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Diese Arbeit stellt Methoden zur Integration von WebAssembly (Wasm) Workloads in Kubernetes 

(K8s) Umgebungen vor. Die daraus resultierende hybride Architektur nutzt die Vorteile beider 

Technologien, einschließlich der Skalierbarkeit, Lastverteilung und Hochverfügbarkeit von K8s 

sowie der Plattformunabhängigkeit, Geschwindigkeit und Sicherheitsvorteile von Wasm. Es 

werden zwei Methoden vorgestellt: eine, die crun mit WasmEdge nutzt, und die andere, die 

containerd, einen containerd-shim und Fermyon Spin verwendet. Diese Arbeit demonstriert eine 

erfolgreiche K8s-Cluster-Implementierung, bei der Worker-Knoten Rust-basierte Wasm-

Microservices unter Verwendung dieser Methoden ausführen. Diese Arbeit legt den Grundstein für 

innovative Implementierungen von Wasm-basierten Microservices innerhalb von K8s. 
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Abstract 

This thesis presents methods for integrating WebAssembly (Wasm) workloads into Kubernetes 

(K8s) environments. The resulting hybrid architecture leverages the advantages of both 

technologies, including K8s’ scaling, load balancing, and high availability, alongside Wasm’s 

portability, speed, and security benefits. It presents two distinct methods: one leveraging crun with 

WasmEdge and the other utilizing containerd, containerd-shim, and Fermyon Spin. The thesis 

demonstrates a successful K8s cluster implementation where worker nodes execute Rust-based 

Wasm microservices using these methods. This work establishes a foundation for innovative 

Wasm-based microservice deployment within K8s.
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1 Introduction 
WebAssembly, commonly known as Wasm, has revolutionised web applications. It allows resource-

intensive programs like games, graphic design tools, and simulations – tasks once requiring separate 

software - to run seamlessly within web browsers. Popular examples of this transformation include 

Google Earth, AutoCAD, and Figma, all powered by Wasm [1].  

However, the benefits of Wasm are not limited to web browsers. Its ability to run applications at near-

native speed without excess overhead and vulnerabilities makes it an ideal candidate for server-side 

usage. With all its benefits, Wasm runtimes make it possible to run Wasm on the server side.  

Introduced to the world in 2014 by Google, K8s has revolutionized the field of software deployment 

and containers [2]. By 2022, nearly half of organizations using containers had adopted K8s to run and 

manage their containers [3]. Modular in its design, K8s capabilities extend far beyond mere container 

orchestration, and virtually anything can be orchestrated with it, even Wasm. 

By pairing K8s with Wasm, the benefits of both technologies can be harnessed, addressing many 

challenges that modern server-side applications face. The speed, minimal overhead, and compact 

bytecode of Wasm enhance K8s scaling and management capabilities. This thesis explores different 

ways to manage and orchestrate Wasm with K8s. 

1.1 Background and Context 

Server-side development has evolved rapidly in the last decade. The shift from monolithic architectures 

to microservices, the rise of cloud computing, and the adoption of containerization have changed how 

server-side applications are developed and deployed. These changes came with their complexities and 

challenges. These challenges underline the importance of Wasm and K8s in addressing modern server-

side application challenges. 

WebAssembly 

Wasm was developed to overcome the limitations of JavaScript for complex tasks in web browsers. Its 

binary instruction format offers faster parsing and execution and provides near-native performance. Its 

secure execution, compact binary format, and low cold boot time make it a perfect alternative to 

JavaScript for complex web applications. 

WebAssembly on the Server Side 

Initially developed for the Web, Wasm has gained attention for server-side applications thanks to its low 

cold boot time and less computational overhead, making it a perfect candidate for serverless computing 

environments.  
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Solomon Hykes, the founder of Docker highlighted the potential of Wasm in a tweet:  

"If Wasm+WASI existed in 2008, we wouldn't have needed to created Docker. That's how important it 

is. Webassembly on the server is the future of computing. A standardized system interface was the 

missing link. Let's hope WASI is up to the task! " [4] 

His tweet underlines the significance of Wasm’s capabilities beyond the browser, especially in server-

side computing. 

Challenges Addressed by WebAssembly 

In serverless computing, one of the significant challenges has been the high cold boot time, which results 

in high latency. Cloud providers like Amazon offer a Serverless Function as a service known as AWS 

Lambda, which can take up to one second to cold boot and consume resources in the idle state [5]. On 

the other hand, Wasm cold boots in less than one millisecond to a few milliseconds and consumes near 

zero resources in the idle state [6]. 

Kubernetes 

With the release of Docker in 2013, the microservice architecture and containers became popular. With 

the increase in the use of containers, managing them with Docker became complex, and the need for an 

orchestration tool arose. K8s comes to the aid of container management and orchestration problems.  

K8s manages, scales, and automates the deployment of containers. Open-sourced by Google in 2014, it 

has become the de facto standard for managing and orchestrating these containerized applications in a 

short time. It offers horizontal scaling, load balancing, and automated rollouts and rollbacks, among 

many other features. 

Scaling WebAssembly with Kubernetes: 

K8s is modular in design, and its components can be exchanged with alternative components. Due to its 

modular design, it can be modified to orchestrate virtually anything, even virtual machines and Wasm 

workloads. Pairing K8s with Wasm represents a new and innovative approach to building and deploying 

Wasm-based applications. K8s can manage the orchestration of Wasm-based applications, taking 

advantage of Wasm’s speed, security, and efficiency. Combining K8s with Wasm could offer the 

information technology industry the best of both worlds. 

1.2 Thesis Objectives 

This thesis aims to explore, implement, and evaluate two methods of integrating Wasm with K8s, 

focusing on understanding the advantages and disadvantages of each method. The explorations aim to: 

• Identify Integration Techniques: Investigate different strategies for integrating Wasm within 

K8s environments, including modifications to the K8s cluster. 
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• Practical Implementation: Apply these identified methods in practical scenarios, including 

setting up the K8s environment. Building and deploying the Wasm applications in the K8s 

cluster. 

• Evaluate Methodologies: Critically analyse each integration technique, assessing its practicality. 

This evaluation will focus on how well these methods integrate Wasm modules within K8s.  

• Contribution to Future Research: Outline areas for future research and potential development in 

Wasm and K8s integration. 

1.3 Thesis Overview 

In the Literature Review, several critical topics are discussed to understand this thesis’s relevant 

technologies and concepts: It explains container technology, focusing on how container images and 

runtime function. The architecture of K8s, a system for managing these containers, is also explored, 

highlighting its role in automating and simplifying application management. Additionally, the review 

covers Wasm, detailing its use in executing code across various platforms, particularly in server-side 

applications. Finally, the section investigates how Wasm can be integrated with K8s to enhance 

application execution, discussing approaches like using crun and containerd for running Wasm 

workloads in K8s environments. This overview establishes a foundational understanding for the 

subsequent practical implementation in the Materials and Methods section. 

The Materials and Methods section outlines two methods for setting up and deploying applications using 

Wasm and K8s. The first method details the execution of a Wasm workload using the crun runtime, 

which involves building, deploying, and running a REST API microservice written in Rust on a K8s 

worker node. crun, a low-level container runtime, is adapted to run containers and Wasm workloads 

through specific Wasm runtimes. The second method employs the containerd runtime for executing a 

similar Wasm workload. Here, the focus shifts to using containerd, containerd-shim, and Fermyon Spin 

to build and deploy the microservice on a different worker node. This method leverages containerd’s 

modular architecture and custom containerd-shims developed for managing Wasm workloads. Both 

methods culminate in demonstrating and discussing the functioning of the deployed applications within 

the K8s environment, showcasing the practical application of the theoretical concepts discussed in the 

earlier sections. 

Finally, the chapter Discussion and Conclusions delve into the advantages, benefits, and potential 

drawbacks of the two methods used for integrating Wasm with K8s. It critically assesses how effectively 

the objectives of the thesis were achieved while acknowledging its limitations. Additionally, this section 

provides thoughtful recommendations for future research directions, building upon the findings and 

insights gained from this study. 
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The thesis concludes with a References section, offering a detailed list of all the sources and materials 

referenced throughout the research, and an Appendix that includes supplementary information and data 

pertinent to the research.  
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2 Literature Review 
This section provides a brief overview of the concepts and topics that form the foundation of this thesis 

and its subsequent experimental chapters, including Materials and Methods. 

2.1 Containers 

A container is a standard unit of software that encapsulates the application code along with its 

configuration files, libraries, and binaries. This ensures that the application can run reliably in various 

computing environments [7]. 

2.1.1 Container Image 

A container image is the blueprint of containers. It contains all the components for an application to run, 

including the binaries, libraries, system tools, and configuration parameters. During runtime, these 

container images become containers [7]. 

Container images are built using a set of instructions, typically defined in a plain text document file 

known as Dockerfile or Containerfile. Tools for building container images, such as Buildah and Docker, 

read these instructions from the Dockerfile/Containerfile to build the image. 

2.1.2 Container Runtime 

Section 2.1.1 discussed the basics of a container image. Now, a question arises: what or who runs and 

manages the container? This is where container runtimes come into play.  

Container runtimes are responsible for the entire lifecycle of a container. They pull images from 

container repositories, create containers from these images, and manage the starting, stopping, and 

deletion of containers [8]. 

Figure 1 illustrates the layered architecture of containerized applications and their operational 

environment. At the top layer are containers, each containing applications, application configurations, 

binaries, and libraries used by those applications. Beneath the containers is the container runtime layer. 

The container runtime is the backbone of container operations and is responsible for various tasks, such 

as container lifecycle management, networking, storage, and interfacing with the host operating system 

[9] [10]. Below the container runtime layer is the host operating system, which supports the container 

runtime by providing the necessary kernel and subsystems. 
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Figure 1: A containerized environment architecture consists of containers running on a container runtime. The 
runtime interfaces with the host operating system, which is layered over the underlying infrastructure. 

Container runtimes can be categorized into high-level container runtimes and low-level container 

runtimes. These two container runtimes work together to manage and run containers. 

 

 

Figure 2: CLI interaction with container ecosystems: A user issues commands via a CLI to a high-level runtime, 
which then relays instructions to the low-level runtime, orchestrating direct container management and resource 

allocation. The high-level and the low-level runtime together make up the container runtime. 

Figure 2 illustrates the communication between the container runtimes. The figure shows that the CLI 

communicates with the high-level container runtime. The high-level container runtime then 

communicates with the low-level container runtime to run the containers [10] [11]. 

High-Level Container Runtime and Container Runtime Interface 

As can be seen in Figure 2 the User is not communicating directly with the containers through CLI. 

Instead, the high-level container runtime, such as containerd or CRI-O, bridges the CLI and the low-

level container runtime. Typically, high-level container runtime provides a daemon application, a CLI 

client and an API to interact with it. This API has been standardized and is known as Container Runtime 

Interface [10]. 

