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Abstract
Considering the renewed interest in manned moon missions, the sustaining of human living
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1 Introduction
For centuries, conventional agriculture has been the dominant method of food production.
However, in the face of growing global challenges – including a rapidly increasing population,
diminishing arable land, and stricter regulations for environmental and human health protection
– traditional farming is reaching its limits. These constraints have sparked a growing interest
in alternative agricultural systems that can ensure reliable, high-quality food production under
controlled conditions.

One such approach is Controlled Environment Agriculture (CEA) , which decouples crop cultiva-
tion from external environmental factors. By directly managing key growth parameters such as
watering, fertilization, climate, and lighting, CEA offers the potential for consistent yields, improved
crop quality, and scalable production adapted to demand. In doing so, it addresses many of the
limitations inherent in conventional open-field farming.

CEA systems achieve these advantages by creating a tightly controlled growing environment that
minimizes external variability. Central to this approach is the precise regulation of critical factors
that influence plant development.
The most common ones being:

• Watering and fertilization
• Climate
• Lighting

All this is done with the goal in mind to produce a fresher, higher yielding and more desirable
crop with a predictable and schedulable time to market. In addition to this CEA also provides the
producer with flexibility to scale output for the current demand.

In addition to economically motivated reasons, CEA also shows great potential beyond large-
scale industrial agriculture. Since CEA systems deliberately isolate crop cultivation from external
environmental conditions, they can be deployed in regions that are otherwise unsuitable for
traditional farming.

Possible applications with a focus on self-sufficiency include supplying remote mining sites with
fresh vegetables or enabling sustainable food production in disaster-stricken regions during the
recovery phase. In general, self-contained CEA systems are particularly valuable in any context
where the reliable supply of fresh food is challenged by substantial logistical constraints.

The Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) is actively pursuing research into such
CEA applications, with a particular focus on extreme and resource-limited environments. Insights
gained from the development of solutions for disaster relief – such as the Mobile Emergency Plant-
growing Application (MEPA) project(Figure 1), which aims to ensure food supply in areas where
conventional agriculture is no longer feasible - also inform research for space missions.
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Current efforts concentrate on in-situ food production for astronauts during long-term spaceflight
and extraterrestrial missions. These activities are brought together in the EDEN initiative
(Section 2). As part of this initiative, the EDEN luna (Section 3) test facility is currently under
construction.

Figure 1: MEPA Outdoor-Experiment[1]

1.1 Objectives
The primary objective of this thesis is the design and development of the control software for the
EDEN luna Nutrtient Delivery Sytem (NDS) . This software is intended to autonomously manage
essential plant care functions, with a particular focus on irrigation and fertilization. By ensuring
the reliable and consistent provision of these parameters, the system contributes directly to the
long-term sustainability and efficiency of the cultivation process. Detailed technical information
regarding the subsystem architecture is provided in Section 4.

A further requirement of the control software is its modular architecture. This modularity is crucial
in enabling straightforward adaption in the event of hardware modifications - particularly within
the interpretation and connection layer, which acts as an interface between sensor hardware and
system logic.

In addition to these software-related objectives, this thesis also aims to develop a preliminary
concept for the interpretation and connection layer itself, which has not yet been finalized. This
concept is not intended to represent a definitive solution, but rather to serve as a demonstrative
implementation that can inform and support future development work.

2



To provide context for the in-house development decision, the thesis includes a brief overview of
commercially available software solutions that could, in principle, be applied to the NDS . This
comparison concludes with a summary of the reasons that ultimately led to the decision to pursue
a custom, internally developed system.

2 EDEN
To better understand the relevance of the EDEN initiative, the following section provides an
overview of the potential of in-situ production for future space exploration. In addition, the motiva-
tions, benefits, and objectives of the EDEN initiative are outlined.

For the foreseeable future, supplying astronauts with food and other necessities will remain
essential. All goods required in space currently need to be transported from Earth, which entails
significant logistical and financial effort. Consequently, space agencies are increasingly investi-
gating the potential of in-situ resource utilization (ISRU) to reduce the dependency on Earth-based
resupply. These efforts range from conceptual studies on fuel production on the Moon to more
tangible experiments conducted onboard the International Space Station (ISS) . Notable examples
include the in-space fabrication of tools[8] and the cultivation of plants under microgravity condi-
tions[9]. Although these projects have been limited in scale, they provide valuable scientific data
and lay the foundation for future research.

