their maximum for normalization.
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This is also supported by �g. 4.39, where normalized loss gradients are visualized for all

three nets. On the undefended net, the gradients are highest on medium and, for luma,

higher frequencies. On the defended nets though, the sensitivity shifts towards lower

frequencies as explained in section 2.5. The JPEG net relies on the lowest frequencies

even more than the RGB defended net, which results in the low-frequency structures

visible in �g. 4.37. Our observations from �gs. 4.37 to 4.39 imply that the DensenetJPEG
M

relies on robust features more than the DensenetRGB
M . Actually, the non-robust features

in �g. C.2 show a similar, abstract structure as the images created by minimizing the

DensenetJPEG
M 's loss in �g. 4.38. Whether this translates to robustness towards pertur-

bations on di�erent frequencies will be analyzed further in the following subsections.

Maximum-Con�dence Attacks

For maximum-con�dence JPEG attacks onCifar10, �g. 4.40 shows that our DensenetJPEG
M

is now much more robust against perturbations on all frequencies, compared to the

DensenetRGB
M . For luma attacks, the maximum success rate does not surpass 20% for a

LPIPS distance< 1, whereas it was more than 40% for the RGB adversarially trained net.

The highest vulnerability is still towards the descent weighting vector, i.e. low-frequency

perturbations. This corresponds to the �ndings from �gs. 4.37 to 4.39 which showed

that the net relies on low frequencies even more than the DensenetRGB
M . The strong

robustness against εY is a consequence of including pure luma attacks in the adversarial

training and explains the coarse, colored structures that were visible in the loss gradients

in �g. 4.37 as the net is robust against luma and, comparatively, sensitive against chroma

perturbation.

The �gure also includes black-box results on the Perceptual Adversarial Training (PAT)

net from Laidlaw et al. [58]6. The model shows similar robustness as our DensenetJPEG
M .

The highest vulnerability is against low-frequency perturbation. Against εall-attacks, the

PAT model is slightly more robust, while our model performs better against εY -attacks.

But the results for εall-attacks barely di�er between all three adversarially trained nets

as they show good robustness here.

Figure 4.40 also includes the results of the RGB and YCbCr pixel attacks for Cifar10.

The robustness against the RGB attack is just slightly reduced in comparison to the

6We use the version that computes the LPIPS distance on the model itself. The attacks are limited by
a LPIPS distance of 0.5, which is very similar to the LPIPS distance that the attacks in our JPEG
adversarial training resulted in for Cifar10 (∼ 0.6).
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Figure 4.40: Cifar10 - Black-box LPIPS e�ciency of JPEG BIM luma (top) and all
(bottom) attacks in comparison with RGB and YCbCr attacks on adversar-
ially trained nets. The RGB attack is the same across both rows.

DensenetRGB
M . Despite our DensenetJPEG

M being trained using JPEG adversarial exam-

ples, it is also very robust against both pixel attacks. In fact, the biggest vulnerability

is still towards our JPEG descent attack.

Comparing our JPEG net and the PAT, it stands out that both are basically robust

against RGB attacks as well, at least in the black-box setting. They are also robust

against Y CbCr pixel attacks when they are executed on all three channels. As stated

above, the PAT is slightly less robust against pure luma attacks, including the Y CbCr

luma attack. Together with the results from above, this shows that our JPEG adver-

sarial training achieves very similar black-box robustness and generalization as the PAT

net, despite our attack method being much more straightforward than the sophisticated

perceptual attacks from Laidlaw et al. [58]. Additionally, it shows that our JPEG at-

tacks are more e�cient at circumventing the PAT, too, in comparison to pixel attacks,

which again underlines the importance of frequencies for both adversarial attacks and

defenses.

For Imagenet, �g. 4.41 shows the corresponding comparison. Here, as mentioned before,

the DensenetRGB
M does not show signi�cant vulnerabilities on any part of the frequency
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Figure 4.41: Imagenet - Black-box LPIPS e�ciency of JPEG BIM luma (top) and all
(bottom) attacks in comparison with RGB and YCbCr attacks on adversar-
ially trained nets. The RGB attack is the same across both rows.

spectrum, for both εall- and εY -attacks. Still, the JPEG adversarial training improved

the robustness against JPEG attacks, as the success of big perturbations with an LPIPS

distance close to 1 is slightly lowered.

