

Table of contents

II

Kenan Deniz

Advanced Machine Learning –

Implementation of Condition-Based

and Predictive Maintenance for an

Industry 4.0 production plant

Masterthesis eingereicht im Rahmen der Masterprüfung im

Studiengang Automatisierung am Department Informations-

und Elektrotechnik der Fakultät Technik und Informatik der

Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.-Ing. Florian Wenck

Zweitgutachter: Associate Prof. Dr.-Ing. Shen JianQiang

Abgegeben am 04. 08. 2024

Table of contents

III

Kenan Deniz

Thema der Masterthesis

Advanced Machine Learning –

Implementation of Condition-Based and Predictive Maintenance

for an Industry 4.0 production plant

Stichworte

Zustandsbasierte Wartung, Prädiktive Wartung, Industrie 4.0, Internet der Dinge,

Cyber-Physische Systeme, Machine Learning

Kurzzusammenfassung

Diese Arbeit präsentiert die Entwicklung und Implementierung einer zustandsba-

sierten und prädiktiven Wartungslösung für eine Industrie 4.0 Produktionsanlage.

Die Lösung integriert den Datenfluss und die Echtzeitüberwachung über Node-

RED, ein prädiktives Wartungsmodell, das in MATLAB trainiert wurde, und die

Speicherung von Daten in InfluxDB. Eine Benutzeroberfläche bietet Echtzeit-Da-

tenvisualisierung, automatisierte Warnungen und Benachrichtigungen, um zeit-

nahe Wartungsmaßnahmen zu gewährleisten.

Kenan Deniz

Title of the paper

Advanced Machine Learning –

Implementation of Condition-Based and Predictive Maintenance

for an Industry 4.0 production plant

Keywords

Condition-based maintenance, predictive Maintenance, Industry 4.0, Internet of

Things, Cyber-Physical Systems, Machine Learning

Abstract

This thesis presents the development and implementation of a condition-based

and predictive maintenance solution for an Industry 4.0 production plant. The so-

lution integrates data flow and real-time monitoring using Node-RED, a predictive

maintenance model trained in MATLAB, and data storage in InfluxDB. A user in-

terface provides real-time data visualization, automated alerts, and notifications,

ensuring timely maintenance actions.

Table of contents

IV

Table of contents

Abstract ... III

List of Figures ... VII

List of Tables .. X

List of Abbreviations .. 11

1 Introduction ... 13

1.1 Motivation ... 13

1.2 Aim of the thesis .. 13

1.3 Structure of the thesis ... 14

2 Theoretical Foundations ... 15

2.1 Maintenance .. 15

2.2 Maintenance Strategies .. 16

2.3 Reactive Maintenance .. 17

2.4 Preventive Maintenance ... 18

2.4.1 Periodic Maintenance ... 18

2.4.2 Condition-Based Maintenance .. 20

2.4.3 Predictive Maintenance .. 24

2.5 Industry 4.0 ... 26

2.5.1 Cyber-Physical Systems ... 27

2.5.2 Smart Objects ... 29

2.5.3 Internet of Things ... 29

2.5.4 Internet of Things and Services ... 31

2.5.5 Big Data ... 31

2.6 Machine Learning .. 32

2.6.1 Supervised Learning .. 33

2.6.2 Unsupervised Learning .. 35

2.6.3 Reinforcement Learning .. 36

2.6.4 Machine Learning Algorithms .. 36

2.6.5 Support Vector Machines ... 37

2.6.6 Isolation Forest ... 46

2.6.7 Artificial Neural networks ... 48

Table of contents

V

2.6.8 Deep Learning ... 62

3 The Industry 4.0 Production Plant .. 64

3.1 Products and production process .. 65

3.2 Components .. 69

3.2.1 IMS Stations .. 69

3.2.2 KUKA Robot ... 76

3.2.3 ERP-Lab .. 78

3.2.4 The production plant in terms of Industry 4.0 .. 81

3.2.5 Controller network and data blocks ... 82

4 Concept ... 86

4.1 Functional requirements analysis ... 86

4.2 Selection of necessary tools .. 88

5 Implementation and deployment ... 94

5.1 Communication and data flow .. 94

5.1.1 Prerequisites .. 94

5.1.2 Data flow within Node-RED .. 95

5.1.3 Storing the data in InfluxDB ... 100

5.1.4 Accessing the data in Grafana ... 101

5.2 Condition Monitoring and Alert Management ... 102

5.2.1 Condition monitoring ... 103

5.2.2 Maintenance alerts, notifications and alert-data ... 106

5.2.3 Notification interruptions .. 116

5.3 User interface and dashboards .. 118

5.3.1 Node-RED dashboards ... 118

5.3.2 Grafana dashboards ... 123

5.4 Data analysis through Machine Learning ... 126

5.4.1 Acquiring representative data ... 127

5.4.2 Data analysis of conveyor belts .. 128

5.4.3 Anomaly detection for the KUKA robot ... 139

5.5 Integration ... 143

5.5.1 Performing predictions within MATLAB .. 143

5.5.2 Accessing the predictions within Node-RED .. 146

6 Functional Testing ... 148

Table of contents

VI

6.1 General functionality .. 148

6.2 Accessibility of data ... 149

6.3 Condition-based and preventive maintenance capabilities 152

6.4 Notifications ... 155

7 Conclusion .. 158

7.1 Summary ... 158

7.2 Outlook ... 160

Bibliography .. 161

Appendix ... 168

List of Figures

VII

List of Figures

Figure 2.1: Maintenance Strategies (adapted from [3], p. 18; [5], p. 27 and [6], p. 5) 16

Figure 2.2: Visualization of the reactive maintenance strategy (adapted from [27]) 17

Figure 2.3: Visualization of the periodic maintenance strategy (adapted from [27]) 18

Figure 2.4: Visualization of condition-based maintenance (adapted from [27]) 20

Figure 2.5: Visualization of the predictive maintenance strategy (adapted from [27]) 24

Figure 2.6: The four industrial revolutions (adapted from [19], p. 30) 26

Figure 2.7: Cyber-physical systems (adapted from [21], p. 11) ... 28

Figure 2.8: Evolution of industrial hierarchies through IoT (adapted from [26]) 30

Figure 2.9: Machine Learning vs classic imperative programming (adapted from [31]) 32

Figure 2.10: Identification of anomalies (adapted from [34], p. 14) 36

Figure 2.11: Two groups of data points in a feature space (adapted from [38]) 37

Figure 2.12: Example of insufficient hyperplanes (adapted from [38]) 38

Figure 2.13: Hyperplanes with additional datapoints (adapted from [38]) 39

Figure 2.14: Optimal hyperplane with support vectors (adapted from [38]) 39

Figure 2.15: Hard-margin-classification and outliers (adapted from [34], p. 157) 41

Figure 2.16: Soft-margin-classification (adapted from [35], p. 71) .. 42

Figure 2.17: Soft-margin-classification and parameter C (adapted from [34], p. 157) 42

Figure 2.18: Adding another feature dimension (adapted from [40]) 43

Figure 2.19: Separation by hyperplane and back transformation (adapted from [40]) 44

Figure 2.20: Visualization of an iForest (adapted from [42]) .. 46

Figure 2.21: Perceptron [43] ... 49

Figure 2.22: Sigmoid, tanh and ReLU activation function (adapted from [46], p. 36) 50

Figure 2.23: Fully connected feedforward neural network (adapted from [46]) 51

Figure 2.24: Optimizing through loss score (adapted from [51], p. 11) 53

Figure 2.25: Gradient descent on a one-dimensional curve [52] .. 54

Figure 2.26: Learning rate, too low vs too high (adapted from [34], p. 122) 55

Figure 2.27: Plateau, local and global minimum within loss function (adapted from [34]) ... 56

Figure 2.28: 3-fold cross-validation [51] ... 58

Figure 2.29: Structure of an Autoencoder [54] .. 63

Figure 3.1: Industry 4.0 production plant [67] .. 64

Figure 3.2: Individual workpieces (adapted from [57]) ... 65

Figure 3.3: Schematic plant overview (adapted from [58]) ... 66

Figure 3.4: RFID read and write units and carrier flow (adapted from [58]) 67

Figure 3.5: Conveyor belt IMS Station 1 [67] ... 70

Figure 3.6: IMS Station 3a (adapted from [57] (left) and [67] (right)) 71

Figure 3.7: IMS Station 4a (adapted from [57] (left) and [67] (right)) 72

Figure 3.8: IMS Station 4a (adapted from [57] (left) and [67] (right)) 73

Figure 3.9: IMS Station 6 (adapted from [57] (left) and [67] (right)) 74

Figure 3.10: IMS Station 7 (adapted from [57] (left) and [67] (right)) 75

Figure 3.11: KUKA robot KR6 R700 (adapted from [57] (left) and [67] (right)) 77

Figure 3.12: Design and structure of ERP-Lab [58] ... 78

Figure 3.13: ERP-Lab v2.1.0 (Order view) [67] .. 79

Figure 3.14: ERP-Lab v2.1.0 (SCADA) [67] ... 80

Figure 3.15: OpenCart web shop [67] ... 81

Figure 3.16: TIA Portal network overview showing PLC and KRC4 connections [67] 82

Figure 3.17: Cropped view of PLC_1’s data blocks [67] ... 83

Figure 4.1: Black box of the condition-based and predictive maintenance solution [67] 86

List of Figures

VIII

Figure 4.2: Grey box including the necessary tools [67] ... 88

Figure 4.3: White box including the specific combination of tools [67] 92

Figure 4.4: Outline of the tool’s architecture and data flow [67] .. 93

Figure 5.1: OPC UA Item nodes within Node-RED [67] ... 95

Figure 5.2: Central timestamp and OPC UA Client [67] .. 97

Figure 5.3: Settings of OPC UA Client Central [67] ... 97

Figure 5.4: Addresses of the OPC UA server [67] ... 97

Figure 5.5: Data flow of IMS Station 1 [67] .. 98

Figure 5.6: Settings of the InfluxDB-out node [67] ... 99

Figure 5.7: Stored data within InfluxDB [67] .. 100

Figure 5.8: View of the tabular data and Flux query within InfluxDB [67] 101

Figure 5.9: InfluxDB as a data source within Grafana [67] .. 102

Figure 5.10: Query language setting in Grafana [67] ... 102

Figure 5.11: Condition monitoring flow ... 103

Figure 5.12: Condition monitoring of IMS Station 4a [67] ... 104

Figure 5.13: Settings of an excursion node [67] .. 104

Figure 5.14: Settings of the delay node [67] .. 105

Figure 5.15: Central control of notifications [67] ... 106

Figure 5.16: Creation of maintenance alerts and pop-up notifications [67] 107

Figure 5.17: Initialization of variables [67] .. 108

Figure 5.18: Iteration over each Item within the array [67] ... 109

Figure 5.19: Adding the last part of the alert message [67] .. 110

Figure 5.20: Settings of e-mail node (left) and notification node (right) [67] 110

Figure 5.21: Function for audio node [67] .. 111

Figure 5.22: Logging alert-data into the database [67] .. 111

Figure 5.23: Alert-Table function nodes [67]... 112

Figure 5.24: Alert-table in central flow storage [67] .. 113

Figure 5.25: Adding rows to the alert-table [67] ... 114

Figure 5.26: Alert table for real-time data ... 115

Figure 5.27: Nodes providing silencer functionality [67] .. 116

Figure 5.28: Dashboard layout IMS (Counter-View) [67] ... 119

Figure 5.29: Charts of IMS Station 1 within the Energy-View [67] 120

Figure 5.30: Dashboard layout IMS (Energy-View) [67] .. 120

Figure 5.31: Charts of the axis motor temperature within the KUKA Overview [67] 121

Figure 5.32: Layout of the Alert-Dashboard [67] .. 122

Figure 5.33: Test audio signal button [67] ... 122

Figure 5.34: Tabs and links of the user interface [67] ... 123

Figure 5.35: Creation of a time series graph with flux queries in Grafana [67] 124

Figure 5.36: The current of each KUKA axis as an excerpt of its dashboard [67] 124

Figure 5.37: Dashboard of IMS Station 4a [67] .. 125

Figure 5.38: List of all Grafana dashboards [67].. 126

Figure 5.39: Normal power consumption of the conveyor belt motors [67] 129

Figure 5.40: Ground level of circular arranged conveyor belt motors [67] 129

Figure 5.41: Preprocessing [67] .. 130

Figure 5.42: Data preprocessed and centered around zero [67] ... 130

Figure 5.43: Visualization of the different classes [67] ... 131

Figure 5.44: Scatter plot of the signal statistics peak value ... mean 133

Figure 5.45: Creating a session in the "Classification Learner" app [67] 134

Figure 5.46: Excerpt of the ranking based on validation accuracy [67] 135

Figure 5.47: Validation confusion matrix of quadratic SVM with all features [67] 135

List of Figures

IX

Figure 5.48: Ranked classifiers trained with smaller sample set [67]................................... 137

Figure 5.49: Validation confusion matrix of trained quadratic SVM [67] 137

Figure 5.50: Quadratic SVM training and test results [67] ... 138

Figure 5.51: normal data (left) and anormal data (right).. 139

Figure 5.52: Creation of the binary SVM [67] ... 140

Figure 5.53: Confusion matrix SVM [67] .. 140

Figure 5.54: Creation of the Isolation Forest [67] .. 141

Figure 5.55: Confusion matrix iForest [67] ... 141

Figure 5.56: Creation of the AE [67] ... 142

Figure 5.57: Defining the threshold [67] ... 142

Figure 5.58: Confusion matrix AE [67] ... 143

Figure 5.59: Communication between MATLAB and InfluxDB [67] 144

Figure 5.60: Subtract baseline values [67] .. 144

Figure 5.61: Performing the prediction [67] ... 145

Figure 5.62: Calling the machine learning prediction in threads [67] 146

Figure 5.63: Prediction data flow [67] .. 147

Figure 6.1: Sidebar menu [67] ... 148

Figure 6.2: Excerpt of dashboards [67] ... 149

Figure 6.3: Plant-Overview [67] .. 150

Figure 6.4: Grafana dashboard [67] ... 151

Figure 6.5: Grafana time range selector [67].. 151

Figure 6.6: Alert tables [67] .. 152

Figure 6.7: Predictive maintenance output [67] .. 153

Figure 6.8: Logging of threshold exceeding data in InfluxDB [67] 153

Figure 6.9: Visualization of the states within Grafana [67] .. 154

Figure 6.10: Maintenance-Alert pop-up [67] .. 155

Figure 6.11: Machine Learning alert [67] ... 156

Figure 6.12: E-Mail notifications [67] ... 156

Figure 6.13: Alert-Dashboard [67] .. 157

List of Tables

X

List of Tables

Table 2.1: Generally used kernels .. 45

Table 3.1: Conveyor belt [59] .. 70

Table 3.2: IMS Station 3a and 3b [59] ... 72

Table 3.3: IMS Station 5a and 5b [59] ... 73

Table 3.4: IMS Station 6 [59] ... 74

Table 3.5: IMS Station 7 ... 76

Table 3.6: Data IMS Stations (adapted from [59]) .. 84

Table 3.7: Data KUKA robot (adapted from [59]) ... 85

Table 4.1:Tool Decision Matrix .. 89

Table 5.1: Local and network addresses of InfluxDB, Node-RED and Grafana [67] 94

List of Abbreviations

11

List of Abbreviations

DIN Deutsches Institut für Normung

EN European Norm

CPS Cyber-physical systems

IoT Internet of Things

IoTS Internet of Things and Services

IP Internet Protocol

CT Computer Tomography

SVM Support vector machine

IF Isolation Forest

MSE Mean squared error

ANN Artificial neural network

NN Neural network

FNN Feed forwad neural network

RNN Recurrent neural network

ReLU Rectified linear unit

Tanh Tangens hyperbolicus

SGD Stochastic gradient descent

AE Autoencoder

PLC Programmable Logic Controller

ERP Enterprise Resource Planning

MES Manufacturing Execution System

CoAP Constrained Application

List of Abbreviations

12

UDP User Datagram Protocol

HTML Hypertext Markup Language

API Application Programming Interfaces

Introduction

13

1 Introduction

1.1 Motivation

The concept of Industry 4.0 represents the ongoing digital transformation within the produc-

tion industry, aiming to connect all machines, systems, and processes within a network

through information and communication technologies (cf. [28]). By integrating smart and

intelligent systems and creating an interconnected network, information can be accessed and

processed automatically.

Industry 4.0 has significantly evolved over the years, with growing emphasis on the connec-

tivity of equipment, enhancing efficiency, and improving system availability. Today the im-

plementation of maintenance measures not only aims to reduce costs and prevent failures

but also to predict and identify potential issues before they occur. This maintenance strategy

helps to minimize downtime and extend the lifespan of equipment. As a result, the demand

for condition-based and preventive maintenance solutions is growing.

1.2 Aim of the thesis

The development of condition-based and predictive maintenance concepts is an ongoing and

growing task, where not much complete solutions and accessible examples exist, especially

on a smaller scale. Most existing work focuses on theoretical approaches and the develop-

ment of complex machine learning algorithms, without a following practical implementation

and integration within actual production plants, machines or systems.

The goal of this thesis is to implement a condition-based and predictive maintenance solution

for an Industry 4.0 production plant manufactured by Lucas-Nuelle and located at the Shang-

hai-Hamburg College of the University of Shanghai for Science and Technology. The focus

is on developing a solution that integrates and displays all available data and informational

inputs, making them accessible to operators and maintenance personnel. This solution aims

to provide a comprehensive real-time overview, developing incorporating condition moni-

toring and machine learning outputs. The objective is not to create the most advanced

Introduction

14

machine learning algorithm but to develop a practical and effective solution suited for the

task and real-time application.

1.3 Structure of the thesis

Chapter 2 introduces the theoretical foundations relevant to this thesis, covering various

maintenance strategies such as condition-based and predictive maintenance, Industry 4.0,

and machine learning concepts.

Chapter 3 presents the Industry 4.0 production plant, detailing its setup and operations.

Chapter 4 describes the development of the condition-based and predictive maintenance

solution, including the functional requirement analysis and selection of necessary tools.

Chapter 5 focuses on the implementation of the solution, starting with the establishment

of the data flow from the PLC to Node-RED, data storage, and the integration of condition

monitoring. It also covers the creation of maintenance alerts, dashboards, and the training

of a machine learning algorithm in MATLAB.

Chapter 6 tests the solution, presenting its user interface and functionalities, in regard to

the defined requirements.

Chapter 7 provides a summary of the thesis and offers future outlooks for further develop-

ment and improvements.

Theoretical Foundations

15

2 Theoretical Foundations

The goal of this thesis is to implement a condition-based and predictive maintenance solution

for an industry 4.0 production plant based on machine learning and the internet of things. In

the following chapter the fundamentals of maintenance, as well as industry 4.0 and machine

learning are explained.

Due to the nature and content of this thesis, all following theoretical foundations are ex-

plained within a production context. For mathematical equations, the following notation is

defined, unless otherwise specified: Vectors are denoted by bold lowercase, such as v and

matrices are represented by bold uppercase letters, such as A. Sets are represented by upper-

case letters and scalars are denoted by lowercase letters.

2.1 Maintenance

Maintenance unites the actions of servicing, inspection, repair and improvement of a plant,

machine, system, or unit in order to keep its functionality and performance as intended, as

well as to prevent any breakdowns or, in case of a failure or malfunction, restore it to its

desired state (cf. [1], p. 4). The purpose of maintenance measures in a production environ-

ment is to prolong and maximize the current run- and total lifetime of a unit as well as to

minimize downtime and ensure a consistent quality and reliability of the production pro-

cesses.

According to the DIN 31051 and DIN EN 13306 maintenance is defined as the entirety of

all administrative, managerial, and technical steps with the purpose to maintain and restore

a functional state, i.e. the functionality, of a unit during its life cycle (cf. [1], p. 4 and [2]).

The application and frequency of these measures, as well as the specific order in which they

are implemented or planned, depend on the chosen maintenance strategy. Used effectively,

maintenance strategies contribute to increased productivity, reduced operational costs, im-

proved safety, and overall efficiency (cf. [3], pp. 15-16 and [4]).

Theoretical Foundations

16

2.2 Maintenance Strategies

Figure 2.1: Maintenance Strategies (adapted from [3], p. 18; [5], p. 27 and [6], p. 5)

Maintenance strategies describe the approach to achieve defined maintenance goals through

specific maintenance measures. These maintenance strategies can be divided into three dis-

tinct groups: reactive maintenance, preventive maintenance, and predictive maintenance.

While predictive maintenance can be considered a preventive maintenance strategy, since it

aims to achieve the shared objective to prevent breakdowns or malfunctions through predic-

tive measures before they occur, it is treated hereafter as a separate maintenance strategy (cf.

[7], p. 189 and see Fig. 2.1).

In the following, the different maintenance strategies as well as their associated measures

are explained:

Theoretical Foundations

17

2.3 Reactive Maintenance

Figure 2.2: Visualization of the reactive maintenance strategy (adapted from [27])

Reactive maintenance, also known as corrective maintenance or breakdown maintenance,

follows a simple principle: if it is broken, it will be fixed. In accordance with this principle

reactive maintenance takes place if and after a fault, failure or breakdown occurs (see Fig.

2.2). It involves reacting to faults and replacing or repairing broken or faulty parts with no

prior maintenance schedules or planning. Therefore, it requires a quick maintenance re-

sponse and available maintenance personnel, as faults cannot be anticipated and can occur

at any time and scale as well as on different systems or parts simultaneously. Moreover, for

a replacement or repair to take place, the actual fault needs to be localized or identified, if

not already known. As a result, heavier breakdowns, a shortage of spare parts or waiting for

external suppliers or personnel can lead to longer downtimes (see Fig. 2.2). This in turn can

lead to higher maintenance and production costs as well as safety risks since the safety and

continuous availability of the production plants cannot be guaranteed or lead times cannot

be met.

Reactive maintenance should therefore only be used on parts and machine components that

won’t significantly impact the productivity and safety, in case a failure or breakdown occurs,

and are less critical to the overall operation of a system or plant as well as cost-efficient and

easy to identify and replace. Since this maintenance strategy does not require prior planning

or scheduling and the entire lifecycle of a component is used at the time of replacement, it

can potentially reduce maintenance costs compared to preventive maintenance (see Section

2.4), if the risks resulting from a failure are low. Faults or failures can be corrected immedi-

ately or repairments can be delayed according to their criticality and the impact of a systems

functionality (cf. [3], p. 18). Paired with preventive maintenance strategies, a balanced cost-

efficiency and system reliability can be achieved.

Theoretical Foundations

18

2.4 Preventive Maintenance

The core strategy behind preventive maintenance is to replace parts or machine components

regularly before a fault or malfunction occurs. The frequency hereby can be chosen or influ-

enced based on time, usage, manufacturer instructions and usage-experience, for example

whether a component is prone to failure or not. The DIN EN 13306 defines it as maintenance,

that is “carried out at predetermined intervals or according to prescribed criteria to reduce

the probability of failure or the probability of limited functional performance of a unit” (cp.

[2] and [6], p. 7).

Based on the selected criteria and execution, preventive maintenance can be categorized into

two groups: periodic and condition-based maintenance. These will be described in the fol-

lowing sections.

2.4.1 Periodic Maintenance

Figure 2.3: Visualization of the periodic maintenance strategy (adapted from [27])

Periodic maintenance, also known as predetermined maintenance (cf. [5], p. 19), is carried

out according to predesigned schedules that follow specific usage-criteria (see Fig. 2.3).

These criteria or the chosen periodic maintenance schedules can be time-based, for example

based on the time of first installment, last maintenance measure, fixed dates or number of

instructed maintenance measures per year, or usage-based, based on the time a machine or

production unit is actually running, the number of parts produced or the number of activa-

tions of a unit, motor, part, sequence etc.

Theoretical Foundations

19

The maintenance or replacement measures that are carried out based on mentioned schedules

are hereby not affected or influenced by the actual condition of the plant or machine compo-

nents at the time of service. Instead, they are influenced by manufacturer instructions, usage-

experience within the production environment and, if applicable, knowledge of previous

breakdowns during the calculation and determination of the maintenance schedules prior to

their execution (cf. [3], pp. 28-30; [5], p. 19 and [7], pp. 174-175).

The benefit of this maintenance strategy is, that malfunctions and failures are prevented or

delayed by preventive measures, unlike reactive maintenance where maintenance measures

take place after faults or breakdowns occur. This makes maintenance measures and related

tasks easier to plan and manage. Maintenance measures can be carried out during reserved

and specific time slots where a plant or machine is not running and the production is not

disturbed. In addition, spare parts can be prepared and stocked accordingly. The required

amount of maintenance personnel can be reserved and since the task is known beforehand

and performed regularly, the processes can be optimized and the downtime limited or mini-

mized to a needed minimum.

This maintenance strategy requires a lot of planning and preparation, but in return, it is able

to prolong and secure the safety and availability of a production plant or unit, while reducing

both planned and unplanned maintenance expenses and repair times. However, periodic

maintenance can have the opposite effect if components of a system are stressed too often

by preventive measures, which increases both the costs and the time required, as far too

much time is spent on parts that are actually working, potentially causing damage to the

surroundings. Moreover, if parts are replaced regularly without utilizing most of their lifecy-

cle (see Fig. 2.3), aside from the costs, potential value and remaining functionality are lost,

leading to increased waste of material and spare parts as well as environmental impact due

to unnecessary disposal. On the other hand, this maintenance strategy is only beneficial and

fulfills its purpose, if a part is replaced in time before the entire lifecycle is used and a break-

down occurs. This means that the amount of preventive measures must be carefully assessed,

as there is a fine line between correct and incorrect preventive or periodic maintenance, es-

pecially given that the plant is not under constant monitoring and the actual condition of the

plant, a machine or part is unknown (cf. [3], p. 29 and [8], p. 17).

