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Abstract—The buildup of the charging infrastructure in retail
significantly changes the load profiles of these energy consumers
resulting in higher costs due to power peaks. This paper proposes
a new approach for energy management at supermarkets where
the cooling processes are used as flexibility. The approach makes
use of the time gaps between charging processes to selectively
intensify the cooling processes. This energy reserve is used when
new charging processes begin. Key capability is a forecast module
based on deep learning. The proposed CNN-LSTM model with
additional input signals for seasonality and public holidays shows
good performance for a short-term prediction over two hours.

Index Terms—charging infrastructure, energy consumption,
supermarkets, consumption forecasts, neural networks, CNN-
LSTM

I. INTRODUCTION

Companies in industry and commerce are electrifying their
vehicle fleets and building publicly accessible charging in-
frastructures for customers to attract more and to create new
business opportunities. Retail chains are leading the way,
currently equipping their stores with fast charging solutions
up to 400kW. This increases the peak power demand of a
single store easily by a factor of two or more resulting in
higher costs for electricity, especially for grid charges which
depend on the peak power demand. Additionally, required grid
expansions result in extra costs or could not be realized by the
grid operators (in a timely manner).

The EcoCharge project therefore pursues a novel approach
that predicts the energy consumption in retail stores with
high accuracy in order to coordinate the processes in the
store efficiently with the power requirements of the charging
infrastructure. This is achieved by a novel energy management
system based on Al technologies. Thereby, throttling of the
charging process is avoided, as this leads to lower revenues
as well as reduced customer acceptance. Furthermore, conven-
tional methods like peak shaving are not suitable, since situa-
tional switch off and time shifts of specific loads can disrupt
operational processes and worsen overall energy efficiency.
In particular, our approach makes use of the thermal storage

This work is part of the research project "EcoCharge” funded by Hambur-
gische Investitions- und Forderbank (IFB Hamburg).

Nils Heinrich
Envidatec GmbH
Hamburg, Germany
nils.heinrich@envidatec.com

of refrigeration systems, which is often already available in
large quantities in the retail sector. This avoids additional
investments, e.g. in electrical storage systems like batteries.

The proposed solution addresses supermarkets with charg-
ing stations. Supermarkets are volatile energy consumers
whose energy demand is strongly based on the refrigeration
processes. The energy efficiency depends heavily on the oper-
ating status and can vary rapidly over a wide range depending
on the load situation. The proposed approach makes use of the
time gaps between charging processes to selectively intensify
the cooling processes in the market in advance of an emerging
peak demand. This builds up an energy reserve which can
be used during peak demand without impacting grid charges.
Thereby, two objectives are met: Firstly, load peaks are not
only cut off as with common approaches like peak shaving
but are also managed without any negative effects on opera-
tional processes. Secondly, unfavorable operating conditions
are avoided so that the efficiency of the systems can be
stabilized at a permanently high level.

For the proposed peak load optimization a short-term con-
sumption forecast is required to efficiently build up the cooling
reserve when free charging capacities are identified and before
new charging processes begin. With high utilization of the
charging infrastructure (e.g. 70 to 80%), only short time
intervals remain, so that the peak load must be known at least
two hours in advance. The energy demand of supermarkets
can vary by 20 to 30% at short notice during the course of
the day. Since neither the processes in the market nor their
interactions are fully known, the consumption profile cannot
be modeled analytically. Thus, the proposed forecast is based
on a novel deep learning algorithm, which interacts with a
process control system that accesses the market’s refrigeration
systems and controls their performance by specifying target
values (see Fig. 1).

The focus of the paper is on the Al-based forecast model. In
Section II we briefly summarize related work and in Section III
the used data sets are described and analyzed. The neural
network model for the Al-based approach is presented in
Section I'V. Section V shows its parametrization and the results
of the paper, followed by a conclusion in Section VL.
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Fig. 1. Schematic model for Al-based Energy Management System

II. RELATED WORK

The energy management of supermarkets is typically based
solely on statistical data evaluation in an EMS (energy man-
agement system). Energy-saving functions are provided for
the operational optimization of refrigeration systems, which
are limited to timer programs and simple logical operations
between process variables. The savings potential is relatively
low at approx. 10%.

