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Abstract

This thesis focuses on modeling and simulating the response of Silicon Pho-
tomultipliers (SiPMs) and aims to develop a proof-of-concept for using the Ju-
lia programming language as the foundation. Key topics covered include the
working principle of SiPMs, primary and secondary discharges, and the gen-
eration of the output signal. The simulation itself incorporates these features
and implements them in a framework. Results are displayed, validated, and
benchmarked. A preceding implementation is used as a comparison for the
latter. This thesis contributes to the understanding and optimization of SiPMs
for low-light and high-light scenarios and enables a systematic study.

Kurzzusammenfassung

Diese Arbeit ist darauf fokussiert, Silizium Photomultiplizierer (SiPMs) zu mod-
ellieren und anschließend zu simulieren. Dabei soll ein vielseitiges Framework,
geschrieben in Julia, entstehen, welches als Machbarkeitsstudie verwendet
wird. Die wichtigsten Punkte sind dabei das grundlgende Funktionsprinzip von
SiPMs, sowie die Generation des Ausgangssignal durch primäre und sekundäre
Effekte. Das Framework baut darauf auf. Die Ergebnisse werden dargestellt
und validiert. Abschließend folgt eine Feststellung der einflussreichsten Pa-
rameter durch Benchmarks, wobei vorangegangene Untersuchen zum Vergle-
ich herangezogen werden. Diese Arbeit trägt dazu bei, das Verständnis von
SiPMs zu festigen und erlaubt systematische Untersuchungen.
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Chapter 1

Introduction

1.1 Motivation

Silicon Photomultipliers (SiPMs) are used in various applications, ranging from
Time-Of-Flight sensors (such as Light Detection and Ranging, or LiDAR for
short) to positron emission tomography, quantum cryptography, and astro-
physics [1]. Figure 1.1 shows the application of an SiPM in a LiDAR sensor,
where it acts as the detector for reflected light after it has been transmitted
from the source and ricocheted back from an object.

Figure 1.1: Exemplary application for an SiPM in a LiDAR sensor. By measuring
the time it takes for the light to get to the SiPM from the source the distance
to the object is determined.

Characterizing these SiPMs is conventionally done by illuminating them in
a controlled environment with a set light source and extracting parameters

1



from the output signal and the arising charge histogram [2]. By having a pro-
gram that simulates the statistical nature, one can test and verify SiPMs, with-
out needing physical components and expensive lab experiments. The SUM
project (SiPM Unified Model) by a research group from the University of Ham-
burg’s experimental physics department is dedicated to this task, by creating
a new and extensive simulation framework. The framework itself can be un-
derstood as a reusable set of software libraries, intended to provide the most
common components and be user-extendable. There are already numerous
simulations available, with SUM being a new approach that aims to solve the
most prominent problem: the computational load created by such a program
is very high, effectively disabling the study of high light intensities since this
seeds a long program runtime. The primary causes for this load are the com-
plex calculations it takes to model the process of photon detection and related
operations.

1.2 Thesis Goals

The main objective of this thesis is to develop a proof-of-concept for the new
framework, that simulates SiPMs using the Julia programming language. By
leveraging the capabilities of Julia, a high-performance and flexible program-
ming language [3], the aim is to create a versatile simulation capable of ac-
curately modeling the response of SiPMs across a wide range of operating
conditions and configurations. Using a new language can impose problems
regarding compatibility or stability, as well as performance. It is thus impor-
tant to conduct a study before building a complete simulation. This is done
by implementing efficient algorithms that factor in device properties and the
statistical models used to describe those properties. More precisely, the thesis
objective includes

1. developing a model for physical processes involved in the response of
SiPMs to light, including the simulation of noise

2. generating the output signal while retaining full knowledge of the single
discharges for every cell, what caused them, and when they occurred

3. integrating the response function to create a charge histogram

4. benchmarking the resulting simulation to access performance details and
compare them to preceding research, determining the advances.
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electron-hole pair is created. This initial creation is caused by a photon that
transfers its energy onto the electron, moving it to the conduction band; an
electron avalanche is the result [5]. SiPMs possess exceptional versatility with
a high sensitivity to single photons, a high dynamic range, and rapid timing
properties [1].

2.2 Basis of Light Detection

2.2.1 Photons

A photon (denoted with γ) is the fundamental particle of electromagnetic ra-
diation, possessing both wave-like and particle-like characteristics, also known
as the wave-particle duality. It travels through space at the speed of light, car-
rying energy proportional to its frequency, and interacts with matter through
absorption, emission, and scattering processes, exemplifying the quantized na-
ture of electromagnetic fields. This quantization also leads to discrete levels of
energy, which are defined as Eγ = h · v, where h is Planck’s constant and v is
the frequency [6]. Photons with a wavelength (λ = c0

v ) between 380nm and
750nm are more commonly referred to as light, with c0 denoting the speed of
light in a vacuum.

2.2.2 Photoelectric effect

The photoelectric effect is the extraction of electrons from a semiconductor or
metal surface upon exposure to electromagnetic radiation, typically in the form
of light (Fig. 2.2). The extraction is based upon the transfer of energy from
an incident photon onto an electron within the material, with the threshold
being the binding energy of said electron [6]. These released electrons are
also referred to as photoelectrons.

4







This closely resembles the detection of radiation with a Geiger counter, and
this kind of discharge is thus more commonly known as a Geiger discharge.
To stop the avalanche, a quenching resistor Rq has to be connected in series,
reducing the voltage drop over the SiPM to be lower than the breakdown volt-
age, lowering the electric field, and ending the discharge [2]. If the quenching
resistor were not present, the current flow would only be limited by the resis-
tance of the wires, leading to a much higher current and possible damage to
the materials.

electric field

initial photo-
electron

after first
impact

ionization

cascading
impact

ionization

Figure 2.6: Depiction of the reiteration of an avalanche through impact ion-
ization, after an initial electron-hole pair was created (displayed without the
first hole). Black dots are electrons and white dots are holes [9].