Here, we observe that the DensenetJPEG
M is signi�cantly more vulnerable towards RGB

attacks than the DensenetRGB
M . So, while the DensenetJPEG

M for Imagenet improves

the robustness against JPEG attacks, it reduces the robustness against RGB. To some

extent, this is expected as the RGB threat model is unseen during training [48, 58], but

the results are signi�cantly worse than for Cifar10, where the robustness against RGB

decreases only slightly.7

Figure 4.41 also shows that the DensenetJPEG
M generally builds robustness against pixel

attacks, as it is very robust against YCbCr attacks on both luma and all three channels

as well. The robustness against YCbCr pixel attacks indicates that the choice of weights

for each attack was not optimal for Imagenet. As it was optimized experimentally for

7As Laidlaw et al. only used a subset of Imagenet with 100 classes, there is no pretrained model
available and we cannot include experiments for PAT.
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Cifar10, this is not surprising because classi�ers trained on the standard Imagenet data

tend to use di�erent parts of the frequency spectrum, as already shown. Such di�erences

between datasets can also be a consequence of the classes of a dataset. Compared to

Cifar10, which uses very general classes like dog or cat, Imagenet's classes are much

more detailed, containing various breeds of dogs for example. Thus, it could be that

Imagenet classi�ers need to rely on wider parts of the spectrum to be accurate as it is

insu�cient to rely on the lowest frequencies as our DensenetJPEG
M does for Cifar10.

Therefore it is only logical that di�erent weights are needed for Imagenet. Presumably,

putting more weight to the εall-attacks would decrease the vulnerability towards RGB

attacks and lead to better generalization for Imagenet as well. However, as adversarial

training on Imagenet is computationally expensive, we cannot experiment with the

weights in detail.

For Cifar10, we also experiment with a defended white-box scenario. The results for

the corresponding comparison of RGB and JPEG attacks are shown in �g. 4.42.8 Here,

the DensenetJPEG
M is still quite vulnerable towards RGB and YCbCr pixel attacks. That

is because those attacks automatically distribute the perturbation across frequencies

depending on the gradients o�ered by the white-box model. Thus, their perturbation

is already concentrated in low frequencies which is implied by the fact that the descent

attack achieves a performance that is closest to the pixel attacks' e�ciencies and the

previous result that our net is most sensitive towards perturbations on lower frequencies.

We also expect that by manually choosing a weighting vector we could further increase our

attack's success on the DensenetJPEG
M . Presumably, it would put even more perturbation

on the lowest frequencies. Using the weights from �g. 4.39 might be a sensible choice.

The fact that the RGB and YCbCr attack perform better in the white-box setting on the

DensenetJPEG
M actually underlines the advantage of our method: Using the pixel attacks,

one has to choose a source model that is sensitive towards changes on a similar part of

the frequency spectrum as the target model. When the source model is identical to the

target model, as in the white-box setting, this is obviously the case. But the white-box

setting is not usually assumed to be realistic in a real-world scenario. Using our method,

though, the perturbation can be manually distributed across frequencies. And, as our

previous results have shown, the medium weighting vector seemed to be a universally

successful choice.

8As we use the pretrained PAT model which is only available as a PyTorch model, we cannot include
white-box attacks on the PAT net.
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Figure 4.42: Cifar10 - White-box LPIPS e�ciency of JPEG BIM luma (top) and all
(bottom) attacks in comparison with RGB and YCbCr attacks on adversar-
ially trained nets. The RGB attack is the same across both rows.

Here, we also observe that the JPEG medium attack is most e�cient in the white-box

setting on the DensenetRGB
M . Applying the attack on the DensenetRGB

M is also slightly

more successful than the RGB attack on the DensenetJPEG
M . And, while our net does

not achieve white-box robustness against RGB attacks, the average robustness across all

considered attacks is signi�cantly reduced in comparison to the DensenetRGB
M .

So, in all maximum-con�dence scenarios considered for Cifar10, we observe that our

JPEG adversarial training results in much better generalization. This proves that our

JPEG attacks can be the basis of a defense that shows more generalizing robustness,

against both luma- and all-attacks in both pixel and frequency representations. Possibly,

further optimization of the weights of each attack could yield a defense that generalizes
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even better and decreases the vulnerability towards low-frequency perturbations for Ci-

far10 as well as RGB attacks for Imagenet. However, it is questionable whether a

net can be trained so that it does not show any slight vulnerability on some parts of

the frequency spectrum. As our net relies on low-frequency information, it is sensitive

and, thus, vulnerable towards low-frequency perturbations. And, as our experiments

show, this leads to strong robustness, at least for Cifar10. Whether the net is more

aligned with the human perception or whether it is over-relying on low-frequency in-

formation is di�cult to determine as the loss gradients do not necessarily re�ect the

features that reason the net's output but only how the output can be changed. However,

the low-frequency structures in the loss gradients imply that the perturbation, which is

necessary for a misclassi�cation, would be of a similar and thus visible structure which

would tendencially be visible for humans too.

A major disadvantage is that the accuracy of our DensenetJPEG
M on the benign Cifar10

test dataset is reduced from 91.95% for the undefended Densenet and 82.09% for the

DensenetRGB
M to 74.74%. As �robustness may be at odds with accuracy� [93], this is an

expectable outcome as the net shows better robustness.9 The reduced clean accuracy is

reasoned in the net avoiding to use non-robust features [45] which are mainly located

on high frequencies for Cifar10 as shown before. Thus, the net cannot use these in-

visible, super�cial statistics in the data [31] which reduces the ability to optimize the

loss in the benign setting, but increases the robustness and the similarity to the human

perception. For Cifar10, this is a signi�cant �nding since it achieves state-of-the-art

robustness against unforeseen threat models as well while relying on methods that are

more straightforward than the perceptual attacks from [58].