The Container Runtime Interface, also known as CRI, is a protocol defined and standardised by K8s. It 

enables K8s to interact with various container runtimes, including containerd and CRI-O, without 
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recompiling K8s components. The CRI defines the primary gRPC protocol for the communication 

between the Kubelet and container runtime [11]. 

Low-Level Container Runtime and Open Container Initiative 

Low-level container runtimes, such as runc or crun, focus on running containers, setting up namespaces, 

and cgroups [12]. These runtimes implement the Open Container Initiative’s1 (OCI) specifications. 

When a container needs to be created, the high-level container runtime sends a set of instructions in 

JSON format, which are aligned with OCI specifications, to the low-level container runtime. Low-level 

container runtime use these instructions to run the container, including setting up namespaces and 

mounting the container's filesystem. 

Working Mechanisms of High-level and Low-level Container Runtimes 

Understanding the roles and responsibilities of high-level and low-level container runtimes shows how 

they work together to offer a complete solution. However, how do these runtimes work together? 

This section covers the working mechanisms of two high-level container runtimes: containerd and CRI-

O. It also discusses the role of low-level container runtimes. Understanding the mechanism between 

these components will provide a deeper understanding of the container runtimes and container 

ecosystem. 

Note: This thesis will not go into the details of every low-level container runtime, such as crun and runc.  

They function very similarly, so this section will refer to them collectively as “low-level container 

runtimes”. 

CRI-O: High-Level Container Runtime 

CRI-O is a CNCF-graduated, open source, lightweight, high-level container runtime. It implements the 

CRI protocol, is compatible with OCI-compatible container runtimes. CRI-O is a community-driven 

project maintained by an open-source community, along with maintainers and contributors from Red 

Hat, Intel, Suse, Hyper and IBM [13]. 

 
1 The Open Container Initiative (OCI) is a Linux Foundation project started in 2015 to create open standards 

around container formats and runtimes [62]. 
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Figure 3: Interactions between User, CRI-O Daemon, a low-level container runtime, and containers [10]. 

Figure 3 shows the integration of the CRI-O runtime within the container ecosystem, highlighting its 

interactions with adjacent components. 

• The User interacts with CRI-O through CLI to create a container. 

• CRI-O checks if the container image already exists in the cache. If not, it pulls the container 

image from the container image registry [10] [13]. 

• CRI-O unpacks the container image into the container’s root filesystems using the 

containers/storage library [13]. 

• Once the container’s root file system (rootfs) is set up, CRI-O generates an OCI runtime 

specification JSON file with all the details to run the container [13]. 

• CRI-O then launches the OCI-compliant container runtime and passes the OCI-compliant JSON 

file to the low-level container runtime [14]. 

• Low-level container runtime starts the container from the container’s root file system and 

requests the Linux kernel to create a namespace, group, context, and other relevant 

configurations  [14] [15]. 
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containerd: 

containerd is a high-level container runtime that manages the container lifecycle. It is an industry 

standard, CNCF-graduated runtime designed to be part of a more extensive system rather than being 

directly used by developers or end-users. Furthermore, it serves as the core container runtime for Docker 

[16]. 

Unlike CRI-O, containerd has a lightweight intermediary process known as containerd-shim, which acts 

as a bridge between the low-level container runtime and containerd itself. The containerd-shim manages 

the lifecycle of the filesystem of the container. It is responsible for mounting the filesystem when the 

container is created and unmounting it upon removal of a container [17]. 

 

Figure 4: Interactions between User, containerd daemon, a low-level container runtime, and containers [10]. 

Figure 4 shows the containerd, illustrating how it and containerd-shim interacts with other components. 

• The User interacts with containerd through CLI to create a container. 

• containerd checks if the container image already exists in the cache. If not, it pulls the container 

image from a container image registry [10]. 
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• containerd unpacks the container image into the container’s root filesystems using the 

containers/storage library [14]. 

• Once the container’s root file system (rootfs) is set up, containerd generates an OCI runtime 

specification JSON file with all the details required to run the container [10]. 

• containerd then uses the containerd-shim to communicate with the OCI-compliant container 

runtime (runc, by default) and passes the OCI-compliant JSON file to it [14]. 

• Low-level container runtime starts the container from the container’s root file system and 

requests the Linux kernel to create a namespace, group, context and other relevant resources 

and configurations [14]. 

2.2 Kubernetes: Architecture and Components 

Section 2.1 covers the concepts of containers, container images, container runtimes, and their workings. 

It is quick to deploy containers. However, as the number of containers increases, deploying and 

maintaining them manually becomes difficult. This is where container orchestration tools like K8s come 

into play.  

Kubernetes is a portable, extensible, open-source platform for managing containerized applications and 

services. It simplifies the container management process by using declarative configuration and 

automation tools. Google developed it, released it as an open-source project in 2014, and later 

contributed to the CNCF [2]. 

K8s is based on master-slave2 architecture and is divided into two main parts: the master node, also 

known as the Control Plane, and the worker nodes. The master node serves as the central control point 

of the K8s cluster and is responsible for managing the worker nodes and the state of the entire cluster. 

Worker nodes run the containers and report to a master node [18]. 

Understanding K8s requires a thorough knowledge of its architecture. Figure 5 illustrates the 

architecture of K8s, detailing its components and how they interact to manage containerized 

applications. 

 
2 This document uses the term master-slave to refer to a widely recognized architectural model in computer science. 

It is a technical term that describes the relationship between components in a system. This usage is strictly in a 
technical context and is not intended to be offensive or to trivialize historical and social issues associated with 
certain terms. The author acknowledges the sensitivity of these terms and their historical connotations. 
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Figure 5: Kubernetes architecture: Master node (API Server, etcd, Controller Manager, Scheduler) orchestrates 
workloads on worker nodes (Kubelet, container runtimes, pods, containers). 

In a high-availability cluster, there are multiple master and worker nodes to increase the system’s 

availability and reliability. In the case of a failure of one or more master nodes in a high-availability 

cluster, the cluster remains operational. 

K8s supports several autoscaling methods to manage application scaling and responding to changes in 

load [19]: 

• Vertical Pod Autoscaling: This method involves allocating additional resources, such as CPU 

or RAM, to manage increased load. This ensures that applications have the necessary 

resources to run effectively [20]. 
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• Horizontal Pod Autoscaling: This method involves deploying additional Pods to manage the 

increased load. If the load decreases, the number of Pods is reduced to the minimum, as 

configured by the system administrator [20]. 

• Cluster Autoscaler: This method involves changing the size of the K8s cluster based on the 

intensity of workload; it automatically adds nodes to the cluster when there are applications 

that do not have enough resources to run effectively and removes the nodes when they are not 

needed anymore [21]. 

2.2.1 Pods 

Pods are the smallest deployable units of computing that can be created and managed in K8s. Each pod 

is a collection of one or more containers. As shown in Figure 5, a pod operates on a node, and a node 

can host multiple pods [22]. 

Every pod is assigned a unique IP address. All containers within a pod share the same IP address and 

network ports. Containers within a pod use the same network namespace and can communicate with 

each other using localhost [22]. 

Pods are intended to function as stateless and disposable entities. They do not survive scheduling 

failures, node failures, or evictions due to lack of resources. To address these issues, K8s has higher-

level controller abstractions, namely ReplicaSets, Deployments, and StatefulSets. These 

controllers manage the lifecycle of pods, including their initiation and termination. Further information 

on controller manager in given in 2.2.6. 

2.2.2 API Server 

The K8s API Server, also known as kube-apiserver, is a core component of the K8s master node. 

It acts as the front-end for K8s and exposes an HTTP API that allows end users, different components 

of the K8s cluster, and external components to communicate with one another [23] [24]. 

The K8s API Server is stateless and stores its state in an external database like etcd. Its statelessness 

makes it possible to replicate it to handle request loads and enhances fault tolerance. In a highly available 

K8s cluster, there are multiple master nodes and multiple replications of the API server [24]. 

2.2.3 Kubernetes Objects and Kubectl 

K8s objects are the fundamental building blocks of the K8s ecosystem. They represent specific aspects 

of cluster’s desired state. As the Kubernetes documentation states: “Kubernetes objects are persistent 

entities in the Kubernetes system.” [25]. 

K8s objects can be created, modified, or deleted by calling the K8s API Server over HTTP. A K8s object 

can be created by providing a specification that describes its desired state and critical details, such as a 
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name, to the K8s API Server. This specification should then be sent to the K8s API Server in JSON 

format in the REST API request body. The easiest way to communicate with the K8s API Server is by 

using the kubectl command-line interface and providing the information in a YAML file, known as 

a manifest file. The kubectl CLI reads the manifest file, generates a REST API request with a JSON-

formatted specification in the request body, and makes a request on behalf of the user [25]. 

Listing 1: YAML manifest defining a K8s pod named nginx-pod with a single container running the latest 
version of the Nginx web server. It also includes a label app: nginx for identifying and managing the pod. 

apiVersion: v1 

kind: Pod 

metadata: 

  name: nginx-pod 

  labels: 

    app: nginx 

spec: 

  containers: 

  - name: nginx 

    image: nginx:latest 

 

The above configuration has the following key aspects: 

• apiVersion: Determines the version of the K8s API is used to create the object. 

• kind: Determines the type of K8s object being created, modified, or deleted. 

• metadata: Consists of the name, labels, and namespace associated with the object. 

• spec: Consists of the specifications of the K8s object. The above example consists of the 

specifications for containers that will run inside the pod, including the Container image to be 

used. 

The manifest in Listing 1can be applied to the K8s cluster by saving the configuration as nginx-

pod.yml and execute following command: 

$ kubectl apply -f nginx-pod.yml  

 

2.2.4 ETCD 

In a multi-master node cluster, K8s control plane components have more than one instance. To maintain 

a consistent cluster state, Kubernetes requires a horizontally scalable database to persist this information. 

This is where distributed databases, like etcd, come into play [26]. 
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etcd is an open-source distributed key-value store. It is fast, secure, can scale horizontally and fully 

replicate across all nodes and is designed for high availability, ensuring no single point of failure. It 

serves as the primary key-value store in official K8s [26]. 

2.2.5 Scheduler 

The K8s scheduler, or kube-scheduler, is the default scheduler for K8s. It selects a feasible node 

for a newly created unscheduled pod. It does this by filtering out nodes that do not meet a pod’s specific 

scheduling needs, scoring the feasible nodes, and selecting a node with the high score. It then informs 

the API server about its decision, and the API server contacts the Kubelet of that specific node to run 

the container [27]. 

2.2.6 Controller Manager 

The K8s controller manager is a daemon that includes the core control loops shipped with K8s and runs 

as part of the control plane [28]. 

K8s controllers are based on the concept of control loops, which monitor and regulate the state of the 

cluster. Each K8s controller tracks at least one K8s resource type. The controller’s purpose is to match 

the current state of the cluster to the desired state of the cluster. If a discrepancy is found, the controller 

takes action by issuing specific directives to the API server [29]. 