Electrically this principle can be described by a capacitance Cd , which de-
notes the junction capacitance, in parallel with a resistor Rs and a switch. The
capacitance is charged via the applied bias voltage and the quenching resis-
tor, as seen in Fig. 2.7. The start of an avalanche by an impinging photon is
modeled by closing the switch in the circuit, which leads to the discharge of
the capacitor and thus a current flow through Rs. The capacitor then has to be
recharged for the next detection. Until the recharge voltage reaches the break-
down voltage, a pixel cannot discharge again and is thus "blind" to impinging
photons. This denotes the Single Photon Timing Resolution (SPTR) [8] and
will be referred to as the blind time.
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Figure 2.8: Current pulse for a Geiger discharge, with one detected photon
(lower curve) and two instantaneously detected photons (upper curve)

The mean number of photons wished to be sent onto the SiPM for a simu-
lation is smeared by a Poisson distribution to make up for the variation of the
light source. The time of arrival on the other hand is represented by a Normal
distribution, which depicts the sending of light from an LED [11].

2.3.2 Dark Counts

Silicon can eject electrons through the influence of thermal energy, which leads
to the triggering of an avalanche without a photon being present [1]. This is
known as a dark count, and it is highly dependent on the temperature. The
dark counts are normally depicted by the aperiodic specification of the rate
fDCR =

counts
s and referred to as the Dark Count Rate (or DCR for short). A dis-

charge from DCR is indistinguishable from a photon-induced discharge, which
leads to both being primary discharges and the pulse form for DCR is the same
as the one for a Geiger discharge from light, observable in Fig. 2.9. It is noted,
that for this instance all pixels contribute to the DCR, and a distinction between
different contributions of cells to the overall DCR is not considered.

9
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Figure 2.9: Current pulse for a DCR discharge

To calculate the number of DCR-induced discharges that happened during
the simulation, first, fDCR is multiplied by the observed time (referenced in
Chapter 3.3.1), and the obtained number is fed into a Poisson distribution to
account for fluctuations. Furthermore, DCR can occur at any time and thus a
Uniform distribution over the observed time covers the time of occurrence best
[11].

2.3.3 Crosstalk

During the avalanche multiplication, photons can be emitted from accelerated
electrons in the high field region (Fig. 2.10), which in return cause avalanches
in neighboring cells or the inactive region of the same cell [1]. There are two
different types of this optical effect taken into consideration, namely prompt
and delayed crosstalk. The keywords prompt and delayed declare the timing
difference of the effect since prompt crosstalk happens nearly instantaneously
and is very close in time to the original discharge. For this, the photon hits
directly in the depletion region and starts an avalanche, while for the delayed
crosstalk a photon impinges into the non-depleted area. From there it has to
diffuse into the multiplication area, which causes a timely delay. Since for both
types, the photon does not leave the SiPM, they are differentiated from external
crosstalk, which happens when the emitted photon exits the component and
gets reflected by surrounding materials (e.g. a protective window) [1].
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probability being the success rate. The Binomial distribution directly gives the
number of occurred crosstalk, instead of having to loop over all Geiger dis-
charges for this determination, speeding up the process.

For the delayed crosstalk an accompanying Exponential distribution is in-
troduced to represent the time delay [11]. This model is chosen since it is
more plausible that the delayed crosstalk happens shortly after the discharge
causing it, but it could occur later on, due to the diffusion. Prompt crosstalk
occurs at the same time as the parent discharge and thus has no time delay.

2.3.4 Afterpulses

Producing pure silicon is hard to achieve, and defects in the crystal structure
are very common. These defects can trap electrons during the avalanche multi-
plication, which are then released during the recharge phase of the SPAD. This
observable effect is called afterpulsing (AP), a type of correlated noise with
an amplitude lower than the preceding primary discharge. The probability for
an afterpulse to occur (PAP) is dependent on the number of defects with their
related release time and the recharge time [1]. In order to calculate the total
number of afterpulses per event, again a Binomial distribution is assumed over
all previous discharges [11], as well as an Exponential distribution for the time
of occurrence [2]. This Exponential release best matches the characteristics of
the release time.

The height of the afterpulse is limited by the recharging of the cell after an
initial discharge, and since afterpulsing happens in the same cell as the parent
discharge, the amplitude is lower than the original, as seen in Fig. 2.11 (c).

2.3.5 Summary of effects

A summary of the effects that are implemented in the simulation can be found
in table 2.1. Given is the reason for each occurred effect, together with their
respective distributions for the total number and their timestamp.

12



Signal Noise
Effect e−

γ
DCR PXT DXT AP

Reason
Detected

light
Thermal
Energy

Secondary
photons

Secondary
photons

Trapped
electrons

Distribution
(Number) Poisson Poisson Binomial Binomial Binomial

Distribution
(Time) Normal Uniform - Exponential Exponential

Table 2.1: Extract from table A.1 to summarize the primary and secondary
effects used in the simulation

All of the mentioned distributions are the starting point and reflect the cur-
rent position of research. If future studies figure out different representations
for these physical effects, they can be easily adapted with little changes to the
code.

2.3.6 Further Parameters

The following parameters are usually used to describe an SiPM but are left out
(or set to 1) in the scope of this thesis [7] [8] [12].

• Quantum Efficiency η(λ)
The quantum efficiency is the probability that a photon creates an electron-
hole pair within the depletion region of the SiPM. Since the penetration
depth of an electromagnetic wave - and thus a photon - is relative to its
frequency, η can be expressed as a function of the wavelength λ. The
assumed value is η(λ) = 1.00.