The relevance of these investigations will continue to grow as space missions become longer,
more autonomous, and target destinations further away from Earth. In this context, in-situ
production of food and other consumables offers a promising opportunity to reduce supply chain
dependencies and mission costs.

This is where the EDEN initiative comes in. Its goal is to develop solutions for the autonomous
cultivation of fresh produce in space, thereby reducing the need for frequent resupply missions.
Beyond its space-related focus, the initiative also contributes to the broader field of self-contained
CEA systems through ongoing research activities. The knowledge gained from the EDEN exper-
iments benefits other related projects - such as the terrestrial MEPA system - which aim to adapt
space-derived technologies for use in extreme environments on Earth[10].

In addition to logistical advantages, facilities developed under the EDEN initiative may also have a
positive psychological impact on astronauts during long-duration missions. Participants in NASA’s
Veggie investigations reported increased morale when they were able to supplement their diets
with freshly grown food and engage in plant care[11]. Similarly, crew members involved in the
EDEN ISS mission described the presence of living plants and the availability of fresh produce as
a significant psychological benefit[2].
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The long-term goal of the EDEN initiative is to develop a fully validated, flight-ready facility for fresh
food production on future lunar missions by 2030[12]. To support this objective, two major test
facilities have already been built and operated for extended periods. These facilities are described
in the following sections.

2.1 EDEN ISS
EDEN ISS MFT was a research facility located at the German Neumayer III Antarctic Station.
Comprising two interconnected shipping containers, the facility operated from 2018 to 2023 and
served as a testbed for closed-loop CEA systems under harsh environmental conditions[13].
During its operational period, EDEN ISS provided the Neumayer station crew with year-round
access to fresh produce.

Figure 2: The EDEN ISS MFT container-based research facility at Neumayer III Station in
Antarctica[2].

The facility employed a completely soil-less aeroponic system, supplying nutrients and water
directly to the plant roots via misting. It also incorporated subsystems for nutrient delivery, lighting,
air treatment, and monitoring of food quality and safety[14].

At the end of the five-year mission, the MFT was dismantled and returned to Bremen, Germany.
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2.2 EDEN Lab
Currently, the EDEN initiative operates the EDEN Lab at the Planetary Infrastructure Laboratory
on the DLR campus in Bremen(Figure 3). Established in 2014, this facility focuses on gaining
expertise in plant cultivation within closed-loop CEA systems[10]. It incorporates lessons learned
from the EDEN ISS mission and is continuously updated and improved.

Figure 3: Interior view of the EDEN Lab facility at the DLR campus in Bremen with laboratory
manager[3].

In addition to comprehensive monitoring systems, controllable lighting, irrigation, and temperature
regulation, EDEN Lab also allows for the manipulation of atmospheric composition within the
sealed growth chamber - e.g., by injecting CO2. Like EDEN ISS, the lab uses aeroponics and
omits any use of soil.
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3 EDEN LUNA
EDEN LUNA(Figure 4) is the evolution of the EDEN ISS project. After concluding operations in
Antarctica and arrival back in Bremen the EDEN ISS MFT is currently being refurbished.

Figure 4:  EDEN LUNA with integration tent on the left.

Following this complete redesign of the interior and all subsystems the container is supposed to
be integrated into the LUNA analog facility located in Cologne later this year.
The overall structure of the facility is comparable to the EDEN ISS facility. It is split into two
sections. The first housing the majority of equipment and space for crop examination and the
second comprised of the FEG . This FEG is where plants will be cultivated (see Figure 5).
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Figure 5:  FEG of EDEN LUNA, under construction

3.1 Project goals
Aim of this project is to gain further experience on how to integrate such a greenhouse into a luna
habitat. As part of the LUNA analog facility EDEN LUNA is also supposed to be used for training
future astronauts.
I addition to this, procedures for growing food in a luna setting are supposed to be developed.
Another point of interest is the controlling of the facility from the EDEN control in Bremen.

This project in another step towards the end goal of the initiative to provide a mature hardware
design by 2030.
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3.2 System architecture
EDEN LUNA is composed of numerous independent subsystems (see Figure 6), each fulfilling
a dedicated set of functions. These subsystems are being developed by specialized teams at
the DLR .