Theoretical Foundations

20

2.4.2 Condition-Based Maintenance

Condition-based maintenance is a preventive maintenance strategy that determines mainte-

nance measures depending on the technical condition of a part or unit, rather than predeter-

mined schedules (see Fig. 2.4). It relies on sensors and monitoring devices to continuously

collect data and supervise the condition of the technical equipment. The collected real-time

data can be analyzed immediately and continuously, according to a schedule or upon request

to determine if maintenance measures are necessary (see Fig. 2.1).

Figure 2.4: Visualization of condition-based maintenance (adapted from [27])

Condition-based maintenance is defined as “maintenance, that consists of monitoring the

operation and/or representative measurements as well as the subsequent measures” (cp. [2]

and [6], p. 7). It enables the user of this maintenance strategy to implement adaptive proce-

dures and plan maintenance activities based on the collected data and the condition of the

plant, machine, or unit they represent. This maintenance strategy heavily relies on monitor-

ing and data acquisition, which function as a foundation to identify specific indicators and

defined thresholds in order to determine and assign resulting maintenance tasks.

Depending on the components and structure of a machine or system as well as safety and

production-relevant parts that need to be observed and monitored, different technologies and

approaches can be used to collect representative data for its condition [9]. These technolo-

gies, the collected data and possible indicators for related conditions of a part or unit in a

production environment will be explained in the following paragraphs (cf. [9], [11], [12] and

[13]):

Theoretical Foundations

21

Monitoring:

• Vibrations: Motors, fans, compressors, and pumps contain rotating components to

generate the necessary movement to convert energy or transport liquids and gases.

These rotating components also produce vibrations, which can be measured and eval-

uated to obtain information about their condition. Vibration sensors are used to meas-

ure the intensity, frequency, and amplitude of these vibrations in order to detect de-

viations and irregularities before a malfunction or breakdown occurs. Increased vi-

brations result from various factors such as age, wear, bearing damages, imbalance,

loose elements, or other faults which, if left unattended, can lead to breakdowns or

failures.

• Acoustic-Signals: Mechanical errors and leakages, such as worn-out or loose com-

ponents, as well as leaks of lubricants, liquids, or gases, can generate noise or alter-

nating sounds within a system. Sensors, microphones, or ultrasonic measurements

are used to detect anomalies or capture high- or low-frequency sound waves. Early

detection of lubrication deficiencies or slight mechanical deformations as well as

pressure or vacuum leaks prevent further issues and help to identify the origin of

resulting problems.

• Pressure: Pressure levels can be monitored and evaluated using pressure sensors and

appropriate measurement devices. This enables precise control of pressure within

tanks, tubes, and pipelines, as well as the adjustment of gas and liquid flow rates and

velocities using additional formulas such as Bernoulli's equation [10]. Leakage de-

tection is also possible through continuous pressure monitoring, allowing for early

identification and mitigation of potential leaks.

• Temperature and infrared radiation: Temperature sensors or infrared cameras are uti-

lized to monitor the temperature of technical equipment and to identify any signs of

overheating or temperature loss. Temperature monitoring helps to prevent abnormal

temperatures from causing potential damage to the equipment itself, its surroundings,

or the production environment, thereby minimizing safety hazards. Monitoring of

gases, liquids, insulation, motors, bearings as well as identifying points of

Theoretical Foundations

22

temperature loss and leaks, are possible use cases contributing to maintain opera-

tional efficiency and safety standards.

• Power consumption: The current, voltage or power consumption of a machine or unit

can be monitored in order to detect spikes, drops or increased consumption as well

as their origins. This enables the implementation of necessary maintenance measures

and early detection of wear and tear.

• Oil and lubricants: Oil and lubricants are utilized for cooling and to reduce vibrations,

wear, friction and corrosion within machines or systems in a production environment.

Over time, particles get suspended into the oil or lubricant and can serve as indicators

of wear and tear within the machine or system they are used in as well as if the oil

and lubricants are still usable themselves. Monitoring the presence and concentration

of these particles can provide insights into the condition of the equipment and can

help to determine resulting maintenance needs.

• Operational performance: Another factor indicating the condition of a machine, unit,

or system, which can be monitored, is its operational performance. During produc-

tion, a machine must achieve specific operational requirements while reliably and

consistently performing its intended function. These requirements can include posi-

tional accuracies, a certain amount of force or speed, as well as other requirements

influencing the quality and condition of the final product manufactured, created, or

made within or with the help of the system. If the operational performance cannot be

maintained reliably, accurately, and consistently, it can indicate a deterioration in its

condition, with wear and tear being a common example.

• Environmental conditions: External factors that can influence a machine or its com-

ponents and their operational performance, as well as sensors. These factors can in-

clude, for example, solar radiation, ambient temperature and air humidity in the pro-

duction environment.

Depending on the technologies, data and indicators as well as operational specifications of

the machines, systems or units, thresholds can be defined to trigger corresponding

Theoretical Foundations

23

maintenance alarms or measures. This ensures that maintenance measures are carried out

when the deterioration or degradation of a system reaches or surpasses a certain point or

degree. Based on these thresholds, their types, and the corresponding circumstances, such as

whether an immediate response is required, if all resources are available, or if preparations

for spare parts, maintenance personnel, or other resources need to be initiated and completed

within an estimated time window, the optimal timing for maintenance can be determined and

the corresponding tasks can be performed [14].

If implemented and used correctly, this maintenance strategy helps to lower costs and

maintenance expenses due to early detection of anomalies and faults, therefore reducing

heavier and expensive breakdowns and preventing unnecessary measures, such as replace-

ments and repairs on healthy machines by monitoring the condition. Coupled with the ability

to perform preventive measures, when indicated by the condition of a machine, part or unit,

it increases the availability and safety by minimizing potential damages and failures as well

as repair and measure induced unavailability and production loss, positively influencing the

useful life- and runtime overall. In comparison to periodic maintenance, it enables further

utilization of a component’s lifecycle as illustrated by comparing the Figures 2.3 and 2.4.

Additionally, spare parts can be prepared when needed, therefore vast quantities of spare

parts as well as large storages are not required, which makes this maintenance strategy all in

all technically and economically efficient (cf. [3], p. 27 and [15]).

Due to the necessity of sensors and monitoring devices, this maintenance strategy is cost-

intensive at an early stage, during implementation and, if applicable, during upgrading or

retrofitting existing machines or units. The latter can be particularly challenging if the data

flow infrastructure is also non-existent, where a common goal is to collect as much data with

as few sensors as possible (cf. [5], p. 31). Initially, aside from the costs and installation,

configurating the sensors, the data flow as well as the underlying parameters and algorithms

also require high and time-consuming effort. Condition-based maintenance is only possible,

when the indicators used for this strategy are measurable and can be used to detect issues

and determine reliable maintenance actions effectively. When a failure or breakdown occurs

before a threshold is reached or without a known indicator, it can lead to unexpected and

longer downtimes, due to troubleshooting and repair efforts as well as a possible spare part

shortage, negating the intention and benefits of condition-based maintenance. Therefore this

strategy should only be used when its technically applicable and more cost- and time-

Theoretical Foundations

24

effective in the long run compared to other maintenance strategies, taking into account the

nature of the task and the monitored machine or unit [5].

2.4.3 Predictive Maintenance

Figure 2.5: Visualization of the predictive maintenance strategy (adapted from [27])

Predictive maintenance is a further development of the condition-based maintenance strat-

egy (cf. [5], p. 31). While it equally relies on sensors and monitoring devices to continuously

collect data, it goes beyond supervising the condition of the technical equipment and aims

to anticipate failure-modes and patterns as well as fault-conditions and signs of deterioration

and breakdowns (see Fig 2.5). It is therefore defined as “condition-based maintenance, which

is performed based on a prediction derived from repeated analysis or known characteristics

and the determination of key parameters that indicate the deterioration of a unit” (cp. [2]).

To identify preliminary stages of failure in or in addition to subtle changes in the condition

of a machine, identify the origin and estimate the remaining useful lifetime, computer-aided

algorithms and models, such as machine learning algorithms and neural networks (see Sec-

tion 2.6), are used to analyze, evaluate and classify the corresponding sensor-data and com-

pute accurate predictions.

These predictions are achieved by constantly monitoring the condition and performance of

technical equipment, using the same technologies and monitoring techniques described in

Section 2.4.2, and registering anomalies in comparison to its normal and healthy behavior.

This entails that a sufficient amount of historical data, representative of both normal and

abnormal behavior, alongside the collected real-time data, is available.

Theoretical Foundations

25

Predictive maintenance shares the same benefits as its condition-based predecessor (see Sec-

tion 2.4.2). Implemented correctly, it not only allows the user to identify potential problems

before a malfunction or failure occurs but also enables the determination of the underlying

cause and origin, as well as an estimated time window during which the observed item is

likely to be subject to the identified issue. By recognizing failure-modes, patterns and fea-

tures, predictive maintenance systems are able to learn from historical data and match inputs

to known trends and classes, resulting in:

1. Classification of equipment condition

2. Estimation of remaining useful lifetime

as the two primary use cases of predictive maintenance, relying on the premise that indicators

of degradation increase gradually over time [16].

This maintenance strategy, united with analytical techniques and models, and in addition to

the benefits of condition-based maintenance (see Section 2.4.2), enables early and specific

detection, maximizing the uptime, productivity and lifetime of assets when mitigated.

Maintenance measures can be carried out based on the specific needs and the condition of

the assets, therefore making them plannable and applicable when needed and at the right

time in terms of useful lifetime, remaining value, maintenance costs, safety and overall effi-

ciency (see Fig. 2.5).

Predictive maintenance also shares similar disadvantages and challenges as condition-based

maintenance, regarding the high initial costs for sensors and monitoring devices. Addition-

ally, data processing units, databases and the necessary infrastructure contribute to the fun-

damental costs, along with the essential expertise in analytics and data science for the devel-

opment and training of appropriate models and algorithms [16].

Another challenge at the beginning of establishing a preventive maintenance strategy is the

collection of sufficient and representative data. In a production environment, the goal is to

run machines and units without a breakdown or failure occurring. Therefore, data representa-

tive of abnormal or unhealthy behavior is often not available or only partially available.

Moreover, differences in mounting, mechanical tolerances, as well as operational and envi-

ronmental circumstances, can lead to data variability between assets in a production

Theoretical Foundations

26

environment that share the same specifications, which influences the reusability of algo-

rithms and models [17]. Simulations and data augmentation can help overcome this obstacle,

but they need to be accurate to improve the reliability of predictive algorithms.

Machine connectivity and data availability play an essential role in predictive maintenance.

With the development of cyber-physical systems, the internet of things and the concept of

Big Data, all within the framework of Industry 4.0, the potential for real-time monitoring

and analysis of machine performance has greatly expanded. Machine data can be collected

at any stage of the production process and made available across multiple production facili-

ties worldwide. Thus, the behavior of machines can be fully observed, and vast facets of data

can be used to train and tune predictive maintenance algorithms and models.

Contributors from different departments and facilities can benefit from each other’s

knowledge and combined with expertise of different backgrounds (cf. [18], p. 21), such as

operators, maintenance personnel and machine manufacturers, representative datasets for

specific problems and failure modes can be created, know-how can be combined and devel-

oped into accurate and automated predictive maintenance solutions, enhancing failure de-

tection and anticipation, minimizing downtime, material and spare part wastage as well as

overall maintenance costs [17]. In the following, Industry 4.0 and its components are further

explained:

2.5 Industry 4.0

Figure 2.6: The four industrial revolutions (adapted from [19], p. 30)

Theoretical Foundations

27

Industry 4.0 describes the latest and fourth industrial revolution (see Fig. 2.6). It represents

the ongoing digital transformation within the production industry, aiming to connect all ma-

chines, systems, and processes within a network through information and communication

technologies (cf. [28]). By integrating smart and intelligent systems and creating an inter-

connected network, information can be accessed and processed automatically. As a result,

the production can be optimized, productivity can be increased, and data can be shared across

all production levels and facilities worldwide. The intention is to enable constant availability

and accessibility of data and the resulting ability to autonomously derive actions from it (cf.

[18], [19], [20], [21], [22] and [24]).

These smart and intelligent systems, in the form of cyber-physical systems and smart objects,

along with the Internet of Things as their network, and the resulting availability and acces-

sibility of so-called "Big Data", form the basis for optimization and automated decision-

making. These elements are the core and foundation of Industry 4.0 and will be explained in

the following sections:

2.5.1 Cyber-Physical Systems

Cyber-physical systems, or short CPS, consist of a group of three components, a physical,

an intelligent and a network component, combining the elements of mechanics, electronics

and information technology within one system [19]. Incorporating actuators, sensors, pro-

cessing units, multiple interfaces and digital communication technologies, CPS are capable

of influencing and interacting with the physical and digital world (see Fig. 2.7). In detail,

they are able to generate, record, store and evaluate data, as well as to derive, pursue and

transmit actions or provide, distribute and communicate information [20].

Theoretical Foundations

28

Figure 2.7: Cyber-physical systems (adapted from [21], p. 11)

Generally, CPS consist of mechatronic components and an internet connectivity (cf. [22], p.

112). Actuators convert electrical signals into action, physically affecting the surrounding

area. Sensors collect physical data, generated as a result of these actions, or, as a prerequisite

to the electrical signals relevant for them. Processors undertake monitoring, processing, and

control tasks and additional software and hardware, such as functions and interfaces, enable

informational exchange within clouds, global, local, wired or wireless networks, the internet

and/or between multiple cyber-physical systems (see Fig. 2.7).

CPS are defined as embedded systems, that, are connected to each other, regardless of the

type of interface, provide and use available data and services regardless of their location and

entail different options for communication and control in form of human-machine interfaces.

All in addition to the ability to generate physical data, influence real processes, process data

and derive actions from it (cf. [21], p. 10).

Between CPS, vertical and horizontal communication can be established, which differs from

common mechatronic systems (cf. [20], p. 30). Vertical communication refers to communi-

cation between multiple layers or levels of automation, control and production hierarchy,

such as communication between the one machine, the shopfloor and the entire production

Theoretical Foundations

29

planning level. Horizontal communication refers to communication within one level or hier-

archy, such as the communication between two manufacturing steps or production processes.

This combination makes a network of CPS flexible, dynamic and accessible (see Fig. 2.8),

resulting in increased data transparency and availability (cf. [20], p.30 and [21], p. 11).

All relevant information is available across all production networks and hierarchies in real-

time, enabling fast and accurate monitoring, control and plannability. Thanks to the connec-

tivity, changing conditions, errors and quality issues can be identified and mitigated, a syn-

optic view of the production process can be created, observed and fully documented, ena-

bling increased flexibility, production automation, efficiency and quality [21].

2.5.2 Smart Objects

Smart objects or smart devices are a subspecies or special type of CPS, containing both

physical and digital components, but not necessarily actuators or sensors to directly and con-

sciously interact with the physical world. Smart objects consist of informational technology,

containing information about themselves, such as their identification number, designation,

or remaining useful life, or their state and position in an ongoing production process. The

definition of smart objects can be applied to any sort of object, for example smart actuators,

smart sensors or smart workpieces, implying that these objects “are self-conscious”, i.e. en-

tail information, about the state, position, or configuration they are currently in, and are able

to communicate and provide this information to other participants within a shared network

(cf. [20], pp. 31-32). If this applies to an entire factory, it is called Smart Factory.

Smart objects share the same advantages as CPS in terms of connectivity, information/data

accessibility as well as resulting efficiency, speed and flexibility within production or re-

garding the identification and plannability of maintenance measures. A shared network, that

can benefit from these advantages, is represented by the Internet of Things and will be ex-

plained in the following section:

2.5.3 Internet of Things

The Internet of Things, or IoT, is a network of physical objects equipped with sensors, mi-

crochips, appropriate software, and network connectivity, which are connected with each

Theoretical Foundations

30

other and virtually represented within the internet. These objects are uniquely identifiable

through individual IP-Addresses and are integrated into the IoT as an extension of the inter-

net, enabling them to communicate with other participants and exchange information.

Figure 2.8: Evolution of industrial hierarchies through IoT (adapted from [26])

IoT, within an industrial environment also referred to as IIoT (Industrial Internet of Things),

enables manufacturers to fully network their entire production equipment and machinery,

leading to increased automation, real-time data transfer and optimization of processes, if

wanted, without human intervention (cf. [19], p. 36, [21], p. 9 and [23]). A global multi-

platform infrastructure can be established, connecting physical and virtual objects such as

multiple CPS, smart objects and computers (see Fig. 2.8), that can enhance automated infor-

mation distribution and data availability, resulting in improved error detection, failure pre-

ventability, process automation and control (cf. [24], pp. 3-6). Human-Machine-Interfaces

can also be integrated into the IoT or IIoT, making the data available to interested parties

both outside and within the production processes, enabling control, insight, and interaction.

This platform differs from the usual hierarchy (Fig. 2.8, left), enabling all participants to

communicate with each other vertically and horizontally, as previously described in Section

2.5.1 and illustrated in Fig. 2.8.

Additionally, in terms of services such as condition-based or preventive maintenance, an

extended concept of IoT, the Internet of Things and Services (IoTS) has developed, which

will be explained in the following section:

Theoretical Foundations

31

2.5.4 Internet of Things and Services

While the focus and main objective of IoT lies on the communication and connection of

physical objects within a network to collect and transfer data, the objective of IoTS is to

further extend this concept and integrate services within the scope of Industry 4.0 [19].

Within the IoTS, services based on physical objects and/or the data they provide can be

connected to other services and objects to extend the automated information distribution and

integrate data analysis capabilities. The analyzed data, potentially as a service itself, can be

used to enable further automated, intelligent and individual services, such as artificial intel-

ligence or machine learning for predictive maintenance.

Overall, the goal of the IoTS is to create smart and efficient production environments through

connectivity and communication between various objects, the ability to process and analyze

data, and the ability to derive actions based on individual production needs (cf. [19], p. 36).

The collected knowledge can, for example, enable spare part management services to auto-

matically reorder or pre-order spare parts as indicated by condition-based or predictive

maintenance systems, considering stock counts and maintenance needs derived from the

shared data.

2.5.5 Big Data

An interconnected network of CPS, smart objects and services, such as the IoTS, generates

a large and continuously growing amount of raw data. Particularly, data captured steadily

over a series of time, known as time series data [25], is an important byproduct of the IoTS

due to the continuous monitoring of the entire production plant as well as all related compo-

nents. The resulting Volume, Variety and Velocity of accumulating data is described by the

term “Big Data” (cf. [21], p. 27).

In order to manage and utilize the large amount of data, gain insights and achieve the result-

ing economic benefits, appropriate databases suited for time series data and analytical tools

are necessary to store and process the data in real-time (cf. [21], p. 27 and [20], p. 46). These

analytical tools and techniques, in form of machine learning algorithms and neural networks

used for predictive maintenance, will be explained in the following sections:

Theoretical Foundations

32

2.6 Machine Learning

Learning is defined as a process based on targeted effort, experience, practice, or observation

that leads to any change, often referred to as a relatively permanent change (cf. [29]), or any

form of performance improvement (cf. [30]). Machine Learning incorporates methods and

techniques that enable a machine or computer to learn autonomously from data and recog-

nize patterns. Instead of being provided with an explicit program or algorithm to find a so-

lution or result based on the embedded knowledge and input-data, the machine or computer

is given a set of data and the desired corresponding results, as illustrated in Fig. 2.9 below

[31]:

Figure 2.9: Machine Learning vs classic imperative programming (adapted from [31])

Unlike classic imperative programming, where programs are written with step-by-step com-

mands to process data and compute outputs (see Fig 2.9, and [32]), the provision of training

data and corresponding desired outputs allows machines or computers using machine learn-

ing algorithms to identify relationships and patterns within the data and learn how to com-

pute the desired output, creating their own processing logic (cf. [31], p. 210). Once the learn-

ing process has been successfully completed and the machine learning algorithm or system

has been trained, it can be used to process new data and analyze it according to the learned

logic (see Fig. 2.9).

Theoretical Foundations

33

In Machine Learning, the learning process is defined by specific algorithms, which can be

categorized into three different types based on their approaches. These types will be ex-

plained in the following section:

2.6.1 Supervised Learning

Supervised Learning is the most common machine learning approach and consists of datasets

that already include known output values, referred to as labeled data or labeled datasets. In

these datasets, the inputs 𝑋 and outputs 𝑌 are known, but the function 𝑓 that maps the inputs

to the outputs is unknown and needs to be learned by the machine learning algorithm. This

relationship can be expressed as (cf. [33], p. 21):

𝑓: 𝑋 → 𝑌 or 𝑓(𝑋) = 𝑌 (1)

The labeled data acts as a supervisor or teacher, enabling the machine learning algorithm to

learn how inputs and outputs relate to each other and how to distinguish between correct and

incorrect labels through a sufficient amount of data. Supervised learning consists of two

main categories: classification and regression.

Classification

Classification describes the process of matching inputs, such as images or time series data,

to discrete classes or categories. The objective of a classifier is to determine the class of an

unknown input from a known set of classes. For example, it can be used to distinguish be-

tween e-mails and spam-mails or to categorize pictures of domestic animals into classes such

as cats, dogs, birds, and fishes. Classification can be further divided into the following three

subcategories:

1. Binary Classification: If the algorithm only needs to distinguish between two cate-

gories, such as e-mails and spam-mails, it is called binary classification.

2. Multi-Class Classification: If the classification task consists of three or more classes,

such as differentiating between pictures of cats, dogs, birds, and fishes, it is referred

to as multi-class classification.

3. Multi-Label Classification: If a single input can be matched to more than one cate-

gory at once, such as a picture containing both a cat and a dog or a bird, cat and a

fish, it is called multi-label classification (cf. [33], p. 203).

Theoretical Foundations

34

In general, the classification-problem can be described as following in accordance with Eqn.

(1):

 𝑐: 𝑋 → 𝐶 (2)

with 𝑐 being an unknown classification function that matches a set of features 𝑋 to a set of

classes 𝐶, and given a known subset of labeled data 𝐷 (cf. [33], p. 23):

𝐷 = {(𝑥1, 𝑐(𝑥1),), (𝑥2, 𝑐(𝑥2),), … (𝑥𝑛, 𝑐(𝑥𝑛),)} ⊆ 𝑋 × 𝐶 (3)

Depending on the classification problem, 𝐶 can be represented as follows:

1. 𝐶 = {0, 1} 𝑜𝑟 {−1,+1} for binary classification (4)

2. 𝐶 = {1, … , 𝑘} for multi-class classification (5)

3. 𝐶 = {−1,+1}𝑘 for multi-label classification (6)

with 3, where positive components display membership to a class (cf. [35], p. 11 and p. 183).

The classification problem is solved by obtaining the function 𝑐 through supervised learning

with the labeled dataset 𝐷 (cf. [33], p. 23).

Regression

Regression works similarly to classification, where a set of inputs 𝑋 and outputs 𝑌 are pro-

vided. However, the given labels don’t represent classes, but instead numerical values, with:

𝑋 ⊆ ℝ𝑛 and 𝑌 ⊆ ℝ𝑛, (7)

and

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛) } ⊆ 𝑋 × 𝑌 (8)

as the provided dataset (cf. [33], p. 23). Regression involves predicting numerical values,

such as the price of a domestic cat, based on its specific features. These features, such as the

breed, age, or fur and eye color of the cat, are also referred to as predictors. The learning

process results in the same function as in Eqn. (1), with the ability to predict numerical values

𝑌 based on inputs 𝑋. Regression algorithms can also be used for classification problems, by

providing a probability measure of belonging to a specific class or category (cf. [33], p. 23;

[34], pp. 10 and 295). However, since regression algorithms predict a numerical value, their

success is not evaluated based on whether they correctly predict a class, but rather on how

close the prediction is to the actual or desired value (cf. [33], p. 23 and [35], p. 2).

Theoretical Foundations

35

In terms of predictive maintenance, classification algorithms allow to differentiate between

healthy and unhealthy states of a machine or piece of equipment, such as a broken drill bit

holder, a broken drill bit, or a blunt drill bit due to a development of temperatures or vibra-

tions. Regression algorithms, on the other hand, can estimate specific numeric values, such

as a specific temperature, degree of degradation or probability of failure. Two supervised

learning algorithms that will be discussed within the scope of this thesis are the support

vector machine (see Section 2.6.5) and neural network (see Section 2.6.7).

2.6.2 Unsupervised Learning

As the name indicates, unsupervised learning does not receive a teacher or supervision in the

form of labeled data. Instead, the computer or algorithm tries to learn solely from unlabeled

data without prior knowledge of the output.

Unsupervised learning is used to find unknown similarities, distributions, or structures

within data. It is therefore applied in analytic tasks such as clustering and determining of

distributions or associations, all based on the nature, characteristics, and features of the data

itself (cf. [31], p. 235, [33], pp. 25-27 and [34], pp. 11-14). For example, it could cluster cats,

dogs, birds, and fishes into two groups based on whether they live above or under water, or

cluster them into three groups based on the number of legs the animals possess.