Approaches based on Al are discussed in research but
are not widely used in the market yet. We are not aware
of any publication on the combined approach to optimize
refrigeration system and charging infrastructure together. Only
with a focus on one of the subsystems data-driven approaches
based on neural networks are proposed.

In [1] four different methods (e.g. neural networks and
support vector machines) are used to investigate the charging
behavior of wallboxes on the low-voltage grid. In [2] the
required charging infrastructure for Park&Ride is evaluated
using Random Forest methods. In [3] simple neural networks
are used to predict the charging behavior (average charging
rate and power profile) of electric cars. Further research on
machine learning (ML) for the planning of charging infras-
tructure has been compiled in a literature review [4].

The energy consumption of supermarkets is also predicted
and optimized with the help of machine learning in various
studies. In [5] four regression models (including neural net-
works and support vector machines) are trained on historical
consumption data from supermarkets in order to predict the
consumption of new stores with certain characteristics. [6]
investigates the control of refrigeration systems using Q-
learning, an approach from reinforcement learning.

According to the literature review in [7] support vector
machines (SVM), Gaussian-based regression and clustering
algorithms are the most commonly used ML-based methods
to predict energy consumption for buildings in general.

For energy consumption and time-series forecasting in
general, Recurrent Neural Networks (RNNs) are often the
method of choice. [8] covers multiple different RNN-based
forecasting methods using Long Short-Term Memory (LSTM)

and Gated Recurrent Unit (GRU). LSTM can also be com-
bined with Convolutional Neural Networks (CNN) resulting
in an architecture with one-dimensional convolutional layers
in combination with LSTM layers. These CNN-LSTM models
show promising results with lower error rates than other neural
networks on data sets such as gas field production [9], stock
prices [10] and gold prices [11]. CNN-LSTM is also used
by the authors in [12] for day-ahead forecasting of electricity
consumption in Germany.

III. ENERGY DATA FOR SUPERMARKETS
A. Consumption data

In this work we use data from two real supermarkets
in Northern Germany. The two supermarkets differ in type
and consumption. The year of construction is in the 1990s
(with modernizations in 2021) and in 2009, respectively. The
consumption data is available in a quarter-hourly resolution
for two and three years, respectively. The data set is complete
and contains only valid values (“no NaNs”).

The average yearly energy consumption is 1,200 MWh and
1,650 MWh with peak power demand of 300 kW and 344 kW,
respectively.

Data on electricity consumption shows complex seasonality
with daily, weekly, monthly and also annual patterns as well
as days with unusual consumption (often on and around public
holidays) [13]. This is also the case for the supermarket data
where we observe recurring patterns over the course of the
day, and between weekdays, Saturdays and Sundays.

Figure 2 shows heatmaps for different seasonal periods for
one of the supermarkets. Figure 2a shows the average power
value for a quarter of an hour over the course of the day and
day of the week. Power demand is low on Sundays as well
as at night. It increases before opening hours (i.e. 7am) with
peaks in the early morning and decrease after the market is
closed (i.e. 9 pm).

In Figure 2b the average power per day over the years 2021
until mid of 2024 is depicted. This plot shows unusual times of
consumption at the end of 2021 and in the first months of 2022
which is a major difference of this supermarket compared to
the other data set. The reasons for this unusual consumption
period is not fully clarified. In addition, lower consumption
can be seen on public holidays (e.g. on Christmas or Eastern)
as well as higher consumption on specific Sundays (e.g. 10.9.
and 5.11.2023).

For the other supermarket the power consumption on differ-
ent time scales is depicted as box plots in Figure 3. Also here,
daily and weekly seasonality can be clearly seen. A monthly
seasonality is not strongly pronounced. One possible reason
for this could be the additional energy consumption for air
conditioning in these supermarkets during the summer months,
in addition to the typically high consumption in winter.