Minimum-Norm Attacks

Having shown the strong robustness and generalization of our DensenetJPEG
M against

maximum-con�dence attacks, we will now analyze whether the same applies for minimum-

norm attacks. Figure 4.43 shows the comparison of both adversarially trained nets,

DensenetRGB
M and DensenetJPEG

M , in the black-box setting. Both nets are basically ro-

bust against all attacks, independent of whether they are applied on RGB pixels or JPEG

coe�cients.

9The PAT net also achieved a similar accuracy of 74.51%.
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Figure 4.43: Cifar10 - Black-box e�ciency for LPIPS-AL on adversarially trained nets.
The JPEG attacks only perturbed the luma channel. Images were created
on a ResNet.

The DensenetJPEG
M is slightly more vulnerable against RGB perturbations, while the

DensenetRGB
M is slightly less robust against JPEG descent perturbations. The minimum-

norm attacks are generally not suitable for the adversarially defended black-box setting.

Remember the explanations for the existence of adversarial examples named in chapter 2.

The explanation of non-robust features states that �adversarial vulnerability can arise

from �ipping features in the data that are useful for classi�cation of correct inputs� [24].

The explanation of linearity states that the vulnerability arises from the linearity and

high dimensionality of neural networks that force a heavily changed output when the

input is slightly changed in many dimensions. While maximum-con�dence attacks try

to maximize the di�erence between the predictions and, thus, the perturbations are

often su�cient for transferability even to adversarially trained nets, the minimum-norm

attacks only apply the minimal perturbation required to force a misclassi�cation, and as

the correctly-classi�ed space around the original image becomes larger, the perturbation

is not su�cient anymore. For minimum-norm attacks to be e�cient in black-box settings,

the source and target model should be relying on similar features and thus o�er similar

spaces of correctly classi�ed images.

We therefore execute an experiment where an adversarially trained net is used as a source

model and the transferability on the other adversarially trained net is measured. The

results for Cifar10 are illustrated in �g. 4.44. For the JPEG attacks, the transferability

from the DensenetJPEG
M to the DensenetRGB

M is signi�cantly higher than the other way

around. Even for con�dence κ = 0, which is the �rst point for each attack, about 40−50%
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Figure 4.44: Cifar10 - Black-box e�ciency for LPIPS-AL. The JPEG attacks only per-
turbed the luma channel. In sub�gure a, an additional con�dence of κ = 5
was used.

of the images created on the DensenetJPEG
M are also able to fool the DensenetRGB

M . One

could now assume that this is only due to the JPEG attack requiring much stronger

perturbation on the DensenetJPEG
M as the net is trained with exactly those attacks,

which would mean that such strong perturbations are likely to cause a misclassifcation

on transfer models as well. However, for the RGB attack we do not see a similar e�ect.

Here, the success when creating the images on the DensenetRGB
M and transferring them to

the DensenetJPEG
M is only about 10− 15% for κ = 0, which implies that this observation

comes from the general properties of the network. Presumably, large parts of the correctly

classi�ed space of the DensenetRGB
M are also included in the DensenetJPEG

M 's correctly

classi�ed space, as illustrated in �g. C.6, and the minimum-norm adversarial example on

the DensenetJPEG
M is likely still adversarial on the DensenetRGB

M .

The white-box results for LPIPS-AL on the adversarially trained nets are shown in ta-

bles 4.11 and 4.12. In general, we observe that the attacks require much more perceived

distortion to be successful on the DensenetJPEG
M than on the DensenetRGB

M . This applies

to both the CIEDE2000 L2 and the LPIPS distance. Signi�cantly, the required distance

is not just bigger for the JPEG attack, which the net is trained against, but also the RGB

attack. Interestingly, the di�erence becomes even bigger when aiming at a misclassi�ca-

tion with a high con�dence. Here, the average disortion created for con�dence κ = 10

is 1.07 compared to κ = 0.28 for the DensenetRGB
M , which indicates that the correctly
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Success Rate CIEDE2000 L2 LPIPS
LPIPS-AL RGB 100% 60.37 0.029
LPIPS-AL medium 99.98% 57.28 0.053
LPIPS-AL ascent 99.96% 63.45 0.087
LPIPS-AL descent 100% 67.18 0.050

Table 4.11: Cifar10 - White-box results for JPEG minimum-norm attacks on
DensenetRGB

M . κ = 0 was used for all attacks.