A prime example is the deployment controller, which orchestrates the deployment and updating of 

applications within the cluster. It creates, deletes, and updates Pods based on the specifications defined 

in the Deployment object’s desired state.  

2.2.7 Kubelet 

Kubelet is one of the key components of K8s, acting as a bridge between the K8s control plane and each 

worker node. It is responsible for managing and executing containers on worker node [30]. 

The connection between Kubelet and the API server is bidirectional. This connection is used for pod 

scheduling, configuration, health checks, and log fetching. Through this connection, Kubelet also sends 

regular updates to the API server about its node and the Pods it manages, including resource metrics and 

container states. 

When a pod is scheduled to run on a specific node, the API Server provides the Kubelet with Pod 

Specifications files. Kubelet cannot run the containers by itself. It does it with the help of container 

runtimes. It runs containers on the node by interacting with the container runtime through CRI. 
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Figure 6: Kubelet communicates with a high-level container runtime over gRPC, which then manages containers 
using a low-level runtime. 

Figure 6 illustrates the communication between the Kubelet and the container runtimes. It shows that 

Kubelet interacts with high-level container runtime through CRI. High-level container runtime interacts 

with OCI-compliant low-level container runtime to run the containers [10] [11]. 

2.3 WebAssembly 

WebAssembly, also known as Wasm, is a binary format created for a stack-based virtual machine, 

enabling code execution in multiple programming languages across different platforms. Initially 

intended for web browser, Wasm has increasingly become famous as a server-side technology, allowing 

developers to create practical and scalable backend applications. 

The adoption of Wasm for server-side purposes stems from the demand for high-performance, resource-

saving, secure, portable, and easily manageable applications capable of managing substantial requests 

and data volumes. Conventional server-side technologies like PHP, Ruby, and Python are commonly 

used. However, they can frequently be slow and consume significant resources, especially when 

handling high data processing or machine learning tasks. 

 

Figure 7: Compilation of diverse programming languages to Wasm bytecode for platform-agnostic execution. 

Figure 7 demonstrates the primary benefit of Wasm: the “Write once, run anywhere” philosophy. 

Different programming languages can be compiled into Wasm bytecode. This Wasm bytecode can run 

efficiently across various machines and platforms, such as Windows, Linux, and Internet of Things (IoT) 

devices, regardless of the underlying CPU architecture (ARM, x86, x64). 



 

25 
 

Wasm offers several benefits for server-side development. The most notable benefits are discussed in 

the next section. 

Flexibility 

Wasm’s flexibility is significant in its increased usage and recognition among the developer community. 

Several factors allow developers to create server-side applications that are modular, scalable, and 

versatile. 

a) Language Independence: As shown in Figure 7, Wasm is designed as a compilation target rather 

than an independent language, enabling it to be language-agnostic and compatible with various 

programming languages, such as C, C++, Rust, Go, and more [31]. Its Language-agnosticism 

allows developers to program server-side applications in their preferred language while taking 

advantage of its performance and efficiency. 

b) Integration with Server-Side Technologies: Wasm can be integrated with server-side 

technologies like Node.js and developers can take advantage of the performance gains offered 

by Wasm while utilizing established tools and frameworks [32]. 

Portability 

The portability of Wasm is a crucial feature that has contributed to its widespread adoption and 

popularity as a compilation target for web and server-side applications. There are several factors which 

make Wasm highly portable across different platforms and environments: 

a) Platform-Independent Bytecode: Wasm is designed as a low-level assembly language, and 

Wasm bytecode can be executed on different operating systems and hardware architecture 

without recompiling [33]. 

b) Consistent Runtime Environment: Wasm is a standardized technology which provides a 

consistent and well-defined set of instructions. This standardization ensures that Wasm runtimes 

and browsers consistently interpret the instructions, irrespective of the specific hardware or 

operating system. When the hardware or operating system does not support certain features, the 

Wasm runtime can simulate them, ensuring a consistent execution environment for the 

application [34]. 

 

Performance 

One of the most notable benefits of Wasm in server-side applications is the vastly improved performance 

compared to traditional methods. Wasm’s performance can be attributed to several key factors, which 

collectively lead to quicker response times and effective request handling, even during heavy workloads. 

These aspects make Wasm a perfect option for server-side environments, where swift responses and 

effective request management are crucial. The following aspects illustrate, in more detail, factors that 

result in the better performance of Wasm:  
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a) Compact Binary Format: The binary format of Wasm enables rapid parsing, decoding, and 

implementation, resulting in decreased loading times and enhanced server-side application 

responsiveness. The compactness of binary facilitates quicker code transmission across 

networks and contributes to faster start-up times, making server-side applications agile and 

efficient [35]. 

 

b) Designed for Modern Hardware: Wasm is engineered to work closely with current hardware 

architectures, allowing it to utilize modern processors' abilities fully [33]. Its enhanced 

optimization could lead to better performance in tasks that demand high computation, like data 

analysis, machine learning, and real-time analytics, which are frequently needed in server-side 

applications. 

 

c) Efficient Memory Management: Wasm offers a linear memory model, making memory 

handling more straightforward and diminishing the usual garbage collection overhead found in 

other languages, such as JavaScript. This efficient memory management enhances the overall 

performance of server-side applications by decreasing the chances of memory leaks and 

problems associated with memory leakages [35]. 

 

d) Real-World Performance Improvements: Many real-life examples show the advantages of 

employing Wasm for server-side environments. For example, the Lucet project by Fastly 

highlights the application of Wasm in developing high-performance, low-latency server-side 

applications for edge computing. Shopify has also used Wasm to create a server-side sandbox, 

enabling users to execute personalized code securely within their e-commerce platform and 

enjoy the performance improvements provided by Wasm [36] [37]. 

 

Security 

Wasm security features are essential for its design and execution, making it a popular choice for web-

based and server-side applications. Wasm offers multiple elements which contribute to increased 

security: 

a) Sandboxed Execution Environment: Wasm modules run within a sandboxed execution 

environment that remains isolated from the host system. This isolation protects the host system 

and other Services running on the host system [38]. 

b) Memory Safety: Wasm allows direct memory access while maintaining strict boundaries, 

preventing the Wasm module from accessing memory out of its bounds. This built-in security 

makes Wasm much more secure than existing technologies [38]. 
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c) Control-Flow Integrity: Wasm modules must declare all functions and their types at load time, 

even when dynamic linking is used. This prerequisite enables the enforcement of control-flow 

integrity through structured control-flow, which is created during the compilation process. Since 

compiled code cannot be modified and observed during runtime, Wasm programs are safe 

protected by default against control-flow hijacking attacks. This built-in security feature 

enhances web application’s safety and reliability, ensuring that Wasm does what it is intended 

to [38]. 

2.3.1 WebAssembly System Interface 

Initially, Wasm was designed to execute high-performance applications in web browsers. The Wasm 

bytecode interacts with the JavaScript engine on the web and utilizes Web APIs to communicate with 

the browser environment. A defined set of APIs is required to operate outside of the web environments, 

such as on servers or embedded devices. This is where WebAssembly System Interface (WASI) comes 

in [39]. 

WebAssembly System Interface provides a standardized set of APIs that a Wasm module can use to 

perform system-level operations, such as accessing files or making network requests [39]. 

 

Figure 8: Layered architecture of WASI, highlighting libs and system call wrappers utilized by Wasm 
applications [39]. 

Figure 8 shows the software architecture of WASI. At the highest level, there is application, libraries, 

and more. To facilitate the use of WASI API, there is an implementation called WASI libc3. It uses a 

libpreopen4 layer and a system call wrapper to communicate with the WASI implementation, interacting 

with various resources such as host application, native OS, bare metal, or JS runtime [39]. 

 
3 WASI libc is musl-based implementation of the standard C library (libc) that is designed to work with the WASI 

[59]. 
 
4 libpreopen is a C library designed to help compartmentalize applications, including Wasm applications, by pre-

opening file and directory descriptors before they get sandboxed. Wasm applications run in sandbox and 
libpreopen allow them to perform necessary file operations without requiring broad system permissions [61]. 
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2.3.2 WebAssembly Runtime 

In previous Section 2.3.1, the WASI was discussed. Now, a crucial question arises: Who is responsible 

for running the Wasm module? This is where Wasm runtimes come into play. 

Wasm runtime interprets or compiles Wasm binary code into machine code. It provides a sandboxed 

executing environment and a set of WASI APIs with which Wasm modules can interact. 

 

Figure 9: High-level overview of the dependencies among the Operating System, Wasm runtime and Wasm 
Modules. 

Figure 9 provides a comprehensive, high-level depiction of the interdependencies among the operating 

system, Wasm runtime, and Wasm workloads. The operating system is the fundamental platform on 

which all other components operate. It provides services like managing hardware resources and system 

services. Above it is the Wasm runtime, an intermediary between the operating system and Wasm 

modules. Wasm runtime interprets and translates the bytecode into machine code. Finally, Wasm 

modules are files which contain Wasm bytecode. All these layers work together to execute Wasm 

applications efficiently on the host system. 

There are numerous Wasm runtimes available for different use cases. These runtimes vary in their 

performance, security features, and supported APIs. In this thesis, two specific Wasm runtimes will be 

explored in detail: Fermyon Spin and WasmEdge. 

WasmEdge 

WasmEdge is a lightweight, high-performance, and extensible Wasm runtime. It is designed for cloud-

native, edge, and decentralized applications, including serverless apps, embedded functions, 

microservices, smart contracts, and IoT devices. It supports a wide range of programming languages 

and a wide variety of WASI-like extensions, enabling features such as network sockets, async 

processing, TensorFlow inference, key-value stores, database connectors, and resource control [40]. 
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Fermyon Spin 

Fermyon Spin is a framework used for building Wasm microservices and web applications. It is designed 

for creating and running event-driven microservice applications with Wasm components. Like 

WasmEdge, it also supports various programming languages and libraries. It also offers data persistence 

with Postgres, Redis and file storage [41]. 

2.4 WebAssembly Meets Kubernetes 

In the previous sections, containers, K8s, and Wasm were discussed. In this section, the focus shifts 

towards combining these technologies for efficient application execution. This thesis explores two 

methods to run Wasm workload in a K8s environment: the first involving crun and the second with 

containerd. 

2.4.1 Approach 1: crun 

crun is an OCI-compatible low-level runtime that natively supports running Wasm workloads through 

Wasm runtime. It is compatible with three well-known container runtimes: WasmEdge, Wasmer, and 

Wasmtime. 

Figure 10 shows the K8s worker node running Wasm workloads with crun. The architecture is like that 

of a K8s worker node running containers. The key difference is that instead of creating a container from 

a container image, crun executes Wasm runtime. The Wasm runtime then creates a sandbox environment 

and executes the Wasm workloads. 
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Figure 10: Worker node architecture with Kubelet, a high-level container runtime, crun, and a WebAssembly 
runtime, enabling the execution of Wasm workloads within a Kubernetes cluster. 