B. Simulated charging data

The available data sets do not include the power consump-
tion for the charging processes at the charging stations of
the supermarkets. Therefore, a simulation model is used to
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Fig. 2. Power consumption data for Supermarket 1
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Fig. 3. Power consumption data of Supermarket 2

create load profiles for the aggregated charging processes. The
general consumption profiles of the supermarkets discussed in
Section III-A are augmented with this simulated data to train
the model as described in Section IV.

This procedure is seen as an intermediate step until real data
on the charging processes are available over a longer period of
time. Furthermore, it ensures early validation of the prediction
approach presented.

The simulation model is described in detail in [14] and fol-
lows a similar approach as in [15], [16]. It includes parameters
on the supermarket itself, the charging stations and the electric
vehicles (EVs). For supermarkets, the opening times are taken
into account, as not all charging stations are accessible outside
opening hours, for example. The number of charging points
and the maximum charging capacity are parameters on the
charging stations. The charging processes are described by

the arrival process, the charging duration and the initial state-
of-charge (SoC) of the EV. For the arrival process and the
charging duration different distributions can be modeled, e.g.
Poisson and Weibull based e.g. on typical values for parking
durations in retail [17]. The simulation model includes also
charging profiles of different types of EVs which are chosen
randomly during simulation. Currently, the simulation model
neglects the effect of the temperature during the charging
process. As an example the simulated load profile over one
day is depicted in Figure 4. It shows the number of charging
processes and the load profile during the opening hours for one
day. The load profile shows short peaks of different magnitude
which are caused mainly by the typical charging profile of the
different types of EVs.
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Fig. 4. Load profile for simulated charging processes

IV. NEURAL NETWORK MODELS

As discussed in the related work section, the CNN-LSTM
network architecture has shown promising results at forecast-
ing time series data, including creating day-ahead forecasts of
the energy consumption of Germany, as discussed in [12]. In
order to create accurate power consumption forecasts, we use
this architecture as well as additional input signals to model
seasonal trends.

First, the input data for each forecast is fed into the
input layer of the network. In our case, this data consists
of the power consumption of the supermarket for a number
of previous input time steps. We also create additional input
features to help the model understand the seasonal effects
of the data set. These additional features consist of sine and
cosine values for each time step, with a period of an hour, a
day, a week, a month, and a year, as well as a signal indicating
the day of the week, and public holidays. The holiday signal
uses a public calender of German holidays and is set to 1 on
public holidays, 0.5 on the days before a public holiday and 0
on all other days. Any combination of these input features can
be fed into the network for any number of input time steps,
both being parameters for the network optimization. A possible
combination of these input features is shown in Figure 5, using
the day curves as well as the day of the week and holiday
signals. In that figure, the time steps in the green range are
part of the input window, which in the shown case contains
96 values and 5 features. The values in the red range are part
of the output window, which is what the model is trained to
forecast for the given input window.

The hidden layers following the input layer of the network
are one-dimensional convolutional layers. In these layers, a
convolutional kernel slides across the features of the pre-
vious layer along the temporal axis, resulting in a feature
map. The weights of the kernel are adjusted by the model
during training. For each convolutional layer, the optimizable
hyperparameters are the number of convolutional filters per
layer, the size of the kernel and the step size. In this model

Fig. 5. Example of input and output windowing for 96 input time steps
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Fig. 6. CNN-LSTM model architecture with optimizable parameters

implementation, each convolutional layer is followed by a
batch normalization layer. After the convolutional layers, the
resulting feature maps are fed into a maximum pooling layer
and then a long short-term memory (LSTM) layer. This is
a recurrent layer capable of learning short and long-term
temporal trends via each cell of a layer passing the resulting
cell state and hidden state for each time step along to the
next time step. The hyperparameters for this layer type are
the number of such LSTM cells per layer. The outputs of the
final LSTM layer are then fed into a fully-connected output
layer with a linear output function. For this task, as we want to
forecast 2 hour time frames and our data is sampled every 15
minutes, the output layer contains 8 units. Figure 6 showcases
the resulting CNN-LSTM architecture.