Another use-case of unsupervised learning is anomaly or outlier detection. The algorithm is

trained on normal or ordinary data in order to perform a so-called one-class or unsupervised

classification. It learns to recognize the characteristics and features of the data it has been

trained with and uses that knowledge to identify if new data belongs to the same group or

not (see Fig. 2.10). The goal is to identify unwanted issues, such as equipment faults or

malfunctions, production errors, signs of fraud or medical issues, by questions such as:

“Does the equipment operate as intended?”, “Is the patients CT scan unremarkable?” or “Do

the last transactions correspond to the previous purchasing behavior?” (cf. [31], p. 235; [33],

pp. 25-27; [34], pp. 11-14 and [40]).

Theoretical Foundations

36

Figure 2.10: Identification of anomalies (adapted from [34], p. 14)

Unsupervised learning algorithms that will be discussed within this thesis are the one-class

support vector machine (see Section 2.6.5), the isolation forest (see Section 2.6.6), and a

neural network in form of an autoencoder (see Section 2.6.8).

2.6.3 Reinforcement Learning

Reinforcement Learning differs from the other two learning processes. It entails a so-called

software agent that develops a strategy by performing actions based on an observed envi-

ronment or a given situation. These actions receive feedback in the form of rewards or pun-

ishments, also called negative rewards, which in turn lead to an adaptation and change of the

strategy. This is an iterative process, where the system needs to find the optimal strategy on

its own, in an effort to maximize the number of positive rewards (cf. [31], p. 307; [33], p.

24; [34], p. 15; [35], p. 8 and [36], p. 3). Common examples of reinforcement learning are

teaching machine learning algorithms to play a board game, where the strategy that leads to

a win, as the ultimate reward, is learned by playing and analyzing previous strategies (cf.

[34], p. 16 and [36], p. 3).

2.6.4 Machine Learning Algorithms

A machine learning algorithm is a specific mathematical or statistical process used to learn

from data and create a corresponding machine learning model [49]. It determines how the

data is processed, analyzed, and optimized in order to recognize patterns and perform pre-

dictions. The learning process is guided by the previously described learning techniques,

Theoretical Foundations

37

depending on the category and desired use case of the machine learning algorithm. In the

following sections, machine learning algorithms in the form of the support vector machine,

isolation forest and neural network are further explained:

2.6.5 Support Vector Machines

Support vector machines, or short SVMs, are machine learning algorithms that are able to

solve both linear and nonlinear classification problems and can be used for unsupervised

classification, such as anomaly detection, as well as regression tasks [34]. The goal is to find

a hyperplane that can separate a given n-dimensional feature space into two classes, ensuring

that the datapoints of one class lie on one side of the hyperplane, while the data points of the

other class lie on the opposite side (see Fig. 2.13 and cf. [37]).

Linear classification

Given data points in a feature space, the challenge is to find an optimal hyperplane that

separates two groups of data for accurate classification. Figure 2.11 shows two groups of

data points (red and blue) that can be separated by a straight line, representing a hyperplane

in a two-dimensional space.

For the purposes of demonstration and generalization, upcoming Figures (see Fig. 2.11 to

2.13) do not include class, feature, or axis descriptions.

Figure 2.11: Two groups of data points in a feature space (adapted from [38])

Theoretical Foundations

38

Visually, the space can be separated by multiple instances of hyperplanes to classify the data

accordingly (see Fig. 2.11). Figures 2.12 and 2.13 show four examples and one exception of

these different possibilities. A support vector machine needs to determine the optimal hyper-

plane out of infinite possibilities in order to separate future inputs of unknown data success-

fully and accurately. The following describes the structure and reasoning behind the hyper-

plane of a SVM for linear classification.

Figure 2.12: Example of insufficient hyperplanes (adapted from [38])

Figure 2.12 shows three hyperplanes of linear classifiers, (X), (Y) and (Z). Classifier (Z) is

hereby not able to separate the data points correctly, due to the location of its hyperplane.

The hyperplanes of classifiers (X) and (Y) can both separate the data entirely, but are located

closely to data points of either group, which indicates that they won’t perform well on new

data (cf. [34], p. 155). For example, data points on the opposite side of the hyperplane, but

in close proximity to the group they belong to, would be misclassified.

Figure 2.13 shows this instance with hyperplanes (A) and (B), which have a greater distance

to the groups of data points in comparison to hyperplanes (X) and (Y).

Theoretical Foundations

39

Figure 2.13: Hyperplanes with additional datapoints (adapted from [38])

Further, it shows two additional datapoints, (1) and (2). Depending on how the hyperplane

is located or tilted (see Fig. 2.13, (A) and (B)), point (1) is classified as green or red data

points. Point (2) however, which has the greatest distance to the hyperplanes, can be matched

safely to the class of green data points. The greater the distance of the data points is to the

hyperplane, the safer is the classification (see Fig. 2.13 and 2.14; cf. [38] and [39]).

Figure 2.14: Optimal hyperplane with support vectors (adapted from [38])

Figure 2.14 shows the optimal hyperplane of a SVM, maximizing the distance to the closest

datapoints of each group. The goal of a SVM is to find this hyperplane by maximizing the

mentioned distance, also known as margin. The closest data points to the hyperplane,

Theoretical Foundations

40

highlighted in Fig. 2.14, are referred to as support vectors. These support vectors define the

marginal hyperplanes, visualized by the dashed lines, as well as the hyperplane itself (see

Fig. 2.14, [33], [34], [35] and [38]).

In general, a hyperplane is defined as follows (cf. [35], p. 64):

𝒘 · 𝒙 + 𝑏 = 0 (9)

It represents a separating or decision boundary without intersecting datapoints of a given set

of training data 𝐷 (see Eqn. (3) and Fig. 2.14). Therefore, 𝑏 and 𝒘 can be scaled, so that the

distance from the hyperplane to the closest data point in the training data is 1 (cf. [35], p. 64

f.):

min
(𝑥,𝑐) ∈ 𝐷

|𝒘 · 𝒙 + 𝑏| = 1 (10)

The marginal hyperplanes, which run parallel to the hyperplane (see Fig. 2.14), possess the

same normal vector 𝒘 and intersect the support vectors as the closest data points to the hy-

perplane, can therefore be described as:

𝒘 · 𝒙 + 𝑏 = ±1 (11)

with

𝒘 · 𝒙 + 𝑏 = +1 for the nearest positive points

and

𝒘 · 𝒙 + 𝑏 = −1 for the nearest negative points

relative to the hyperplane (cf. [35], p. 65). With a training dataset that entails labeled outputs

𝐶 = {−1,+1} representing each class for binary classification (see Section 2.6.1 and Eqn.

(4)), a classification of a data point 𝒙𝑖 is successful when the expression on the left side of

Eqn. (11) matches the sign of 𝑐𝑖 (cf. [35], p. 65).

With ρ as the definition of the margin (cf. [35], p. 65)

ρ = min
(𝑥,𝑐) ∈ 𝐷

|𝒘·𝒙+𝑏|

‖𝒘‖
=

1

‖𝒘‖
, (12)

a maximized margin and therefore a solution to the classification problem, can be achieved

by “minimizing ‖𝒘‖ or
1

2
‖𝒘‖2” ([35], p. 65) as follows:

Theoretical Foundations

41

min
𝑤,𝑏

1

2
‖𝒘‖2 (13)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑐𝑖(𝒘 · 𝒙𝑖 + 𝑏) ≥ 1, ∀𝑖 ∈ [1,𝑚],

under the condition, that all data points are classified properly (cf. [35], p. 65).

The training data of an SVM algorithm serves as the basis for determining the hyperplane of

a classification model. Hereby, only the data points within the training data, that act as the

support vectors, influence the outcome of the learning process. Therefore, altering, adding

or removing data points behind the marginal hyperplanes has no effect on the outcome. A

change in the support vectors on the other hand, can impact the entire outcome of the result-

ing model (cf. [33], p. 408 and [38], p. 100).

A classifier with a large margin reduces the risk of misclassification for new data points that

might be near the hyperplane and enhances its ability to generalize (cf. [34], p. 156 and [39]).

A SVM trained for linear classification while maximizing its margin and correctly classify-

ing all training data, as illustrated in Fig. 2.14 and Eqn. (13), is referred to as hard-margin-

classifier or, in general, as hard-margin-classification. However, in cases where the training

data contains outliers and/or the feature space is not linearly separable (see Fig. 2.15), re-

sulting in either a very narrow margin or a feature space that cannot be separate by a hyper-

plane, a flexible model allowing exceptions within the marginal hyperplanes can be used,

known as a soft-margin-classifier or soft-margin-classification (cf. [34], p. 156 f.).

Soft-margin-classification

Figure 2.15: Hard-margin-classification and outliers (adapted from [34], p. 157)

Figure 2.15 shows an example of training data, that includes outliers and therefore limits the

size of the margin (Fig. 2.15, right) or cannot be separated through hard-margin-classifica-

tion (Fig. 2.15, left). In this case, a slack variable ξ𝑖 is introduced, that allows exceptions

Theoretical Foundations

42

within as well as outside of the margin and includes the distance of a point 𝑥𝑖 to its according

marginal hyperplane (see Fig. 2.16). Hereby, all data points 𝑥𝑖 with ξ𝑖 > 0 are considered

outliers, as illustrated below (cf. [35], p. 71).

Figure 2.16: Soft-margin-classification (adapted from [35], p. 71)

The classification problem is solved through a compromise between minimizing the allowed

sum of exceptions and maximizing the margin (cf. [33], p. 411; [34], p. 157; [35], p. 71 and

[36], p. 332):

min
𝑤,𝑏,ξ

1

2
‖𝒘‖2 + 𝐶 ∑ ξ𝑖

𝑚
𝑖=1 (14)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑐𝑖(𝒘 · 𝒙𝑖 + 𝑏) ≥ 1 − ξ𝑖 ∧ ξ𝑖 ≥ 0, 𝑖 ∈ [1,𝑚]

with an adjustable parameter 𝐶 ≥ 0 C, that influences the number of allowed exceptions.

Figure 2.17: Soft-margin-classification and parameter C (adapted from [34], p. 157)

Figure 2.17 shows the margin of a classifier with 𝐶 = 100, allowing few exceptions and

narrowing the margin (Fig. 2.17, right) and 𝐶 = 1, allowing more exceptions with a wider

Theoretical Foundations

43

margin (Fig. 2.17, left). This method is more applicable to real circumstances, as datasets

mostly subject to non-ideal conditions and contain outliers that prevent a linear separation

through a straight line or hard-margin-classification.

Non-linear classification

Aside from outliers, in practical applications, datasets often consist of or include non-linear

data that cannot be divided into two classes through linear separation, as illustrated by the

left diagram in Fig. 2.18 below:

Figure 2.18: Adding another feature dimension (adapted from [40])

By extending the feature dimension, here for example, by adding polynomial features and

transforming the two-dimensional feature space into a three-dimensional feature space (see

Fig. 2.18), i.e. transferring the data into another coordinate system of a higher dimension (cf.

[38], p. 103), a distribution of data points within a dataset can be created, that enables linear

separation with a hyperplane and therefore the application of SVMs (see Fig 2.18, right and

Fig. 2.19, left).

Theoretical Foundations

44

Figure 2.19: Separation by hyperplane and back transformation (adapted from [40])

After transforming the data and separating the feature space with a linear hyperplane, as

demonstrated by the left diagram in Fig. 2.19, the data along with the hyperplane are trans-

formed back into their original n-dimensional feature space, separating the data through a

non-linear boundary (see Fig. 2.19, right). Using this boundary, non-linear classification of

new data points can be performed (cf. [34], p. 159 and [38], pp. 102-103). This approach,

utilized by SVMs, is referred to as the so called “kernel trick” (cf. [38], p.101) and will be

explained in the following:

A function 𝜙 that transforms an input space 𝑋 to a higher feature space ℍ can be depicted as

(cf. [35], p. 91):

𝜙:𝑋 → ℍ (15)

A kernel is a function 𝐾 that, for any two points 𝑥1 and 𝑥2 as elements of the input space 𝑋,

can compute the inner product of vectors 𝜙(𝒙1) and 𝜙(𝒙2), without transforming them, un-

der the condition that 𝜙 exists (cf. [34], p. 171 ff. and [35], pp. 89 ff.):

∀𝒙1, 𝒙2 ∈ 𝑋, 𝐾(𝒙1, 𝒙2) = 〈𝜙(𝒙1), 𝜙(𝒙2)〉 = 𝜙(𝒙1)
T𝜙(𝒙2) (16)

The output of the kernel 𝐾 hereby represents the measure of similarity of two points within

𝑋, equivalent to the inner product of the vectors (cf. [35], p. 91). The kernel trick is therefore

computationally efficient, as all points 𝒙1 and 𝒙2 in 𝑋 (i.e., the input space) can be used

Theoretical Foundations

45

without computationally entering a higher feature dimension (cf. [33], p. 415; [34], p. 172

and [35], p. 91).

The following kernels are generally used for non-linear classification with SVM (cf. [34], p.

172 and [37]):

Table 2.1: Generally used kernels

SVM Kernel

Linear 𝐾(𝒙1, 𝒙2) = 𝒙1
T𝒙2

Polynomial (𝒙1, 𝒙2) = (𝛾𝒙1
T𝒙2 + 𝑟)

𝑝

Gaussian Radial

Basis Function
𝐾(𝒙1, 𝒙2) = exp (−𝛾‖𝒙1 − 𝒙2‖

2)

Sigmoid 𝐾(𝒙1, 𝒙2) = tanh (𝛾𝒙1
T𝒙2 + 𝑟)

One-class classification

One-class-SVMs for anomaly detection function similarly to SVMs utilizing kernel func-

tions, which were described in the previous section. In this instance, instead of separating

two classes with a non-linear hyperplane, the hyperplane aims to encapsulate the training

dataset, leading to any future data point on the opposite side of the hyperplane being detected

or classified as an anomaly (cf. [34], pp. 276-277).

Multi-class classification

SVMs are binary classifiers with the directive to distinguish between two classes (see (4)).

To use SVMs for multi-class classification tasks, multiple instances of SVMs need to be

trained in order to perform one of two strategies:

• One-vs-one: This method trains 𝑛 =
𝑘(𝑘−1)

2
 SVMs to distinguish between every pair

of k classes (see Eqn. (5)), where each classification counts as a win for the corre-

sponding class. The class with the highest number of wins is chosen as the final class

for the data point.

• One-vs-all: In this strategy, 𝑘 classifiers for 𝑘 classes are trained, each used to dis-

tinguish between one class and all other classes combined. During classification, the

distance of the corresponding data point to the hyperplane is determined for each

Theoretical Foundations

46

classifier. The class with the greatest distance between the data point and the hyper-

plane is chosen as the final class for that data point.

One-vs-all is considered less accurate, when an imbalanced distribution of data points across

all classes exists, as the decision is based on the greatest distance of a data point to the hy-

perplane. However, except when 𝑘 = 3, one-vs-one requires more computational resources

due to the higher number of classifiers that need to be trained, compared to one-vs-all (cf.

[33], pp. 416-417). All in all, both strategies, along with all previous SVM-related classifi-

cation techniques combined, enable SVMs to be utilized for a wide range of machine learn-

ing applications.

2.6.6 Isolation Forest

The isolation forest, short IF or iForest, is a machine learning algorithm primarily used for

anomaly detection and works on the premise that anomalies are easier to isolate than their

normal counterparts.

The isolation forest, comparable to a real or natural forest, consists of a community of trees,

referred to as iTrees. Based on the premise that “anomalies are ‘few and different’” ([41], p.

414), the iTrees, generated randomly, recursively separate a given dataset by choosing a ran-

dom feature and a random threshold, until all datapoints are isolated (see Fig. 2.20).

Figure 2.20: Visualization of an iForest (adapted from [42])

Theoretical Foundations

47

The datapoints with a closer proximity to the root or origin of the iTree, as illustrated in Fig.

2.20, are classified as anomalies, since their isolation can be achieved with fewer cuts or

separations, representing a shorter path length within its structure, compared to data points

considered to be normal (see Fig. 2.20, left and right).

The iTree hereby functions as a binary tree, where each node 𝑇 possesses either two or zero

daughter nodes 𝑇𝑙 and 𝑇𝑟 (left and right). Each tree receives a sample of data 𝑋 = {𝑥1, … , 𝑥𝑛}

to grow, by randomly picking a feature 𝑞 as well as a threshold 𝑝 and dividing the data points

by 𝑞 < 𝑝 (see Fig. 2.20). This process is repeated until one of the following conditions is

met: 𝑋 consists of one remaining data point, 𝑋 consists of data points that all share the same

value, or the trees height limit is met (cf. [41], p. 415). The iForest model is trained when a

community of iTrees is grown. After training, the iForest is tested by moving a labeled test

dataset through the iTrees, determining a corresponding anomaly score for each data point

[41]. Anomalies are indicated by an anomaly score very close to 1, representing a high cer-

tainty. A data point is considered normal with a score much smaller than 0.5. If an anomaly

score of 𝑠 ≈ 0,5 applies to all data points of a dataset, it suggests that no individual data

point stands out as an anomaly (cf. [41], p. 415). The anomaly score 𝑠 can be obtained

through:

 𝑠(𝑥, 𝑛) = 2
𝐸(ℎ(𝑥))

𝑐(𝑛) (17)

with ℎ(𝑥) as the number of edges a data point 𝑥 passes through, corresponding to the path

length used to differentiate between anomalies and normal data points, and 𝐸(ℎ(𝑥)) as its

average across the iTrees. 𝑐(𝑛) represents the “average path length of unsuccessful search”

([41], p. 415), equivalent to the “average ℎ(𝑥) for external node terminations” ([41], p. 415):

𝑐(𝑛) = 2𝐻(𝑛 − 1) − (2(𝑛 − 1)/𝑛) (18)

with 𝑛 as the number of external nodes, i.e., nodes that have zero daughter nodes, and the

harmonic number 𝐻(𝑖), estimated by Eulers constant 𝑙𝑛(𝑖) + 0.5772156649. 𝑛 − 1 rep-

resents the number of internal nodes, dividing the datapoints as illustrated in Fig 2.20, shown

as white circles and rounded rectangles, resulting in:

2𝑛 − 1 (19)

Theoretical Foundations

48

as the overall number of nodes in an iTree [41]. The iForest possesses two hyperparameters:

the number of iTrees 𝑡 and the subsampling size 𝜓, which in turn determines the height limit

𝑙 of an iTree automatically:

𝑙 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑙𝑜𝑔2 𝜓), (20)

The ceiling function hereby returns the nearest integer rounded up. All trees within the total

of 𝑡 trees in the iForest receive the set number of random subsamples 𝜓 without replacement

as their input during training. Empirically, the initial paper [41] proposes 𝑡 = 100 and 𝜓 =

256 as good values for a wide range of applications. Through subsampling, several trees

within the entirety of the iForest identify various anomalies, as each subsample differs in its

composition. Hereby, the isolation of every individual, and generally mostly normal, data

point within a dataset is neither desired nor necessary (cf. [41], p. 416), as “anomalies are

‘few and different’” ([41], p. 414) and therefore easier to isolate through their shorter path

length, resulting in the tree height limit.

In summary, iForests consist of a fixed number of iTrees that grow proportionally with the

dataset size. By utilizing subsampling and implementing a tree height limit, iForests ran-

domly split data points to isolate and identify anomalies through partial models and their

respective path lengths. This allows them to handle large datasets efficiently, as the memory

usage grows linearly with the overall number of nodes (see equation (19)). Additionally,

iForests can effectively detect anomalies since each model operates on a small sample size,

enhancing the visibility of anomalies and making the algorithm applicable to a wide range

of data compositions [41].

2.6.7 Artificial Neural networks

Artificial neural networks, also referred to as ANN, neural networks or NN, are networks

consisting of interconnected artificial neurons inspired by the human brain. Neural networks

are a subset of machine learning, used for automatic information and data processing. The

foundation, structure and learning process of neural networks will be explained in the fol-

lowing paragraphs:

As the name indicates, the foundation of a neural network are its neurons. The neurons are

organized in layers and every neural network generally consists of three different types of

Theoretical Foundations

49

layers: one input and one output layer as well as one or multiple layers between them, re-

ferred to as hidden layers. Every layer consists of multiple neurons and is connected to neu-

rons of another layer (see Fig. 2.23). One exception of the described structure is represented

by the so-called perceptron, a neural network consisting of a single neuron, which will be

briefly explained in the following to describe its basic functionality:

Figure 2.21: Perceptron [43]

Fig. 2.21 shows an example of a perceptron, consisting of a single neuron 𝑧. The perceptron

receives three inputs, 𝑥1, 𝑥2 and 𝑥3, which are multiplied by their respective weights 𝑤1, 𝑤2

and 𝑤3. The neuron 𝑧 adds up all the weighted inputs and includes a bias 𝑏. 𝑔(𝑧) represents

the activation function, which describes how the neuron reacts to the weighted input signal

with the output signal 𝑦̂ as follows:

𝑦̂ = 𝑔(𝒘 · 𝒙 + 𝑏) (21)

In the case of a perceptron, the output is defined by a threshold 𝜃, making the activation

function a step function, also known as Heaviside function, where:

𝑦̂ =

{

 1, 𝑖𝑓∑𝒘𝑖𝒙𝑖 + 𝑏 > 0

𝑛

𝑖=1

0, 𝑖𝑓∑𝒘𝑖𝒙𝑖 + 𝑏 ≤ 0

𝑛

𝑖=1

 (22)

with 𝑏 = −𝜃 (cf. [33], pp. 169-170; [34], p. 286; [43]; [44], p. 19 and [45], p. 13). Percep-

tron’s are used for binary classification of linearly separable data points [33], similar to bi-

nary SVMs (see Section 2.6.5). The perceptron learns by randomly initializing its weights

Theoretical Foundations

50

and bias, then optimizing them in order to achieve the desired outputs. During training the

weights and bias are updated, based on the errors in predictions. A perceptron is trained,

when it finalizes the weights and bias information, either by correctly classifying all training

examples or reaching a specified number of iterations (cf. [33], [34], [38] and [44], p. 22).

Other popular and widely used activation functions for neural networks are depicted in Fig.

2.22 below (cf. [34] and [46]):

Figure 2.22: Sigmoid, tanh and ReLU activation function (adapted from [46], p. 36)

A sequence of neurons is essentially a sequence of linear transformations. Without nonline-

arities, introduced by activation functions 𝑔(𝑧) within a neural network, it is unable to rec-

ognize or learn complex and nonlinear relationships (cf. [34], p. 293 and [51], p. 72), as

illustrated by Eqn. (21). The sigmoid function does not represent a sudden change in its

output depending on a threshold. Instead, it represents a continuous and differentiable func-

tion, where small changes in the weights 𝑤𝑖 and bias 𝑏 result in small changes in the output

𝑦̂ (cf. [34] and [50]). The hyperbolic tangent, also known as the tanh activation function, has

a similar S-shaped form, but ranges from −1 to 1. This allows outputs to be centered around

0 at the beginning of the training, as well as the production of negative outputs in general.

However, both possess saturation at their highest and lowest output values [33] [34].

The ReLU activation function, short for rectified linear unit, computes the value 𝑥 it receives,

provided it is greater than 0, and returns a zero for inputs ≤ 0, therefore not differentiating

between 0 and negative values. The function is continuous and does not possess saturation

for inputs > 0, and, due to its linearity, is fast to compute. It is therefore considered the most

popular among activation functions within neural networks, as it offers good results in prac-

tice (cf. [34], p. 293; [50] and [51], p. 72). Further functions, as well as an additional

Theoretical Foundations

51

activation function, are explained in the context of training neural networks, after an over-

view of their structure:

The neurons of a neural network function analogously to the neurons of a perceptron. A

neural network consists of multiple interconnected neurons organized into layers. Each layer

of neurons is connected to the subsequent layer, with the output of the previous layer serving

as the input for the following. Neural networks can contain any desired number 𝑛 of neurons

as well as any number 𝑙 of hidden layers in order to fulfill their desired purpose, if technically

and computationally possible (cf. [43] and [44]). Networks where all neurons in one layer

are connected to all neurons of the following layer are called fully connected networks, as

shown in Fig. 2.23:

Figure 2.23: Fully connected feedforward neural network (adapted from [46])

Figure 2.23 shows a fully connected neural network with one input layer, two hidden layers

as well as an output layer. Based on the direction of connections between neurons and layers,

neural networks can be classified as either feedforward neural networks (FNNs) or recurrent

neural networks (RNNs). Both types can be either fully connected or not.

The network shown in Fig. 2.23 is an example of a feed forward neural network, where all

connections, starting from the input layer, are directed towards the output layer. If a network

has connections within its layers or feedback loops from one layer to a previous layer, it is

referred to as a recurrent neural network. RNNs can obtain and consider previous processing

states and are able to learn relationships, patterns and dependencies within sequential data,

as text or audio data, but in return, are more complex to train (cf. [17]; [31], pp. 230-233 and

Theoretical Foundations

52

[44]). FNNs are the most common and widely used architecture, as they possess efficient

training methods, a wide range of applications and are proven to be able to approximate any

function or behavior, given a hidden layer with sigmoid activation functions and a finite

number of neurons (cf. [17], [44], [47] and [48]).

Training of neural networks

In order to train a neural network, aside from specifying the number of hidden layers, their

number of neurons as well as their respective activation functions, as the number of input

and output neurons is often given by the task or classification problem automatically (cf.

[34], p. 327), a loss function and an optimization function need to be defined.