In the described architecture of a K8s worker node running Wasm workloads with crun, a critical 

consideration emerges: How does crun distinguish between a container image and an image containing 

a Wasm workload? The key lies in the use of annotations. Before creating a container from an image, 

crun checks the metadata passed by the high-level container runtime and searches for the 

run.oci.handler=wasm annotation in the metadata of the image. This annotation signals to crun 

that the workload should be run using a Wasm handler rather than the standard handler [42]. 

2.4.2 Approach 2: containerd 

containerd is an open-source, industry-standard runtime. It does not support Wasm out of the box. But 

its modular architecture allows it to be extended with custom containerd-shims. 

To enable containerd to run and manage Wasm workloads, a specialized custom containerd-shim is 

needed. Such a containerd-shim can be developed with the help of the runwasi project. runwasi is 

intended to be consumed as a library to develop containerd-shim. A custom containerd-shim can be 

developed to work as a mediator between containerd and Wasm runtime [43]. 
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Figure 11: Worker node architecture with Kubelet, containerd, containerd-shim, and a WebAssembly runtime, 
enabling the execution of Wasm workloads within a Kubernetes cluster. 

Figure 11 shows the K8s worker node running Wasm workloads with containerd and a custom 

containerd-shim, compatible with Wasm runtime. The key difference from a traditional container setup 

is that instead of calling a standard containerd-shim designed for running containers, a special shim, 

compatible with Wasm runtime, is invoked. This special containerd-shim interacts with the Wasm 

runtime, which is responsible for creating a sandboxed environment for running the Wasm Workload 

[43]. 

The question arises: How does containerd know which containerd-shim to use to create a container or 

execute Wasm modules? This is where runtime Handler Configuration and a K8s feature called 

RuntimeClass comes into play. Runtime Handler is specified for each low-level container runtime 

in the high-level container runtime configuration. A K8s RuntimeClass resource object is then 

created through the K8s API Server, which consists of the name of the RuntimeClass resource and the 

name of the handler specified in the configuration of high-level container runtime. The name of the 

RuntimeClass Resource is then used in the manifest file, which deploys the workload in the K8s cluster 

[44]. 

  



 

32 
 

3 Materials and Methods 
This chapter builds upon the theory discussed in Section 2.4, covering the practical aspects of the 

methods for integrating Wasm within a K8s environment. 

The practical part begins with the compilation and containerization of a Wasm workload, including 

setting up the development environment. It then provides a guide on modifying K8s nodes for each 

method to support Wasm execution. Finally, it covers deploying the containerized Wasm workload onto 

the K8s cluster, which includes modifying the K8s environment, creating manifest files, and managing 

the deployment process. 

This chapter demonstrates two practical methods using a K8s setup with one control plane and two 

worker nodes. Each node is configured differently to run the Wasm workload: Node 1 uses crun with 

WasmEdge, and Node 2 uses containerd, containerd-shim, and Fermyon Spin. Figure 12 illustrates the 

components of a K8s cluster with modification to run the Wasm workload. 

 

Figure 12: The hybrid K8s cluster architecture with one master node and two worker nodes. The worker node 1 
with CRI-O, crun, WasmEdge, and worker node 2 with containerd, containerd-shim for Fermyon Spin, Fermyon 

Spin, containerd-shim for runc and runc. 
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3.1 Prerequisites 

This thesis focuses on installing and configuring necessary components on the two worker nodes to 

enable Wasm functionality within an existing K8s cluster. Setting up a K8s master node is beyond the 

scope of this work. The following prerequisites must be met: 

• Worker Nodes: Two Virtual Machines or physical machines running Ubuntu 20.04. These 

machines will be configured and joined to the existing K8s cluster.  

• Pre-Configured K8s Master Node: This thesis assumes a functional K8s master node running 

K8s version 1.28.2. 

If required, a script is provided in Appendix A to automate the installation and configuration of 

Kubelet, kubectl, containerd, and runc. This script also initializes the K8s cluster. To use it, save 

the script as setup.sh and run the following command: 

$ sudo ./setup.sh master 

 

3.2 Method 1: Wasm Workload Execution using crun Runtime 

This method aims to build, deploy, and run a REST API microservice as a Wasm workload on one of 

the two worker nodes. This process involves using crun with WasmEdge support. The theoretical 

underpinnings of this were detailed in Section 2.4.1. 

As discussed in Section 2.2, K8s depend on low-level container runtimes such as runc or crun to run 

and manage containers. crun can run not only containers but also Wasm workloads. crun does this 

because it natively supports running Wasm workloads using WasmEdge, Wasmer, and Wasmtime [43]. 

3.2.1 Development Environment Setup for Wasm Compilation 

This section outlines the essential software required for building, packaging, and pushing WasmEdge-

compatible Wasm workloads to container registries. This enables packaged Wasm workloads to be 

pulled and executed within a K8s cluster. 

Table 1 lists the software and versions needed for the WasmEdge-based Wasm workload development. 
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Table 1: List of required software and versions for compiling and building WasmEdge-compatible Wasm 
container images. 

Type Component Version 

Container Image Builder Buildah 1.32.2 

Programming Language Rust 1.75.0 

Wasm runtime WasmEdge 0.12.1 

 

Software Selection and Installation: 

• Buildah: Buildah is chosen because it is daemon-less and smaller in size than other container 

image builder tools, such as Docker. For installation, follow the official Buildah GitHub 

repository instructions [45]. 

• Rust: Rust is chosen for its speed and excellent Wasm integration. Install using the official Rust 

website’s instructions [46]. 

• WasmEdge: WasmEdge is chosen for its native support by the crun container runtime [47]. 

Refer to the WasmEdge official website for installation [48].  

Please note that this thesis will not detail the step-by-step process for installing the software mentioned 

above. Each of these tools can be installed directly from their official websites, where comprehensive 

installation guides are provided. 

3.2.2 Building, Containerizing, and Publishing Wasm Workload 

After setting up the development environment, the next steps involve compiling the Wasm workload, 

packaging it within a container image, and publishing it to an OCI-compatible image registry. 

Project structure and source code: 

The project folder is illustrated in Figure 13. 

 

Figure 13: Organizational structure of the source code. 

The core components of the Rust application include: 

• main.rs: This file is the primary entry point of the Rust application. 
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• Cargo.toml: The Rust project manifest file contains configuration details and 

dependencies. 

• Dockerfile: The Dockerfile provides instructions for compiling and containerizing the 

application. 

Appendix B of this thesis provides the source code for this application. 

Debugging Source Code: 

Before containerizing the application, ensure that the project compiles and runs correctly in the local 

environment. As discussed in Section 2.3, Wasm is designed as a portable compilation target for 

programming languages, and Wasm support must be added to Rust by executing the following 

command: 

$ rustup target add wasm32-wasi 

After adding Wasm support to Rust, execute the following command to pull the dependencies and 

build the Rust project for the wasm32-wasi5 target: 

$ cargo build –-target wasm32-wasi –-release 

On successful compilation, the Wasm application will be saved at ./target/wasm32-

wasi/release/http_server.wasm. 

To run the Wasm application on the development machine, run the following command: 

$ wasmedge ./target/wasm32-wasi/release/http_server.wasm 

 

Building a Container Image: 

After the successful execution of Wasm workload on the development machine, the next step is to build 

a container image with Buildah. To build and push the container image, run the following commands: 

$ buildah bud -t <image_name>:<image_tag> . 

$ buildah push <image_name>:<image_tag> 

 

 
5 wasm32-wasi target is compiled for 32-bit Wasm and designed to run outside of web browsers in environments 

that support the WASI interface. 
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3.2.3 Configuring Worker Node 1 

As discussed in Section 2.4, in a standard K8s setup, the Kubelet interacts with a high-level container 

runtime such as containerd or crun, which manages low-level container runtimes like runc or crun. For 

the objectives of this method, Node 1 will be configured to use CRI-O as the high-level container 

runtime, along with crun (with WasmEdge support) as a low-level container runtime and WasmEdge as 

a Wasm runtime. This section will focus on installing and configuring CRI-O, crun, and WasmEdge, 

enabling them to execute Wasm workloads within the K8s environment. 

The versions specified below were selected to ensure compatibility at the time of writing of this thesis 

or its subsequent publication: 

Table 2: List of key components and version for worker node 1. 

Component Version 

WasmEdge 0.12.1 

Crun 1.8.4 

CRI-O 1.24.6 

Kubelet 1.28.2 

 

Worker Node Setup Automation Script: To streamline the setup process, a script automating the 

installation and configuration of the Kubelet, CRI-O, crun with WasmEdge support, and WasmEdge is 

provided in Appendix A. This script uses the recommended versions but allows specific versions to be 

set by passing arguments. To execute the script, copy the setup.sh from Appendix A to Node 1 and run 

the command: 

$ sudo ./setup.sh method1 

 

Manual Setup: The following sections detail the installation and configuration of necessary 

components: 

• Installation of WasmEdge: The first step involves installing the WasmEdge binary on Node 

1. Refer to the WasmEdge official website for installation [48]. This installation ensures that 

Wasm workloads compatible with WasmEdge can be executed on Node 1. 

• Installation and Configuration of crun with WasmEdge Support: Once WasmEdge is 

successfully installed, the next step is to install and configure crun with WasmEdge support. 

The easiest approach is to build crun binaries with WasmEdge support from the source code 

and install the crun binary on the worker node 1. Refer to the official WasmEdge documentation 

[49] for compiling crun with WasmEdge support. 
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• Installation and Configuration of CRI-O: Once crun with WasmEdge support is successfully 

installed, the next step is to install and configure CRI-O. Install CRI-O by following the official 

installation instructions found on the CRI-O GitHub repository [50]. By default, CRI-O uses 

runc runtime as its primary low-level container runtime. It must be configured to use crun with 

WasmEdge support as the low-level container runtime. 

This configuration is achieved by editing the CRI-O configuration file, typically located at 

/etc/crio/crio.conf. If the configuration file doesn’t exist, create it, integrate the 

configuration outlined in Listing 2 into the [crio.runtime] section of the file and update 

the runtime_path within the snippet to reflect the actual installation of crun. 

Listing 2: This snippet ensures that CRI-O will utilize crun with WasmEdge runtime as its default runtime. 

# Other CRI-O configuration settings ... 
 
[crio.runtime] 
default_runtime = "crun"   
 
[crio.runtime.runtimes.crun] 
runtime_path = "/path/to/crun"  
 
# ... Other CRI-O configuration settings 

After updating the configuration file, restart CRI-O by executing the following command: 

$ sudo systemctl restart cri-o 

• Installation of Kubelet: Please refer to the official Kubernetes installation instructions for 

installing the Kubelet [51]. 

