
Fakultät Design, Medien und Information Department Medientechnik

Bachelor-Thesis
zur Erlangung des akademischen Grades B.A.

Kianosh Momo Kinz

Feasibility study about maritime data
transfer through lighthouses using
optical error correcting and detecting
techniques

Erstprüfer: Jan Mietzner
Zweitprüfer: Prof. Peter A. Höher
Eingereicht am September 26, 2022

Contents
1 Introduction 5

1.1 Motivation . 5
1.2 Goal and Structure of Thesis . 6

2 Laying a Foundation 7
2.1 Informative lights . 7
2.2 Visual Light communication VLC 9
2.3 Channels models . 10

2.3.1 BEC . 11
2.3.2 White Gaussian noise . 11
2.3.3 BIAWGN channel . 11
2.3.4 Signal to noise and bit error ratio 12
2.3.5 Channel coding theory . 14

2.4 Error Correcting/Detecting Codes 14
2.4.1 Block codes . 16
2.4.2 Low density parity check code LDPC 18
2.4.3 Short block length LDPC 18
2.4.4 Cyclic redundancy check code CRC 19

2.5 Fountain codes . 20
2.5.1 About the LT code . 22
2.5.2 A deep dive into LT codes 22

3 Problem Analysis 26
3.1 Framing the question . 26
3.2 Gathering information . 27

3.2.1 Maritime communication systems 27
3.3 New approach . 28

4 Conception 30
4.1 Channel model . 30

4.1.1 Modulation schemes . 30
4.1.2 Effects on the SNR . 31

4.2 Comparison and Symbioses of Encoding Methods 36
4.2.1 Encoding order . 37

2

4.2.2 Encoding with LT Code . 39
4.2.3 Encoding with CRC . 40
4.2.4 Adding LDPC Code . 43

5 Implementation 44
5.1 Coding Environment . 44
5.2 Code Implementation . 45

5.2.1 Noise Implementation . 49
5.2.2 LT Code . 49
5.2.3 LDPC and CRC Code . 51
5.2.4 Soft and hard input . 52

5.3 Results of Simulation . 52
5.3.1 Bit error ratio . 54
5.3.2 Effects of LT-Code-Redundancy 57
5.3.3 Data transfer speeds . 62

6 Evaluation 64
6.1 How feasible is it? . 64
6.2 Future Research . 65

List of Figures 67

List of Tables 69

Bibliography 70

3

Abstract
The goal of this thesis is to use existing maritime navigation lights to transmit

data to multiple ships at once. Since the light source may rotate, have blinking
patterns, or be obstructed by waves, vessels can not receive a continuous stream of
packages. Only when the photo detector sees the light, packages can be received.
This led to the use of LT codes (fountain codes). The receiver is then able to collect
any sufficient amount of packages and still decode the original message. In order to
strengthen the signal against interference LDPC codes (error correcting codes) and
CRC codes (error detecting codes) are added as well. Those three representatives
of their respective categories are going to be tested in various configurations in
order to explore their combined or single effects on bit error ratios and decoding
times. It was found out that using the symbiosis between Fountain codes and error
detecting codes, we can achieve really low bit error ratios while at the same time
keeping computational needs at a minimum. For better results at really low SNR’s,
error correction codes can be added, resulting in better BER but an increase in
decoding time.

Zusammenfassung
Ziel dieser Abschlussarbeit ist es schon vorhandene Navigationslichter aus der

Schiffahrt zur Datenübertragung an eines oder mehrere Schiffe gleichzeitig zu nut-
zen. Da diese Lichtquellen sich häufig drehen, blinken oder durch hohe Wellen
kurzzeitig blockiert werden, können Schiffe keine durchgängig andauernde Ver-
bindung aufbauen, um kontinuierlich Daten zu empfangen. Aus diesem Grund
schauen wir uns LT Codes (Fountain Codes) an. Durch sie kann der Empfänger
zu beliebigen Zeitpunkten genügend Datenpackete einsammeln, um die originale
Nachricht zu dekodieren. Um die Übertragung gegenüber Störungen zu stärken
werden LDPC Codes (Error-Korrektur-Codes) und CRC Codes (Error-Erkennungs-
Codes) verwendet. Diese drei Vertreter ihrer jeweiligen Code-Kategorien werden
in verschiedenen Konfigurationen getestet, um ihren Effekt allein oder unterein-
ander auf die Datenübertragung, in Bezug auf Fehlerraten und Dekodierzeiten,
zu testen. Es stellte sich heraus, dass mit Hilfe eines Fountain Codes und eines
Error-Erkennungs-Codes sehr niedrige Error Raten erzielt werden können, bei
denen gleichzeitig die Rechenintensität möglichst niedrig gehalten wurde. Für noch
bessere Fehlerraten kann ein Fehler-Korrektur-Code hinzugefügt werden, welcher
allerdings die Dekodierzeit, bzw. die Rechenintensität erhöht.

1 Introduction

1.1 Motivation
Living in the north of Germany I was always fascinated by lighthouses and their

almost seemingly out of date character. A relict of the past still patrolling the
coastal shores, waiting for a purpose.

They have been around since roughly 2200 years and were once the only way to
guide sailors safely to the main land. The first lighthouse is said to be constructed
around 280 BC on the island of Pharos and found its demise around the 14th
century. Modern lighthouses may be headed in the same direction. Although the
German coast holds an approximate of 220 lighthouses, many got faced out. Some
got a push towards newer times through retrofitting LED lights instead of the old
and power-hungry halogen lamps. To say it harshly though: They are a dying
technology.

A lot of modern technologies like VHF (very high frequency) radio, satellite
communication or GPS replaced the usage of the regular lighthouse to guide one
in the dark. Their capabilities far outnumber the lighthouse’s. GPS is a source
of positional data around the globe while satellites and even regular mobile data
networks like LTE can provide access to the internet.
In this thesis I want to explore the possibility of enhancing the already existing
lighthouse infrastructure without huge constructional needs. The before mentioned
retrofitting of LED lights can be used to our advantage in transmitting data
through VLC (visual light communication) to ships. Even though lighthouses are
old, they are reliable. Modern technologies are not failure resistant. Implementing
data transfer through modulating the light of a lighthouse adds redundancy and
therefore safety for sails people to avoid the dangers of sharp cliffs or unforeseen
weather events.

More specifically, I want to explore how data can be sent to multiple receivers
at the same time while eliminating the need for a back-channel. In the process
creating a broadcast environment in which sender and receiver do not have to be
time synchronous, meaning each can operate independently.

5

1.2 Goal and Structure of Thesis
The thesis is structured into three main parts.

First off, I am going to present necessary knowledge regarding the various topics
this thesis is about. The main building blocks which are later going to be used
in the simulation are given, explained and important aspects, for following use,
emphasized. A goal would be to enable readers of varying expertise levels to be
able to understand and learn about the concepts. The second part is going to
explain in further detail what this thesis wants to research and how my approach
differs from already existing methods used in the maritime scenario. Here I am
going to contextualize the ensuing conception phase of the simulation. Thirdly we
will see the accumulation of previously gained knowledge in the simulation and its
results. Which will at last be put into context of said maritime setting.

6

2 Laying a Foundation

2.1 Informative lights
It is not easy to communicate with participants on the sea. Which does not take

away from the importance to do so! Some lights are fixed on the ships themselves,
some lead to way into a safe port, while others warn from impeding dangers like
sand dunes or sharp underwater rocks. To recognize a light and match it with one
on a map, lights use different rates of flashing, color or added audible clues. The
following wants to give a brief overview of various communication lights used in
the maritime setting.
Beginning at the ships themselves and their need to identify what kind of vessel
it is and what direction it is heading. That information is mostly helpful for
other participants to get an idea about possible speeds, size and before mentioned
direction a vessel may be travelling. Otherwise it would be really hard to tell any
of those three things during a low visibility day or simply at night. As seen in
figure 2.1, it is really easy to tell, just by recognizing the previously learned lighting
patterns, whether a vessel is moving away or towards you. Different vessel have to
attach varying configurations of lights, depending on size or propulsion method.

Figure 2.1: Different vessel orientations adopted from (Sea Rules of the Road: The
Display of Light & Audio Signals, 2009)

7

Now heading to signals from shore to ships, so called leading lights, lead the way
through treacherous canals or narrow bay entrances. They work by installing two
lights in close proximity, but differing elevation right next to each other. Positioning
them in a way, that when a ship is on the right path, one light appears to be right
above the other. As a result of widening the Elbe in Hamburg, Germany, new
leading lights, as seen in figure 2.2, had to be build in accordance with the newly
established shipping route. An interesting video about the topic can be found here
(HamburgPortAuthority, 2020).

Figure 2.2: Two leading lights near Hamburg adopted from („Leuchtturmprojekte“
an der Elbe, 2022)

Figure 2.3: Explanation of a sector light

8

Sector lights are structurally and in their purpose similar to leading light towers,
but work with a different method in mind. Instead of using two beacons and their
respective location, sector lights use different colors displayed at different angles
to indicate being on track or off course. Figure 2.3 depicts white/yellow light for
correct angles in respect to the light source, while green and red signal port or
starboard edge of the channel. Confusingly, the positions of red and green are polar
opposites in USA standards compared to International ones.

The most prominent example of light being used in the maritime environment
are however lighthouses. A single, really tall tower emitting a strong light, marking
dangerous spots along the coastline. They can help add landmarks to an other-
wise featureless shore during the day or simply state were shore is at night. Like
mentioned earlier, lighthouses as well as the previously talked about guiding lights,
emit their light in varying patterns. It is not enough to just see the light, the sails
person needs to identify which lighthouse it is in order to know what it wants to
warn about. Since additional information is needed to look that up, one could
imagine the usefulness of a self identifying lighthouse using the already in place
light source as a means to transmit that data.

Those same blinking light patterns result in a challenging transmission scenario
for conventional systems in which the receiver and sender are always continuously
talking with each other. A rotating lighthouse or heavy sea states may also
disrupt the connection between sender and receiver. Chapter 4 will propose the
use of Fountain Codes through which the receiver can collect packages whenever it
eventually sees the light.

2.2 Visual Light communication VLC
"One of the key motivations is the fact that light can be used simultaneously

for illumination as well as for communication and/or positioning purposes. [...]
Endeavour to replace outdated light sources by LEDs can be combined with VLC
technology. Compared to radio-based Wi-Fi, light based data transmission systems
- dubbed Li-Fi if fully networked - offer distinct features: they [...] provide higher
data security on the physical layer, and permit low-cost hardware components."
(Hoeher, 2019).

Höher further states that light has always been used for data communication,
although be it at very low data rates. From the signalling towers along coastal
shores of Corsica, warning about the arrival of pirates, to semaphore systems reach-
ing up to 550 km between Berlin and the Rhine Province. The idea if transmitting

9

data over the light of a lighthouse blends in nicely with the historical context.
We as humans can only see a small portion of the electro magnetic radio waves.
Since the wavelength of visible light is much, much shorter than traditional radio
waves, the resulting available bandwidth is therefore much wider. 5G networks
operate between 300 MHz and 3 GHz, found here in figure 2.4 on the left hand
side in the radio section. Visible light on the other hand has frequencies between
420 and 770 THz.

Figure 2.4: Spectrum of visible light adopted from (Light: Electromagnetic waves,
the electromagnetic spectrum and photons (article) | Khan Academy,
2022)

Modulating the light, adding a data signal to these available frequencies, can be
achieved through different means. Generally speaking a signal is being converted,
depending on the modulation scheme, to an analogue waveform which is than fed
to the light source through a driver circuit. The receiver collects the photons with a
photo detector and hands the resulting signal to the demodulation process (Hoeher,
2019).

2.3 Channels models
Depending on type of signal, the channel model can be an analog or a digital one.

Channel models are used to guess and approximate real world phenomena to base
correcting measurements upon. They help us to be prepared for any interference a
signal, analog or digital, may receive. Generally speaking a channel model describes
how an input gets changed in some way, resulting in a different output. In this
thesis we are going to talk about the binary erasure channel (BEC, digital) and
the binary input additive Gaussian white noise channel (BIAWGN, analog).

10

2.3.1 BEC
A binary erasure channel transmits a bit (zero or one), while the receiver sees

the correctly transmitted bit or no bit at all, meaning the bit got erased. The
following figure shows the error probability f in respect to all possible outcomes
through the channel.