Figure 6: Reduced view of system architecture of EDEN LUNA

Most of the hardware and control units are developed and manufactured in-house to ensure
system coherence, minimize dependencies, and allow for rapid iteration and optimization.

At the heart of the system lies an industrial-grade On-Board Computer (OBC) , which serves
as the central interface to all subsystems. It communicates via a variety of standard protocols,
including Ethernet, Controller Area Network (CAN) , and USB with these subsystems. This central
unit also executes the main control software responsible for managing several critical subsystems,
including the Atmosphere Management System (AMS) , Thermal Control System (TCS) , and
NDS .

Due to its specific relevance to this thesis, the following section will provide a detailed discussion
of the NDS . The other subsystems mentioned will not be described in full; however, key aspects
will be introduced where necessary for context or system understanding.
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4 NDS
The primary function of the NDS is to provide the crops cultivated in the FEG with water and
nutrients. Reliability is of particular importance due to the system’s aeroponic design: no growing
substrate is used, and the plant roots must be regularly sprayed with a nutrient solution. This
typically occurs every few minutes. It is critical that the roots do not dry out, as this would impair
their ability to absorb nutrients and water.

If the NDS fails, the fine root hairs responsible for nutrient and water uptake will die off. While
they can regenerate, their temporary absence significantly limits the plant’s ability to sustain itself,
causing stress that may lead to irreversible damage or death.

In addition to this core functionality, the NDS for EDEN LUNA must also fulfill the following tasks:

• Initial preparation of the nutrient solution
• Continuous conditioning and monitoring of the solution
• Adjustment of nutrient composition according to crop-specific needs
• Delivery of the nutrient solution to the plant roots
• Recovery and recycling of unused nutrient solution

Precise control of nutrient formulation is not only relevant for space applications such as EDEN
LUNA. It also offers potential for terrestrial CEA systems. Several commercial providers offer
fertigation systems aimed at these applications.

4.1 Industrial solutions
This section presents several commercially available fertigation systems that could meet the
functional requirements of the NDS . For comparison, a baseline is defined based on the current
hardware concept (Figure 11).

The system must support:

• Four separate nutrient stock solutions
• One base (alkaline component)
• One acid

Commercial systems are typically divided into two operating principles:

• Batch or mixing tank systems: These prepare nutrient solution in larger quantities
and store it for later use.

• Inline or injection systems: These inject concentrated nutrients directly into the water
stream during irrigation events[15].
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Injection systems usually save space, as large tanks are not needed. However, in EDEN LUNA,
where aeroponics is used and unused nutrient solution must be recirculated, the advantages of
injection systems may be diminished. Additional hardware may be required to enable this recircu-
lation. Nevertheless, both system types are discussed below.

4.1.1 Argus
Argus is a well-established company in the CEA sector, offering a broad range of solutions for
greenhouse automation, including fertigation, irrigation, wireless sensors, and control software.

For fertigation, Argus provides the Multifeed RM Nutrition Injection System, a rack-mounted
injection system supporting up to 16 injection heads, along with acid and base dosing modules.
The system also includes integrated monitoring features[4].

Figure 7: Argus Multifeed RM Nutrition Injection System[4]

Systems from Argus were previously used in the EDEN ISS project.
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4.1.2 Priva
Priva is another company offering automation solutions for both CEA and building management.

Within its product portfolio, Priva provides both mixing tank and injection-based fertigation sys-
tems. Relevant systems for the NDS include the NutriFlex(Figure 8) (batch) and NutriJet (injection)
series. Both options can be equipped with at least ten dosing channels for delivering fertilizers or
pH regulators such as acids and bases[16], [17].

Figure 8: Priva NutriFlex[5]

Priva systems are marketed for indoor plant cultivation. A NutriFlex-like system is currently used
in the EDEN Lab. Monitoring and control software is included.
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4.1.3 Spagnol
Spagnol is an Italian supplier of fertigation systems and other CEA technologies.

The EvoMix system(Figure 9) from Spagnol supports up to eight fertilizer channels and two acid/
base channels. It was developed for use in closed-loop irrigation systems[6] in mind. An injection
unit with identical features is offered under the name EvoJet.

Figure 9: Spagnol EvoMix[6]

Like other vendors, Spagnol offers software for system monitoring, control, and integration.

4.2 Reasons for in house development
Although commercial solutions exist and were used in EDEN ISS and EDEN Lab, the NDS for
EDEN LUNA is being developed in-house. This decision is based on operational experience and
internal evaluations at the DLR , including staff interviews and technical reports².