• Avalanche Initiation Probability ε(V )
ε(V ) is the probability that a Geiger discharge occurs in response to the
creation of an electron-hole-pair. Since a stronger electric field leads
to a higher avalanche probability this parameter hinges on the applied
voltage. The assumed value is ε(V ) = 1.00.

• Photon Detection Efficiency PDE(λ, V)
The probability of a photon hitting the SiPM and being detected. This

13



parameter depends on the quantum efficiency and the avalanche initi-
ation probability, as well as the active-to-inactive area, or fill factor, F.
PDE(λ, V ) = η(λ) · ε(V ) · F . The assumed value is PDE(λ, V ) = 1.00.

• Bias Voltage Vbd

For low reverse bias voltages, the p-n junction blocks most of the current
flow, and only a small leakage current occurs. If the voltage reaches
the breakdown voltage, a Geiger discharge occurs and the current rises
steeply. This parameter is mentioned before, but not implemented.

• Turnoff Voltage Vo f f

The reverse bias voltage at which the Geiger discharge comes to a stand-
still. When the current rises, the voltage drop over the quenching resistor
also rises, leaving less voltage for the pixel. The current is then limited
and the discharge ends.

• Gain G
The gain is a measurement of how much charge is generated by a single
photon, effectively indicating the amplification. It is dependent on the
internal capacitance and the overvoltage.
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Chapter 3

Simulation Methodology

The developed code is available on a CD and can be examined by contacting
the first supervisor ("Erstgutachter") of this thesis.

3.1 Preceding research

Foregoing research for an SiPM simulation was already conducted by Jack
Rolph with help from the research group, and he created the program "light-
simtastic". A link to the repository can be found in [13]. Lightsimtastic is
written in Python and serves as a comparing tool for an existing implementa-
tion with differences arising not only from the code side of view but also from
the usability. Furthermore, this thesis tries to build a combined simulation for
low-light and high-light intensities to properly handle saturation effects, which
lightsimtastic is not capable of. On top of that, Julia instead of Python is used to
speed up calculations and a comparison between both programs is conducted
in Chapter 5.3.

3.2 Overview of the Julia Programming Language

Choosing a programming language can significantly impact the efficiency and
effectiveness of data analysis and computational tasks. Julia and Python are
two prominent languages used in scientific computing, offering distinct advan-
tages and drawbacks. Table 3.1 offers a comparison between the features of
interest.
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Feature Julia Python

Speed
Fast and close to C
(JIT compilation)

Slower
(interpreted language)

Libraries
Growing ecosystem
(10,000+ packages)

Extensive collection
(137,000+ packages)

Computing
Requisition

Excellent for numerical/
scientific computing
(efficient machine code)

Slower for heavy computations
(unefficient line-by-line trans-
lation)

Composability Very good Very good

Use Cases
Machine learning and
scientific computing

General-purpose (web develop-
ment, machine learning,
automation etc.)

Table 3.1: Comparison between Julia and Python [3] [14]

Despite the drawback of having a limited number of available packages, the
advantages of Julia’s speed and its suitability for scientific computation make it
an increasingly attractive option for a wide range of applications [3]. Since it
is fairly easy to learn and has a clear syntax, it serves as the language of choice
for this thesis.

3.3 Implementation

The goal of this thesis is to simulate the behavior of SiPMs for primary and
secondary discharges, which is done by taking known physical properties and
developing new algorithms that model them. Additional functionalities, which
display the output signal and its respective spectrum are also implemented.
The steps it takes and the novel ideas distinguishing this approach from the
preceding implementation are given in the order they are processed in the
simulation. These steps can be observed in Fig. 3.1 and they are further broken
down to explain the structural process. The functional dependencies of the
implemented methods can be found in the appendix in Fig. A.1. The resulting
folder and file structure are depicted in Fig. A.2 and Fig. A.3 respectively. An
example file included in the framework provides a quick setup for new users.
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Figure 3.1: Structural overview of the simulation

In the real world, the output signal is created by shooting pulsed light at
the SiPM in a controlled environment. In this simulation, the SiPM is described
by an NxM matrix of adjacent cells with progressing numbering, creating a
unique ID for each cell. This allows the tracking of discharges over all cells, a
distinctive feature. An example of a simple 3x3 matrix is given in Fig. 3.2

Figure 3.2: Structural representation of the SIPM within the simulation. Each
number is a unique cell ID. The connection between the cells represents the
parallel connection from the circuit, as introduced before.

Each arriving pulse is called an event and for each simulated one, photon-
induced and resulting secondary discharges are created, along with dark counts.
All discharges from one event are stored in a Geiger Array (GA), an array of a
custom struct, which holds for each discharge the cell ID, the timestamp, the
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source, as well as the amplitude (Fig. 3.3 (a)). Since normally more than one
event is simulated, all arrays are combined to form the GA-matrix, as seen in
Fig. 3.3 (b). This effectively stores all data in one feasible object for easier
data handling, retaining all information in the memory during the runtime.

ID: 0
TS: 0
SC: 0
A: 0

DC1,1 DC1,2 DC1,3 DC1,4 DC1,5

DC2,1 DC2,2 DC2,3 DC2,4 DC2,5

DC3,1 DC3,2 DC3,3 DC3,4 DC3,5
Ev

en
ts

Discharges

...

...

(a) (b)

Figure 3.3: Visual representation of the internal handling of discharges with
(a) a single entry of the custom struct and (b) the resulting GA-matrix. DC is an
abbreviation for discharge, with the indices denoting the event and discharge
numbers.