Join Worker Node 1 to K8s Master Node 

After installing and configuring WasmEdge, crun, CRI-O, and Kubelet on worker node 1, the final step 

is to join it to the master node. 

1. Obtain Join Token: Retrieve the join token and control plane endpoint information that was 

displayed during the setup of the master node. 

2. Initiate Join: On worker node 1, execute the following command, providing the token and 

control plane endpoint from the last step: 

$ sudo kubeadm join <control-plane-endpoint:port> --token <token> 

--discovery-token-ca-cert-hash sha256:<hash> 

3. Verify Success: Upon successful execution, the terminal should display output confirming the 

node has joined the cluster. (See Figure 14 for an example). 
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Figure 14: Successful execution of the sudo kubeadm join command, indicating the node has been added 
to the K8s cluster.  

 

3.2.4 Deployment of Wasm Module in K8s 

Finally, the WasmEdge runtime compatible Wasm workload is deployed in K8s. As discussed in Section 

2.2.3, the deployment and management of the K8s cluster are accomplished through the kubectl 

command-line interface, which was installed on the master node. 

To ensure the Wasm workload is scheduled on a node equipped with the WasmEdge runtime, 

specifically worker node 1, labels and nodeSelector can be used. Initially, all nodes capable of 

running a Wasm workload compatible with the WasmEdge runtime are labelled. To label the worker 

node 1, run the following command, replacing worker1 with the actual hostname of worker node 1: 

$ kubectl label nodes worker1 wasmedge=true 

After the Worker node is labelled, the Wasm workload can be deployed on the node using the manifest 

from Appendix B. Save the manifest locally wasmedge-app-manifest.yml. The image specified 

in the manifest is maintained by the official WasmEdge community. For deploying the workload built 

in Section 3.2.2, replace wasmedge/example-wasi-http:compat-smart with the image 

name and tag specified in that section. Finally, apply the manifest to the K8s cluster by executing the 

following command: 

$ kubectl apply -f wasmedge-app-manifest.yml 

After successfully executing the above command, the workload specified in the manifest should be 

running on the targeted nodes. To verify this, execute the following command: 

$ kubectl get deployment 

The output of the above command should resemble Figure 15, verifying that all three replicas of Wasm 

workload are in a ready state. 
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Figure 15: Output of the kubectl get deployment command, confirming successful Wasm workload 
deployment with three ready replicas. 

Assuming the workload built in Section 3.2.2 is deployed using the K8s manifest from Appendix B, it 

should be accessible on node port 31001. Figure 16 provides confirmation of workload accessibility via 

a successful curl command. 

 

Figure 16: Output of the curl command, confirming a successful REST request to a WasmEdge workload 
deployed within a K8s cluster. 

3.3 Method 2: Wasm Workload Execution using containerd Runtime 

This method aims to build, deploy, and run REST API microservice written in Rust on the second worker 

node. This method involves using containerd, containerd-shim, and Fermyon Spin. The theoretical 

underpinnings of this method are detailed in Section 2.4.2. 

As discussed in Section 2.4.2, containerd is modular by architecture, and its abilities can be extended 

with shims. Custom shims can be developed for Wasm runtime, which can be used with containerd to 

manage the Wasm workload. These custom containerd-shims work as mediators between containerd 

and Wasm runtime. This method uses Fermyon Spin as Wasm runtime and a compatible containerd-

shim from an open-source project named containerd-wasm-shims. The members of Microsoft’s 

Deislabs maintain the open-source project and develop multiple containerd-shims, which are compatible 

with different Wasm runtimes. 

3.3.1 Development Environment Setup for Wasm Compilation 

This section covers the software needed to build, package, and publish Fermyon Spin compatible Wasm 

workloads to container registries. 

This method primarily utilizes software detailed in the first method’s development environment setup, 

including Buildah and Rust. For their setup, please refer to Section 3.2.1. The only key difference in the 

use of the Fermyon Spin Framework and Fermyon Spin runtime instead of WasmEdge runtime. 

Table 3 lists the software and versions needed for the Fermyon Spin-based Wasm workload 

development. 
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Table 3: List of required software and their versions for compiling and building Wasm images compatible with 
Fermyon Spin. 

Type Component Version 

Container Image Builder Buildah V1.32.2 

Programming Language Rust 1.75.0 

Wasm runtime Fermyon Spin 2.0.1 

 

Tool Selections and Installation: 

• Fermyon Spin: It is chosen for its focus on simplifying Wasm development for cloud-native 

environments. Refer to its official website for installation [41]. 

For installation guidance of other software, please refer to Section 3.2.1. 

3.3.2 Building, Containerizing, and Publishing Wasm Workload 

After setting up the development environment, the next steps involve building the Spin application, 

packaging it within a container image, and publishing it to a container image registry.  

Project structure and source code: 

The project folder is illustrated in Figure 17. 

 

Figure 17: Organizational structure of the source code. 

The core components of the Rust application include: 

• lib.rs: This file contains the main HTTP handling function for Fermyon Spin component. 

• Cargo.toml: The manifest file contains configuration details and dependencies for the Rust 

project. 

• spin.toml: This file provides configuration and metadata for Fermyon Spin application. 

• Dockerfile: This file defines the steps to build and containerize the application. 

The source code for this application is provided in Appendix C. 
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Debugging Source Code: 

This step covers the process of compiling and running Wasm workload in the local environment to 

ensure that it compiles and runs correctly. Building source code into Wasm workload and debugging it 

is similar to the first approach. The only difference is that Spin runtime instead of WasmEdge is needed 

to run the Wasm workload. First, the Wasm Support must be added to Rust by executing the following 

command: 

$ rustup target add wasm32-wasi 

After adding Wasm Support to Rust, execute the following command to pull the dependencies and 

build the project: 

$ cargo build –-target wasm32-wasi –-release 

On successful compilation, the Wasm application is located at ./target/wasm32-

wasi/release/http_server.wasm. 

To run the Wasm workload with Fermyon Spin execute the following command: 

$ spin up 

 

Building a Container Image: 

After the successful execution of Wasm workload on the development machine, the next step is to build 

a container image with Buildah. To build and push the container image, run the following commands: 

$ buildah bud -t <image_name>:<image_tag> . 

$ buildah push <image_name>:<image_tag> 

 

3.3.3 Configuring Worker Node 2 

For the second method, Fermyon Spin is chosen as Wasm runtime and containerd as the high-level 

container runtime. The versions specified below were selected to ensure compatibility at the time of the 

writing of this thesis or its subsequent publication: 
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Table 4: List of key components and version for worker node 2. 

Component Version 

Fermyon Spin 2.0.1 

containerd-shim 0.10.0 

containerd 1.7.12 

Kubelet 1.28.2 

 

Worker Node Setup Automation Script: To ease the setup process, a script automating the installation 

and configuration of the Kubelet, containerd, containerd-shim, Fermyon Spin is provided in Appendix 

A. To execute the script, copy the setup.sh from Appendix A to node 2 and run the following 

command: 

$ sudo ./setup.sh method2 

 

Manual Setup: The following sections detail the installation and configuration of necessary 

components: 

• Installation of Fermyon Spin: The first step involves the installation of Fermyon Spin binary on 

the K8s worker node to execute the Wasm workload. Refer to its official website for installation 

[41]. 

• Installation of containerd-shim: The next step is to install the containerd-shim binaries, which 

work as a bridge or mediator between the Wasm runtime and containerd. This can be done by 

downloading the binaries from the GitHub repository and moving them to the /bin directory. For 

binaries and up-to-date documentation, check the official GitHub repository of the containerd-shim 

project [44]. 

• Installation and Configuration of containerd: Once the containerd-shim compatible with the 

Fermyon Spin is installed on the system, the next step is to install containerd and configure it to use 

Fermyon Spin. The easiest way to install containerd on the second worker node is to follow the 

installation steps of the containerd official documentation [52]. 

After installing containerd, the last step is to configure containerd. As discussed in Section 2.4.2, a 

handler for Fermyon Spin is added to the containerd configuration located at 

/etc/containerd/config.toml. In the configuration file, under [plugins] section, add a 

new runtime entry for Fermyon Spin.  

This entry should specify the runtime_type as io.containerd.grpc.v1.cri followed 

by the name spin of handler. 
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Listing 3: Configuration snippet for integrating Fermyon Spin runtime with containerd by specifying Fermyon 
Spin as a runtime with the type io.containerd.spin.v2. 

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.spin] 

    runtime_type = "io.containerd.spin.v2" 

• Installation of Kubelet: Please refer to the official Kubernetes installation instructions for 

installing the Kubelet [51]. 

Join Worker Node 2 to K8s Master Node 

After installing and configuring Fermyon Spin, containerd-shim, containerd and Kubelet on worker 

node 2, the last step is to join the second worker node to the master node. The process to join the master 

node is the same as method 1. Refer to Section 3.2.3 for joining the second worker node to K8s cluster. 

3.3.4 Deployment of Wasm Module in K8s 

Finally, a Wasm workload compatible with the Fermyon Spin runtime is deployed to a K8s cluster. As 

discussed in Section 2.2.3, this is accomplished using the kubectl command-line interface. 

To ensure the Wasm workload is scheduled on a node equipped with the Fermyon Spin runtime, 

specifically worker node 2, labels and nodeSelector can be used. Initially, all nodes capable of 

running a Wasm workload compatible with the Fermyon Spin runtime are labelled. To label worker 

node 2, run the following command, replacing worker2 with the actual hostname of the worker node: 

$ kubectl label nodes worker2 spin=true 

After the worker node is labelled, the Wasm workload can be deployed on the node using the manifest 

from Appendix C. Save the manifest locally as spin-app-manifest.yml. The official Fermyon 

Spin community maintains the image specified in the manifest. For deploying the workload built in 

Section 3.3.2, replace the value of the image in the spin-app-manifest.yml file with the image 

and tag used to push the image to the container registry. Finally, apply the manifest to the K8s cluster 

by executing the following command: 

$ kubectl apply -f spin-app-manifest.yml 

After executing the above command, the workload specified in the manifest should be running on the 

targeted nodes. To verify this, execute the command: 

$ kubectl get deployment 

The output of the above command should resemble Figure 18. 
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Figure 18: Output of the kubectl get deployment command, confirming successful Wasm workload 
deployment with three ready replicas. 

Assuming the workload built in Section 3.3.2 is deployed using the manifest from Appendix C, it should 

be accessible on node port 31002. Figure 19 provides confirmation of workload accessibility via a 

successful curl command. 

 

Figure 19: Output of the curl command, confirming a successful REST request to a Fermyon Spin workload 
deployed within a K8s cluster. 

  



 

45 
 

4 Discussion and Conclusion 
This thesis explored two primary methods for integrating Wasm into K8s: the crun runtime method and 

the containerd runtime method. These methods represented unique strategies for deploying Wasm 

workloads within a K8s cluster. 

