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Abstract 
The increasing integration of renewable energy sources into modern power systems necessitates 
innovative control solutions, particularly in microgrids operating under off-grid conditions. This 
thesis presents the initial design and implementation of a control and monitoring system for a 
hydrogen-based microgrid, currently under development on the area of the Hamburg Observatory 
(Hamburger Sternwarte). The system serves as a prototype for a backup power solution at the 
TIGRE Observatory in La Luz, Mexico, an observatory frequently affected by power outages. 

To address the challenges of off-grid reliability, a hybrid energy storage architecture was 
developed, combining photovoltaic generation, lithium-ion batteries, electrolyzers, and a PEM 
fuel cell. The planned control infrastructure is centralized around a Raspberry Pi 4, which 
manages data acquisition via multiple communication protocols. Including CAN bus, Modbus 
RTU/TCP, and Ethernet, while MQTT serves as a higher-level, publish-subscribe communication 
layer. Time-critical sensor data and safety-relevant operations are delegated to Arduino-based 
microcontrollers. A custom, GPIO-based, interrupt-driven interface was implemented between 
the Raspberry Pi and the Arduino Due to enable a fast and error-minimized data transfer. 

The software framework was developed using a modular architecture and implemented in Python 
and C++, comprising over a dozen dedicated scripts. These include programs for interfacing with 
the key hardware components (e.g., fuel cell, electrolyzers, multimeters) as well as modules for 
data logging, plausibility validation, and real-time plotting. Structured classes handle data 
acquisition, normalization, and error detection. All scripts operate asynchronously via MQTT, 
enabling scalable and decoupled functionality. Core management routines coordinate parallel 
script execution, system diagnostics, and watchdog-supervised runtime monitoring. In addition, 
a modular EMS logic was implemented as an MQTT-subscribing component, forming the 
foundation for future automation of hydrogen production and consumption control. 

A comprehensive requirements analysis was conducted, addressing key aspects such as 
communication compatibility, fault management, system stability, and resource efficiency. The 
proposed energy management strategy prioritizes battery use and activates hydrogen-based 
systems for long-term load balancing. Overall, this work demonstrates the technical feasibility of 
a flexible, low-cost control system for hybrid microgrids and provides a foundation for future 
optimization, field deployment, and integration of additional components such as graphical 
interfaces and further implementation of sensor networks and interfaces. 
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1 Introduction 

The transition to renewable energy technologies is primarily driven by the urgent need to address 
climate change and reduce dependency on fossil fuels (IEA , 2021, p. 3). However, renewable 
energy systems frequently face challenges such as fluctuating energy availability, a discrepancy 
between power generation and demand, as well as reliability issues, particularly in remote or off-
grid areas where access to conventional infrastructure is limited or unstable (Solomon, 2019; 
Williams, et al., 2015). 

These challenges are further amplified by the limitations of the traditional power grid architecture: 
the centralized structure of today’s electrical grids remains largely consistent with the original 
configurations introduced over a hundred years ago. In principle, electricity is produced at a 
limited number of large-scale facilities and transmitted over long distances to dispersed 
consumers. This approach tends to lack flexibility and reliability, as real-time monitoring, 
regulation, and control rarely extend to lower grid levels. Additionally, integrating non-
conventional or renewable energy sources often proves technically demanding. One practical 
response to these challenges is the incorporation of decentralized small-scale energy sources 
throughout the grid infrastructure (Kwasinski, Weaver, & Balog, 2016, pp. 3-4). Notably, placing 
generation facilities in closer proximity to consumption sites can significantly ease power flow 
across transmission and distribution systems, reducing energy losses and potentially offsetting 
the need for traditional grid investments. Moreover, local generation can enhance service 
reliability for users. In critical situations, microgrids can help stabilize the system by reducing 
network congestion and facilitating fault recovery (Schwaegerl & Tao, 2014, p. 3).  

Their potential applications are wide-ranging, from development initiatives that bring power to 
underserved communities, to remote locations like islands or Antarctic research stations, and 
even to public or grid-connected systems capable of running independently during blackouts or 
emergencies. Naturally, microgrids must address the ongoing challenge of matching energy 
supply with demand. It is rarely possible to generate precisely the amount of energy needed at the 
exact time it is required, which is why on-site storage is crucial - not only to bridge gaps during 
outages or voltage drops, but also to manage load variations and respond effectively to 
emergencies. There are various types of energy storage technologies, each with specific strengths 
and weaknesses regarding power density, discharge rates, durability, and efficiency. 
Rechargeable batteries are a common choice due to their simplicity. Typically, battery systems 
operate with significantly higher nominal efficiency compared to hydrogen-based alternatives 
(Ferrario, et al., 2020) and are capable of delivering rapid responses to load changes (IRENA, 2019, 
p. 10). 

Yet these systems come with limitations such as self-discharge, finite lifespan, and recycling 
challenges. One clean energy source that has gained strong momentum is green hydrogen. It 
offers microgrids a sustainable and emission-free option for long-term energy storage, addressing 
the issue of seasonal or long-duration storage, something that conventional batteries cannot 
manage. Its benefits include, among others, a high energy density and a long storage life. Thus, 
hybrid energy storage systems may provide “the best of both worlds”, by combining the strength 
of battery- and hydrogen storage systems (Enapter S.r.l., 2020, pp. 7, 5, 9 & 6). Figure 1 illustrates 
an exemplary interaction of energy flows through a microgrid with renewable production and 
hybrid storage solution.  
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Figure 1: An exemplary illustration of hourly energy flows in a microgrid with a hybrid H2-lithium-ion battery energy 
storage system (Giovanniello & Xiao-Yu, 2023). 

These interdependencies between generation, storage, and consumption within a microgrid 
highlight the need for a dedicated control solution. Effective energy management is only possible 
through a supervisory system capable of coordinating all components cf. (IEEE, 2017, p. 13) and 
as (Enapter S.r.l., 2020, p. 25) further notices, a functional telemetry is essential for managing 
microgrid operations and equipment. As systems evolve, having access to historical performance 
data - covering energy usage, errors, failures, and more - becomes increasingly important. These 
data must be collected consistently, validated, and securely stored to support ongoing 
optimization and decision-making.  

A real-world example of the above-mentioned challenges is provided with this thesis, focusing on 
the implementation of a conceptual design of a control and supervision software framework for a 
hydrogen-integrated microgrid, with special attention to communication and data handling 
between components.  

1.1 Problem Statement and Application Context 

This work forms a building block for the development of a microgrid based on a hydrogen-powered 
energy storage system, which is currently being implemented in the area of the Hamburg 
Observatory (Hamburger Sternwarte). The Hamburg setup is intended to serve as a prototype for 
a new backup power solution to be deployed at the local power grid of the “TIGRE” Observatory in 
La Luz (Mexico). This observatory is a collaborative project between the University of Hamburg, 
the University of Guanajuato, and the University of Liège (Schmitt, et al., 2014). In the past, the 
site has experienced repeated power outages (González-Pérez, et al., 2022), thus, a reliable power 
supply is essential for ensuring continuous operation. For further details regarding the hardware 
setup of the plant, refer to section 4. 

1.2 Project Requirements and Contributions to the Project 

During the most recent development phase preceding this work, the majority of the hardware 
setup has already been installed, and most of the utility hardware was available for testing. Most 
of the main components, responsible for the overall load management can be considered as 
material for standard industrial application and all controllable units integrate control electronics 
and provide predefined interfaces. The Microgrid system described here can also be referred to 
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as a hybrid-storage microgrid, see also (Giovanniello & Xiao-Yu, 2023). A comprehensive 
monitoring and controlling solution for the microgrid as a whole was missing, prior to the thesis. 
Thus, this thesis focuses on the development and implementation of software structure realized 
on a Raspberry Pi, responsible for the acquisition of data from all of the system components that 
provide interfaces, including CANBUS, Modbus RTU/TCP and Ethernet. The software on the 
Raspberry Pi was written in Python. Furthermore, the MQTT (Message Queuing Telemetry 
Transport) protocol was chosen to provide for a higher-level communication protocol to abstract 
and distribute acquired data outgoing from the different interfaces across different software 
components. Additionally, a concept for an energy management algorithm was developed. 
Moreover, an extension of software responsible for acquisition of sensor data on an Arduino DUE 
and serial communication of the Raspberry Pi with the Arduino DUE, via a self-designed interrupt-
based data and clock interface using GPIO (General Purpose Input/Output) pins, was realized. 
The programming language used for the Arduino DUE software was C++. By creating a well-
documented and extendable framework, this thesis lays the foundation for future development. 
It is important to emphasize that this work represents an initial concept rather than a final, 
optimized solution. The primary objective is to demonstrate the technical viability of the system, 
providing a basis for further advancements. 

1.3 Syllabus 

The thesis begins with an extensive literature review, providing a detailed description of all 
employed technologies, presented systematically to lay the foundation for understanding the grid 
structure and software concept. This theoretical section will comprehensively cover each 
technology relevant to the thesis. Subsequently, the setup of the grid at both the La Luz and 
Hamburg sites is described, focusing on hardware components and their functional 
relationships. Following this, a requirement analysis is conducted to define the key criteria for the 
software design, including communication compatibility, modular structure, fault management, 
and stable and efficient system operation. The subsequent chapters present and explain the 
developed software concepts and their implementation on both the Arduino DUE and Raspberry 
Pi platforms. The thesis concludes with a summary and outlook, reflecting on the project's results 
and outlining directions for future development.  
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2 Theory 

2.1 Microgrids 

2.1.1 The Role and Structure of Microgrids 

A microgrid can be described as a scalable, local energy infrastructure that integrates electrical 
with distributed generation technologies. Its structure is composed of decentralized energy 
resources-including demand response mechanisms, storage technologies, and generation 
assets-combined with robust communication, network infrastructure, and secured information 
systems (Federau, 2016, p. 31). 

2.1.2 Key Microgrid Features and Operating Modes 

Notable characteristics of microgrids include their autonomous capability, meaning they may 
operate independently from the central grid when needed. Also, they require local voltage and 
frequency regulation to ensure grid stability through advanced management systems. Moreover, 
they can be characterized by their ability to integrate into existing network infrastructures 
(Hesami, et al., 2024). In general, microgrids can function in three primary operating states: 1st: 
grid-connected mode, where the system remains synchronized with the public network, enabling 
bidirectional power exchange while the grid dictates voltage and frequency parameters 2nd: 
island mode, where the microgrid is physically and electrically separated from the upstream grid, 
often triggered by disturbances and 3rd: transition mode, a dynamic state of synchronized 
switching between connected and islanded state (Federau, 2016, pp. 35-36). 

2.1.3 Classification of System Components 

A microgrid consists of several components, which can be categorized and distinguished from 
one another, as shown in table 1. Particularly noteworthy in this regard is the microgrid control 
system, which enables the microgrid to operate autonomously or in grid-connected mode, with 
the capability to manage itself and to connect to or disconnect from the main distribution grid for 
power exchange and ancillary service provision (IEEE, 2017, p. 13). Integrated within this control 
infrastructure of the MCS is the Energy Management System (EMS), which supports the use of 
renewables, reduces peak grid stress, and minimizes emissions from conventional sources. In 
events such as error conditions or exceeded constraints, the control logic ensures the system 
returns to a safe and predefined configuration. Such error conditions may include exceeding the 
limit value of the operating mode, exceeding a limit value of the system fuse, communication 
failure or Microgrid storage has exceeded its lower limit (Federau, 2016, p. 122). 
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Table 1: Classification of components commonly found in a microgrid [3, pp. 12 & 27-28]. 

Hardware responsible to connect the microgrid to the public grid at Point of Interconnection (breakers and 
disconnects) 

The microgrid control system (MCS) and further control elements 
Local distribution system hardware, e.g. capacitors, switchgear, transformers 

Physical 
devices 

Distributed 
Energy Resources 

(DER) 

Distributed 
Generation (DG) 

Dispatchable units, that are able to be controlled by the 
MCS 

Non-dispatchable units, which cannot be controlled by 
the MCS 

Distributed energy storage (DES) 

Loads 

Critical loads (Loads that have to be served at all of the microgrid’s normal 
operating modes) 

Priority loads (Loads that can be reduced when required but should ideally 
remain supplied.) 

Controllable loads (Loads with adjustable power levels and the ability to be 
cyclically disconnected if required) 

Interruptible loads (Loads that are fully interruptible and may be shed at any 
moment as needed) 

Diversion & dump loads (Loads that operate when surplus generation is 
available and curtailing production is either impractical or economically 

disadvantageous) 
 

2.1.4 Control Structure and Management Functions 

To operate as a cohesive and controllable unit, the microgrid requires a dedicated control system. 
This system orchestrates energy flow, ensures smooth transitions between operational states, 
and manages both internal resources and the connection to the main grid. It enables automated 
dispatch of generation and storage assets, as well as load coordination, depending on reliability 
metrics or economic signals. The functional logic of a microgrid can be organized into four control 
layers, or function blocks. These represent different scopes and timeframes of operation, but their 
practical implementation can vary depending on the specific system design and control 
architecture (IEEE, 2017, pp. 12, 2, & 37-38), see table 2. 

Table 2: Function Assignment of a microgrid in the format of function blocks (IEEE, 2017). 

Block No. Explanation 

4 Grid-interactive control deals with higher-level objectives such as market participation or 
grid services and typically operates on longer time scales. 

3 
Supervisory control services, overseeing the entire microgrid, managing dispatch, 

scheduling, and mode transitions (grid-connected vs. islanded) operating over minutes 
to days. 

2 
Local-area control coordinates devices within a subsystem or zone, such as a building. 

This level may include load aggregators or localized EMS units and works over seconds to 
hours. 

1 
Device-level control handles real-time tasks such as voltage or current regulation and 

protection. These functions are directly tied to the hardware-e.g., inverters, storage 
controllers or switches-and operate within milliseconds to seconds. 
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It is important to note that these functions are conceptual and may be performed by different 
physical or software components-centralized, decentralized, or hybrid-depending on the 
microgrid’s architecture and operating scenario. The options in regard to the grouping of functions 
along the control systems can be found in figure 2.  

 

Figure 2: Options regarding the grouping of functions of different control entities (IEEE, 2017, p. 37). 

2.1.5 Application examples of Similar Microgrid Projects 

(Ziogoua, et al., 2011) presents the design and evaluation of an automation and operation control 
system for a stand-alone renewable energy-based power system in Neo Olvio, Greece. The 
system integrates renewable energy generation (photovoltaic with 10 kWp and wind energy 
3 kWp) lead-acid batteries (3000 Ah, 48 V nominal DC bus). Battery operation is constrained by a 
lower voltage limit of 48.2 V, corresponding to a SOC of 75 to 80%, to protect against deep 
discharge. Excess energy powers a Proton Exchange Membrane (PEM) electrolyzer (1.05-4.2 kW), 
which produces hydrogen stored in tanks up to 30 bar (~35 kWh equivalent). The hydrogen feeds 
a 4 kWp PEM fuel cell during energy deficits. A diesel generator serves as backup in emergency 
conditions. The automation system uses various network protocols (CAN, Ethernet, RS232, 
Profibus) to enable real-time, remote monitoring and control. A central data acquisition unit 
evaluates subsystem performance and logs critical variables. The paper highlights the challenge 
of integrating heterogeneous subsystems, through the implementation of  a combination of open 
communication, modular control logic and centralized remote monitoring implemented since the 
system is designed to be adaptable to future components, load scenarios or modified operating 
strategies. The implemented energy management strategy (EMS) relies on the SOC of the 
accumulator and operates based on a hierarchical control algorithm. The EMS was validated 
through simulated scenarios under varying load demands (1 kW, 1.5 kW, 2 kW), aiming to: 
Optimize the contribution of each subsystem to reliable operation, avoid excessive wear (e.g., 
battery cycling) and preserve the system’s eco-friendly characteristics. 

In (Agbossou, et al., 2004), the development and experimental validation of an autonomous 
renewable energy (RE) system created by the Hydrogen Research Institute (HRI) is presented. The 
energy management is handled by a control system consisting of a master controller and 
secondary microcontrollers. These regulate the operation of the electrolyzer, and the proton 
exchange membrane fuel cell (PEMFC) based on the energy level of the battery bank (energy 
buffer). The system operates on a 48 V DC bus, which may vary up to 56 V due to load fluctuations 
and component ripple effects. A double hysteresis control strategy is implemented to manage the 
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activation thresholds for the electrolyzer and PEMFC-ensuring stable and efficient switching by 
using different energy levels for turning devices on and off. Real-time data from the RE system are 
used to adapt the control algorithm, ensuring system reliability under varying load profiles and 
environmental conditions. 

In (Little, et al., 2007), a stand-alone power system was developed integrating multiple renewable 
energy sources and uses hydrogen as a long-term energy storage medium. The system combines 
wind, solar, hydro, and a combined heat and power (CHP) unit with hydrogen storage, fuel cells, 
and a high-voltage central DC bus to connect all components-including generators, loads, and 
storage. The system uses Zebra high-temperature batteries, and the hydrogen system includes a 
high-pressure electrolyzer, compression unit, and storage tanks, as well as two PEM fuel cells-
one for combined heat and power, and another for backup power. The electrolyzer must avoid 
frequent on-off cycling to prevent catalyst degradation. To manage this, an advanced battery 
buffer was added, and the control strategy focuses on maintaining a high state of charge, while 
minimizing component cycling-especially for the electrolyzer and fuel cells. System modeling in 
MATLAB Simulink helped evaluate energy efficiency and component wear over time. It showed 
that a wide hysteresis band reduces electrolyzer cycling, and that the overall round-trip electrical 
efficiency of the hydrogen storage is about 25%.  

2.2 Photovoltaics 

A photovoltaic (PV) system is based on solar cells, typically made of silicon. Their functionality 
results from the process of doping, which creates a p-n junction and an internal electric field. 
Sunlight excites electrons, which are guided by this field to generate voltage. The resulting current 
depends on light intensity and cell size. To increase voltage, cells are connected in series to form 
modules. The output under standard test conditions (STC) is given in Watt-peak (Wp). Several 
modules are combined into strings and connected to an inverter (Mertens, 2014, pp. 13–14), see 
also section 2.3. 

2.3 Inverters 

Inverters are power electronic circuits whose main task is to convert direct current (DC) into 
alternating current (AC) (Böcker, 2019, p. 9). In literature, a general distinction is made between 
line-commutated and self-commutated inverters(cf. Böcker, 2019). However, only self-
commutated inverters will be discussed in the following based on the application case in the 
thesis. 

2.3.1 Self-commutated inverters (self-commutating inverters) 

Self-commutated inverters differ from line-commutated types by utilizing semiconductor 
switches like IGBTs or MOSFETs, which can be actively turned on and off via control signals. 
Furthermore, these inverters show strong resilience to disturbances originating from the utility 
grid (Ishikawa, 2002, p. 4). In contrast to systems that rely on the grid to function, self-
commutated inverters are also capable of operating independently, making them suitable for 
standalone applications where they supply power directly to local loads without requiring grid 
support (Eltawil & Zhao, 2010, p. 123). 
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2.3.2 Hybrid inverter 

A hybrid inverter is an inverter type that combines the functions of a PV inverter and a battery 
inverter in a single device. Technically, it is usually a DC-coupled system: both the PV modules 
and the battery storage are connected together to a DC intermediate circuit of the hybrid inverter 
(Swissolar, no date, p. 3). 

2.4 UPS Systems 

Uninterruptible Power Supply (UPS) systems typically draw their energy from batteries and are 
generally designed for short-term bridging durations. During this limited time, either the 
connected systems can be brought into a safe shutdown state, or backup generators can be 
started to take over the power supply. An AC-based UPS features both an AC/DC and a DC/AC 
converter, with the battery (DC) located in between. This configuration is commonly referred to as 
an AC UPS with battery support in the intermediate circuit. It ensures uninterrupted power supply 
and additionally protects against poor grid quality or voltage fluctuations. UPS systems are 
primarily dimensioned for short operating times in the range of a few minutes. For smaller loads, 
durations of up to several hours may be feasible. However, the integrated batteries are subject to 
continuous aging and gradually lose capacity over time (Paul & Leu, 2017, pp. 158-160). 

2.5 Electrolysis 

2.5.1 General Information  

Electrolysis describes the electrically driven breakdown of a substance through a redox 
mechanism and acts as the reverse process of what occurs in energy-producing devices like 
batteries, rechargeable cells, or fuel cells (also refer to sections 2.6 & 2.7). A steady reaction 
between the electrodes requires a constant supply of direct current. At the cathode (negative 
terminal), electrons are absorbed during the reduction process (lowering the oxidation number), 
whereas at the anode (positive terminal), electrons are emitted in an oxidation reaction 
(increasing the oxidation state). In the process of water electrolysis, H₂O is always decomposed, 
yielding hydrogen gas at the cathode and oxygen gas at the anode. Adding acids like HCl, bases 
like KOH, or soluble salts like NaCl enhances the conductivity of the solution (Zapf, 2017, p. 167). 

2.5.2 The Anion Exchange Membrane (AEM) Electrolysis 

Cell Structure 

Anion-exchange membranes typically consist of a hydrocarbon polymer framework with an 
additional side chain of functional groups that enable anion exchange. Inside the cell, an alkaline 
medium is established through the membrane interface through positively charged functional 
groups located either on the polymer framework or on its polymer side chains. In the electrolysis 
process, hydroxide ions are conducted through this membrane along water molecule chains. This 
transport mechanism is driven by sequences of hydrogen bond creation and disruption. A crucial 
advantage of anion-exchange membrane electrolysis is the feasibility of employing catalysts that 
are free from platinum group metals for hydrogen and oxygen gas formation, e.g. nickel-based 
composites are commonly utilized for the hydrogen-side reaction (Cavaliere, 2023, pp. 290, 300 
& 287; Miller, et al., 2020). 
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Electrochemical Reactions  

Applying a potential across the anion-type membrane triggers electron flow from anode to 
cathode, coupled with water-splitting reactions occurring at both sides (Cavaliere, p. 291): 

𝐻2𝑂 → 𝐻2 +
1

2
𝑂2 

At the positive electrode (anode), OH⁻ ions from the surrounding medium undergo oxidation, 
resulting in oxygen gas as part of the oxygen-evolving process (Cavaliere, pp. 291 & 292): 

2𝑂𝐻⊖ →
1

2
𝑂2 + 𝐻2𝑂 + 2𝑒⊖ 

On the negative electrode (cathode), hydrogen is generated by reducing water molecules, 
producing H₂ along with hydroxide ions during the corresponding electrochemical step (Cavaliere, 
p. 292): 

2𝐻2𝑂 + 2𝑒⊖ → 𝐻2 + 2𝑂𝐻⊖ 

A general overview of the cell structure can be found in figure 3. Furthermore, the table 3 provides 
a general overview regarding the materials used for the main cell components and operating 
parameters. 

 
Figure 3: Schematic representation of an AEM cell 

structure including chemical reactions (Cavaliere p. 
291). 

Table 3: General overview of materials and certain 
operating parameters for the AEM water electrolysis 

(Miller, et al., 2020). 

Electrolyte 

Anion exchange 
ionomer (e.g. AS-4) + 

optional dilute 
caustic solution 

Cathode Ni and Ni alloys 
Anode Ni, Fe, Co oxides 

Operating 
temperature (C) 

50–60 

Operating pressure 
(bar) 

1–30 

Production rate 
(Nm3 h1) <1 

Gas purity (vol%) >99.99 
 

2.6 Fuel Cells  

2.6.1 General Information  

When the electricity supply of electrolysis is interrupted, and hydrogen and oxygen will be 
provided to continuously flow around the electrodes, the electrolysis will process in reverse, such 
that the hydrogen-oxygen fuel cell generates a voltage of its own. The redox equations of the 
electrochemical processes at the electrodes of the hydrogen-oxygen cell are as follows (Kurzweil, 
2016, p. 3):  
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⊕ 𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 𝑂2 + 4 𝐻⊕ + 4 𝑒⊖  ⇌ 2 𝐻2𝑂                  𝐸0 = 1.23 𝑉 

⊖   𝐴𝑛𝑜𝑑𝑒:                               2 𝐻2 ⇌ 4 𝐻⊕ + 4 𝑒⊖    𝐸0 = 0.00 𝑉 

Whereas the standard electrode potential (E0) indicates the tendency of a substance to form ions 
in aqueous solution under standard conditions (25 °C, 1 atm), and the difference between two E₀ 
values determines the open-circuit voltage of an electrochemical cell (Kurzweil, 2016, p. 4). The 
hydrogen electrode forms the negative terminal (Anode), while the oxygen electrode (Cathode) 
forms the positive terminal. In electrochemical cells, reduction (electron uptake) occurs at the 
cathode, while oxidation (electron release) occurs at the anode. The oxygen molecule O₂ is split; 
its oxidation state changes from 0 to -2. This means each oxygen atom accepts two electrons, see 
(Kurzweil, 2016, p. 3): 

𝑂2 + 4 𝑒⊖ → 2 𝑂2⊖   (5) 

The uptake of electrons and the formation of negatively charged particles (anions) is typical of 
nonmetals. Metals and hydrogen, on the other hand, tend to form positively charged ions (cations) 
in chemical reactions. The H₂ molecule dissociates into unstable H atoms, each of which 
immediately gives up one electron (Kurzweil, 2016, p. 3): 

𝐻2 → 2 𝐻⊕ + 2𝑒⊖   (6) 

The oxidation state of the hydrogen atom changes from 0 to +1 during this oxidation (electron 
loss).  In the overall cell reaction 2H₂ + O₂ → 2H₂O, four electrons are exchanged in the redox 
equations from two hydrogen molecules, i.e., z = 2. The Gibbs free reaction enthalpy describes 
the usable energy per mole of fuel gas (Kurzweil, 2016, pp. 3-4): 

𝛥𝐺0 = −𝑧𝐹𝛥𝐸0 = −
4

2
∙ 96485

𝐶

𝑚𝑜𝑙
∙ 1,23 𝑉 ≈

−475 𝑘𝐽

2 𝑚𝑜𝑙 𝐻2
= −237 

𝑘𝐽

𝑚𝑜𝑙
   (7) 

The theoretical capacity - that is, the usable electrical charge of a cell reaction - is zF, where F is 
Faraday’s constant. A redox reaction involving the transfer of one electron yields 96,485 As/mol = 
26.8 Ah/mol. Higher voltages are achieved by connecting multiple fuel cells in series. The resulting 
operating voltage equals the number of cells multiplied by the single-cell voltage (Kurzweil, 2016, 
p. 4). 

2.6.2 The Polymer Electrolyte Membrane (PEM) Fuel Cell 

In PEM fuel cells, the polymer membrane serves as electrolyte, catalyst carrier, and gas separator. 
These are typically 50-150 μm thick films made from perfluorinated and sulfonated polymers, 
known as proton exchange membranes (PEMs) (Kurzweil, 2016, p. 79). The basic schematic of the 
PEM cell’s buildup can be observed in figure 4. 
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Figure 4: Outline of the basic design of the PEM fuel cell. Modified from (Kurzweil, 2016, p. 77). 

The electrolyte is a proton-conducting polymer membrane, with protons (H⁺) or hydronium ions 
(H₃O⁺) serving as the charge carriers. Typical operating temperatures are 60-70 °C, with some 
systems reaching up to 120 °C. The fuel on the anode side is hydrogen or reformate gas, and the 
oxidizing agent on the cathode side is oxygen or air, which is humidified (Kurzweil, 2016, p. 78). 

Operating Behavior 

Several factors significantly influence cell voltage, including: the humidity, pressure and excess of 
air, as well as the operating temperature (Kurzweil, 2016, p. 100). In addition to electrical power, a 
significant amount of heat is produced during operation, which should be utilized to improve both 
efficiency and overall energy utilization. Fuel cells are particularly well-suited for steady-load 
applications (such as continuous battery charging). Frequent load cycling reduces the lifetime of 
the membrane significantly (Bogensperger, 2022, p. 107). 