Loss function

The loss function, also known as the cost function, compares the desired output of a neural

network, using the labeled training data, to its predictions. It measures the corresponding

cost, error, or distance to the desired output, which will be used to minimize the discrepancy

during optimization [47]. The loss function of a perceptron, for example, can be defined as

the difference between the desired output and the predicted output, either 1 or 0. The classi-

fication is optimized by adjusting the perceptron’s weights and bias if the loss function's

output is not zero [44]. Commonly used loss functions are the mean squared error (MSE)

and the cross-entropy (cf. [33], p. 240).

The MSE is used for both regression and classification tasks, but commonly for regression

(cf. [33] and [51], p. 60). It measures the mean squared error between the desired values

𝑦 and predicted values 𝑦𝑝 of 𝑁 samples as follows (cf. [33] and [47]):

1

𝑁
 ∑∑(𝑦𝑖

(𝑛)
− 𝑦𝑝𝑖

(𝑛)
)
2

𝑖

𝑁

𝑛=1

 (23)

Cross-entropy is the default activation function used for classification (cf. [33], [43] and

[51], p. 60). It measures the difference or degree of deviation between the probability distri-

butions of 𝑦 and 𝑦𝑝 over 𝑁. It is defined as:

1

𝑁
 ∑𝐷(𝑦(𝑛), 𝑦𝑝

(𝑛)
)

𝑁

𝑛=1

 where 𝐷(𝑦, 𝑦𝑝) = −∑𝑦𝑖
𝑖

log(𝑦𝑝) (24)

Theoretical Foundations

53

for multi-class classification, also referred to as categorical cross-entropy, and:

−
1

𝑁
 ∑𝑦(𝑛) log(𝑦𝑝𝑖

(𝑛)) + (1 − 𝑦(𝑛)) log(1 − 𝑦𝑝𝑖
(𝑛))

𝑁

𝑛=1

 (25)

for binary cross-entropy [33]. In order to use cross-entropy, the softmax activation function

is required (cf. [33], p. 240]). This activation function is solely used for classification within

the output layer of a neural network. Its output represents the probabilities of belonging to

one of 𝑘 classes, where the sum of all output values, i.e., the probability scores, is 1. It is

defined as:

𝜎𝑗(𝑧) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 (26)

for FNNs and 𝑗 = 1…𝑛 [33]. The output with the highest probability score, represents the

class to which the input most likely belongs. For multi-class classification problems, cate-

gorical cross-entropy combined with a softmax output layer is the commonly proposed so-

lution (cf. [51], pp. 60 and 84).

Optimization function

Figure 2.24: Optimizing through loss score (adapted from [51], p. 11)

Theoretical Foundations

54

Figure 2.24 illustrates the learning process of a neural network through the loss function and

an optimizer. The optimizer updates the parameters (weights and biases), which are initial-

ized randomly, based on feedback from the loss function, aiming to minimize the loss score

(see Fig. 2.24). This process is achieved through gradient descent in combination with back-

propagation, two fundamental and complementary techniques used to train and optimize

neural networks, which will be explained in the following:

Gradient descent

The derivative of a function represents its slope with respect to a specific variable. A gradient

represents a multidimensional slope for functions with multidimensional inputs, such as a

vector or matrix, in the form of partial derivatives for each of its parameters (cf. [33], p. 183;

[34], p. 124; [51], pp. 47-48 and [53]). Gradient descent is an optimization algorithm that

aims to minimize the output of the loss function by iteratively updating the parameters of a

neural network. It calculates the gradient of the loss function based on the current set of

parameters (weights and biases) and uses the gradient adjust the parameters gradually to-

wards its descent, therefore minimizing the loss (see Fig. 2.25).

Figure 2.25: Gradient descent on a one-dimensional curve [52]

Figure 2.25 illustrates this with a simplified gradient in a two-dimensional space with a one-

dimensional curve. As the gradient 𝛻𝑓 of a function 𝑓:ℝ𝑛 → ℝ indicates the direction of

the steepest ascent, the negative gradient (−𝛻𝑓) is used to move the parameters towards the

direction of the steepest descent, gradually and iteratively determining the parameters for

minimized loss or cost (cf. [31], p. 81 and [33], pp. 183-184). “Gradually and iteratively”

Theoretical Foundations

55

hereby refer to the steps visualized in Fig. 2.25. The size of these steps is determined by the

so-called learning rate. The learning rate 𝜂 is a hyperparameter that defines the size or di-

mension of the parameter adjustments per iteration of gradient descent, representing the dis-

tance to the next position on the curve (see Fig. 2.25). The position in terms of the new

parameters is defined as follows:

 𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂 𝛻𝐽(𝑊𝑜𝑙𝑑) (27)

 𝐵𝑛𝑒𝑤 = 𝐵𝑜𝑙𝑑 − 𝜂 𝛻𝐽(𝐵𝑜𝑙𝑑) (28)

with 𝑊𝑛𝑒𝑤 and 𝐵𝑛𝑒𝑤 as the new weight and bias parameters, and the distance is represented

by the step size 𝜂, multiplied by the gradient of the loss function 𝛻𝐽 with current parameters

𝑊𝑜𝑙𝑑 and 𝐵𝑜𝑙𝑑. If the gradient is equal to zero, a minimum has been reached, indicating that

no further steps towards the steepest descent, and therefore, no further steps towards decreas-

ing the loss, can be made (cf. [33], [34], [51], [52] and [53]).

Depending on the chosen learning rate 𝜂, the following scenarios can occur (see Fig. 2.26

and 2.27):

Figure 2.26: Learning rate, too low vs too high (adapted from [34], p. 122)

As the next parameters, and therefore the next position on the curve, are estimated or ap-

proximated by the learning rate in combination with the function's gradient, the size of the

learning rate has a significant impact on the optimization result (cf. [51], p. 48). Figure 2.26

shows two diagrams of the same loss function with different learning rates. If 𝜂 is too low,

as visualized by the left diagram in Fig. 2.26, the training process progresses very slowly, as

it requires a large number of parameter adjustments. If 𝜂 is too high, on the other hand, as

Theoretical Foundations

56

illustrated by the right diagram in Fig. 2.26, it can overshoot the minimum and cause oscil-

lations during the training process, which, in the latter case, can lead to a failure to converge

(cf. [34], p. 122 and [44], pp. 87-90).

Figure 2.27: Plateau, local and global minimum within loss function (adapted from [34])

Applying these scenarios to a learning function that is not convex and possesses local min-

ima or plateaus, as shown in Fig. 2.27, shows that the learning rate can have a significant

impact on the effectiveness of gradient descent. If the learning rate is too low, the optimiza-

tion process may never reach the global minimum, either by getting trapped in a local mini-

mum, as the loss would increase when adjusting the parameters in both directions, or by

plateauing, as it would take too many iterations to leave the plateau. Therefore, the learning

rate must be large enough to overcome local minima or plateaus, but small enough to suc-

cessfully reach the global minimum without overshooting it, independent of how or where

the parameters are initialized (cf. [34], p. 123).

Stochastic Gradient Descent

Instead of calculating the gradient for the entire batch of training data, which is referred to

as batch gradient descent, the stochastic gradient descent (SGD) uses a random sample of

the training data to determine the gradient of the loss function and adjust the parameters

accordingly. This enables the training of networks on large datasets, as it reduces the com-

putational burden, allowing the algorithm to update the parameters more frequently, one data

point at a time. While this makes the algorithm faster compared to the batch gradient descent,

it can also be more irregular or erratic due to its random nature, causing fluctuations between

different positions or adjustment values in the optimization process. This variability can be

Theoretical Foundations

57

both beneficial and detrimental, as it helps the algorithm to overcome local minima and in-

creases the likelihood to find the global minimum, but it may also lead to overshooting the

optimal point, resulting in suboptimal parameter values (cf. [34], p. 127).

A compromise between the two algorithms is the so-called mini-batch SGD, which uses a

small adjustable batch of randomly chosen data points to compute the gradient within every

iteration. It combines the benefits of both algorithms and is the most commonly used algo-

rithm to optimize neural networks (cf. [52] and [54]). Other popular and widely used algo-

rithms are based on the SGD, such as Adagrad, Adam and RMSprop (cf. [33], [34], [54] and

[51], p. 60).

Backpropagation

During optimization, the neural network iterates through datapoints or batches of the training

dataset and predicts an output. The predicted output is then compared to the desired output

by the loss function, and a corresponding loss score is calculated (see Fig. 2.24). During this

process, the data propagates forward through every layer of the neural network, where the

weights and biases of the neurons contribute to the output. The backpropagation algorithm

uses the loss score and propagates it back through the network, calculating the contribution

of every layer and neuron connection to the loss score, starting from the output. It calculates

the gradient of the loss function for all parameters contributing to the discrepancy and adjusts

the weights and biases through gradient descent to minimize the loss. One iteration through

the entire dataset is referred to as one epoch. During optimization, a neural network is trained

over multiple epochs (cf. [34] and [54]).

Data Partitioning

In order to assess the performance of a neural network after its training, the training data set

does not consist of the entirety of all data but is partitioned accordingly beforehand. The data

is typically divided into three different datasets: a training dataset, a validation dataset, and

a test dataset. The training dataset usually consists of 70-80% of the total data (cf. [33], [34]

and [44]). As previously mentioned in Section 2.6, the training dataset is used to train the

network based on its content. The validation dataset is used to validate the performance of

the trained network and adjust its hyperparameters, presenting a set of previously unseen

data to the network. Hyperparameters are parameters, that are provided externally to a neural

network, unlike the weights and biases that a network learns through backpropagation itself

Theoretical Foundations

58

[51]. The adjustment of the hyperparameters is a highly iterative process, where the entire

training is repeated, and the validation dataset is used after each hyperparameter adjustment

to validate the resulting performance of the neural network. The performance is evaluated

using defined quality measures, such as the accuracy or overall cost. Once this iterative pro-

cess, also known as hyperparameter tuning, is completed and the desired performance is

achieved, the network is tested with the test data set, a final set of data completely unknown

to the network. The test data set is used to determine how the neural network performs under

real-world conditions. This is necessary to evaluate if the training has been successful and if

the network will perform well on new data, as the entire neural network was optimized using

the validation dataset (cf. [34] and [51], pp. 97-98).

Instead of holding out a percentage of the data as a validation dataset, which is referred to as

hold-out validation, another approach exists that further partitions the validation data into 𝑘-

folds, known as 𝑘-fold cross-validation. In this method, the data is partition into 𝑘 equally

sized folds in order to subsequently perform training and validation 𝑘 times. During cross-

validation, one of the 𝑘 partitions is used for validation, while the remaining 𝑘 − 1 partitions

are used for training, as shown in Fig. 2.28. The resulting validation performance is repre-

sented by the average across all folds [51].

Figure 2.28: 3-fold cross-validation [51]

The main advantage of k-fold cross-validation is that it demonstrates how well a neural net-

work or machine learning model with a certain set of hyperparameters is able to generalize

by validating across different subsets of data while training with the remaining, varying

Theoretical Foundations

59

training sets. Additionally, if only a small set of data is available, it maximizes its use and

ensures that the performance is independent of a certain partitioning of the data. The perfor-

mance is measured as the average across all folds and therefore and includes the standard

deviation, which presents additional useful information regarding the model’s abilities (cf.

[33], p. pp. 97-98; [34], 76 and [51], p. 99). This approach is also beneficial for identifying

overfitting, which will be explained in the following section:

Overfitting and Underfitting

The desired outcome of training and optimizing a neural network is for it to generalize well

and apply its learned knowledge to new data as effectively as it does to the data it was trained

on. While training can be controlled and adjusted, generalization can only be observed

through validation as a result of the optimization process [51].

Underfitting occurs when a neural network suffers from a low capacity. Its performance

reaches a peak and cannot improve further as the data is too complex for it to learn from.

Measures against underfitting include increasing the model’s size to enhance its resources,

analytic capabilities, and overall capacity (cf. [51] and [54]).

Overfitting occurs when a neural network performs well on known data but poorly or less

effectively on new and unseen data. This indicates that the network has memorized the train-

ing data, learning patterns that apply only to it specifically. In general, it means that the

neural network has high learning capacities but not enough data to learn from effectively,

leading it to learn misrepresentative or misguiding patterns within the data by using its ex-

cess capacity. The solution is to provide more and relevant data, so the network has more

training examples to learn from, or, if that is not possible, limit or restrict its capacities

through regularization [51]. This can be achieved by reducing the networks size, using drop-

out layers or perform early stopping. Overfitting can occur in every area of machine learning

applications. If a SVM overfits for example, the parameter C can be reduced to regularize it

accordingly (see Section 2.6.5 and cf. [34], p. 157).

Dropout layers are layers within a neural network where a certain percentage of neurons,

defined by the dropout rate, randomly turn off during training. During each training step,

different neurons turn off according to the dropout rate, and neurons that were turned off

before can be turned back on. This forces the active neurons to adapt, making them robust

Theoretical Foundations

60

against overfitting and therefore enhancing the network’s ability to generalize. During test-

ing, all neurons are turned on (cf. [34], pp. 368-371; [51], pp. 109-110 and [54]).

Early stopping monitors the training and validation progress during optimization and stops

the training automatically as soon as the validation loss reaches a minimum and does not

further improve. This method allows to identify if and when the neural network starts to

overfit, returning to the point where the minimum and therefore the best performance is

reached (cf. [34], p. 143).

A method to provide additional data without necessarily collecting it, is called data augmen-

tation. It involves creating new data from already existing data by duplicating data points

and modifying them slightly. This can prevent overfitting and enhance the performance of

the neural network, as the network needs to learn from a wider range of slightly differing

data, under the condition, that the data contains learnable features and conditions (cf. [34]

and [51], p. 130).

All in all, the ability of a network to learn and achieve the desired performance is highly

dependent on its composition and overall hyperparameters. Essential aspects of defining

these hyperparameters are explained in the following:

Hyperparameters

As previously mentioned, hyperparameters are parameters provided externally to a neural

network, unlike the weights and biases that a network learns through backpropagation itself

[51]. The most important hyperparameters are summarized below:

• Training Data: While the training data itself is not a hyperparameter, its volume, the

applied preprocessing, including the selection of suitable features as well as normal-

ization or scaling measures, significantly influence the training results and must be

considered, depending on the data composition and whether neural networks perform

these automatically or not.

• Number of hidden layers: The number of hidden layers in a neural network increases

its overall capacity and allows it to recognize complex patterns. However, this in-

creases the risk of overfitting and its computational expense. The smallest network

Theoretical Foundations

61

that can fulfill the desired task, is usually the most practical, as it has less computa-

tional effort and a shorter processing time than large networks. In addition, smaller

networks can achieve better generalization with limited data, provided no early stop-

ping is used. A good approach is to start with one or two hidden layers and gradually

increase the number (cf. [34], p. 326; [48] and [51]).

• Number of neurons per hidden layer: In general, two approaches are proposed for

aligning the number of neurons per hidden layer [33] [34]:

1. Pyramidal Approach: In this method, the number of neurons decreases from the

input layer to the output layer, resembling a pyramid. This means that neurons

must compress the information they receive, thereby reducing its complexity.

2. Cuboidal Approach: In this method, layers are structured like a cuboid, with each

layer containing the same number of neurons. This approach has proven effective

in practice and allows for only one hyperparameter to be adjusted, as this hy-

perparameter simultaneously determines the number of neurons in all layers.

A good approach is to gradually increase the number of neurons per hidden layer

until the network overfits. Additionally, [34] proposes defining a higher number of

hidden layers and neurons than needed and using early stopping, as this approach

simpler and more efficient (cf. [33], p. 203; [34], p. 327; and [51]).

• Activation function: The activation function determines how the neuron reacts to the

input signal with its output signal. In general, ReLU is proposed as the default acti-

vation function for hiddeln layers [34]. Regarding the last layer, it specifies the out-

put of the neural network and establishes limits or restrictions, such as softmax for

example [51].

• Loss function: The loss function usually results from the task or application of the

neural network. The loss function is generally chosen as follows [51]:

▪ Regression: MSE

▪ Binary classification: Binary cross-entropy

▪ Multi-class classification: categorical cross-entropy

Theoretical Foundations

62

• Optimization: The optimization process involves the learning rate in combination

with the learning function, or so-called optimizer. [51] proposes RMSprop (Root

Mean Squared Propagation) with a default learning rate of 0.001 as suitable for most

applications.

• Number of iterations or epochs: The number of training epochs is often not specified

due to the use of early stopping (cf. [34], p. 328).

Hyperparameter tuning is an iterative process where the optimal parameter set if often de-

termined through trial and error. Techniques, such as grid search or random search allow to

optimize this process by searching through a defined or random grid of parameters (cf. [51],

[53] and [54]).

2.6.8 Deep Learning

Networks that possess two or more hidden layers are referred to as deep neural networks or

deep learning (cf. [34] and [50]). Since all deep learning algorithms are neural networks, all

previously discussed contents in Section 2.6.7 apply to them as well. A specific deep learning

model that will be used within this thesis is the so-called Autoencoder (AE), which will be

explained in the following:

Autoencoder

Autoencoders are among the most widely used deep neural networks for anomaly detection

within the context of predictive maintenance (cf. [17]). As part of unsupervised learning

methods (see Section 2.6.2), the autoencoder learns features representative for normal data

in order to identify anomalies. During training, the Autoencoder compresses the normal data

and learns its compressed representation, also referred to as the latent representation (see

Fig. 2.29). Afterwards, the autoencoder tries to reconstruct the learned information and com-

pares it to its input, measuring the discrepancy or deviation. The autoencoder consists of two

main components, an encoder and a decoder, responsible for the processes of compression

and reconstruction, respectively (cf. [17], [33], [34] and [55]). Therefore, both components

are structured like a pyramid, with the input and output as their respective bases (see Fig.

2.29).

Theoretical Foundations

63

Figure 2.29: Structure of an Autoencoder [54]

After training, the Autoencoder can be used to predict whether given data points represent

anomalies by reconstructing the input. If it is able to reconstruct the input successfully, it is

regarded as normal. Otherwise, the input is declared an anomaly. The decision is usually

made based on a calculated error between input and output, similar to a loss function, and

using an iteratively determined threshold value [56].

The Industry 4.0 Production Plant

64

3 The Industry 4.0 Production Plant

Within this chapter, the to be enhanced industry 4.0 production plant is presented (see Fig.

3.1). It is located at the Shanghai-Hamburg College at the University of Shanghai for Sci-

ence and Technology and was manufactured by Lucas Nuelle.

Figure 3.1: Industry 4.0 production plant [67]

In the following, the manufactured products within the production plant, its production

process as well as its components will be explained:

The Industry 4.0 Production Plant

65

3.1 Products and production process

The industry 4.0 production plant represents an automated and interconnected block produc-

tion system, producing an assembled block of so-called workpieces. In the following, work-

pieces and block are often used synonymously to refer to the individual components as well

as the final product, in form of the assembled block or workpiece. The individual workpieces

are presented in Fig. 3.2:

Figure 3.2: Individual workpieces (adapted from [57])

The production plant features an OpenCart web shop (see Section 3.2.3 and Fig. 3.15), where

a user or customer can decide which product he wants to purchase or order, and therefore,

which product the production plant should produce. The customer can hereby freely decide,

which combination of individual workpieces the final product should entail, as long as they

consist of an upper and a lower piece (see Fig 3.2).

The lower workpieces are shown in the lower left cornered area of Fig. 3.2, numbered as 1.

The upper workpieces are shown in the area above, numbered as 2. Each component consists

of at least, and at most, one of each of these two workpieces, independent of their color, fully

to the desire of the customer. Both workpieces are combined by integrating an upper work-

piece into a lower workpiece. The connection or combination of both workpieces can then

be optionally enhanced, using of two pins, shown in the right cornered area of Fig. 3.2,

The Industry 4.0 Production Plant

66

numbered 3. The numbers in this case, also refer to the assembly sequence of the workpieces.

The assembly is performed completely automatically by eight individual workstations, as

well two extensions:

Figure 3.3: Schematic plant overview (adapted from [58])

The production plant consists of nine industrial mechatronic systems, abbreviated IMS, as

well as one industrial robot manufactured by KUKA. Eight IMS Stations, arranged in a cir-

culating and closed-loop conveyor system, as shown in Fig. 3.3, are responsible for the pro-

duction of the workpieces. The IMS Station outside the depicted and closed-loop conveyor

system (see Fig. 3.3, IMS 6) is a testing station, to which the KUKA robot enables the trans-

fer from and to the production loop. The entire production process, starting with an order, is

as follows:

After an order is placed through a customer on the web shop, it is forwarded to the manu-

facturing execution system database. The manufacturing execution system, or MES, man-

ages the orders within the database and triggers them, if the production plant is idle and

capable of production.

The Industry 4.0 Production Plant

67

In its idle state, three empty workpiece carriers, equipped with RFID tags, are located within

the production plant. The initial position of these carriers, for the sake of simplicity referred

to as carrier 1 (C1), carrier 2 (C2) and carrier 3 (C3), is illustrated in a simplified manner in

Fig. 3.4.

Figure 3.4: RFID read and write units and carrier flow (adapted from [58])

Carriers C3 and C2 are hereby located at the front and rear end of IMS Station 1. Figure 3.4

shows C1 in a transfer state, with its idle position across carrier 2, in front of IMS 3a. The

production plant is equipped with four IMS Stations featuring RFID read and write units,

depicted as rectangles with a single yellow dot at the beginning of each of these stations in

Fig. 3.4. With the RFID tags and RFID read and write units, each carrier, which contains an

individual and recognizable identification number, is assigned the product information of

the workpiece it is carrying and needs to produce. From the beginning of the production

process, each carrier possesses knowledge of the final product and is aware of each individ-

ual station or step required to achieve this final state. This also applies to the overall produc-

tion system, which reads, writes and updates the information on the RFID tags after each

The Industry 4.0 Production Plant

68

production step. According to the definition of smart objects within Industry 4.0 (see Section

2.5.2), the carriers can be considered smart carriers or, in relation to the workpieces they

transport, can also be referred to as smart workpieces.

After an order is triggered and production is initiated by the MES, the carrier, provided it is

in the idle position of C1, moves over the RFID read and write unit at IMS Station 3a and

receives the corresponding product information. The other two carriers shift positions, mov-

ing from Carrier position C3 to C2 and from C2 to C1, assuming that no carrier is currently

within the production process and that production starts from the previously described idle

state (see Fig. 3.4).

During production, the carrier moves through each of the circularly arranged IMS Stations,

starting from 3a, as indicated by the arrows in Fig. 3.4. Depending on the customer’s pref-

erence and the corresponding production information the carrier possesses, the carrier will

stop at the respective stations in order to complete the relevant production steps. At IMS

Stations 3a and 3b, the lower workpieces, also referred to as bottom parts, are assembled

(see Fig. 3.4). The carrier will stop at IMS Station 3a for a black bottom part or at 3b for a

white bottom part, depending on the content of the order. Similarly, IMS Station 4a handles

the assembly of black upper or top parts, while 4b manages the assembly of white upper or

top parts (see Fig. 3.4), following the same procedure.

After passing the first four stations, the carrier stops at IMS Station 5a for a red pin or at

Station 5b for a metal pin. If the desired product does not include a pin, the carrier continues

moving and passes through IMS Station 5a and 5b without stopping, proceeding directly to

IMS Station 7 as intended. At this point, after IMS Station 5b and right before IMS Station

7, one of two scenarios may occur. Through an HMI touch panel, it can be selected whether

the KUKA robot and, consequently, the testing station IMS 6 should be integrated into the

manufacturing process, determining if the product should undergo a final non-destructive

test regarding its composition. If the KUKA robot is selected or enabled, it transfers the

workpiece to the IMS Station 6 and its own separate carrier. The previous smart carrier re-

mains at the same location within the circulating closed-loop conveyor system, waiting for

the part to be returned after testing. During testing, the IMS Station 6, which features four

individual sensors, checks if the final product matches the desired specifications. If all the

individual components match the original order, the robot returns the workpiece to the carrier

The Industry 4.0 Production Plant

69

waiting between IMS Stations 5b and 7. If not, it transfers the workpiece to a separate area,

consisting of three individual slots for sorted-out workpieces, and the smart carrier remain-

ing in its waiting position returns to an available idle position. As a result, the order is auto-

matically reinitiated, and the production of the entire workpiece is repeated. The outcome of

the non-destructive testing is displayed on the HMI.

After a successful test and the workpiece is returned to the smart carrier, it proceeds to IMS

Station 7, the final stage of production. Here, the workpiece is grabbed by a handling device

equipped with vacuum suction cups and transferred out of the production plant onto a des-

ignated platform. The carrier then moves to IMS Station 1, into an available idle position,

completing one production cycle (see Fig. 3.4).

3.2 Components

Within this section, the previously described IMS Stations and their components, along with

the KUKA robot and the production, planning and execution system, as well as the underly-

ing logic and architecture will be explained.

3.2.1 IMS Stations

The circulating closed-loop conveyor system consists of multiple individual conveyor belts

(see Fig 3.4 and 3.5). These conveyor belts, controlled by a Siemens S7-1200 PLC, also

form the basis of the IMS Stations, with the IMS Station 1 representing its initial form or

structure (see Fig 3.5). The IMS Stations, which are responsible for assembling the same

type of workpiece and therefore share the same number, are presented as one type of station

within this section.