Figure 2.5: Binary erasure channel adopted from (MacKay et al., 2003)

If the probability of an erasure is f = 0.30, 30%, then the probability for a
correctly received packaged is 1 − f = 1 − 0.30 = 0.70, 70%. This is applicable in
figure 2.5 for the transmission of a 1 or 0.

2.3.2 White Gaussian noise
Gaussian noise describes noise with the characteristic of a probability density

function equal to the normal distribution. Meaning the noise values or amplitudes
are Gaussian-distributed.

P (x) = 1
σ

√
2π

e−(x−µ)2/2σ2 (2.1)

Gaussian white noise (GWN) has the same probability density function as Gaussian
noise but now each value is also statistically independent from each other, resulting
in a specific value regardless of the ones before or after (they are uncorrelated).
This results in a constant or flat spectral density in the frequency domain. Meaning
the power of the signal is the same regardless of time or frequency frame.

2.3.3 BIAWGN channel
The binary input additive white Gaussian noise channel, much like the additive

white Gaussian noise channel uses white Gaussian noise to model real world inter-
ference. The only difference between the two models is, that the BIAWGN channel
specifically models for a binary input.

P (Y = y|X = +1) = 1
σ

√
2π

e−(y−1)2/2σ2 (2.2)

11

P (Y = y|X = −1) = 1
σ

√
2π

e−(y+1)2/2σ2 (2.3)

In his lecture about BIAWGN channels Tomáš Filler explains, that the channel
"accepts a realization of a random variable X ∈ −1, +1 on its input and outputs
a realization of a random variable Y = X + Z, where Z is a zero-mean Gaussian
random variable with variance σ2."(Filler, 2009). Zero-mean referring to µ being 0
like previously mentioned in Section 2.3.2 regarding formula 2.1.

Figure 2.6: Binary input additive white Gaussian noise channel adopted from (Filler,
2009)

2.3.4 Signal to noise and bit error ratio
SNR also called signal to noise ratio is often depicted as Eb/N0. It describes

the relation between the input energy and the noise energy apparent in any given
channel. It’s usually shown in decibels (dB), 10 log10(Eb/N0). In figure 2.8, we can
see the curve for a binary/quad phase shift keying. A binary phase shift key can
transmit 1 bit at a time while a quad phase shift key can transmit 2. The curve
tells us, that at an SNR of 4dB for example, we can expect about 1 error in 100
bits. Whereas at an SNR of 12dB, that drops to 1 error in every 100th million bit.
The ratio between corrupted and sent bits is the bit error ratio usually shown in a
logarithmic scale.

12

Figure 2.7: Binary phase-shift keying (BPSK) and Quadrature phase-shift keying
(QPSK) as shown on the real and imaginary axis.

−12 −10 −8 −6 −4 −2 0 2 4 6 810−4

10−3

10−2

10−1

100

SNR in dB

lo
g
a
ri

th
m

ic
sc

a
le

B
E

R

BPSK/QPSK

Figure 2.8: Bit error ratio over Signal to noise ratio

13

2.3.5 Channel coding theory
To tackle the naturally occurring errors while transmitting data a theory was

created called channel coding. In it various different methods, to add redundancy
to data bits, have been researched. The general idea is to give the receiver more
information in order to recognize and decide if a transmission has been faulty. To
transmit more data, the channel can either transmit for longer periods of time
or increase the bandwidth, in the process shortening the symbols length. That
would result in a reduction in channel dynamic and therefore higher bit error ratios.
All those variables can be considered when designing a channel. A PCM speech
transmission with a speed of 64 kBit/s has a BER of 10−5 resulting in an error
around every 1.56 seconds, which is for example deemed acceptable. One of the
first successes of Channel coding was used in the Voyager probe and it’s ability to
sent data back to earth from around 4 billion kilometres away (Meyer, 1999).

2.4 Error Correcting/Detecting Codes
Different ways of correcting or detecting those errors occurring in data trans-

missions have been found over the years. To explain a few principles an example
found on a blog post is being presented (Linear Feedback Shift Registers for the
Uninitiated, Part XV: Error Detection and Correction - Jason Sachs, 2022):
Imagine a language containing three words: dry, imp and net. To add redundancy,
the words are sent through a combination of three possible outcomes at each
index. Letter 1 can only be d, i or n; Letter 2 only r, m or e and letter 3 can
be represented as y, p and t. Instead of transmitting dry as 0, imp as 1 and net
as 2, we now added redundancy to our encoder. A received symbol containing
drt is recognized as incorrect and by calculating the distance d to the three valid
words, we can determine that dry was most likely sent. The distance describes
the combined change needed at every index to get a valid word. Drawing a graph
where we include every possible received word and their distances to our three valid
codewords, we get something that looks like figure 2.9.

The received words shown in the dotted line circles always have a distance of 1,
meaning one letter has to change to get our valid words. For those words we can
most likely attribute their respective valid words. The received words outside of
the circles are ambivalent and not easily error corrected. They can only be detected
as being faulty codewords. Summing it up, we can correct up to 1 error and detect
up to 2.

14

We can now calculate the hamming distance h, which is the minimal distance of
all distances in a code including only valid words, and get h = 3.
Inserting h the equation 2.4, we can see, that we can detect 2 or less errors in the
above code. While with equation 2.5, we can see, that we can only correct up to 1
error.

h ≥ e + 1 transformed to h − 1 ≥ e (2.4)

h ≥ 2e + 1 transformed to h − 1
2 ≥ e (2.5)

With that knowledge at hand we can now evaluate some block codes.

Figure 2.9: Graph showing the distances to received messages adopted from (Linear
Feedback Shift Registers for the Uninitiated, Part XV: Error Detection
and Correction - Jason Sachs, 2022)

15

2.4.1 Block codes
One of the simplest block code is the parity check code. It adds a parity bit to

the original message indicating an even or uneven number of 1′s in the message. It
is achieved by XOR-ing the message bits. This example has k = 2 message or data
bits, n = 3 total codeword bits and n − k = 1 parity bits, resulting in a code rate
R = k/n = 2/3:

Message Paritybit
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1: Creation of parity bits

If the receiver gets a codeword c = 010, it can can immediately tell by the parity
bit, that an error has occurred. The distance d between two valid codewords, for
example 110 and 000 is 2. The hamming distance h for the above code would
be 2, since the minimum distance from any valid codeword to another is at least
2. So the same evaluation principles in regards to error detecting and correcting
capabilities as seen in section 2.4 apply.

The common notation for block codes is, to have a generator matrix [G] and
a check matrix [H]. The valid words are depicted as k while the codewords are
shown as a c.
Our code is systematic, meaning the data/message bits k are included in the
codewords before adding redundant bits n − k. Our four valid words are listed in
table 2.1. To generate the generator matrix for a systematic block code, we have
to have atleast k = 2 linear independent rows. It also has to consist of the identity
matrix with size k × k. Usually we have to solve the linear equations, but in this
example it’s quite easy since choosing the words 101 and 011 already gives us an
identity matrix Ek.

[G] =
[
1 0 1
0 1 1

]

[Ek] =
[
1 0
0 1

]
and [G′] =

[
1
1

] (2.6)

16

Next we have to formulate our check matrix like so:

[H] =
[
1 1 1

]
[G′T] =

[
1 1

]
and [En−k] =

[
1

] (2.7)

For block codes in which H has more rows and columns, and therefore more check
nodes, a bipartite graph can help visualize which bits of the original message result
in a check bit. Such a graph maps inputs to different, or in our example, single
outputs. Our example has one check bit, easily noticeable since the parity check
matrix H only has one row. The bipartite graph in figure 2.10 tells us, that all
three bits of the original message are used to create the single check bit. Other
bipartite graphs have more check bits with differing input variable nodes.

Figure 2.10: A bipartite graph for our single parity check example

By calculating the syndrome of a received word we can now check if it is part of
the valid codewords, if it is s = 0.

s = c ∗ [H]T (2.8)

Here are all possible words we can receive and all valid words.

possible words 000 001 010 011 100 101 110 111
valid words ✓ x x ✓ x ✓ ✓ x

17

Calculating the syndrome of 011 and 001 by summing up (XOR) the also XOR’d
elements of the vectors/matrices yields:

s = [011] ×

1
1
1

 = 0, s = [001] ×

1
1
1

 = 1 (2.9)

Meaning 011 is a valid word while 001 is not. Even tough you could have just
checked the parity bit, I think this example explains why this notation can be
helpful when it comes to larger block codes. For another example, please read
(Meyer, 1999) chapter 4.3.2.2 about linear block codes.

2.4.2 Low density parity check code LDPC
In 1963 Robert G. Gallager set out to find an encoding algorithm that would

work for the computational constraint given during that time. He elevated the
parity check algorithm resulting in the low-density-parity-check code. Those error
correcting codes are defined by the check matrix H to be of low density in regards
to 1′s and mostly filled it with 0′s (Gallager, 1963). This way the decoding did
not need a lot of computational power to succeed. To this day, they are widely
used in WIFI standards like IEEE 802.11n and 802.11ac, Ethernet LAN and DVB
(Beuth, Hanebuth, Kurz, & Lüders, 2001). Generally speaking, LDPC codes "are
specified indirectly by an [n-k]-by-n parity-check matrix H consisting of [n-k] linearly
independent rows. A coded sequence of n bits must satisfy all [n-k] parity-check
equations corresponding to the [n-k] rows of H. An encoder maps an input frame
of k=n-[n-k] information bits uniquely into a codeblock of n bits." (CCSDS, 2015).
LDPC codes as implemented in the WIFI IEEE 802.11 standards are most effective
at large block lengths. The three possible configurations of block lengths in this
specific standard are n = 648, 1296 or 1944 (Mankar, Asutkar, & Dakhole, 2016).

2.4.3 Short block length LDPC
The CCSDS, short for the Consultative Committee for Space Data Systems,

publishes so called Green Books in which they include collections of research
covering a very broad range of topics in regards to telecommunication systems for
space applications. The maritime transmission environment later described in this
thesis resembles space in a lot of ways: "received signal power is correspondingly
minuscule. Power efficiency remains a dominant priority. When a spacecraft
emergency affects the telecommunications system, delivering any information at
all can be difficult, and there must be a method to deliver short commands at

18

an extremely low data rate when necessary." (Medova, Rybin, & Filatov, 2018).
Therefore resulting in the need of short block length LDPC codes. The following
figure 2.11 shows different modes and their purpose.

Figure 2.11: Four modes of operational uplink codes adopted from (Medova et al.,
2018)

2.4.4 Cyclic redundancy check code CRC
Compared to the before mentioned regular, linear and systematic block codes, the

error detecting CRC code can be calculated not by doing matrix calculations, but
instead polynomial calculations (Meyer, 1999). The data bits are now represented
as a polynomial:

k = 1001 , k(x) = 1x3 + 0x2 + 0x + 1 = x3 + 1 (2.10)
Evidently, the generator matrix turns into a generator polynomial g(x). A generator
polynomial is provided in the following example: g(x) = x3 + x + 1. In order to
generate the CRC check bits (parity bits) and therefore the codeword c(x) we
have to divide our data polynomial by the generator polynomial. This yields a
quotient z(x) and a rest r(x) whereas we interpret r(x) as the parity bits. The
example in 2.11 starts with the fixed parameters of k = 4 and n = 7. The data
polynomial is then prepared by left shifting it by multiplication with bn−k = x3. To
better understand why we have to look at the bit representation of the resulting
polynomial x6 + x3: 1001000. The purpose of this left shift by 3 (n − k) positions
is to make space for the parity bits to be added to the original message.

k(x)bn−k

g(x) = (x3 + 1)(x3)
x3 + x + 1 = x6 + x3

x3 + x + 1 = z(x)+ r(x)
g(x) = x3+x+ x2 + x

x3 + x + 1 (2.11)

c(x) = k(x)bn−k + r(x) = x6 + x3 + x2 + x (2.12)

Figure 2.12 depicts the left-shifted data bits plus our rest r(x) from our polyno-
mial division. Choosing the right generator polynomial is vital to the codes error
detecting capabilities. To generate one, primitive polynomials are chosen from a

19

tabular and if needed modified.
In order to detect an error at the receiver we need something similar to our parity
check matrix in 2.4.1. CRC codes on the other hand use the fact, that by adding
r(x) to the data bits k(x), we imprint g(x) into our codeword. Meaning g(x) is
now a factor of all codewords c(x). "Similar to the parity check example, where
the receiver detects an error if the received vector has an odd number of ones, in
this case the receiver will detect an error if g(x) is not a factor." (Höst, n.d.).
To see this more clearly, we have to represent the above presented equation a little
differently by multiplying by g(x) as shown in 2.13.

k(x)bn−k

g(x) = z(x) + r(x)
g(x)

k(x)bn−k = g(x)z(x) + r(x)
(2.13)

"Equivalently, since addition and subtraction are identical in modulo 2 arithmetic,
the codeword polynomial becomes [the multiplication of the generator polynomial
with the quotient (equation 2.14)]"(Höst, n.d.). Now we can see, that if we were
to divide c(x) by the generator polynomial we would get a quotient z(x) and no
additional rest r(x):

c(x) = k(x)bn−k + r(x) = g(x)z(x) (2.14)

Generally speaking, the received codeword y(x) may have picked up an error during
transmission. To check this we divide y(x) by the generator polynomial g(x).

y(x)
g(x) = z(x) + s(x)

g(x) (2.15)

If the result yields a quotient with rest, an error has been detected. The rest
polynomial is now called the syndrome s(x). If the division concludes a rest of
zero, no error has been detected. As we will later see, that doesn’t mean no errors
have occurred during transmission.