2.7 Lithium-Ion Batteries 

Lithium-ion storage systems typically operate within a charge range of 20% to 80%, as they exhibit 
reduced capacity losses in a limited SoC range. This makes them particularly suitable for 
applications where solar power generated during daylight hours should be stored and used at 
night-indicating regular daily charge-discharge cycles. Compared to lead-acid batteries, they 
offer a more compact design, deliver higher energy density, and exhibit a more stable terminal 
voltage relative to their state of charge (SoC) (Bogensperger, 2022, p. 108; Gauthier, et al., 2022). 

2.8 Embedded Systems 

2.8.1 Technology of Embedded Systems 

An embedded system is a specialized device incorporating a processor intended for a particular 
purpose. Typically, users are neither able nor expected to upgrade the hardware or software or 
modify its intended operation. The range of tasks that the processor may handle includes data 
analysis and decision-making, time management in various roles such as measurement or task 
synchronization, and the execution of real-time interactions involving data processing in areas like 
sound, image, radar, communication, and networks.  
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Such systems are characterized by limitations, including compact physical dimensions and their 
usage in environments where reliability is vital, especially in safety-critical applications that 
demand real-time performance, whereas the term "real time" refers to scenarios where actions 
must be completed within a clearly defined short time frame. For embedded systems, this implies 
responding to urgent situations within a strict deadline. Internal peripherals such as the nested 
vectored interrupt controller (NVIC) and the processor communicate via the private peripheral 
bus (PPB) which ensures significantly reduced  latencies during execution of interrupt routines. 
An interrupt, whether initiated by hardware or software, is a software-executed function. One 
variant occurs due to I/O activity: for example, a hardware signal may indicate new input, which 
triggers a response where software reads the data and stores it in a shared memory structure. 
Later, this data can be accessed if available (Valvano, 2017, pp. 20-21, 18, 24-25 & 105). In 
numerous embedded systems, AVR Microcontrollers are used, as is the case with Arduino Family 
(Meroth & Sora, 2023, p. 1). In such microcontroller systems, interaction with the outside world 
relies heavily on input and output management. External modules connect to the controller using 
groups of lines known as ports, with each individual wire referred to as a pin. Ports combine 
multiple pins by shared purpose. Among these,  the GPIO connections are versatile and can be 
set for digital input or output, analog input, or specific communication protocols such as the UART 
(Universal Asynchronous Receiver Transmitter) (Valvano, 2017, p. 35). Furthermore, analog-to-
digital converters (ADCs) serve a crucial role for such systems to interface with the analog world 
by translating continuous sensor signals in the form of analog voltage signals into digital data that 
the processor can interpret (Bähring, 2010, p. 393). According to (Mehalaine, et al., 2024), 
watchdogs can be used as a software-based error detection in an embedded system, whereas it 
is considered as a counter that starts from a set value and reduces at a constant pace. It helps 
identify when the processor malfunctions due to various causes. The principle is that running 
processes must regularly refresh the timer by either writing a defined number to a register or 
invoking a specific routine. In this manner, the timer functions as a monitor to verify the 
processor’s proper behavior.  

2.8.2 Arduino 

Arduino represents an open-source ecosystem employing boards equipped with programmable 
microcontrollers. These boards can be easily integrated with computers, networks, and other 
equipment. Common variants of Arduino boards include models like Uno, Mega, Nano, Leonardo, 
and Due. Among them, the Arduino Due stands out by incorporating a more powerful 32-bit Atmel 
SAM3X8E ARM Cortex-M3 processor. Compared to other boards in the series, the Due delivers 
faster performance and expanded memory capacity. It operates at 84 MHz and includes 512 KB 
of flash storage, enabling it to handle more advanced applications and larger-scale 
developments. The board is equipped with 54 digital I/O connections, of which 12 support PWM 
output. It also includes 12 analog input pins, 2 analog outputs, and multiple serial communication 
interfaces. In general, Arduino boards benefit from a large base of open resources, a wide 
selection of accessories and libraries, and an active community (Zhou, 2023, pp. 13-14; A_24). 
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2.9 The Raspberry Pi 

A Raspberry Pi can be described as a fully assembled electronic board. Whereas the Raspberry 
Pi 4 Model B can be considered a versatile general-purpose platform. It features a quad-core 
processor running at 1.5 GHz and comes with 1, 2, 4, or 8 GB of memory. Furthermore, it includes 
four USB connectors (two of them supporting USB 3.0), an Ethernet interface, and dual micro-
HDMI outputs for video. Its possible use cases are ranging from acting as a desktop computer, a 
gaming console, to serving as a controller for both sensors and actuators (Monk, 2023, pp. 13, 13, 
20, 173, 503 & 430). The Raspberry Pi runs on a free GNU/Linux open-source operating system. 
Storage is managed via a Secure Digital (SD) memory card, which also contains the operating 
system. There is no built-in hard drive (Farrenkopf, 2014, p. 24). Moreover, it provides 28 usable 
GPIO pins for external interfacing [A_33]1. 

2.10 Interfaces 

An interface can be understood as the combination of I/O ports, hardware components, external 
circuitry, and software that together enable a computer system to interact with its environment 
(Valvano, 2017, p. 35). It functions as the gateway between systems, facilitating data exchange 
based on a defined set of operational rules. These rules, referred to as protocols, dictate how data 
is transmitted and interpreted during communication between different information-processing 
entities (Tröster, 2011, p. 499). Input/output interfaces can be broadly divided into categories 
based on the type of signal and method of transmission, for example parallel/digital interfaces, 
which transmit binary values concurrently across multiple lines, serial interfaces, where bits are 
conveyed sequentially over a single channel or analog interfaces, using electrical properties like 
voltage or current to represent data. In order to evaluate how well an interface performs, certain 
metrics such as bandwidth, latency, and priority are used, whereas bandwidth represents the 
volume of data transferred over a specific time period. Latency, in contrast, refers to the time 
delay between a request for data and the moment that request is fulfilled (Valvano, 2017, pp. 36 
& 363). 

2.11 Protocols 

For devices or systems to successfully exchange information, they must be capable of 
interpreting each other’s messages correctly. To achieve this, shared rules are established that 
govern how communication takes place. These sets of rules are known as protocols. They specify 
both the structure (syntax) of valid messages and the semantics, which define the vocabulary and 
the meaning behind each message (Baun, 2012, p. 31). Thus, a software protocol determines the 
nature of the signals and data units (telegrams) sent across interfaces and outlines how the flow 
of data is regulated between systems (Tröster, 2011, p. 500). 

2.11.1 Protocol stacks: The TCP/IP reference model 

Communication systems are typically structured using layered models to manage the complexity 
and requirements of modern computer networks. One of the most widely recognized models is 
the TCP/IP reference model, see figure 5.  

 
1 All references marked with [A_...] refer to documents or files included in the digital appendix 
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This stack divides communication into five distinct layers: application, transport, network, link, 
and physical. E.g. on the application layer, data is generated by an application running on the 
sender’s device, and the transport layer provides end-to-end communication between devices. 
The two main protocols used at this layer are the Transmission Control Protocol (TCP), which 
ensures reliable, ordered data transmission, and the User Datagram Protocol (UDP), which 
prioritizes low latency over reliability (Stevens & Fall, 2012, pp. 8, 16 & 15; Baun, 2012, p. 31). 

 

Figure 5: The Protocol layer structure of the TCP/IP protocol stack, including a brief description of the respective layers 
(Stevens & Fall, 2012, p. 14). 

Within such a model, each layer performs specific tasks and interacts with its adjacent layers 
using well-defined interfaces. A protocol stack can be thought of as a collection of protocols 
assigned to each layer, with one protocol per layer managing data processing at that level. In this 
hierarchical framework, when a message is sent from an application on one computer to an 
application on another, it passes vertically through the protocol layers on the sender’s side - from 
the application down to the physical layer. The message is then transmitted across the medium 
and processed in reverse order by the receiver, moving upward through its own stack until it 
reaches the target application (Meinel & Sack, 2012, pp. 32-35). This vertical flow involves a 
mechanism called encapsulation, where each layer appends its own control data - typically in the 
form of a header - to the payload received from the layer above. These headers assist in 
multiplexing during transmission and are later used to demultiplex and interpret the message 
correctly on the receiving side (Stevens & Fall, 2012, pp. 10-11; Meinel & Sack, 2012, p. 25). A 
visual representation of the principle of encapsulation can be observed in figure 6. 
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Figure 6: Illustration of the encapsulation mechanism over the message packets (Acromag Inc., 2005, p. 11). 

An example of protocol layering in practice is Modbus (see also section 2.11.5) an application-
level protocol that remains independent of the underlying physical medium. It defines the 
structure and semantics of the information to be exchanged. The same protocol can operate 
across different physical standards - such as Modbus TCP/IP over Ethernet or Modbus RTU via RS-
232 (see also section 2.11.7)- demonstrating the separation of logical communication rules from 
hardware interfaces (Acromag Inc., 2005, pp. 3-4). 

2.11.2 Validation Checks in Protocols 

Many protocols use the checksum procedure to validate incoming data packets. A checksum is a 
value calculated from a sequence of data (e.g. a message or file) and used to detect transmission 
or storage errors. The sender calculates the checksum from the data to be transmitted and sends 
it along with the data. The recipient performs the same calculation and compares the result with 
the received checksum. Simple checksums often consist of the addition of all bytes of a data 
packet. More complex methods such as the CRC (Cyclic Redundancy Check) interpret the data 
bits as a mathematical polynomial, perform a polynomial division with a predefined generator 
polynomial, and use the remainder of this division as a checksum. Checksums are used, among 
others, in the CANBUS, Modbus and TCP protocol (Meroth & Sora, 2023, pp. 167, 274, 168, 271 & 
174). 

2.11.3 Ethernet Communication Workflow 

Compare to the previous section: once the Ethernet frame is created, it is transmitted over the 
network using several steps. Standard Ethernet devices contain a Network Interface Card (NIC), 
which is responsible for sending and receiving Ethernet frames (Stevens & Fall, 2012, p. 951). If 
two devices are directly connected via Ethernet, the NICs automatically detect the correct 
transmission mode (sending or receiving?), using a method called Auto-MDIX. In Ethernet 
networks, where data can be sent and received simultaneously (full-duplex) and devices may 
operate at different speeds, network switches may need to buffer frames temporarily. This occurs, 
for example, when multiple devices send data to the same output port. If the combined traffic 
exceeds the destination's link capacity, switches store the frames by recording MAC addresses in 
a filtering database table and forward frames coming from multiple sources to their correct ports 
(Stevens & Fall, 2012, pp. 98-99).  
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Packets from one element are sent to the appropriate destination, and if a collision occurs, the 
switch delays one packet to avoid the collision (Valvano, 2017, pp. 449-450).  

2.11.4 Technology of MQTT 

The Application protocol Message Queuing Telemetry Transport (MQTT) is a protocol built on a 
client-server architecture and utilizes a publish-subscribe paradigm. It operates over 
transmission protocols like TCP/IP or comparable alternatives that guarantee reliable, 
sequenced, and two-way data flow. Designed to be minimalistic, open, and easy to deploy, MQTT 
is particularly well-suited for resource-limited environments, such as machine-to-machine (M2M) 
systems, where reduced code size and efficient use of network capacity are critical (Banks & 
Gupta, 2015, pp. 1-2; Bandyopadhyay & Bhattacharyya, 2013). An MQTT network consists out of 
MQTT Clients and a Broker (also considered as an MQTT Server), whereas a client refers to any 
program or device utilizing MQTT (Mishra & A., 2020). In MQTT-based communication, brokers 
serve as the system's central hub. They manage the entire data exchange process by handling 
message routing and managing client interactions (Sallat, 2018, p. 52). The client initiates the 
network connection to the Server. It is able to: publish messages that may interest other clients, 
subscribe to receive messages on specific topics, unsubscribe from topics it no longer wishes to 
receive messages from and disconnect from the server. The server on the other hand acts as an 
intermediary that manages message distribution between clients that publish messages and 
clients that subscribe to topics. The server accepts connections from clients, processes and 
forwards messages to matching subscriptions and manages subscription requests. The server 
ensures that each subscribing client receives a copy of messages relevant to its subscriptions 
(Banks & Gupta, 2015, pp. 9-10).  

Thus, a common MQTT setup includes sensors that periodically publish measurement data 
(payload) to specific topics. Devices interested in this data subscribe to the respective topics to 
receive updates whenever new data is published. The key advantage of this publish-subscribe 
model, as implemented in MQTT, is that data producers and consumers remain decoupled. 
Sensors are not required to know who receives their data, and consumers do not need to know 
the origin of the information. This loose coupling significantly enhances scalability. Furthermore, 
data transmission occurs asynchronously, meaning that senders and receivers do not need to be 
connected at the same time (Prada, et al., 2016; Ford, et al., 2022; Eugster, et al., 2003). 

An illustration highlights the advantage of a potential use of MQTT: If a machine controls its 
processes based on multiple external data sources, it potentially needs a separate interface for 
each source. If the same data is also used by other devices, further interfaces and communication 
connections are theoretically required. If many devices are networked with each other, this may 
quickly lead to a highly complex system. Instead, a central data source (server) can be used to 
bundle all the information. All devices (clients) then access this server in a standardized way, 
which significantly reduces the setup and maintenance effort and minimizes the number of 
interfaces required - namely one per client (Plenk, 2024, pp. 115-117). 
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Messages exchanged via the MQTT protocol, or as the official specification of the MQTT protocol 
calls it control packets, fall into four primary categories: Publish, subscribe, ping and disconnect. 
Each MQTT Control Packet can be as large as 256 MB and consists of three primary components 
(Banks & Gupta, 2015, pp. 16-22): 

• Fixed Header (included in all MQTT packets) 
• Variable Header (present in some MQTT packets) 
• Payload (included in some MQTT packets) 

The Fixed Header contains (Banks & Gupta, 2015, pp. 16-20):  

• The Control Packet Type (Bits 7-4), defining the function (e.g., CONNECT, PUBLISH, 
SUBSCRIBE) 

• Packet-specific Flags (Bits 3-0) 
• A 4-bit unsigned value that identifies the type of message (e.g., client request to connect, 

publish message, acknowledgment, or subscription request). The remaining bits define 
packet-specific properties (e.g., Quality of Service in PUBLISH messages) 

The Variable Header varies by packet type and typically consists of two bytes. For PUBLISH 
packets, the Variable Header contains (Banks & Gupta, 2015, pp. 20-21): 

• Topic Name, which defines where the message is published 
• Packet Identifier (for QoS > 0), uniquely identifying the message. This identifier allows the 

recipient to confirm delivery using a PUBACK message 
• The Payload carries the actual message content. The format and data structure depend 

on the application 

Quality of Service (QoS) Levels determine the behavior of message transmission and the reliability 
with which a message reaches the recipient the categorization goes as follows (Banks & Gupta, 
2015, pp. 52-55): 

• QoS 0 ("At most once") - Messages are sent once without confirmation, and loss is 
possible. Suitable for non-critical sensor data 

• QoS 1 ("At least once") - Messages are delivered at least once but may be duplicated 
• QoS 2 ("Exactly once") - Ensures messages arrive exactly once, making it ideal for use 

cases like billing systems 

At Quality-of-Service level 1, two transmissions are needed: one for publishing and one for 
acknowledgment (PUBLISH and PUBACK). At level 2, and in the absence of transmission errors, 
the process involves four exchanges: PUBLISH, PUBREC, PUBREL, and PUBCOMP. As a result, 
higher QoS levels lead to more traffic, which is generally justified for critical data (Ford, et al., 
2022). 

In order to maintain active connections, MQTT implements the keep alive mechanism, which 
helps detect unresponsive clients. When a client connects to a broker, it specifies a keep alive 
interval (measured in seconds). To signal that it remains active, the client must send a so called 
“PINGREQ” packet within this interval. The broker then responds with a “PINGRESP” packet, 
confirming that the connection is still valid (HiveMQ, no date, p. 43). 
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The MQTT’s architecture and its flexibility and simplicity make it effective for integrating 
embedded devices (Prada, et al., 2016). Eclipse Paho MQTT (see Eclipse Foundation, 2024, 
provides open-source MQTT client libraries in multiple Programing languages, including Python 
(pypi.org, 2024) and other programing languages (Mishra & A., 2020). 

2.11.5 Modbus 

MODBUS is an application-layer protocol used for data exchange between clients and servers 
over various infrastructures, including Ethernet (TCP/IP), serial lines (e.g., RS-232, RS-422, RS-
485), and even radio links (Modbus Organization, Inc., 2012, p. 2). A master-slave architecture is 
defined, supporting up to 247 slave devices. Only the master is permitted to initiate 
communication. The system can also operate in a multi-master setup, provided that just one 
master is active on the line at any given time (Meroth & Sora, 2023, p. 270). Queries include a 
destination address, function code, relevant parameters, and an integrity check. Replies from 
slaves confirm actions or return requested data, along with verification fields. During this 
exchange, the master sends a service request to the slave, which replies accordingly. 

Data of the Modbus protocol is structured around four reference types, each identified by a prefix 
(Acromag Inc., 2005, pp. 3 &13-14): 

• 0xxxx: Coils - read/write digital outputs 

• 1xxxx: Discrete Inputs - read-only digital inputs 
• 3xxxx: Input Registers - read-only analog values 

• 4xxxx: Holding Registers - configurable or output values 

2.11.6 Modbus RTU 

MODBUS communication over serial lines is typically carried out in RTU (Remote Terminal Unit) 
mode. In this format, each message includes the target slave’s address, a function code, a data 
segment containing 0 to 252 bytes, and a CRC-16 checksum for error detection. Each slave is 
assigned a unique 1-byte address ranging from 1 to 247, while address 0 is reserved for broadcast 
messages. The master does not have an address of its own. Function codes, ranging from 1 to 
128, specify the operation the slave is expected to perform. To verify message integrity, a 16-bit 
CRC is added, supplementing any parity checks performed during transmission. In RTU mode, a 
data word always consists of exactly 11 bits. When a message is sent by the master, the addressed 
slave responds by echoing its own address in the reply (Meroth & Sora, 2023, pp. 270-271). 

2.11.7 The EIA-485 interface (RS-485) 

RS-485, also known under its standard designation EIA-485 employs a differential voltage 
signaling scheme. Two data lines are operated in antiphase (differential mode), and the receiver 
evaluates the voltage difference between them. As a result, common-mode disturbances (i.e., 
identical noise signals affecting both wires) are largely canceled out and do not corrupt the 
transmitted data. The logical states in RS-485 are assigned based on this voltage difference: a 
differential voltage A - B < -0.3 V is interpreted as logical 1, while A - B > +0.3 V corresponds to 
logical 0. According to ISO 8482, RS-485 supports cable lengths of up to 500 meters. However, 
with the use of modern, symmetric line drivers and proper termination, transmission distances 
can be extended to 1.2 kilometers. Data rates of up to 1 Mbit/s are achievable under these 
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conditions.  An important requirement, especially for long-distance installations, is galvanic 
isolation between the RS-485 interface and the rest of the circuit. A notable feature of RS-485 is 
its support for multi-point communication. It allows multiple devices to be connected to the same 
bus lines, operating in half-duplex mode, where all devices share a common transmission 
medium but only one may transmit at a time. This bus-like capability is made possible through 
line drivers, which ensure that only one transmitter is active at a given time (Tröster, 2011, pp. 504-
505). 

2.11.8 Modbus TCP/IP 

Modbus TCP/IP represents an adaptation of the Modbus RTU protocol, utilizing the TCP interface 
that operating over Ethernet. Essentially, a traditional Modbus data frame is encapsulated inside 
a TCP packet without alteration. Data integrity is ensured through the inherent error-checking 
features provided by Ethernet and TCP/IP link layers. This simplifies message construction while 
maintaining reliability. Once a TCP connection is formed, it typically remains active throughout 
communication. This persistent channel allows continuous bidirectional transmission of 
application data between client and server. Furthermore, the client is capable of issuing multiple 
Modbus requests over the same connection without waiting for previous responses to complete 
(Acromag Inc., 2005, pp. 4-5 & 27-28). 

2.11.9 Control Area Network 

The Controller Area Network (CAN) is considered as a “high-integrity” serial data bus designed for 
real-time applications, capable of operating at data rates of up to 1 Mbit/s. One of its advantages 
is its strong error detection and confinement capabilities, making it particularly suitable for 
safety-critical applications. Furthermore, a CAN system can support up to 112 nodes and the CAN 
bus itself comprises two signal lines (CANH, CANL) that are terminated with 120-Ω resistors at 
both ends (Valvano, 2017, p. 438), see also figure 7. Furthermore, a CAN-Transceiver manages 
voltage levels and interfaces the receive (RxD) and transmits (TxD) signals with the CAN bus. It 
ensures that the digital signals from the CAN controller are correctly transmitted over the bus. 
(Valvano, 2017, pp. 438-439). CAN provides a Muli-Master principle, which means multiple nodes 
may attempt to access the bus simultaneously. Furthermore, the CAN employs a mechanism 
called as “bus arbitration”, which means that in the CAN-network, two signal states can occur: 
dominant and recessive, whereas all nodes are connected via a “wired-AND” principle. This 
means that whenever at least one node sends a dominant signal (0), it prevails over all recessive 
signals (1). During arbitration, each transmitter compares the transmitted bit with the level being 
present on the bus. If both match, the transmitter may continue. However, if the transmitter 
detects a dominant bit even though it has sent a recessive one, it loses the arbitration and must 
stop the transmission immediately without sending any more bits. This ensures that time-critical 
messages are transmitted first, while lower-priority messages must wait for an available 
transmission window. In real-time systems, urgent messages take precedence, while low-priority 
transmissions may experience delays. When transmitting a dominant bit (logic 0), CAN_H reaches 
3.5 V and CAN_L drops to 1.5 V, creating a 2 V difference. In the recessive condition (logic 1), both 
signals level out at 2.5 V, resulting in zero differential voltage (Valvano, 2017, pp. 439 & 441; Robert 
Bosch GmbH, 1991, pp. 7 & 40). The figure 8 illustrates the differential voltage levels. 
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In synchronous interfaces however, a shared clock signal determines when data is transmitted 
and received, thereby synchronizing communication between devices. Both sender and receiver 
know exactly when to exchange data, as transmission is aligned with this timing signal (Baun, 
2012, p. 19).  Unlike asynchronous communication, synchronous systems do not rely on a fixed 
baud rate. Instead, the duration of each clock cycle can vary, allowing for flexible adaptation to 
system requirements. Although, in theory, the clock signal could remain high or low for extended 
periods, in practice, an appropriate clock frequency is selected to ensure efficient data transfer-
provided both devices can handle the chosen speed, an adequate application example would be 
the I2C Bus, see also (Bähring, 2010, pp. 287-290). A key advantage of synchronous 
communication is that it allows for the transmission of much larger amounts of data without the 
need for repeated resynchronization, as sender and receiver stay aligned over longer periods 
(Tröster, 2011, p. 491).  However, one drawback is that the main program may be affected if it has 
to wait for data transmission to complete. This limitation can be mitigated by using hardware 
features such as interrupts or Direct Memory Access (DMA), which help reduce CPU (Central 
Processing Unit) load and allow non-blocking (cf. Valvano & Yerraballi, 2022). 

2.11.11 Technology of I2C 

The I²C bus, also referred to as the Inter-IC Bus, was originally created by Philips/Valvo. It operates 
as a synchronous, clocked communication system using just two lines: one for the serial clock 
signal (SCL) and one for the data transfer (SDA). Connected nodes communicate via integrated 
bus controllers equipped with open-drain outputs and pull-up resistors. The bus supports multi-
master configurations, meaning any device can take the role of Master or Slave depending on the 
context. The Master is always responsible for initiating data transmissions and for generating the 
clock signal on the SCL line, but both Master and Slave nodes are capable of transmitting or 
receiving data during communication. Each data transaction on the I²C bus begins with a START 
condition, where the Master signals the beginning of communication and addresses the target 
Slave device, which is identified via a unique 7-bit address. Communication is terminated with a 
STOP condition, during which the Master releases the bus. As mentioned in the previous chapter, 
data rates are not fixed to predefined levels; rather, the I²C standard defines upper speed limits, 
and actual transmission speeds can vary anywhere between 0 kbit/s and the specified maximum, 
depending on the devices and system design (Bähring, 2010, pp. 287-289). 

 

3 La Luz: Presentation of the Site 

3.1 Overview of the TIGRE Telescope and the La Luz Site 

The Telescopio Internacional de Guanajuato Robótico Espectroscópico (TIGRE), is a robotic 
spectroscopy telescope situated at La Luz Observatory, located in central Mexico. This telescope, 
which has been operational since 2013, is a collaborative project involving the Hamburg 
Observatory in Germany, as well as the universities of Guanajuato in Mexico and Liège in Belgium. 
TIGRE is fully automated and performs its observations without the need for human intervention 
(González-Pérez, et al., 2022, p. 2; Schmitt, et al., 2014).  
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The observatory itself is positioned approximately 20 kilometers from Guanajuato and about 300 
kilometers northwest of Mexico City. It is located on a high plateau at an elevation of 2,435 meters 
above sea level. The site's geographic position provides excellent conditions for observations 
during winter. However, summer brings frequent thunderstorms, leading to power failures that 
can severely impact the system. Electricity supply in this remote area is unreliable, with frequent 
voltage fluctuations and outages caused by storms and strong winds (Schmitt, et al., 2014; 
González-Pérez, et al., 2022). The observatory experiences outages several times per month. If an 
outage lasts longer than five minutes, TIGRE ceases robotic operations and remains idle to 
prevent damage. In cases where power is lost for several hours, the installed UPS does not restart 
automatically, requiring human intervention to resume functionality (González-Pérez, et al., 
2022). This can be observed in more detail the statistical evaluation regarding system dropouts in 
(González-Pérez, et al., 2022).  

3.2 Current Infrastructure 

To address the above-mentioned issues, a combination of solutions has been implemented. The 
observatory relies on a power backup system that includes a 100-kW diesel generator, which 
automatically activates within seconds when external power fails. Additionally, a lead-gel battery-
based uninterruptible power supply (UPS) ensures voltage stability and provides backup power 
for at least 30 minutes during normal telescope operations. Furthermore, a three-phase 
transformer has been installed to regulate voltage levels (Schmitt, et al., 2014).  As stated in figure 
9, the observatory's daily energy consumption is approximately 20 kWh. Mostly required at night. 
A UPS (manufacturer Eaton; maximum apparent power: 80 kVA) is connected to both grid 
electricity and the diesel generator. Positioned between these sources, the UPS continuously 
monitors voltage and switches power sources as needed. It operates in bypass mode, allowing 
rapid response to interruptions. Thus, it provides power and acts as a grid-forming unit, switching 
to island operation when more power is required than can be supplied. However, there are 
drawbacks: the lead-acid batteries require frequent replacement, their runtime is limited to 10-
20 minutes, and the UPS itself has a high-power demand, affecting efficiency. 
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Figure 9: An outline of the circuit diagram of the La Luz site. Modified from (Böhmer, 2024). 

3.3 Planned Improvements 

Future developments aim to improve sustainability and reliability. Plans include integrating the 
hydrogen-based energy system into the UPS room, to provide a gradual transition away from the 
lead-acid batteries. Additionally, an island mode water extraction system is under consideration, 
which would utilize excess PV energy to collect moisture from the air when battery storage 
reaches capacity, in case of an islanded operation, to reduce the need of PV-power curtailment. 