Success Rate CIEDE2000 L2 LPIPS
LPIPS-AL RGB 100% 69.46 0.038
LPIPS-AL medium 99.89% 118.89 0.172
LPIPS-AL ascent 98.07% 135.15 0.22
LPIPS-AL descent 100% 132.99 0.13

Table 4.12: Cifar10 - White-box results for JPEG minimum-norm attacks on the
DensenetJPEG

M . κ = 0 was used for all attacks.

classi�ed space is much bigger for the DensenetJPEG
M and that the JPEG adversarial

training is indeed more successful at �encouraging the network to be locally constant in

the neighborhood of the training data� [32, p. 262]. We conclude from these results that

our net is closer to a �true human-level understanding� [32, p.261] as it also generalizes

towards the RGB attack that was unseen during training. On both nets, the medium

weighting vector is the most e�cient regarding the pixel-based CIEDE2000 L2 distance,

while the descent vector is the most e�cient regarding the LPIPS distance which is again

an example of the LPIPS distance being able to measure structural di�erences. Similar

to the example in �g. 2.16, the ascent and, to a lower extent, the medium weighting vec-

tor result in high-frequency noise that might show many edges compared to the descent

vector, where there might be less edges and smoother color transitions.

Success Rate CIEDE2000 L2 LPIPS
LPIPS-AL RGB 99.82% 160.34 0.0058
LPIPS-AL medium 92.73% 101.34 0.0056
LPIPS-AL ascent 83.92% 97.01 0.0088
LPIPS-AL descent 99.26% 125.63 0.0090

Table 4.13: Imagenet - White-box results for JPEG minimum-norm attacks on
DensenetRGB

M . κ = 0 was used for all attacks.
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Success Rate CIEDE2000 L2 LPIPS
LPIPS-AL RGB 100% 287.03 0.0060
LPIPS-AL medium 95.93% 103.38 0.0086
LPIPS-AL ascent 80.09% 103.07 0.016
LPIPS-AL descent 97.37% 122.23 0.017

Table 4.14: Imagenet - White-box results for JPEG minimum-norm attacks on the
DensenetJPEG

M . κ = 0 was used for all attacks.

The corresponding Imagenet results are shown in tables 4.13 and 4.14. Again, we ob-

serve that the attack require more perceived distortion when applied to the DensenetJPEG
M .

For LPIPS, this applies to all attacks. For CIEDE2000, it applies to all attacks but the

descent attack. For the RGB attack, the di�erence between both models is very clear

for the CIEDE2000 L2 distance, but only minimal for the LPIPS distance. Because

the RGB attack should concentrate the perturbation in lower frequencies as well since

the source model is vulnerable towards low-frequency perturbation, we believe that this

can be explained by the same reason we just explained for the disparity between the

CIEDE2000 and LPIPS distance for the descent vector.

Overall, these results show that the better generalization of the net defended with our

JPEG attacks also applies to minimum-norm attacks as the required distortion is usually

bigger than on the net defended with RGB attacks. Again, this underlines the importance

of the frequency perspective as it helps achieving better robustness and better alignment

with the human perception. In the case of Cifar10, relying on the lowest frequencies

seems to lead to the highest robustness. From the visualization in �g. 4.38, it can be

concluded that small perturbations are less likely to be successful as the DensenetJPEG
M

relies on the general composition of the image rather than small details.
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Motivated by the fact that JPEG compression separates perceptible from impercepti-

ble information, this thesis experimented with adversarial perturbations that are applied

straight on JPEG coe�cients. We found that perturbations on JPEG coe�cients are sig-

ni�cantly more e�cient than RGB or YCbCr pixel perturbations in numerous settings:

First, our attacks allow to manually control the perturbation applied on each YCbCr

channel. Since adversarial perturbations are most e�ective in the luma channel, as al-

ready found by Pestana et al. [74], this enabled us to avoid ine�cient color perturbations

that are often the result of RGB maximum-con�dence attacks.

Second, by weighting the perturbations applied across frequencies we found that against

the general assumption that adversarial examples are mainly a high-frequency phe-

nomenon, perturbations on medium frequencies are often most e�cient, or achieve at

least similar e�ciency as the best attack, as they generalize much better than, e.g.,

high-frequency perturbations where the success is much more dependent on the target

model.

Third, our JPEG attacks are able to bypass JPEG compression used in defense more

e�ciently than state-of-the-art attacks, which is a result of perturbing straight on JPEG

coe�cients and thus avoiding that the perturbation is removed during quantization any-

way. Considering that our attack is technically more straightforward compared to those

[85, 86], as it does not have to include an approximation of JPEG compression in the

source model or propose a sophisticated rounding scheme to make the perturbations ro-

bust against JPEG compression, its e�ectiveness is even more impressive. Our attacks

are especially e�ective against JPEG compression when 0-coe�cients are �xed, which

avoids perturbations on those coe�cients being removed in the defense. This is espe-

cially e�ective as it transfers towards lower JPEG qualities used in the defense: When

a coe�cient is 0 for JPEG quality 100, it is 0 for lower qualities as well. As JPEG
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compression predominantly removes high-frequency information and perturbations, con-

centrating perturbation in medium frequencies has been shown to be especially e�cient

in this setting. Note that these results also imply that JPEG adversarial examples can

be saved e�ciently as JPEG �les without removing perturbation.