2.5 Fountain codes
A metaphor to describe fountain codes is the one of the digital fountain. Imagine

a fountain being the sender, a bucket trying to catch the water the receiver, while
the water being the packets to be received. The sender holds the bucket under
the stream of water until the bucket is full resulting in enough packets, also called
symbols n or s, received in order to decode the input symbols k or b.
The concept of a Fountain Code were first mentioned in "A Digital Fountain Ap-
proach to Reliable Distribution of Bulk Data" (Byers, Luby, Mitzenmacher, & Rege,

20

1998). They tried finding an alternative way of transmitting large amounts of data
to multiple receivers. Prior methods used a back channel from the receiver to the
sender in order for the receiver to ask for missing symbols. An increase of clients
in a multicast in comparison to a unicast network can lead to an overloading of
servers by too many request for missing packets. Many networks may also not have
a reliable back channel, if at all.
Communication over satellite networks for example usually have high latency and
limited capacity in regards to their back channel (Byers et al., 1998). Since the
time period in where transmission is possible at all in extraterrestrial networks
can be limited as well, it’s especially advantageous to avoid sending redundant
symbols. To achieve this, fountain codes can typically recover the original data set
from n = (1 + ϵ)k received symbols. Where ϵ is the packet overhead, which can be
as low as 3 % for k > 100.000 in LT codes, a member of the Fountain Code family
(Mirrezaei, Faez, & Yousefi, 2014).

Fountain codes were first designed for binary erasure channels (BEC) where
output symbols either get received correctly or lost in the process. Traditionally,
in order to guarantee reliable communication, the channel may first be observed
to measure it’s erasure rate. Fountain Codes on the other hand are part of a
class called rateless codes, meaning they can generate possibly infinite amounts of
output symbols n given input symbols k. Here the rate of the code being k/n is
not being predetermined by the sender probing the channel beforehand, but the
receiver collecting a necessary amount of n in order to decode the original symbols
k. Through this characteristic, the receiver dynamically adjusts to rate depending
on the channels condition." (Mirrezaei et al., 2014). It may have to collect more
output symbols n in order to decode k if the channel has a high erasure rate.

The authors from this article (Mirrezaei et al., 2014) also collected a lot of useful
information regarding fountain codes over Noisy channels in their 5th chapter.
One of those channels, the BIAWGN (binary input additive Gaussian noise), will
become relevant later on.
This thesis wants to focus on comparing and studying the interaction between
fountain codes, error correcting and detecting codes. Hence a more rudimentary
handling of soft inputs has been chosen, which I am going to explain in further
detail later on. In a future work I would like to implement the intricacies and
underlying additional information of soft input symbols as a result of the BIAWGN
channel in it’s simulation.

21

2.5.1 About the LT code
LT codes where first published in "The 43rd Annual IEEE Symposium on Foun-

dations of Computer Science" in 2002 by Michael Luby who previously worked with
others on the general idea of a digital fountain in "A Digital Fountain Approach
to Reliable Distribution of Bulk Data" (Byers et al., 1998). Since the LT code
is a fountain code it inherits all it’s properties and advantages. It is a rateless
code that can generate as many symbols as needed, whenever needed. Any set
from the encoded symbols is sufficient to decode the original data, as long as
it is slightly larger than the data itself (Luby, 2002). That fact is immensely
helpful in our transmission scenario since the receiver does not have to know when
the sender started transmitting, it can just join in at any time and still be able
to recover the data. It is also the first realisation of an universal erasure code,
meaning the LT code is near optimal in erasure channels in regards to overhead
and also very efficient with growing data lengths (Luby, 2002). In their paper
"On the Performance of LT Codes over BIAWGN Channel" (Kharel & Cao, 2016)
Amrit Kharel and Lei Cao investigated the performance of LT codes over BIAWGN
channels. Their findings will not be implemented in this thesis’ simulation, but
are still very interesting and motivating to improve the simulation in a future works.

2.5.2 A deep dive into LT codes
In order to explain how LT codes work, we have to know that the encoder can

be represented by using a bipartite graph much like the ones we know from block
codes. Each symbol (packet), represented with an s, is being generated by XOR-ing
a random number of data blocks with each one another. The number of packets
being XOR’d can be quantified as the degree d of the symbol. s1 being of degree 1,
s2 has d = 2, s5 has d = 3 and so forth.

Figure 2.12: Bipartite graph of a LT code adopted from (Introduction to fountain
codes: LT Codes with Python, 2019)

22

Figure 2.13: Linear equation representation adopted from (Introduction to fountain
codes: LT Codes with Python, 2019)

Like mentioned earlier, the number of symbols that can be generated are limitless
since we can just keep combining any number of data blocks with each other to
create more symbols. As seen for symbols s3 and s4, that doesn’t mean newly
generated symbols are entirely new. Since choosing input bits is based on random
factors, repetitions can happen from time to time. The probabilities of choosing a
specific number (the degree d) of data blocks to be XOR’d is manifested in the
degree distribution. Its design is vital for an efficient LT code. More on that later.
For now we have to understand why XOR-ing data blocks is such a great way to
generate symbols.
Looking for example at symbol s2, which consists of b2 ⊕ b3 and taking into account
that XOR is reversible, we can recover b2 and b3 as follows: b2 = b3 ⊕ s2, b3 = b2
⊕ s2.
Those equations only work out if we have b2 or respectively b3 in the beginning.
To achieve this, the degree distribution has to include a number of symbols with
degree one. Meaning they only contain information about one data block and can
therefore be seen as equal s1 = b1.
Let’s look at an example of a decoding process to understand it better:

23

Figure 2.14: Decoding process adopted from (Introduction to fountain codes: LT
Codes with Python, 2019)

Right away, symbol s4 got lost during transmission and is therefore greyed out.
Step 1 sees s1 = b1 and starts the process of reducing b1′s neighbours being s5
and s6. Reducing meaning to XOR b1 with its neighbours (new s5 = old s5 ⊕ b1
and new s6 = old s6 ⊕ b1). Step 2 now sees s6 having a degree of 1 and starts the
same process over resulting in b4 also being decoded and s3 and s5 being reduced.
Step 3 does the same thing with b3 and b2 hence finishing the decoding process
and being able to decode the original message.

As we saw, the decoding process always needs at least one symbol of degree 1 at
each step. If none can be found the decoding fails and the original data can not
be recovered. To ensure a symbol of degree one at each stage Luby optimized the
degree distribution and called it the robust soliton distribution. Luby described
the set containing the to be processed symbols of degree 1 the ripple. At each
step the symbols of d = 1 reduce their respective neighbours degrees before leaving
the ripple potentially resulting in none, another or more symbols replacing it and
joining the ripple to be processed. As mentioned before, the decoding fails if no
symbols of degree 1 are in the ripple before all data blocks have been recovered
(Luby, 2002). The robust soliton distribution tries to ensure a healthy ripple size,
meaning at each step the ripple grows or stays the same as a result of symbols of

24

degree 1 being processed, reducing their neighbours.

Figure 2.15: Graph of a robust soliton distribution adopted from (Introduction to
fountain codes: LT Codes with Python, 2019)

Here we can see an example of such a distribution. The y-axis shows the
probability of any degree being chosen at each encoding step resulting in the
number of data blocks being XOR’d. On the x-axis we can see the corresponding
degree to those probabilities.

25

3 Problem Analysis

3.1 Framing the question
This thesis tries to answer the following question:

How to transmit useful data to vessels along the sea shore, canals or the maritime
setting in general while keeping economical as well as computational costs as low
as possible.

The main goal would be to enhance already existing communication networks
and build redundancy which in return strengthens the stability and security of
the whole maritime communication system. It is always helpful to create options
and systems to fall back onto in case of a failure in more capable and therefore
more widely used ones. How can we warn sails people about already existing or
spontaneous hazards? The UK government provides a list of potentially occurring
problems (“Maritime safety: weather and navigation”, 2016):

• damaged or broken lights, fog signals, buoys and navigational aids that affect
main shipping lanes

• wrecks, reefs, rocks and shoals that might be a danger to main shipping lanes
• drifting hazards, such as derelict ships, mines, ice
• unexpected changes or closures of established routes
• cable or pipe laying, naval exercises or underwater operations that might be

a danger for shipping lanes
• problems with radio navigation, radio or satellite maritime safety information

services
• areas to avoid where search and rescue [...] activities are happening

Besides the hazards on water, vessels would also benefit from the transmission of
meteorological data. Information about availability of port spaces before entering
could be transmitted as well. The need for reliably communicating with ships is
defiantly present and should be possible at all times. The next chapter tries to
paint a picture of how we transmit data to vessels as of today and how we might
supplement that in the future.

26

3.2 Gathering information
3.2.1 Maritime communication systems

Since there is no technology to "do it all", a variety of different systems work
together in order to transfer data almost anywhere on the globe. In order to
categorize the sea in respect to available communication systems, zones were
defined ranging from A1 to A4.

Figure 3.1: Transmission zones adopted from (GMDSS Equipment carriage require-
ments for SOLAS ships. GMDSS Radio Survey Blog, 2022)

Figure 3.1 depicts area 1 with a pink and area 2 with a green outline while
the more generic zones called area 3 and 4 get represented by white and blue
respectively. Area 1 forms the area of about 20-30 nautical miles just of the shore.
1 nautical mile (nm) being 1852 metres. Area 2 reaches up to 100 nm, while
avoiding area 1. Area 3 is basically the rest of the ocean up until 70 degrees north
and south. Area 4 only includes those remaining 20 degrees to the corresponding
poles.

27

Figure 3.2: Transmission zones and their corresponding frequencies adopted from
(Marine Communication, 2020)

Figure 3.2 compliments figure 3.1 since it shows which frequencies are being used
for which zones. A3 and A4 are the only zones up at the SHF (super high frequency)
spectrum. Those frequencies are used by satellite communication networks like
INMASAT and COPSPAS-SARSAT. The first satellite system, INMASAT, can
establish two way communication and is mandated while travelling in zone A3
(Rødseth, Tjora, Kvamstad, & Drezet, 2009). COPSAPS-SARSAT on the other
hand is a one way only distress signal network. Ships traversing A4, being the most
remote area on earth, need to carry a DSC-equipped HF radio-telephone. DSC
stands for digital selective calling and allows to send distress signals.
Another useful tool for sails people is NAVTEX. It is a dedicated low-cost service
for navigational and meteorological warnings and forecasts. While INMASAT is
a carrier and capable of providing individualised message sending, NAVTEX is
only used for the mentioned purpose. In their report "Ship-shore communication
requirements" by (Rødseth et al., 2009) give a really good overview on maritime
communication systems if you want to read more about that.

3.3 New approach
This thesis wants to explore data transmission in area 1, and the transition zones

between area 1 and 2. Complimenting already existing networks in those zones by
retrofitting various lighting sources like leading, or sector lights or simply light-
houses. The usage of wavelengths in the visible light section of the electromagnetic
wave spectrum comes with advantages and disadvantages. Since the frequencies
(see chapter 2.2) are really high in the visible light spectrum, a wide theoretical
bandwidth can be achieved. A wider bandwidth can then lead to a theoretically
higher throughput or higher resilience by shortening the transmission symbols (see
2.3.5). Since in our scenario we want to transfer data whenever we get the slightest
chance to do it, a shortening of transmission symbols helps in delivering as much
data as we can whenever possible.