The first method used WasmEdge as the Wasm runtime with crun to execute Wasm workloads. The 

second method used Fermyon Spin as the Wasm runtime with containerd, using a containerd-shim, for 

workload execution. 

By utilizing these methods, Wasm workloads were successfully deployed and executed alongside 

containers within the same K8s cluster.  

4.1 Challenges Faced in Each Method 

4.1.1 Challenges with crun Runtime 

The integration of Wasm workloads using crun runtime has several challenges. One of the major 

challenges is its limited compatibility with specific Wasm runtimes, namely WasmEdge, Wasmer, and 

Wasmtime. The second challenge encountered with the crun runtime is that crun works only with a 

single Wasm runtime at a time. Replacing the crun binary with one compatible with the desired Wasm 

runtime is necessary to switch to a different Wasm runtime. 

4.1.2 Challenges with containerd Runtime 

Integrating Wasm workloads using containerd, containerd-shim, and Wasm runtime has several 

challenges. One of the primary challenges is ensuring compatibility between containerd, containerd-

shim and Wasm runtime. This involves ensuring the containerd-shim version works seamlessly with 

containerd and Wasm runtime. The other challenge in using containerd revolves around its capabilities 

to allow custom containerd-shim. While using custom containerd-shim provides flexibility, it also poses 

a challenge: the necessity to develop a containerd-shim compatible with a specific Wasm runtime. 

4.2 Future Research Directions 

Addressing Shim Development Challenges: Future research could focus on creating more adaptable 

or universal shims that can work with multiple Wasm runtimes within containerd, reducing the need to 

develop individual containerd-shim for every Wasm runtime. 

Standardization Efforts: There’s also scope for exploring standardization in containerd-shim 

development, which could resolve some of the challenges associated with the current need for specific 

shims for each Wasm runtime. 
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4.3 Concluding Remarks 

In conclusion, this thesis offers insights into the integration of Wasm with K8s, contributing to the 

advancement of server-side application development. Despite the challenges, the successful 

implementation of both the crun and containerd methods demonstrates the potential benefits of this 

integration. This research lays the base for further exploration of the Wasm-based deployment methods 

in K8s to design more efficient, scalable, and secure computing solutions. 
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Appendix 
Appendix A 

The Bash script in Listing 4 automates the setup of a K8s cluster, including the installation and 

configuration of container runtimes (containerd, CRI-O, and crun), K8s components, and Wasm runtimes 

like WasmEdge and Fermyon Spin. It also allows for custom versioning of each component through 

command-line arguments. The script is developed to configure both master and worker nodes, with 

specific setups for different types of worker nodes. 

To use the script: 

1. Save it as setup.sh. 

2. Make it executable with chmod +x setup.sh. 

3. Run ./setup.sh master to configure the master node. 

4. Run ./setup.sh method1 to setup the first worker node with CRI-O, crun and 

WasmEdge runtime. 

5. Run ./setup.sh method2 to setup the second worker node with containerd, containerd-

shim for Fermyon Spin, and Fermyon Spin runtime. 

Listing 4: This Bash script automates the setup of a K8s cluster, including the installation and configuration of 
container runtimes. 

#!/bin/bash 

set -e 

 

# Ensure the script is run as root 

if [ "$(id -u)" -ne 0 ]; then 

    echo "This script must be run as root." >&2 

    exit 1 

fi 

 

# Initialize default versions 

OS="${VARIABLE:-xUbuntu_20.04}" 

CONTAINERD_VERSION="${VARIABLE:-1.7.12}" 

CRIO_VERSION="${VARIABLE:-1.24}" 

CRUN_VERSION="${VARIABLE:-1.8.4}" 

FERMYON_SPIN_VERSION="${VARIABLE:-2.0.1}" 

CONTAINERD_SPIN_SHIM_VERSION="${VARIABLE:-0.10.0}" 

KUBERNETES_VERSION="${VARIABLE:-1.28.2-00}" 

RUNC_VERSION="${VARIABLE:-1.1.11}" 

WASMEDGE_VERSION="${VARIABLE:-0.12.1}" 
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# Function for error handling with improved logging and cleanup 

error_exit() { 

    echo "[$(date +'%Y-%m-%dT%H:%M:%S%z')]: Error: $1" >&2 

    show_help 

    exit 1 

} 

 

# Function to avoid redundant downloads 

download_file() { 

    local url=$1 

    local dest=$2 

 

    if [ ! -f "$dest" ]; then 

        wget -q "$url" -O "$dest" || error_exit "Failed to download $url" 

    else 

        echo "File $dest already exists, skipping download." 

    fi 

} 

 

# Function to add repository and download key. 

add_repository_and_key() { 

    local add=$1 

    local dest=$2 

    local key_url=$3 

    local key="Release.key" 

 

    echo "$add" >"$dest" || error_exit "Failed to add repository $dest" 

    download_file "$key_url" "$key" 

    apt-key add "$key" || error_exit "Failed to add key" 

    rm -f "$key" 

} 

 

# Function to parse arguments and override default versions 

parse_args() { 

    for opt in "$@"; do 

        case $opt in 

        --containerd=*) CONTAINERD_VERSION="${opt#*=}" ;; 

        --containerd-shim=*) CONTAINERD_SPIN_SHIM_VERSION="${opt#*=}" ;; 

        --crun=*) CRUN_VERSION="${opt#*=}" ;; 

        --crio=*) CRIO_VERSION="${opt#*=}" ;; 

        --kubernetes=*) KUBERNETES_VERSION="${opt#*=}" ;; 

        --os=*) OS="${opt#*=}" ;; 

        --runc=*) RUNC_VERSION="${opt#*=}" ;; 

        --wasmedge=*) WASMEDGE_VERSION="${opt#*=}" ;; 

        --spin=*) FERMYON_SPIN_VERSION="${opt#*=}" ;; 

        -h | --help) show_help ;; 
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        *) ;; # Ignore unrecognized options 

        esac 

    done 

} 

 

# Function to show help 

show_help() { 

    cat <<EOF 

 

Usage: sudo $0 [OPTIONS] COMMAND 

 

Options: 

    --containerd[=VERSION]        # Set the containerd version (default: 

$CONTAINERD_VERSION) 

    --containerd-shim[=VERSION]   # Set the Fermion Spin Shim version (default: 

$CONTAINERD_SPIN_SHIM_VERSION) 

    --crun[=VERSION]              # Set the crun version (default: $CRUN_VERSION) 

    --crio[=VERSION]              # Set the cri-o version (default: $CRIO_VERSION) 

    --kubernetes[=VERSION]        # Set the Kubernetes version (default: 

$KUBERNETES_VERSION) 

    --os[=OS]                     # Set the operating system (default: $OS) 

    --runc[=VERSION]              # Set the runc version (default: $RUNC_VERSION) 

    --wasmedge[=VERSION]          # Set the WasmEdge version (default: 

$WASMEDGE_VERSION) 

 

Commands: 

    master                        # Run installation for master node 

    method1                       # Run installation for method1 on node 

    method2                       # Run installation for method2 on node 

 

Examples: 

    sudo $0 master                     # Uses default versions for OS, cri-o, crun, 

wasmedge, and Kubernetes 

    sudo $0 method1                    # Uses default versions for OS, cri-o, crun, 

wasmedge, and Kubernetes 

    sudo $0 method2                    # Uses default versions for OS, containerd, 

runc, fermyon spin, containerd-shim, and Kubernetes 

     

    sudo $0 --os=$OS --containerd=$CONTAINERD_VERSION --runc=$RUNC_VERSION --

kubernetes=$KUBERNETES_VERSION master  # Set specific versions for OS, containerd, 

runc, and Kubernetes for master node 

    sudo $0 --os=$OS --crio=$CRIO_VERSION --crun=$CRUN_VERSION --

wasmedge=$WASMEDGE_VERSION --kubernetes=$KUBERNETES_VERSION method1  # Set specific 

versions for OS, cri-o, crun, wasmedge, and Kubernetes for method1 on node 

    sudo $0 --os=$OS --containerd=$CONTAINERD_VERSION --runc=$RUNC_VERSION --

spin=$FERMYON_SPIN_VERSION --containerd-shim=$CONTAINERD_SPIN_SHIM_VERSION --
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kubernetes=$KUBERNETES_VERSION method2  # Set specific versions for OS, containerd, 

runc, fermyon spin, containerd-shim, and Kubernetes for method2 on node 

 

EOF 

    exit 0 

} 

 

# Function to wait for apt lock release 

wait_for_apt_lock() { 

    local max_attempts=150 

    local attempt_counter=1 

 

    while fuser /var/lib/dpkg/lock >/dev/null 2>&1 || 

        fuser /var/lib/dpkg/lock-frontend >/dev/null 2>&1 || 

        fuser /var/lib/apt/lists/lock >/dev/null 2>&1; do 

        if ((attempt_counter == max_attempts - 1)); then 

            error_exit "Maximum attempts reached while waiting for apt-get lock." 

        fi 

 

        echo "apt-get is locked. Attempt: ${attempt_counter}. Waiting..." 

        sleep 2 

        ((attempt_counter++)) 

    done 

} 

 

# Function to install packages with lock handling 

install_packages() { 

    wait_for_apt_lock 

    apt-get install -y "$@" || error_exit "Failed to install packages: $*" 

} 

 

# Function to update packages with lock handling 

update_packages() { 

    wait_for_apt_lock 

    apt-get update --fix-missing -y || error_exit "Failed to update packages" 

} 

 

# Function to setup sysctl 

# Reference: https://kubernetes.io/docs/setup/production-environment/container-

runtimes/ 

setup_sysctl() { 

    tee /etc/modules-load.d/k8s.conf <<EOF 

overlay 

br_netfilter 

EOF 
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    modprobe overlay 

    modprobe br_netfilter 

 

    tee /etc/sysctl.d/k8s.conf <<EOF 

net.bridge.bridge-nf-call-iptables  = 1 

net.bridge.bridge-nf-call-ip6tables = 1 

net.ipv4.ip_forward                 = 1 

EOF 

 

    # Apply sysctl params without reboot 

    sysctl --system 

} 

 

# Function to disable swap 

# Reference: https://kubernetes.io/docs/setup/production-environment/container-

runtimes/ 

disable_swap() { 

    swapoff -a 

    ( 

        crontab -l 2>/dev/null 

        echo "@reboot /sbin/swapoff -a" 

    ) | crontab - || true 

} 

 

# Function to install WasmEdge 

# Reference: https://wasmedge.org/docs/start/install/ 

install_wasmedge() { 

    update_packages 

 

    echo -e "Installing WasmEdge" 

    local install_script="install_wasmedge.sh" 

    wget -q 

"https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/utils/install.sh" -O 

"$install_script" 

    chmod a+x "$install_script" 

    if [[ -z "$WASMEDGE_VERSION" ]]; then 

        ./"$install_script" --path="/usr/local" 

    else 

        ./"$install_script" --path="/usr/local" --version="$WASMEDGE_VERSION" 

    fi 

    rm -f "$install_script" 