Fourth, as found by others [8, 66, 99], we have shown adversarial training using RGB

images can result in nets being vulnerable towards low-frequency perturbation. To avoid

vulnerability on some parts of the frequency spectrum, we proposed adversarial training

with using multiple, weighted JPEG attacks that distribute their perturbation di�erently

across the frequency spectrum. Indeed, this led to a net that generalizes well against

perturbations on all frequencies and, importantly, against RGB and YCbCr pixel at-

tacks as well. For now, these results could only be achieved for Cifar10 though. For

Imagenet, we were unable to experiment with the frequency vectors' weights during

training due to the high computational costs. Large parts of these results regarding

maximum-con�dence attacks have already been submitted as a conference paper which

is currently under review [89].

Fifth, this thesis also considered minimum-norm attacks. As these attacks try to �nd the

minimum distortion and should thus optimize e�ciency, considering them allowed us to

make some interesting observations. Here, the results di�er between the datasets. For

Cifar10, the RGB attack is usually stronger in the white-box setting as it is less limited

in its scope. While the JPEG attacks only perturbed the luma channel, the RGB attacks

also applied color perturbations. While we generally found that color perturbations are

often ine�cient, applying small color perturbation can make the attack more successful,

as also illustrated for JPEG attacks in �g. 4.4. In maximum-con�dence attacks, the color

perturbations made by the RGB attack were often too strong as they only maximized the

prediction loss. In minimum-norm attacks though, the distortion is minimized and thus,

only the e�cient color perturbations are applied. The quantization step further limits

the JPEG attack's scope. For Imagenet, where the JPEG minimum-norm attacks were

more e�cient than RGB attacks, these advantages might be less decisive as each JPEG

block makes up a much smaller part of the image. Thus, the limitations might be less

important for the image's composition and, for example, attacking only luma information

might become more important for the attack's e�ciency again.

Finally, we also analyzed which frequencies the adversarially trained nets rely on by

visualizing the loss gradients in �g. 4.37, creating images by optimizing the models'

losses in �g. 4.38 and illustrating the distribution of the gradients across frequencies
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in �g. 4.39. We found that, the net trained with our JPEG adversarial training with

the speci�ed weights relies on the lowest JPEG frequencies even more than the RGB

net. The visualization of loss gradients and features associated with each label implies

that the net uses more abstract structures than the RGB net. Consequently, small

perturbations have less impact on the net's prediction. From the net's generalization we

can conclude, though, that it uses features that are better aligned with human perception

than the one trained with RGB adversarial examples as the RGB net can still be fooled

by barely visible perturbations when they are concentrated in lower frequencies and the

luma channel. Thus, our JPEG attacks can indeed help achieving better robustness

and alignment with the human perception by forcing the net to rely on frequencies and

features that are relevant for humans as well, and preventing it from using non-robust

features, which shows the importance of looking at adversarial attacks and robustness

from a frequency perspective.

Presumably, there are even better ways of encouraging the net to use robust features.

During JPEG compression, each 8× 8 block is transformed to the frequency space using

the DCT. As some works mentioned in section 2.5 , e.g. [8, 36, 66, 84], already did,

the DCT could also be performed image-wise instead of block-wise. In our attack, the

frequency weighting vector corresponds to one block. Thus, perturbations as illustrated

in �g. 2.18 can not be achieved. While each 8 × 8 block makes up a signi�cant part

of the image for Cifar10, the perturbations are often perceived block-wise anyway for

Imagenet such that the perceived di�erence between low- and high-frequency perturba-

tions is quite small. While there were still signi�cant di�erences between each weighting

vector's success, this might in�uence the adversarial training's e�ectiveness as the images

often look quite similar. Thus, applying the DCT on the whole image and then weighting

the perturbation for each of the h×w frequencies might increase the variety of the created

images and, thus, improve the net's generalization. The existing studies on such attacks

apply their perturbation in RGB space though, whereas we have shown that YCbCr is

the more suitable color space, and does not measure the true perceptual distance, but L2

distances. This is problematic especially when perturbing di�erent parts of the frequency

spectrum this is problematic, as they do not measure structural di�erences.

Another approach to achieve more robustness is the perceptual adversarial training by

Laidlaw et al. [58] which limits the perceived distortion of the adversarial examples

using the LPIPS distance. As shown in the original paper and our experiments on

adversarial training, the approach shows much better generalization than the standard

RGB adversarial training, and similar performance as our JPEG net, although it was
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slightly more vulnerable towards medium- and low-frequency perturbations on the luma

channel. The perceptual threat model introduced by Laidlaw et al. [58] can be seen as a

big advance in achieving strong robustness and generalization. As it limits the distortion

using the LPIPS distance, the perturbation should vary much more between images than

for standard pixel-based RGB attacks and especially maximum-con�dence attacks like

BIM, which do not yield the most e�cient perturbation but the one that maximizes the

loss. Thus, the PAT implicitly leads to stronger robustness on all frequencies and against

many attacks. Additionally, it is also e�ective against common corruptions [51, 58].