IMS Station 1

The conveyor belt features a 24V DC motor capable of bidirectional movement and uses a

dual-belt configuration to transport the smart workpiece carriers (see Fig. 3.5). It includes

two magnetic-field end-limit sensors that detect when a carrier - equipped with integrated

magnets identifiable by the end-limit sensors, in addition to the previously mentioned RFID

The Industry 4.0 Production Plant

71

IMS Stations 3a and 3b

Figure 3.6: IMS Station 3a (adapted from [57] (left) and [67] (right))

The IMS Stations 3a and 3b are responsible for assembling the bottom part. They use the

conveyor belt as a base and are positioned above it (see Fig. 3.6). If a carrier moves through

the station and needs to receive a bottom part, the station extends a stopper that prevents the

carrier from proceeding, positioning it under the workpieces stock tower, shown in Fig. 3.6,

in order to receive the workpiece. Shortly after, the conveyor belt is deactivated and the

station, equipped with pneumatic valves and a corresponding mechanism that briefly re-

leases, allows the workpiece to drop onto the carrier. Once the carrier has received the work-

piece, the stopper retracts, the conveyor belt is activated, and the carrier moves on to the next

station.

In addition to the sensors and motor of the conveyor belt, IMS Stations 3a and 3b are

equipped with a pneumatic valve block with two valves that control the stopper and the

dropping mechanism, as well as a tactile or mechanical switch to monitor the magazine level,

and a magnetic sensor to detect the position of the stopper. Their I/O signals, excluding those

The Industry 4.0 Production Plant

77

testing station, the robot moves towards the smart carrier, grips the workpiece with its end-

effector, and transports it to the carrier at IMS Station 6 (see Fig. 3.11).

Figure 3.11: KUKA robot KR6 R700 (adapted from [57] (left) and [67] (right))

During the test, the robot stays in a waiting position above the initial position of the testing

stations at the beginning of the station’s conveyor belt (see Fig. 3.9). If the non-destructive

testing of the workpiece is successful and the workpiece matches the desired specifications,

the robot picks it up with its end-effector and transports it back to the closed-loop conveyor

system, where it is placed on the waiting smart carrier (see Section 3.1).

If the test is unsuccessful and the workpiece does not match the desired composition, the

robot transports the workpiece to one of three designated sort-out slots, depending on which

is available (see Fig. 3.11). If all the slots are occupied, the robot will wait in a designated

position and will only pick up the workpiece once the operator confirms via the HMI touch

panel that the slots have been cleared. After picking up and placing the workpiece, the robot

returns to its original idle position, fixed at a certain height between IMS Stations 5b and 7

(see Fig. 3.11 and cf. [57], [58] and [59]).

The Industry 4.0 Production Plant

78

3.2.3 ERP-Lab

Figure 3.12: Design and structure of ERP-Lab [58]

The ERP-Lab, short for Enterprise Resource Planning Laboratory, runs as a cloud system

within the production plant's own intranet (see Fig. 3.12). It includes administrative func-

tionalities, managing applications and equipment relevant for production, resource planning,

and manufacturing execution. The ERP-Lab’s functionalities, logic, and data are provided

to the production plant, representing an IoT device, via an IoT adapter, which connects the

cloud with its PLCs (see Fig. 3.12). The IoT adapter is also connected to the OpenCart web

shop, which is realized with a web server, providing a user interface. The user interface can

be accessed via a browser, regardless of the device or operating system (see Fig. 3.12).

The cloud’s required hardware and storage are provided by a Windows PC that includes the

cloud runtime system as a virtual Linux machine. The ERP-Lab communicates with the

PLCs using the resource-efficient CoAP (Constrained Application Protocol) interface, re-

sponding to queries from the PLCs. This interface utilizes the User Datagram Protocol

(UDP) to facilitate communication and data exchange. The content on the user interface is

realized through HTML (Hypertext Markup Language) data exchanges with the web server

(cf. [57], [58] and [59]). A view of the web server’s user interface, as well as its contents,

are presented in Fig. 3.13:

The Industry 4.0 Production Plant

79

Figure 3.13: ERP-Lab v2.1.0 (Order view) [67]

Figure 3.13 shows a view of the ERP-Lab, the Order view, in particular. Alongside the order

tab, it includes six additional subsites or tabs, which will be explained from left to right,

excluding the Analytics view, as it currently possesses no useful or beneficial functionalities,

in the following (see Fig. 3.13 and cf. [58] and [59]):

Order

The order view includes a list of all orders received through the OpenCart web shop, there-

fore including a list of products previously assembled, currently in production, or waiting

for production, as well as their corresponding order ID, production or waiting duration, and

a timestamp, marking the end of their production (see Fig. 3.13). The subsite also includes a

more detailed view of the individual components of a workpiece, available by clicking on

the magnifier-icon, illustrated by the red lines and arrow in Fig. 3.13. The additional view

includes the production step as well as a timestamp marking its end, the involved station and

duration of each individual component (see Fig. 3.13).

Stock

This view includes the current magazine or stock level of each station and can be manually

increased to a number of five pieces per station. This functionality is also included within

the following subsite.

The Industry 4.0 Production Plant

80

SCADA

Figure 3.14: ERP-Lab v2.1.0 (SCADA) [67]

The SCADA subsite, allowing Supervisory Control And Data Acquisition, includes a view

of all stations, their current state as well as the ID of the carrier, currently at a station (see

Fig. 3.14). The stock counter can be increased by clicking on the numbered button in front

of the workpiece icons. If an error occurs, it is also portrayed within the stations state column

and can be resolved by clicking on the refresh button behind the workpiece icons (see Fig.

3.14).

MES

The MES tab includes all administrative settings of the production plant. Here, the connec-

tions of the stations and PLCs, carriers and carrier IDs, stocks, upper stock limits and indi-

vidual workpieces, as well as the stations states, state machines and actions are defined,

allowing to be edited, removed or added. The logic of the entire system and the assignment

of the individual workpieces to the corresponding IMS Stations is defined here. Incoming

orders can be viewed and deleted from the system as well, if necessary.

ERP

The design of the web shop, the product catalogue, as well as the application of possible

marketing measures, represent functionalities and contents, that are available, modifiable

The Industry 4.0 Production Plant

81

and customizable within the ERP tab. In addition, sales statistics, reports and customer pro-

files can be reviewed.

Shop

By clicking on “Shop” within the tab bar, the OpenCart web shop opens as a new tab. It is

structured like a regular web shop, where a customer can click on a product, set a desired

quantity and add it to his shopping cart (see Fig 3.15). By checking out, the workpieces

within the shopping cart are ordered, and transmitted to the MES database in order to be

produced (see Section 3.1).

Figure 3.15: OpenCart web shop [67]

3.2.4 The production plant in terms of Industry 4.0

Each IMS Station within the production plant represents a CPS, consisting of mechatronic

and network components, able to interact with the physical and digital world through their

actuators, sensors, software and information technology (see Section 2.5.1). The IMS Sta-

tions are physically and digitally connected, communicating over an Ethernet connection

between their PLCs, and virtually represented within the ERP-Labs cloud system, network-

ing the production equipment as their IoT (see Section 2.5.3). The carriers represent smart

objects, aware of the workpiece they are carrying, their current state as well as the necessary

steps in order to achieve the desired outcome in form of the final product (see Section 2.5.2).

The Industry 4.0 Production Plant

82

Therefore, the production plant is able to derive actions based on the information available

within the IoT and provided by its CPS. Based on this information, the production plant

queues and prioritizes certain incoming orders according to the stock count of each individ-

ual station, representative of the availability and capability of a station for production or

assembly of the desired workpieces and product composition. The production plant is aware

of the individual and customized orders from web shops customers, as well as the stock

count of its stations, and can derive actions autonomously, organizing and optimizing the

production order without manual or human oversight (cf. [57], [58] and [59]). As a result,

the production plant can be considered a Smart Factory, conscious and capable of delivering

information about its operations (see Section 3.2.3).

In the context of Industry 4.0, all production-relevant data is collected and available, how-

ever, no data or information representative of the plant’s condition or the condition of its

components, necessary for condition-based and predictive maintenance, is gathered or avail-

able. The aggregation and availability of this data were achieved in a previous master thesis

[59] and are summarized in form of the controller network and data blocks within the TIA

Portal (Totally Integrated Automation Portal), which is used to program the PLCs, in Section

3.2.5 below:

3.2.5 Controller network and data blocks

Figure 3.16: TIA Portal network overview showing PLC and KRC4 connections [67]

The Industry 4.0 Production Plant

83

As previously mentioned, each IMS Station has its own Siemens S7-1200 PLC, which is

connected to its sensors and actuators. Additionally, the production plant is equipped with a

Siemens S7-1500 PLC, referred to as PLC_1, consisting of ten PLCs in total (see Fig. 3.16).

Connected to the PLCs of the IMS Stations as well as the controller of the KUKA robot via

Profinet, an Ethernet-based communication protocol, it assumes an overarching role, receiv-

ing and aggregating all the data generated by the production plant. Figure 3.17 shows a

cropped view of the data blocks, containing the mentioned data, within the TIA Portal:

Figure 3.17: Cropped view of PLC_1’s data blocks [67]

The data consists of information generated both during the production and the idle states of

the individual IMS Stations and the KUKA robot.

Data IMS Stations

For the IMS Stations, this data is generated by the PLCs as a result of the I/O signals shown

in Section 3.1.1 (see Tables 3.1 to 3.5), as well as power consumption measurements of each

conveyor belt motor. Counters track how often a sensor or actuator is triggered according to

the I/O signals, incrementing the count over time with each activation or actuation.

Regarding the power consumption of the conveyor belt motors, the current and voltage are

measured, and the resulting power is calculated. Additionally, the runtime of the motors is

measured based on their activation. The individual data and the number of the IMS Stations

generating it, are presented in Table 3.6:

Concept

86

4 Concept

In this chapter, the concept for implementing condition-based and predictive maintenance as

well as the underlying necessary requirements and functionalities will be described. First, a

functional requirement analysis will be performed, followed by the selection of relevant and

necessary tools to achieve the functional requirements or desired functionalities.

4.1 Functional requirements analysis

In order to determine what kind of tools are necessary within the condition-based and pre-

dictive maintenance solution, the desired functionalities or functional requirements need to

be defined.

At this point, the system is essentially a black box that consists of a collection of different

and currently unknown tools providing specific and desired functionalities. These function-

alities represent the output of the system or black box and will define its content, with the

data from the production plant serving as its input, as illustrated in Fig. 4.1:

Figure 4.1: Black box of the condition-based and predictive maintenance solution [67]

Concept

87

In order to implement an effective condition-based and predictive maintenance solution, the

following functionalities and necessary functional requirements are defined:

1. Accessibility:

1.1 Historical and real-time data

1.2 Independent of physical proximity to the production plant

2. Automated processes:

2.1 Condition monitoring using thresholds

2.2 Data analysis and classification through machine learning

3. Display of:

3.1 Data visualization

3.2 Conditions exceeding thresholds

3.3 Machine Learning output

3.4 Maintenance Alerts

4. Maintenance:

4.1 Alert messages and notifications

4.2 Log data exceeding thresholds

4.3 Log classification

The aim is to provide a general overview of the production plant and its components, ena-

bling operators and maintenance personnel to gain insight into its current state and the con-

dition of its equipment. Operators should be able to inspect data in real-time and, if needed,

examine specific parameters of individual stations and components, as well as certain time

periods. Simultaneously, the data should be monitored based on specific and defined thresh-

olds, triggering automatic maintenance alerts when necessary. Additionally, relevant data

should be analyzed by appropriate machine learning models and classified accordingly. By

generating alert messages and notifications when parameters, features or characteristics de-

viate from normal operation, responsible maintenance personnel should be notified to ad-

dress potential issues before they lead to failures. Moreover, if maintenance alerts are trig-

gered, either due to parameters exceeding their thresholds or predictive maintenance models

identifying deviations, the corresponding data should be logged and retained to maintain a

detailed record of all events in case they need to be reexamined at a certain point in the

future.

Concept

88

All information should be accessible through an interface and displayed accordingly, inde-

pendently of one’s physical proximity to the production plant, ensuring comprehensive ac-

cessibility as well as a detailed overview, if needed. Maintenance personnel should be able

to receive notifications, both with and without accessing the interface. In addition, stake-

holders and operators should be able to enter and access the interface without needing to be

physically present at the production plant.

4.2 Selection of necessary tools

The functionalities, defined in the previous chapter, result in the following tools, necessary

for their implementation (see Figure 4.2):

Figure 4.2: Grey box including the necessary tools [67]

To provide insights through historical data, the data generated by the production plant first

needs to be transferred from the PLC_1 to a database and stored appropriately, in order to

be accessed afterwards at a certain point of time. Additionally, a data analysis tool is required

to monitor and process the collected data, in order to provide additional and relevant infor-

mation necessary for maintenance, such as insights through condition monitoring and ma-

chine learning models. Furthermore, to display the information and the collected data effec-

tively and in general, a user interface is necessary. This should be combined with a data

visualization tool to create and generate appropriate graphs and provide comprehensive over-

views of past and present conditions. As the interface should be accessible independently of

Concept

90

indicate the chosen tools, deemed suitable for this application. In the following paragraph,

the decisions will be explained, based on the benefits of each tool, how they complement

each other and considering expandability and modularity for implementing additional func-

tionalities as well as an open system architecture allowing integration of new tools and tech-

nologies as an additional factor.

Database

Constantly monitoring and collecting data from the Industry 4.0 production plant will result

in a large volume of time series data. MySQL and InfluxDB hereby both represent databases

capable of receiving and storing data. MySQL is a relational database that uses SQL (Struc-

tured Query Language) and requires structured data storage. It can be used for a wide range

of applications, including time series data. In contrast, InfluxDB is specifically designed and

optimized for handling time series data, able to store the data in columns without requiring

complex relational structures and capable of handling high data rates, making it easy and

predestined to store a continuous series of time series data for this application. Additionally,

all database functionalities can be accessed via an HTTP API (Hypertext Transfer Protocol

Application Programming Interface), enabling data access with various software tools [61].

InfluxDB also features a graphical web user interface, allowing the creation of graphs and

dashboards, as well as monitoring functionalities for setting thresholds and generating cor-

responding alarm messages.

Data flow

Telegraf is a server-based agent for collecting and sending data, created by InfluxDB, and

able to use OPC UA plug-ins, among others, to communicate and receive data from PLCs

[62]. It can be used to transfer the data from PLC_1 to the database but provides no additional

functionalities. A better option for managing data flows is Node-RED. Node-RED is a visual

and browser-based flow editor, enabling the management of flows and the implementation

of functions by connecting and arranging nodes via drag and drop [63].

In addition, Node-RED offers a variety of functionalities by extending its node palette

through a library of extensions. These functionalities include creating custom dashboards,

displaying notifications and real-time data graphs, sending e-mails, and integrating with var-

ious APIs, services, and protocols, such as OPC UA and InfluxDB, allowing different appli-

cations to communicate with each other. Furthermore, custom function nodes can be created

Concept

91

with a text editor and JavaScript, enabling users to interact with, manage, and customize data

as well as the data flow, and create actions based on custom rules and preferences.

Therefore, the data flow can be automated, and monitoring tasks, as well as the logging of

data exceeding thresholds, can be executed in parallel. Node-RED, along with its customi-

zable dashboard as a user interface, can be accessed through a browser and configured as a

web interface with additional tabs, views, tabular displays, pop-ups, and buttons, enabling a

flexible, comprehensive, and interactive user experience. This makes it suitable for creating

maintenance dashboards, where real-time data visualization, alerts, and detailed monitoring

are important. Moreover, Node-RED possesses an open system architecture and can be eas-

ily extended by adding and integrating further communication protocols, functions, dash-

boards, and other elements for maintenance or additional applications within the production

plant.

Data analysis tool

As a data analysis tool, MATLAB, a platform for numerical calculations, programming, and

data analysis, is chosen [64]. In comparison to TensorFlow, a platform for machine learning,

MATLAB offers a variety of toolboxes for data preprocessing, feature extraction, and ma-

chine learning models, while still retaining the ability to be used for other applications, such

as simple data monitoring and visualization tasks or creating complex real-time graphics,

models and digital twins for example. This flexibility maintains the potential for expanding

condition-based and predictive maintenance solutions.

Data visualization with Grafana

Grafana, a data visualization tool for creating dashboards, offers and provides more ad-

vanced visualization possibilities than InfluxDB or Node-RED by themselves. Grafana

hereby does not need data to be transferred or separately stored in order to be visualized and

can query the data directly from InfluxDB using Flux, InfluxDBs functional data scripting

language. Grafana provides a web interface and enables the creation of dashboards, organ-

izing parameters based on categories such as power consumption or according to the stations

they belong to. It offers dynamic and customizable visualization options, particularly for

historical, real-time, and time series data, as well as additional metrics and filtering options

[65].

Concept

92

While Grafana is not essential for the realization of the condition-based and predictive

maintenance solution (see Table 4.1), it provides additional functionalities to create visually

pleasing and detailed dashboards for examining graphs and trends of data. Therefore, it is

used as an additional complement for the application.

Combined maintenance solution

The combined condition-based and predictive maintenance concept for the Industry 4.0 pro-

duction plant is defined as follows, with the resulting combination of tools summarized in

Fig. 4.3:

Figure 4.3: White box including the specific combination of tools [67]

Node-RED will be used as the center of the maintenance application, managing the data flow

from the production plant to InfluxDB via OPC UA (see Fig. 4.4). As it manages the data

flow and already has access to the data before transferring it into the database, thresholds for

condition monitoring will be implemented directly within Node-RED, enabling the monitor-

ing and storing of data in parallel. The dashboard of Node-RED will be configured as a user

interface to display the data and corresponding maintenance alerts. For notifications, pop-

ups within the user interface will be created, and appropriate e-mail nodes will be used to

additionally notify maintenance personnel in case they are not currently using the interface

(see Fig. 4.3). If notifications need to be disabled, a corresponding function can be imple-

mented.

Concept

93

The data within the database can be accessed by MATLAB and Grafana to analyze and

visualize its content (see Fig. 4.4). If maintenance alerts occur, the corresponding data,

whether it exceeds a threshold or is the outcome of the predictive maintenance model, will

be logged into the database with a corresponding timestamp. As Grafana and InfluxDB also

possess web interfaces, they will be linked to Node-RED, and all services will be configured

to be ready at startup and accessible through the production plant's network. The relation-

ships between the individual tools are outlined in Fig. 4.4. Unless otherwise specified, the

arrows represent data flows or connections established through Node-RED and correspond-

ing nodes:

Figure 4.4: Outline of the tool’s architecture and data flow [67]

Implementation and deployment

96

providing descriptions or notes within the flow. The node shown at the bottom left, labeled

"timestamp," is an inject node. This node periodically or manually injects a timestamp as a

payload to the nodes it is connected or wired to, causing a reaction, such as accessing and

reading an OPC UA item. In this example, each OPC UA item node represents one parameter

of the data generated by IMS Station 1. The parameters and their underlying information can

be accessed by providing their respective and individual addresses within the data block of

PLC_1, as shown in the upper right window in Fig. 5.1.

The addresses represent a combination of the data block name and the name of the specific

parameter to be accessed or read. For the production plant or PLC_1, these consist of the

parameter names within the data block ModbusServerData, with all parameters previously

summarized in Section 3.2.5 and listed in Tables 3.6 and 3.7. In this example, it represents

the address of the parameter MotorCurrentIMS1, as shown in Fig. 5.1, with its node and

properties window both highlighted in orange.

The address is entered in the “Item” field of the properties window (see Fig. 5.1). First, the

namespace (ns) is defined, which is 3 for all items within this data block. Afterwards, sepa-

rated by a semicolon, the string (s) with the full address of the item is entered. At last, the

data type is specified, which in this case, represents a “Real” for the motor current of IMS

Station 1. If the data type is specified within the “Item” field, the content of the field “Type”

below is not considered by the node. Additionally, a name for the node can be assigned, in

this case, it is defined as the name of the corresponding variable (see Fig. 5.1).

Each OPC UA item node is wired a link node on the upper left, connected with a central

timestamp inject node, and a link node on the right, connected to a central OPC UA client

(see Fig. 5.1 and Fig. 5.2). Both nodes are located in another flow, which is referred to as

“central”, and shown in Fig. 5.2:

Implementation and deployment

97

Figure 5.2: Central timestamp and OPC UA Client [67]

The central timestamp controls the periodically injected payload for all item nodes. The cen-

tral OPC UA client is connected to the built-in OPC UA server of PLC_1 and enables access

to its items, representing the individual parameters within ModbusServerData. The settings

of the client are shown below (see Fig. 5.3):

Figure 5.3: Settings of OPC UA Client Central [67]

The endpoint represents the address of the OPC UA server and matches the corresponding

settings within the TIA Portal (see Fig. 5.4):

Figure 5.4: Addresses of the OPC UA server [67]

Implementation and deployment

98

The client is set to “READ” (see Fig. 5.3), therefore reading each variable periodically ac-

cording to the interval set by the central timestamp. It is set to one second in order to meet

the requirements of real-time data accessibility but can be adapted if necessary. To actively

read the data (see Fig. 5.2), the specification of a particular certificate is not necessary (see

Fig. 5.3).

The output of the central timestamp node represents the input for the OPC UA items, while

the output of these items represents the input for the central OPC UA client (see Fig. 5.1 and

5.2). The server's output, which represents the read data, is connected to the link node via an

outgoing wire (see Fig. 5.2). This link node's input forwards the accessed information,

through an invisible wire, to the output of the link node within the data flow of IMS Station

1, located on the far right of Fig. 5.1, with a single outgoing wire.

Subsequently, this link node's output is wired to a switch that assigns the parameters to the

corresponding buckets of their respective stations based on their names (see Fig. 5.5). These

buckets, previously described in Section 5.1.1, are represented by beige-colored “InfluxDB-

out” nodes with the InfluxDB icon on their right end (see Fig. 4.4 and 5.5). The names of

these nodes consist of the local InfluxDB address as well as the respective parameter names.

Figure 5.5: Data flow of IMS Station 1 [67]

Implementation and deployment

99

Figure 5.5 shows an overview of the entire data flow for IMS Station 1, with the previously

described OPC UA items on the left and the switch along with the InfluxDB-out nodes on

the right. The OPC UA client (see Fig. 5.2) can be imagined as bridging the gap between the

two link nodes in the middle of the flow, labeled "Server-Connection." The green nodes are

debug nodes, while the blue nodes positioned between the debug nodes and the InfluxDB-

out nodes are part of the user interface, representing dashboard UI nodes. These will be

further explained in Section 5.3. The parameter IMS1_motorOperatingHours is interpreted

as an array, with the desired information located at index 1. The data is split, and the infor-

mation at array index 1 is assigned to the appropriate InfluxDB-out node of the correspond-

ing bucket accordingly (see Fig. 5.5).

The InfluxDB-out nodes are configured as follows:

Figure 5.6: Settings of the InfluxDB-out node [67]

The connection to the server can be configured using the icon on the right of the correspond-

ing field. In the associated subwindow, outlined in orange (see Fig. 5.6), the InfluxDB ver-

sion and its address can be specified. To establish the connection and finalize the settings, a

specific API token, which can be generated via the InfluxDB web interface, is assigned.

Afterwards, the subwindow can be saved and closed, and the settings can be continued

within the initial window.

Following the server configuration, the organization where the data will be stored is speci-

fied. Organizations represent different databases within InfluxDB, which can be accessed

separately and contain their own set of buckets. For this application, all buckets are located

within the same organization. After specifying the organization (see Fig. 5.6), the bucket

Implementation and deployment

100

where the parameter will be stored is indicated, as well as the specific measurement it refers

to, allowing for later access to the parameters under their specific measurement name within

their bucket. When each individual measurement of the time series data is saved, a timestamp

is assigned to it. The time precision, which indicates how precise the timestamp will be from

seconds to nanoseconds, is set to milliseconds (see Fig. 5.6).

Completing these settings allows the data, accessed and read via OPC UA from the produc-

tion plant, to be directed through the flow depicted in Fig. 5.5 into the InfluxDB database

and its corresponding bucket for IMS Station 1.

Analogous to the process described for implementing the data flow for IMS Station 1, sepa-

rate flows are created for each of the other IMS Stations as well as the KUKA robot (see

Appendix A.1). All the data is then stored and can be viewed within InfluxDB as follows:

5.1.3 Storing the data in InfluxDB

Figure 5.7: Stored data within InfluxDB [67]

Figure 5.7 shows the Data Explorer view of InfluxDB's web interface, which allows users to

explore the stored data within its respective buckets over a selected period. In the first

Implementation and deployment

101

selection list, located at the bottom left of the Data Explorer, all the buckets from various

stations, including the KUKA robot, are listed and can be selected. The second selection list

enables users to choose one or multiple measurements from the selected bucket to be dis-

played on the screen above. If the measurements contain multiple fields, they can be selected

from the third list of options (see Fig. 5.7).

By enabling the “View Raw Data” switch, the data can be displayed in a tabular format

instead of as a graph or other form of visualization. The “Query Builder” button reveals an

automatically generated Flux query for the selected bucket, measurement, and field. Both of

these functionalities are illustrated in Fig. 5.8 below:

Figure 5.8: View of the tabular data and Flux query within InfluxDB [67]

If wanted or needed, the raw data can be downloaded as a CSV file for further examination

and analysis using other tools, such as MATLAB, or for sharing and uploading to other plat-

forms.