 

4 Hardware Architecture of the Microgrid Concerning the Hamburg Setup 

4.1 Introduction 

This chapter deals with the installed hardware setup at the Hamburg site. The aim for the 
microgrid’s operation is to source as much electricity from locally available solar energy as 
possible. The lithium-ion battery and hydrogen (H₂) will compensate for any differences between 
the solar power supply and the power demand of the loads. In the hydrogen subsystem, electrical 
energy is converted into hydrogen using three AEM electrolyzers. The hydrogen is temporarily 
stored in a storage system and later converted back into electrical energy via a PEM fuel cell. A 
simplified overview of the physical setup-including electrical wiring and hydrogen lines is 
provided in figure 10. Corresponding listings (tables 19–26) of the appendix 13.2 offer a further 
summary of the system components, regarding the most important technical properties and the 
current status of the individual hardware components (ready for use, not yet installed, etc.). The 
following description of the hardware highlights the Hamburg configuration. It should be 
mentioned here that the planned configuration at the La Luz facility includes a direct connection 
of the PV modules to an additional DC input on the shared microgrid inverter.  
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In contrast, this is not feasible in Hamburg, where the local PV system belongs to a nearby 
Montessori school and feeds into the AC grid via a separate inverter. Other differences between 
the setup in Mexico and Hamburg will be addressed where relevant. When implemented in the 
Mexico site, system activation will be planned to be performed on-site, and in the event of a 
deactivation e.g. due to an error, reactivation is intended to only take place locally. A description 
of each individual component will follow in this chapter.  

 

Figure 10: The overview plan of the Microgrid setup in Hamburg. The distances shown in the illustration are not to 
scale. The communication lines, including placement of the respective controllers, are added in the overview shown 

in section 6. 

4.2 Main components 

4.2.1 Fuel Cell 

For the selected fuel cell to generate power, both the Enable and Run signals must be active, and 
fuel pressure must be detected. The Enable signal is set by connecting pins 1 and 2 of the D-sub-
DE-9 type connector, while the Run signal is activated by connecting pins 6 and 7, provided that 
Enable is already present. The FCM-804 is equipped with its own control system, allowing it to 
function as a controllable load. Furthermore, it communicates via CAN Bus, over the pins 3 and 4 
of the connector [A_1]. In the planned setup, the fuel cell will communicate with the Raspberry Pi 
1 over Ethernet via a network switch. The Table [A_25] provides an insight on data that can be 
acquired over the can bus, and its bitwise decryption logic. In [A_26] the decryption regarding the 
data fields that represent error messages coming from the device are listed.  

Behavior during operation 

During operation, the fuel cell transitions through different states: it remains off when not 
powered, switches to inactive when idle, and enters the running state when generating power. If 
the load drops below 6 Ampere, it automatically switches to standby to optimize fuel 
consumption. In case of an error, the system enters a fault state, requiring a manual reset before 
resuming normal operation. The FCM-804 periodically performs a Performance Optimization 
Cycle (POC), which occurs up to 15 times per hour.  
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During this process, power output is temporarily reduced or interrupted for a maximum of 12 
seconds, requiring an external power source to buffer the load. This buffer is provided by the 
connected ultracapacitors. This cycle helps maintain optimal performance and prevents system 
degradation over time. The system also features Maximum Power Point Tracking (MPPT) to 
optimize power output under varying conditions [A_1]. Further information on the operational 
characteristics and efficiency calculations based on experiments of a related type of fuel cell 
(FCM-802) can be found in (Simić, et al., 2021). 

4.2.2 Electrolyzers 

The device can also be operated and monitored remotely via the Modbus TCP/IP interface. Control 
signals such as reboot, start, and stop commands, as well as the hydrogen production rate, can 
be transmitted through the holding registers, also error codes (Enapter AG, 2025a), that can be 
interpreted according to the logic stated in (Enapter AG, 2025b). Hydrogen obtained from water 
electrolysis typically contains three main contaminants: nitrogen, oxygen, and water (Ligen, et al., 
2020). A requirement of the installed fuel cell regarding the hydrogen purity is that the hydrogen 
must meet a minimum purity of 99.9% [A_1]. A presence of water in the hydrogen stream can lead 
to ice formation. Furthermore, water can act as a carrier for water-soluble contaminants such as 
potassium (K⁺) and sodium (Na⁺), which, even at trace levels, can degrade the proton conductivity 
of the fuel cell membrane (Ligen, et al., 2020). Therefore, a dryer is integrated into the system 
setup in order to remove residual moisture from the produced hydrogen. To take this into account, 
the electrolyzer system includes a hydrogen dryer (model name: Dryer 2.1) and also a 38-liter 
water tank (model name: WTM 2.1), that are part of the “Dryer Control Network”, a so called 
“wireless MESH” communication network between the dryer, electrolyzer(s), and water tank that 
allows monitoring and control via the electrolyzers Modbus TCP/IP interface [A_3, A_4 & A_5]. In 
the planned setup, the electrolyzers will be connected with the Raspberry Pi 1 over Ethernet via a 
network switch. 

4.2.3 PV-system 

Properties and Characteristics 

In the Hamburg setup, the PV system feeds into the local AC grid. In contrast, the Mexico setup is 
planned without a dedicated inverter, connecting instead directly to the DC input of the only 
hybrid inverter of the microgrid (see section 4.2.4). In Mexico, the model type of the PV modules 
and the total system capacity will be selected and adjusted according to the specific conditions 
in La Luz during the planning phase. 

4.2.4 Hybrid inverter 

Properties and Characteristics 

The 15 kW-self-commutated-hybrid inverter is intended to feed into the 400 V/3-phase grid and 
can be powered by either lithium-ion batteries or the fuel cell. While it primarily accepts 500 V DC 
from solar input, a DC-DC converter is used to step up the 48 V fuel cell output. The inverter 
supports multiple modes: Feed-in Priority (uses solar first, charges battery after), Backup Mode 
(keeps battery charged for outages), Self-Use, Peak Shaving, and Manual Mode (for direct battery 
control).  
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Further options include setting SOC limits, enabling grid-charging, and scheduling charge cycles  
[A_7]. The inverter communicates via CAN bus over a RJ45 connection with the battery 
management system (BMS) of its connected lithium-ion accumulator [A_8] and is capable of 
forwarding battery-related information, including inverter-specific data, to the Raspberry Pi 1 
using the Modbus RTU over the RS-485 interface.  

Current setup vs. original plan 

The original hybrid inverter (Solax X3-Hybrid-D) became inoperable due to hardware failure. It was 
replaced with three 1.6 kW Hoymiles HMS-1600-4T microinverters, which match the fuel cell 
output, removing the need for DC-DC converters. For consistency, the Solax model remains 
referenced in this document, although the final inverter type for La Luz is yet to be confirmed. 

4.2.5 Lithium-Ion-Accumulator 

The battery system incorporates a BMS that provides built-in safety measures, including over-
voltage and under-voltage protection, over-current protection, temperature control mechanisms, 
and short-circuit protection [A_8]. In terms of functionality, the battery serves as an actual storage 
unit for the local energy grid, working in conjunction with a hybrid and acting as a fast energy 
buffer. 

4.3 Controllers  

In general, tasks that require fast data processing are delegated to Arduino boards where 
applicable, as these devices offer real-time capabilities. A Raspberry Pi however is not a real-time 
capable platform but has other advantages, since it is considered a computer with an operating 
system able to easily to be implemented into the system because of its versatile connectivity 
options. Nevertheless, data acquisition scripts running on the Raspberry Pi are expected to 
operate with adequate performance for the intended use cases. The Raspberry Pi 1 is planned to 
act as the grid controller, implementing the EMS algorithm. It refers to the model Raspberry Pi 4. 
This model was selected due to its relatively modern architecture-being the second newest model 
in the Raspberry Pi lineup-while also being well-established and widely supported in the 
community. Its strong market presence ensures plentiful documentation. The Raspberry Pi 
platform was chosen due to its familiarity among the personnel. In general, tasks that are 
particularly safety-critical are planned to be primarily handled by the Arduino 1, as Arduinos offer 
the potential for real-time capabilities. The Raspberry Pi, by contrast, is not a real-time system. 
However, it is still required that scripts for data acquisition and processing run at an adequate 
speed (see also section 5). The pin assignments for Arduino 1 and Raspberry Pi 1 are documented 
in [A_28]. From this point onward, the term "controller" will be used as a simplified reference to 
both microcontroller boards (such as Arduinos) and single-board computers (such as the 
Raspberry Pi’s). This simplification is justified by the fact that both types support low-level 
hardware control and offer the flexibility of user-defined programming. 



Initial Design and Implementation of a Control System for a Hydrogen-Based Microgrid 
Chapter 4 Hardware Architecture of the Microgrid Concerning the 
Hamburg Setup 

Jan Moritz Dehler 

 

27 
 

Table 4: General overview of the grid-controllers to be used in the setup.  

Controller 
Name 

Model name 
Amount of 

Components 
Technical features  

and characteristics 
Task Component 

Raspberry Pi 1 Raspberry Pi 4 1 
• Computer with operating 

system 
• Offers versatile interfaces 

• Higher energy consumption 
than Arduinos 

Data acquisition, data 
management and control of 

the grid 

Raspberry Pi 2 Raspberry Pi 3 1 Data acquisition regarding grid 
quality 

Arduino 1 Arduino DUE 1 • Microcontroller board 
without operating system 

• Real-time control capability 
• Energy efficient 

Collecting information content 
from sensors in the station 

building 

Arduino 2 Arduino MKR (or 
similar) 1 

Collecting sensor data from 
current sensors located at the 

power input of the 
electrolyzers 

 

4.4 Utility Hardware 

4.4.1 RS485 CAN HAT 

An expansion module for Raspberry Pi, the RS485 CAN HAT (Hardware Attached on Top) is used 
for the CAN-Communication with the fuel cell and Modbus RTU communication. It provides both 
RS485 and CAN bus connectivity through the Raspberry’s GPIO interface. The RS485 interface, 
built around the SP3485 transceiver, operates in half-duplex mode, meaning data can be 
transmitted in both directions but not simultaneously. Communication with the Raspberry Pi 1 is 
managed via the UART interface, and the RS485 bus typically supports data rates of up to 250 
kbps, depending on system requirements. The CAN interface is provided through SPI (Serial 
Peripheral Interface) communication. The module provides an MCP2515 CAN controller with a 
SN65HVD230 transceiver and supporting data rates of up to 1 Mbps. Since one singe CAN 
controller supports multiple nodes on a single bus, the need for multiple SPI connections can be 
omitted (Waveshare International Limited, no date). For further information regarding the 
technology of UART and SPI, refer to: (Valvano, 2017; Bähring, 2010). 

4.4.2 Analog Sensors Located in the Station Building 

Gas Sensors 

The gas sensors used are primarily designed for trend monitoring rather than high-precision 
measurements. The specific sensors operate on a resistance-based principle, where the sensor’s 
resistance decreases as the gas concentration increases and vice versa. The datasheets of the 
sensors include calibration curves that correlate resistance with gas concentration. However, the 
sensors are also influenced by temperature and humidity. Meaning no quantitative gas 
concentration measurement is intended. Further calibration runs are needed to refine the 
evaluation of invalid values. Each gas sensor features both an analog and a digital output. The 
analog signal reflects gas concentration trends, while the digital output serves as an alarm 
function, switching to LOW when a predefined threshold is exceeded. This threshold can be 
manually adjusted via a small potentiometer on the sensor. Redundancy in this setup applies to 
the initial installation phase: duplicate sensors are temporarily used to test if they behave 
similarly [A_9-A_16]. The table 24 in the appendix 13.3 proves an overview and further information 
regarding the used gas sensors. 



Initial Design and Implementation of a Control System for a Hydrogen-Based Microgrid 
Chapter 4 Hardware Architecture of the Microgrid Concerning the 
Hamburg Setup 

Jan Moritz Dehler 

 

28 
 

Sound Sensors 

The Grove - Loudness Sensor is an analog sound sensor designed to measure environmental 
sound levels. It features a built-in microphone and an LM2904 amplifier, which enhances and 
filters high-frequency signals, providing an analog output based on sound intensity [A_17].  As it 
is the case with the gas sensors, it is not regarded as a high precision measurement device and 
the interpretation of the data coming from it is merely considered as qualitative and a calibration 
should be provided prior to operation.  

Pressure Sensor 

According to [A_18] the WIKA IS-3 is stated as “a high-performance pressure transmitter”, offering 
robust measurement capabilities in hazardous environments. Furthermore, it supports gauge 
pressure ranges from 0.1 bar to 6000 bar and absolute pressure ranges from 0.25 bar to 25 bar, 
with an accuracy of up to ±0.25% of span. The device operates with a 4-20 mA output signal, a 
supply voltage of 10-30 V DC, and a response time of ≤2 ms.  In order to process the 4.20 mA signal 
from this sensor, an isolation amplifier is used to convert it to 0-10V before downscaling it to the 
range of 0-3.3 V via a voltage divider, which provides for an appropriate signal for the Arduino. 

For further information regarding the sound- and the pressure sensor, refer to the table 25 in the 
appendix 13.3. 

4.4.3 Digital Sensors Located in the Station Building 

Among the digital sensors, the Telaire ChipCap 2 measures temperature and relative humidity and 
communicates via I²C with a fixed address of 0x50. Data is retrieved using a standard read 
command [A_19]. The ADT7410 also uses I²C, allows address configuration for multiple sensors 
on one bus, and offers 13- or 16-bit resolution. Temperature data is stored in two complement 
format in dedicated registers [A_20]. The DS18B20 communicates via the One-Wire protocol (for 
further information in this regard, please refer to the corresponding chapters in (Meroth & Sora, 
2023)) and thus supports multiple sensors on a single data line. It allows flexible resolution (9–12 
bits) and draws power from the data line if needed. Temperature values are stored as 16-bit two’s 
complement in memory registers [A_21]. It can be used for measuring water temperature due to 
its design (e.g. In the electrolyzers water tank). More technical details and configuration 
parameters for all digital sensors can be found in table 26 in the appendix 13.3. 

4.4.4 Power Quality Analyzer 

To ensure grid quality during operation of the hydrogen plant at the Hamburg site, key electrical 
parameters such as voltage, current, power, harmonics, frequency, and power factor are 
continuously measured at the NSHV. This is done using a Hioki Power Analyzer, which records the 
data every second and stores it on an external hard drive and in a local database via Raspberry Pi 
2. The long-term recording is used for comparison with baseline values prior to commissioning of 
the system in order to analyze their influence. The system has been in operation for over a year 
without any malfunctions and functions independently of the rest of the control system. 
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4.4.5 Multimeter 1&2 

The HMC8012 (Multimeter 1) is a digital multimeter for measuring DC/AC voltage, current, 
resistance, capacitance, and frequency, with data accessible via Ethernet [A_23]. The HMC8015 
(Multimeter 2) is a power analyzer supporting true RMS values up to 600 V and 20 A, enabling 
analysis of P, S, Q, power factor (λ), and total harmonic distortion (THD) [A_23].  Both devices are 
connected via Ethernet to a network switch and interfaced with the Raspberry Pi 1. In the planned 
setup, current clamps, the HZC50 and HZC51, will be connected to the Multimeters. For the 
HMC8015, the V input is used for voltage measurement, while the Sensor input is used for current 
measurement via the current clamp. On the HMC8012, only the Sensor input is used to connect 
the current clamp for current measurements. 

4.4.6 Current Sensor with transformer probe 

The SZ 013 sensor enables contactless AC current measurement via electromagnetic induction 
and is connected to the analog input of Arduino 2. Positioned at the electrolyzers’ power input, it 
serves to verify system activation and fuse integrity by detecting current flow, assuming a 
corresponding 230 V voltage level. These clamp coils will provide auxiliary data and are not 
intended for precise analysis. Parameters like power consumption and phase angle will be 
recorded once during initial startup; detailed monitoring during regular operation will rely on more 
accurate power analysis tools. The installation is not yet completed (as of 23rd of April 2025). 

4.4.7 Hydrogen Storage System 

Produced Hydrogen will be stored in a 600-liter storage tank in the form of gas bottles with a filling 
pressure of 300 bar, at the maximum filling level. A compressor unit will be needed to be installed 
in order to reach these pressure levels, since the electrolyzes can only provide an output pressure 
of up to 35 bar. Two magnet valves in the system can open or close the flow of gas-one used for 
hydrogen inflow, and one used for hydrogen outflow. The valves are designed to remain closed 
when de-energized. In order to protect the fuel cell from excessive pressure, a Swagelok pressure 
regulator is installed, ensuring that the pressure never exceeds 600 mBar.  

4.4.8 Circuit design: Switching Control via Relay Boards 

All switching operations in the microgrid, including control of the fuel cell, power supply to 
controllers, and warning signals, are handled via relay boards. Relays offer galvanic isolation by 
design. Since the Raspberry Pi 1 has limited GPIOs, an MCP23017 I²C port expander is used to 
extend I/O capacity. Because GPIOs can't drive relay coils directly, each relay is controlled 
through a driver circuit using a MOSFET and a 12 V supply, with optocouplers (model name: 
H11L1) ensuring electrical isolation. Two additional safety relays with force-guided contacts 
manage hydrogen valves and are triggered under fault conditions. All relays operate in active-low 
mode. 
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4.5 Concept for the Emergency Stop Chain 

An emergency handling concept is in development to ensure system safety during critical events. 
As illustrated in figure 11, the emergency stop chain is designed to cut power to the hydrogen 
valves and all 230 V AC-connected devices in the station building, bringing the system into a safe 
state. Hardware-based protections (e.g., fuses, cut-off switches) take precedence over software. 
Certain sensors, such as gas detectors or pressure switches, are expected to trigger relays 
independently of control software. Moreover, a fire alarm system will also be integrated as a safety 
input. Control units like the Raspberry Pi or Arduino can activate the emergency chain via GPIO. 
When triggered, all components, including the fuel cell’s “run” and “enable” signals, are shut 
down to prevent off-grid operation. The emergency stop must ensure touch-safe conditions 
throughout the system, except for the UPS in the La Luz setup, which remains powered to support 
communication and backup control. 

 

Figure 11: A functional diagram of the emergency chain. 

 

5 Requirements Analysis for the Developed Control Software 

This chapter presents general requirements that were considered before and during the design 
phase of the developed software structure. It is intended to provide the conceptual framework for 
the control and monitoring system created within the scope of this thesis. In general, the 
requirements that are set up in this chapter were considered in the design of the software for the 
raspberry Pi1 and the Arduino 1. In case, differences have to be made it is being said in the text. 
The focus lies on key aspects such as communication strategies, system stability, and the 
flexibility of the software architecture. Furthermore, this section does not claim completeness. At 
this point, it is worth noting that commercial SCADA and EMS systems could also have been used 
for this project. Many of such commercial software and hardware-based solutions are currently 
present in the industry, e.g. (Enapter S.r.l., 2025; OpenEMS Association e.V., 2022; MPI 
Technologies AG, no date). However, it was deliberately chosen not to rely on commercial 
solutions for several reasons:  Given the diversity of different interfaces within the setup and the 
general variability of the project itself, providing a system that allows for flexible and seamless 
integration of all components was the focus.  
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A self-designed software takes this into account. Moreover, to ensure long-term maintainability 
and a deep understanding of the system’s behavior, it was strived to retain control over as many 
aspects of the software and hardware interaction as possible. Furthermore, commercial software 
solutions are often license-based and associated with significant costs. In contrast, the 
Raspberry Pi platform supports the Python programming language, which offers a vast ecosystem 
of open-source libraries. This creates the potential to meet virtually any software requirement on 
the Raspberry Pi 1 within the project using Python alone cf. (Farrenkopf, 2024, p. 27).  

5.1 Communication Compatibility  

The system must ensure compatibility with all interfaces present in the setup. A core requirement 
is that incoming messages must always be processed reliably. No messages should be missed or 
lost due to software limitations. 

5.2 Modular Structure 

The software on Raspberry Pi 1 must be modular. This refers to a structure composed of 
independent programs that can exchange data asynchronously and be modified or updated 
independently. By developing a structure of individual programs, the system will be extendable, 
allowing new technologies to be implemented easily.  

5.3 Fault Management 

This section describes the requirements for ensuring operational fault tolerance across all 
additional controllers used in the system. It aims to define the expected behavior in case of faults 
and how the system should react to ensure a safe state.  

5.3.1 Definition of Errors  

In the context of this system, an error is defined as any condition-detected either by the system 
itself or reported by a component-that deviates from the expected or intended state of operation 
and may endanger system functionality, safety, or data integrity. In general, two error categories 
are recognized in this chapter, see table 5 below.  

Table 5: Error categorization and descriptions. 

Category Description 

1 Errors outgoing from control units of DER components, send out as a warning or an information 
message to the requesting client (controller). 

2 
Errors that have to be detected and marked by the control software itself. Which can be further 

categorized (see subcategories). 

2.1 
Errors acquired based on irregularities of acquired data coming from devices without a local control 

unit, e. g. received measurement values exceeding their allowed range. 

2.2 
Errors caused by a detected loss of connection during interface usage of any type, indicating either a 

physical disconnection or a malfunction of the addressed device or program. 

2.3 
Errors due to high latency during the use of interfaces of any type, indicating a malfunction of the 

respective addressed device/program or system overloads of the recipient unit (controller). 

2.4 
Unintentional exceptions due to faulty code in the software of the respective controller (value errors, 

type errors, syntax errors, …) 

2.5 
Anomalies of measurement data outgoing from redundant sensory systems in correlation with each 

other. 
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5.3.2 Strategies Regarding Error Detection  

Errors regarding category 1 should be interpreted following the manufacturer-provided error lists. 
In general, data acquisition methods should be followed by validation methods as direct as 
possible. Generally, watchdog timers should be integrated to monitor the arrival of new messages, 
being configured to "expect" incoming data within a defined time window. In addition, all errors 
should be printed and logged accordingly, ensuring that printouts are available for historical 
diagnostics. In any case when errors are detected, it should result in an activation of an error 
management strategy.  

5.3.3 Error Handling 

As it is the case with error detection, error handling should be realized as direct as possible. Once 
an error is identified, response mechanisms should activate immediately, without further 
propagation of the error. This error management strategy should at least provide the opportunity 
to activate the emergency chain, via a GPIO Pin. The error management strategy should include 
the ability to activate an emergency shutdown chain via a GPIO pin. Errors should be categorized 
by severity. Critical errors (e.g., gas leakage, overheating) must trigger an emergency shutdown. 
As a baseline, all errors are initially treated as critical, with the possibility to refine strategies as 
the project develops. For example, in the event of a fuel cell malfunction, the system may attempt 
a reset before continuing operation. If unsuccessful, the system should run on battery until a 
critical threshold (e.g., 20 %) is reached, then trigger an emergency shutdown. 

Typical Triggers for Emergency Shutdown Should Include: 

• Failure of Raspberry Pi 1 (prevents control of fuel cell and electrolyzers) 

• Failure of Arduino 1 (sensor data unavailable) 
• Gas sensor failure 
• Battery failure 

• Pressure sensor failure 

Examples of Threshold-Based Error Rules:  

• If the hydrogen pressure exceeds 30 bar (because at the moment no compressor is 
installed), the system must shut down immediately. Similarly, if pressure drops below 600 
mBar, this may indicate air ingress, posing a risk of hydrogen-oxygen mixing and explosion. 
In this case, the safety valve must close immediately. 

• In case any measurement data exceeds its allowed limits, e. g. hydrogen gas is detected 
beyond its respective threshold 

• Any sensor or device communication goes offline 

5.4 Stable System Operation  

Applies to the Raspberry Pi 1 software only. In the event of a software error, the system must not 
crash. Instead, it should restart the affected process and continue operation. Robust exception 
handling should be implemented throughout. 
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5.5 Efficient System Operation  

Also applies to Raspberry Pi 1. E.g. processes responsible for data acquisition must be designed 
to be resource-efficient but also fast. The system’s resource usage should be monitored and 
logged, ensuring that sufficient data is available for future scaling or extension of the software. 

5.6 Requirements regarding the Design of an Energy Management System 

This section outlines requirements to ensure that the EMS operates reliably and efficiently under 
all expected conditions. The proposed EMS aims to provide a simple yet effective load balancing 
strategy to optimize energy use throughout the day. In the current microgrid setup, most 
components do not require constant control. The EMS will primarily manage the timing of 
electrolyzer and fuel cell activation. Short-term power balancing is handled by the battery inverter. 
The battery charge level should be maintained between 20% and 80% to preserve lifespan. 
Hydrogen production is used for long-term load leveling. Electrolyzers act as flexible loads, and 
the fuel cell serves as a backup during low solar production. Both must not operate 
simultaneously. The control logic must prevent unnecessary start-stop cycles to reduce wear. 
Battery usage takes priority, and PV power is either used directly or stored in the battery before 
activating hydrogen-based systems. 

 

6 Presentation of the Planned Communication Structure 

The following descriptions focus exclusively on interfaces that were deliberately selected as part 
of this project, including the reasoning behind each choice. Interfaces predefined by the 
connected devices (e.g., Fuel Cell, Electrolyzers) are not discussed in detail here, except to note 
certain relevant aspects. For instance, Raspberry Pi 1 communicates with the multimeters via 
Ethernet, as suitable libraries were available exclusively for this interface. CAN bus and Modbus 
RTU communication were also implemented using Raspberry Pi 1, enabled by the compatible 
hardware shield (see section 4.4.1) and well-documented Python libraries. The figure 12 shows 
the overview plan of the Hamburg setup, including the communication lines outgoing from the 
various interfaces used. Additionally, to the overview of this figure, the so-called master-slave 
overview tables 14-18 from the appendix 13.2 may also be consulted.  

This logic of distributed controllers that can be found in the overview of the setup can be justified 
by statements from (Valvano, 2017, p. 447), who point out, that such a setup is advantageous, 
since there might not be sufficient delay margin to permit communication between distant 
sensors and a CPU. Also, the modularity may enhance easier troubleshooting, additional units 
may be integrated, and components can be removed accordingly, if requirements are reduced. 
Lastly, a single device within the network could be dedicated to observing and diagnosing the 
behavior of the others.  
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Figure 12: The overview plan of the Microgrid setup in Hamburg (compare to figure 10), including communication 
infrastructure and implementation of controllers. The distances shown in the illustration are not to scale. 

6.1 Interface Arduino 2 - Raspberry Pi 1 

An Arduino MKR (or a similar model) will be used to capture the voltage of the coils at the inputs 
of the electrolyzers and transmit this data to Raspberry Pi 1 via an Ethernet shield, mounted on 
the Arduino. The timing will not be critical with the Arduino 2, since this information coming from 
these devices is supposed to act as a validation if the activation signal of the electrolyzes worked. 
Communication via MQTT would also be possible using the Arduino. Since the coils should have 
a short connection to the processor, and they are separated from the Arduino 1, this controller is 
reserved for the safety relevant sensors. The Thesis does not cover the enlightenment of this 
section, since this connection not yet implemented into the system, nor validated via testing.  

6.2 Interface I²C-Sensors - Arduino 1 

The digital sensors communicate with the Arduino 1 via I²C, but a custom implementation is used 
instead of the standard Arduino I²C library (wire.h). This decision was made at the beginning of the 
project phase, since the current code on the Arduino 1, managing I²C communication, was 
adopted from previous projects regarding other areas and has proven its reliable functionality over 
a long period of use. Whereas malfunctions had been observed regarding the use of wire.h. 