} 

 

# Function to install FermyonSpin Runtime 

# Reference: https://developer.fermyon.com/spin/v2/install 

install_fermyon_spin() { 
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    echo -e "Installing FermyonSpin Runtime" 

    local install_script="install_spin.sh" 

    wget "https://developer.fermyon.com/downloads/install.sh" -O "$install_script" 

    chmod a+x "$install_script" 

    if [[ -z "$FermyonSpin_VERSION" ]]; then 

        ./"$install_script" 

    else 

        ./"$install_script" --version=v"$FermyonSpin_VERSION" 

    fi 

    mv ./spin /usr/local/bin/spin 

    rm -f "$install_script" 

 

} 

 

# Function to install crun with WasmEdge support 

# Reference: https://wasmedge.org/docs/develop/deploy/oci-runtime/crun/ 

install_crun() { 

    echo -e "Building and installing crun" 

    install_packages make git gcc build-essential pkgconf libtool libsystemd-dev 

libprotobuf-c-dev libcap-dev libseccomp-dev libyajl-dev go-md2man libtool autoconf 

python3 automake 

    local tarball="crun-${CRUN_VERSION}.tar.gz" 

    wget 

"https://github.com/containers/crun/releases/download/${CRUN_VERSION}/$tarball" 

    tar --no-overwrite-dir -xzf "$tarball" 

    mv "crun-${CRUN_VERSION}" crun 

    pushd crun || exit 

    ./autogen.sh 

    if [[ $USE_WASMEDGE == true ]]; then 

        ./configure --with-wasmedge 

    else 

        ./configure 

    fi 

    make 

    make install 

    popd 

    rm -rf "$tarball" 

    rm -rf "crun" 

} 

 

# Function to install runc 

# Reference: https://github.com/containerd/containerd/blob/main/docs/getting-

started.md 

install_runc() { 

    echo -e "Installing runc" 
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    local 

runc_url="https://github.com/opencontainers/runc/releases/download/v${RUNC_VERSIO

N}/runc.amd64" 

    local runc_file="runc.amd64" 

    wget "$runc_url" -O "$runc_file" 

    install -m 755 "$runc_file" /usr/local/sbin/runc 

    rm -f "$runc_file" 

} 

 

# Function to install cri-o 

# Reference: https://software.opensuse.org/download/package?package=cri-

o&project=devel%3Akubic%3Alibcontainers%3Astable%3Acri-o%3A1.19 

install_crio() { 

    echo -e "Installing cri-o and its dependencies" 

    install_packages libseccomp2 

 

    # Add repositories 

    add_repository_and_key "deb 

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/$O

S/ /" "/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list" 

"https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/$

OS/Release.key" 

    add_repository_and_key "deb 

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable:/c

ri-o:/$CRIO_VERSION/$OS/ /" 

"/etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-

o:$CRIO_VERSION.list" 

"https://download.opensuse.org/repositories/devel:kubic:libcontainers:stable:cri-

o:$CRIO_VERSION/$OS/Release.key" 

 

    # Update and install cri-o 

    update_packages 

    install_packages cri-o 

 

    # Write config for crio 

    # Path to the CRI-O configuration file 

    CRIO_CONFIG="/etc/crio/crio.conf" 

 

    # Get the path of crun 

    CRUN_PATH=$(which crun) 

 

    # Backup the original configuration file 

    cp $CRIO_CONFIG "${CRIO_CONFIG}.bak" 

 

    # Update the default runtime to crun 

    sed -i 's/^#* *default_runtime = .*/default_runtime = "crun"/' $CRIO_CONFIG 
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    # Add crun runtime configuration 

    sed -i "/^\#[[:space:]]*\[crio.runtime.runtimes.crun\]/c 

[crio.runtime.runtimes.crun]\nruntime_path = \"$CRUN_PATH\"" "$CRIO_CONFIG" 

 

    # Enable and start the CRI-O service 

    systemctl enable crio 

    # Reload or restart the CRI-O service 

    if systemctl is-active --quiet crio; then 

        echo "Reloading CRI-O service" 

        systemctl reload crio 

    else 

        echo "CRI-O service is not active. Trying to start it." 

        systemctl start crio 

    fi 

 

    # Check if the service is running 

    if systemctl is-active --quiet crio; then 

        echo "CRI-O service is running with crun as the default runtime." 

    else 

        echo "Failed to start CRI-O service. Please check the service status." 

    fi 

    systemctl restart crio 

} 

 

# Function to install containerd shim 

# Reference: https://github.com/deislabs/containerd-wasm-shims 

install_containerd_fermyon_spin_shim() { 

    echo -e "Installing containerd shim for Fermyon Spin Runtime" 

    wget "https://github.com/deislabs/containerd-wasm-

shims/releases/download/v${CONTAINERD_SPIN_SHIM_VERSION}/containerd-wasm-shims-

v2-spin-linux-x86_64.tar.gz" 

    tar -xzf "containerd-wasm-shims-v2-spin-linux-x86_64.tar.gz" -C /bin 

    rm "containerd-wasm-shims-v2-spin-linux-x86_64.tar.gz" 

} 

 

# Function to install CNI plugins 

# Reference: https://github.com/containerd/containerd/blob/main/docs/getting-

started.md 

install_cni_plugins() { 

    echo -e "Installing CNI plugins" 

    wget 

https://github.com/containernetworking/plugins/releases/download/v1.4.0/cni-

plugins-linux-amd64-v1.4.0.tgz -O cni-plugins.tgz 

    mkdir -p /opt/cni/bin 

    tar Cxzvf /opt/cni/bin cni-plugins.tgz 

    rm cni-plugins.tgz 
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} 

 

# Function to configure CNI plugins 

# Reference: https://github.com/containernetworking/cni 

configure_cni_plugins() { 

    mkdir -p /etc/cni/net.d 

    cat >/etc/cni/net.d/10-mynet.conf <<EOF 

{ 

    "cniVersion": "0.2.0", 

    "name": "mynet", 

    "type": "bridge", 

    "bridge": "cni0", 

    "isGateway": true, 

    "ipMasq": true, 

    "ipam": { 

        "type": "host-local", 

        "subnet": "10.22.0.0/16", 

        "routes": [ 

            { "dst": "0.0.0.0/0" } 

        ] 

    } 

} 

EOF 

    cat >/etc/cni/net.d/99-loopback.conf <<EOF 

{ 

    "cniVersion": "0.2.0", 

    "name": "lo", 

    "type": "loopback" 

} 

EOF 

} 

 

# Function to install containerd 

# Reference: https://github.com/containerd/containerd/blob/main/docs/getting-

started.md 

install_containerd() { 

    echo -e "Installing containerd" 

 

    # Download containerd tar file 

    wget 

"https://github.com/containerd/containerd/releases/download/v${CONTAINERD_VERSION

}/containerd-${CONTAINERD_VERSION}-linux-amd64.tar.gz" 

 

    # Extract containerd tar file 

    tar -C /usr/local -xf containerd-${CONTAINERD_VERSION}-linux-amd64.tar.gz 
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    # Download containerd.service unit file 

    wget 

"https://raw.githubusercontent.com/containerd/containerd/main/containerd.service" 

-O /etc/systemd/system/containerd.service 

 

    # Reload systemd daemon 

    systemctl daemon-reload 

 

    # Enable and start containerd 

    systemctl enable --now containerd 

 

    # Delete the downloaded tar file 

    rm containerd-${CONTAINERD_VERSION}-linux-amd64.tar.gz 

} 

 

# Function to configure containerd and adding shim to the containerd config 

# Reference: https://github.com/deislabs/containerd-wasm-shims 

configure_containerd() { 

    echo -e "Configuring containerd" 

    if [ ! -d "/etc/containerd" ]; then 

        mkdir /etc/containerd 

    fi 

    containerd config default >/etc/containerd/config.toml 

    sed -i 's/SystemdCgroup = false/SystemdCgroup = true/' 

/etc/containerd/config.toml 

    # Map runtime type to the shim binary 

    sed -i '/\[plugins\]/a\ 

    [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.spin]\ 

        runtime_type = "io.containerd.spin.v2"' /etc/containerd/config.toml 

    systemctl restart containerd 

} 

 

# Function to install kubeadm dependencies 

install_k8s_components() { 

 

    # Forwarding IPv4 and letting iptables see bridged traffic 

    setup_sysctl 

 

    # Disable swap 

    disable_swap 

 

    echo -e "Installing kubeadm dependencies" 

    update_packages 

 

    # Install Kubeadm dependencies 

    install_packages apt-transport-https ca-certificates curl 
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    # Add the Kubernetes repository 

    tee /etc/apt/sources.list.d/kubernetes.list <<EOF 

deb [signed-by=/usr/share/keyrings/kubernetes-archive-keyring.gpg] 

https://apt.kubernetes.io/ kubernetes-xenial main 

EOF 

 

    # Download the GPG keys for Kubernetes packages 

    curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg 

https://dl.k8s.io/apt/doc/apt-key.gpg 

 

    # Update the package list and install Kubeadm, Kubelet, and Kubectl 

    update_packages 

    install_packages kubelet="$KUBERNETES_VERSION" kubeadm="$KUBERNETES_VERSION" 

    apt-mark hold kubelet kubeadm 

} 

 

# Function to handle master node setup 

# Reference: https://kubernetes.io/docs/setup/production-environment/container-

runtimes/ 

setup_master() { 

    echo -e "Setting up ${NODE_TYPE} node" 

 

    # Install runc 

    install_runc 

 

    # Install CNI plugins 

    install_cni_plugins 

 

    # Configure CNI plugins 

    configure_cni_plugins 

 

    # Install containerd 

    install_containerd 

 

    # Install Kubernetes and its dependencies 

    install_k8s_components 

 

    # Install kubectl 

    install_packages kubectl="$KUBERNETES_VERSION" 

     

    # Initialize kubeadm 

    local local_ip=$(hostname -I | awk '{print $1}') 

    kubeadm init --apiserver-advertise-address=$local_ip 

 

    # Move kube config to user's home directory 
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    local user_home=$(getent passwd "$SUDO_USER" | cut -d: -f6) 

    mkdir -p $user_home/.kube 

    cp -i /etc/kubernetes/admin.conf $user_home/.kube/config 

    chown $(id -u $SUDO_USER):$(id -g $SUDO_USER) $user_home/.kube/config 

 

    # Save join token into a variable for later use 

    local join_token=$(kubeadm token create --print-join-command) 

    echo -e "Join token: $join_token" 

} 

 

# Function to handle installation and configuration of method1 on node 

setup_method1() { 

    echo -e "Setting up ${NODE_TYPE} node with CRI-O, crun, and WasmEdge Runtime" 

 

    # Install WasmEdge 

    install_wasmedge 

 

    # Building and installing crun with WasmEdge support 

    USE_WASMEDGE=true install_crun 

 

    # Install CNI plugins 

    install_cni_plugins 

 

    # Configure CNI plugins 

    configure_cni_plugins 

 

    # Install cri-o 

    install_crio 

 

    # Install Kubernetes and its dependencies 

    install_k8s_components 

} 

 

# Function to handle installation and configuration of method2 on node 

setup_method2() { 

    echo -e "Setting up ${NODE_TYPE} node with Containerd, containerd-shim, and 

FermyonSpin Runtime" 

     

    # Install FermyonSpin Runtime 

    install_fermyon_spin 

 

    # Install runc 

    install_runc 

 

    # Install containerd shim binary compatible with Fermyon Spin 

    install_containerd_fermyon_spin_shim 
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    # Install CNI plugins 

    install_cni_plugins 

 

    # Configure CNI plugins 

    configure_cni_plugins 

 

    # Install containerd 

    install_containerd 

 

    # Configure containerd to use shim 

    configure_containerd 

 

    # Install Kubernetes and its dependencies 

    install_k8s_components 

} 

 

# Main installation function 

main() { 

    parse_args "$@" 

    if [[ "$1" == "master" || "$HOSTNAME" == "master" ]]; then 

        setup_master 

    elif [[ "$1" == "method1" ]]; then 

        setup_method1 

    elif [[ "$1" == "method2" ]]; then 

        setup_method2 

    else 

        show_help 

        exit 1 

    fi 

    echo -e "Finished Installation" 

} 

 

# Execute main function with all arguments 

main "$@" 
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Appendix B 

This appendix provides the Wasm application source code, its file structure, and K8s manifest for the first 

method discussed in Section 2.4.1 of this thesis. 