5.1.4 Accessing the data in Grafana

The function for automatically generating queries is utilized to create a series of custom Flux

queries within InfluxDB, which are then transferred to Grafana. These queries are used and

employed to visualize the data within Grafana's web interface, enabling the creation of more

in-depth and detailed views of the individual stations, their parameters, and the data overall.

Implementation and deployment

102

First, InfluxDB is added as a data source in Grafana by providing its local address, as shown

in Fig. 5.9:

Figure 5.9: InfluxDB as a data source within Grafana [67]

Hereby, the query language is set to Flux, to guarantee that the automatically generated Flux

queries from InfluxDB can be utilized and processed within Grafana (see Fig. 5.10).

Figure 5.10: Query language setting in Grafana [67]

Within this application, InfluxDB serves as the sole data source for visualizing and organiz-

ing the data in the context of condition-based and predictive maintenance. However, it can

be expanded in the future to include additional data sources. The process of implementing

and creating graphs and dashboards within Grafana using the automatically generated Flux

queries, will be described in Section 5.3.2.

5.2 Condition Monitoring and Alert Management

Within this section, condition monitoring using the data within Node-RED will be estab-

lished, followed by the creation of alert messages and notifications. These alerts will be con-

figured to be automatically generated and triggered by exceeding predefined thresholds to

inform maintenance personnel. Additionally, the automated logging of the alert data within

the database will be explained, along with the creation and management of alert tables to

display the data in a structured format. Finally, a silencer function will be introduced to

manage notification interruptions, allowing maintenance personnel to temporarily disable

alerts directly from the user interface.

Implementation and deployment

103

5.2.1 Condition monitoring

Through the already established data flow from PLC_1 to InfluxDB, the data already exists

within the flows of Node-RED and only needs to be accessed and rerouted in parallel to

establish thresholds and achieve condition monitoring. For this purpose, a new and separate

flow to interact with the data is created, as shown in Fig. 5.11 below:

Figure 5.11: Condition monitoring flow

The data within this flow is provided by the link node shown in the upper left of Fig. 5.11.

It is connected to the output of the central OPC UA client, similar to the previously described

flow of the IMS Station 1 (see Section 5.1.2 and Fig. 5.5). The link node is then wired to

switches that separate each variable of parameters to be monitored. Hereby, only the time

series data is monitored, as it provides the most valuable information for the condition of the

production plant. However, this concept can easily be expanded to include the counters of

each station.

Since this process is applied to every time series parameter of the production plant, only an

excerpt of this flow is depicted in Fig. 5.11, showing the switches for the axis current and

temperature of the KUKA robot. Two additional switches handle the torque and velocity data

of the six axes, and nine more switches are dedicated to the individual IMS Stations. The

entire flow can be found in the appendix (see Appendix A.2). Figure 5.12 illustrates the

switch for IMS Station 4a, serving as an example for the switches of all stations.

Implementation and deployment

104

Figure 5.12: Condition monitoring of IMS Station 4a [67]

The squared nodes between the switch and link node are function nodes, positioned solely

to bundle and pass through the data without altering it. These nodes are useful for inserting

additional nodes between the switches and the link node without needing to renew or recon-

nect all wires (see Fig. 5.11).

After the variables are isolated and separated from the collective data pool by the switches,

each individual parameter is routed to so-called excursion nodes (see Fig. 5.11). These nodes

enable the definition of hard and soft upper and lower thresholds, as shown in Fig. 5.13

below:

Figure 5.13: Settings of an excursion node [67]

Figure 5.13 shows an excursion node for the temperature monitoring of an axis motor of the

KUKA robot, configured to trigger an excursion if the temperature falls below 15°C or ex-

ceeds 35°C. The time setting in the configuration specifies the number of seconds the tem-

perature must remain outside these soft thresholds (either minimum or maximum) before the

node triggers an excursion. For hard thresholds, the excursion node reacts immediately,

Implementation and deployment

105

regardless of the time setting. When the excursion node triggers, it forwards the value of the

corresponding parameter as a payload to the following node connected to its output. This

means that the messages or information distributed by the switch nodes and sent to the ex-

cursion nodes, are held and monitored there until a threshold is crossed. Once a threshold is

exceeded, the relevant information, i.e., the parameter value, is forwarded through the output

and wire of the excursion node.

From this point, there are two parallel and separate paths within the flow. As depicted in Fig.

5.11, one bundle of wires leads directly to a link node labeled "data without delay", while

another bundle is connected to a link node labeled "data with delay". The latter includes an

additional node wired between the outputs of the excursion nodes and the input of the cor-

responding link node. This additional node, as indicated by its label, introduces a delay that

limits the message throughput. Its settings are shown below in Fig. 5.14:

Figure 5.14: Settings of the delay node [67]

The delay node is configured to limit all incoming messages, in this case, the parameter

values forwarded by the triggered excursion node, to one message per five minutes while

dropping all intermediate messages. This setup ensures that if an excursion condition persists

and continuously sends the parameter value, alerts, and notifications (explained in Section

5.2.2) are not triggered, displayed, or sent every second. At the same time, it is important to

maintain real-time data updates on the dashboard rather than updating only every five

minutes. To address this, the two previously mentioned distinct data flow solutions are

Implementation and deployment

106

established: one with a delay and one without a delay. Their link nodes, separately connected

to their respective bundle of nodes and wires, forward the parameters to the central flow,

where maintenance alerts and notifications will be generated according to the forwarded

information. This process, along with the creation of tables for displaying threshold-exceed-

ing data, will be explained in the following section:

5.2.2 Maintenance alerts, notifications and alert-data

The configuration of maintenance alerts and notifications is integrated within the central

flow, positioned below the central control for the reading interval through the central

timestamp and the central control of the OPC UA client (see Fig. 5.2), in order to allow a

centralized management of notifications (see Fig. 5.15).

Figure 5.15: Central control of notifications [67]

The entire configuration of maintenance alerts and notifications, as well as the creation of

tables for displaying threshold-exceeding data, is shown in Fig. 5.15. Since this configura-

tion includes custom function nodes and is more complex and compact compared to the

previously described flows, it will be explained in smaller, separate sections, addressing one

functionality or aspect at a time.

The central control of notifications also includes functionalities related to the user interface

and dashboard, represented by the different blue-colored nodes within Fig. 5.15. In this sec-

tion, only the underlying functionalities regarding the necessary data flow and function

Implementation and deployment

107

nodes for maintenance alerts and notifications are explained. The user interface and dash-

boards, including the integration and presentation of these functionalities, will be described

in Section 5.3.

Notifications and pop-ups

Figure 5.16: Creation of maintenance alerts and pop-up notifications [67]

The link node, shown at the beginning of the flow in Fig 5.16 (bottom left), is connected to

the link node labeled "data with delay" within the condition monitoring flow, preciously

described in Section 5.2.1. It is wired to a join node, which merges all previously separated

parameters, previously split by the switch nodes for individual threshold monitoring, (see

Fig. 5.11 and 5.12), into a single array.

The purpose of merging the parameters through the join node into an array is to ensure that

multiple simultaneous threshold excursions do not result in separate notifications or mainte-

nance alerts for each parameter of every station or the KUKA robot. This approach collects

all relevant information within the array, allowing a collective processing and alert genera-

tion. This helps to reduce data traffic and notification noise, streamlining the maintenance

alert system. Through the output of the join node, the data is forwarded to three distinct sets

of nodes, each organized in parallel linear paths, with function nodes directly following the

join node, and a subsequent method of notification or display. Below these nodes, a disabled

set of nodes, identifiable by the grayed-out and dashed lines, as well as a debug node for the

joined array, is included (see Fig. 5.16).

The first set of horizontally arranged nodes, starting from the top, is configured to create a

text message in HTML via the function node "Maintenance-Alert HTML v2" and forward it

to an e-mail node and a notification node, both denoted by an envelope icon (see Fig. 5.16).

Implementation and deployment

108

The function node contains the following logic to create an automated message based on the

array of inputs from the triggered excursion nodes:

The code is hereby altered to present a short example of the automated message generation

for one parameter set, specifically the axis motor temperature of the KUKA robot (see Fig.

5.17 to 5.19).

Figure 5.17: Initialization of variables [67]

Fig. 5.17 shows the settings of the function node as well as a part of its code. The function

node is configured to execute this code when a message is forwarded to its input. First, the

beginning of the alert message is initialized, followed by variables to be used for a later

comparison, a counter, and a method to create yellow and red circles to visually differentiate

hard excursions (red) from light excursions (yellow) within the messages (see Fig. 5.17).

Implementation and deployment

109

Figure 5.18: Iteration over each Item within the array [67]

Afterwards, the function node iterates over each item in the array that includes the measure-

ment or parameter names and compares it to the previously initialized variables. In the code

example shown in Fig. 5.18, it checks whether the message item contains the partial name

of an axis motor temperature parameter, stored in the variable Kuka_Temp (see Fig. 5.18,

line 41). If this condition is met, the second if condition checks whether the excursion is a

hard or light excursion. Subsequently, in both cases, the previously initialized counter is

checked for inequality (see Fig. 5.17 and 5.18), and a line break is added to the message if it

is not equal to the specific counter for the axis motor temperature. The counter is then up-

dated to the appropriate value, ensuring that the message is organized by parameter groups

(see Fig. 5.18, line 48). If the next message item also contains the temperature of an axis

motor, no line break is inserted.

Then, an additional part is added to the alert message, which includes the name of the meas-

urement, the associated value, and its unit, followed by the type of excursion and the colored

circle for visual distinction (see Fig. 5.18, lines 52 and 61). The function node iterates over

each item in the input array that includes the measurement or parameter names and repeats

this process for all parameter categories of the robot axes and individual IMS Stations. It

separates each category within the alert message by adding line breaks, for example, transi-

tioning from axis temperature to velocity.

Implementation and deployment

110

Figure 5.19: Adding the last part of the alert message [67]

At the end of the function node, the text message is finalized with a concluding statement,

and the completed message is forwarded through the function node's output (see Fig. 5.19).

Connected to the function nodes output, the finalized text message is then processed by the

e-mail node (see Fig. 5.20, left) and the notification node (see Fig. 5.20, right) according to

their respective settings.

Figure 5.20: Settings of e-mail node (left) and notification node (right) [67]

For alert message notifications via e-mail, a dedicated email address for the production plant

has been created in Outlook (see Fig. 5.20, Userid). The email node is configured to use

Outlook’s SMTP server (Simple Mail Transfer Protocol server), including its appropriate

port, to send e-mails from the production plant's e-mail address to the maintenance person-

nel, by specifying the recipient's e-mail address (see Fig. 5.20, left). The notification node is

configured to display a pop-up on the user interface that must be acknowledged in order to

Implementation and deployment

112

The next functionality implemented within the central control of notifications is the logging

of alert data, triggered through the condition monitoring and highlighted in Fig. 5.22 by the

orange-outlined InfluxDB node. This node receives the individual parameters from the ex-

cursion nodes at the time of the excursion without being merged. It stores the data under

their measurement name, assigned by the preceding function node, within the “AlertLog-

Data” bucket, specifically created for this purpose, in the InfluxDB database (see Fig. 5.22,

right). This ensures that previous excursions are recorded and accessible for future reviews.

Creating alert-tables

Equally important as maintenance alerts and notifications, whether acoustic, visual, or to

maintenance personnel that is not in close proximity to the workstation, is providing an over-

view of active maintenance alerts, to enable a quick assessment of the current state of the

production plant as well as its components. Alerts and corresponding information about

threshold-exceeding parameters, including the value, time, and warning level, must be visi-

ble and easily accessible to operators or maintenance personnel, allowing them to react to

the current situation accordingly. The remaining function nodes implemented to create such

an overview, are presented in Fig. 5.23 (cp. Fig. 5.22 and 5.23).

Figure 5.23: Alert-Table function nodes [67]

The function nodes, shown in Fig. 5.23, are used to create tables which will be utilized in a

subsequent section to display the threshold-exceeding data within the user interface. These

function nodes, exemplified by “Alert-Table (reported)”, will be explained in the following

paragraph:

Implementation and deployment

113

The function node, labeled “Alert-Table (reported)”, receives an array of threshold-exceed-

ing parameters, recorded at the time of the excursion and after passing the delay node, from

the connected join node and processes the data according to its code, shown in Fig. 5.24 and

5.25. The parameter for the KUKA axis motor temperature is used as an example for illus-

tration purposes:

Figure 5.24: Alert-table in central flow storage [67]

First, the variables, along with a timestamp, are initialized within the function node (see Fig.

5.24, lines 1 to 15). The table is stored in the central flow’s storage, a storage only accessible

within this flow, and accessed through the reference in line 23. If the table does not already

exist, it is created by the if-condition above (see Fig. 5.24, lines 18 to 19). Next, the existing

row number is determined, and if the smallest row number is greater than one, it is adjusted

accordingly. This ensures that the row numbers of the table always start from one and do not

accumulate indefinitely over time (see Fig. 5.24, lines 28-34).

Implementation and deployment

114

Figure 5.25: Adding rows to the alert-table [67]

Analogous to the previously explained function node for maintenance alert messages, this

function node is configured to iterate over each item in the array that includes measurement

or parameter names and check if a specific variable contains a part of that name (see Fig.

5.25, line 46). At the beginning of the iteration loop, an empty table row, consisting of col-

umns for the row number, parameter name, parameter value, warning level, and timestamp,

is initialized. If the if-condition is met, the row is filled with the corresponding content (see

Fig. 5.25, lines 46-51).

Subsequently, the rowNumber is incremented to reflect the addition of a new row, and the

updated table is saved within the central flow’s storage (see Fig. 5.25, line 103). Finally, the

generated table is forwarded through the function node’s output (see Fig. 5.23 and 5.25, line

107).

The function node’s output is connected to a squared function node that configures the width

of each table row. The subsequent table node then displays the table and its contents within

the user interface. Additionally, the output from “Alert-Table (reported)” is linked to a but-

ton labeled “Refresh Alert-Table”. When triggered, it activates a subsequent function node

Implementation and deployment

115

labeled “flow.get,” which retrieves the current table from the central flow’s storage and for-

wards it to the table node for display. This action refreshes the contents of the table (see Fig.

5.23).

The second button, “Delete Alert-Table,” is connected to a squared function node that con-

figures a subsequent notification node. This notification node displays a pop-up on the user

interface, asking if the content of the alert table should be deleted. If confirmed, it triggers

the connected node labeled “flow.set empty table,” which clears the table's content. The table

is then refreshed by wiring it to the “flow.get” node (see Fig. 5.23).

Figure 5.26: Alert table for real-time data

The second table, generated by the function node “Alert-Table (live)”, works analogously to

“Alert-Table (reported)”, but uses a different variable for the table within the central flow’s

storage. A key difference is that, unlike the previous table and all previous nodes, it is wired

to the second join node within the central flow, receiving data from the condition monitoring

flow without delay (see Fig. 5.26 and 5.15). This setup allows the table to display alert data

in real-time, enabling maintenance personnel to see the current state and evolution of a

threshold-exceeding parameter in addition to or in comparison with the reported parameter

value and time at the moment of the excursion, as provided by the previously described

“Alert-Table (reported)”.

As the join node transmits an array of real-time alert data every second, according to the

central timestamp, and the “Alert-Table (reported)” needs to be automatically updated as

well, an additional function node, located below “Alert-Table (live),” is wired to the join

node (see Fig. 5.26). This function node is triggered every second and compares the

timestamp of each table row within the “Alert-Table (reported)” to a predefined variable

xMinutes, set to a delay of five minutes. If the difference between the current time and the

timestamp of a row exceeds this delay, the row is either updated with the latest alert data

from the real-time array or deleted if the issue was mitigated, through a wire to the button

Implementation and deployment

116

“Refresh Alert-Table” (see Fig. 5.25). This ensures both tables reflect the most current in-

formation and maintain synchronicity between real-time and reported alerts.

5.2.3 Notification interruptions

In addition to the maintenance alerts and notifications within the central flow, as well as their

respective nodes, an additional flow including two switches, labeled “Silencer” and “Si-

lencer-Reset”, is implemented to introduce an additional functionality to the overall appli-

cation within its user interface, and will be explained in the following paragraph:

When maintenance personnel are permanently stationed at the plant’s workstation, monitor-

ing the user interface and inspecting the alert tables to gain insights into the plant's condition,

constant visual warnings in the form of pop-ups or email notifications, as well as acoustic

signals, can be disruptive. These notifications might do more harm than good since the

maintenance personnel are already at the central workstation and don’t need further and con-

stant notification, while addressing an issue. To address this, a silencer function is imple-

mented to allow the notifications to be disabled via the user interface, without needing to

access the Node-RED editor workspace.

However, if the notifications need to be temporarily disabled to focus on or mitigate a spe-

cific problem, it's essential to ensure that the notifications are not permanently turned off

when the maintenance personnel are engaged in tasks and may not be able to manually re-

activate them, as this poses a safety risk. To address this, alongside the silencer function, a

silencer reset function is implemented using a second switch. This reset function ensures that

notifications are automatically reactivated after a preset time, even if they were manually

silenced. The flow and nodes responsible for both functionalities are depicted in Fig. 5.27.

Figure 5.27: Nodes providing silencer functionality [67]

Implementation and deployment

117

Figure 5.27 shows the initial state of both switches at start-up, represented by the light blue

nodes at the center of the flow. The “Silencer” switch is off, while the "Silencer-Reset"

switch is on (see Fig. 5.27). This configuration is achieved through the inject nodes, which

are set to inject a corresponding boolean value at start-up. These nodes are wired to their

respective inputs and labeled accordingly through comments. The other inject nodes in Fig.

5.27 are implemented solely for testing purposes.

Both functionalities are managed through global variables, which are accessible by all flows

and initialized by the function nodes in the upper left corner of Fig. 5.27. When the silencer

switch is turned on through the user interface, it triggers a subsequent function node that sets

its global variable to true, reflecting its active state. Additionally, it triggers another function

node below, labeled “Reset Silencer-Switch v2”, which includes a timer and starts if the

reset switch and its global variable are also set to true. Once the timer is completed, the

silencer switch is automatically reset to false, i.e. off, via the corresponding wiring (see Fig.

5.27).

If needed, the “Silencer-Reset” switch can also be turned off. In this case, it triggers a sub-

sequent function node as well, that sets its global variable to off, reflecting its state. As a

result, the “Silencer” switch will not be automatically reactivated. The “Reset Silencer-

Switch v2”, which is responsible for reactivating the “Silencer” switch, contains additional

functionalities, implemented to cover specific scenarios.

If the “Silencer-Reset” switch is toggled on and off multiple times, the timer will be reac-

tivated each time the switch is turned on, only considering the most recent activation. Simi-

larly, if the “Silencer-Reset” switch is turned on while the “Silencer” switch is turned off or

reactivated before the timer expires, the timer will be reinitialized as well.

In order to disable the notifications, the global variable of the “Silencer” switch is read and

checked by squared function nodes within the central flow, acting as a gate while receiving

threshold-exceeding data. If the variable is true, the data is not forwarded to the subsequent

nodes responsible for notifications, therefore disabling them (see Fig. 16).

Implementation and deployment

118

All the nodes and flows previously shown can be individually customized and expanded

according to the preferences of the maintenance personnel. The modular design allows

thresholds to be tailored specifically to each monitored component. Additionally, as an open

system, it supports the addition of new components, accommodating future changes and de-

velopments in the production plant or evolving maintenance needs.

The creation of the user interface and dashboards, whose functionalities are enabled by the

previously described nodes, as well as their layout and arrangement, will be explained in the

following section:

5.3 User interface and dashboards

Within this section, the creation of the user interface and dashboards within Node-RED is

described, along with the integration of links and displays of and to the ERP-Lab, OpenCart

web shop, Grafana, InfluxDB and Node-REDs editor workspace. Finally, the design and

utilization of dashboards within Grafana is explained to provide more detailed and in-depth

views of the production plant's data.

5.3.1 Node-RED dashboards

For the user interface and dashboards within Node-RED, Node-RED dashboard UI nodes

are employed. In total, five dashboards are created, including the following:

• Alert-Dashboard

• Plant-Overview

• IMS (Energy-View)

• IMS (Counter-View)

• KUKA Overview

First, the necessary data flow to visualize the real-time data within the dashboards is estab-

lished, as previously indicated by the dashboard UI nodes in Fig. 5.5. These dashboards

include a real-time view of each IMS Station and the KUKA robot, represented by the last

four dashboards listed. The final three dashboards provide specific visualizations for each

individual parameter. The “Plant-Overview” dashboard offers a comprehensive view of all

Implementation and deployment

119

production plant time series data, displayed in distinct graphs for related parameters. Finally,

the “Alert-Dashboard“ serves as the primary user interface for displaying maintenance alerts

and their associated information, including details of threshold-exceeding data and machine

learning outputs. It also integrates additional functionalities and buttons to interact with the

tables and notifications, as mentioned in Section 5.2.

IMS (Counter-View)

The visualization of the data within the IMS dashboards is realized with corresponding charts

and text fields, previously displayed in Fig. 5.5, showing the flow of IMS Station 1. For each

time series parameter, a chart node is used and configured as a line chart to display the pa-

rameter value in relation to time. For each counter, a text node is used to display the corre-

sponding value. The chart and text nodes of each IMS Station are wired to the switches,

enabling the data flow and assigning the parameters as shown in Fig. 5.5, and then arranged

and displayed within the dashboard layout editor to form the dashboard “IMS (Counter-

View)”, as shown in Fig. 5.28:

Figure 5.28: Dashboard layout IMS (Counter-View) [67]

This process is repeated for every IMS Station and their respective data, wiring their nodes

and categorizing and arranging their charts and displaying counter values through text nodes

accordingly. Figure 5.28 serves as an example for the setup of IMS Station 1.

Implementation and deployment

120

IMS (Energy-View)

For the dashboard of the “IMS (Energy-View)” a new and separate data flow is created, as

shown in Fig. 5.29:

Figure 5.29: Charts of IMS Station 1 within the Energy-View [67]

A separate switch node for each IMS Station is created and wired to a link node, which is

connected to the central OPC UA client. The switch node, as shown in the example of the

switch for IMS Station 1 (see Fig. 5.29), routes each parameter, such as current, voltage, and

power, to a distinct chart node for the “IMS (Energy-View)” dashboard. The chart node

above those three charts, labeled “IMS1” and wired to all three of the switch’s outputs, vis-

ualizes all three parameters within a single graph and is used for the “Plant-Overview” dash-

board. All chart nodes are hereby configured as line charts and arranged as shown in Fig.

5.30, with three charts per IMS Station arranged vertically and the stations positioned side

by side:

Figure 5.30: Dashboard layout IMS (Energy-View) [67]

Implementation and deployment

121

KUKA Overview

Figure 5.31: Charts of the axis motor temperature within the KUKA Overview [67]

This process is repeated for each axis and axis parameter of the KUKA robot, as shown in

Fig. 5.31. The charts are configured and arranged in a manner similar to the IMS Stations,

with four charts per axis arranged vertically and the six axes arranged horizontally for the

“KUKA Overview” dashboard.

Plant-Overview

The "Plant-Overview" dashboard is created in a similar manner to the previous two dash-

boards, using the labeled charts wired to every output of the switches simultaneously, as

shown in Fig. 5.29 and 5.31. The complete data flows for all dashboards, as well as the

arrangement of charts for the "Plant-Overview," can be found in Appendix A.3.

Alert-Dashboard

Using the template node, the table nodes and buttons (see Fig. 5.15), as well as the switches

(see Fig. 5.27), previously configured and described in Sections 5.2.2 and 5.2.3, the “Alert-

Dashboard” is created. As shown in Fig. 5.32, it provides a view for the latest alert message

through the template node, contains the reported and real-time alert tables, along with the

“Refresh Alert-Table” and “Delete Alert-Table” buttons as well as the “Silencer” and “Si-

lencer-Reset” switches.

Implementation and deployment

122

Figure 5.32: Layout of the Alert-Dashboard [67]

In addition, it consists of a placeholder table for the machine learning outputs, labeled “Pre-

dictions” and implemented in Section 5.4, as well as one additional button, which will be

explained briefly in the following paragraph:

The button, labeled “Test audio signal,” located below the template node and above the other

buttons and switches (see Fig. 5.32), is wired to an audio out node, as shown in Fig. 5.33.

Figure 5.33: Test audio signal button [67]

This button provides the string "audio online" as an input to test whether the device accessing

the user interface is capable of producing an audio signal, and therefore able to provide an

acoustic alert for maintenance personnel in case of a changing condition within the produc-

tion plant. The nodes are located within the central flow and wired to an inject node, which

triggers the button automatically once at system startup, indicating that the audio and the

system are online. Afterwards, the button can be pressed manually within the user interface

to verify the audio functionality at any time.

Implementation and deployment

123

Accessibility of dashboards and sites

All dashboards are configured to be accessible by selecting their name within a sidebar

menu. In addition, links to all tools and tool interfaces, as well as the ERP-Lab and OpenCart

webshop, are provided within the sidebar menu to enable central access from Node-RED’s

dashboards as the primary user interface, as shown in Fig. 5.34.

Figure 5.34: Tabs and links of the user interface [67]

To ensure that all notifications are recognized, they are configured to display within all tabs

of the user interface. When accessing the links, a new tab opens with the selected view.

Additionally, if desired, the display of the pages can be configured to occur within the frame

of the Node-RED dashboards.

5.3.2 Grafana dashboards

As the dashboards of the IMS Stations and KUKA robot are only able to display the real-

time data and provide no additional functionalities to inspect the data in more detail or inter-

act with it through the user interface, a series of dashboards is created within Grafana (see

Fig. 5.35).