Comparing the e�ectiveness of our approach and PAT is di�cult as our experiments

did not include the same attacks as [58]. On the attacks included in our work, both

performed very similarly with the PAT net being slightly more robust against εall-attacks

while our DensenetJPEG
M was slightly more robsut against luma attacks. However, our

method requires manual weighting of the attacks for each dataset. Therefore, we generally

believe that an approach that includes the LPIPS distance and automatically �nds the

most e�cient perturbation in the attack might be the most promising approach to achieve

a �true human-level understanding� [32, p.261].

But what does this actually mean and how could it be achieved? And how could the

results from our work help improving the current state-of-the-art methods, e.g., the

perceptual adversarial training?

A �true human-level understanding� [32, p.261] would imply that the net uses similar

features as humans, shows similar robustness towards various types of perturbations and

also achieves a similar accuracy on the clean, benign dataset. The adversarially trained

nets considered in this thesis, the DensenetJPEG
M and PAT, achieved a clean accuracy on

Cifar10 of only about 74%. According to Ho-Phuoc [40], a human achieves about 94%

accuracy. While standard nets achieve and surpass that number, adversarially trained

nets do not yet, as �robustness may be at odds with accuracy� [93]. In [40], it is also stated

that standard nets achieve better accuracy for images that are di�cult to classify for

humans which is an example for them using �super�cial statistics in the data� [31]. While

adversarial training reduces the usage of such information and increases robustness, it

also reduces the clean accuracy which shows that a �true human-level understanding� [32,

p.261] is not reached.

So, how could the approach be further improved? The perceptual adversarial training [58]

uses adversarial images that minimize the perceptual distance. Aiming at a net that uses

similar features as humans, using a distance metric that is well aligned with human

126



5 Conclusion

perception in order to limit the perturbation seems like a sensible choice. And while the

created images should vary much more than for standard maximum-con�dence attacks

like BIM due to the use of the perceptual distance, the scope of the LPA attack used to

create adversarial examples is still very limited as it only applies noise to the image. This

noise, though, is also in�uenced by how the LPIPS distance weights di�erent parts of

the frequency spectrum which itself depends on how the LPIPS network was trained. It

might be that LPIPS overvalues low- or high-frequency perturbation and when using it for

creating adversarial examples, one is preferred over the other. So, manually determining

the frequencies in which the perturbation is concentrated could also be helpful even for

perceptual adversarial training, as it increases the variety of adversarial images.

From the result that JPEG adversarial training leads to stronger robustness than RGB

adversarial training, we draw the conclusion that this variety is very important for achiev-

ing robustness against unforeseen threat models as well. The e�ectivity of the JPEG

adversarial training is not necessarily or exclusively due to the use of JPEG coe�cients

but the variety of the created images as well. Other methods that perturb in the fre-

quency spectrum (see section 2.5) might thus be as e�ective as ours. But using JPEG

coe�cients has the advantage that non-robust, high-frequency information is removed

during the quantization and their usage is therefore prevented.

Another way of achieving more variety of adversarial examples would be to design an

attack that does not just use noise but also geometric transformations such as rotations,

zooming or cropping. Unlike standard data augmentation, these transformations would

be applied such that the loss is maximized. A di�culty when designing such an attack

could be that LPIPS might overvalue the distortion created by the geometric transfor-

mations. Figure 5.1 shows examples where the original images have been rotated or

disturbed by some random noise. The noisy images tend to have smaller LPIPS dis-

tances. It is unclear, though, which of the altered images is, for human perception, more

similar to the original because all three show the same objects. Thus, quantifying the

perceptual distance is not an easy task and while the LPIPS distance is much more suited

than L2 distance, it still is not a perfect measure.

However, Laidlaw et al. [58] already adversarially trained a net where the LPIPS distance

is computed using the net itself. When more variety is used from the training's beginning

by also including adversarial geometric transformations, the LPIPS distance might thus

be even better at approximating the true perceptual distance and, simultaneously, the

robustness could be increased. We experiment with an attack that enables us to distribute
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2.54 2.44 2.28 2.12 2.52

1.59 1.37 1.83 2.35 2.38

Figure 5.1: Original (top), rotated and shifted (middle) and noisy (bottom) Imagenet
images. The images in the middle row were created using a Tensor�ow im-
plementation [100] of Jaderberg et al.'s Spatial Transformer Networks [46].
The LPIPS distances are given below the images. Rotated images tend to
have higher LPIPS distances.