V. PARAMETER OPTIMIZATION & PERFORMANCE

In order to explore the effects of different input and network
parameters on the forecasting accuracy and to find the overall
best performing model, we implemented, trained, and evalu-
ated various models of this architecture using a grid search
algorithm, where we tested every possible combination of
input and network parameters and measure their performance.

Table I shows the parameters for this search, as well as the
number of models resulting from these combinations. These
models are individually trained and evaluated using both a
validation data set and a testing data set. The error rates
used are the mean absolute error (MAE), the mean absolute



percentage error (MAPE), and the mean squared error (MSE).

A. Parameter Optimization Results

In order to optimize the network parameters, we ran two
searches using these search parameters. Both searches use
the data of supermarket 1, with one also using the simulated
power consumption of two charging stations. The training data
ranges from 02.06.2021 until 30.06.2023, the validation data
from 01.07.2023 until 31.12.2023 and the testing data from
01.01.2024 until 30.06.2024. The two plots in Figure 7 show
the forecasting performance of all trained models in these two
searches.

Based on the search results, we selected a network ar-
chitecture to forecast the supermarket and charging power
consumption. The parameters of the models were chosen
by analyzing the effect of each parameter on the network
performance across the search, selecting the best possible
combination. The resulting best parameters are the same for
both searches. Table II contains the resulting parameters of the
selected network.

After parameter selection, we trained the selected architec-
ture 20 times for supermarket 1 and supermarket 2, both with
and without adding simulated charging data. This was done in
order to confirm if our results are reproducible, as the random
initialization of the network weights can cause a difference in
forecasting performance when training a model with the same
hyperparameters and input data multiple times.

As the data set of supermarket 2 is smaller, the training data
set for this supermarket covers time steps from 29.07.2022
until 30.06.2023. The validation and testing data sets cover
the same time frames as for supermarket 1 in order to create
comparable results. Table III contains the mean values and the
95% confidence intervals for the different error measures.

The resulting confidence intervals for the MAPE of both
models are within one percent point. Therefore, our models
perform reliable and can be re-trained without a significant
loss of accuracy. The models of supermarket 1 outperform the
models of supermarket 2, both with and without charging data.
As the time frames of the validation and testing data sets are
the same across both supermarkets, this can be explained by
the smaller amount of training data used to train the models of
supermarket 2. Finally, for both supermarkets, the error rates
of the model increase with the addition of simulated charging
data. Evidently, the randomness of the vehicle arrival process
leads to a loss of forecasting performance. To improve the
performance of our networks in this area will be a major focus
of our future work.

B. Seasonality

As our approach utilizes additional input features to model
seasonality, this is a particular area of interest when evaluating
the forecasting performance of the networks. For this reason,
we create heatmaps to showcase the mean performance of
the networks across months, days and time steps. Figure 8
shows the mean error rate of two models trained on data

from supermarket 1, both with and without simulated charging
data, across the days on the validation and testing data sets.
Additionally, Figure 9 shows the mean error rate of the same
two models across the day of the week and time of day. In
both cases, the first few days of the validation and testing data
set are not visualized, as for these days, there are not enough
time steps in the two data sets respectively to create a forecast.