Implementation and deployment

124

Figure 5.35: Creation of a time series graph with flux queries in Grafana [67]

The creation of a time series graph in Grafana is achieved by using Flux queries from In-

fuxDB (see Fig. 5.8), as illustrated in Fig. 5.35. In this instance, seven queries are used to

visualize the motor current for all IMS Stations within a single time series graph. In this way,

multiple time series graphs and gauges are created and then organized into separate dash-

boards to provide distinct views and representations of the data generated by each individual

IMS Station or the KUKA robot, as well as combined overviews of energy or power con-

sumption.

A section or part of these overviews and dashboards is presented in Fig. 5.36 and 5.37 below:

Figure 5.36: The current of each KUKA axis as an excerpt of its dashboard [67]

Implementation and deployment

125

Figure 5.36 shows a section of the KUKA robot's overview within Grafana. It visualizes the

current of each of its axes within a time series graph as well as a bar gauge, enabling to see

both the progression and the current value simultaneously. Besides the current of each axis,

the dashboard also includes corresponding views for the temperature, velocity, and torque

of each axis in the same manner.

The dashboard for IMS Station 4a is shown in Fig. 5.37 as an example for all stations. It

features displays for energy consumption and all relevant counters, as well as time series

graphs for the current, voltage, and power of its conveyor belt motor.

Figure 5.37: Dashboard of IMS Station 4a [67]

The refresh rate is set to one second to display the data in real-time, with the displayed time

range set to the last five minutes. If a wider range or specific period of historical data needs

to be inspected, this can be adjusted using a dropdown menu above the gauge for the counters

of its belt (see Fig. 5.37).

In addition to a specific view for each station, an overview of all IMS Stations is created,

similar to Figures 5.36 and 5.37, to provide a comprehensive view of the conveyor belt con-

sumption across all stations simultaneously. A list of all dashboards is provided in Fig. 5.38

below:

Implementation and deployment

126

Figure 5.38: List of all Grafana dashboards [67]

This list also includes a placeholder for the machine learning outputs, similar to the "Alert-

Dashboard" (see Fig. 5.32 and 5.38). The generation of these outputs, including the selection

and training of machine learning algorithms within MATLAB, as well as the subsequent

integration of a final model, will be described in the following sections.

5.4 Data analysis through Machine Learning

This section describes the process of acquiring and labeling representative data from the

production plant to form training datasets for the machine learning algorithms, followed by

the feature selection and extraction, as well as the training and evaluation of these algorithms.

Finally, a data flow between the final machine learning models and the database will be

implemented to enable automatic analysis during the production plant's runtime and to pro-

vide outputs for the user interface.

The focus of this section is to provide a general overview and workflow of the steps involved,

from data acquisition to the selection and training of machine learning algorithms using

MATLAB's advanced capabilities and toolboxes, taking the fundamentals described in Sec-

tion 2.6 into account. This overview avoids detailing each process with data science and

code specifics, as the toolboxes within MATLAB are designed to facilitate and streamline

these tasks. The goal is to identify and implement a suitable classifier for the previously

presented application, using a practical approach.

Implementation and deployment

127

5.4.1 Acquiring representative data

The data collected from the production plant has to provide relevant information about its

current state and condition. Therefore, the time series data provided by the conveyor belt

motors and the individual axes of the KUKA robot is acquired during regular production

sequences and at regular intervals. Since power consumption is the product of current and

voltage, this parameter is exclusively used to analyze the motors' performance and identify

potential issues. In addition to the data representing the plant's normal operation, possible

distinct failure modes and classes are defined to be predicted or classified by the algorithms

during future production.

As data representing failures, faults, and breakdowns are not available, likely failure modes

on the conveyor belts are defined, manually simulated, and collected. Since it is not feasible

to manually generate data representative of faults for the KUKA robot and anticipate how

these would manifest at this specific plant and production environment, the regular data of

the KUKA robot is used to train an anomaly detection algorithm.

The defined classes for the conveyor belts failure states or classes are listed below:

• Slowed

• Blocked

• Belt loose: 1

• Belt loose: 2

• Signal on/off

For the first class, the production plant operates normally, and folded paper sheets are posi-

tioned between the belts and their rotating components to slow them down. This represents

worn-out belts that are no longer elastic or simulates objects that may get caught in the con-

veyor belt during production. This is performed on all circularly arranged conveyor belts

simultaneously.

The second class, "blocked," is recorded by manually blocking a belt completely by holding

and locking its rotating components in one position. This is performed on a few random

occasions during production and on a single conveyor belt, as this is a time-consuming man-

ual task. Meanwhile, the other conveyor belts continue to operate normally.

Implementation and deployment

128

The classes "belt loose 1" and "belt loose 2" are recorded by forcing their respective signals

for moving to the right in the TIA Portal (signals, see Table 3.1). The belts are operated

constantly while loosening one belt, and then both belts completely. This is intended to rep-

resent belts getting completely loose or tearing during production. This is performed outside

the normal production process on all circularly arranged conveyor belts. For the last listed

class, a custom function block within the TIA Portal is used to repeatedly switch the indi-

vidual motors on and off at intervals ranging from 0.2 to 1 second, differing by 0.5 seconds

each time, over an extended period. This is also performed outside the normal production

process on all circularly arranged conveyor belts to simulate signal failures and interruptions

between the PLCs and the conveyor belts during production.

The data representing all classes is collected and stored using the previously described data

flow (see Section 5.1) and saved in InfluxDB, alongside data representing the KUKA robot's

normal operational behavior, which is simultaneously acquired during regular production.

In this context, regular production refers to operations involving one, two, or three carriers

within the production system, aiming to cover all variations and effects from intermittently

occupied stations and waiting carriers. The data is then exported as CSV files from InfluxDB

and stored in a folder accessible by MATLAB. For the upcoming tasks and sections,

MATLAB R2023b Update 6 is used, including the “Predictive Maintenance Toolbox”, the

“Statistics and Machine Learning Toolbox” and the “Deep Learning Toolbox”.

The previously described data collection and processing methods result in the application of

both supervised and unsupervised learning approaches. Specifically, supervised learning

methods are used to analyze the conveyor belts, while unsupervised learning is applied to

the KUKA robot. Both approaches will be explained in the following sections, while the

focus lies on the steps and tasks related to the conveyor belts and supervised learning. Af-

terwards, a brief perspective on anomaly detection for the KUKA robot will be provided to

offer a general understanding of the practical approach.

5.4.2 Data analysis of conveyor belts

Organizing, labeling and preprocessing the data

First, the power consumption during the normal operational behavior of the individual con-

veyor belt motors is inspected, as shown in Fig. 5.39:

Implementation and deployment

129

Figure 5.39: Normal power consumption of the conveyor belt motors [67]

The diagram shows the power consumption in watts over the number of data points, repre-

sentative of seconds, during the normal operational behavior of the circularly arranged con-

veyor belts. It shows in a simplified manner, that the power consumption of each motor has

a baseline or ground consumption and briefly peaks when turned on, before settling at a

certain level during transport and returning to the baseline. Upon closer examination, how-

ever, it becomes evident that each motor has a different ground level, as shown in Fig. 5.40:

Figure 5.40: Ground level of circular arranged conveyor belt motors [67]

Implementation and deployment

130

To avoid the need to train multiple customized machine learning algorithms for each con-

veyor belt, the data is preprocessed to standardize it across all motors. Since power con-

sumption during production is primarily at the ground level and the motors are sequentially

turned on and off, the data is centered around zero using the median. Additionally, missing

values are filled using linear interpolation of adjacent values (see Fig. 5.41).

Figure 5.41: Preprocessing [67]

To ensure that no information about individual peaks, including error classes (see Fig. 5.43),

is unintentionally lost, and because the data is all on the same scale, no further normalization

beyond the already applied method is used. The data after preprocessing, is displayed in Fig.

5.42, centered around zero.

Figure 5.42: Data preprocessed and centered around zero [67]

During the download of the CSV files, the files were named according to the classes, which

are used to automatically label them using a custom script. However, since each class con-

tains a ground level, differentiation must be made accordingly to have distinct

Implementation and deployment

131

representations of each class. Therefore, the previously listed classes are expanded to include

the class "ground." A data point is labeled as "ground" if it, along with its preceding nine

data points, has a value below 0.2 W. The different classes are exemplarily shown in Fig.

5.43, with "ground" representing the baseline around zero and “normal” in dark blue:

Figure 5.43: Visualization of the different classes [67]

Automated feature extraction

As shown in Fig. 5.43, the individual classes present distinct characteristics that allow to

differentiate between them, based on features, such as the peak or maximum time series

value, mean, rms (root mean square), and other possible differentiating features. To identify

and extract all relevant features, the “Diagnostic Feature Designer” app in MATLAB is used,

which is a part of the “Predictive Maintenance Toolbox”. This app automizes the process of

feature extraction based on statistical and signal-based characteristics and provides a ranking

of features based on their ability to differentiate between classes.

For this purpose, the data is organized into sequences of individual timetables based on their

labels. Each sequence ranges from the activation of a motor to its stop and is therefore sep-

arated from sequences of the same, or other classes, by a sequence of "ground" data. Each

timetable, representing a distinct sequence for its class, is then compiled into a large .mat

file, which consists of two columns containing all timetables and their labels.

Implementation and deployment

132

Through this approach, time series features can be extracted from the data, while the result-

ing feature set is not bound by the time series data or temporal sequences themselves, allow-

ing the training of a wide range of machine learning models, without being limited to algo-

rithms capable of handling time series data.

Afterwards, the .mat file is uploaded into the “Diagnostic Feature Designer,” where auto-

mated feature extraction is performed. Based on the ranking from a Kruskal-Wallis test,

which assesses the features according to their differentiability, as well as scatter plots (see

Fig. 5.44), the following twelve features are selected:

• Signal statistics:

o RMS

o Peak value

o Mean

• Time series features:

o Q3 (third quartile)

o Maximum

o Median

• Time series model:

o AIC (Akaike Information Criterion)

o RMS

o Variance

o Mean

o Median

o MAE (Mean Absolute Error)

o MSE (Mean Squared Error)

As MATLAB does not specify how each feature is computed, scatter plots are used as an

additional method to verify their differentiability by comparing them within a feature space.

In the example shown in Fig. 5.44, the feature space is formed by the signal statistics peak

value (y-axis) and mean (x-axis), with the data points representing different classes accord-

ingly.

Implementation and deployment

133

Figure 5.44: Scatter plot of the signal statistics peak value ... mean

The scatter plot provides a visualization of the class distribution, indicating that the selected

features can effectively separate the different classes, though with a few outliers. However,

it also reveals that the samples per class are unevenly distributed. This uneven distribution

results from the manual aggregation of data representative of faults, as well as the consoli-

dation of the “ground” levels from all other classes into a its own category. The features of

the “ground” class hereby show the highest distinguishability, with points clustered closely

around zero. The “blocked” class has the fewest samples, as illustrated in Fig. 5.44, due to

the described method of data acquisition.

After the selection and extraction of features, the “Diagnostic Feature Designer” allows for

exporting these features to the MATLAB workspace, as well as generating MATLAB code,

that can be used for automation or integration into custom workflows. Additionally, it ena-

bles direct export of the features into the “Classification Learner” app, part of the “Statistics

and Machine Learning Toolbox,” which facilitates the training and evaluation of machine

Implementation and deployment

134

learning models. In the following paragraph, the entire feature set will be used to train clas-

sifiers to estimate their performance and identify the most suitable machine learning algo-

rithm. The feature set will then be refined and augmented to ensure an even distribution

across all classes and achieve a representative accuracy.

Training classifiers with the entire sample size

After the automated feature extraction, the resulting feature table is checked for and cleared

of any possible missing values before being loaded into the “Classification Learner” app.

Figure 5.45 shows the window for creating a new session, where the selected features, a 10-

fold cross-validation, and a 10% holdout for the test dataset are specified:

Figure 5.45: Creating a session in the "Classification Learner" app [67]

The "Classification Learner" is then used to train a series of machine learning algorithms

from the app’s comprehensive set, which includes SVM, decision trees, discriminant analy-

sis, logistic regression, naive Bayes, nearest neighbor classifiers, and simple neural net-

works. These algorithms are ranked based on their accuracy, with the following three models

providing the highest validation accuracies:

Implementation and deployment

136

incorrectly classified as a particular class) and false negatives (instances of a class incorrectly

classified as another).

As visualized in Fig. 5.47, the "blocked" class, with its few samples, is underrepresented and

less accurately identified due to a higher percentage of misclassifications. In contrast, the

"ground" class, which has the largest sample size, is classified with 100% accuracy. This

means that the overall accuracy might be misleading, as the high accuracy of the "ground",

class, along with its high sample size, inflates the model's overall performance.

While the overall accuracy for the other classes, depicted through the True Positive Rate

(TPR) on the right side of the confusion matrix, is above 92%, indicating strong performance

and effective prior data preprocessing and feature selection, efforts are being made to im-

prove the classification accuracy for the "blocked" class. This involves increasing its sample

size through augmentation and reducing the sample sizes of other classes to achieve a more

balanced dataset.

Additionally, misclassified instances are predominantly misclassified as "normal". In a pro-

duction environment, this can be problematic as failures might go undetected. By reducing

the sample size and balancing the dataset, this issue could potentially be mitigated, helping

to ensure that failures are more accurately identified.

Training classifiers with a reduced sample size

The sample size of all classes is reduced to 100 randomly chosen samples per class. Addi-

tionally, the sample size of the "blocked" class is increased through feature augmentation,

where samples are duplicated and multiplied, starting with a factor of 1.01 and increasing by

increments of 0.1 until the desired size is achieved. This approach ensures that all classes

are represented by 90 sequences during training with cross-validation, while minimizing ex-

cessive augmentation of the "blocked" class. The remaining 10% of samples are reserved for

testing, consisting only of original features to ensure that they are correctly identified and

that the training results are accurate.

Due to the overall smaller sample size, a 5-fold cross-validation is applied. The results of

training and ranking all classifiers are displayed, with the top three ranked models shown in

Fig. 5.48.

Implementation and deployment

138

"belt loose 2" classes slightly decreased, while the accuracy of all other classes increased to

an even level. The identification accuracy of the "blocked" class improved significantly from

approximately 81% to 100% due to the increased number of learning examples. Addition-

ally, the misclassification of classes as "normal" was reduced (see Fig. 5.48).

Afterwards, an attempt was made to optimize the SVM based on its hyperparameters. How-

ever, the initial model trained by the "Classification Learner" proved to have the best accu-

racy. The model is then tested with the previously partitioned test set to verify if its perfor-

mance is reproducible and applicable to the original samples. The hyperparameters of the

model and the test results are presented in Fig. 5.50 below:

Figure 5.50: Quadratic SVM training and test results [67]

During testing, the classifier, performing one-vs-one classification with a box constraint

level of one (representing the parameter for the soft margin), achieves an accuracy of 98.6%

by misclassifying only one instance (see Fig. 5.50). The test sample size is relatively small,

which results in a slightly higher accuracy. However, due to the prior application of 5-fold

cross-validation, this presents a robust final evaluation of the classifier's performance. The

model is capable of processing approximately 5800 observations per second, as shown in

Fig. 5.50. This high processing speed, combined with its accuracy, makes it suitable for real-

time application within the condition-based and predictive maintenance solution.

Implementation and deployment

139

5.4.3 Anomaly detection for the KUKA robot

This section will briefly cover the training of three machine learning algorithms to identify

anomalies during the operation of the KUKA robot, enabling the detection of unknown is-

sues during production. The anomaly detection is performed on the KUKA robot as a whole

and is trained using the current, torque, and velocity data of all axes. The motor temperature

is not used for training the anomaly detector, as it consists of a single, mostly steady temper-

ature value and is already monitored through the condition monitoring.

Analogous to the previous section, the collected data of the KUKA robot axis is uploaded

into MATLAB and labeled accordingly, with the difference that, in this case, all data is la-

beled as "normal." In addition to the "normal" data, data representative of abnormal behavior

is collected by performing the regular sequences of the KUKA robot during production at

double speed. This data is labeled as "abnormal" accordingly. Since the KUKA robot mostly

remains in its idle position and only moves during the transport of a workpiece, both classes

also consist of a ground level for each robot axis that needs to be considered “normal” by

the future model during production. Therefore, the data is separated into sequences consist-

ing of “ground,” “normal,” and “abnormal” data and stored as timetables, similar to the data

of the conveyor belts. The final table of data consists of three columns: one that contains the

timetable, one named “segments” that differentiates between the three types of sequences,

and a column named “label” that only consists of two different labels, with “ground” labeled

as “normal.” The data mainly differs in its intensity, as shown by the current and torque of

axis 1 in Fig. 5.51:

Figure 5.51: normal data (left) and anormal data (right)

Implementation and deployment

140

The data is then uploaded into the “Diagnostic Feature Designer,” and the top fifteen ranked

features are selected. The features are subsequently exported to the MATLAB Workspace

and divided into a training feature set, consisting of 201 normal samples, and a testing set,

comprising 22 normal and 17 abnormal samples. This data is used to train a binary SVM, an

Isolation Forest, and an Autoencoder for anomaly detection, as described in the following

paragraphs. As the data only consists of normal data, no cross-validation is performed.

Binary SVM

Figure 5.52: Creation of the binary SVM [67]

The binary SVM is trained according to the settings displayed in Fig. 5.52. The features are

standardized, and the OutlierFraction, which refers to the percentage of possible anomalies

within the data, is set to zero. Afterwards, the SVM is tested, showing the following results:

Figure 5.53: Confusion matrix SVM [67]

The SVM is able to sufficiently differentiate between normal and abnormal data, as shown

in Fig. 5.53. Only one sample is misclassified as "normal," resulting in an overall accuracy

of around 97.4%.

Implementation and deployment

141

Isolation Forest

Figure 5.54: Creation of the Isolation Forest [67]

The iForest is trained according to the settings displayed in Fig. 5.54. Hereby, it is observed,

that setting the ContaminationFraction, which also refers to the percentage of possible

anomalies within the data, to zero, leads to the model being not able to distinguish between

the classes at all. Therefore, the ContaminationFraction is set to 0.1. As a result, iForest is

able to distinguish between the classes completely, as shown in Fig. 5.54 below:

Figure 5.55: Confusion matrix iForest [67]

Autoencoder

Finally, the Autoencoder (AE) is trained. The general structure of the AE is established ac-

cording to the principles outlined in Section 2.6, with the encoder and decoder configured as

opposite-facing pyramids of fully connected layers. Each layer utilizes a ReLU activation

function, and RMSprop is set as the optimizer with MATLAB’s default learning rate of

0.001. The output layer is configured as a regression layer to allow the autoencoder to re-

construct the input data. After setting these core configurations, the remaining hyperparam-

eters are tuned empirically, resulting in the following settings (see Fig. 5.56):

Implementation and deployment

142

Figure 5.56: Creation of the AE [67]

The autoencoder is trained on the training data and then used to reconstruct the test data. The

reconstruction error is computed using the mean squared error (MSE) between the original

and reconstructed test data, as well as for the training data. Based on the mean MSE of the

training data, an empirical threshold is defined to detect the anomalies, where test samples

with reconstruction errors exceeding this threshold are identified as anomalies, as shown in

Fig. 5.57:

Figure 5.57: Defining the threshold [67]

Implementation and deployment

143

The threshold is defined as three times the mean reconstruction error of the data. The results

are depicted in Fig. 5.58.

Figure 5.58: Confusion matrix AE [67]

The Autoencoder performs as accurately as the SVM. Therefore, the model is not further

validated, and due to the good performance and simple principle of the Isolation Forest, the

Isolation Forest is preferred as a solution.

5.5 Integration

After the training and selection of the machine learning model, it is integrated into the solu-

tion. Due to time constraints the scope of this thesis, this is only demonstrated by the inte-

gration of the classifiers for the individual IMS Stations and presented as follows:

5.5.1 Performing predictions within MATLAB

First, the trained model is exported to the MATLAB workspace, along with code for the

automatic extraction of features. Then, a function is implemented that, given the name of an

IMS Station as an input, receives the real-time data from InfluxDB, extracts the features, and

performs a prediction. The prediction is then forwarded back to InfluxDB and stored in a

designated bucket, available to be accessed within Node-RED.

In the following paragraph, the contents of the function will first be described sequentially,

followed by the calling of the function separately within threads for each IMS station.

Implementation and deployment

144

The function runMachineLearningPrediction hereby receives the name of a station as its

input, as shown in Fig. 5.59. First, the trained model is loaded from within the workspace,

followed by the establishment of communication between MATLAB and InfluxDB. This is

achieved through HTTP requests, as shown below:

Figure 5.59: Communication between MATLAB and InfluxDB [67]

Hereby, the query is defined by using the name of a station for specifying the bucket as well

as the measurement it includes. Then the specifics of the request are defined, including the

network address of InfluxDB, the organization and necessary access token. The query is set

to receive the data of the last three seconds, which represents the time of a carrier being

transported from the beginning to the end of the conveyor belt, without interruptions. This

range is empirically determined and has proven to be suitable for the task. Afterwards, the

request and the data extracted from the response (see Fig. 5.59).

The data is then arranged and normalized accordingly to extract the features. Since the data

is previously normalized by setting the baseline to zero with its median, which can differ

depending on the accessed short sequences during production, it is centered by subtracting

a defined, station-specific baseline value, as shown in Fig. 5.60 with the example of IMS

Station 1:

Figure 5.60: Subtract baseline values [67]

Implementation and deployment

145

Afterwards, the data is transferred into a readable format for the feature extraction algorithm,

and the features are extracted. After removing unwanted features that were generated auto-

matically but were not used for training, the data is fed into the machine learning model, as

shown in Fig. 5.61 and a prediction is performed.

Figure 5.61: Performing the prediction [67]

The prediction is then automatically forwarded to InfluxDB using the same HTTP request

structure shown in Fig. 5.59 and is stored in a designated bucket for predictions.

The function runMachineLearningPrediction itself is called by iterating through a list of

station names and launching a corresponding number of threads using MATLAB's parallel

pool functionalities. These threads are utilized to enable real-time predictions for each IMS

Station in parallel, while ensuring that there are no delays. Each thread is hereby assigned

an individual station, as shown in Fig. 5.62.

Implementation and deployment

146

Figure 5.62: Calling the machine learning prediction in threads [67]

The threads, once initiated, call the function runMachineLearningPrediction every second,

until being manually terminated. This setup can be visualized as a central PC or workstation

providing real-time machine learning predictions for the IMS stations to operators or mainte-

nance personnel. To ensure that these predictions are accessible through the user interface

and to trigger corresponding notifications, they need to be integrated and processed within

Node-RED. This process will be explained in the following paragraphs.

5.5.2 Accessing the predictions within Node-RED

Within Node-RED, an additional flow is created to access data from InfluxDB and process

it to trigger notifications via email, pop-ups, and audio alerts, as well as to display the data

on the user interface. The corresponding flow is depicted in Fig. 5.63:

Implementation and deployment

147

Figure 5.63: Prediction data flow [67]

The predicted outputs of each classifier are accessed through InfluxDB-in nodes, which are

triggered by the central timestamp and configured to access the last recorded value. The

output of the InfluxDB-in nodes is then forwarded to subsequent function nodes. These

nodes, labeled according to their associated station, isolate the relevant information. All pre-

dictions are then aggregated into an array through a join node and processed similarly to the

central notification flow described in Section 5.2.2 (see Fig. 5.15 and 5.63). The function

nodes are configured to generate messages and trigger notifications only if the condition or

state of a station differs from "ground" or "normal," in order to enable relevant alerts and

prevent noise caused by the otherwise constant switching between these two classes.

The resulting messages are then distributed to an audio node and an e-mail node for notifi-

cations, both controlled by the silencer functionalities of the user interface through a preced-

ing squared function node (see Fig. 5.63). Additionally, through the function node “State

Changed Message” and a subsequent notification node, the messages are displayed as pop-

ups. Finally, the last function node, “Predictions,” is configured to display all outputs in a

table on the user interface, within the placeholder previously shown in Fig. 5.32.

Through this configuration, all the relevant information is automatically stored, processed

and accessible through the overall condition-based and predictive maintenance solution. In

the following chapter all final functionalities and dashboards are presented and tested ac-

cording to their intended design and the requirements, defined in Section 4.1.

Functional Testing

148

6 Functional Testing

Within this chapter, the final and complete condition-based and predictive maintenance so-

lution is tested through the user interface. First, the general functionality and accessibility of

the user interface and its provided links sites and dashboards is tested. Then, the individual

dashboard views of the production plant are examined, followed by the condition-based and

predictive maintenance capabilities through their display of data and the resulting notifica-

tions. The entire configuration is tested on the production plant's workstation as well as on a

Windows PC with an Intel Core i7-10510U CPU and 8 GB RAM.

6.1 General functionality

The accessibility of the dashboard ensures the accessibility of the individual dashboards,

sites and tools, as well as the display of all the information relevant for operators and the

maintenance personnel. The user interface is tested on multiple devices and provides a gen-

eral maneuverability through its user interface and tabs, regardless of the device it is accessed

with. Through the sidebar menu, all linked tools are accessible from within the user interface.

It is depicted in Fig. 6.1 below:

Figure 6.1: Sidebar menu [67]

All provided tabs and links can be accessed equally and freely through the sidebar menu by

clicking on the corresponding upper left icon within the user interface. However, displaying

Functional Testing

149

a site within the frame of the user interface is only possible for the OpenCart web shop (see

Fig. 61), as the other external sites loose part of their functionality. Therefore, by clicking

on their icons, a new tab with the respective site opens.