3.3.1 Setting parameters

Setting necessary parameters is done by assigning values to variables before
functions are called and a table holding all initial values is provided in the
appendix (A.1). Afterward, the program code is executed, which can be seen
in Fig. 3.4

Set parameters Start simulation

Figure 3.4: Overview of the steps for the initialization

The simulation is based on a real-life timescale to account for the time con-
straints set by the copied physical processes. An explanation of this timescale
can be found in Fig. 3.5. The primarily used points in time are the simulation
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start and rising signal, as well as the integration start and length; the integra-
tion is explained in Section 3.3.6, where the output signal is integrated to gain
the charge. The rising signal timestamp denotes the arrival of photons on the
SiPM and serves as a point of reference to the simulation start and integration
start. To integrate over the complete pulse and start the simulation before,
both times have a negative sign. The integration end is calculated by adding
the integration length to the integration start and is thus positive. The overall
observed time starts at the simulation start and ends with the integration end,
a time difference used to calculate the number of occurred DCR discharges.

t_start_simulation

t_start_integration

t_start_rising_signal

t_end_integration

t_integration_length

−∆t1
−∆t2

+∆t3

+∆t4

observation time

Figure 3.5: Explanation of the timescale used for the simulation, adapted from
[13]

3.3.2 Creating the GA-matrix

Once the simulation is running, it is necessary to calculate the size of the result-
ing GA-matrix and initialize it without any discharges. For this, the number of
photo-electrons from photons and DCR is calculated. For the photons a mean
is smeared with a Poisson distribution and randomly sampled for each event,
whereas the mean for the DCR is obtained by multiplying the observed time
with the respective rate; the resulting number is also smeared with a Poisson
distribution and randomly sampled for each event. To acquire the number of
prompt and delayed crosstalk, as well as afterpulses, the preceding primary
discharges are used as the number of trials for three Binomial distributions,
with the rate of success being the probability for each effect to occur. It is also
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possible to calculate the secondaries of secondaries, providing more accurate
calculations and a unique feature.

For each event, the total number of discharges is summed up and an empty
matrix with the dimensions number of events by maximum of all accumulated
discharges from every event is initialized. This procedure is displayed in Fig.
3.6. Each entry is one struct (Fig. 3.2) creating a three-dimensional matrix.

Calculate number
of photoelectrons
and DCR ∀ event

Calculate number
of PXT, DXT,

and AP ∀ event

Get maximum of
discharges from

all events

Generate matrix
(events x

maximum)

Figure 3.6: Steps that lead to the creation of the matrix

A numerical example, as depicted in figure 3.7 and the subsequent figures,
has five total discharges. The ID is the unique cell ID in which the respective
discharge happened, TS denotes the time of occurrence, and SC is an abbrevi-
ation for the source of the discharge. The letter A represents the amplitude of
the discharge, which is calculated at a later step.

ID: 0
TS: 0
SC: 0
A: 0

ID: 0
TS: 0
SC: 0
A: 0

ID: 0
TS: 0
SC: 0
A: 0

ID: 0
TS: 0
SC: 0
A: 0

ID: 0
TS: 0
SC: 0
A: 0

Discharge #1 #2 #3 #4 #5

Matrix

Figure 3.7: Depiction of the empty matrix for one event with five cumulated
discharges. ID is the unique number of the fired cell, TS is the timestamp of
occurrence (currently in nanoseconds), SC is the source, and A the amplitude
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3.3.3 Matrix filling

After initializing, the matrix needs to be filled with actual discharges, which is
done for each effect separately and can be observed in Fig. 3.8, which depicts
the steps leading to a filled matrix. Having this matrix provides a novel imple-
mentation of the Geiger-Array, keeping the information of already calculated
events available. Furthermore, parallel threads are used to speed up loops.

Fill each primary
from light with

ID/TS/SC

Fill each primary
from DCR with

ID/TS/SC

Fill all secondaries
(XT/AP) with

ID/TS/SC

Figure 3.8: General overview of filling the matrix

Since it is already known how many discharges of each effect occurred, the
program loops over all of them, starting with the primaries. For each discharge,
a random ID is selected, as well as a random timestamp from the respective
distribution. Furthermore, the source is saved alongside the other information
and an overview of the numeral representations is depicted in table 3.2.

Discharge Source
Initialization 0

Photon 1
Primary

DCR 2
PXT 3
DXT 4Secondary
AP 5

Table 3.2: Overview of the possible numeral representation for the source of a
discharge

The resulting matrix after the primary effects are filled in, is displayed in
Fig. 3.9. This example has five total discharges with three being primaries
from light, one primary from DCR, and one secondary from delayed crosstalk.
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ID: 2
TS: 102
SC: 1
A: 0

ID: 1
TS: 101
SC: 1
A: 0

ID: 4
TS: 78
SC: 2
A: 0

ID: 4
TS: 103
SC: 1
A: 0

ID: 0
TS: 0
SC: 0
A: 0

Figure 3.9: Visualization of the matrix after filling in four primary discharges,
extending Fig. 3.7

Once all the primary discharges are saved, the necessary data for the sec-
ondary discharges are provided by randomly selecting the ID of a discharge that
already happened, providing the neighboring cells (for crosstalk), randomly
selecting a neighbor, and saving this information in the matrix. For delayed
crosstalk and afterpulses, an Exponential distribution for the timestamp is in-
troduced, which denotes the delayed nature of both effects. The completely
filled matrix can be observed in Fig. 3.10.