28

A major drawback when using a VLC system, is that we need to see the light in
order to transmit data. More extreme sea states can block the light from hitting
the photo detector just as easily as simple weather events, like fog, can decrease
the visible range. The simple blinking characteristic of some navigational lights
inherently blocks the light from reaching the receiver. Since Fountain Codes can
collect and process data whenever they get the chance, they are a perfect fit for a
channel code in such a scenario. Originally designed for BEC channels, it is helpful
to use a precode of error detecting and correcting codes in order to adapt to the
BIAWGN channel given here. The transmission could now withstand very poor
signal to noise ratios (SNR).

A large portion of ship traversing area 1 and 2 are small vessels with limited
computational capabilities. The data transfer system should have a decoder that is
working well within those constraints.

29

4 Conception
A simulation needs to be created, comparing different encoding schemes and

integrating as much knowledge learned along the way. At the same time interpreting
the resulting data with respect to real life facts about lights in maritime settings.
The simulation should also aim to mimic real life in an abstract way. What channel
model describes the scenario best? What kind of SNR and therefore errors do we
expect? How can we best reduce or negate those errors by tweaking and combining
detecting/correcting algorithms? The simulation should be able to answer those
questions as well as enable us to make statements about the real life scenario or at
least point future research in a general direction.

4.1 Channel model
Since we are dealing with a direct line of sight wireless transmission that is

relatively short in distance, an additive Gaussian white noise channel is sufficient
in modelling the interference present from sender to receiver. Rayleigh and Rician
fading channels would only be applicable for if the receiver experienced multiple
reflections at different timings. Since there is a direct line of sight and no buildings
to bounce the light source of from and create reflections, an AWGN channel was
chosen. A future deep dive into this topic could look at light being reflected of
waves onto the photo detector and see if that can cause interferences. In that case
Rician fading, which still models a line of sight signal plus reflections, could be
considered.

4.1.1 Modulation schemes
Section 3.1, Framing the question, stated that the communication should be

made as robust and least affected by low SNR’s as possible. Therefore we need to
choose a modulation scheme were distances between bits are the furthest. If we
add white gaussian noise, the change in position of a bit along the real axis is the
lowest in respect to the other bit. Hence the binary phase shift key would be most
optimal to use in our scenario. The light of a maritime signalling light, or that of
any light for that matter, can not be less than 0 (off). Using BPSK is consequently
impossible to implement. To solve this, we can add a DC offset to the BPSK and

30

create a NRZ-OOK (non-return-to-zero on off key). "The DC offset sacrifices 50 %
of the transmit power, [...]. Hence the power efficiency of NRZ-OOK is worse by
3dB"(Hoeher, 2019).

4.1.2 Effects on the SNR
The efficiency is directly tied to the visibility of the light source. The weaker

the light hitting the photo detector, the lower the signal to noise ratio at the
receiver. Two words need to be introduced in that context. Luminous range,
"is maximum distance at which a given light signal can be seen by the eye of the
observer at a given time, as determined by the meteorological visibility prevailing
at that time."(Willemsen, 2022). Figure 4.1 shows how much different weather
conditions can change the general visibility. The meteorological optical range table
is defined by the World Meteorological Organization (WMO) and links weather
events with the photometric luminosity function of the International Commission
on Illumination (CIE). The photometric luminosity function is a reflection of our
heightened or diminished perception of different wavelengths. In the table a dis-
tance is given at which a 2700 Kelvin collimated light beam is reduced to 5% of
it’s original strength (WMO, 2018).

Figure 4.1: Table depicting visibilities in different weather conditions adopted from
(Willemsen, 2022)

31

Nominal range, is "the luminous range when the daytime meteorological visibil-
ity is 10 NM, which is 74% transmission. Nominal range is generally the figure used
in official documentation such as nautical charts, lists of lights, etc. Nominal range
assumes that the light is observed against a dark background, free of background
lighting." (Willemsen, 2022). Equipped with that knowledge, we can consult a so
called list of lights. Every country or general water body region has their own
list in which major lights, used for navigational purposes, can be found. The one I
found covers the whole coast of the British isles as well as for example the northern
coast of Germany, the Netherlands and France.

Figure 4.2: Exempt showing three lighthouse locations near Hamburg adopted from
(Pub. 114, List of lights, radio aids and fog signals, 2022)

As seen in figure 4.2, our third lighthouse has a range of 22. Meaning it has a
nominal range of 22 nautical miles. Let’s say it is a lightly hazy to hazy day, then
figure 4.1 informs us about a visibility of 2 nautical miles. Given this number is
based on a nominal range of 10 nautical miles, not the 22 we got from our "List of
lights".

32

Figure 4.3: Graph depicting luminous ranges depending on nominal range and
visibility adopted from (Willemsen, 2022)

We then have to look at figure 4.3, starting from the top, finding the nominal
range of 22 on the upper x-axis, we can draw a line downwards and stop on the
line that states a visibility of 2 nm. Drawing a line to the y-axis yields the actual
luminous range of that specific lighthouse on that specific day: 6.5 nautical miles.

Using something called the Allards Law, as seen in equation 4.1, we can calculate
the resulting visibility by inserting luminous intensity (I in candela), atmospheric
transmissivity (T) and the threshold of illuminance (E in sea-mile candela). The
latter variable refers to the ability of our eye to barely see a light given various
background illuminations. A value of E = 0.67 corresponds to no background
light, 6.7 sea-mile candela to minor background light and 67.0 to heavy background
lighting (of Transportation, 1986).

E = I ∗ T D

D2 (4.1)

Using this equation, we can calculate the nominal range of our 250.000 candela
lighthouse. For nominal ranges an atmospheric transmission of 0.74 is assumed.
After solving for the visible distance, we get: D ≈ 22.06.

0.67 = 250000 ∗ 0.74D

D2 (4.2)

33

The point of this exercise was to emphasis on the ever changing and harsh
conditions on sea that can have an effect on the signal to noise ratio. Another
limiting factor regarding the visibility of a light can be something called the "Dipping
range". Here the curvature of the earth blocks the view between lighthouse and
vessel. An easy way to calculate the distance at which a vessel seems to be just
about to dip behind the horizon is the following function: 2.08 × (

√
Elevation +√

EyeHeight). Our example lighthouse has a height of 44 metres. A person
standing on a ship at a height of 10 metres would experience this phenomena at
around 20 nautical miles. Above this value, the lighthouse would no longer be
visible. Attaching the photo detector as high as possible is a priority. We can also
see through this example that the nominal ranges given in the "List of Light" are
not always practical. The major limiting factor in our lighthouse example is the
geographical and not the luminous range.

Figure 4.4: Simplified way to calculate dipping range

By using the information provided in a paper called "Joint Light Planning
and Error-Rate Prediction for Dual-Use Lighting/Visible Light Communication"
(Mietzner et al., n.d.), we can try to link the output of a lighthouse with a perceived
signal to noise ratio at the receiver. We first need to calculate the expected
Illuminance (E). Since we have a candela value given from our "List of Lights" via
the luminous range diagram, we can calculate the Illuminance (E) for an example
distance of 10 sea-miles as follows:

E = I

D2 = 250000cd

18520m2 = 7.29 ∗ 10−4lx (4.3)

The following list gives us the needed parameters in order to calculate the SNR γel.
• The average-power-to-squared-mean ratio is set to κ=2 both for (NRZ) OOK.

• For the blue core LED, a center wavelength of λb = 450 nm is assumed. The
corresponding value of the eye sensitivity curve is given by V (λb) = 0.04.

34

• For the responsivity of the PD at this wavelength, a value of Rλ(λb) = 0.28
A/W is adopted from the data sheet of the Hamamatsu R S3590-08 PIN
photodiode.

• The area of the test surface representing the VLC receiver is given by Ameas =
100mm2.

• The matched filter bandwidth is set to BMF = 1MHz in order to accommodate
the whole visible light spectrum of an LED.

γel = PR,el

NR,el

(4.4)

PR,el = κ ∗ (Rλ(λb) ∗ Ameas

683 lm
W

∗ V (λb)
∗ Ev)2 (4.5)

NR,el = 2 ∗ e0 ∗ Rλ(λb) ∗ PR,amb ∗ BMF (4.6)

PR,amb = Ameas

683 lm
W

∗ V (λb)
∗ Ev (4.7)

Resulting in a SNR γel = 57 dB.
If this were to be true we would see close to no errors in the transmission. The
proposed scheme of using a Fountain Code is in this case still useful since it enables
us to dip in and out of the ongoing transmission as described earlier. However, the
signal to noise ratio of 57 dB was calculated without including information about
different atmospheric conditions. Allards Law, as presented in formula 4.1, does
not yield illuminance values in lux but instead something called sea-mile candela.
The formula is helpful at linking perceived human eye sight with different weather
conditions, but not applicable when it comes to exact light simulation values. The
57 dB could be read as a transmission during a perfectly clear night sky with zero
atmospheric effect on transmission.

The before mentioned problem of rising and lowering waves blocking the Line-
of-Sight path of lighthouse to photo detector was studied in the following paper.
"Shore-to-Sea Maritime Communication with Visible Light Transmission" (H. Kim,
Sewaiwar, & Chung, 2014) shows us that weather is not the only variable causing
possible distortions at the receiver. They simulated the effects of different sea
states 4.5, meaning different wind speeds or wave heights, on the bit error ratio of
a maritime visible light transmission using LED’s and photo diodes.

35

Figure 4.5: Sea state parameters adopted
from (H. Kim et al., 2014) Figure 4.6: Performance analysis of an un-

coded transmission adopted
from (H. Kim et al., 2014)

Figure 4.6 shows us BER’s of around 10−5 to 10−3. In order to sill have reliable
data transmission, we have to encode the data with different strategies that are
going to be presented in the following chapter.

4.2 Comparison and Symbioses of Encoding Methods
This thesis ultimately wants to explore the interactions between error detecting

and correcting codes in relation to fountain codes for BIAWGN channels. Because
of that a rudimentary block diagram is proposed to visualize the basic set up. On
the left of the added white Gaussian noise the data gets encoded while to the
right decoded. The reasoning behind the order of codes will be explained in this
chapter. An outer error detection code (CRC code) is used to firstly encode the
data. After that the middle error correction code (LDPC code) is added. The
final inner Fountain code (LT code) is the center piece in the encoding scheme.
The LDPC as well as the CRC decoding works in symbioses with the LT code as
indicated by the feedback-loop at the decoder. Through which the CRC decoder
advises the LT decoder to collect more packages until enough CRC checks have
been successful, resulting in a decoded message. The variable k bits correlates to
the input message bit length while n1, n2 and n3 depict the resulting bit lengths of
a package after the respective encoding steps.

36

Figure 4.7: Basic coding scheme

4.2.1 Encoding order
Before settling on the above proposed encoding order of CRC into LDPC into LT

encoding, others were thought about. In order to have a decoder that eliminates
the most errors possible, it makes sense to first correct errors (LDPC code) before
checking the package for remaining errors (CRC code). Deciding on the remaining
order of encoding and therefore decoding was really challenging. I eventually
settled on the order seen above in which we have an inner LT code followed by the
combination of error correction and detection. This chain made the most sense at
the time of writing the simulation code, since it integrated the feedback loop caused
by the CRC decoder nicely within the while loop of the LT decoder (see section
5.2). It also enabled the sender and receiver to work independent of one another,
meaning no time synchronisation was needed. The idea of having a precode before
the LT code was also used in the development of Raptor codes, a powerful and
newer version of LT, Fountain Codes.

With the thought in mind that the LT code was originally designed to operate in
a BEC and not a BIAWGN channel, a strong case could be made for a LT → CRC
→ LDPC chain. This way the LDPC and CRC code could theoretically simulate
an erasure channel by ultimately erasing the faulty packages before presenting the
remaining to the LT decoder. We would not have an intuitive feedback loop based
on the CRC decoder decision though.