6.3 Interface Arduino 1 - Raspberry Pi 1 (Clocked-8-Line Data Bus) 

The interface between Arduino 1 and Raspberry Pi 1 is implemented as a clocked 8-line data bus, 
consisting of ten physical parallel connections realized through a flat ribbon cable directly linking 
the controllers via their respective GPIO pins. From the Raspberry Pi 1, the bus distributes 8 data 
lines, one clock line, and a separate line named "Telegram Reset". The communication through 
the physical layer is handled purely through the GPIO interfaces on both the Raspberry Pi 1 and 
Arduino side 1. The design of this custom interface was driven by the need for flexibility in telegram 
structure and a fast, reliable communication path from Arduino to Raspberry Pi 1.  
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Moreover, this interface supports synchronous communication, which is in order to avoid e.g. 
baud rate mismatches and data integrity issues that may occur with asynchronous interfaces 
when handling long telegrams e.g. with the UART (also refer to section 2.11.10). By having the 
clock signal generated by the Raspberry Pi, triggering interrupts on the Arduino, a constant 
handshake mechanism between the controllers is ensured, even under high system loads on the 
Raspberry, due to the fact the clock signal outgoing from the Raspberry 1 may have HIGH states 
of flexible time duration. This design choice enables the Raspberry Pi 1 to dictate the pace of the 
communication regarding this interface, accommodating potential timing fluctuations due to its 
multitasking software environment. Furthermore, the self-designed protocol design supports a 
checksum comparison on the receiver side and also supports processing by the Raspberry of the 
Data send out by the Arduino in under 0.3 seconds per delivered telegram, which encapsulates 
sensor data- and errors. For more information behind the communication logic, refer to sections 
7.2.8 and 13.5.1 of the appendix. The physical cable connection between the two controllers 
becomes apparent though the pinouts (see [A_28]). 

6.4 Application of MQTT as a Superior and System Wide Protocol for Central Data 
Management and Standardization 

According to the stated software requirements concerning the Raspberry Pi 1, it was decided to 
introduce the MQTT protocol as a superordinate protocol of the microgrid, which should ensure 
centralized and uniform data availability in the setup and also enabling asynchronous data 
exchange within the software structure, whereas the Raspberry Pi 1 shall be used as the central 
broker of the system. According to the chosen communication setup, the overall information of 
the microgrid outgoing from the various interfaces will ultimately end up being processed by the 
Raspberry Pi 1. Due to the fact that the developed modular software structure of the Raspberry Pi 
1 correlates strongly with the MQTT-communication structure, the explanation and justification 
of the logical structure regarding this superior communication is outsourced to chapter 8, and 
especially sections 8.2.2 & 8.2.3 for the sake of simplicity. 

 

7 Presentation of the Developed Software Concept on the Arduino 1 

7.1 Introduction 

The Arduino program on the Arduino 1 is designed to acquire and process data coming from the 
multiple connected sensors that are detecting environmental data inside the station-building. 
The file of the program is containing a Set of subfiles containing the functions running the 
complete program. In the following, the distribution of tasks among these subfiles are being 
explained understand the logic of the program. Next to different functions that are responsible for 
the communication with the sensors, the program contains error detection mechanisms, 
functions and methods that manage the temporary storage and transmission of the potential 
errors and the measurement data. The main functionality of the information exchange between 
the Arduino 1 and the Raspberry Pi 1 is being handled via two Interrupt Service Routines, that are 
triggered by digitals signals coming from the Arduino 1’s Master, the Raspberry Pi 1.  
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Furthermore, a watchdog mechanism observing the time difference between the incoming of the 
clock signals coming from the Raspberry Pi 1 is implemented.  In order to work with the Arduino 1 
code and to follow the explanations in the subsequent sections, a basic understanding of C++ 
programming as well as familiarity with fundamental concepts such as bitwise operations is 
assumed. If necessary, further information can be found in appropriate technical literature, such 
as (Meroth & Sora, 2023). In order to provide a better understanding of this chapter, the reader is 
encouraged to keep the program code available alongside this document, see [A_31]. An earlier 
version of the Arduino 1 code had already been developed prior to the start of this thesis. During 
the course of the work, the communication interface between the Arduino and the Raspberry Pi 
was redesigned, standardized error-checking mechanisms were implemented, and the sensor 
communication functions were restructured for consistency. 

7.2 General Concept 

7.2.1 Initialization of the Program (a_global.ino & b_setup.ino)  

The a_global.ino file serves as the global configuration and definition file that includes debug and 
watchdog settings, as well as configurations for all of the used sensors. Furthermore, it defines 
pin assignments. For sensor data management, it includes storage buffers and error registers, as 
well as minimum and maximum thresholds for validity checks. Ultimately, all function prototypes 
are being initialized in this file. The setup() function initializes the Arduino board and configures 
various pins and initiates the program code necessary for the operation at the start of each 
activation of the board. 

7.2.2 Main Program Loop (c_loop.ino) 

The loop()-function serves as the main execution cycle of the program. It executes the block of 
code that is being placed inside it periodically. The loop executes the following functions in order, 
see order for top to bottom in the first column of table 6. The column with the header 
“Categorization” is introduced to provide an overview of the functionality of the respective 
function. The more detailed explanation of the functions and the other parts of the program code 
can be found in the further .ino-file explanation-sections in text form.  

Table 6: Overview and categorization of the respective .ino files used for the Arduino 1. 

Function Name Function code located at Categorization 
watchdog() m_watchdog.ino Communication with Raspberry Pi 1  

gasAlarmStatus() 
e_analog_sensors.ino 

Sensor data acquisition 

gasRead() 
loudnessRead() 
readChipCaps() g_chipcaps.ino 

Read_ADT7410s() h_adt_7410.ino 
getDsTemp() i_one_wire_bus.ino 

copy_Bytearray_for_Pi() j_copy_Bytearray_for_Pi.ino Communication with Raspberry Pi 1  
 

The table only shows the functions that are called directly in the loop-function. To enable an 
overview, the they are being classified as primary functions in this text in order to distinguish them 
from all the other additional (sub-) functions, or secondary functions that are being called not 
directly in the main loop. The explanation of the further .ino-files picks up the use of these 
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secondary functions. The explanation of the following parts of the program will initially focus on 
the primary data acquisition functions. Preceding each section, the secondary functions 
embedded within the primary data acquisition functions will be introduced first, as they serve 
function-specific purposes. This approach helps to understand the capabilities of the primary 
functions. Subsequently, all functions responsible for communication with the master will be 
covered. As before, the secondary functions will be explained first. 

7.2.3 Concept of Data Acquisition Functions 

The primary data acquisition functions are responsible for recording measurement data and 
storing it in a variable. The recorded data is always stored in a 2D array with the following format: 

Array_for_measurement_Data[Amount_of_Sensors_of_the_specific_type][3] 

This structure of the three time-indices of the second dimension of the array is chosen to support 
later filtering, as the median filter function requires the current measurement value along with the 
two subsequent values as input. Each of the primary data acquisition functions increments the 
time index (e.g., gasZ, ccZ, ds18Z …) to cycle through multiple stored readings for filtering and 
error handling. When this index reaches 3, it resets to 0 at the end of the function. The figure 13 
shows the functional sequence of any data acquisition functions. The essential function sections 
are explained in the following. For simplicity reasons, the following description is limited to the 
general concept of the sensor data acquisition functions. For a more detailed explanation of each 
data acquisition function, see 13.4 in the appendix. 

 

Figure 13: The general procedure of any read()-functions, responsible for data acquisition from sensors. 

7.2.4 Error Detection 

Error detection occurs immediately after the any measurement-order in the Arduino code. The 
following errors are detected (exceptions are mentioned), see table 7. In general, the detection of 
errors result in the activation of the emergency chain (see section 4.5). The resulting error 
messages are the stored in bytes that are inserted into the telegram structure, which will be sent 
to the Raspberry Pi upon request (see section 7.8.2).  
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Table 7: Listing of sensor-related error types, along with further explanation. 

Error Type Explanation 

Sensor 
Unavailability 

This applies to cases where a sensor is not connected ("not available") or is connected but 
does not send a valid signal ("blocked").If a sensor is not connected, the system detects a 

constant HIGH state due to pull-up resistors (bit-bang logic). If a sensor is blocked, it is 
connected but fails to transmit valid data.Analog sensor availability cannot be directly 

determined but is ensured through alarm signaling or redundant analog measurements. 
Measurement 
Value Outside 

Allowed 
Limits 

Global minimum and maximum values are used to detect whether a measurement is within 
acceptable limits. Currently, these thresholds are set generously to avoid unnecessary 

disruptions during test runs. For the gas sensors, certain maximum threshold values have to be 
set via a screwdriver.  

Sudden 
Spikes in 

Measurement 
Values 

Currently, this applies only to temperature sensors, not gas sensors, as the gas sensors have 
not yet been calibrated. 

 
7.2.5 The Error Management Function Prototype 

A dedicated Arduino-specific error management function that may fulfill the decision making in 
case of errors is planned to be implemented for the further use. A function prototype of such kind 
can be found in the current at n_handle_errors.ino in the current software version. This function 
is called at every point in the code where an error is currently detected. The idea is to introduce 
error categorization via error codes, allowing predefined actions such as deactivating the 
emergency shutdown system based on the error type. The error code dictates the decision-
making process through a switch case method. It activates the emergency chain in case the error 
code 0 is transmitted. 

7.2.6 Data Filtering 

This file includes the two filter functions (float_filter(float stor[3]) and int_filter(uint16_t stor[3]). 
They provide the same function-logic but take up different types of input variables (float and 
integer). The functions identify the median value, or in other words the second biggest value from 
three stored sensor readings and return their index. This filtering method helps reduce noise by 
discarding outliers, selecting the most reliable value from the three samples. Occasional 
fluctuations can cause inaccuracies, especially with analog voltage measurements. By selecting 
the middle value, the functions enhance the stability and reliability of measurements (cf. 
Microchip Technology Inc., 2022, pp. 5 -7). 

7.2.7 Preparation of Sensor Data into Byte Format 

Once a measurement has passed the error detection process, it is stored as a 16-bit integer and 
then split into a global high byte and low byte using bit manipulation. This method is used, 
because the respective Raspberry Pi’s data acquisition program processes incoming messages 
byte-wise, making this method compatible with its message interpretation. This approach does 
not support floating-point values, as transmitting unsigned float values would require 4 bytes, 
making the communication telegram unnecessarily long. 
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7.2.8 Concept Behind Primary Functions Responsible for the Communication with the 
Master 

The basic concept behind the Data transmission is being provided by the functionality over the 
implemented Interrupt service Routines that are initialized to be executed in case a rising signal 
is detected at the respective Interrupt-Pins (see setup()). Whereas a corresponding Data 
transmission preparation functionality is served by the j_copy_Bytearray_for_Pi.ino file.  

Embedding Sensor Data into the Telegram 

The copy_Bytearray_for_Pi() function formats the acquired sensor data into a structured byte array 
(byte_values_to_store[]) that is being used as a data puffer, containing the acquired measurement 
data. The byte_values_to_store will act as “copy template” for the array byte_values_to_send[], 
that is used to provide the data the be send to the Raspberry Pi. Since the copy_Bytearray_for_Pi() 
function is placed in the main loop it will thus be periodically executed. The array 
byte_values_to_store[] is a 1D array with a fixed length of 164 elements and represents the 
structure of the telegram concerning measurement data to be sent to the Raspberry Pi 1. As it is 
stated in the a_global.ino-file, it is being initialized by starting with a start sign “$” as the element 
with index 0, the end sign “$” at index 164 and zeroes for all elements in between. Every time, the 
function copy_Bytearray_for_Pi() is being executed, the variables for the errorCounts and the 
errorRegisters, the sensor values such as temperature, humidity, and gas concentrations and a 
checksum are computed and inserted into byte_values_to_store[]. The table 8 gives an insight into 
the structure of the telegram, whereas the total length is always 164 elements, with only the 
memory locations of the array being continuously transcribed with the current measurement 
values or current error messages. The number of elements in byte_values_to_store that concern 
error messages (errorCounts and errorRegisters) is variable. If each individual sensor of the same 
sensor type encounters an error, the errorCount value for that sensor type would be equal to the 
number of sensors. Consequently, the number of occupied elements within byte_values_to_store 
reserved for the error registers of that sensor type would also be equal to the number of sensors 
of that type. The telegram also implements a simple XOR-Checksum, that will be validated on the 
Raspberry P1 1 side, ensuring secure data transmission. 
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Table 8: Overview of the telegram structure, including the potential length of bytes of each telegram section. 

Variable 
 Start marker ('$') checksum errorCountCC errorRegCC[] errorCountADT 

Max. no. of bytes 
1 1 1 10 1 ∑=14 

Variable 
 errorRegADT[] errorCountDS18 errorRegDS18[] errorCountLoudness errorRegLoudness[] 

Max. no. of bytes 
20 1 5 1 2 ∑=29 

Variable 
 errorCountPressure errorRegPressure gasAlarms[] ccHygHigh[] ccHygLow[] 

Max. no. of bytes 
1 1 4 10 10 ∑=26 

Variable 
 ccTempHigh[] ccTempLow[] AdtTempHigh[] AdtTempLow[] dsTempHigh[] 

Max. no. of bytes 
10 10 20 20 5 ∑=65 

Variable 
 dsTempLow[] H2ValHigh[] H2ValLow[] petrMethValHigh[] petrMethValLow[] 

Max. no. of bytes 
5 3 3 2 2 ∑=15 

Variable 
 natValHigh[] natValLow[] airQualValHigh[] airQualValLow[] loudnessValHigh[] 

Max. no. of bytes 
2 2 2 2 2 ∑=10 

Variable 
 loudnessValLow[] PressureValLow PressureValHigh End marker ('$') 

Max. no. of bytes 
2 1 1 1 ∑=5 

Total sum of bytes 164 
 
Interrupts Used for Message Delivery 

As it is stated in the setup() function, the command: 

attachInterrupt(digitalPinToInterrupt(SCL_FOR_PI_PIN, ISR_PI, RISING); 

registers an interrupt service routine (ISR_PI) that is automatically executed when a rising edge 
occurs at the specified pin (SCL_FOR_PI_PIN), coming from the Raspberry Ri 1.  

This command enhances that the function ISR_PI(void) is triggered as an interrupt and calls the 
function Serial_Data_to_Pi_write() to send data in form of the array byte_values_to_send[] to the 
Raspberry Pi 1 (one byte of the telegram per rising signal, see section 13.5.1 of the appendix). 

Again, see the following statement in the setup(): 

attachInterrupt(digitalPinToInterrupt(TELEGRAMM_RESET), ISR_PI_II, RISING); 

The function void ISR_PI_II(void) manages timing and data transmission. It resets the array  
byte_values_to_send[] by the copying the previously stored byte values from 
byte_values_to_store[] into it.  This always ensures that the data being sent is updated before 
transmission.  If the watchdog is enabled (see Boolean variable enable_watchdog), it checks for 
time discrepancies and updates the last signal time (lastSignalTime_ISR_II).  
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The Main Function used for Actual Data Transmission  

This code implements serial data transmission from a microcontroller to the Raspberry Pi 1 by 
sending individual bytes via the GPIO pins according to the information stored in 
byte_values_to_send[]. The function Serial_Data_to_Pi_bit_write(int sda_case) sends a single bit 
(bitwert) to one of the eight possible data lines (SDA_FOR_PI_PIN_X) based on the specified case 
number (sda_case). Serial_Data_to_Pi_write() then sends a byte of data bit by bit, shifting each bit 
to left after transmission. It then extracts the most significant bit (MSB) from 
byte_values_to_send[byte_values_to_send_indx] and transmits it via 
Serial_Data_to_Pi_bit_write(i). The byte is then left-shifted (<< 1) to prepare the next bit. After 8 
bits are sent, the next byte is selected. If all bytes are sent, the function resets the buffer, reloading 
data from byte_values_to_store. 

7.2.9 The Watchdog Function 

The watchdog() function, located in m_watchdog.ino monitors communication with the 
Raspberry Pi. If no signal is received in the for a defined period (at the current version it’s 10 
seconds), a warning message is triggered in debug mode, indicating a potential issue with the 
communication link. 

 

8 Presentation of the developed software concept on the Raspberry Pi 1 
8.1 Introduction 

The code was developed using the Geany editor, see (Geany e.V., 2025), and can be executed 
directly within this environment, other development environments or via the Linux terminal. A 
solid understanding of Python is assumed for a deeper comprehension of the code and the 
sections that follow. For background knowledge and further reference, relevant sections in (Monk, 
2023) are recommended.  

Python scripts related to communication with Arduino 1 were available prior to the start of this 
thesis, which had to be fundamentally reworked. Although they were based on an earlier version 
of the Arduino 1 software and required a complete redesign, they served as an initial reference. 
Additionally, a test script for communication with the hybrid inverter containing random data was 
already in place and is now being integrated into the main program code.  

In order to validate the developed code, several tests were conducted in a laboratory 
environment. The test setup included the Raspberry Pi 1 connected to the HMC devices via a 
network switch, the Arduino 1, and an additional Raspberry Pi (model name: Raspberry Pi 5) 
acting as a simulation node. This “Dummy” Raspberry Pi ran custom scripts designed to emulate 
other components of the system. It transmitted randomized CAN bus and Modbus data via the 
RS485 CAN HAT to the Raspberry Pi 1 - simulating the behavior of the fuel cell and the hybrid 
inverter, see also section 13.8 of the appendix. Additionally, it maintained communication over 
Modbus TCP/IP (simulating an electrolyzer) and MQTT (simulating Raspberry Pi 2) via Ethernet. In 
order to provide a better understanding of the following sections of this chapter, the reader is 
encouraged to keep the program code available alongside this document, see [A_30].  
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8.2 Description of the software architecture 
Each self-designed program within the system is designed to operate independently, meaning it 
can be executed standalone without dependency-related errors. Due to the Raspberry Pi 4’s 
multi-core processor, multiple programs can run in parallel without interfering with one another. 
The system follows a modular framework.  

8.2.1 Classification of Modules and Program Logic 

 The following categorization can be made regarding the purpose of the created *_.py-scripts: 

• Classes 
• “Programs” (indicated by the “*_loop”- sequence at the end of their file name), including: 

o Programs that are not directly included in the MQTT communication network: 
main.py, blink_loop.py and get_svg_files_loop.py 

o Subscribing programs 
o Publishing programs 

• All subscribing and publishing programs can be further classified as: 
o Validated programs that have proven their functionality (under laboratory test runs 

with all other programs running in parallel) and are expected to be capable in order 
to fulfill their respective purpose to a satisfactory level also at plant operation. 

o Dummy programs, depicting scripts under construction that are partly validated 
in their functionality but are restricted for processing only simulated or random 
data. These programs serve as preparatory work and are implemented for testing 
purposes.  

8.2.2 Internal Communication Structure between the Programs 

The system architecture follows a publish-subscribe model, which can be observed in particular 
through the blue arrows connected to the MQTT broker block, see figure 14. In the current setup, 
the open-source Mosquitto broker is used, see (Eclipse Foundation AISBL, no date). The software 
running on the Raspberry Pi 1 thus consists of discrete system components-each implemented 
as an individual program, whereas that the overall higher-level data management is established 
through the MQTT-protocol, transacting JSON-formatted ASCII messages over TCP/IP. In the 
figure, all blue arrows on the picture illustrate the flow of data into and out of the broker and 
selected subscribing processes are capable of directly controlling physical devices, for example 
over the EMS.py program, the electrolyzers or the fuel cell can be (de-) activated. In general, 
publishing programs and selected subscribing services are permitted to trigger the system’s 
emergency shutdown sequence upon detection of critical conditions. For the system to function 
properly, a broker program must be continuously running in the background.  

This loose coupling structure between software modules offers the practical advantage that new 
devices can be integrated systematically: E.g. such that new programs may first be validated 
individually regarding their basic functionality and communication interfaces, following a 
dedicated structure outlined for implementation. Once verified, a new program can seamlessly 
be integrated into the overall system via MQTT. This modularity also enhances system 
maintainability, as self-contained programs are easier to debug, update, and manage.   
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Figure 14: Overview of the software structure of the Raspberry Pi 1 build around the MQTT broker. 

8.2.3 Further Necessary Improvements 

The implementation of a graphical user interface (GUI) is not yet supported and only implied in 
the illustration of figure 14. It may be included in the future in the Raspberry Pi 1’s software 
infrastructure or on a separate computer, since GUI applications may be resource-intensive and 
could impact the performance of the processes on the Raspberry Pi 1. In general, the outsourcing 
of MQTT-based programs is possible, via an external TCP/IP connection.  

8.2.4 Justification and Discussion for the Use of the MQTT Protocol. 

Since the overarching goal was to ensure centralized and standardized data availability across the 
entire system, several possibilities could have been considered to serve this purpose. 

More precisely, alternative overarching “IoT protocols” besides MQTT could have been chosen. 
Prominent examples next to it include CoAP, AMQP, and HTTP. Each of these protocols brings its 
own specific advantages and disadvantages. A comprehensive study that explores a comparison 
of these protocol in greater depth can be found in (Naik, 2017). It comes to the result that 
compared to CoAP, AMQP, and HTTP, MQTT offers the smallest fixed header size, which makes it 
ideal for low-bandwidth and also low-power environments. However, since it operates over TCP, 
it incurs some connection overhead (Naik, 2017). Furthermore, according to (Jaloudi, 2019), HTTP 
is a synchronous protocol and is thus not compatible with the requirements of chapter 5, which 
is why it is omitted from here on.  



Initial Design and Implementation of a Control System for a Hydrogen-Based Microgrid 
Chapter 8 Presentation of the developed software concept on the 
Raspberry Pi 1 

Jan Moritz Dehler 

 

44 
 

Another Review study about IoT Protocols Smart Grid Communication, see (Tightiz & Yang, 2020) 
also compares the previously mentioned and addotional IoT protocols reagarding their major 
(Dis)- Advantages coming and also their complexity. It comes to the result that AMQP, CoAP and 
MQTT can be condisered as protocols of a low complexity (which is generally viewed as positive 
with regard to the project), whereas, concerning the disadvantages, AMQP is declared als “not 
suitable for resource constrained applications” and CoAP’s main drawback lies in the limited QoS 
capability, because as (Thangavel, et al., 2014) explains this is due to the fact that in in contrast 
to MQTT, CoAP only offers a simplified acknowledgment mechanism that does not subdivide 
between QoS levels.  

Furthermore, a study by Mishra and Kertesz (2020) found that among MQTT, AMQP, and CoAP, 
MQTT has the highest number of publications, indicating its well-established adoption of a well-
researched technology, also considered as a positive trait regarding the project. 

While MQTT offers many advantages, certain limitations must be carefully addressed. First, as 
(Colombo & Ferrari, 2024) states, MQTT does not provide a common data structure such as topic 
hierarchies and payload formats, which means that interoperability between devices and 
software components can become challenging. Also, no consistent method for tracking device 
status is provided by, which is essential for continuous monitoring in such IoT systems. 

Also, MQTT lacks security features such as the fact that it does not support mutual authentication 
between clients and brokers. Also, the protocol also lacks native mechanisms to enforce data 
encryption and integrity (Şeker, et al., 2023).  

Another important consideration is the role of the broker itself. The broker must function reliably, 
as it represents a critical point of failure. If the broker crashes or becomes unavailable, all 
message distribution within the system is disrupted. Furthermore, the broker can become a 
bottleneck when many devices simultaneously publish or subscribe to the same topic (cf. Spohn, 
2022). 

However, the advantages regarding the use of MQTT outweighed the disadvantages in the decision 
process and due to the fact that the open-source client library Eclipse Paho, see (pypi.org, 2024), 
provided for an easy implementation and quick positive results in the testing of the testing phase 
were responsible for this decision.   
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8.2.5 Overview of Programs 

The following table 9 contains a listing of the programs that the software structure provides. It is 
intended to support the following explanations.  

Table 9: Complete listing of all *_loop.py programs constituting the Raspberry Pi 1’s software structure. 

Name of Program 
Categorizat

ion 
Related Classes Specifically Used for the 

Respective Program 
Purpose 

CAN_BUS_01_ loop.py 

Validated 
Publishing 

Program 

Canbus_Data_Acquisition.py Communication with 
Fuel Cell Canbus_Data_Normalization.py 

HMC8012_loop.py 
HMC8012_Data_Acquisition.py 

Communication with 
Multimeter 1 HMC8012_Data_Normalization.py 

HMC8012_Plausibility_Check.py 

HMC8015_loop.py 
HMC8015_Data_Acquisition.py 

Communication with 
Multimeter 2 

HMC8015_Data_Normalization.py 
HMC8015_Plausibility_Check.py 

get_resource_usage_l
oop.py 

get_resource_usage_Data_Acquisition.py Acquisition of System 
Resource Data get_resource_usage_Plausibility_Check.py 

Arduino_ 
Communication_ 

loop.py 

Arduino_Communication_Data_Acquisition.py 

Communication with 
Arduino 1 

Arduino_Communication_Data_Normalization
_and_ Plausibility_Check.py 

Tools_for_Arduino_Communication_Data_Nor
malization_ and_Plausibility_Check.py 

increase_performance.py 

Modbus_RTU_ 
loop.py 

Publishing 
Program 

(Dummy) 

Modbus_RTU_Data_Acquisition.py Communication with 
Hybrid Inverter Modbus_RTU_Data_Normalization.py 

modbusTCP_ 
elektrolyseur_loop.py 

modbusTCP_elektrolyseur_Data_ 
Acquisition.py 

Communication with 
Electrolyzers 

SolaxHybrid_loop.py SolaxHybrid_Data_Acquisition.py 
Communication with 

Hybrid Inverter 
Message_ 

Collector_for_csv_ 
loop.py 

Validated 
Subscribing 

Program 

Handle_Message_Collector_for_csv.py 
Periodic logging of the 
MQTT server content in 

a csv file 
Message_ 

Collector_for_ 
Data_Check_loop.py 

Handle_Data_Check.py 
Data integrity validation 
over data coming from 

MQTT-server 

Message_Collector_ 
for_plot_loop.py 

Handle_Plot.py 
Visualization of specific 

data series of MQTT-
server in a live-plot 

EMS_loop.py 
Subscribing 

Program 
(Dummy) 

EMS_Handler.py 
Energy management 

system 

main.py main.py 
screen_handler.py Initialization of all other 

programs Shutdown_handler.py 

blink_loop.py 
blink_ 

loop.py 
- 

Visualization of system 
activity via blinking of 

the status LED 

get_svg_files_loop.py 
get_svg_ 

files_ 
loop.py 

- 
Performance profiling 
through generation of 

.SVG files 
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Programs that are not Specifically Mentioned in the Following Parts 

From here on, the specific explanation of the programs, is further carried out for the main.py and 
the subscribing programs, whereas the explanation of the publishing programs will be restricted 
to the general concept. For further detailed information on the respective publishing programs, 
refer to sections 13.5.1-13.5.14 of the appendix. Also, the programs blink_loop.py and 
get_svg_files_loop.py are only worth to be briefly mentioned at this point: blink_loop.py, located 
in the utils directory, is implemented to merely provide a visual conformation of the functionality 
of the Raspberry Pi 1 and causes the status LED of the Raspberry Pi to flash periodically. 
Furthermore, the program get_svg_files_loop.py, located in the utils directory as well,  has the 
purpose is to record .SVG files containing flame graphs that visualize which parts of the code are 
responsible for performance bottlenecks (cf. Frederickson, 2024). It is regarded merely as a 
testing tool for performance evaluation, intended for use outside of regular microgrid operations. 

8.3 Classes Generally Used as Imports 

To provide a better understanding of the further text, generally used classes that were imported by 
all of the programs are being presented in the following section.  

8.3.1 Global Error Management (error_handler.py) 

This class error_handler.py acts as the global error handler laying the foundation for a future error 
management logic. It is intended that this class is included in every python file existing in the 
total_serial program structure. The future use of this class will be as follows: in case of any 
recognized error in a program, the handle_errors() function of the class will be called whereas the 
function argument error_code provides for the decision-making via a match case method. Due to 
the fact that at the current time the ongoing operations of program executions were mostly limited 
for testing purposes, this class only provides an error handling strategy for the error_code 0, 
setting the EMERGENY_PIN to LOW, insinuating an activation of the emergency chain. More 
precisely, a time-based logic is used to detect reoccurrence of the same error, such that only if an 
error occurs for the second time within a predefined time limit, the respective error management 
is thought to be executed.  