ID: 2
TS: 102
SC: 1
A: 0

ID: 1
TS: 101
SC: 1
A: 0

ID: 4
TS: 78
SC: 2
A: 0

ID: 4
TS: 103
SC: 1
A: 0

ID: 2
TS: 103
SC: 4
A: 0

Figure 3.10: Visualization of the matrix after filling in the remaining secondary
discharge in the fifth entry of the matrix, extending Fig. 3.9 and Fig. 3.7

3.3.3.1 Obtaining neighboring cells

Concerning the size of the simulated SiPM, the neighbors of a cell are calcu-
lated by determining the position of that specific cell and assessing the cells
above, below, left, and right. The outcome of this algorithm is visualized by an
example in Fig. 3.11.
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Check source
∀ event &
∀ discharge

If plausibile
compare ID

& TS to previous

If IDs match,
calculate reduced
height, else A=1

Figure 3.14: General overview of calculating the amplitudes for each discharge

If the considered discharge happened in a cell that has been triggered
before, the amplitude is reduced by considering the recharge time, which is
adapted from [5] and given by

Ai = 1− e−∆t/τs (3.1)

It is derived from the recharging of the capacitance after discharging. ∆t is
the time difference between the last timestamp and the current timestamp,
and τs is a time constant. Usually, two different effects influence the recharg-
ing, which are the recharging current of the pixel (slow component, τs) and
the capacitive coupling of the quenching resistor (fast component, τ f ). An
additional proportion factor r f denotes the share of the fast component in the
overall recharge function [1] [11]. For a simple recharge function, the separa-
tion is not necessary, but the waveform (or transient)

I1(t) =

�

1− r f

τs
· e−t/τs +

r f

τ f
· e−t/τ f

�

·Θ(t) (3.2)

takes this into consideration (adapted from [11]), with Θ(t) denoting the
Heaviside step function. This equation is used to display the discharges with
their respective height and to obtain the charge spectrum. Since this is addi-
tional information, the step itself is satisfied by the calculation of amplitudes.
Once the height is determined, the amplitude is stored in the matrix. When dis-
playing the amplitudes, t is shifted exactly by the time of occurrence, resulting
in

I ′(t) = I1(t − ts,i) (3.3)

where ts,i is the respective timestamp [11].
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3.3.6 Generating the spectrum

To conclude the functionality of the framework and determine the spectrum,
all discharges are integrated in the specified integration times. It is noted, that
’spectrum’ relates to the displaying of how often a specific charge occurred.
Fig. 3.15 shows the process of generating this spectrum.

Integrate all
plausible dis-

charges ∀ event

Collect all
integrals in
one array

Fit array into
histogram for

displaying

Figure 3.15: General overview of the spectrum generation

The output signal provided with the waveform (equation 3.2) for each dis-
charge is a current pulse and the charge of a current can be obtained by

Q(t) =

∫

I(t) d t (3.4)

For one discharge the equation is slightly altered to account for the amplitude,
the time of occurrence, and the integration time, which resides in

Q i = Ai ·
∫ tend

t0

I(t − ts,i) d t (3.5)

and can be gleaned in [11]. Summing the charges of all current pulses from the
discharges within the specified integration time for one event gives the total
charge Q′ that happened during that event. Collecting the values for Q′ for all
events in a histogram produces the simulated charge spectrum.
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Chapter 4

Simulation Results

4.1 Validation and Verification

To ensure the accuracy and reliability of the simulation, it is crucial to compare
the results of each task that is performed with expected values.

4.1.1 Unit tests

To test the functions, multiple test files are included in the framework, which
incorporates this functionality. Tests are performed for each function, using
the @test macro from the Test.jl package. This macro evaluates an expression
(e.g. 2 + 2 == 4) and returns whether this test condition is true. For exam-
ple, a test for the function that sorts and flags unplausible discharges includes
checking if an event is sorted correctly and if sources are flagged if necessary.
Other function checks include the creation of the matrix itself, checking for
primary and secondary discharges, as well as the return of the neighbors to a
provided ID.

The development of these tests is done systematically. First, test scenarios
are created, effectively simulating user input for normal use cases. Addition-
ally, worst-case and error scenarios are implemented to test the boundaries
of the simulation. For each trial the expected results are assessed and tested
against the real function output, and, if necessary, the function is altered to
disclose the expected behavior. A complete list of the tested functions can be
found in the appendix in table A.2, where it is noted that only necessary func-
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tions are tested and marked with "Tested".

To test the physical accuracy, visual assessments were done. In these the
produced GA matrix was meticulously investigated by hand, going through ev-
ery discharge in a dual-control manner. A visual representation of the variation
of the cell IDs can be found in Fig. A.4. Furthermore, a separate function is
implemented, that takes all testable variables as input and applies a plausibility
check. This can already detect some errors but does not hinder the user from
inputting wrong values.

4.1.2 Distributions

In order to prove the mathematical accuracy of the used distributions, testing
functions are created, which take the distribution as input and either extract
samples from it or, if provided, use the values created during the simulation.
To gain a better insight, the moments as depicted in table 4.1, are calculated, as
well as the Probability Density Function or PDF. The PDF is further referenced
as "Line Plot".

Distribution Mean µ Variance σ2

Normal(µ, σ2) µ σ2

Poisson(λ) λ λ

Exponential(λ) 1
λ

1
λ2

Uniform(a, b) a+b
2

(b−a)2

12
Binomial(n, p) n · p n · p · (1− p)

Standard Error
p
σ2
p

n σ2 ·
q

2
n−1

Table 4.1: Mean and variance for each implemented distribution. The calcula-
tion of the standard error (SE) is adapted from [15]

An example of the Exponential distribution is given in Fig. 4.1 and the
other distributions can be found in the appendix (A.4). Since these tests are
done while running the simulation, they are implemented as a debug feature
in the framework and can be switched off if desired.
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Figure 4.1: Exemplary plot for the distribution of timestamps from afterpulses
with an exponential scattering. The "vals" in the title denotes the usage of
values generated during a simulation as opposed to external sampling.