6.2 Accessibility of data

The access and display of real-time data are central aspects and requirements of the user

interface and overall solution. The individual dashboards provide an overview of the various

stations and parameters. An excerpt of the IMS (Counter-View), IMS (Energy-View), and

KUKA Overview is shown in Fig. 6.2:

Figure 6.2: Excerpt of dashboards [67]

As shown, each individual parameter can be inspected and is refreshed every second. The

data of different KUKA robot axis or IMS Stations can therefore be inspected and compared

Functional Testing

150

to one another continuously and in real-time. These dashboards provide a detailed and ex-

panded view of all the production plants components simultaneously. If a more compact

view is needed, the dashboard “Plant-Overview” can be used, shown in Fig. 6.3

Figure 6.3: Plant-Overview [67]

This dashboard combines all of the production plants data within distinct groups and enables

a complete overview within a single tab of the user interface. In addition, by hovering over

a parameter, the legend and the exact value can be viewed.

All graphs provide a comprehensive view of the current value of each individual parameter

of the production plant. If a more detailed view of the production plant's data is needed or a

specific time window needs to be inspected, Grafana can be used and accessed through the

sidebar menu.

Functional Testing

151

Figure 6.4: Grafana dashboard [67]

The dashboards within Grafana allow for the creation of diverse and custom dashboards, as

shown in Fig. 6.4. This enables the combination and visual highlighting of specific parame-

ters. Figure 6.4 shows the voltage of all IMS Stations in two different forms. Additionally,

the motor operating duration in minutes is displayed by the bar gauge on the bottom of the

dashboard, indicating higher values through the color transition. By hovering over the

graphs, specific parameter values can also be displayed (see Fig. 6.4).

Figure 6.5: Grafana time range selector [67]

Grafana hereby allows for the viewing of historical data through its time range selector, as

shown in Fig. 6.5, providing a useful tool for analyzing trends and patterns over specific

time periods. This is particularly useful for in-depth analysis and manual monitoring of

Functional Testing

152

production plant parameters from a maintenance perspective. In addition, the historical data

can be accessed in a tabular view, both from within Grafana, as well as InfluxDB, providing

the storage of data. As the data can be accessed and visualized by all tools, the requirement

of historical and real-time data accessibility is met, as well as the appropriate storage of data

within a database. If wanted, the existing dashboards and buckets can be extended and cus-

tomized for specific maintenance needs.

6.3 Condition-based and preventive maintenance capabilities

Through the previously described flows (see Section 5.2.1 and Fig. 5.11), the data of the

production plant is automatically monitored by customizable and defined thresholds. If these

thresholds are exceeded, the relevant data is displayed within the “Alert-Dashboard,” spe-

cifically within the “Reported Alert-Table” and the “Real-Time Alert-Table,” as shown in

Fig. 6.6:

Figure 6.6: Alert tables [67]

The “Reported Alert-Table” displays the data at the time when the threshold is triggered,

while the “Real-Time Alert-Table” displays its exact current state. Both tables display the

parameter name, value, an according timestamp as well as the warning level to an alert,

allowing to differentiate between hard and light warnings (see Fig. 6.6). This setup allows

users to view all maintenance alerts and their current states, allowing quick assessments of

the situation. This is tested by manually adjusting the thresholds within Node-RED. Addi-

tionally, the “Reported Alert-Table” can be sorted according to each column header.

Functional Testing

153

In addition, the predictive maintenance outputs provided by the trained SVM in MATLAB,

are also displayed within the dashboard, as shown in Fig. 6.7:

Figure 6.7: Predictive maintenance output [67]

It shows each individual IMS station, its predicted state, and the current timestamp. The state

is directly transferred from MATLAB to InfluxDB and accessed by Node-RED. The state of

each station is therefore logged with a current timestamp, allowing for traceability and future

review. The same applies for the threshold exceeding values, as shown in Fig. 6.8, meeting

the requirements of Section 4.1

Figure 6.8: Logging of threshold exceeding data in InfluxDB [67]

The machine learning predictions are tested during regular production and manually induced

faults. The model is able to distinguish between classes sufficiently. However, it is noticed

that due to the small input sequences, the stopping of carriers during production is sometimes

classified as "slowed" since the conveyor belt temporarily slows down.

Functional Testing

154

In addition to the visualization within Node-RED, the individual states can be monitored in

real-time in Grafana, as shown in Fig. 6.9.

Figure 6.9: Visualization of the states within Grafana [67]

Through a correspondingly configured dashboard in Grafana, the predictions of the machine

learning model can be visualized as sequences over time. This allows for the observation of

transitions between the different states of a station as well as their durations. The specific

time and duration of each state can be viewed by clicking on a specific sequence, as shown

in Fig. 6.9. Interacting with the production plants conveyor belts is visualized accordingly

within this dashboard, allowing one to see the change of its state almost directly over time.

Through Grafana, the predicted states of the IMS Stations can therefore be observed in real-

time, as well as historically.

However, running seven machine learning models simultaneously within threads presented

a challenge for the Windows PC used, occasionally causing the application to crash. It is

therefore recommended to use a more computationally advanced PC for this task or to limit

the number of simultaneously running machine learning algorithms.

Functional Testing

155

6.4 Notifications

Notifications and maintenance alerts are an important component of the overall solution,

ensuring that any deviations or issues within the production process are promptly addressed.

If a threshold is exceeded or the state of the IMS Stations differs from “normal” or “ground”,

operators or maintenance personnel are notified through different maintenance alerts, allow-

ing them to take appropriate measures in a timely manner.

Figure 6.10: Maintenance-Alert pop-up [67]

Figure 6.10 shows a maintenance alert pop-up that appears whenever a threshold is triggered.

The pop-up remains on the screen until it is acknowledged by clicking "OK" or replaced by

a new pop-up. Hard warnings are highlighted with a red circle, while light warnings are

indicated with a yellow circle, as intended. The pop-up provides information about which

thresholds were triggered and at what time. Within the display, the alerts are categorized

according to their parameters, offering a clear overview of the current situation.

If the predicted state of a station changes, a small pop-up appears in the upper right corner

of the screen, as shown in Fig. 6.11. This alert notifies maintenance personnel of the state

change, allowing them to differentiate between different notifications while preventing the

screen from being blocked by too many full-sized pop-ups.

Functional Testing

156

Figure 6.11: Machine Learning alert [67]

Alongside the pop-ups, an audio alert is triggered regarding both alert types, either by stating

that a state has changed or that a threshold has been exceeded. Lastly, e-mail notifications

are sent to notify the maintenance personnel through the production plant.

Figure 6.12: E-Mail notifications [67]

The e-mail notifications also differ in content, as shown on the left in Fig. 6.12, sending

distinct messages for exceeding thresholds and changing conditions or states. All notification

functionalities work as intended, ensuring that maintenance personnel, both within and out-

side the proximity of the production plant, are promptly informed, thereby meeting the re-

quirements outlined in Section 4.1.

The entire Alert-Dashboard is shown in Fig. 6.13. It displays the latest alert message within

a template on the left and includes all previously shown tables. Additionally, this dashboard

features buttons to delete or refresh the “Reported Alert-Table,” allowing operators or

Functional Testing

157

maintenance personnel to interact with the table as needed, after addressing or resolving the

underlying issues of a reported alert. The Silencer switches located at the bottom left disable

notifications as intended and are reset after a certain period of time. The order of interactions

with these buttons hereby does not affect their functionality, with the notifications only per-

manently disabled with the “Silencer-Reset” switch turned off. The delay in alert messages

effectively limits the throughput, ensuring that the system avoids overwhelming users with

excessive notifications.

Figure 6.13: Alert-Dashboard [67]

Overall, the implemented condition-based and predictive maintenance solution fulfills the

requirements for user interface accessibility, as well as the management of historical and

real-time data. It effectively displays all relevant information and automates processes re-

lated to condition monitoring, classification, notifications, and data logging.

Conclusion

158

7 Conclusion

Within this thesis, a condition-based and predictive maintenance solution for the Industry

4.0 production plant, located at the Shanghai-Hamburg College of the University of Shang-

hai for Science and Technology, has been implemented, ranging from establishing a data

flow and storing data, to performing automated condition monitoring and machine learning

classification within a collection of interacting tools.

A significant aspect of the implementation displays the creation of the data flow and devel-

opment of a user interface within Node-RED, integrating all selected tools by establishing

the data flow and providing real-time data and condition monitoring functionalities.

7.1 Summary

First, the communication and data flow between the central PLC of the production plant and

Node-RED was established. This forms the foundation for data distribution and is based on

the pre-existing aggregation of relevant data within the central PLC’s main data block. The

data is accessed through OPC UA, utilizing the built-in OPC UA server of the central PLC.

Through the established access, a series of data flows was configured to store and organize

the data within a InfluxDB database. Afterwards, using the functionalities and node palette

of Node-RED, the existing access and flow of data were utilized to establish an integrated

and automated condition monitoring solution based on customizable thresholds.

After establishing the foundation for communication and data flow, the next steps focused

on enhancing the solution regarding maintenance alerts, notifications and the capability to

perform real-time monitoring and data visualization. Functionalities to display threshold ex-

ceeding data, as well as to send automated notifications via e-mail, perform acoustic alerts

and generate pop-ups were implemented to notify maintenance personnel according to the

current condition of the production plant.

Conclusion

159

Subsequently, dashboards were created in Node-RED to provide an overview of the current

condition of the production plant, integrating the notification functionalities and displaying

threshold exceeding parameters as well as their real-time values.

Within distinct dashboards for the individual stations and robot of the production plant, each

parameter was visualized and displayed in real-time, enhancing the data monitoring capabil-

ities and, in combination with the notifications, allowing operators to quickly assess the sys-

tem's status and identify any deviations from normal operating conditions. To access and

enable the inspection of historical data, Grafana was integrated to query and visualize the

stored data directly from InfluxDB. In Grafana, customized dashboards were created to pro-

vide comprehensive views of individual and grouped parameters through graphs and gauges

and enable users to examine current and historical data trends.

At last, and in addition to real-time monitoring, predictive maintenance functionalities were

implemented. Machine learning models were trained in MATLAB, and a support vector ma-

chine was integrated into the solution to classify and predict potential conditions of the con-

veyor belt motors of each station within the production plant. The model was integrated into

the solution by accessing the real-time data from InfluxDB within MATLAB, performing

predictions within threads for each individual station simultaneously, and storing the output

back into InfluxDB. These predictions were then accessed by Node-RED and integrated to

the user interface, by extending notification functionalities and the display of data, the latter

both within Node-RED and Grafana. The final solution was then presented and tested re-

garding the defined requirements.

Overall, the solution increases maintenance capabilities by enabling communication, auto-

mated monitoring, and data analytics. It essentially represents an Internet of Things and Ser-

vices, establishing connections between different tools and providing the storage of data,

condition monitoring, and data analysis as a service.

Conclusion

160

7.2 Outlook

The condition-based and predictive maintenance solution is configured as an open and mod-

ular system, enabling the integration of further tools and functionalities within and outside

of Node-RED. The system could be improved by integrating a direct communication be-

tween Node-RED and MATLAB, to enable the remote activation and deactivation of the

predictive maintenance model. Furthermore, based on the proposed approach, an anomaly

detector for the KUKA robot could be integrated, further enhancing the predictive mainte-

nance capabilities.

Moreover, the user interface could be graphically enhanced to visualize the changing condi-

tions within a graph or based on a color-code, rather than a tabular view. A digital represen-

tation of the production plant could be implemented or integrated into Node-RED and its

user interface as well, to visualize the production process and enable operators and mainte-

nance personnel to gain a better insight of changing conditions.

Additionally, during the course of the thesis, optical incremental sensors were ordered for

the production plant, but could not be implemented in time. These sensors could be inte-

grated to measure the speed of the conveyor belts, thereby generating additional data. This

integration would provide more precise monitoring over the conveyor belt operations and

could be used to enhance both the condition-based and predictive maintenance functionali-

ties.

Bibliography

161

Bibliography

[1] Deutsches Institut für Normung e. V: DIN 31051:2019-06

[2] Deutsches Institut für Normung e. V: DIN EN 13306:2018-02

[3] Bengtsson, M.: Mälarden University Press Dissertations No. 48: On Condition Based

Maintenance and its implementation in industrial settings, Arkitektkopia Västerås

2007

[4] Hansford Sensors: The pros and cons of different maintenance strategies https://hans-

fordsensors.com/blog/the-pros-and-cons-of-different-maintenance-strategies/

Access: 04.02.2024

[5] Schenk, M.; Endig, M.; Freund, C. et al.: Instandhaltung technischer Systeme: Me-

thoden und Werkzeuge zur Gewährleistung eines sicheren und wirtschaftlichen An-

lagenbetriebs, Springer-Verlag Berlin Heidelberg 2010

[6] MainCert: Main-Cert Handbuch: Kompetenzbeschreibung zur Vorbereitung auf das

Zertifizierungsverfahren für Führungskräfte der Instandhaltung im Industrieservice,

European Maintenance Management Certification, 2014

[7] Pawellek, G.: Integrierte Instandhaltung und Ersatzteillogistik: Vorgehensweise, Me-

thoden, Tools, Springer-Verlag Berlin Heidelberg 2013, 2016

[8] Leidinger, B.: Wertorientierte Instandhaltung: Kosten senken, Verfügbarkeit erhalten,

Springer Fachmedien Wiesbaden GmbH 2014, 2017

[9] Lambertz, B.: Condition Based Maintenance:

https://maint-care.de/knowhow/condition-based-maintenance/#ziel-der-zustandsori-

entierten-instandhaltung

Access: 27.04.2024

[10] Google Classroom: What is Bernoulli’s equation?

https://www.khanacademy.org/science/physics/fluids/fluid-dynamics/a/what-is-ber-

noullis-equation

Access: 28.04.2024

[11] IBM: What is CBM?

https://www.ibm.com/topics/condition-based-maintenance

Access: 28.04.2024

Bibliography

162

[12] Trout, J.: Condition-based Maintenance: A Complete Guide

https://www.reliableplant.com/condition-based-maintenance-31823

Access: 28.04.2024

[13] Ahmad, R.; Kamaruddin, S.: An overview of time-based and condition-based mainte-

nance in industrial application, Computers & Industrial Engineering, vol. 63, Issue

1, pp. 135-149, August 2012

[14] Wang, H. -K.; Huang, H. -Z.; Li, Y. -F. et al.: Condition-based maintenance with

scheduling threshold and maintenance threshold, IEEE Transactions on Reliability,

vol. 65, no. 2, pp. 513-524, June 2016

[15] Sobral, J.; Guedes Soares, C.: Preventive Maintenance of Critical Assets based on

Degradation Mechanisms and Failure Forecast, IFAC-PapersOnLine, vol. 49, Issue

28, pp. 97-102, 2016

[16] Tran Anh, D.; Dabrowski, K.; Skrzypek, K.: The Predictive Maintenance Concept in

the Maintenance Department of the “Industry 4.0” Production Enterprise, Founda-

tions of Management, vol. 10, pp. 283-292, 2018

[17] Serradilla, O.; Zugasti, E.; Rodriguez, J.; Zurutuza, U.: Deep learning models for

predictive maintenance: a survey, comparison, challenges and prospects, Applied In-

telligence 52, pp. 10934-10964, 2021

[18] Reinheimer, S.: Industrie 4.0: Herausforderungen, Konzepte und Praxisbeispiele,

Springer Vieweg, April 2017

[19] Ten Hompel, M.: IT und autonome Systeme in der Logistik, Springer Vieweg, 2023

[20] Bauernhansl, T.; Vogel-Heuser, B.; ten Hompel, M.: Handbuch Industrie 4.0: Band

1: Produktion, 3. Auflage, Springer Vieweg, April 2023

[21] Pistorius, J.: Industrie 4.0 – Schlüsseltechnologien für die Produktion: Grundlagen •

Potenziale • Anwendungen, Springer-Verlag GmbH, 2020

[22] Czichos, H.: Technologie: Systemdenken und interdisziplinäres Ingenieurwesen,

Springer Vieweg, Juni 2022

[23] IBM: Was ist das IoT?

https://www.ibm.com/de-de/topics/internet-of-things

Access: 10.06.2024

[24] Babel, W.: Internet of Things und Industrie 4.0, essentials plus online course,

Springer Vieweg, 2023

Bibliography

163

[25] Tableu: Time Series Analysis: Definition, Types, Techniques, and When It's Used

https://www.tableau.com/learn/articles/time-series-analysis#:~:text=Time%20se-

ries%20data%20is%20data%20that%20is%20recorded%20over%20con-

sistent,data%20and%20cross%2Dsectional%20data.

Access: 12.06.2024

[26] Kayan, H.; Nunes, M.; Rana, O.; Burnap, P.; Perera, C.: Cybersecurity of Industrial

Cyber-Physical Systems: A Review, ACM Computing Surveys, vol. 54, no. 11s, arti-

cle 229, September 2022.

[27] MathWorks: Predictive Maintenance with MATLAB

https://de.mathworks.com/content/dam/mathworks/ebook/gated/predictive-mainte-

nance-ebook-all-chapters.pdf

Access: 08.07.2024

[28] Plattform Industrie 4.0: Was ist Industrie 4.0?

https://www.plattform-i40.de/IP/Navigation/DE/Industrie40/WasIndustrie40/was-

ist-industrie-40.html

Access: 08.07.2024

[29] Lehrbuch Psychologie: Gesamtglossar aller Bücher: L

https://lehrbuch-psychologie.springer.com/lexikon/l

Access: 09.07.2024

[30] Metzler Lexikon Philosophie: Lernen

https://www.spektrum.de/lexikon/philosophie/lernen/1209

Access: 09.07.2024

[31] Frick, D.; Gadatsch, A.; Kaufmann, J.; Lankes, B.; Quix, C.; Schmidt, A.; Schmitz,

U.: Data Science: Konzepte, Erfahrungen, Fallstudien und Praxis, Springer Vieweg,

2021

[32] Twain, T.: A brief breakdown of declarative vs. imperative programming, TechTarget,

February 2022

https://www.techtarget.com/searchapparchitecture/tip/A-brief-breakdown-of-declar-

ative-vs-imperative-programming

Access: 09.07.2024

[33] Frochte, J.: Maschinelles Lernen: Grundlagen und Algorithmen in Python, 3. überar-

beitete und erweiterte Auflage, Carl Hanser Verlag München, 2021

[34] Géron, A.: Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und Ten-

sorFlow: Konzepte, Tools und Techniken für intelligente Systeme, 2. Auflage,

O'Reilly Verlag, 2020

Bibliography

164

[35] Mohri, M; Rostamizadeh, A.; Talwalkar, A.: Foundations of Machine Learning, The

MIT Press Cambridge, Massachusetts London, England, 2012

[36] Bishop, C. M.: Pattern Recognition and Machine Learning, Springer Science+Busi-

ness Media, February 2006

[37] MathWorks: Support Vector Machine: What Is a Support Vector Machine?

https://de.mathworks.com/discovery/support-vector-machine.html

Access: 12.07.2024

[38] Kersting, K.; Lampert, C.; Rothkopf, C.: Wie Maschinen lernen: Künstliche Intelli-

genz verständlich erklärt, Springer Fachmedien Wiesbaden GmbH, 2019

[39] European IT Certification Institute: What is the significance of the margin in SVM

and how is it related to support vectors?, August 2023

https://eitca.org/artificial-intelligence/eitc-ai-mlp-machine-learning-with-py-

thon/support-vector-machine/understanding-vectors/examination-review-under-

standing-vectors/what-is-the-significance-of-the-margin-in-svm-and-how-is-it-re-

lated-to-support-vectors/#:~:text=A%20larger%20margin%20im-

plies%20a,and%20noise%20in%20the%20data.

Access: 13.07.2024

[40] Kim, E.: Everything You Wanted to Know about the Kernel Trick (But Were Too

Afraid to Ask), September 2013

https://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

Access 14.07.2024

[41] Liu, F. T.; Ting, K. M.; Zhou, Z.: Isolation Forest, Eighth IEEE International Confer-

ence on Data Mining, 2008

[42] cpp-learning: Isolation Forest

https://cpp-learning.com/wp-content/uploads/2022/01/decision-tree.png

Access: 16.07.2024

[43] Fritschi, L.; Lenk, K.: Parameter Inference for an Astrocyte Model using Machine

Learning Approaches, May 2023

[44] Sonnet, D.: Neuronale Netze kompakt: Vom Perceptron zum Deep Learning, IT kom-

pakt, Springer Vieweg, 2022

[45] Kruse, R.; Borgelt, C.; Braune, C.; Klawonn, F.; Moewes, G.; Steinbrecher, M.: Com-

putational Intelligence: Eine methodische Einführung in Künstliche Neuronale

Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze: 2., überarbeitete

und erweiterte Auflage, Springer Vieweg, 2015

Bibliography

165

[46] Gillhuber, A.; Kauermann, G.; Hauner, W.: Künstliche Intelligenz und Data Science

in Theorie und Praxis: Von Algorithmen und Methoden zur praktischen Umsetzung

in Unternehmen, Springer Spektrum, 2023

[47] Ojha, V. K.; Abraham, A.; Snasel, V.: Metaheuristic Design of Feedforward Neural

Networks: A Review of Two Decades of Research, Article in Engineering Applica-

tions of Artificial Intelligence, April 2017

[48] Bebis, G.; Georgiopoulos, M.: Feed-forward neural networks: Why network size is

so important, IEEE Potentials, vol. 13, issue 4, 1994

[49] Brownlee, J.: Difference Between Algorithm and Model in Machine Learning, Ma-

chine Learning Mastery, August 2020

https://machinelearningmastery.com/difference-between-algorithm-and-model-in-

machine-learning/

Access: 19.07.2024

[50] Dahlkemper, J.: Angewandte industrielle Bildverarbeitung: 7 Einführung in Künstli-

che Neuronale Netze, Vorlesungsfolien: HAW Hamburg, Fakultät TI, Technik und

Informatik

[51] Chollet, F.: Deep Learning with Python, Manning Publications Co., 2018

[52] Analytics Vidhya: Gradient Descent Algorithm: How Does it Work in Machine

Learning?

https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-al-

gorithm-work-in-machine-learning/

Access: 20.07.2024

[53] Nabi, J.: Towards Data Science: Hyper-parameter Tuning Techniques in Deep Learn-

ing, March 2019

https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learn-

ing-4dad592c63c8

Access: 20.07.2024

[54] Dahlkemper, J.: Angewandte industrielle Bildverarbeitung: 8 Training von Künstli-

chen Neuronalen Netzen, Vorlesungsfolien: HAW Hamburg, Fakultät TI, Technik

und Informatik

[55] MathWorks: Was ist ein Autoencoder?

https://de.mathworks.com/discovery/autoencoder.html

Access: 22.07.2024

Bibliography

166

[56] MathWorks: Anomaly Detection in Industrial Machinery Using Three-Axis Vibra-

tion Data

https://de.mathworks.com/help/predmaint/ug/anomaly-detection-using-3-axis-vi-

bration-data.html

Access: 22.07.2024

[57] Lucas Nuelle: Technical documentation for offer, internal document

[58] Lucas Nuelle: CSF 4: ERP Lab for Smart Factory 4.0: ILA course, Lucas Nuelle Lab

Document, March 2019

[59] Löffler, D.: Development of Predictive Maintenance Concepts for a Networked Pro-

duction Plant, Masterthesis, Hamburg University of Applied Sciences, August 2019

[60] Schneider Electric: EcoStruxure™ Machine Advisor: Die digitale Serviceplattform

für Maschinen

https://www.se.com/de/de/work/services/field-services/industrial-automa-

tion/oem/machine-advisor.jsp

Access: 27.07.2024

[61] Influxdata: InfluxDB vs MySQL: A detailed comparison

 https://www.influxdata.com/comparison/influxdb-vs-mysql/

 Access: 27.07.2024

[62] Influxdata: Telegraf

https://www.influxdata.com/time-series-platform/telegraf/

Access: 28.07.2024

[63] Node-RED: Low-code programming for event-driven applications

 https://nodered.org/

 Access: 28.07.2024

[64] MathWorks: MATLAB: Mathematik. Grafiken. Programmierung.

https://de.mathworks.com/products/matlab.html

Access: 28.07.2024

[65] Grafana

 https://grafana.com/grafana/

 Access: 28.09.2024

[66] Influxdata Documentation: Getting started with Flux

https://influxdata.com/products/flux/

 Access: 28.07.2024

Bibliography

167

[67] Own illustration

Appendix

168

Appendix

A.1 Flows of the IMS Stations and KUKA robot

Figure A.1: IMS Station 1

Appendix

169

Figure A.2: IMS Station 3a

Appendix

170

Figure A.3: IMS Station 3b

Appendix

171

Figure A.4: IMS Station 4a

Appendix

172

Figure A.5: IMS Station 4b

Appendix

173

Figure A.6: IMS Station 5a

Appendix

174

Figure A.7: IMS Station 5b

Appendix

175

Figure A.8: IMS Station 6

Appendix

176

Figure A.9: IMS Station 7

Appendix

179

A.3 Dashboards

Figure A.12: IMS-Dashboard flow

Appendix

180

Figure A.13: KUKA-Dashboard flow

Appendix

181

Figure A.14: Plant-Overview layout