the perturbations across DCT frequencies, where the DCT is performed image-wise,

though, as described above, as well as to rotate and shift the image using the Spatial

Transformer Network [46]. The application of noise is similar to the previous works

named in section 2.5 as the DCT and frequency weighting is applied on the gradients

of the pixel image. However, it uses YCbCr and weights the DCT frequencies instead

of masking them. The attack uses the same loss function (see eq. (2.35)) as the FLPA

attack which uses the LPIPS distance and is used in the PAT [58]. Details on the attack

can be found in appendix B. Figure 5.2 shows adversarial examples that were created

using the attack. Due to the frequency weighting vectors, the distinction between εall-

and εY -attacks, and the geometric transformations, the images show much more variety

which might increase the nets generalization and robustness as well as the alignment with

human perception when this or a similar attack is used during adversarial training.
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Original

1.92
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1.99

medium εall

1.88

descent εall

1.95
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2.00

medium εY

1.95
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0.0 2.01 1.85 1.92 1.90 1.78 1.93

0.0 1.85 1.89 1.75 1.72 1.61 1.82

0.0 1.99 1.74 2.08 1.61 1.75 1.99

Figure 5.2: Adversarial examples created by perturbing YCbCr images with adversarial
noise, where the gradients are multiplied by the frequency weighting vectors,
but also rotation and spatial shifts. To visualize di�erences, the perturbation
was chosen to be bigger than necessary for a misclassifcation; the images were
on the DensenetRGB

M . Details on the attack can be found in appendix B.

It is di�cult to predict whether one of the approaches discussed here would result in more

robustness, high clean accuracy and alignment with human perception. While adversarial

training signi�cantly increases the robustness, the sample images in section 4.4.3 have

also shown that there is still no visible distortion necessary when attacking in the white-

box setting. Using a perceptual distance, like PAT does, might be the most promising

approach to overcome this. However, the variety of the created images should be increased

to also include perturbations on di�erent parts of the frequency spectrum, geometric

transformations etc.
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A Absolute vs. Relative Perturbations

As mentioned in chapter 3, we used absolute perturbation budgets in a previous work [88].

The FGSM perturbation was then computed by

Y ′ = Y + sign(∇Y (J(rgb(x), y))) · εabsY · λY

C ′
b = Cb + sign(∇Cb

(J(rgb(x), y))) · εabsCb
· λCb

C ′
r = Cr + sign(∇Cr(J(rgb(x), y))) · εabsCr

· λCr , (A.1)

where unlike in the current version, εabsY , εabsCb
, εabsCr

were scalars.

This resulted in some di�culties in controlling the perturbation and di�erences in results

that will be shortly explained here.
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Figure A.1: Cifar10 - Success rates for unmasked MI-FGSM in dependence of
CIEDE2000 L2 Distance on an undefended DenseNet. Here, absolute ep-
silon values were used.
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A Absolute vs. Relative Perturbations
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Figure A.2: Cifar10 - MI-FGSM with perturbations on the luma channel only. The
weighting vectors are illustrated in �g. 4.9. Absolute epsilon values were
used. The Densenetε16RGB was trained with the cascade adversarial training
from [68].

Besides the fact that the di�erence in attack e�ciency between luma and all attacks

is much bigger when using an absolute perturbation budget that has been explained in

section 4.3.1 and is visualized in �g. A.1, there are some important observations on the

success of the di�erent weighting vectors.

Figure A.2 illustrates this comparison for an absolute perturbation budget. As we did for

relative perturbations, we observed also for absoulte perturbations that the qm descent

weighting vector is much more successful than the ascent and unmasked vector on the

adversarially trained net. However, due to the fact that low frequency coe�cients usually

have much higher amplitudes, the qm descent weighting vector led to the perturbation

not really being concentrated on low frequencies, but on medium frequencies, as shown

in �g. A.3.

Similarly, the unmasked vector leads to perturbations that are concentrated on high

frequencies. This made the argumentation more di�cult, as a high value in the weighting

vector λ did not necessarily imply a high relative perturbation on the corresponding

frequency. For comparison, �g. 4.10 illustrates this for relative perturbation budgets.

There, the resulting perturbation is closer to the weighting vectors.

Generally, we expect that both versions can yield the same results when the weighting

vectors are chosen accordingly, but using relative perturbation budgets simpli�es the
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A Absolute vs. Relative Perturbations
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(b) εY qm descent
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Figure A.3: Average relative perturbations when an absolute perturbation budget is used,
given by |Y ′−Y

Y+1 | for luma and correspondingly for chroma channels, made by
JPEG and YCbCr BIM on JPEG frequencies for Cifar10 on an undefended
ResNet. The x-axis represents the frequencies' post zig-zag order.

selection of a weighting vector and the argumentation. A positive side e�ect is the

increased success of attacks on all channels.
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B Image-DCT and Geometric

Transformations Attack

To achieve more variety during adversarial training, we design an attack that is able to

weight perturbations across DCT frequencies and also apply geometric transformations.