A paper researching the use of "LT codes for Wireless Broadcast" employed a
system in which they placed the LT code between the CRC and a channel block
code (CRC → LT → channel code) (Jenkac, Mayer, Stockhammer, & Xu, 2005).
That way they still made use of the feedback loop created by the CRC check while
still minimising the amount of errors the LT decoder experiences through the use
of a channel block code.
Another paper about a "Asynchronous Multi-Relay System" (Huang & Lei, 2013)
employed a structure similar to my chosen one: CRC → Raptor code → LDPC
code. The LDPC code in my encoding method is here replaced by a pre-code
before the LT code resulting in something known as a Raptor code. The LDPC

37

4.2.2 Encoding with LT Code
This quote back from chapter 2.5 about the rate of a fountain code is really

important now: "Here the rate of the code being k/n is not being predetermined by
the sender probing the channel beforehand, but the receiver collecting a necessary
amount of n in order to decode the original symbols k. Through this characteristic,
the receiver dynamically adjusts to rate depending on the channels condition"
(Mirrezaei et al., 2014).
The fundamental idea of using a fountain code in a maritime setting comes back
to the necessity and reliability and therefore a main attribute of a lighthouse. It’s
usually always on, hence available to transmit data. Ships should be able to just
receive the signal whenever they can and decode it. Changing weather events can
result in a varying degree of signal to noise ratios, so it is beneficial to employ a
rateless code that can react to the channels condition on the fly. Since ships pass
lighthouses rather slowly, the receiver has a lot of time to collect enough packages
for decoding.

Earlier in chapter 2.4.3, about short length LDPC codes, I compared space travel
and it’s challenges to ship to shore communication and complications. Both envi-
ronments share the hostility, empty space/sea, as well as great distances between
the crew and earth or the main land. Another similarity can be the really low
data rates, caused by weather events. Satellite communication can be hindered by
weather occluding the area between the radio dish and the satellite, "[...]delivering
any information at all can be difficult, and there must be a method to deliver short
commands at an extremely low data rate when necessary." (Medova et al., 2018). In
the maritime setting, weather can also have a huge effect on the visibility of the light
source as seen in 4.1.2. The need for short messages holds true for the maritime
setting as well in case of an emergency. Table 9 in (Rødseth et al., 2009) shows
various types of communications and their data requirements. A lot of those are
non emergency applications but still require fairly low data rates of 0.01 to 0.2 kbps.

The result of this being that we have to be able to transmit small packages,
therefore have an LT code that can satisfy those requirements by having a small
block length. Section 4.2.4 will present a short LDPC code that has to work hand
in hand with the LT block length of 64 suggested here. 64 bits were chosen while
experimenting with the simulation on my laptop. It could not handle file large
file sizes, resulting in me choosing a small package size in order to be able to
simulate small file sizes. I later learned that an LT code could also work based
on bits instead of bits in packages. If I were to restart the thesis, I may have
tried to code such an LT code to drive the simulation file size further down. A
more detailed break down of the set up will be shown in chapter 5 "Implementation".

39

The following codes (CRC and LDPC) try to improve and supplement the
characteristics of the LT Code. The CRC code tries to exploit the undefined rate
while the LDPC code aims to improve general performance in regards to the bit
error ratio.

4.2.3 Encoding with CRC
Since a CRC code can detect a varying amount of errors depending on its design,

we can employ it in collaboration with the LT code. By being able to basically
throw away bad packages, we can use the inherent undefined rate of the LT code to
our advantage. As seen in figure 4.7, we want to add the CRC code right in-between
the LT and LDPC code. After decoding the packages with an LDPC decoder, the
CRC decoder checks for remaining errors. We also want to compare an overall
encoder version where we skip the LDPC encoding and only encode with a CRC
encoder. Regardless of the LDPC encoding step, the CRC encoder adds 8 bits
to the LT encoded messages with a size of 64 bits yielding 72 bits. If the CRC
decoder finds an error, the resulting package is disregarded and thrown into the
void, never able to be decoded by the LT decoder. The most important aspect of
this partnership would be the amount of errors the CRC code can detect.

In his course about error detecting using a cyclic redundancy check code, Stefan
Höst provides a formula to choose a primitive polynomial, as mentioned in 2.4.4,
depending on error correcting needs (Höst, n.d.). In order to detect any error
combination containing 1 or 2 changed bits, we have to choose the primitive
polynomial as shown below. Additionally, in order to detect error combinations
containing 3, 5, or generally all errors containing an uneven number of inverted
bits, we can multiply the resulting primitive polynomial by (x + 1).

k + L < 2L − 1 (4.8)

k is the length of data bits while L the degree of the primitive polynomial. For a
signal with data length k = 64 we can check two primitive polynomials L = 6, 7
and see if they would be sufficient:

64 + 7 < 27 − 1 64 + 6 < 26 − 1
71 < 127 70 < 63

(4.9)

40

Figure 4.8: List of primitive polynomials adopted from (Höst, n.d.)

The results indicate a primitive polynomial of degree 7 or higher to be sufficient.
Höst also provides a list of well known CRC generator polynomials, see figure 4.9.
Equipped with the knowledge from my previous calculation, I chose the CRC-8
polynomial. My goal was to use as many CRC bits as necessary for my scenario
while using the least amount possible.

Figure 4.9: List of generator polynomials adopted from (Höst, n.d.)

A way to measure the effectiveness of a CRC generator polynomial is its Hamming
distance. The chosen CRC-8 polynomial has a hamming distance of at least 4 for
data word length below 128 bits. The Hamming distance in CRC polynomials
describes the minimum amount of errors that have to occur in a data word whereas
the CRC decoder is then not able to detect the error. "For example, if a CRC
polynomial has HD=6 for a given network, that means there are no possible
combinations of 1-, 2-, 3-, 4-, nor 5-bit errors [...] that can result in an undetected
error, but there is at least one combination of 6 bits that, when corrupted as a set
within a message, is undetectable by that CRC." (Koopman & Chakravarty, 2004).

41

Koopman and Chakravarty describe, in their paper "Cyclic redundancy code (CRC)
polynomial selection for embedded networks", a folklore like situation when it
came/comes to choosing the right generator polynomial for your CRC. They stated,
that some networks would pick CRC codes that are far from optimal for the given
data length. Figure 4.10 shows a comparison between three CRC polynomials,
whereas my chosen one is close to 0x97 in performance. 0x97 is a hexadecimal
number and directly corresponds to the polynomial if written in binary, 10010111,
and then as the actual polynomial, x8 + x5 + x3 + x2 + x + 1.

Figure 4.10: 8 bit, HD=4 CRC performance with an assumed BER of 10−6 adopted
from (Koopman & Chakravarty, 2004)

The figure shows "[t]he probability of undetected error Pud [which] is summed
from the probability of successively higher numbers of bit errors at an assumed
Bit Error Rate (BER) of 10−6 weighted by the percentage of errors caught per
corresponding polynomial weights for each data word length. The bound line shown
assumes a different, optimal, polynomial is selected for each length, and thus is a
firm bound on performance. Lower numbers are better, indicating a lower prob-
ability of undetected error slipping past the CRC."(Koopman & Chakravarty, 2004).

Their results clearly show that word length plays a huge role in deciding which
polynomial to go for. Since this thesis’ scenario uses 64 bit word lengths for CRC
encoding, the chosen CRC-8 code should work well for this application. Koopman’s
and Chakravarty’s paper has a whole table with optimal polynomials based on
data polynomial and word lengths to choose from.

42

4.2.4 Adding LDPC Code
In order to enhance the proposed system, an LDPC code is used as a third

step after LT and CRC encoding. That way, the error correcting LDPC code can
eliminate a lot of errors before the CRC code has to find the remaining. Two
variants of LDPC codes have to be implemented, so we can compare the system
with LDPC and CRC, or without LDPC but with CRC or only with LDPC. The
first variant would be the LDPC encoder followed by the LT encoder resulting in
64 bits as the LDPC input. The second variant would include the CRC encoder in
between the LT and LDPC encoder, resulting in the LDPC encoder seeing 72 bits
at it’s input.

Earlier I mentioned the proposed LDPC codes from specification CCSDS 231.1-
O-1. They introduced three codes of varying sizes: 64x128, 128x256 and 256x512.
Here the 64x128 code fits our requirements for a short length LDPC code per-
fectly and therefore will be used as well as a 72x144 code for the scenario of
all three encoding methods being used at the same time. The 231.1-O-1 speci-
fication lists the parity check matrix and methods to calculate the generator matrix.

We can now implement our three codes (LT, CRC and LDPC) to study their
respective effects on each other.

43

5 Implementation
Creating a simulation that made sense in respect to results from which we could

derive meaningful information was really challenging. Throughout the process, I
revised and changed the code multiple times. Complete overhauls, were knowledge
gained up until that point was used to create a cleaner simulation, were not
uncommon. The basis remained the same, a LT code simulation written in python
by Francois Andrieux. He was also the author of a blog post explaining LT codes
in detail (Introduction to fountain codes: LT Codes with Python, 2019). During my
whole process, a CRC code and a fitting LDPC code were added into the existing
framework, as well as an AWGN channel model, thereby creating my simulation.
Understanding the difference between software development and simply coding was
vital to this project. It is really easy to just code something without much sense
behind it. Taking moments to reflect upon the written code and juxtapose it with
the plan to create a reflection of the real world was the most difficult part of entire
process.

5.1 Coding Environment
I used Trello in order to keep track of what had to be done and what needed to

be worked on. Trello is an online project management tool that can be customized
and therefore can fit any project. Cards can be created with captions and further
detail if needed. I created four columns to keep track of my progress and organise
myself better. First column denoted the "To-Do’s" while the second only held
the cards with what I worked on at the very moment. The third one held all the
finished cards, which was quite satisfying to see that column grow larger and larger.
The fourth column acted similar to a trash bin in which all no longer necessary
cards were put. Throughout the process, small projects had to be stopped or were
changed into something else in order to fulfil the goal, prescribed earlier.

44

The code was written in a program called Visual Studio Code using the pro-
gramming language python. Both were a commonly used during my bachelor
courses and were chosen out of this reason. Working with an environment you are
comfortable with is really important in order to create something new.
Everything was run on my 2019 Huawei Matebook 14, which had it’s pro’s and
con’s. Since this computer is rather weak in regards to computational power,
smaller and smaller file lengths had to be simulated with each consecutive adding of
encoding algorithm. In the end I simulated about 1000 bits, which should be totally
sufficient. Using a consumer laptop had it’s upsides when it came to researching
the scenario of a sailor on a small vessel using a small computer, just like mine, in
order to decode the incoming message. I had first hand reference on how long it
may take someone to decode the message.

5.2 Code Implementation
Figure 5.1 depicts an overview of the written code. The simulation starts of by

creating a random bit sequence of fixed length. Since the inner most code is the
LT code which is block based, we need to divide the bit sequence into chosen sizes.
Here we create blocks with a length of k = 64 bits. Meaning our input of 1000
bits gets broken up into 1000/64 = 15.625 ≈ 16 blocks sized 64 bits each. The
simulation works with the thought in mind, that we encode and decode each block
created by the LT process independently of one another. Earlier versions of my
simulation coupled multiple blocks of 64 bits together in order to have larger input
lengths for an LDPC encoder. Since I included a short-length LDPC code, this
no longer needs to happen. It also better reflects a real life scenario in which each
received, and fully encoded symbol gets processed one at a time.
Beforehand, in the prefix, the simulation can be set to different configurations.
Depending on those settings, four if-statements conclude the next steps of the
simulation. (1)IF we want to research the interaction between CRC and LDPC
code we first encode each block with the CRC encoder resulting in n1 = 72 bits and
then the result with the LDPC encoder n2 = 144 bits. (2)IF we only want the CRC
encoder to encode our blocks, the second option does just that. (3)IF-statement
number three gives us the equivalent of the second one, but instead of only CRC,
we only encode the blocks with the LDPC encoder. (4)IF-statement four disables
all outer codes and only encodes the blocks with the LT process. Regardless of
chosen if-statement, the LT encoder follows them all resulting in a potentially n3 =
infinite amount of output symbols. Here we use the LT process to create so called
symbols by XOR-ing different blocks with each other.

45

That concludes the simulation’s encoding process, after which white Gaussian
noise is being added onto every symbol we created. In order for our LT decoder to
work properly, we sadly have to make a hard decision on each soft "bit" in order
to get hard bits of 0 and 1. Sadly, because while reverting back to hard bits, we
lose a lot of useful information about the channel the data has been transmitted,
that could have been used by our decoding process. Later in chapter 5.2.4, we will
further discuss the topic of soft and hard bits as inputs.

Since we can not simulate infinite packages, the RLT variable limits the amount
of symbols processed at the decoder. The decoding process start with the LT
process searching for symbols of degree 1 in order to start the decoding process
as a whole. If no symbols of degree 1 are found in the received symbols array, we
stop the decoding. If, on the other hand, we find a symbol of degree 1, the simu-
lation is presented with the corresponding if-statements from earlier in the encoding.