Further Possible Improvements 

Depending on the transmitted value of error_code, additional error management strategies may 
be introduced in the future.   

8.3.2 Time Conversion for Logging Reasons (convert_to_readable_time.py) 

The convert_to_readable_time.py-class, located in the directory utils provides a human-readable 
timestamp format for logging and debugging. Its primary function, unix_to_readable_with_ms(), 
takes a unix timestamp (generated by Python's time module cf. Python Software Foundation, 
2025, used at several points in the software) as a floating-point number, where the integer part 
represents the number of seconds elapsed since January 1, 1970, and the fractional part contains 
microseconds. Using Python's datetime module, the method converts the extracted seconds into 
a datetime object and formats it as a string in the format DD.MM.YYYY HH:MM:SS.NNNNNN, 
where “NNNNNN” represents the microseconds. 
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8.3.3 Logging of all Printouts (log_class.py) 

The class, located in utils, provides an automated logging mechanism that redirects all print() 
outputs and error messages (sys.stderr) to both a log file and the console. It is designed for 
process-specific logging by ensuring that each process name gets a dedicated log directory and 
file. Upon initialization, a base directory for logs is determined, and a subfolder specific to the 
given process is created. The log files are stored in the log-files directory, located in the parent 
directory of total_serial. Each process has its own subdirectory named log-
files_<process_name>, where the corresponding log files are stored. Log files are restricted to a 
maximum size of 10 MB while maintaining up to five backup files. If the maximum number of log 
files is exceeded, the oldest log file is automatically deleted. By overriding sys.stdout and 
sys.stderr, all standard print outputs and error messages are automatically logged, eliminating 
the need for explicit logging statements in the program. 

8.3.4 CSV File Management (my_csv.py) 

This class provides functionality for storing data in CSV files, implementing file size limits and 
automatic file creation. The class can be found in the directory utils. Upon initialization, the class 
defines parameters such as the target file name, column headers, and a predefined storage 
directory (CSV_for_received_data). This directory is located in the parent directory of total_serial 
(../CSV_for_received_data). The maximum file size is set to 1 GB, and a flag (file_full) tracks 
whether a new file needs to be created. The write_csv() method writes incoming data to a CSV file, 
storing an array column by column in the current row. If necessary, it automatically creates a new 
file. It first retrieves the current Unix timestamp and converts it into a readable format using the 
time_conversion class. If no active file exists or the previous file has reached the size limit, a new 
CSV file is created, with a timestamp and the base file name in the filename 
({file_name}_{timestamp}.csv). The column headers are written in the first row of the new file. If a 
file reaches the size limit, the file_full flag is set, ensuring that subsequent writes go into a new 
file.  

8.3.5 Timeout Rules for Certain Blocks of Code (timeout.py) 

The timeout class (timeout.py), also located in utils, is designed to enforce a maximum execution 
time for certain blocks of code. If an execution of a certain code block exceeds a specified time 
limit (provided as an argument during initialization), a TimeoutError will be raised. The class 
functions as a context manager, allowing it to be used within a with statement in a program. Upon 
entering this with-block, the __enter__() method (see code in timeout.py) sets up an alarm using 
signal.alarm(self.limit), which triggers a timeout if the specified duration is exceeded. If the 
timeout occurs, the timeout_handler() method raises a TimeoutError. The __exit__() method 
disables the alarm with signal.alarm(0) when the block exits normally, ensuring that no 
unintended timeouts occur afterward. An application example is illustrated in the figure 15. 
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Figure 15: Example illustration of a code section, showing the application of the Timeout method.  

8.3.6 Data Transmission Management via MQTT (mqtt_handler.py) 

The handle_MQTT class can be thought of as a toolset for enabling communication of any client 
with the MQTT-broker (mosquitto). In particular, it provides functions for managing MQTT 
connections, subscribing to topics, publishing data to the broker, monitoring message latencies, 
and ensuring automatic reconnection if the connection to the broker becomes unavailable. Any 
program that needs to interact with the MQTT broker must instantiate this class and use its 
methods. The open-source library paho.mqtt, see (pypi.org, 2024), is used for this class. 

Class Initialization and Internal Variables 

In order to initialize the class, the argument client_name, client_code is required (and debug, see 
the table 10 in the subsequent section 8.4.2, which will be ignored for now). It is used to identify 
which program acts as a client in the process. Moreover, the variable script_name will be used for 
logging and debugging, containing the client's filename (see section 8.4.3). The client_code 
variable determines whether the instance functions as a subscriber or a publisher. In the current 
version, client codes 0, 1, and 2 represent subscribing programs. More specifically it is intended 
that the client code 0 should be used for programs subscribing to any topic of the MQTT server, 
whereas the client codes 1 and 2 are reserved for services that require subscriptions only to 
specific topics. Any other client_code value represents publishing programs, that are thus 
excluded from the subscriber specific functions of the class. Furthermore, the class defines 
internal variables to handle message storage and processing. These variables act as intermediate 
storage variables for different types of data received from various publishers. The MQTT topics are 
defined in topics_for_mqtt_names_to_subscribe[] and each topic is associated with its respective 
quality of service (QoS) level, specified in qos_levels_for_subscribing[]. With the current software 
version, all QoS values are set to 0, except for the measurement data from Arduino 1, which is 
assigned a QoS level of 1, since the regulation of the hydrogen consumption/production will rely 
on the transferred data outgoing from the pressure sensor, connected to the Arduino 1. 

Connection Management 

Upon instantiation, the class establishes an MQTT connection using the Connect_to_MQTT() 
function. The connection to the broker is established via the command: 

self.client.connect(mqttBroker, 1883, keepalive=1) 

where variable mqttBroker represents the broker's IP address (currently set to 192.168.0.11), 1883 
stands for the standard port for unencrypted MQTT communication, and the keepalive parameter 
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ensures that the client sends a message to the broker every second to maintain the connection 
(see also section 2.11.4). Meaning that for the current setup if the MQTT connection is interrupted, 
this disconnection will be recognized within the mentioned timeframe and a on_disconnect 
method will be activated, closing the connection and setting the variable self.connected to False. 
This flag is constantly checked by any client to detect whether a disconnection has occurred (see 
section 8.4.3). If, on the other hand, the connection is successfully established upon initialization, 
the command self.client.loop_start() is executed. This starts an internal network thread. 
Conversely, self.client.loop_stop() stops the internal network loop when communication is no 
longer needed, whereas this command can also be found in the on_disconnect method. 

Subscription Management 

Subscriber clients are the only clients permitted to execute the manage_subscriptions() function 
when a connection is established. This function is executed through an on_connect() callback 
and ensures that the client subscribes to all existing topics while dynamically assigning 
corresponding callback functions for processing incoming messages. With the current version of 
the program any subscriber will automatically subscribe to every existing topic. A distinguishing 
logic could later be implemented to limit the range of subscribed topics for certain subscribing 
clients, if necessary. That was the main idea behind the implementation of different client codes.  

Each subscribed topic corresponds with a dedicated on_message_* function acting as a callback 
handler. These functions are automatically triggered on the subscriber side whenever a certain 
payload is published on the on_message_* function’s corresponding topic to which the client has 
subscribed to. This topic-specific-on_message_* function then extracts the payload, decodes the 
JSON data, and updates the corresponding internal class variables. An optional time-difference 
calculation mechanism, the calculate_delta_t() function, is implemented to measure message 
latencies and count incoming messages (excluding duplicate messages). This feature is relevant 
only for subscribing clients, as it is triggered exclusively when an on_message_* function is 
executed. It can be enabled or disabled using the Boolean variable allow_calculation_of_delta_t. 
The mechanism captures timestamps of incoming messages (software_timestamp) and 
calculates time intervals between consecutive messages. Moreover, it maintains records of 
minimum, maximum, and average message latencies. Periodic resets prevent variable overflow. 
The figure 16 below shows the code snipped of the mqtt_handler that initializes all topics that are 
implemented including their respective QoS levels. In this regard, it should be noted that all QoS 
levels are set to 0 except for the topic Arduino_Communication_loop_Sensors_H2_Station_data. 
The QoS level 1 ensures that the sensor data will be Acquired via MQTT at least once in the course 
of every publishing process because the pressure sensor data is of special relevance for the 
energy management algorithm, see section 8.5.  
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Figure 16: Code section showing the declaration of all current MQTT topics of the setup, including their respective QoS 
levels, see mqtt_handler.py. 

Publishing Messages 

Publication of messages is handled by the publish()-function of the class. This function exctracts 
the appropriate QoS level of the message’s topic (defined via the array 
qos_levels_for_subscribing[]) and publishes the message with the dedicated paho.mqtt publish 
command to the broker while also monitoring for potential errors that may occur during 
publication. 

8.4 Programs 

8.4.1 General Design Principles Concerning all Programs 

These rules and structures account for all programs. Sometimes not for the main.py program. If 
that is the case, this is mentioned in the text.  

8.4.2 Common variables 

The following table 10 lists and explains common variables that are used consistently across all 
programs. Their names and functionalities are reused identically.  

Table 10: Enumeration of common variable names and functionalities, used throughout the *_loop-programs. 

Variable Type Purpose 

no_errors_in_ 
loop 

Boolean 

Detects whether the program fell into a secondary except-method, and it is 
set to False in such an event. In the program, it is queried to prevent the 

additional initialization of certain classes at the setup of the program, for 
example the my_csv-class, will not be initialized more than once in such an 
event, since this would lead to the creation of a new csv file every 5 seconds 

in case the python error is not canceled out over time 
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Variable Type Purpose 

error_to_print String 
Stores the error message of an exception that will be used later in the code 

for a printout or a referral via a message that is sent to the MQTT-server 
t_delay Integer Ensures a minimum execution time of the program 

t_delay_for_ 
publishing 

Integer Sets a time interval for publishing commands to the MQTT-Server 

print_interval_ 
time 

Integer Sets a time interval for periodic printout commands 

timeout_limit Integer 
Sets a defined time limit (in seconds) that specifies how long the execution 

time of a certain block of code is allowed to be 

script_name String 
Variable that dynamically stores the local name of any script ensuring clear 

identification in printouts and logs 

create_ 
internal_csv 

Boolean 
Acts as a switch to enable or disable the creation of so called “internal” csv-
files that log the periodic execution of the respective local file for debugging 

reasons 

time_of_loop_
entry 

Float 

Stores the current timestamp (t.time()) when entering the loop to calculate 
the duration of the loop. If the processing time is shorter than t_delay, the 

difference is used as the t.sleep() duration to ensure a constant loop 
frequency 

software 
timestamp String 

Logs the current date and time. The class convert_to_readable_time() is 
applied 

Error_ 
observed 

Boolean 
Detects if any error were observed when running a program. It can be a 

python exception, an error caused due to a timeout overrun, an error 
originating from a connected device because of an invalid measurement, etc. 

Error String Variable responsible to store the observed error 

connected Boolean 
Is giving a feedback, whether a connection with a respective device is 

currently available 

debug Boolean 
Acts as a switch, mostly used as an argument at the initialization of classes. 
Can enable or disable debugging via print() statements. Printouts for errors 

should not be able to be suppressed by this variable 

client_code Integer 
Used as an argument for the initialization of the handle_MQTT-class. Enables 

MQTT-methods intended for subscribing programs. 
 

8.4.3 General structure of each developed *_.py program 

The general structure of each “_loop”-program consists of a primary try-except method that 
surrounds the complete code sections below it. Its purpose is simply the management of the 
conduction of a secure shutdown of the respective program in case a termination action (e.g. by 
pressing ctr + c) is being conducted from a user or an external program (see primary except code 
block).  

Below the primary try-except method, the primary while True loop is stated. Its purpose is to let 
the underlying code run repeatedly, except the secondary try-except method is detecting an 
unforeseen python-error (e.g. programming errors or runtime errors). In general, two exceptions 
are defined that deal with the emergence of such errors: An except method in case a Connection 
Error is raised in the code and an except method for any other error. The reason for the fact that 
different exceptions are being defined is that, for general python errors the error message is being 
sent to the MQTT server, the error_observed variable will be set to True and every other kind of data 
will be set to None. When on the other hand, a connection error is raised, a disconnection from 
the MQTT server is being detected, because the status of the Boolean variable mqtt_connect has 
changed to False. Thus, the error message cannot be sent to the MQTT server, but it can only be 
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printed out (and thus be logged). Because of the disconnection, the program tries to reset the 
network configuration for the eth0 interface, the IP address will be re-assigned to 192.168.0.11/24 
the interface will be activated and the default route will be set via 192.168.0.1 again and the 
mosqitto broker will be started via a sudo order to attempt to reconnect to the MQTT server. The 
following finally-method provides the printout (and thus the logging) of the python error. Then a 
delay of 5 seconds follows before the beginning of the code of the primary while loop is being 
executed again. The way the current structure of the programs is chosen prevents any occurring 
python-error from termination of the program. The goal is to prevent an uninterrupted program 
flow under any circumstances, except the user or any other superior program terminates it. 
Concerning the regular, error-free execution of the respective program, the setup part of the 
program is being conducted. It includes the following methods for all programs. The figure 17 
illustrates the explained code logic:  

 

Figure 17: Example illustration of the basic code structure used for any *_loop.py program. 

The following table 11 lists and describes the methods that are foreseen for every primary while 
loop level in more detail.  

Table 11: Common methods of a primary while True loop, used throughout the different *_loop-programs. 

Method Purpose 

script_name extraction 
Extraction of the local script name for debugging and 

logging purposes 

Initialize global_err_handler 

Initialization of the class responsible for the 
management of system-wide error handling. Any 

global_err_handler.handle_errors(error_code)-order 
will result in the execution of the global error 

management, potentially activating the emergency 
chain see section 4.5) 
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Method Purpose 

Initialize internal_CSV_handler 

If create_internal_csv is set to True, and the primary 
while loop is being executed for the first time 

(no_errors_in_loop = True), a local CSV file with 
predefined headers will be created. The class 

my_csv.py is used 

Initialize print_logger 
Initialization of the logger object to log all printouts, in 

case of no_errors_in_loop = True. Usage of the class 
log_class.py 

MQTT client initialization with connection check 

Initializes the MQTT client via mqtt_handler.py and 
checks if a connection exists (by checking the flag 
mqtt_client.connected), if the connection was not 

successful, a ConnectionError is raised 
Initializations that are specific to the purpose of the 

respective publishing/subscribing program 
See section 8.4.7 and section 8.4.8 

Registering of signal handlers with all variants incl. 
closing the interface and MQTT connection 

Registers signal handlers for SIGINT, SIGTERM, etc., to 
close the MQTT-connection and device connection 

cleanly, in case any termination signal is being 
detected 

Printout with script_name and readable_time 
Print out the start time of the script and the name of the 

script in a formatted way 
 

The following table 12 lists and explains the general methods executed within the secondary while 
loop. 

Table 12: Common methods of a secondary while True loop, used throughout the different *_loop-programs. 

Method Purpose 

MQTT- connection-check 
Periodic check, whether the MQTT connection is still 

active. If not, a ConnectionError is raised 

Entering with Timeout Method 
Protects critical code sections with a timeout to 

prevent hangups. If the timeout exceeds, an exception 
is raised 

Program-specific tasks See section 8.4.7 and section 8.4.8 

Generation of message payload Creates the JSON format for the MQTT-message 

Publication of payload via MQTT 
Send messages with measurement data or errors via 

MQTT 

Fill internal CSV with values 
If create_internal_csv is set to True, the recorded data 

is stored in the internal CSV file (primarily used for 
debugging and performance evaluation) 

Ensuring a Minimum Loop Execution Time 

The respective command ensures that each iteration of 
the loop takes at least t_delay seconds by calculating 

the remaining time and pausing execution (t.sleep(...)) 
if necessary. If the processing time exceeds t_delay, no 

additional delay is applied 
 

Creation of Internal CSV Files 

The purpose of the creation of internal CSV files in every program is to enable evaluation of 
message throughput during post-processing. By storing every software_timestamp into an 
internal CSV file, it becomes possible to analyze communication performance via latencies 
before MQTT-publication. A subscribing program (Message_Collector_for_csv_loop.py) lists the 
overall data acquired from the MQTT Server in a csv file. Such that Message throughput over MQTT 
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can be analyzed by the comparison of both the internal csv files and the general CSV file from 
Message_Collector_for_csv_loop.py. This feature is only implemented for debugging reasons and 
can be disabled by setting create_internal_csv to False. 

The Heartbeat-Payload 

At this point, it might be counterintuitive that the publication of a payload is considered in the 
discussion of the general structure of any program, including subscribing programs. The reason is 
that with each program iteration, also subscribing programs have to publish a heartbeat-payload 
containing the current software_timestamp, the current state of their respective error_observed 
variable (False for error-free operation) and a current error message (None for error-free 
operation). This feature is thought to make sure that other subscribing programs can observe their 
status, checking faultless execution and MQTT-connection and general functionality through the 
calculated latency through obtaining the software_timestamp values (see function 
calculate_delta_t() in mqtt_handler.py). The program Message_Collector_for_Data_Check_ 
loop.py takes this into consideration, see section 8.4.8.  

8.4.4 Time Intervals 

In the subscribing programs, a print output indicates the program's activity every second. 
Similarly, the publishing programs generate a print output with e.g. measured values every 
second. This is controlled by the variable print_interval_time (currently set to 1). The same delay 
logic applies to the execution of commands regarding publishing to the MQTT-server, controlled 
via t_delay_for_publishing (currently set to 1). 

Ensuring a Minimum Loop Execution Time 

The method “Ensuring a Minimum Loop Execution Time” (see table 12) is applied to all programs, 
in order to limit execution time of a loop to a fixed time value to save computing capacity. The 
variable t_delay is used for this purpose. 

Overview of Timing Parameters  

It makes sense to specify how fast certain blocks of code should be executed, mostly for 
computational capacity reasons. Several if-statements in the program structure that handle the 
timing of the such cycling times are employed, based on the control variables t_delay 
t_delay_for_publishing and print_interval_time (also refer to table 10). The configuration of these 
parameters of the current setup are listed in the tables 13. 

Table 13: Overview of the different timing parameters for the respective *_loop programs. 

Program Name t_delay in seconds* 
t_delay_for_ 

publishing in seconds 

print_interval_ 
time in 

seconds 
CAN_BUS_01_loop.py (-)** 1 1 

HMC8012_loop.py 0.1 1 1 
HMC8015_loop.py 0.1 1 1 

Modbus_01_loop.py (-)** 1 1 
Arduino_Communication_loop.py 0.1 1 1 

modbusTCP_elektrolyseur_loop.py 0.1 1 1 
get_resource_usage_loop.py (-)*** 
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Program Name t_delay in seconds* 
t_delay_for_ 

publishing in seconds 

print_interval_ 
time in 

seconds 
Message_Collector_for_csv_loop.py 0.1 1 1 

Message_Collector_for_Data_Check_loop.py 0.1 1 1 
Message_Collector_for_plot_loop.py 1.5**** 1 1 

EMS_loop.py 0.1 1 1 
 

*This prescribes an error reaction time of ca. t_delay. 

**No t_delay is foreseen here, because these programs are currently set up to be asynchronous. 
That means it is required that the receiving programs react fast enough to incoming messages. All 
other programs initiate any data transfer by themselves over inquiries. 

***See get_service_resource_usage() in get_resource_usage_Data_Acquisition.py: The 
interval=0.5 in cpu_percent = process.cpu_percent(interval=0.5) provides a CPU utilization 
measurement of python processes over 0.5 seconds (blocking), which means that the cycle time 
of the secondary while True loop in get_resource_usage_loop.py will be increased for at least 0.5 
seconds per detected python process. 

**** t_delay is limited to 1.5 seconds here due to computational constraints. 

8.4.5 Considerations Regarding Error Handling and Debugging 

Each type of class, that is periodically used in the secondary while loop of a *_loop-program 
includes a dedicated method called handle_errors(), which is designed to be placed at critical 
points in the code where errors are expected. This method is responsible for storing the error 
message in the variable error, printing it to the console (thus it will be logged), setting the 
error_observed flag to True, and-when applicable-safely closing any active connections with 
external interfaces. In such cases, the corresponding connected flag is set to False to reflect the 
disconnection status. Furthermore, the handle_errors() function of the global_error_handler class 
will be called in order to activate the emergency chain in the case of severe errors (error_code 0). 
The system should always attempt to publish the respective error message to the MQTT broker 
using the appropriate publish methods. This allows other programs within the system to detect 
and react to malfunctions. In addition to error messages, informational output can be controlled 
using the Boolean variable called debug. This is intended to allow developers to activate or 
deactivate print statements as needed for troubleshooting at certain critical parts of the code. To 
maintain system performance, periodic printouts should be throttled to a maximum frequency of 
once per second, as higher output rates can lead to performance degradation. 

Further Possible Improvements 

One possible improvement would be the implementation of an exponential or gradual increase in 
the restart delay to prevent excessive restarting in cases where failures occur frequently. This 
approach would help mitigate unnecessary system resets and provide more stability. 
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8.4.6 main.py  

The main.py script primarily functions as the initiator of multiple processes required for the 
system. By executing this script only once, all essential sub-processes are started automatically, 
and further utilization-functions are enabled. The program utilizes the self-designed classes 
screen_handler.py and shutdown_handler.py. The objective of the first mentioned class is the 
execution and organization of multiple scripts in separate terminal windows, such that for each 
of the programs started, one terminal window is being opened, to provide an enhanced overview. 
The methods of this class use the number of active programs to calculate the number, size and 
position of the respective terminal windows. The shutdown_handler.py ensures a controlled 
shutdown of all currently running python scripts upon receiving a termination signal on main.py, 
such that if the main.py program is being shut off - all the other processes are shut off 
simultaneously.  

Concept 

The script maintains a list called “scripts”, located in the primary while-loop, which lists all Python 
scripts that need to be executed indirectly. This way scripts can be added or disabled by 
commenting them out within the array with a “#”.. before the respective file path. This is visually 
implied in figure 18, since the get_svg_files_loop.py program is not foreseen for regular operation. 
If .SVG files are to be created, the corresponding line must be commented out. In case any new 
program is planned to be added to the system, it should be added to the list of scripts.  

 

Figure 18: Image of the scripts-list in main.py, declaration all paths for programs to be started through execution of 
main.py. 

Additionally, the script configures Ethernet settings at runtime to establish MQTT communication. 
By using OS-level commands, the Raspberry Pi 4’s network interface is reset and assigned a static 
IP address. Moreover, the Mosquitto broker will be activated, see figure 19. 

 

Figure 19: Illustration of  the routine responsible to resets and reconfigure the Raspberry Pi 1’s Ethernet interface with 
a static IP address, setting the default gateway, and starting the Mosquitto broker service. 
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With the initialization of the screen handler and the execution of the method 
screen_manager.open_scripts_and_seperate_screens(), the programs, according to scripts, are 
started, upon the opening of their designated terminal. The secondary while True loop is restricted 
to a periodic printout, conducted at each second, concerning the confirmation that main.py is 
still active. 

8.4.7 Publishing Programs 

As mentioned before, in this chapter, a detailed explanation of the exact functioning of the 
individual programs is omitted. By combining the previously provided overview of the general 
program structure with the following explanation of the main differences between the publishing 
programs, a sufficient understanding of their functionality can be achieved. 

Classes only used by publishing Programs 

The publishing programs are responsible for acquiring, processing (or normalizing) and verifying 
measurement data from connected devices, before transmitting it to the MQTT-broker 
(publishing). The last-mentioned objective is always being carried out by the publish-function of 
the mqtt_handler (see above mentioned mqtt_handler class). The other three tasks are managed 
by three publishing-program-specific classes, which are being introduced in the following. Other 
than the classes that have been introduced before, the different Data_aquisition-, 
Data_normalization- and Data_check-classes are not to be re-used 1 to 1 by the different 
respective programs, since 1st, they need different libraries to communicate with their respective 
devices and by that, 2nd, the format of the acquired raw-data differs from device to device. Also, 
the check for plausibility of the data by the Data_check class is only implemented, when regarding 
the communication with devices without a local control unit, that detects device specific errors 
by itself. That is not the case with the measurement of current and voltage with the current clamps 
or other devices without any device-specific local control unit. 

The *_Data_aquisition class 

The *_Data_Acquisition class has the objective of connecting to the measurement device, reading 
raw data from the measurement query and handling connection issues. It always provides a 
connect() method that establishes communication with the device, detects connection errors, 
and ensures that the device remains operational. A Boolean variable, connected, reflects the 
connection status, while error and error_observed indicates if an issue was detected. The read() 
method retrieves raw measurement data and applies error detection mechanisms while reading 
measurement data. Any anomalies trigger the handle_errors() function, which updates the error- 
and the connection status and the device-specific error is being stored in the variable “error”. In 
case the connection status is being set to False from the previous execution, a reconnection with 
the device with the connect()-function will be attempted at the beginning of every execution of the 
read() method. The figure 20 below illustrates this program flow. 
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Figure 20: Flow chart demonstrating the general procedure of any read() function in a *_Data_aquisition class. 

The *_Data_normalization class 

Classes of this type are utilizing the acquired raw data-string coming from a respective 
Data_aquisition class, filtering it and returning the data in a format that is suitable for further use 
by the publishing programs. The structure of the normalization class can vary greatly between the 
individual publishing programs. This is due to the different decoding and reformatting steps 
required to interpret the raw string data received from various interfaces. For example, in the case 
of CAN bus communication, the message identifier must first be extracted from the raw string 
before the data can be interpreted accordingly. More precisely, the message formats used by 
components such as the fuel cell, electrolyzers, and hybrid inverter may include error codes that 
must be interpreted based on the respective manufacturer’s documentation. This is already 
demonstrated in Canbus_Data_Normalization.py, where the decoding logic is implemented using 
an Excel file provided by the manufacturer, which defines how to interpret specific CAN bus IDs, 
particularly those related to error messages. In contrast, the raw data (or telegrams) received from 
Arduino 1 follow a different format and must be decrypted using custom logic developed 
specifically for this interface. This logic is implemented in 
Arduino_Communication_Data_Normalization_and_Plausibility_Check.py and 
Tools_for_Arduino_Communication_Data_Normalization_and_Plausibility_Check.py. And 
regarding the  Data_normalization class concerning the Multimeter 1 and 2, it can be merely 
considered as a set of methods that manipulate a single string (the raw data) to convert it into 
numerical values. 

The *_Data_check class (optional) 

This type of class serves in order to flag invalid measurement values, for example values that 
exceed a maximum value or fall below a minimum value. The handle_error()-function of this class 
is called, in this case. And further plausibility checks can be added here. The *_Data_check class 
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type is marked as optional here because, in the current program version, they are used for 
programs that interact with components lacking a local controller. Devices equipped with a local 
controller, such as fuel cells and electrolyzers, will send error messages in case of faulty 
operation, making the Data_check class redundant for them.  

Publishing Data over MQTT Scheme 

One of the final steps of each iteration involves publishing the processed data to an MQTT topic. 
This transmission includes metadata such as timestamps, connectivity status, raw readings, and 
potential error flags. The publish-order is always stated at the end of each secondary while True - 
loop, that sends the data as a JSON payload via MQTT, see figure 21.  

 

Figure 21: An exemplary structure of an MQTT-payload including the respective publish order. 

Further Possible Improvements 

In general, the expansion of the data validation logic in *_DataCheck  to cover additional error-
cases would increase reliability, such as the detection of stationary values, unrealistic jumps in 
the measured values or other anomalies.  