The geometric transformation is applied using the Spatial Transformer Network [46].1

The DCT is performed on the gradients of the full image, instead of on blocks of pixels as

for our JPEG attacks, which makes the attack similar to those mentioned in section 2.5.

However, the perturbation and frequency weighting is applied in YCbCr color space and

again, the perturbation can be controlled for each channel separately. Additionally, as

for our JPEG attacks, the frequency vectors are used to weight rather than to mask DCT

frequencies.

It is important to mention that this attack is designed for adversarial training and not

necessarily for evaluation. As geometric transformations usually result in more perceived

distortion, at least when measured using a perceptual distance, they might be less e�cient

than attacks that do not geometrically transform the image.

The attack uses the same loss function as LPA (see eq. (2.35)), where, for now, we use a

�xed λ = 2. The loss function results in a soft LPIPS bound. In the original LPA attack,

the image is projected back into the bound at the attack's end. As in the FLPA attack

which is used for adversarial training, we do not perform this step. In fact, projecting

it back into the bound would be di�cult due to the geometric transformations. As the

attack is designed for adversarial training, this is not problematic though. The attack's

pseudocode is presented in �g. B.1.

1We use the Tensor�ow implementation [100].
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B Image-DCT and Geometric Transformations Attack

Algorithm 1 Image DCT and Geometric Transformation Attack.

Input: YCbCr pixel images x = (Y,Cb, Cr), where Y,Cb, Cr ∈ [0, 255]h×w,
noise step-sizes for each channel αY , αCb

, αCr ,
rotation degree step size αd, shift step sizes αxs , αys , number of steps T ,
LPIPS bound ε, frequency weighting vector λ ∈ [0, 1]64.
Output: adversarial image x′.

1: procedure Attack

2: Unzigzag λ and resize from shape 8× 8 to h× w using bilinear interpolation
3: ▷ Since we apply the DCT on the whole image.
4: d = 0, xs = 0, ys = 0 ▷ Variables for rotation degree and x,y-shift.
5: Initialize x′ = (Y ′, C ′

b, C
′
r) = (Y,Cb, Cr)

6: for t = 1, . . . , T do

7: L = maxx′ J(stn(rgb(x′)), y)− 2.max(0, lpips(rgb(x), stn(rgb(x′)))− ε)
8: ▷ rgb() converts the YCbCr image to RGB.
9: ▷ stn() performs the geometric transformation using d, xs, ys.

10: gYnoise, g
Cb
noise, g

Cr
noise = gnoise = ∇x′L

11: ▷ Compute the gradients for applying the adversarial noise
12: gYnoise = idct(λ · dct(gYnoise))
13: ▷ Apply frequency-wise weighting. Correspondingly for Cb, Cr.

14: gd = ∇dL ▷ Compute the gradient for the rotation degree
15: gxs = ∇xsL, gys = ∇ysL ▷ Compute the gradient for the x,y shifts

16: Y ′ = Y ′ + sign(gYnoise) · αY ▷ Apply the noise perturbation.
17: C ′

b = C ′
b + sign(gCb

noise) · αCb

18: C ′
r = C ′

r + sign(gCr
noise) · αCr

19: d = d+ sign(gd) · αd ▷ Perturb the rotation degree.
20: xs = xs + sign(gxs) · αxs , ys = ys + sign(gys) · αys ▷ Perturb x,y shift.

21: x′ = (Y ′, C ′
b, C

′
r)

22: ▷ Note that the geometric transformations are not included here but they are
included when computing the loss and in the return statement.

23: Return stn(x′)

Figure B.1: Algorithm - Image DCT and Geometric Transformation Attack.
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C Additional Figures
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Figure C.1: Cifar10 - Mean absolute value for JPEG coe�cients. Chroma coe�cients
tend to have smaller absolute values than luma coe�cients.
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C Additional Figures

(a) non-robust

(b) robust

Figure C.2: Sample images from the Cifar10 robust and non-robust images from the
datasets created in [45].
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Figure C.3: Cifar10 - Black-box e�ciency for JPEG BIM with perturbations on all three
channels.
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Figure C.4: Cifar10 - Black-box success rates on the Densenetjq50 for BIM attacks.
For the JPEG and YCbCr attacks, only luma was perturbed. The JPEG
quality used in attack varies between the sub�gures. Images were created on
a Resnet.
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Figure C.5: CIEDE2000 e�ciency on the Densenetjq50 and the undefended (ud)
DenseNet for BIM attacks, for di�erent JPEG qualities (100, 75, 50) used in
attack.
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C Additional Figures

Figure C.6: Venn diagram of correctly classi�ed spaces for an original image x. The gray
area is correctly classi�ed by the DensenetJPEG

M , while the blue area is the
DensenetRGB

M 's correctly classi�ed input space.
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