(1)IF the CRC and LDPC code are activated, we use the symbol and check
which blocks have been XOR’d in order to produce the given symbol. Those other
blocks are called the neighbours of the given symbol. Knowing that our given
symbol of degree 1 directly corresponds to an original message block, we iterate
over our other received symbols and XOR our given symbol/block with symbols
that have our given symbol/block as their neighbour. In the process creating lower
degree symbols than before, thereby new symbols with degree 1. This process
is called "reducing the neighbours" and is done for all four configurations in the
simulation. Still being in configuration (1) we then decode the input bits with the
LDPC decoder in order to receive a set of message bits with added CRC check-bits
at the end. Using those check bits, we confirm if our message data has been
transmitted correctly or if there has/have been recognisable flip bits during trans-
mission. If the CRC decoder finds no errors, the data gets successfully recovered
and our symbol subsequently deleted from our pool of to-be-decoded symbols. If it
detects and error, the symbol gets removed from the pool without recovering the
data. The iterative search for yet another symbol with degree 1 starts all over again.

(2)IF we have only been encoding with a CRC code before, we now still have to
reduce the neighbours in order to produce more symbols of degree 1. After that we
check for errors using the 8 check-bits added onto our original 64 bits. During the
same process as in configuration (1), we either find errors or not, ergo recovering
our data before removing the symbol or immediately removing the symbol from
the pool. The search for degree one continuous.

46

(3)IF we only encode with a LDPC code we reduce the neighbours and after-
wards decode the LDPC encoded message. We directly recover the data and remove
the symbol from the pool.

(4)IF neither a CRC or LDPC code has been used during the encoding process,
we only reduce the neighbours before recovering the data, removing the symbol
and starting the search for another symbol with degree 1.

The iterative search for symbols with degree 1 stops, as described earlier, if no
symbol of degree 1 can be found, or if all data/message blocks have been recovered.
After the second option we calculate the bit error ratio for our received bits and
comparison to the sent ones.

47

Figure 5.1: Blockschaltbild des Codes

48

5.2.1 Noise Implementation
The noise generator works by projecting the data onto a transmission signal,

in this case BPSK (1, -1), and then adding noise of predetermined strength. The
predetermined strength is given by the SNR we want to simulate. We first convert
the SNR back to the linear scale from logarithmic after which we calculate the
power spectral density in our data vector. By rearranging the SNR function γ = P

N0

to N0 = P
γ

, we can calculate N0 and therefore our noise vector which we then add to
our data vector. I would have liked to implement a transmitter using OOK (NRZ)
but I did not manage to do that. As mentioned in section 4.1.1 about modulation
schemes, a light can only turn off and on. It is impossible to transmit a −1 since
we can not have a light source which is more than off.

Figure 5.2: Example of noise generating code

5.2.2 LT Code
Andrieux originally created a LT simulation, that could be interacted with

through the console of windows (Andrieux, 2022). Since I felt that was a convenient
way of interacting with a program, I continued with that approach and build on top
of that. The original program wanted a file as an input to start the LT encoding and
decoding process. Now we can chose the size as well as generate a file with random
bits. Entering a string similar to this one: python lt_codes.py dummy_file −s
125 −r 3, starts the simulation. −s represents the file size, while −r responds to

49

the LT-Code-Redundancy RLT , or the amount of symbols we collect at the receiver.
Figure 5.3 shows a randomly generated file of roughly 1000 bits, 125 bytes, being
generated and the receiving end of the simulator collecting three times as many
bits as the file size before decoding. The simulation doesn’t simulate a constantly
generating fountain code (LT), but instead we simulate the point of view of the
decoder by already selecting a chunk of transmitted data to run our algorithms
on. We could also run the program with a LT-Code-Redundancy (−r) of 100 and
pick out 3% of those symbols to start the decoding. Since that would have the
same result, we can just run our simulation for the amount of data the receiver
will collect, to safe on computing time on the simulations end.

Figure 5.3: Console output after an LT code without CRC and LDPC

Figure 5.3 also shows the generated blocks (1000 bits /64 bits = 15, 75) as well
as the amount XOR’d symbols, being 48, dependant on the redundancy (16 ∗ 3).
CRCenable and LDPCenable are pretty self explanatory, but have to be hard set
in the actual code itself as they can not be set in the cmd line as of now. After
that we see a few statistics on how the decoding process is going, or went, before
finding a line depicting the bit error ratio (BER) calculated at the end. The SNR
in dB has to be set, just like CRCenable and LDPCenable in the code itself.

50

5.2.3 LDPC and CRC Code
The LDPC decoder as well as the CRC decoder were implemented in the LT

decoding part of the code. In figure 5.4, we can see the while loop that iterates over
the received symbols and searches for a symbol with degree 1. We then decode,
depending on configuration, the data and proceed as described earlier.

Figure 5.4: LT decoder while loop

The implemented LDPC code was written by (DelfiSpace, 2022) with the specifi-
cation 231.1-O-1 in mind. In the LDPC decoder code we can find a few variants
on how we want to decode the message. Methods (algorithms) called "BitFlip",
"SumProductAlgorithm" or "MinimumSumAlgorithm" can be as our LDPC de-
coder. Through trial and error I concluded on the Sum Product Algorithm, since
it produced the best results.

The CRC code was written by (Sneath, 2022) and basically performs a polynomial
division if given two polynomials in binary form. The function can also check for
errors if given the received polynomial together with the received check bits. The
output, being true or false, was then used in my simulation to either recover the
received data or throw it away by throwing the symbol out of the symbols array.

51

5.2.4 Soft and hard input
The LDPC decoder is able to use soft bits in order to decode the original message.

By an iterative process, the additional knowledge about the channels condition
inherent in soft bits, can be used by the decoder in order to yield a better error
correcting result. The LT code has to reduce the neighbours by XOR-ing the
current symbol with symbols that have the current symbol as their neighbour. An
XOR operation is not possible with soft inputs, therefore we can not use soft inputs
in the simulation at all.
To solve this, I would either have to implement the LDPC code after creating the
symbols with the LT code, in order to decode every symbol before starting the LT
process of searching for degree 1, or I implement an LT code that can handle soft
inputs. Such a code has been proposed by (Zhang, Huang, & Shen, 2008).

5.3 Results of Simulation
In the following I am going to present results from my simulation, comparing rel-

ative data, transfer speeds and bit error ratios for the different configurations. I am
also going to look at the effect, an increase or decrease of received packages at the
receiver has on transfer speed and bit error ratio. The base line in regards to BER
will be a transfer of 125 bytes whereas I only encode with the LT process. Figure
5.5 shows the theoretical bit error ratio over signal to noise ratio for a transmission
over a BIAWGN channel in blue, and the results of the simulation for only the LT
encoder being active in red. As expected, the LT encoding comes with a slight
decrease in performance of about 2 dB. Since the LT encoder does not do anything
helpful with errors, but instead just spreads them to other packages through the
process of eliminating the neighbours, we see this decrease in performance. We
also see a sort of hugging to the theoretical curve, indicating a true simulation with
a shift.

52

−12 −10 −8 −6 −4 −2 0 2 4 6 810−4

10−3

10−2

10−1

100

SNR in dB

lo
g
a
ri

th
m

ic
sc

a
le

B
E

R
LT (RLT =10)
BPSK/QPSK

Figure 5.5: Bit error ratio over Signal to noise ratio for theoretical BPSK and LT
encoded BPSK

The curve for LT encoding ends abruptly after 7 dB SNR, since there were no
errors to be found at SNR values higher than 7. Out of visual clarity, the following
graphs will handle no detected errors similarly. If we were to increase the package
size, we would see errors even at higher SNR’s akin to the theoretical curve. 64
bits on the other hand do not suffice for simulations with higher SNR’s. If we then
were to increase the package size and then widen the x-axis, we would see the same
break at possibly 10 dB. Since it would just shift the same "problem" to the right,
I decided to leave the simulation at a package size of 64 bits at LT encoding.

53

5.3.1 Bit error ratio
Let’s remind ourselves of the three remaining possible configurations besides

LT encoding: Only LDPC and LT encoding, only CRC and LT encoding, LDPC,
CRC and LT encoding. The subsequent graph show good results at pre concluded
redundancies. The specific effect of changing this variable will be discuss later on.
The theoretical BER curve for a BPSK signal over an AWGN channel will also be
displayed for a better visual comparison of the results.

−12 −10 −8 −6 −4 −2 0 2 4 6 810−3

10−2

10−1

100

SNR in dB

lo
g
a
ri

th
m

ic
sc

a
le

B
E

R

LDPC (RLT =10)
CRC (RLT =600)

LDPCandCRC (RLT =300)
LT (RLT =10)
BPSK/QPSK

Figure 5.6: BER over SNR for LDPC + LT, CRC + LT, LDPC + CRC + LT and
only LT code

54

Just like we did not see any errors above 7dB at LT encoding, we do not see
any above 5dB if we add LDPC code into the encoder. One could say that we
have generated a BEC channel at 5 dB or above by eliminating all errors allowing
the LT encoder to work on error free data. The addition of an LDPC code shows
benefits starting from 3 dB and gradually get better from there. This encoding
scheme decoded the messages by only collecting an amount of packages equal to 10
times of the original message (RLT = 10).
Even better results in respect to the bit error ratio can be achieved by only em-
ploying a CRC code and a LT code. Here we do not see any errors above 2dB.
Again, just like with the addition of an LDPC code, we theoretically created a
BEC channel in which faulty packages are not taking into consideration by the LT
decoder since none reach it. The main goal of the cyclic redundancy check code
was to throw away corrupted packages. So it makes total sense that we will not
see any errors at higher SNR’s, given a sufficient amount of packages to process
(RLT = 600). The remaining errors at low SNR values stem from the CRC code
not being able to detect all errors, especially errors where multiple bits have been
flipped. Since we employed a CRC code with a hamming distance of 4, meaning
we can not detect some or all error combinations including 5 errors or higher. The
check code then falsely flags error combinations stating it hasn’t found any errors,
therefore proceeding with recovering the data, resulting in a faulty decoded message.
By increasing the CRC code bits, less packages would slip under the radar, and
the process would eliminate more faulty packages.
I tested this by adding a stronger CRC code, this time a CRC-16, at the encoder.
Graph 5.3.1 nicely shows the predicted effect. We achieve lower bit error ratios
at lower signal to noise ratios. The better performing CRC code was now able
to detect more error combinations which previously slipped under the radar by
our CRC-8 code. At an SNR of -2 dB, the CRC-8 and CRC-16 code are both
overwhelmed again, therefore flagging packages as false-positive. In order to get
any packages with degree 1 at low SNR’s, we had to collect a lot more packages
at the receiver. Instead of RLT = 600 times the original message, it has to collect
RLT = 50000 times the original message.

55

−12 −10 −8 −6 −4 −2 0 2 4 6 810−3

10−2

10−1

100

SNR in dB

lo
g
a
ri

th
m

ic
sc

a
le

B
E

R

CRC-8 (RLT =600)
CRC-16 (RLT =50000)

BPSK/QPSK

Figure 5.7: Stronger CRC code

Regardless of this effect, we can see a steadily decrease in errors after adding
encoding algorithms. If we add the LDPC code and the CRC code before LT
encoding, we see an even better performance than previously seen with only CRC
encoding. This time we don’t see any errors above the 1 dB mark. The amount
of packages, in respect to the original message packages, needed drops as well in
comparison to only CRC and LT encoding. Instead of RLT = 600 we only need to
process 400 times the packages of the original message packages in order to decode
successfully.

56

5.3.2 Effects of LT-Code-Redundancy
To further study and evaluate our transmission scenario, we are going to change

the LT-Code-Redundancy value and see how the different configurations may bene-
fit, in respect to a better bit error ratio, or not. By changing this parameter, we
can try to study the effect heavy sea states or thick fog can have on our ability to
decode the message, depending on our chosen set up. Heavy sea states can make it
harder to receive any packages at all, meaning in certain scenarios we need to be
able to decode the message with the bare minimum of received packages.

Looking at the plain LT code as a basis again, we see that it does not react to a
changing LT-Code-Redundancy value. Table 5.1 depicts the results of an average
of 5 simulation runs for each field in the table. The coloured column corresponds to
graph 5.6. The slight changes between different LT-Code-Redundancy values can
be referred to the stochastic characteristic of our noise being added while simulating
the transmission channel. Graph 5.3.2 shows even clearer that no significant trend
can be derived from increasing or decreasing the LT-Code-Redundancy.