Further Necessary Improvements 

Currently, the *_DataCheck class provides minimum and maximum values that are overly broad 
and unrealistic. This is due to the fact that the software has not yet been fine-tuned in this regard. 
At this stage, enforcing strict min/max checks would hinder test applications, as they would 
constantly trigger errors during test runs. 

8.4.8 Subscribing Programs 

This section provides a more detailed explanation of the subscribing programs, as their main 
objectives diverge more strongly from another than it is the case with the publishing programs. 

Concept 

Subscribing programs retrieve data from the MQTT broker and perform specific tasks based on 
this data. Currently, a total of four subscribing programs are implemented in the system, see the 
following sections. As described in section 8.3.6, subscribing programs register callback 
functions that are automatically triggered whenever a message is published to a topic they are 
subscribed to. These callbacks are implemented as *_on_message methods within the 
mqtt_handler-class. Each method is responsible for decoding the incoming message payload, 
extracting the relevant data fields, and storing them in dedicated class variables. These variables 
can then be accessed by the subscribing programs for further processing, see figure 22. 
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Figure 22: An exemplary representation of an on_message_*-callback function, see mqtt_hander.py. 

Classes only used by subscribing programs 

A “*_handler” class is always implemented within the subscribing programs in order to simplify 
the combination of MQTT-broker interactions with the execution of tasks that are ought to be 
performed by the respective subscribing program. Due to this circumstance, the MQTT-handler 
object will always be instantiated within any of such handler classes. 

Message_Collector_for_csv_loop.py 

The Message_Collector_for_csv_handler class serves as the primary centralized storage program 
for MQTT data, ensuring the persistence of collected data in a single, comprehensive CSV file. It 
integrates with the handle_MQTT class via client code 0 to subscribe to all MQTT topics. The task 
of providing long-term data storage is particularly important, as the MQTT broker data acts only as 
an intermediate storage, discarding all previous messages under a specific topic upon receiving 
new ones. The Message_Collector_for_csv_handler class first defines a set of attributes from the 
handle_MQTT-class that should be excluded from the CSV output of 
Message_Collector_for_csv_loop.py, since these specific variables mostly represent fixed control 
variables. Furthermore, Message_Collector_for_csv_handler establishes an MQTT client using 
the handle_MQTT class upon initialization. If the argument no_errors_in_loop is set to True, the 
class dynamically generates a csv_handler object, ensuring that the CSV file is created with 
predefined headers. Additionally, the class appends the latency values (delta_t, delta_t_avg, etc.) 
computed by the MQTT handler for each subscribed topic. A crucial mechanism for the 
maintenance of a consistent storage process is the implementation of the 
csv_handler_instance_for_MQTT variable, that retains the csv_handler object of the 
Message_Collector_for_csv_manager class. This logic ensures that the CSV logging process 
remains functional without interruptions and creations of multiple files, even if an error occurs. 
The stored csv_handler_instance_for_MQTT object is periodically used in the write_csv() call of 
Message_Collector_for_csv_manager in the secondary while True loop. 

Further Possible Improvements 

A mechanism could be implemented that collects the data from the MQTT-server into a dataframe 
(storage format) of predefined length. Once the dataframe reaches its limit, a buffer CSV file could 
be created to store its contents whereas a second program would then process this buffer CSV 
file by loading the data into the database and subsequently deleting this specific buffer file.  
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This approach would address the current issue of the code that no checks are performed to 
prevent the Raspberry Pi's storage from running out of space. This logic is derived from the 
interaction logic implemented on the Raspberry 2 which provides such a logic to store recorded 
csv files of recorded data into a database (see section 4.4.4). 

Message_Collector_for_Data_Check_loop.py 

The data_check_handler class is designed to monitor and analyze MQTT data integrity by checking 
connection statuses (via the variable connected) and error occurrences (via the variable 
error_obsered) across all MQTT topics. This class plays an important role in measuring connection 
reliability and tracking error frequencies across all programs simultaneously. It integrates with the 
handle_MQTT class via using client code 1, allowing it to subscribe to all MQTT topics. This 
program is thought to act as an additional supervision program, that may activate the error 
management in case data regarding a respective does not reach this client, indicating a 
malfunction. 

Features 

The data_check() of the Handle_Data_Check class periodically monitors MQTT data. For instance, 
its main purpose is to observe the values regarding latency (delta_t_avg, delta_t_avg_over_range, 
delta_t_max, and delta_t_min). Currently, in case delta_t_avg_over_range reaches a value over 10 
seconds, a malfunction in a program must be assumed and the handle_errors() method is 
intended to be called. The following diagrams (see figure 23 and 24) are visualizing the acquired 
latencies, that are to be queried by Message_Collector_for_csv_loop.py. The diagrams are created 
in the course of data analysis from recorded csv data produced from 
Message_Collector_for_csv_loop.py. It can be observed that the latencies spike to values out of 
the diagrams range. This is due to the fact that unfortunately there were problems the 
communication between the controllers (checksum mismatch, see .log files stored in the current 
total_serial folder, see [A_30]), but to the continuous recovery of 
Arduino_Communication_loop.py, the average latencies remained within acceptable limits. 
Furthermore, the general behavior of the data coincides with the respective values of 
t_delay_for_publishing (see section 8.4.4). 
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A moving average tracks connection states, such that if all devices are consistently connected, 
the percentage remains at 100%. Similarly, get_error_percentage() uses the array 
error_percentage[100][n] to track the frequency of observed errors, based on attributes 
containing “_error_observed”. If no errors occur, the percentage stays at zero. Note that 
get_connected_percentage() only evaluates physical device connections, not MQTT client-to-
broker connections. Both functions serve as supplementary tools for detecting issues during 
testing runs. 

Further Possible Improvements 

If implemented correctly, this could ensure system wide detection of malfunctions for every 
program. Furthermore, the data_check() function could implement a comparison of variables 
related to different topics that are interconnected in the hardware setup. E. g. a check could be 
implemented that compares the output current provided by the CANbus of the fuel cell and the 
measured current of the Multimeter 2. One problem still remains that in case of a program crash 
or Message_Collector_for_Data_Check_loop.py itself, no malfunction detection can be provided 
anymore. In order to introduce an increased safety level, an additional program could be designed 
which iterates through the running python scrips on the system and compares the amount of 
running programs with the expected number of running programs. This script could maintain a 
permanent communication with an Arduino. In case the number of running python programs 
deviates from the expected number or the connected Arduino does not detect any incoming 
signal for the Raspberry Pi, the emergency chain would be activated.  

Message_Collector_for_plot_loop.py 

This program introduces a data visualization tool intended to serve as a feedback programs for 
test runs when interaction with physical devices. The Handle_Graph class is responsible for 
acquiring the current data from the MQTT-server. It establishes an MQTT client using handle_MQTT 
with client code 2. The direct illustration of MQTT data makes it possible to provide a visualization 
tool without requiring access to a database. Currently, the class defines six data series. The class 
uses a rolling buffer of 500 data points that is updated dynamically. Next to x- and y-axis settings, 
configurable grid options, and automatic scaling capabilities, the graphical setup of 
Handle_Graph consists out of user interaction features, allowing users to stop automatic x-axis 
adjustments when clicking or scrolling on the plot. The update() method processes new data, 
replacing None values with placeholders, ensuring alignment of the plotted data series.  The 
do_plot() method updates the rolling data buffer and fetches the latest values from handle_MQTT, 
ensuring that only valid numerical data is displayed. In order to integrate a new data series into 
the existing code, adjustments that have to be made are listed at the top of the Handle_Plot class 
in the form of a comment block.  

Further Possible Improvements 

As mentioned before, at the current state, every subscribing program subscribes to all topics for 
the sake of simplicity, the Message_Collector_for_plot_loop.py program however could be limited 
to only subscribing to the topics regarding data that is ought to be visualized by the plot.  

 



Initial Design and Implementation of a Control System for a Hydrogen-Based Microgrid 
Chapter 8 Presentation of the developed software concept on the 
Raspberry Pi 1 

Jan Moritz Dehler 

 

64 
 

8.5 Concept for an Energy Management System (EMS_loop.py) 

8.5.1 Planned energy management logic 

The following figure 25 illustrates the general concept of the proposed energy management logic 
that is set for the plant in the form of a flow chart. Currently, this logic can be found in the EMS() 
function in the EMS_Handler.py included in EMS_loop.py.  

The purpose of the implemented EMS is to provide a functional dispatch logic for both the 
electrolyzers and the fuel cell, based solely on two control parameters: the SoC of the lithium-ion 
battery and the fill level of the hydrogen storage unit. These values are intended to be retrieved via 
MQTT in the final implementation.  

At the beginning of each control cycle, the system checks whether both energy sources are 
critically low-specifically, if the battery's SoC is at or below 20% and the hydrogen storage level is 
at or below 10%. In such a case, a global error handler is triggered to indicate the critical condition. 
In order to manage the energy flow, the following rule-based logic has been implemented: If the 
battery charge drops to 20% or below, the fuel cell is activated to supply electrical energy and 
dispatching power to the grid, feeding the loads and also charging the battery. Conversely, when 
the battery reaches 80% or higher, the electrolyzer is activated to convert surplus energy-
presumably generated by the PV production-into hydrogen.  

The system employs a hysteresis-based control logic to ensure stable operation and avoid 
frequent switching between the fuel cell and the electrolyzer. Specifically, the fuel cell would be 
turned off once the battery charge reaches 65%, which allows for an additional 15% buffer to be 
charged using surplus PV energy (before the electrolyzers begin operating). While also 
maintaining a 45% margin for battery discharge, ensuring that the fuel cell does not need to be 
immediately reactivated. The 45 % margin is to reach the minimum SoC level is deliberately 
chosen as a larger value than the 15 % range before reaching the upper SoC threshold, because 
it is expected that this specific scenario will mainly be apparent in the nighttime. And thus, the 
battery consumption will be prioritized before a second fuel cell activation, expecting to enable 
higher efficiency and reduced switching times.  

Similarly, the electrolyzer is deactivated when the battery’s SoC falls to 35%, leaving sufficient 
room for further charging through PV surplus and maintaining a 15% buffer (before the fuel cell 
must be activated again). Again, the resulting 45 % margin to reach the maximum SoC value is 
deliberately chosen as a larger value than the 15 % range before reaching the lower SoC threshold, 
because it is expected that this specific scenario will mainly be apparent in the daytime. And thus, 
again the battery consumption will be prioritized before a second electrolyzer activation, also 
expecting to enable higher efficiency and reduced switching times.  
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Figure 25: The EMS logic shown above relies solely on the battery SoC and the hydrogen storage level as control 
variables, making it applicable for both islanded and grid-connected operation. It incorporates a hysteresis 

mechanism, with adjustable parameters that can be further fine-tuned during test runs. 

8.5.2 Validation Possibilities 

At this point it should be noted that the ideas for the implementation of such hysteresis were also 
presented in (Little, et al., 2007; Ziogoua, et al., 2011). With additional results of simulations. 
Unfortunately, it cannot be ensured that the system’s optimal efficiency of use is demonstrated, 
as the currently available data is insufficient for such an analysis and no full-scale test runs of the 
complete system could be conducted yet at the Hamburg site. However, an extensive simulation 
was carried out in microsoft excel, in spite of some simplification, which implements the EMS 
logic presented here. For further details, see appendix 13.10 and [A_32]. 

8.5.3 Further Possible Improvements 

Beyond these functional limitations, the operating limits of hysteresis can be changed, according 
to further insights during the course of the project. Furthermore, additional control strategies 
could possibly enhance system performance. For example, integrating weather and load 
forecasting would allow for more accurate planning of PV generation and energy demand. 
Furthermore, long-term data logging and analysis could be used to continuously improve the 
control algorithms. However, this would first require the development of a concept for secure and 
reliable long-term data storage. 
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8.5.4 Further Necessary Improvements 

The current program does not yet support communication with the MCP23017 port expander 
module and the Modbus TCP/IP-based control has not been validated. Additionally, the fill levels 
of the storage systems (expressed as percentages) still need to be integrated into the MQTT class. 
Furthermore, a gradual activation strategy for the three individual electrolyzers should also be 
implemented in future development steps. 

 

9 Conclusion 
Motivated by the challenges such as fluctuating energy availability, limited storage, and unreliable 
infrastructure in off-grid environments, this thesis contributed to the implementation of a 
renewable backup power solution for the TIGRE Observatory in La Luz, Mexico, a microgrid, based 
on a hybrid storage system combining photovoltaic generation, lithium-ion batteries, and 
hydrogen technologies. More precisely, this thesis has presented the conceptual design and 
partial implementation of a control and monitoring software for a real-life example of such a 
hydrogen-based microgrid. A detailed summary of all relevant technical background information 
could be provided. Also, the description of the software and a comprehensive description La Luz-
site, as well as the setup in Hamburg, was delivered. A cross-check with the requirement analysis 
of section 5 regarding the software design shows that the developed system demonstrates the 
feasibility of a modular, scalable architecture functionally integrating various interfaces, including 
CAN bus, Modbus RTU/TCP, Ethernet, and MQTT - across the software on a Raspberry Pi 4 and an 
Arduino DUE, leaving room for even more interfaces. The structure on both of these platforms 
enables distributed processing, low-level control, and functional data management. A secure, 
GPIO-interrupt-based communication between the Raspberry Pi and the Arduino was 
successfully implemented and showed robust and error-minimized results.  It was also achieved 
that the code structure follows a mostly uniform structure, and operates error-tolerant, without 
crashing when disconnections occur, and a widespread use of uniform class structures could be 
included. Error detection and handling are implemented as close as possible to the point of 
occurrence, ensuring that potential faults are identified and processed immediately. The 
activation of the emergency chain is considered wherever errors are handled in the code Logging 
of all printouts on the Raspberry Pi and the intermediate storage of MQTT data concerning through 
csv files provides a feasible possibility to track down the process, in case malfunctions are to be 
traced or subsequent data analysis concerning system performance is to be conducted. 
Resource data of the Raspberry Pi can be acquired and be forwarded via MQTT, to provide and 
further analyze computational performance of the Raspberry Pi. Latency checking, concerning 
the MQTT communication between clients ensures a continuous and system-wide investigation 
regarding functionality of all running programs.  

All in all, it can be said that the work carried out in the course of this work has advanced the project 
and brought it closer to its goal of a regenerative and reliable power supply for an observatory in 
remote location. Moreover, the team gained valuable insights and experience throughout the 
process. The efforts undertaken during the course of this thesis lay the foundation not only for the 
further development of the project but also for other control and monitoring systems that deal 
with similar systems.  
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10 Outlook 
Several further developments are required to bring the system closer to a production-ready state. 
Varius further necessary and possible improvements that are listed along the different chapters 
are to be taken note of. More steps that have to be conducted include: The further transition of 
dummy programs to validated ones should be followed up on. While the current software setup 
performs reliably under laboratory conditions, further evaluation of system stability and network 
behavior is necessary. So far, no long-duration or large-scale stress testing, such as continuous 
operation of the setup beyond more than one hour and a few minutes, has been carried out in the 
laboratory. Also, further extended testing with the real devices in the station building are 
necessary.  Another key priority is to provide for automated startup behavior. This may be achieved 
by implementing a cron job on the Raspberry Pi 1 to automatically execute the main.py script and 
ensuring that the GPIO pins responsible for the activation of the emergency chain is set to HIGH 
at boot time. Such a cronjob-file is already implemented on the Raspberry Pi 2 to start the 
communication with the hioki device and can be used as an exemplary model for this. Further 
development of the project must also address several outstanding components. These include 
the full integration of a graphical user interface and a database, ideally through an MQTT-
subscribing application running on Raspberry Pi 1 or on a third computer communicating over 
MQTT via Ethernet. Since the test setup in the laboratory included a dummy Raspberry Pi (model 
name: Raspberry Pi 5) that was in direct contact with the Raspberry Pi 1 over the CANbus, Modbus 
RTU, Modbus TCP/IP and also MQTT over Ethernet, it can act as a role model for an external MQTT 
communication to be implemented into the system. This is also relevant regarding the future 
realization of the communication interface buildup between the Arduino 2 and the Raspberry Pi 
1.  Further additional tasks include expanding GPIO capability via the MCP23017 port expander, 
testing Modbus TCP/IP communication with the electrolyzers, finishing the design and installation 
of all electrical switchgear and sensor hardware. Also, a communication with the microinverters 
has to be established within the Hamburg setup. Grid-side monitoring should also be made 
accessible to Raspberry Pi 1 through MQTT communication with the Raspberry Pi 2. Furthermore, 
the error handling mechanisms that have been integrated throughout the system currently remain 
limited to a basic fault detection. The global error handler currently responds primarily to critical 
conditions via GPIO-triggered emergency shutdown. As operational experience increases, these 
routines may be needed to be refined to reflect actual failure patterns and enable further context-
aware responses based on the severity and source of each issue.  
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13.2 Master Slave Table Hamburg Observatory 

13.2.1 Components with Master 

Table 14: Master-slave table for the setup of the Hamburg site: Components with Master (1) 

Component/Slave Fuel Cell Electrolyzers PV-System Montessori School 
Master Raspberry Pi 1 Raspberry Pi 1 - 

Model Name  
Component/Slave 

FCM-804 Enapter EL 2.1 
• Model name modules: SF Mono S2 Halfcut 

• Model name inverter: SolarEdge SE25K-EU-APAC/AUS (v1) 

Amount of Components 
/Slaves 1 3 1 

Technical Features  
and Characteristics 
Component/Slave 

• Membrane: PEM 
• Output Voltage: 48 V 

• Electrical Power output up to 4 kW - voltage supply 
necessary, delivered by the ultracapacitors 

• Power optimization cycle (POC) reduces output power 
• Fuel consumption: Less than 70 g per kWh 

• Start up time: Less than 10 s 

• Nominal H2 Production: 0.5 Nm3/hr resp. 1 kg/24 h 
• Nominal Power Consumption per Nm3 of H2 produced: 4.8 

kWh/Nm3 
• Nominal power consumption: 2.4 kW (max. 3 kW) 

• Generator Power = 27.88 kWp 
• Performance Ratio: 90,7% 

• Amount of Modules: 82 

Task Component/Slave 
Producing electrical power by oxidation-reduction (redox) 

reaction,  
through converting hydrogen and oxygen into water 

Producing Hydrogen as variable Load through electrolysis Renewable Power Source 

Communication-Bus  
Slave to Master 

CAN-Bus Modbus TCP/IP via Ethernet - 

Information Content  
Slave to Master 

Information stream concerning measurement parameters, 
status messages, warnings and error messages 

Measurement parameters, status messages,  
error messages 

- 

Communication-Bus  
Master to Slave 

Switching signals via MPC23017 port expander Modbus TCP/IP via Ethernet 

Radio that enables communication with a radio module, 
which has a contactor (3-phase relay) that interrupts the 

voltage to the inverter. In case the inverter has lost its 
connection to the outside, the inverter switches off. 

Information content  
Master to Slave 

• Sending start/stop signals  
• (Enable Signal on: Power up (on, but inactive state); 

Enable Signal off: Power down (off state) 
• Run Signal on: Running state; Run Signal off: Shutdown) 

• Start/stop Signals for Electrolyzer and H2-Dryer  
• Signals for control of water tank and hydrogen-dryer 

Shut down signals  
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Table 15: Master-slave table for the setup of the Hamburg site: Components with Master (2) 

Component/Slave Hybrid inverter Power Quality Analyzer Current Sensor with transformer probe Sensors in H2 Station 
Master Raspberry Pi 1 Raspberry Pi 2 Arduino 2 Arduino 1 

Model Name  
Component/Slave 

Solax X3-Hybrid-D Hioki Model PQ3198 DFRobot SEN0287 or similar 
Telaire ChipCap 2; ADT7410; DS18B20; SEN-

MQ4; SEN-MQ5; SEN-MQ8; SEN-MQ135; 
Grove Loudness Sensor; WIKA IS-3 

Amount of Components 
/Slaves 

1 1 3 

 
Sensor Name Amount 

Telaire ChipCap 2 10 
ADT7410 20 

DS18B20 5 

SEN-MQ4 2 

SEN-MQ5 2 

SEN-MQ8 3 

SEN-MQ135 2 
Grove Loudness 

Sensor 
2 

WIKA IS-3 1 
 

Technical Features  
and Characteristics 
Component/Slave 

Nominal AC Power: 15 kW 
Data storage and export for long-term  

monitoring 

• Contact-less AC-current measurement 
• Direct communication with Arduino analog 

input pins possible 
See tables 24-26 in section 13.3 

Task Component/Slave 
• Converting direct current (DC) electricity 

into alternating current (AC) electricity 
• Is able to (dis-)charge the battery 

Measurement of parameters of AC-Grid 
Measurement of AC current at the power 

input of the electrolyzers 

Acquiring Measurement parameters from 
Sensors inside the station building as well as 
measurement of parameters from pressure 

transmitter  
Communication-Bus  

Slave to Master 
Modbus RTU TCP/IP over Ethernet Analog voltage measurement Analog voltage measurement  

and I2C 

Information Content  
Slave to Master 

Measurement parameters,  
status messages, warnings and error 

messages 

Measurement parameters regarding  
voltage, current, power and harmonics of the  

AC-Grid 

AC-Current entering power  
inputs of electrolyzers 

Measurement parameters regarding air 
quality, hydrogen-,  

natural gas-, and methane concentration, 
temperature, relative humidity, volume and 

hydrogen pressure 
Communication-Bus  

Master to Slave 
Modbus RTU over EIA-485 interface TCP/IP over Ethernet - I2C 

Information Content  
Master to Slave 

Commands for querying  
measurement parameters 

Commands for querying  
measurement parameters 

- Querying commands for I2C-Sensors 
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Table 16: Master-slave table for the setup of the Hamburg site: Components with Master (3) 

Component/Slave Multimeter 1 Multimeter 2 Raspberry Pi 1 Raspberry Pi 2 
Master Raspberry Pi 1 Raspberry Pi 1 - Raspberry Pi 1 

Model Name  
Component/Slave R&S HMC 8012 R&S HMC 8015 Raspberry Pi 4 Raspberry Pi 3 

Amount of Components/Slaves 1 1 1 1 

Technical Features and Characteristics 
Component/Slave 

• Resolution 1 μV , 100 nA , 1 
mΩ , 1 pF, 1 Hz, 0.1 °C 

• Up to 200 Measurements per 
second are possible 

• 16-bit resolution each for 
current and voltage 

• Sampling frequency: 500 
ksample/s 

• Computer with operating system 
• Offers versatile interfaces 

• Higher Energy consumption than Arduinos 

Task Component/Slave 
Measurement of DC current at 
DC/DC converter power output 

Measurement of DC current and 
voltage at Fuel Cell power 

output 

Data acquisition, data 
management and control of the 

grid 

Data acquisition regarding grid 
quality 

Communication-Bus  
Slave to Master TCP/IP via Ethernet TCP/IP via Ethernet x MQTT via Ethernet 

Information Content  
Slave to Master 

Measurement parameters  
and error messages x Sensor Data and Sensor Errors 

Communication-Bus  
Master to Slave 

TCP/IP via Ethernet TCP/IP via Ethernet x x 

Information content  
Master to Slave 

Commands for querying  
measurement parameters 

x x 
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Table 17: Master-slave table for the setup of the Hamburg site: Components with Master (4) 

Component/Slave Arduino 1 Arduino 2 
Master Raspberry Pi 1 

Model Name  
Component/Slave Arduino DUE Arduino MKR 

Amount of Components 
/Slaves 

1 

Technical Features  
and Characteristics 
Component/Slave 

• Microcontroller without operating system 
• Real-time control capability 

• Energy efficient 

Task Component/Slave 

Collecting information content from 
Sensors in the station building and 

triggering the emergency stop chain in case 
critical values are measured 

Collecting sensor data from current 
sensors located at the power input of the 

electrolyzers 

Communication-Bus  
Slave to Master 

Clocked 8-Line Data Bus MQTT via Ethernet 

Information Content  
Slave to Master Sensor Data and Sensor Errors Sensor Data and Sensor Errors 

Communication-Bus  
Master to Slave 

Clocked 8-Line Data Bus x 

Information content  
Master to Slave 

Clock Signals x 
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13.2.2 Components Without Master 

Table 18: Table for the setup of the Hamburg site: Components without Master 

Component DC/DC Converter Ultracapacitors Hydrogen Storage 
Model name  
Component 

Mean Well 350W Single Output DC-DC Converter (SD-
350C) 

Maxwell Technologies Ultracapacitors Hydrogen bottle bundle 

Amount of Components 1 1 1 

Technical features  
and characteristics 

• DC voltage (output) 48 V 
• Rated current (output) 7.3 A 

• 12 pieces in parallel connection 

• Nominal voltage: 76 V DC 
• Capacity: 107 Farads 

• 2.7V 3000F x 28 pieces in series connection 

• Volume: 600 liters  
• Filling pressure: 300 bar 

Task Conversion of Fuel Cells Output Voltage (24 V DC)  
to the Inverter's required Input Voltage (480 V DC) 

Act as a Battery bank (requirement for Fuel Cell) Storage of produced hydrogen 
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13.3 Detailed Overview of Technical Specifications of the Hardware Components 

Table 19: An overview of the general properties of the installed fuel cell. This Information is gained from [A_1]. 

General Properties 
Manufacturer Intelligent Energy 

Model FCM-804 
Type PEM 

Amount of components installed 1 
Rated Power Output 48V DC, up to 4 kW 

Efficiency (H₂ to Power Conversion) < 70g H₂ per kWh produced 
Start-up Time < 10 seconds 

Cooling & Exhaust Air-cooled, emission: water vapor 
Fuel Hydrogen (≥99.9% purity, 500-800 mbar) 

Current Status 
Installed at the Hamburg site and available for immediate use 

 

Table 20: A summary of essential specifications of the installed electrolyzer model, see also [A_2]. 

General Properties 
Manufacturer H2 Core Systems 

Model EL 2.1 
Amount of components installed 3 

Type AEM 
Hydrogen Output Pressure Up to 35 bar 

Nominal Hydrogen Production 0.5 Nm³/hour or 1 kg/24 hours 
Nominal Power Consumption per Nm3 of H2 produced 4.8 kWh 

Nominal Power Consumption 2.4 kW 
Current Status 

Installed at the Hamburg site and available for immediate use 
 

Table 21: Basic technical information about the PV-System installed in Hamburg [A_6]. 

General Properties 
Model name modules SF Mono S2 Halfcut 340 W 
Model name inverter SolarEdge SE25K-EU-APAC/AUS (v1) 

Total generator capacity 27.88 kWp 
PV generator surface 138.4 m2 

Amount of PV modules installed 82 
Amount of inverters installed 1 

Current Status 
Installed since 2020 at the Hamburg site and continuously feeding into the local 

grid 
 

Table 22: General properties of the hybrid inverter model, see also [A_7]. 

General Properties 
Model name Solax X3-Hybrid-D 

Amount of components installed 1 
Nominal AC Power 15 kW 

Current Status 
Damaged. Microinverters installed as an alternative solution for the 

Hamburg site. Not yet tested (as of 9th of April 2025) 
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Table 23: Details regarding the installed Lithium-Ion-Battery type [A_8]. 

General Properties 
Manufacturer SolaX Power Network Technology 

Model T-BAT H 23.0 
Amount of components installed 1 

Battery Chemistry Lithium-ion 
Nominal Capacity 50Ah 

Operating Voltage Range 100V - 524V (depending on configuration) 
Maximum Power Output 3.5 kW 

Cycle Life 6000 cycles (at 90% Depth of Discharge) 
Current Status 

Installed at the Hamburg site. Electrical connections and communication yet to be 
established (as of 9th of April 2025) 

 

Table 24: Overview of the gas sensors connected to the Arduino 1, see also [A_9-A_16]. 