 
Listing 5: This main.rs file contains the Rust source code and serves as the entry point for a WasmEdge-based 

HTTP server application. 

use httpcodec::{HttpVersion, ReasonPhrase, Response, StatusCode}; 

use std::io::Write; 

use wasmedge_wasi_socket::{Shutdown, TcpListener, TcpStream}; 

 

fn handle_client_request(mut stream: TcpStream) -> std::io::Result<()> { 

    // Prepare a basic HTTP response with additional headers 

    let response = Response::new( 

        HttpVersion::V1_1, 

        StatusCode::new(200).unwrap(), 

        ReasonPhrase::new("").unwrap(), 

        format!("Hello HAW!! from WasmEdge App"), 

    ); 

    // Write the response 

    stream.write_all(response.to_string().as_bytes())?; 

    // Ensure all data is sent before shutdown 

    stream.flush()?; 

    // Shutdown the writing side of the stream 

    stream.shutdown(Shutdown::Both)?; 

 

    Ok(()) 

} 

 

fn main() -> std::io::Result<()> { 

    let listener = TcpListener::bind(format!("0.0.0.0:1234"), false)?; 

    println!("Http server bound to {}", listener.port.unwrap()); 

    loop { 

        // Handle the client request 

        let stream = listener.accept(false)?.0; 

        handle_client_request(stream)?; 

    } 

} 
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Listing 6: This Cargo.toml file configuration defines the http_server package, setting its name, version, 
author, Rust edition, and listing its dependencies for Wasm project. 

[package] 

name = "http_server"             # The name of the package. In this case, 

the package is named "http_server". 

version = "1.0.0"                # The version of the package. This follows 

Semantic Versioning (major.minor.patch). 

authors = ["Micheal Choudhary"]  # A list of authors. 

edition = "2018"                 # The Rust edition the package is written 

in. 

 

[dependencies]                   # Dependencies list. 

httpcodec = "0.2.3" 

wasmedge_wasi_socket = "0.5.3" 

 

Listing 7: This Dockerfile file is designed for building a Wasm workload from Rust source code and 
packaging it within a scratch image. 

# Use a Rust base image 

FROM rust:1.75.0-slim AS builder 

 

# Add the wasm32-wasi target 

RUN rustup target add wasm32-wasi 

 

# Set the working directory 

WORKDIR /example_app_wasmedge 

 

# Copy the Rust project files 

COPY ./src ./src 

COPY ./Cargo.toml ./Cargo.toml 

 

# Build the Rust code into WebAssembly using Wasmer 

RUN cargo build --target=wasm32-wasi --release 

 

# Create a new stage with a scratch image 

FROM scratch AS final 

 

# Copy the compiled WebAssembly file from the builder stage 

COPY --from=builder /example_app_wasmedge/target/wasm32-

wasi/release/http_server.wasm /http_server.wasm 

 

# Set the entrypoint to the WebAssembly file 

ENTRYPOINT ["/http_server.wasm"] 
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Listing 8: This wasmedge-app-manifest.yml manifest YAML file defines a K8s Deployment and Service 
for a Wasm application compatible with WasmEdge. 

--- 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: wasmedge-deploy 

spec: 

  replicas: 3 

  selector: 

    matchLabels: 

      app: app-wasmedge 

  template: 

    metadata: 

      labels: 

        app: app-wasmedge 

      annotations: 

        module.wasm.image/variant: compat-smart 

    spec: 

      nodeSelector: 

        wasmedge: "true" 

      containers: 

      - name: wasmedge-http-server 

        image: wasmedge/example-wasi-http:compat-smart 

--- 

apiVersion: v1 

kind: Service 

metadata: 

    name: wasmedge-service 

spec: 

  type: NodePort 

  selector: 

    app: app-wasmedge 

  ports: 

    - protocol: TCP 

      nodePort: 31001 

      port: 80 

      targetPort: 1234 
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Appendix C 

This appendix provides the Wasm application source code, its file structure, and K8s manifest for the 

second method discussed in Section 2.4.2 of this thesis. 

Listing 9: This lib.rs file contains the Rust source code defining the core HTTP server logik for a Fermyon 
Spin-based application. 

// Import necessary modules from the spin_sdk crate. 

use spin_sdk::http::{IntoResponse, Response}; 

use spin_sdk::http_component; 

 

// An HTTP component in the Fermyon Spin application. 

#[http_component] 

// The function takes an HTTP request with an empty body (indicated by 

`http::Request<()>`) as its argument. 

async fn hello_haw(_request: http::Request<()>) -> anyhow::Result<impl 

IntoResponse> { 

    // Construct an HTTP response with a status code of 200 (OK) and 

response body container the "Hello HAW" Text. 

    Ok(Response::new(200, "Hello HAW!! from Fermyon Spin App")) 

} 

 
Listing 10: This Cargo.toml file configuration defines the http_server package, setting its name, version, 

author, Rust edition, and listing its dependencies for Wasm project. 

[package] 

name = "http_server" # Name of the package, used as the identifier. 

version = "1.0.0" # Semantic versioning of the package. 

authors = ["Micheal Choudhary"] # List of authors, useful for credit and 

contact purposes. 

edition = "2021" # Specifies which Rust edition to use. 

 

[lib] 

crate-type = ["cdylib"] # Indicates that this crate is a dynamically linked 

library. 

 

[dependencies] 

# Below are the external crates (libraries) that this project depends on. 

 

anyhow = "1.0.79" # Provides idiomatic error handling facilities. 

http = "0.2.11" # A foundational crate for HTTP handling in Rust, allows 

building HTTP-based services. 
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spin-sdk = "2.1.0" # A domain-specific library, ensure compatibility and 

check for updates regularly. 

wit-bindgen-rust = "0.16.0" # Provides WebAssembly interface types bindings 

for Rust. Crucial for WASM-based projects. 

 

Listing 11: This spin.toml file provides configuration and metadata for a Fermyon Spin application. 

# The version of the Spin manifest file. 

spin_manifest_version = 2 

 

[application] 

# The authors of the application, useful for metadata and package 

registries. 

authors = ["Micheal Choudhary <mc@miche.al>"] 

# A short description of the application's purpose or functionality. 

description = "A simple Spin app for thesis" 

# The name of the application, used for identification. 

name = "http_server" 

# The version of the application, adhering to semantic versioning. 

version = "0.0.1" 

 

# An array of triggers. Each trigger defines how an incoming request is 

handled. 

[[trigger.http]] 

# The route on which the trigger activates. In this case, it activates on 

the root path. 

route = "/" 

# The component to invoke when the trigger is activated. 

component = "hello" 

 

# Configuration for the "hello" component. 

[component.hello] 

# The source file of the component, pointing to the compiled WASM binary. 

source = "target/wasm32-wasi/release/http_server.wasm" 

# A description of what the "hello" component does. 

description = "A simple hello HAW component" 

 

# Build instructions for the "hello" component. 

[component.hello.build] 

# The command to clean the previous build, and then build the project 

targeting wasm32-wasi for release. 

command = "rm -rf build && cargo clean && cargo build --target wasm32-wasi 

--release" 
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Listing 12: This Dockerfile file is designed for building a Wasm workload from Rust source code and 
packaging it within a scratch image. 

# Use a Rust base image 

FROM rust:1.75.0-slim AS builder 

 

# Add the wasm32-wasi target 

RUN rustup target add wasm32-wasi 

 

# Set the working directory 

WORKDIR /example_app_spin 

 

# Copy the Rust project files 

COPY ./src ./src 

COPY ./Cargo.toml ./Cargo.toml 

COPY ./spin.toml ./spin.toml 

# Build the Rust code into WebAssembly using Wasmer 

RUN cargo build --target=wasm32-wasi --release 

 

# Create a new stage with a scratch image 

FROM scratch AS final 

 

# Copy the compiled WebAssembly file from the builder stage 

COPY --from=builder /example_app_spin/target/wasm32-

wasi/release/http_server.wasm ./target/wasm32-

wasi/release/http_server.wasm 

COPY --from=builder /example_app_spin/spin.toml . 

# Set the entrypoint to the WebAssembly file 

ENTRYPOINT ["/"] 

 
Listing 13: This spin-app-manifest.yml manifest YAML file defines a K8s Deployment and Service for a 

Wasm application compatible with Fermyon Spin. 

--- 

apiVersion: node.k8s.io/v1 

kind: RuntimeClass 

metadata: 

  name: wasmtime-spin-v2 

handler: spin 

scheduling: 

  nodeSelector: 

    spin: "true" 

--- 

apiVersion: apps/v1 

kind: Deployment 
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metadata: 

  name: wasm-spin-deploy 

spec: 

  replicas: 3 

  selector: 

    matchLabels: 

      app: app-spin 

  template: 

    metadata: 

      labels: 

        app: app-spin 

    spec: 

      runtimeClassName: wasmtime-spin-v2 

      containers: 

        - name: spin-http-server 

          image: ghcr.io/deislabs/containerd-wasm-shims/examples/spin-

rust-hello:latest 

          command: ["/"] 

--- 

apiVersion: v1 

kind: Service 

metadata: 

    name: spin-service 

spec: 

  type: NodePort 

  selector: 

    app: app-spin 

  ports: 

    - protocol: TCP 

      nodePort: 31002 

      port: 80 

      targetPort: 80 
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