RLT /
SNR 2 5 10

-12 0.452 0.441 0.440
-10 0.445 0.429 0.429
-8 0.406 0.430 0.410
-6 0.409 0.378 0.386
-4 0.363 0.337 0.315
-2 0.335 0.287 0.267
0 0.103 0.175 0.186
1 0.161 0.129 0.143
2 0.098 0.100 0.087
3 0.047 0.052 0.057
4 0.037 0.036 0.036
5 0.019 0.015 0.021
6 0.009 0.007 0.005
7 0.001 0.004 0.002
8 0.001 0 0
9 0 0 0

Table 5.1: LT-Code-Redundancy over signal to noise ratio and the corresponding
bit error ratios for only LT encoding.

57

−10 −5 0 510−3

10−2

10−1

100

SNR in dB

lo
g
a
ri

th
m

ic
sc

a
le

B
E

R

LT (RLT =2)
LT (RLT =5)
LT (RLT =10)
BPSK/QPSK

Figure 5.8: LT-Code-Redundancy over signal to noise ratio and the corresponding
bit error ratios for only LT encoding

After adding the LDPC code as a precode to the LT code, we have seen in figure
5.3.1, that the LDPC code in symbiosis with the LT code yields better results in
comparison to a lone LT code. A benefit from increased LT-Code-Redundancy, on
the other hand, can not be detected. As seen in table 5.2 and graph 5.3.2, we see
no significant change in BER across different SNR’s if we modify the LT-Code-
Redundancy. If we were to derive our results from average runs of 10 or more per
field, we would see even less differences between varying LT-Code-Redundancy
values.

58

RLT /
SNR 2 5 10

-12 0.464 0.438 0.441
-10 0.456 0.430 0.442
-8 0.434 0.400 0.408
-6 0.425 0.375 0.360
-4 0.377 0.346 0.338
-2 0.313 0.284 0.269
0 0.272 0.187 0.195
1 0.164 0.145 0.147
2 0.127 0.098 0.127
3 0.050 0.056 0.050
4 0.022 0.018 0.028
5 0.008 0.004 0.005
6 0.015 0 0
7 0 0 0

Table 5.2: LT-Code-Redundancy over signal to noise ratio and the corresponding
bit error ratios for LT and LDPC encoding.

−10 −5 0 510−3

10−2

10−1

100

SNR in dB

lo
g
a
ri

th
m

ic
sc

a
le

B
E

R

LT+LDPC (RLT =2)
LT+LDPC (RLT =5)
LT+LDPC (RLT =10)

BPSK/QPSK

Figure 5.9: LT-Code-Redundancy over signal to noise ratio and the corresponding
bit error ratios for only LT and LDPC encoding

59

By adding only a CRC code before the LT code and employing our "throw away
if error detected" scheme, we can achieve significantly better results compared
to LDPC and LT encoding. Since we throw away a lot of received packages, we
have to collect a lot more of them at the receiver side, therefore increasing the
LT-Code-Redundancy in our simulation. To better understand table 5.3, case1, 2
and 3 have to be explained. Case 1 refers to the decoder not being able to decode
because it could not find any symbols with a degree of 1 after the CRC elimination
process. Case 2 is similar in that a few symbols of degree 1 have been found, but
not enough to finish the decoding process. Case 3, just like case 1 and case 2, refers
to majority cases in the 5 simulations runs. Here the majority of sims achieved
a BER of 0, but some were stuck in case 2 or 1. If no case number is given for
the BER, all 5 sim runs for that value were able to decode the original message.
Breaking it down, the higher the case number, the better the algorithm performed
given the current LT-Code-Redundancy. Starting from a LT-Code-Redundancy of
100, enough packages were available to throw away the ones with detected errors
and still have enough to decode the message properly. As mentioned in section
5.3.1, the errors at 1 dB at a LT-Code-Redundancy of 100 stem from the CRC
code not being able to detect some errors and falsely flagging them as correctly
transmitted. Raising the amount of packages to be processed to 600 yields results
for all our chosen SNR values. Here we can observe the effect of wrongly flagging
packages as error-free even better. Way to many packages slip through the CRC
check. If we want to see better BER values at 1 dB or lower, we would have to
implement a stronger CRC code.

60

RLT /
SNR 2 5 10 50 100 600

-12 case1 case1 case1 case1 case1 0.453
-10 case1 case1 case1 case1 case1 0.456
-8 case1 case1 case1 case1 case1 0.437
-6 case1 case1 case1 case1 case1 0.401
-4 case1 case1 case1 case1 case2 0.382
-2 case1 case1 case1 case2 case2 0.290
0 case1 case1 case1 case2 case3 0.137
1 case1 case1 case1 case2 0.024 0.046
2 case1 case1 case1 0.012 0 0.005
3 case2 case2 case3 0.001 0 0
4 case2 case3 0 0 0 0
5 case2 0 0 0 0 0
6 case3 0 0 0 0 0
7 case3 0 0 0 0 0
8 case3 0 0 0 0 0
9 case3 0 0 0 0 0

Table 5.3: LT-Code-Redundancy over signal to noise ratio and the corresponding
bit error ratios for LT and CRC encoding.

Table 5.4 shows the results for LT plus LDPC and CRC encoding. This config-
uration yields the best results, even at lower LT-Code-Redundancy values then
CRC encoding. The few remaining errors that previously slipped through the
CRC error detection process got eliminated by the LDPC error correction process
before they could even reach the error detection process. Comparing the case of
LT-Code-Redundancy 2 of LT+CRC and LT+LDPC+CRC encoding, we see all
5 simulation runs producing a BER of 0 at SNR value of 5 dB, while LT+CRC
encoding does not produce BER’s of 0 for any simulated SNR over all 5 runs.
Meaning at an SNR of 5 dB, our receiver is now able to collect a lot less packages
to successfully decode the original message. If we only use LT+CRC encoding, we
have to gather 2.5 times (LT-Code-Redundancy of 5 instead of 2) as many packages
in order to achieve a successful transmission.

61

RLT /
SNR 2 5 10 50 300

-2 case1 case1 case1 case2 0.168
0 case1 case1 case1 case2 0.014
1 case2 case2 case2 0.003 0.004
2 case2 case2 case3 0 0
3 case2 case3 0.002 0 0
4 case2 0 0 0 0
5 0 0.009 0 0 0
6 0.009 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0

Table 5.4: LT-Code-Redundancy over signal to noise ratio and the corresponding
bit error ratios for LT, LDPC and CRC encoding.

The LT + LDPC + CRC combination is a clear winner in regards to BER
at low SNR values. It also nicely combines the good BER performance of only
CRC encoding while keeping the amount of needed packages in respect to the
original message to a minimum. All configurations have their up and downsides
though. If we only consider the bit error rate in rating the configurations, we will
get a distorted picture of a clear winner (LT+LDPC+CRC). For a more thorough
comparison, we also have to look at the time it took the decoder to decode the
message or, in other words, what kind of relative transmission speeds were achieved
for the different configurations.

5.3.3 Data transfer speeds
The top performing configuration in respect to BER was the LT encoder plus

LDPC and CRC. Table 5.5 shows the best results for each configuration based on
determined LT-Code-Redundancy. But now instead of looking at the bit error ratio,
we take the decoding time into consideration. The results are given in seconds.
The top performing configuration (LT+LDPC+CRC) has a really high decoding
time of 198 seconds at an SNR of 1 dB in comparison to the 0.69 seconds for LT
plus CRC encoding. It is also worth mentioning that at really low SNR values of
-4 or below, using the LT+LDPC+CRC encoding technique, my computer was not
able to decode the message in a timely sufficient manner. Even transmitting the
125 bytes over a channel with an SNR of -2 dB took 70 minutes.

62

RLT /
SNR

LT
RLT =10

LT+LDPC
RLT =10

LT+CRC
RLT =600

LT+LDPC+CRC
RLT =300

-12 0 31.91 1.44 unable
-10 0 28.17 2.64 unable
-8 0 29.97 1.99 unable
-6 0 26.64 2.03 unable
-4 0 24.78 1.99 unable
-2 0 29.11 1.74 4245.35
0 0 25.97 1.75 1045.99
1 0 19.98 0.69 198.57
2 0 16.77 0.30 73.21
3 0 9.13 0.19 46.99
4 0 5.31 0.14 26.03
5 0 2.57 0.11 6.22
6 0 1.42 0.09 1.21
7 0 1.12 0.12 1.34
8 0 1.23 0.12 1.58
9 0 1.19 0.10 1.24

Table 5.5: Comparison of decoding times for the best results for all configurations
in seconds.

So if we were to only look at the decoding time, our clear winner would be
the LT plus CRC configuration instead. Keeping in mind that the LT plus CRC
combination has a much weaker performance in respect to the BER when compared
to LT plus CRC plus LDPC encoding. The next chapter is going to reflect upon
those results.

63

6 Evaluation
The results suggest different configurations work best for different scenarios. If

our goal would be to transmit a low sized emergency message during bad weather
conditions (low SNR), the results advocate for a LT+CRC plus LDPC encoding for
added protection. If we were to transmit files of larger size, and the meteorological
visibility on that day were good (high SNR) we could instead use the LT encoder
plus only the CRC mechanism. Greatly reducing the decoding time and therefore
being able to transmit lager files.

Using an error detection code in symbiosis with a Fountain code works best,
regardless of file size, as long as the weather condition is good. Adding a more
computational intensive error correcting code into the mix, results in a possible
lower throughput, but gain in regards to the bit error ratio. So worse weather
conditions can not solely rely on the special relationship between error detection
and fountain code, but have to receive help by adding error correction on top.

6.1 How feasible is it?
Throughout writing this thesis I realized just how many variables I would have

to include to give a truthful answer towards the feasibility of data transmission
using light emitting navigational maritime structures. The list of unresearched
topics regarding the scenario just grew the more I informed myself: Many lights
blink at different rates or may be turned off entirely during the day. Many guiding
lights emit light of varying strength, or color, thereby have fluctuating reach and
bandwidth. How much light (input) does a photo detector need in order to receive
a useful signal, and how is the a signal to noise ratio linked to changing degrees
of light input. Just simply answering: "yes, you can transmit data through light-
houses", would disregard the complexity of differing characteristics of guiding lights.

I also noticed, that writing a simulation requires a lot of time and knowledge,
the latter of which I slowly gained more throughout the project. If I were to start
all over again, I would now like to write everything on my own (resulting in a much
longer development process) and not rely on pre-existing code to aid me. That
way I would have more creative freedom over the way the simulation is set up.

64

Some ideas were hard to implement, mostly because of my lack of experience in
coding. That meant that sometimes the most logical concept or idea did not find
it’s way into my simulation, simply because I did not know how to implement it.
This feeling of being restricted by myself was the worst part about writing this thesis.

I can however say that using a Fountain code with error detecting capabilities,
adding error correction if needed, is a good approach.

6.2 Future Research
An improvement upon the Fountain code used in this thesis, LT code, is the

Raptor code. (Shokrollahi, 2006) Just like I used a precode in form of a CRC
and LDPC code, the Raptor code inherently uses a different precode to improve
performance.

Figure 6.1: Schematic or Raptor Code adopted from (Shokrollahi, 2006)

Looking to improve the ability to decode soft symbols would be interesting as
well. Speaking of the effects which produce certain signal to noise ratios: VLC
based V2V communication (vehicle to vehicle) studies regarding weather conditions
and reliability of data transmission could help refine and predict this connection in
future research (Singh, Srivastava, & Bohara, 2019), (Ivascu, Ursutiu, & Samoila,
2020).

Another paper called "Multi-hop relay-based maritime visible light communica-
tion" (H.-J. Kim, Tiwari, & Chung, 2016) proposes a system of VLC using relay
stations in order to achieve larger sea coverage. Through this clever approach the
authors were not only able to increase the transmittable distance, but also improve
the performance in respect to BER.

65

Figure 6.2: Proposed multi-hop system adopted from (H.-J. Kim et al., 2016)

I will look forward to reading papers about visible light communication in
maritime settings in the future, since I think this area of research is going to
produce some really interesting results.