Sensor Name SEN-MQ4 SEN-MQ5 SEN-MQ8 SEN-MQ135 
Interface Analog and Digital interface 

Sensor 
Category 

Gas Sensors 

Measured 
quantity 

Concentration of 
compressed natural 
gas (CNG), methane 

(CH4) inside the 
station building 

Concentration of 
liquefied petroleum 

gases (LPG), propane, 
methane, butane, 

other natural gases, 
etc. inside the station 

building 

Concentration of 
hydrogen (H2), many 
hydrogen-containing 

gases inside the 
station building 

Concentration of 
benzene, ammonia, 

sulfides, smoke, 
nitrogen oxides, and 
other air pollutants 
inside the station 

building 
Type of 

measurement 
Qualitative 

Amount 2 2 3 2 
 

Table 25: Details regarding the Loudness Sensor [A_17] and  the Pressure Sensor [A_18] 

Sensor Name Grove Loudness Sensor WIKA IS-3 
Interface Analog interface 

Sensor Category Sound Sensors Pressure Sensor 

Measured quantity 
Sound pressure inside the station 

building 
Measuring gas pressure at the gas 

inlet/outlet point 
Type of measurement Qualitative Quantitative 

Amount 2 1 
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Table 26: Overview of the used digital sensors [A_19, A_20, A_21]. 

Sensor Name Telaire ChipCap 2 ADT7410 DS18B20 
Interface I2C One-Wire 

Sensor 
Category 

Chip Caps ADTs DS18s 

Measured 
quantity 

Measuring Temperature and 
relative humidity inside the 

station building 

Measuring Temperature inside 
the station building 

Measuring Temperature inside 
the station building 

Measuring 
range 

Relative Humidity: 0 – 100 %  
Temperature:-40 °C to +125 

°C 
-55 °C to +150 °C -55 °C to +125 °C 

Precision 

Relative Humidity: ±2,0 %RH 
(at 20-80 %RH, 25 °C, 5 V)  

Temperature: ±0,3 °C (at 25 
°C, 5 V) 

±0,5 °C (-40 °C to +105 °C), at 
3.0 V Supply voltage 

max ±0,5 °C (at -55 °C to +125 
°C) 

max ±2 °C (at -10 °C to +85 
°C) 

Resolution 
Relative Humidity: 14 bit (0,01 

%)  
Temperature: 14 bit (0,01 °C) 

13 bit (0,0625 °C) 
or 16 bit (0,0078 °C) 

9 to 12 bit 

Supply voltage 2,3 V to 5,5V 2,7 V to 5,5 V 3,0 V to 5,5 V 
Amount 10 20 5 
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13.4 Arduino 1: Detailed explanation of Sensor Data Acquisition Function Files 

As noted in the general description of the Arduino Code, see chapter 7, the foundation of the 
following .ino files was developed by previous colleagues of the team. The author's main 
contribution focused more on the design and implementation of code segments responsible for 
the data- and transmission management regarding the Raspberry Pi 1 - Arduino 1 interface 
(j_copy_Bytearray_for_Pi.ino, k_ISR.ino and l_Serial_Data_to_Pi.ino). Also, the m_watchdog.ino 
and n_handle_errors.ino files were provided by the author.  

e_analog_sensors.ino 

The gasAlarmStatus()-function and the gasRead()-functions manage the gas sensor readings. 

gasAlarmStatus() detects gas alarms through the digital inputs for any gas sensor connected to 
the microcontroller. A global byte-array called gasAlarms[4] stores the error-messages, whereas 
the index of the array stands for the gas-sensor-type. The error detection-logic goes as follows: If 
an alarm is being detected, for example for the Air Quality  gas sensor (=the respective digital pin 
is on a LOW-level), the byte gasAlarms[0] will be updated. Such that if the error is being detected 
on the first AQ-Sensor, then the first bit of gasAlarms[0] will be set to 1. If the second AQ-Sensor 
is detecting an invalid gas concentration, the second bit will be set to 1. This logic supports up to 
8 sensors of each type. This logic will be later revisited by the program responsible for processing 
the incoming Arduino Data on the Raspberry Pi 1 in order to detect which specific sensor delivered 
an invalid value. With the current state of the program, unlike it is the case with any other sensor 
type, the gas sensors will only detect a threshold of maximum values.  

The gasRead()-function has the task of reading the specific gas concentration levels from the 
respective gas sensors. Since a sufficient error detection was already established by the 
gasAlarmStatus()-function, no further error detection methods are being considered at this point 
(which could be implemented in later versions). Furthermore, gasRead(), is applying a median 
filter for noise reduction (int_filter(), used within gasRead(), see section 7.2.6.  

Additionally, e_analog_sensors.ino includes the function loudnessRead() and Read_pressure(). It 
processes the sound and pressure sensor data using a similar approach to gasRead() (see 
loudnessRead()). Unlike with the gas sensors, plausibility checks are required in this case. 

f_I2C.ino 

This implementation of I²C communication manually configures the appropriate data (SDA) and 
clock (SCL) lines depending on the selected bus (I_2_Init(int busNr)), and handles all key protocol 
operations: start conditions (I2C_start()), stop conditions (I2C_stop()), bit-level transmission 
(I2C_bit_write(bool bitwert)), byte-level transmission (I2C_write(uint8_t bytewert_in, bool ACK)), 
bit reception (byte I2C_bit_read()), byte reception (byte I2C_read(bool ACK)), and timing control 
via delays (wait()). All of these functions were developed in-house and are derived from program 
code of previous projects. The long-time operation with the same I²C-sensor types showed high 
functionality and reliability in these projects. Furthermore, the self-designed I²C-interface offers 
the benefit of full transparency and debug possibility, in case any communication issues arise. 
The standard Arduino I²C library was excluded from use, as it showed stability issues and system 
freezes during long-term operation. 
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g_chipcaps.ino 

The function readChipCaps() reads temperature and humidity data from the ChipCap sensors 
over I2C. Furthermore, it initializes the I2C connection for each sensor (I_2_Init(sensNr + 1)), starts 
communication (I2C_start()), reads humidity and temperature values (I2C_read(1), I2C_read(0)), 
and stops communication (I2C_stop()). The retrieved data is processed according to the sensor's 
datasheet, see [A_19], including unit conversion and filtering. It also performs error detection by 
checking for invalid or extreme values, logging errors in its respective error register and applying 
the median filter (float_filter(…)). 

h_adt_7410.ino 

In this file, the reading of temperature data from the ADT7410 sensors over I2C is accomplished. 
ADT_ini() configures each sensor to 16-bit resolution, establishes I2C communication for each 
port (I_2_Init(i)), and writes the necessary configuration values (I2C_write()). The function 
Read_ADT7410s() reads the temperature data by retrieving high and low bytes (I2C_read()), 
converts the raw data into a floating-point temperature value, and applies a median filter to 
smooth the readings (float_filter(…)). Similar to g_chipcaps.ino, the code includes error detection, 
checking for sensor availability, extreme values, and abrupt temperature changes, logging errors 
accordingly.  

i_one_wire_bus.ino 

This code initializes and reads temperature data from multiple DS18B20 sensors using the 
OneWire protocol, see also (Meroth & Sora, 2023, pp. 278-291). It starts by initializing the OneWire 
communication and assigning addresses to each sensor (oneWireIni()). The resolution for each 
sensor is currently set to 12-bit precision. The function getDsTemp() retrieves temperature 
readings by sending a request (sensors.requestTemperatures()) and then fetching values for each 
sensor (sensors.getTemp(ds18_addresses[sensNr])). The raw data is converted into temperature 
values, and error detection is performed by checking for invalid readings (all zeros, all ones) or 
values outside defined thresholds. The function also detects sudden temperature jumps and logs 
errors accordingly. Afterwards, the median filter is applied to smooth temperature readings 
(dsTemp[sensNr] = dsTempStor[sensNr][float_filter(dsTempStor[sensNr])]). Debugging outputs 
provide real-time sensor values and error information.  
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13.5 Detailed explanation of Publishing Programs 

13.5.1 Arduino_Communication_loop.py  

This program is of special interest, because it enables the communication with Arduino 
controllers over the GPIO pins including the analysis and normalization of the recorded telegram 
and publication to the MQTT broker. To ensure a better understanding, it is advisable to review the 
Arduino_Communication_loop.py script, including its integrated classes next to reading this 
chapter, due to the considerable complexity of the code, see [A_30]. 

Classes only used for this program 

increase_performance.py 

This class defines a static method set_process_priority(pid, nice_value), which adjusts the priority 
of a running process using the renice command. The method executes a subprocess call to 
modify the process priority based on the provided pid (process ID) and nice_value (priority 
adjustment). The function attempts to execute the command via subprocess.run() with sudo-
privileges, ensuring it runs with sufficient permissions. This class was implemented because 
communication speeds depend on the pulse time of the clock signal sent by the Raspberry Pi 1. 
Increased computational power leads to faster program execution, which in turn reduces the 
pulse time. 

Overview 

Similar to the general publishing program scheme, this application processes the acquired raw 
data coming from Arduinos by first normalizing it and then checking its plausibility before finally 
sending the formatted results to the MQTT broker. The acquisition of the data is achieved through 
the utilization of the Raspberry Pi’s GPIO via the pigpio-library. Previously conducted tests with 
the standard RPi.GPIO library resulted in faulty measurement data acquisition. The reason why 
this program is explained in more detail here is that, unlike our other services where the raw data 
is contained strings that can be simply split into parts via string manipulation, this application 
processes a telegram that encapsulates a variety of data from different sources that are only being 
forwarded by the respective interacting Arduino Controllers. Each segment, or “snippet” of an 
acquired telegram may require a distinct processing approach, for example, interpreting the 
different error registers and different data format from the different types of sensors. The program 
also enables a possibility to interface with more than one Arduino. But currently, only the 
interaction with the Arduino DUE controller is validated.  

Main Script Structure and Flow  

In the initialization phase of the program, the names of the respective pins for the GPIO-Interface 
are declared and an index variable called Arduino_inx is initialized. It is later used in the secondary 
while True loop in a match-case method to provide for the possibility to switch between different 
Arduino boards that are to be queried. Furthermore, the list private_topics differentiates between 
the data coming from different Arduinos (see publishing method at the end level of the secondary 
while True loop). High process priority is enabled though increase_performance.py. The reason for 
this is that only with this method, the loop cycle times are being accomplished for this specific 
program are in an acceptable range (currently at 0.2 to 0.35 seconds on average) and the majority 
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of the execution time is spent at the execution of the Arduino_Receiver.read_data()-function. 
Subsequently, the pigpio-service is started to enable GPIO operations. 

An object (Arduino_Receiver) of the class Arduino_Data_Acquisition is instantiated to manage the 
low-level data acquisition from connected Arduino controllers. Simultaneously, instances of 
Arduino_X_Normalizer_and_Checker, are created in order to process the raw data. Currently the 
code is designed, in such a way that a generic Normalizer_and_Checker cannot be used for all 
connected Arduinos, because the length and information content of the respective telegrams will 
deviate. Moreover, due to the design of the transmission protocol, the plausibility check and 
normalization was designed to go hand in hand, as “normalization” in this context primarily means 
reconstructing 16-bit integer numbers from the transferred bytes and plausibility check refers 
through the checksum verification, and extraction the sensor-specific error messages. 

Data Acquisition Component 

The Arduino_Communication_Data_Acquisition class is dedicated to the low-level acquisition of 
sensor data using the Raspberry Pi’s GPIO pins. It sets the appropriate pin modes-INPUT for the 
SDA lines and OUTPUT for the SCL and interrupt pins-and is responsible for forming data bytes 
from the incoming bits.  

Its key methods include the start() function, which resets internal counters and flags, clears 
previous raw data, and sends a brief signal on the interrupt line via 
send_signal_for_telegram_reset(), which toggles the interrupt pin HIGH and then LOW to signal 
the start of a new data telegram. This is the method, where the byte_values_to_send[] - array on 
the Arduino 1 (see ISR_PI_II() in k_ISR.ino) is prepared with the current measurement data. 
read_data() is the main function of this class. It activates the clock line and sequentially reads bits 
from four SDA pins. In the function, the incoming bits are shifted and accumulated until a full 8-
bit byte is constructed (self.temp_byte). An if-statement ensures that the first received byte 
matches the expected start marker-the ASCII code 36 representing the '$' symbol and the process 
continues until the complete telegram is assembled. 

Data Normalization and Plausibility Checking Component 

Once the raw data is captured, the respective Arduino_X_Normalizer_and_Checker takes over to 
process and validates the telegram. The processing workflow begins with an initialization phase, 
where the start() method resets all internal variables, counters, and arrays used for storing 
processed sensor values and error registers. The analyze_data()-function carries out the main 
process: at the heart of the data processing is a multi-stage elif-construct combined with an 
infinite while True loop that sequentially checks individual elements of a Boolean array 
(snippet_done). This structure clearly separates the logical snippets of the telegram. In case an 
error is detected during the interpretation of a snippet, or once the telegram has been fully 
processed, handle_error() will be called, and the while loop of the function will be terminated via 
break-statements. The program sequence of the analyze_data()-function can be observed in the 
flowchart of figure 27. 
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Figure 27: Flowchart of the analyze_data()-function, responsible for the encoding of the acquired raw data telegram. 

The specific code structure not only defines the logical sections of the telegram but also 
dynamically adapts to varying snippet lengths, depending on the number of error messages 
contained. Table 27 provides a structured overview of how the analyze_data() function parses the 
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telegram, including the extracted variables and the corresponding index values in snippet_done[] 
that are responsible for each subsection. 

Table 27: Illustration of the naming of variables that are to be extracted from snippets of the acquired telegram, 
including their respective index value of snippet_done[]. 

Variable Start marker ('$') checksum errorCountCC errorRegCC[] errorCountADT 

Index 0 1 2 3 4 
Arduino 
variable 

errorRegADT[] errorCountDS18 errorRegDS18[] errorCountLoudness errorRegLoudness[] 

Index 5 6 7 8 9 
Arduino 
variable errorCountPressure errorRegPressure gasAlarms[] 

Index 10 11 12 
Arduino 
variable 

ccHygHigh[] ccHygLow[] ccTempHigh[] ccTempLow[] 

Index 13   
Arduino 
variable 

AdtTempHigh[] AdtTempLow[] dsTempHigh[] dsTempLow[] 

Index 14 15 
Arduino 
variable 

H2ValHigh[] H2ValLow[] petrMethValHigh[] petrMethValLow[] 

Index 16 17 
Arduino 
variable 

natValHigh[] natValLow[] airQualValHigh[] airQualValLow[] 

Index 18 19  
Arduino 
variable 

loudnessValHigh[] loudnessValLow[] PressureValHigh PressureValLow End marker ('$') 

Index 20  21 22 
 

The processing logic checks for possible errors, by applying the handle_error()-function. With the 
current software version, the following errors are being detected:  

• Incorrect start marker 
• Checksum mismatch 
• Python exceptions of the respective snippets  
• Incorrect end marker 

Whereas the checksum is being validated by a comparison of the received checksum and an own 
calculated checksum using an XOR operation on the bytes. Errors that are being transmitted 
through the error register inside the telegram are not listed here, because they are treated as 
information and not considered as an error (see error handling function in the Arduino code). They 
are being interpreted with the help of the respective Error_handling()-class, see 
Tools_for_Arduino_Communication_Data_Normalization_and_Plausibility_Check.py. In order to 
convert the pairs of 8-bit numbers of the sensor values back into a single signed 16-bit integer, the 
helper class two_byte_value of this script is used. At the end of the analyze_data()-function 
processed values are accumulated in the array processed_values. The table 28 provides a further 
overview of the most important variables used to orchestrate the program flow of 
Arduino_X_Data_Normalization_and_plausibility_check. 
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Table 28: Listing and Explanation of certain control variables used for 
Arduino_X_Data_Normalization_and_plausibility_check. 

Variable Purpose 

snippet_done 
A list of 20 Boolean values indicating which processing steps have been completed. Each 

index represents a specific processing step. 

indx_for_raw_data 
A counter that tracks the current index in the received sensor data during analysis. It is 

used to iterate through the raw data. 

indx_1 
A helper index used within certain processing steps as a counter for sensor error messages 

or value iterations. 

indx_2 Another helper index, primarily used for iterating through different sensor values, 
especially for indexing within sensor groups. 

string_to_debug 
A string that accumulates detailed debug information during the analysis process. It is 

used for error tracking and monitoring execution flow. 

 

Other variables store sensor data, error counters, checksums, or flags for data processing. They 
help organize received values, detect errors, and analyze sensor readings. 

13.5.2 Further Possible Improvements 

Currently, the data acquisition class waits for the maximum number of elements in the telegram. 
This method has proven to be functional and reliable, as it ensures proper detection of the start 
and end of the telegram since both sender and receiver rely on a fixed telegram length. However, 
this approach may also result in a significant amount of time being spent reading irrelevant data, 
as the total telegram length is designed to accommodate the worst-case scenario where all 
sensors send out error messages. In a normal operation mode, when no error messages are going 
out from the sensors, the relevant data of the telegram does not fill the entire telegram length. A 
more efficient approach might be to make the total telegram length variable and integrate the 
checksum verification (which currently takes place in the analyzing function) directly into the data 
acquisition class. As a test, the checksum could be calculated whenever a second dollar sign is 
detected in the telegram. If it matches the transmitted checksum, the telegram can be considered 
fully received and the program may exit the read() function. However, a more advanced checksum 
calculation may be conceivable than the current XOR-checksum verification. 

 

13.5.3 HMC8015_loop.py 

HMC8015_Data_Acquisition.py  

For the communication with the HMC 015 device, the RsInstrument library is used, see (Rohde & 
Schwarz, 2023). The class defines the physical quantities to be measured, such as RMS-voltage 
and RMS-current. Furthermore, the VISA timeout is configured to 2 seconds, meaning that if the 
instrument does not respond within this time, a timeout error is triggered. Similarly, the OPC 
timeout is also set to 1 second, defining the maximum time the device waits for a command to 
complete before considering it unsuccessful. Additionally, the class enables instrument status 
checking, which ensures that the device is continuously monitored for errors during 
communication. If the instrument reports an error status, it is immediately detected.  



Initial Design and Implementation of a Control System for a Hydrogen-Based Microgrid 
Chapter 13 Appendix Jan Moritz Dehler 

 

92 
 

To maintain a reliable operation, the script also calls self.hmc8015.clear_status(), which clears all 
previous error or status messages stored in the device.  Furthermore, the script explicitly 
configures the measurement ranges for voltage (300 V) and current (133 A). By setting these 
ranges manually, the system avoids the need for an automatic measurement range adjustment, 
which could introduce measurement delays.  

HMC8015_Data_Normalization.py 

The class processes the raw data string coming from the read()-method of the data acquisition 
class, removes unwanted characters and separates values into distinct measurement 
parameters.  

HMC8015_Plausibility_Check.py 

This class validates the acquired measurement data by applying predefined plausibility checks. 
It defines threshold values for voltage and current to detect invalid readings. If a measurement 
exceeds these limits or returns a value of exactly zero, the system flags it as an error. With the 
current version of the software the maximum and minimum values are chosen to be extremely 
high/ and extremely low, in order to not throw errors when test runs are being conducted. These 
values can be specified more in the future. The script also provides a framework for adding further 
plausibility checks in the future. 

 

13.5.4 HMC8012_loop.py 

13.5.5 HMC8012_Data_Acquisition.py  

The HMC8012_Data_Acquisition.py script is responsible for communicating with the HMC8012 
digital multimeter. It establishes a connection with the instrument using the PyVISA library, see 
(PyVISA, 2025). It explicitly sets the measurement mode to AC voltage (400V range) and configures 
the Analog-to-Digital Converter (ADC) to operate at its fastest sampling rate to enhance 
measurement efficiency.  

HMC8012_Data_Normalization.py 

This class processes the raw data string obtained from the read() method of the data acquisition 
class.  Since the HMC8012 current clamp connected to the HMC8012 returns values in 10mA 
increments, the class scales the values accordingly before passing them to the next step.  

HMC8012_Plausibility_Check.py 

Compare to HMC8015_Plausibility_Check.py. 
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13.5.6 CAN_BUS_01_loop.py 

Since the fuel cell has a local control unit that sends out error messages in case of any 
malfunction, a Plausibility_Check-class is omitted here. The code structure does not deviate to 
the other publishing programs. Except for the fact that no minimal loop execution time is provided, 
because the program has to react fast enough for incoming messages coming from the fuel cell. 

Canbus_Data_Acquisition.py 

The CAN_Data_Acquisition.py script is responsible for establishing and maintaining 
communication with the CAN bus. To manage this communication, the python-can library was 
used (python-can, n.d.). The Raspberry Pi interfaces with the MCP2515 CAN controller, which is 
mounted on the RS485 CAN HAT, via the SPI protocol. This SPI-based communication enables the 
MCP2515 to translate messages between the Pi and the CAN transceiver (SN65HVD230), which 
in turn interfaces with the physical CAN bus. The CAN channel can0 is configured with a bit rate 
of 500 kbit/s, following the manufacturer's specification. The system uses the socketcan 
backend, which integrates CAN interfaces into the Linux network stack, providing native support 
and low-level efficiency. Error detection, reconnection logic, and debug output are integrated into 
the script. See previous sections regarding data acquisition. Blocking reads (recv()) are used 
intentionally, due to the overall timeout control delegated to the higher-level script structure. In 
case of communication problems, the interface is safely shut down and reset (see 
handle_errors()). 

CAN_Data_Normalization.py 

This class is responsible for processing raw CAN messages by extracting relevant signal values 
and converting them into a structured format. Each message consists of eight hexadecimal fields, 
which are parsed and transformed into meaningful numerical values. The format of a raw CAN 
message typically follows a predefined structure, including a timestamp indicating when the 
message was received, a unique message ID, an indicator for the type of message (S Rx), the data 
length (always 8 bytes in this case), the hexadecimal values representing the message data, and 
the CAN bus channel through which the message was received. 

The processing flow begins with the CAN_processing() function, which first verifies the format of 
the received data using check_can_message(). If the format does not match the expected 
structure, the function handle_errors() is triggered to manage errors accordingly. During 
validation, the individual components of the message are extracted and stored in class variables. 
Once the data is properly structured, the message is interpreted based on its CAN ID. The 
interpretation logic follows specifications provided by the manufacturer, which were documented 
in an instruction excel table. This follows the logic of hexadecimal values being converted into 
signed or unsigned decimal numbers as needed. 

At plant operation, the Fuel Cell will send out CAN messages one after the other, with different 
ID’s, containing various data points that are extracted and processed accordingly by 
CAN_processing(). For instance, messages with ID 0318 extract the software version from the 
CAN bus, while ID 0320 determines the total runtime in hours and the total energy consumption. 
Messages with ID 0328 and 0378 process status flags and retrieve error conditions, whereas ID 
0368 extracts system state information, load logic, and output bit status.  
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Electrical parameters such as output power (W), voltage (V), current (A), and anode pressure 
(mbar) are read from ID 0338, and temperature values, along with DCDC converter setpoints, are 
retrieved from ID 0348. The louver position and fan speed duty cycle are monitored through 
messages with ID 0358. Each message type undergoes a structured process where raw 
hexadecimal values are processed, necessary conversion formulas are applied, and the results 
are mapped to predefined output variables. 

In cases where the fuel cell outputs an error message (notably from ID 0328 or ID 0378), an excel 
file containing fault codes is accessed using the openpyxl library. This specific excel file, provided 
by the manufacturer, is essential as it contains descriptions of the various error messages. The 
file is being accessed due to the large number of possible error conditions and the character 
length of their descriptions. It is crucial that this excel table remains unchanged to maintain the 
functionality of the script and guarantee reliable message interpretation. 

 

13.5.7 get_resource_usage_loop.py 

Unlike the previously discussed scripts, this script establishes the connection to the MQTT broker 
through the ServiceResourceRessource_Data_Receiver class. This class is initialized in the main 
program via the Ressource_Data_Receiver object. The script integrates the psutil library, see 
(PyPI, 2025), to monitor resource usage across all running Python processes. This allows it to track 
CPU, memory, and other system parameters in real-time, providing general insights into overall 
system performance. 

The reason for initializing the mqtt_client object of this program within the Data_Acquisition class 
is that the script publishes not only the payload regarding the program’s software timestamp, 
error_observed -parameter and error message, but also it publishes acquired system resource 
data of all detected python programs under the respective program-specific topic. In order to do 
that, the script initializes the Ressource_Data_Receiver object, responsible for collecting and 
publishing system resource usage metrics and the get_all_service_resource_usages() function of 
the responsible class iterates over all running processes, identifies Python-based services, and 
invokes the function get_service_resource_usage() for each one. This secondary function 
retrieves critical metrics such as CPU utilization, memory consumption, RAM (Random Access 
Memory) usage, swap usage, and system load averages. These values are then validated through 
the Ressource_Data_Plausibility_Check class, which ensures they fall within expected 
operational ranges. If any anomalies are detected, an error message is generated and included in 
the MQTT payload. The MQTT message’s topic will be then adjusted to each of the names of the 
investigated programs.  

Further possible improvements 

Currently, the program only generates resource data based on the running Python programs (see 
function argument service_name of get_all_service_resource_usages() in 
get_resource_usage_Data_Acquisition.py is set to “Python”. This means that, in order to obtain an 
accurate view of the overall system load, the Raspberry Pi should not run additional programs-
such as an internet browser-during test runs in the laboratory or during plant operation.  
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If non-Python programs (e.g., additional software for data visualization) are introduced to the 
system in the future, their resource usage should also be considered. This could be achieved by 
extending the get_all_service_resource_usages() function for a second argument.  

  

13.5.8 Modbus_RTU_loop.py (Dummy) 

This module was originally intended to establish communication with the inverter. Currently, a 
test script running on the external Raspberry Pi (model name: Raspberry Pi 5) sends randomly 
generated data. The setup is functional and can be reused as a code template for future 
applications, particularly when additional components are to be integrated via Modbus RTU. In 
terms of code structure, there are no major deviations to the other publishing programs. The test 
script used for sending data is explained in appendix 13.6.3. 

 Modbus_RTU_Data_Acquisition.py 

This Python class implements Modbus RTU data acquisition over a serial interface. The script uses 
the pyserial library, see (Liechti, 2020), to establish and manage communication via the 
/dev/ttyAMA0 UART interface, with a fixed baud rate of 19200 bps as required by the hybrid 
inverter. The read_modbus_data() method is responsible for reading data packets from the serial 
Modbus interface. Before each read operation, the function checks whether the UART input buffer 
already contains a significant amount of unread data. If the buffer exceeds 10 bytes, the system 
raises a warning that the receiving end might be too slow to process incoming messages. This 
mechanism was implemented due to the testing setup with the sending script, handing over a 
new message every 50 ms.  

If the buffer check is passed, the method reads a fixed block of 8 bytes and evaluates the result. 
In cases where the received data is empty or invalid, a corresponding error is flagged. When valid 
data is obtained, a timestamp is recorded, and the data is printed to the console along with the 
current buffer size.  

To maintain stability and transparency, the class also includes a method is_uart_buffer_full() for 
buffer monitoring and a close_connection() method to safely terminate the serial connection 
when needed. The handle_errors() function ensures that all errors are consistently processed: it 
logs the issue, resets the connection status, and clears any existing data to prevent propagation 
of invalid readings. 