4.2 Overview of the Simulated Data

4.2.1 Output signal

Implemented is an option to plot every amplitude that was calculated for a
simulation, which equals the output signal of the SiPM. To display the general
idea, one event is simulated with the settings found in Fig. A.1. The gained
knowledge can be transferred to the simulation of more events, but it is then
harder to distinguish all discharges and break down the output signal. The
general pulse form for each discharge can be found in Fig. 4.6.

Fig. 4.2 (a) shows the simplest SiPM layout possible, consisting of one sin-
gle cell. This simplification is done to show the behavior of each cell for mul-
tiple discharges. Larger arrays have the same behavior for each cell, except
for added crosstalk, which can not occur in a single-cell array since there are
no other cells that photons produced during the avalanche can travel to. Go-
ing from left to right, the reasons for the discharges are DCR, photon, AP, and
DCR. In one cell the maximum amplitude can never exceed 1 [a.u.]. Moving
one step further, Fig. 4.2 (b) demonstrates the behavior for four cells, with
the reasons for the discharges being DCR, AP, two photons and PXT, DCR and
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PXT, and DCR. Noticeable is the change in the maximum height, which is due
to the overlay of multiple cells firing at the same time. This is observable at
100ns, where two photons hit the SiPM at the same time and one discharge
also causes prompt crosstalk.

Figure 4.2: Depiction of the output signal from (a) one cell and (b) four cells

In Fig. 4.3 the process of amplitude calculation in accordance with the
recharging of the cell can be observed. The orange line depicts the recharging
(in percent) from the time of discharge until the theoretical end of the simula-
tion. The blue line is again the complete output signal, which is built from two
discharges. The first, with a height of 1.0 is from DCR, and the second is from
a photon, but with a lowered amplitude. In this example, the capacitance has
been charged to 72.4% and the second discharge is added on top.

Figure 4.3: Example discharges from one cell in combination with the recharg-
ing of the cell. The height is adjusted to an amplitude of 1 a.u.
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4.2.2 Spectra

The final implemented functionality is the calculation of the charge spectrum
of an SiPM, which depicts the amount of charge against their respective num-
ber of occurrences. To generate suitable spectra, some variables were altered
and the comparison of spectra is done with a separately implemented function
that only has this task. The spectrum itself is the accumulation of measured
charge per event and the sorting into bins; it is thus a histogram. To get the
necessary information, each current pulse is integrated with the respective in-
tegration time and the charges for each event are summed up, as explained in
section 3.3.6. An example of a spectrum without any effects, except for arriv-
ing photons, is depicted by the blue graph in Fig. 4.4. The resulting spectrum
resembles the initial Poisson distribution.

The next step is to gradually add effects other than light and determine the
correctness. The orange line plot in Fig. 4.4 is showing the initial plot with
added DCR.

Figure 4.4: Depiction of a charge spectrum that has only primary discharges
from light (blue graph) and light combined with DCR (orange graph)

Instead of the integrated output pulses, it is also possible to display the
discharges that happened during each event, making it easier to verify the
results. A spectrum featuring this context is depicted in Fig. 4.5.
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Figure 4.6: Comparison of the secondary effects with the integration time.
Subfigure (a) depicts a single discharge (light/DCR), whereas (b) shows a dis-
charge with prompt crosstalk. Subfigure (c) includes delayed crosstalk and (d)
models an added afterpulse, as introduced in Fig. 2.8 and Fig. 2.11.

The expected results needed to verify the spectra for each effect are de-
ductible from their respective distribution and the absolute timescale, com-
bined with the integration time. Prompt crosstalk (Fig. 4.6 (b)) happens at
the same time as the initial primary discharges caused by light and thus only
the peaks should move, but it is still a discrete spectrum. Delayed crosstalk
(Fig. 4.6 (c)) causes a lower height to the initial spectrum, with a broader
base on the left side of the peaks. This is due to the Exponential distribution
that determines when the prompt crosstalk happens; a later discharge means
less charge is calculated for the integral since the integration limit is fixed. Af-
terpulses ( Fig. 4.6 (d)) have a similar effect as delayed crosstalk, but the time
constant is smaller, leading to a broader base on the right side of the peaks.
Example spectra are included in the appendix, in A.5, A.6, and A.7 respectively.
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The combined spectrum from light and DCR is easy to verify, but this is not
the case for spectra that are made from more than two effects, especially since
the code calculates the number of secondary effects for each effect based on
the number of primary discharges. For afterpulses and crosstalk, this provides
a Binomial distribution, which itself is already dependent on the Poisson dis-
tribution. Since a verification of this is not trivial, it is waived and this topic
is open for an outlook on future enhancements of the SUM project. Further
problems occurred with the displaying of the spectrum, where the number of
bins of the histogram had an inexplicable effect on the data.
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Chapter 5

Benchmarks

To gain a better insight into the functionality and the limits of the simula-
tion, multiple benchmarks are done to assess performance details and com-
pare them with the preceding implementation. Table 5.1 shows the conducted
benchmarks, where it is noted that "transients" denotes the waveform of the
output signal. Calculating the transients is additional information, included in
the third benchmark.