The resulting heatmaps show multiple interesting trends,
such as the large error rates of both models during the week
of Christmas in 2023 and Easter 2024. The addition public
holidays signal as an input therefore appears to not have
the same increase in forecasting performance as shown on
other data sets [12]. This may be explained by the smaller
training data sets, which leads to the model encountering
fewer public holidays during training. In addition, the models
also show an increased error rate during Sundays with ex-
ceptionally high power consumption, such as the 05.11.2023.
This effect, as well as a slightly worse performance during
Sundays in general, leads to Sundays being the weekday with
the worst forecasting performance. Overall, the model with
additional simulated charging data performs worse than the
model forecasting the data from only the the supermarket. In
addition, it performs worse during opening than closing hours
on weekdays, whereas the model without additional charging
data performs worse during closing hours. This effect is due
to the model struggling to forecast the random nature of the
charging processes, which only takes place during opening
hours. The performance of the two models during closing
hours on weekdays, where no charging processes happen,
is comparable. This loss in forecasting accuracy due to the
charging processes is amplified on Sundays, yielding larger
error rates than on weekdays, as the power consumption of
the supermarket is lower.

VI. CONCLUSION

This work proposes a novel approach to manage peak power
demand for supermarkets with charging infrastructure. We
use the cooling processes in the supermarket as flexibility
to alleviate the high load peaks of the charging processes.
A short-term load forecast is required to build up cooling
reserves before the charging of newly arriving EVs begins.
The forecast is realized with a deep learning model based on
CNN-LSTM with additional input signals for seasonality and
public holidays.

The forecast model achieves very good results for supermar-
kets without charging processes, esp. with increasing amount
of training data. The MAPE is below 6% with training data
of near to two years. The error rate increases when less data
is available for training. This can be seen for a second data
set with an error rate of 9% with training data of less than
one year. In addition, the prediction accuracy decreases if the
data for charging processes are taken into account (11 and
16%, repsectively). For this, we see different reasons: On the
one hand, charging processes are highly stochastic with steep
increase at the beginning of charging processes. The arrival
process and the duration are mainly driven by the customers’



TABLE I
CNN-LSTM SEARCH PARAMETERS

Parameter

Values

Input Time Steps

96, 288

Fixed Input Columns

Power Consumption [kW]

Dynamic Input Columns

Day, Week, Month, Years Curves, Day of the Week, Holidays

Number of CNN Layers 2
CNN Filters 16, 32
CNN Kernel Size 2,4
Number of LSTM Layers 1
LSTM Units 128, 256
Total Number of Models 8192
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Fig. 8. Average forecasting MAPE per day for Supermarket 1

usage behavior. Typically charging profiles depend on the type
of the car and vary with changing SoC. On the other hand,
simplifications were made in the used simulation model. For
example, the rate of the arrival process is constant during
opening hours of the supermarket and does not include any
variations or patterns over the day or week.

In future work, we like to replace the simulation model for
the charging processes with real data. This data is currently

being collected and a data history sufficient for the first
experiments is expected this year. In addition, our forecast
model could be evaluated for additional supermarkets. Data
collection and provision for this is also under discussion with
associated partners in the EcoCharge project. Based on the
promising results presented in this work we plan to integrate
the forecast model with the process control as depicted in
Figure 1.
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TABLE 11
SELECTED CNN-LSTM PARAMETERS

Best values

288
Dynamic Input Columns | Day, Day of the Week, Holidays
Number of CNN Layers 2

Parameter

Input Time Steps

CNN Filters (16, 16)
CNN Kernel Size 4, 2)
Number of LSTM Layers 1
LSTM Units 256
TABLE III
NETWORK CONFIDENCE INTERVALS FOR THE VALIDATION DATA SET
Supermarket 1 Supermarket 2
charging charging
Upper 95% CI MAE [kW] | 9.86 23.57 10.28 23.14
Mean MAE [kW] 10.06 23.69 10.47 23.32
Lower 95% CI MAE [kW] | 10.25 23.82 10.65 23.49
Upper 95% CI MAPE [%] | 5.64 10.43 9.09 15.40
Mean MAPE [%] 5.77 10.52 9.29 15.61
Lower 95% CI MAPE [%] | 5.90 10.61 9.48 15.83
Upper 95% CI MSE [kW] | 14.40 33.58 14.61 32.80
Mean MSE [kW] 14.66 33.66 14.89 32.98
Lower 95% CI MSE [kW] | 1491 33.75 15.16 33.16
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