 

13.5.9 modbusTCP_elektrolyseur_loop.py (Dummy) 

This script is intended to act as an outline program to enable the communication with the 
electrolyzers via Modbus TCP/IP. Currently this is only realized by an Ethernet communication over 
the network switch between the Raspberry Pi1 and the testing-raspberry (model name: Raspberry 
Pi 5). The description of the sending script can be found in section 13.6.4. 
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 modbusTCP_elektrolyseur_Data_Acquisition.py 

For the communication over Modbus TCP/IP, the pymodbus library (see: (Pymodbus, 2023)), is 
used. The class establishes and manages communication over Ethernet with a Modbus TCP/IP 
server. Upon initialization, the class sets key communication parameters, including the target 
device's IP address (192.168.0.10), Modbus port (5020), and unit ID (1). A dictionary, 
REGISTER_DEFINITION, the register names to their respective Modbus register addresses, 
lengths, and data types. This register map includes both holding registers and input registers, 
which corresponds to: (Enapter AG, 2025a). The connect() method creates a synchronous TCP 
connection to the Modbus server using ModbusTcpClient. The read() method iterates through all 
entries in the register definition and determines, based on metadata, whether to access the 
holding register table (function code 3) or the input register table (function code 4). Each register 
is queried individually, and the response is decoded based on the expected data type. For 
example, 32-bit floats are reconstructed from two 16-bit registers using the struct module. Similar 
bit-shifting techniques are used for handling 32- and 64-bit integers. The decoded values are 
stored in the received_values list. 

Further necessary improvements 

Error-handling registers like the dryer or water tank bitmask codes are defined in the Modbus 
specification (Enapter AG, 2025a) but are not yet respected by the current implementation. An 
excel file containing the systematics for error interpretation of all error codes lies in the directory 
and could later be accessed by the script. Such an error-message interpretation strategy via an 
excel file is already provided in Canbus_Data_Normalization.py and can be used as an outline. 

 

13.5.10 SolaxHybrid_loop.py (Dummy) 

The SolaxHybrid_loop.py script is based on an original program previously developed by previous 
colleagues of the team in order to collect data from the previously implemented inverter. As 
described in section 4.2.4, communication with the inverter and the Raspberry Pi takes place via 
Modbus RTU. But due to a malfunction of the original inverter model during the course of the 
project, data is no longer collected through a physical interface. Instead, the current 
implementation serves as a simulation framework, generating random values to mimic all data 
that would otherwise be retrieved from the inverter model. These simulated data points are then 
forwarded to the MQTT-server for further processing. This program is therefore used as a role 
model for future inverter control programs and also as a dummy-program that periodically causes 
additional traffic on the MQTT-server for testing reasons.  
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 SolaxHybrid_Data_Acquisition.py 

The SolaxHybrid_Data_Acquisition.py script is responsible for acquiring and processing data from 
the inverter. The class initializes a connection, defines a range of memory addresses to read from, 
and processes the retrieved values into a structured dictionary. The data consists of parameters 
such as grid voltage, current, power, PV voltage, PV current, temperature, battery state, and fault 
messages. Under normal conditions, data would be extracted using the Modbus communication 
protocol. However, due to the lack of a physical inverter, the script instead generates random 
values for testing purposes, as mentioned before. 

 

13.5.11 blink.py 

This program can be considered as an utility program that makes the Raspberry Pi's internal LED 
blink, allowing users to visually confirm that the Pi is running during operation. It neither publishes 
nor subscribes to any topic. It is automatically activated when main.py starts. 

 

13.5.12 get_svg_files_loop.py 

This Python script provides the possibility of profiling active Python processes on a system using 
the py-spy sampling profiler, see (Frederickson, 2024). Its primary purpose is to record 
performance data from running Python scripts and save the results as .svg flame graphs for further 
analysis. These visualizations can help identify bottlenecks, excessive CPU usage, or 
performance anomalies in long-running or resource-intensive programs. 

Upon execution, the script first identifies all active Python processes using the pgrep utility. For 
each process found, it attempts to extract the name of the executing script by querying the 
command line arguments associated with the process ID. This name is used to generate a 
timestamped filename for the output file, ensuring that each flamegraph is traceable to its 
corresponding process and runtime. The script launches a separate py-spy instance for each 
detected Python process. Each profiler instance runs in the background and writes its output as 
a flamegraph in SVG format to a designated directory (svg_dateien), which is created 
automatically if it does not already exist. Note: The .svg files can be opened and viewed directly in 
any preferred web browser. To activate profiling of all running python scripts, the corresponding 
script path must be uncommented within the scripts lists of main.py. Once this is done, executing 
main.py will initiate the profiling sequence. Because profiling consumes considerable system 
resources, it is intended only for testing purposes. Consequently, the timeout settings 
(timeout_limit) in the receiving scripts must be adjusted accordingly to suppress unnecessary 
error alerts.  

The recorded .svg files will be stored in the directory: …\total_serial_v52\svg_dateien 
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13.6 Sender Scripts 

All of the sender scripts described below are located in the total Serial folder, see [A_30] under 
the directory ...total_serial_v52\sender. They are also stored on the external Raspberry Pi (model 
name: Raspberry Pi5 PI-C 8G), which activates the sender scripts. All sender scripts can be 
started simultaneously by using the send_main.py script or individually, und der the following 
directories see table 29. 

Table 29: Names and directories of the sender scripts, currently stored on the sender device (model name Raspberry 
Pi 5). 

Sending Script Name Directory 
Send_Hioki_Data.py 

…\total_serial_v52\sender 
modbusTCP_server_elektrolyseur_03.py 

Canbus_send.py …\total_serial_v52\sender\Modbus_and_Canbus_sen
d\Einzeln Modbus_send.py 

 

13.6.1  Send_Hioki_Data.py 

This script is designed to read electrical measurement data from a CSV output file containing 
segments of previously recorded measurement data from the Hioki-PQ3198 Power Quality 
Analyzer. The script was implemented with the ulterior motive for causing additional network 
traffic on the MQTT-server to further feasibility checking but also in order to show how an external 
controller can interact as a client with MQTT over Ethernet. 

13.6.2  Canbus_send.py 

The script uses the python-can library, see (python-can, no date), to manage CAN communication 
over the socketcan interface. Similar to the receiving program, the script configures the CAN 
interface (can0) with a bitrate of 500 kbps, activates it, and creates a connection using the 
can.interface at initialization. A predefined list of CAN messages is used, each containing 8 data 
bytes and a shared arbitration ID. These messages simulate constant system behavior and can 
easily be adapted or randomized for more dynamic scenarios. The script also handles logging of 
each sent message into a CSV file for traceability and further analysis. A new log file is created 
either on first execution or when the previous file exceeds a defined maximum size (~11.9 MB or 
approx. 50,000 lines). Each CSV entry includes a timestamp, the original CAN message object, 
the decimal and binary representations of the data bytes, and an ASCII interpretation of the data, 
cleaned of special characters like semicolons, tabs, or commas to ensure CSV integrity. Message 
transmission follows a timing pattern, defined by delta_t (set to 50 milliseconds). The loop iterates 
through the message list in order and resets after each complete cycle.  

 

13.6.3  Modbus_send.py 

This Python script simulates the Modbus RTU communication, by making use of the serial library 
for UART communication. The serial interface is initialized on /dev/ttyAMA0 with a baud rate of 
115200 bps. Upon execution, the script checks whether a CSV file needs to be created - either 
because the program has just started or because the previous file exceeded the defined size limit 
of approximately 11.9 MB (which equates to around 50,000 entries). If so, it generates a new file 
with a timestamped filename and initializes it with the appropriate header row.   
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The data transmission loop runs continuously, sending Modbus messages every 50 milliseconds. 
The data is sanitized by removing any problematic byte values (such as 0x3B, 0x2C, etc.) that 
could interfere with CSV formatting. Each sent message is logged in the corresponding CSV file 
with a human-readable timestamp and the decimal representation of the transmitted byte 
sequence. If the file grows too large. 

13.6.4  modbusTCP_server_elektrolyseur_03.py 

This Python script implements a functional Modbus TCP/IP server that simulates the behavior of 
one electrolyzer. Like the receiving script, see section 13.5.9, it is based on the pymodbus library 
(Pymodbus, 2023) and emulates both holding and input register spaces as specified by the 
Enapter Modbus communication specification, see (Enapter AG, 2025b). 

As part of the startup routine, the script assigns the static IP address 192.168.0.10 to the 
Raspberry Pi's Ethernet interface and launches the Modbus TCP/IP server on port 5020. Initial 
values are written to the server’s internal datastore to simulate default operating states. Moreover, 
a background thread continuously updates these register values to mimic realistic behavior. For 
example, when the “Start/Stop Electrolyser” register is activated, the server transitions to an 
active state and begins modifying values such as water level and electrolyte temperature 
accordingly. Input registers are regularly populated with random values that the receiver will 
receive on request.  

 

13.7 Test and Validation: Practical Parts 

13.7.1  Results from Test Run on the 29th of October 2024: Acquiring Data from Fuel Cell 

The following results present the analysis and plausibility check of CAN bus output data from a 
fuel cell operating in standalone mode. The CAN bus output of the fuel cell was connected solely 
to the Raspberry Pi 1 via an RS485 CAN HAT. The only active script on the Raspberry Pi during 
testing was CAN_BUS_01_loop.py. Furthermore, the fuel cell was connected exclusively to 
ultracapacitors; no electrical connection to the local power grid was established. On the day of 
testing, two experiments were carried out: the first without hydrogen pressure at the fuel cell’s 
hydrogen inlet, and the second with hydrogen supplied. Figure 28 and 29 illustrate the progression 
of the selected process parameters recorded during the test runs (excluding static parameters 
such as software version of error flags). Moreover, the tables 30 and 31 list the error flags that were 
observed over the CANbus. The total duration of the test run I was 3 minutes and 23.03 seconds. 
The test run II was active for a total of 3 minutes and 2.14 seconds. 
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Process Diagram for Test Run II 

 

Figure 29: Progress of non-static process parameters during the test run II. 

Acquired Error Flags Test Run II:  

Table 31: Acquired error messages and their time durations during the test run II. 

Flags 

Begin of Flag 
(software_ 

timestamp & 
Time Since Start 

in Seconds) 

Ending of Flag 
(software_ 

timestamp & 
Time Since Start 

in Seconds) 

Tag Description Flag Level 

B 
27.09.2024 

14:56:27.721645 
(0.05) 

27.09.2024 
14:56:27.721645 

(0.05) 
DenyStartUV  

External voltage below 
threshold specified in 

the configuration 

2 
(Controlled) 

 

13.8 Results from Latency- and General Validation Tests in the Laboratory 

13.8.1  General Methodology 
Structured validation processes were carried out to ensure the functionality of each component 
at laboratory test runs. This included feasibility tests of individual processes, data logging, 
implementation of MQTT communication, data analysis in excel, as well as repeated debugging 
and standardization. Latency and message throughput served as the key metrics for validating 
system behavior throughout this process. In general, for the latency measurements it is aimed to 
achieve stable results with a significant performance buffer, since the system is designed for 
scalability. Other services may be added on the Raspberry Pi 1 in the future. Ultimately, the goal 
is to demonstrate how much unused processing capacity remains available. 
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Process Parameters During Test Run II

Fan_SP_Duty [%] Louver_position [% Open] DCDC_current_limit [A]

DCDC_voltage_Setpoint [V] Inlet temperature [°C] Outlet temperature [°C]

Anode_pressure [mbar] Output_current [A] Output_voltage [V]

Output_power [W] Total_Run_Energy [kWh] run_hours
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The continuously conducted performance tests in the laboratory were carried out on the 
Raspberry Pi 1, using connected hardware: A second Raspberry Pi (model name: Raspberry Pi 5) 
was used to send dummy datasets via various interfaces, including CANbus, Modbus RTU, 
Modbus TCP/IP, and TCP/IP (see sending scripts). 

Exemplary results of such latency and system performance tests are shown in the section below, 
hereby considered as “results from Test run III”.  Figure 30 provides a visual impression of the 
laboratory configuration used during testing. 

 

Figure 30: Photo illustrating a lab test. With main.py active on the receiver Raspberry Pi and send_main.py active on 
the transmitter Raspberry Pi (model name: Raspberry Pi 5). 

13.8.2  Results from Test Run III on the 22nd of April 2025 

Results of Data Analysis Regarding Interval Time of Logged Events in Internal .CSV files  

The table 32 lists the results outgoing from a data evaluation based on the data acquired from all 
the program specific internal .csv files generated at the test run III. These files are present in the 
directory …\total_serial_v52\CSV_for_received_data of [A_30]. The files used for the data analysis 
are provided in [A_27]. The column “Amount of values” indicates the total number of recorded 
software_timestamps entries in each respective .CSV file. Based on these timestamp values, the 
latency between consecutive logging cycles (or the “Publishing Interval Time”) of the respective 
loop programs was calculated via excel functions and can be compared to the calculated latency 
values of Message_Collector_for_csv_ loop.py, see table 33. The test run III was conducted from 
09:36:17 AM to 10:47:37 AM thus took ca. 1 hour and 11 minutes. The amount of values (see first 
column) should roughly correspond 1/(t_delay_for_publishing) times the total test runtime in 
seconds. In general, a large deviation between the maximum publishing interval time and the 
average value indicates an error, because in such a case the respective program fell out of the 
secondary while True loop and had to run through the primary while True loop again.  
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The reason for such an error with the HMC8012 device is that a loss of connection to the MQTT 
server was observed at 10:17:46.914367 AM. The same problem was observed for 
SolaxHybrid_loop.py at 10:22:12.158144 AM (see corresponding .log files). For further testing it is 
recommended to set a higher keepalive value to prevent this issue: In the Paho library, the 
keepalive mechanism ensures the client sends a message or a PINGREQ packet to the broker 
within the specified interval; if no response (PINGRESP) is received in the timeframe specified by 
the chosen keepalive value, the connection is considered lost (also refer to section 2.11.4 and 
8.3.6). Currently, the keepalive value is set to a relatively low value of 1 second.  

In the Arduino_Communication_loop.py, checksum mismatches led to an increase in the 
maximum error value (see corresponding .log file). Since the errors occur sporadically, a problem 
with the physical connection is suspected. 

Table 32: Data evaluation of all internal .CSV files of test run III. 

Program 
Amount of 
Messages 
Published 

Measured Publishing Interval Time 

Maximum   Minimum Average   Std Dev.  

CAN_BUS_01_loop.py 4141 1.785913 0.967434 1.029301 0.992208 
Modbus_01_loop.py 3610 2.166090 0.002772 1.180070 0.460091 

modbusTCP_elektrolyseur_ 
loop.py 

2730 2.705883 0.993710 1.558943 1.086712 

HMC8015_loop.py 3933 1.308459 0.050049 1.085832 0.844466 
HMC8012_loop.py 4080 8.537046 0.967333 1.047044 1.007946 

Arduino_Communication_loop.py 19816 6.631245 0.120317 0.214957 0.433606 
get_resource_usage_loop.py 568 8.098721 6.133649 7.480064 2.530338 
Message_Collector_for_csv_ 

loop.py 
4140 1.406924 0.958463 1.033704 0.990268 

Message_Collector_for_Data_ 
Check_loop.py 4114 1.221691 0.975999 1.031680 0.995835 

Message_Collector_for_plot_ 
loop.py 

2738 3.080886 0.997358 1.547972 1.062094 

SolaxHybrid_loop.py 4139 7.284557 0.115262 1.027651 0.802156 
EMS_loop.py 4172 1.939289 0.959831 1.023454 0.992812 

 

Results of Message throughput and Latency Measurement through MQTT Data Transfer 

The table 33 shows the evaluation of CSV File of the .csv file, outgoing from 
Message_Collector_for_csv_loop.py, meaning that the acquired time values are originating from 
the calculations of the calculate_delta_t function of the mqtt_handler. The standard deviation 
was calculated in succession via excel formulas.  
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Table 33: Results from the analysis of the .CSV file generated by Message_Collector_for_csv_loop.py during test run III. 

Program 
Amount of 
Messages 
Received  

Maximum 
Latency 

Minimum 
Latency 

Average 
Latency 

Std Dev. of 
Latencies 

CAN_BUS_01_loop.py 4139 1.779705 0.884511 1.029079 0.032861 
Modbus_01_loop.py 3605 1.482802 0.025200 1.179317 0.101179 

modbusTCP_elektrolyseur_ 
loop.py 

2728 2.716845 0.853303 1.559460 0.394273 

HMC8015_loop.py 3933 1.313677 0.938390 1.085941 0.045340 
HMC8012_loop.py 4078 9.551708 0.889188 1.047315 0.179745 

Arduino_Communication_loop.py 19822 6.854612 0.092667 0.214784 0.243100 
get_resource_usage_loop.py 568 8.128402 6.153832 7.480420 0.176392 
Message_Collector_for_csv_ 

loop.py 
4140 1.403908 0.915037 1.033501 0.034498 

Message_Collector_for_Data_ 
Check_loop.py 4109 1.223081 0.911042 1.031480 0.033335 

Message_Collector_for_plot_ 
loop.py 

2736 3.118965 0.949793 1.547409 0.306803 

SolaxHybrid_loop.py 4137 6.129103 0.863508 1.027447 0.085415 
EMS_loop.py 4171 1.936249 0.918158 1.023247 0.031516 

 

Deviations of Amount of Messages Published vs. Amount of Messages Received and 
Publishing Interval Time vs. Latencies through MQTT Data Transfer in Absolute Numbers 

See caption above. The absolute deviations are shown in the table 34 below in absolute numbers 
and in table 35, the relative deviations are listed. In order to reach satisfying results, a low 
deviation regarding message transmission is expected, see row named “Amount”. A negative 
deviation of amount means that messages were published, but some were no received. All in all, 
the deviations are low and thus the MQTT transmission lead to satisfactory results in this regard. 
Interestingly, a surplus of 6 messages were received, outgoing from 
Arduino_Communication_loop.py, even though the QoS was set to 1 for this category of data (so 
theoretically the deviation should be 0). But since the deviation is not negative, it can be 
considered satisfactory.  

 

 

 

 

 

 

 

 



Initial Design and Implementation of a Control System for a Hydrogen-Based Microgrid 
Chapter 13 Appendix Jan Moritz Dehler 

 

105 
 

Table 34: Deviations of amount of messages published vs. amount of messages received and publishing interval time 
vs. Latencies through MQTT Data Transfer in absolute numbers. 

Program 
CAN_BUS_01_ 

loop.py 
Modbus_01_ 

loop.py 

modbusTCP_ 
elektrolyseur_ 

loop.py 

HMC8015_ 
loop.py 

Absolute 
Deviation 
between 

Values from 
Table 32 
and 33 

Amount -2 -5 -2 0 
Maximum -0.00621 -0.68329 0.010962 0.005218 
Minimum  -0.08292 0.022428 -0.14041 0.888341 
Average -0.00022 -0.00075 0.000517 0.00011 
Std Dev. -0.95935 -0.35891 -0.69244 -0.79913 

Program HMC8012_loop.py 
Arduino_ 

Communication_ 
loop.py 

get_resource_ 
usage_loop.py 

Message_ 
Collector_for_csv_

loop.py 
Absolute 
Deviation 
between 

Values from 
Table 32 
and 33 

Amount -2 6 0 0 
Maximum 1.014662 0.223367 0.029681 -0.00302 
Minimum -0.07815 -0.02765 0.020183 -0.04343 
Average 0.000271 -0.00017 0.000356 -0.0002 
Std Dev. -0.8282 -0.19051 -2.35395 -0.95577 

Program 

Message_ 
Collector_for_ 
Data_Check_ 

loop.py 

Message_ 
Collector_for_ 
plot_loop.py 

SolaxHybrid_ 
loop.py 

EMS_loop.py 

Absolute 
Deviation 
between 

Values from 
Table 32 
and 33 

Amount -5 -2 -2 -1 
Maximum 0.00139 0.038079 -1.15545 -0.00304 
Minimum   -0.06496 -0.04757 0.748246 -0.04167 
Average -0.0002 -0.00056 -0.0002 -0.00021 
Std Dev. -0.9625 -0.75529 -0.71674 -0.9613 
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Deviations of Amount of Messages Published vs. Amount of Messages Received and 
Publishing Interval Time vs. Latencies through MQTT Data Transfer in Relative Numbers 

Table 35: Deviations of Amount of Messages Published vs. Amount of Messages Received and Publishing Interval Time 
vs. Latencies through MQTT Data Transfer in Relative Numbers. 

Program 
CAN_BUS_01_ 

loop.py 
Modbus_01_ 

loop.py 

modbusTCP_ 
elektrolyseur_ 

loop.py 

HMC8015_ 
loop.py 

Relative 
Deviation 
between 

Values from 
Table 32 
and 33 

Amount -0.05% -0.14% -0.07% 0.00% 

Maximum -0.35% -31.54% 0.41% 0.40% 

Minimum  -8.57% 809.09% -14.13% 1774.94% 

Average -0.02% -0.06% 0.03% 0.01% 

Std Dev. -96.69% -78.01% -63.72% -94.63% 

Program HMC8012_loop.py 
Arduino_ 

Communication_ 
loop.py 

get_resource_ 
usage_loop.py 

Message_ 
Collector_for_csv_

loop.py 
Relative 

Deviation 
between 

Values from 
Table 32 
and 33 

Amount -0.05% 0.03% 0.00% 0.00% 

Maximum 11.89% 3.37% 0.37% -0.21% 

Minimum -8.08% -22.98% 0.33% -4.53% 

Average 0.03% -0.08% 0.00% -0.02% 

Std Dev. -82.17% -43.94% -93.03% -96.52% 

Program 

Message_ 
Collector_for_ 
Data_Check_ 

loop.py 

Message_ 
Collector_for_ 
plot_loop.py 

SolaxHybrid_ 
loop.py EMS_loop.py 

Relative 
Deviation 
between 

Values from 
Table 32 
and 33 

Amount -0.12% -0.07% -0.05% -0.02% 

Maximum 0.11% 1.24% -15.86% -0.16% 

Minimum   -6.66% -4.77% 649.17% -4.34% 

Average -0.02% -0.04% -0.02% -0.02% 

Std Dev. -96.65% -71.11% -89.35% -96.83% 
 

13.9 Resource Data from Test Run III on the 22th of April 2025 

This section presents the resource data recorded during test run III, see figures 31-35. The 
diagrams are based on a data analysis of the overall .CSV file generated by Message_Collector 
_for_csv_loop.py, see [A_27]. The respective data series were generated by the program 
get_resource_usage_loop.py and sent via MQTT. This chapter is for documentation purposes only 
and leaves room for further critical evaluation of the results. It would also be useful to extend 
get_resource_usage_loop.py to include additional measurement parameters if necessary. See 
further possible improvements in section 13.5.7. 
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13.9.1  CPU Usage 

 

Figure 31: The acquired values for the CPU usage of the respective *_loop.py programs during test run III. 
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13.9.2  Memory usage 

 

Figure 32: The acquired values for the memory usage of the respective *_loop.py programs during test run III. 
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13.9.3  RAM usage 

 

Figure 33: The acquired values for the RAM usage of the respective *_loop.py programs during test run III. 
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13.9.4  Swap usage 

 

Figure 34: The acquired values for the swap usage of the respective *_loop.py programs during test run III. 
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13.9.5  Load Average 

 

Figure 35: The acquired values for the load average of the respective *_loop.py programs during test run III. 

 

13.10 Simulation of the EMS Algorithm via Excel 

13.10.1 Overview of the Simulation File 

The excel file visualizes the energy flows and the evolution of the states of charge (SOCs) in 
relation to the proposed EMS algorithm (see section 8.5). It is available in [A_29]. Furthermore, it 
has to be noticed that the file takes up a longer time to load (30 seconds to one minute). Also, 
when entering a certain table, the diagrams take up a long time to load (also ca. 30 seconds to 
one minute).  
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13.10.2 Simulation Framework and Boundary Conditions 

The simulation is based on an islanded grid scenario, meaning that all energy generated by the PV 
modules or the fuel cell must be consumed directly: either by the load, the battery, the 
electrolyzers, or a combination of these elements. As no specific PV capacity has been defined at 
this stage for the La Luz site, the file includes three different simulation scenarios reflecting 
varying levels of photovoltaic generation: Max_PV (first sheet), Mittel_PV (second sheet), and 
Min_PV (third sheet). In each of these simulations, the PV output is randomly throttled to emulate 
fluctuations due to cloud cover. The energy consumption data is based on smoothed, randomized 
values and totals approximately 23.2 kWh per day, as specified in chapter 3. For the sake of 
simplicity, the load profile does not reflect realistic day-night patterns such as those observed at 
the La Luz site, but instead remains relatively evenly distributed. The simulation spans a period of 
three days, during which both PV generation and consumption patterns repeat cyclically. Based 
on these parameters, the energy flows, such as fuel cell output, battery charging and discharging, 
electrolyzer consumption, and the resulting SOCs are calculated dynamically for each time step. 

13.10.3 VBA Code Availability 

For reference and transparency, the VBA code used for the simulation has been outsourced to a 
separate text file, also included in directory [A_29]. 

13.10.4 Visualization of Results 

The figures 36 and 37 present the visual representations of the simulation results. The figures 
shown here illustrate the output from a complete simulation run, based on one of the predefined 
PV production scenarios from the sheet Mittel_PV. As it can be observed, this simulation shows 
the impact, on the activation of the fuel cell (grey line color), as well as the electrolyzers (pink line 
color).  

 

Figure 36: Diagram showing the course of power flows in watts from the different entities after a conducted 
simulation (see Mittel_PV-sheet). 
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Figure 37: Diagram showing the course of the battery’s SOC and the storage level of hydrogen in percent after 
a conducted simulation (see Mittel_PV-sheet). 

13.10.5 Explanation of the VBA Code 

The simulation was conducted by a VBA macro, structured as a loop that processes one row of 
Excel data per iteration, representing a single time step (one second of the day). The macro starts 
by clearing previous simulation results from specific columns in the worksheet. The simulation 
proceeds in a loop that reads the prescribed PV production and grid consumption values from the 
spreadsheet and calculates the resulting power surplus or deficit (Delta). 

The energy management algorithm of the simulation follows the logic of chapter 8.5: If the system 
detects a surplus and both the battery and hydrogen storage levels are full, the macro reduces PV 
input to avoid overproduction. Otherwise, the surplus or deficit is handled based on system 
conditions. When the battery state-of-charge falls below the 20 percent threshold, the fuel cell is 
activated to compensate for the energy deficit, consuming hydrogen and increasing power 
production. Conversely, when the battery SOC is high and excess PV production is available, the 
electrolyzers are activated to store energy in the form of hydrogen, relative to the current Delta 
value. The hydrogen production coming from the electrolyzers is calculated based on power input 
and the specific energy requirement per cubic meter of hydrogen, using a linear model derived 
from datasheet specifications. 

Throughout the simulation, energy flows are updated for each component, and new SOC and 
hydrogen levels are calculated. These values are written to the corresponding cells in the 
spreadsheet for each time step. The simulation also computes total system production and 
consumption per iteration and records the net energy balance. To assist in debugging and 
progress monitoring, the macro prints the current row index to the console and updates the Excel 
status bar every 1000 iterations and the simulation continues until the last row of input data is 
reached.  
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13.10.6 Simplifications 

The macro includes assumptions and simplifications, such as: 

• The physical constraints of the hydrogen storage system are modeled using the ideal gas 
law, taking into account parameters such as pressure, volume, temperature, and molar 
mass of hydrogen 

• Instantaneous response from electrolysis and fuel cell systems 

• Linear efficiency models, and the exclusion of conversion losses (e.g., from inverters or 
DC/DC converters) 

• Maximum input/output power limits regarding the battery are not explicitly enforced  

• POC of the fuel cell is omitted 
• The gradual activation of the electrolysis units has not been considered 

13.10.7 Application 

The simulation macro can be triggered in each of the provided workbooks via the button located 
in cell AA2. During execution, the macro displays the current row number in the Excel status bar 
(bottom left) to provide real-time progress feedback. The simulation runs until row 259,201 is 
reached. But naturally, macros have to be enabled at first.  