# Benchmark Julia Python

1
Mean number of photons

(without transients) X

2 Number of cores X

3
Mean number of photons

(with transients) X X

Table 5.1: Overview of the done benchmarks

Visual benchmarks that show the output signal and the resulting spectra
have been done before and will not be mentioned in this chapter again. The key
performance indicator is the overall runtime and additional measurements for
the number of allocations and the used memory during a simulation are listed
in the appendix while being referenced in the text. After the benchmarks are
discussed, a comparison between Julia and Python is done, followed by a quick
bottleneck analysis.
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5.1 Mean number of photons

The benchmark for the mean number of photons (and the number of events) is
the key criterion for the measurements since the goal of this thesis is to create a
fast simulation for SiPMs. To verify this, the mean number of photons, as well
as the number of events is changed, ranging from 1 to 20,000 and 1 to 10,000
respectively. Even higher numbers are possible, but the processed amount of
data causes OutOfMemory() errors on the test machine, meaning there is in-
sufficient RAM. The number of cells is fixed to 10,000 and this benchmark is
done for the first five steps (in reference to Fig. 3.1), providing measurements
for the generation and calculation of discharges including the amplitude. The
resulting graphs are depicted in Fig. 5.1 and 5.2. Additional plots depicting
the number of allocations and memory usage can be found in the appendix
in figures A.12 and A.13. Table 5.2 holds the maximum values of all three
benchmarks.

Figure 5.1: Runtime for different numbers of events following a rising mean
number of photons
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Figure 5.2: Runtime for different numbers of events following a rising mean
number of photons, normalized to one event

Events Max. runtime [s] Max. Allocations Max. memory [GB]
1 0.009 5.86 · 104 0.006

10 0.043 5.75 · 105 0.057
100 0.398 5.76 · 106 0.569

1000 4.584 6.73 · 107 5.842
10000 60.849 7.65 · 108 59.983

Table 5.2: Maximum values for a mean number of photons of 20.000

Discernible is the linear scaling (mean > 1,000) of the runtime, number
of allocations, and memory usage, which poses a threat to the simulation for
more than 10,000 events. These findings can figuratively be used to draw a
paramount conclusion: the more events and the more discharges occur per
event (whereas the reason for a discharge is insignificant), the higher the run-
time, with a linear rise.
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5.2 Number of cores

To determine the influence of using multiple cores for parallelization of the
code, the first benchmark (mean number of photons) is reiterated. To allow a
steady comparison, the number of cores is varied from four to one, with a fixed
number of events (1000 and 10000). Fig. 5.3 shows the resulting graphs.

Figure 5.3: Runtime comparison between 1 and 4 cores

Comparing the value for a mean number of photoelectrons of 10,000, the
speed gain by using four cores instead of one is 61% for 1000 events and 50%
for 10,000 events. This implies, that using multi-core processors speeds up the
simulation even further and can be brought in if one needs excessive speeds.
For a normal usage single-core (or dual-core) computations are fast enough.
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5.3 Julia vs. Python

As introduced in Chapter 3.1, a comparison between SUM and lightsimtastic is
made, demonstrating its capabilities and contrasting the different approaches
for Julia and Python respectively. This comparison is solemnly based on oper-
ation speed since it is the prevailing method of assessment and the main focus
of this thesis, including the calculation of transients. Fig. 5.4 holds the result
from this comparison, which is done for 100 events.

Figure 5.4: Runtime comparison between Julia (SUM) and Python (lightsim-
tastic) for 100 events with transient calculation.

Considering the maximum values for 100 events (2.02s and 550.64s), it
can be remarked that SUM is approximately 272 times faster than lightsimtas-
tic. To demonstrate how big this margin is, the same measurement is done for
SUM with 1,000 events and it is still faster by approximately 26 times. Since
it takes lightsimtastic 550 seconds to run once for 100 events, further research
has not been conducted.

The huge timing differences can be explained by the compilation differences
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between Julia and Python. The latter is interpreted instead of compiled, which
means the code is converted into bytecode and then run on a virtual machine,
whereas Julia uses JIT compiling. This allows Julia to precompile the code
into machine-readable code and then run it directly on the processor. This ap-
proach usually is much faster and therefore the results are as expected; it is
important to also mention, that Python can be highly optimized for speed but
this is not part of this thesis. Furthermore, SUM calculates secondary effects
four times instead of once like lightsimtastic.

5.4 Bottleneck Analysis

To understand the bottleneck of the simulation, a timing analysis is done for all
steps, excluding the calculation of the spectrum and the setting of variables. In
Fig. 5.5 the contribution of each part to the overall runtime is presented. Since
the runtime of setting variables is constant, this step is omitted for the graphic.
Comparing the proportions, bottlenecks that slow the whole simulation down
occur in the filling of values and sorting and flagging steps, since these have
the greatest overall impact (87% combined). This is as expected since these
two parts are computationally the heaviest; for each event, random values for
ID and the timestamp are sourced and saved in the matrix with additional
information. This takes longer, the more events are simulated.

Figure 5.5: Percentage shares of each step to the overall runtime
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Chapter 6

Conclusion

As explained in Chapter 3, this thesis implements new algorithms that model
the main physical processes of detecting light with an SiPM, combined with the
influence of correlated noise. The presented simulation in its current state is
capable of simulating the output signal of an SiPM, by calculating primary and
secondary discharges with their respective cell ID, timestamp, source, and am-
plitude. This approach differs vastly from lightsimtastic, since it is now possible
to track each discharge and precisely tell what happened when. Additionally,
the SiPM is now used as a reference object with a distinct geometry, which is
a novelty and effectively enables this tracking. Considering the thesis goals,
this represents the fulfillment of the first and second objectives. Furthermore,
performance predictions for SiPMs for different light intensities can be made,
since it is possible to alter the light source via a distribution and set the mean
number of photoelectrons. It is also possible to study secondary effects, by us-
ing their respective probabilities paired with a distribution for the occurrence.
These predictions are also possible with lightsimtastic, but the new implemen-
tation simplifies this process. By also surpassing the runtime (2.02s against
550.64s for 100 events with a mean number of photoelectrons of 1,000), the
study of high-light intensities is specifically facilitated. This speed gain is made
possible by the usage of thread parallelization, a feature that is directly built
into the programming language. Julia also offers fast vector operations and its
JIT compilation leverages the impact on the runtime even more. It is thus pos-
sible to conclude, that the fourth goal is also accomplished since the usability
is given.
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It is important to note the limitations of the implemented functions to figure
out where future enhancements could be introduced. Currently, the runtime
scales linearly, which limits the number of calculable events, and aiming for a
faster simulation could be a priority. Besides this, more parameters defining the
SiPM should be implemented (section 2.3.6) together with electronics noise,
and a picosecond timescale could help with more exact tracking. Furthermore,
different statistical approaches could better capture real-world characteristics.
Two remaining issues are the calculation and binning of the spectrum, which
could not be resolved in the scope of this thesis. The third goal is thus only
partially fulfilled.