66

List of Figures
2.1 Different vessel orientations adopted from (Sea Rules of the Road:

The Display of Light & Audio Signals, 2009) 7
2.2 Two leading lights near Hamburg adopted from („Leuchtturmprojekte“

an der Elbe, 2022) . 8
2.3 Explanation of a sector light . 8
2.4 Spectrum of visible light adopted from (Light: Electromagnetic

waves, the electromagnetic spectrum and photons (article) | Khan
Academy, 2022) . 10

2.5 Binary erasure channel adopted from (MacKay et al., 2003) 11
2.6 Binary input additive white Gaussian noise channel adopted from

(Filler, 2009) . 12
2.7 Binary phase-shift keying (BPSK) and Quadrature phase-shift keying

(QPSK) as shown on the real and imaginary axis. 13
2.8 Bit error ratio over Signal to noise ratio 13
2.9 Graph showing the distances to received messages adopted from

(Linear Feedback Shift Registers for the Uninitiated, Part XV: Error
Detection and Correction - Jason Sachs, 2022) 15

2.10 A bipartite graph for our single parity check example 17
2.11 Four modes of operational uplink codes adopted from (Medova et

al., 2018) . 19
2.12 Bipartite graph of a LT code adopted from (Introduction to fountain

codes: LT Codes with Python, 2019) 22
2.13 Linear equation representation adopted from (Introduction to foun-

tain codes: LT Codes with Python, 2019) 23
2.14 Decoding process adopted from (Introduction to fountain codes: LT

Codes with Python, 2019) . 24
2.15 Graph of a robust soliton distribution adopted from (Introduction

to fountain codes: LT Codes with Python, 2019) 25

3.1 Transmission zones adopted from (GMDSS Equipment carriage re-
quirements for SOLAS ships. GMDSS Radio Survey Blog, 2022) . . 27

3.2 Transmission zones and their corresponding frequencies adopted
from (Marine Communication, 2020) 28

67

4.1 Table depicting visibilities in different weather conditions adopted
from (Willemsen, 2022) . 31

4.2 Exempt showing three lighthouse locations near Hamburg adopted
from (Pub. 114, List of lights, radio aids and fog signals, 2022) . . . 32

4.3 Graph depicting luminous ranges depending on nominal range and
visibility adopted from (Willemsen, 2022) 33

4.4 Simplified way to calculate dipping range 34
4.5 Sea state parameters adopted from (H. Kim et al., 2014) 36
4.6 Performance analysis of an uncoded transmission adopted from

(H. Kim et al., 2014) . 36
4.7 Basic coding scheme . 37
4.8 List of primitive polynomials adopted from (Höst, n.d.) 41
4.9 List of generator polynomials adopted from (Höst, n.d.) 41
4.10 8 bit, HD=4 CRC performance with an assumed BER of 10−6

adopted from (Koopman & Chakravarty, 2004) 42

5.1 Blockschaltbild des Codes . 48
5.2 Example of noise generating code 49
5.3 Console output after an LT code without CRC and LDPC 50
5.4 LT decoder while loop . 51
5.5 Bit error ratio over Signal to noise ratio for theoretical BPSK and

LT encoded BPSK . 53
5.6 BER over SNR for LDPC + LT, CRC + LT, LDPC + CRC + LT

and only LT code . 54
5.7 Stronger CRC code . 56
5.8 LT-Code-Redundancy over signal to noise ratio and the correspond-

ing bit error ratios for only LT encoding 58
5.9 LT-Code-Redundancy over signal to noise ratio and the correspond-

ing bit error ratios for only LT and LDPC encoding 59

6.1 Schematic or Raptor Code adopted from (Shokrollahi, 2006) 65
6.2 Proposed multi-hop system adopted from (H.-J. Kim et al., 2016) . 66

68

List of Tables
2.1 Creation of parity bits . 16

4.1 EC = Error-correcting code, ED= Error-detecting code, FC =
Fountain code . 38

5.1 LT-Code-Redundancy over signal to noise ratio and the correspond-
ing bit error ratios for only LT encoding. 57

5.2 LT-Code-Redundancy over signal to noise ratio and the correspond-
ing bit error ratios for LT and LDPC encoding. 59

5.3 LT-Code-Redundancy over signal to noise ratio and the correspond-
ing bit error ratios for LT and CRC encoding. 61

5.4 LT-Code-Redundancy over signal to noise ratio and the correspond-
ing bit error ratios for LT, LDPC and CRC encoding. 62

5.5 Comparison of decoding times for the best results for all configura-
tions in seconds. 63

69

Bibliography
Andrieux, F. (2022, August). lt-codes-python. Retrieved from https://github

.com/Spriteware/lt-codes-python ([Online; accessed 1. Aug. 2022])
Beuth, K., Hanebuth, R., Kurz, G., & Lüders, C. (2001). Nachrichtentechnik-

elektronik 7. Vogel Buchverlag, Würzburg.
Byers, J. W., Luby, M., Mitzenmacher, M., & Rege, A. (1998). A digital fountain

approach to reliable distribution of bulk data. ACM SIGCOMM Computer
Communication Review, 28 (4), 56–67.

CCSDS. (2015). Low density parity check code specification. Short block length
LDPC codes for TC synchronization and channel coding.

DelfiSpace. (2022, July). LDPC-Simulation. Retrieved from https://github.com/
DelfiSpace/LDPC-Simulation ([Online; accessed 13. Jul. 2022])

Filler, T. (2009). Binary Additive White-Gaussian-Noise Channel. Re-
trieved from http://dde .binghamton .edu/filler/mct/lectures/25/
mct-lect25-bawgnc.pdf ([Online; accessed 17. Jul. 2022])

Gallager, R. G. (1963). Low-density parity check codes. cambridge. Massachusttes.
GMDSS Equipment carriage requirements for SOLAS ships. GMDSS Radio Survey

Blog. (2022, July). Retrieved from https://gmdsstesters.com/radio
-survey/general/gmdss-equipment-carriage-requirements-for-solas
-ships.html ([Online; accessed 20. Jul. 2022])

HamburgPortAuthority. (2020, August). New leading light line on the Elbe. Youtube.
Retrieved from https://www.youtube.com/watch?v=3OeRF5gJsr4 ([On-
line; accessed 21. Jul. 2022])

Hoeher, P. A. (2019). Visible light communications: theoretical and practical
foundations. Carl Hanser Verlag GmbH Co KG.

Höst, S. (n.d.). Error detection by crc.
Huang, Y., & Lei, J. (2013). Fountain codes design for asynchronous multi-relay

system. In Proceedings of 2013 3rd international conference on computer
science and network technology (pp. 752–756).

Introduction to fountain codes: Lt codes with python. (2019, June). ([Online;
accessed 12. Jul. 2022])

Ivascu, C.-O., Ursutiu, D., & Samoila, C. (2020). Visible light communication for
automotive market weather conditions simulation. In International conference
on remote engineering and virtual instrumentation (pp. 637–651).

70

Jenkac, H., Mayer, T., Stockhammer, T., & Xu, W. (2005). Soft decoding of
lt-codes for wireless broadcast. Proc. IST Mobile Summit 2005 .

Kharel, A. (2013). Design of fountain codes with error control.
Kharel, A., & Cao, L. (2016). On the performance of lt codes over biawgn

channel. In 2016 international conference on computer, information and
telecommunication systems (cits) (pp. 1–5).

Kim, H., Sewaiwar, A., & Chung, Y.-H. (2014, 09). Shore-to-sea maritime
communication with visible light transmission..

Kim, H.-J., Tiwari, S. V., & Chung, Y.-H. (2016). Multi-hop relay-based maritime
visible light communication. Chinese Optics Letters, 14 (5), 050607.

Koopman, P., & Chakravarty, T. (2004). Cyclic redundancy code (crc) polynomial
selection for embedded networks. In International conference on dependable
systems and networks, 2004 (pp. 145–154).

„Leuchtturmprojekte“ an der Elbe. (2022, July). Retrieved from https://www.thb
.info/rubriken/detail/news/leuchtturmprojekte-an-der-elbe.html
([Online; accessed 19. Jul. 2022])

Light: Electromagnetic waves, the electromagnetic spectrum and photons (article)
| Khan Academy. (2022, July). Retrieved from https://www.khanacademy
.org/science/physics/light-waves/introduction-to-light-waves/a/
light-and-the-electromagnetic-spectrum ([Online; accessed 19. Jul.
2022])

Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection
and Correction - Jason Sachs. (2022, July). Retrieved from https://
www.embeddedrelated.com/showarticle/1180.php ([Online; accessed 18.
Jul. 2022])

Luby, M. (2002). Lt codes. In The 43rd annual ieee symposium on foundations of
computer science, 2002. proceedings. (pp. 271–271).

MacKay, D. J., Mac Kay, D. J., et al. (2003). Information theory, inference and
learning algorithms. Cambridge university press.

Mankar, M., Asutkar, G., & Dakhole, P. (2016). Reduced complexity quasicyclic
ldpc encoder for ieee 802.11 n. International Journal of VLSI design &
Communication Systems (VLSICS), 7 (5/6).

Marine Communication. (2020, October). Retrieved from https://shipip.com/
marine-communication ([Online; accessed 20. Jul. 2022])

Maritime safety: weather and navigation. (2016, October). GOV . Retrieved
from https://www.gov.uk/maritime-safety-weather-and-navigation/
navigational-guidance-and-warnings

Medova, L. R., Rybin, P. S., & Filatov, I. V. (2018). Short length ldpc code-
candidate for satellite control channel. In 2018 engineering and telecommuni-
cation (ent-mipt) (pp. 163–166).

71

Meyer, M. (1999). Kommunikationstechnik. Vieweg-Herter/Lörcher: Nachrichten-
technik, Hanser .

Mietzner, J., Harlakin, A., Hoeher, P. A., Fast, T., Liedtke, C., Heinze, R., &
Greule, R. (n.d.). Joint light planning and error-rate prediction for dual-use
lighting/visible light communication..

Mirrezaei, S. M., Faez, K., & Yousefi, S. (2014). Towards fountain codes. Wireless
Personal Communications, 77 (2), 1533–1562.

of Transportation, U. D. (1986). The Coast Guard Engineer’s Digest. United
States Coast Guard. Retrieved from https://books.google.de/books?id=
JPz0hF5uHqkC&printsec=frontcover&hl=de#v=onepage&q&f=false

Pub. 114, list of lights, radio aids and fog signals (Tech. Rep.). (2022). Springfield
VA: National Geospatial-Intelligence Agency.

Rødseth, r., Tjora, s., Kvamstad, B., & Drezet, F. (2009, 12). D1.3 ship-shore
communication requirements.. doi: 10.13140/RG.2.2.11488.20480

Sea Rules of the Road: The Display of Light & Audio Signals. (2009, May). Re-
trieved from https://www.brighthubengineering.com/seafaring/35064
-basics -of -sea -collision -regulations -lights -shapes -and -sound
-signals ([Online; accessed 19. Jul. 2022])

Shokrollahi, A. (2006). Raptor codes. IEEE transactions on information theory,
52 (6), 2551–2567.

Singh, G., Srivastava, A., & Bohara, V. A. (2019). Impact of weather conditions
and interference on the performance of vlc based v2v communication. In
2019 21st international conference on transparent optical networks (icton)
(pp. 1–4).

Sneath, E. (2022, July). Performs a cyclic redundancy check implemented in Python
3.3 with examples. Retrieved from https://gist.github.com/evansneath/
4650991 ([Online; accessed 13. Jul. 2022])

Stockhammer, T., Shokrollahi, A., Watson, M., Luby, M., & Gasiba, T. (2008).
Application layer forward error correction for mobile multimedia broadcasting.
In Handbook of mobile broadcasting (pp. 239–278). Auerbach Publications.

Willemsen, D. (2022, July). Lights, buoys – aids to navigation. Retrieved from
https :// www .sailingissues .com / navcourse9 .html # nominal -range
([Online; accessed 21. Jul. 2022])

WMO. (2018). Guide to instruments and methods of observation. World Meteoro-
logical Organization Geneva.

Zhang, K., Huang, X., & Shen, C. (2008). Soft decoder architecture of lt codes. In
2008 ieee workshop on signal processing systems (pp. 210–215).

72

Ich versichere, die vorliegende Arbeit selbstständig ohne fremde
Hilfe verfasst und keine anderen Quellen und Hilfsmittel als die
angegebenen benutzt zu haben. Die aus anderen Werken wörtlich
entnommenen Stellen oder dem Sinn nach entlehnten Passagen
sind durch Quellenangaben eindeutig kenntlich gemacht.

Ort, Datum Unterschrift

73