The contribution to current research is, that this thesis and its resulting
program serve as the foundation for the SiPM Unified Model (SUM) research
directive, proving the use of Julia as a basis for a novel SiPM simulation. Hav-
ing a simulation that accurately provides the output signals and spectra of an
SiPM, allows a deeper study of these components, without having to physically
be in a lab and measure data. The subordinate goal of providing a proof-of-
concept for the use of Julia as a new approach to the simulation of the response
of SiPMs is therefore given.
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Acronyms and Abbreviations

PAP Probability for afterpulse to occur.
PDX T Probability for delayed crosstalk to occur.
PPX T Probability for prompt crosstalk to occur.
A Amplitude.
AP Afterpulse.
DC Discharge.
DCR Dark Count Rate.
DXT Delayed Crosstalk.
G Gain.
GA Geiger array.
ID Identification.
JIT Just-in-time [compilation].
LiDAR Light Detection and Ranging.
PDE Photon Detection Efficiency.
PDF Probability Density Function.
PXT Prompt Crosstalk.
RAM Random Access Memory.
RMS Root-Mean-Square.
SC Source.
SE Standard Error.
SiPM Silicon Photomultiplier.
SPAD Single-Photon Avalanche Diode.
SPTR Single Photon Timing Resolution.
SUM SiPM Unified Model.
TS Timestamp.
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Appendix A

Figures and Tables

A.1 Parameters
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Group Parameter name Description value/unit
General n_events Total number of events 1

n_rows Number of pixel rows 10
n_rows Number of pixel columns 10
n_cells Total number of cells 100
mu_light Mean number of photons 10
dcr Dark count rate 100 kHz
seed Seed for the RNG 1234
r_fast Proportion of fast component 0.2

Times t_start_rising_signal Arrival time of photons 100 ns
t_integration_length Length of integration 100 ns

t_start_integration
Start of integration (in
respect to rising signal) -5 ns

t_start_simulation
Start of simulation (in
respect to rising signal) -100 ns

t_var_photons Variance of arrival time 1 ns
t_pulselength Cell "blind" time 2 ns
tau_delayed_xt Time constant DXT 25 ns
tau_afterpulse Time constant AP 7.5 ns
tau_fast Time constant fast component 20 ns
tau_slow Time constant slow component 1.5 ns

Secondary
effects p_prompt_xt Prompt crosstalk probability 0.2

p_delayed_xt Delayed crosstalk probability 0.1
p_ap Afterpulse probability 0.05

n_xt_loops
Number of secondary
calculations 4

Distributions df_n_light Number of photons Poisson
df_n_dcr Number of DCR Poisson
df_t_light Photon arrival time Normal
df_t_dcr Time spreading DCR Uniform
df_n_pxt Number of PXT Binomial
df_t_pxt Time spreading of PXT undef
df_n_dxt Number of DXT Binomial
df_t_dxt Time spreading of DXT Exponential
df_n_ap Numbers of AP Binomial
df_t_ap Time spreading of AP Exponential

Table A.1: Overview of the input parameters
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A.2 File Structure

Figure A.1: Functional dependencies of the example.jl file (in SUM/example)

Figure A.2: Folder structure for the SUM-package

48



Figure A.3: File structure containing the implemented functions and the cus-
tom struct in the SUM/src folder

A.3 Tests and Data

Function Status
checkforneighbors() Tested
timecutgeigerarraymatrix() Tested
generategamatrix() Tested
fillwithsecondaries() Tested
generateamplitudes() Tested
generatechargespectrum() Tested
compareidandtimestamp() Tested
shiftedsignal() Tested
shiftedstep() Tested
recharge() Tested
checkvariables() Tested
gamatrixtoarrays() Untested
comparespectra() Untested

Table A.2: Overview of the done tests. The last two functions are untested,
since they are optional and do not contribute to the actual calculations
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Figure A.4: Variation of the cell ID, if an SiPM (10x10 cells) is only illuminated
on the first 50 cells. Afterpulsing happens in the same cells and thus the oc-
cured IDs only double, whereas for prompt cross-talk the bordering cells also
occur. Delayed cross-talk discloses the same behavior as prompt cross-talk.

Figure A.5: Spectrum with prompt cross-talk (p_pxt = 20%)
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Figure A.6: Spectrum with delayed crosstalk (p_dxt = 20%)

Figure A.7: Spectrum with afterpulsing (p_ap = 20%)
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A.4 Distributions

Figure A.8: Binomial distribution

Figure A.9: Normal distribution
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Figure A.10: Poisson distribution

Figure A.11: Uniform distribution
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A.5 Benchmarks

(a) raw data

(b) normalized

Figure A.12: Allocations for different number of events in accordance with a
rising mean number of photons, with a. raw data and b. normalized to one
event
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(a) raw data

(b) normalized

Figure A.13: Memory usage for different number of events in accordance with
a rising mean number of photons, with a. raw data and b. normalized to one
event
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