Adaptability
Modifying commercial systems was difficult and required direct vendor support. On-the-fly
improvements based on operational findings were not feasible.

Integration difficulties
Commercial systems often lack compatibility with external control systems such as the OBC . At
EDEN Lab, an external computer had to be installed for fertigation control. Integration of additional
sensors was also limited by unsupported interfaces.

²personal communication
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Remote monitoring limitations
During EDEN ISS operations in Antarctica, high data bandwidth was needed for vendor software.
This proved problematic for remote control and software updates. For future lunar use, this
limitation is a critical concern and must be addressed in the new design.

Support dependency
Vendor support was inconsistent and depended heavily on the motivation of individual contacts.
Given the specialized nature of the project and low commercial interest, this is understandable,
but it hampers long-term development.

5 Software requirements
Since the main aspect of this thesis is the design and implementation of the software running the
NDS , this section describes the specific requirements for the software.

Furthermore, two important software libraries are introduced that are required to be used.

In the following, the software to be developed and all adjacent original code will be referenced as
the software, unless stated otherwise.

5.1 Software required to use
The Avionics Systems Department (AVS) of the DLR develops software libraries and application-
level software for spacecraft. In addition, AVS also develops subsystems for Command and Data
Handeling (CDH) , power supply, and communication[18].

Since this thesis is written in collaboration with AVS , software produced by this department is to
be used.

5.1.1 OUTPOST
Open modUlar sofTware PlatfOrm for SpacecrafT (OUTPOST) is the most important product of the
AVS software development group. This flight software library serves as the basis for all software
solutions provided by the group. The library covers a broad range of features, from hardware and
operating system abstraction to driver interfaces and communication protocols.

The library was developed with the goal of enabling reliable, efficient, and cost-effective devel-
opment of flight software for a variety of spacecraft[19].
OUTPOST is divided into two components: OUTPOST-core and OUTPOST-satellite. OUTPOST-
core contains most of the features. OUTPOST-satellite contains closed-source code that may be
subject to export control regulations[20].
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Since the software developed in this thesis is intended to be integrated into the regular software
produced by AVS , the use of OUTPOST is mandatory. As such, the software will heavily rely on
this library for many of its implemented features.

5.1.2 pando
PAcket Network DOcumentation model (pando) is another library developed by the AVS software
development group. It is part of the group’s efforts to integrate model-based software engineering
into their development workflow[19].
pando provides functionalities for defining a Telemetry (TM) / Telecommand (TC) model and
generating compatible code for OUTPOST . The generated code ensures that the developed
software correctly responds to incoming TCs and produces valid outgoing TM .

This functionality will be used in this thesis to enable telecommanding and remote monitoring via
telemetry.

5.2 General requirements
Due to the fact that the NDS design was not finalized at the beginning of this thesis, the software
design must offer a certain degree of flexibility.
Foundational aspects such as the make and model of the OBC and the overall sensor and actuator
layout were already defined. However, the final specification of the interpretation and connection
layer was still pending.

This layer is responsible for interfacing sensors and actuators with the OBC and, if required, for
integrating additional networking components.
A simplified overview of the planned data flow, with the components still under development
marked, is shown in Figure 10.

From this, it follows that the software architecture must allow for changes to this layer with minimal
modifications to the application logic.
This decoupling ensures that future hardware updates or reconfigurations do not require deep
structural changes to the core logic, thus reducing development effort and integration risk.
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Figure 10: Simplified view of Sensor and Actuator data flow

In addition to these structural requirements, the software must support control of the two core
functions of the NDS :

1. the regular irrigation of the crop

2. the preparation and monitoring of the nutrient solution

Furthermore, although hard real-time behavior is not required, the system is expected to operate
deterministically within predictable time bounds.
This includes timely responses to incoming commands and periodic sensor-driven control rou-
tines.

Beyond these main features, the software must also meet the following additional requirements:

• The software must be executable on the mission’s Ubuntu-based OBC .

• It must offer a similar feature set to the current EDEN Lab implementation.

• It must use OUTPOST to ensure compatibility.

• It must support telecommanding and telemetry-based monitoring.

5.3 Hardware constraints
In addition to the requirements listed in the previous section, the hardware design of the NDS
imposes specific constraints - particularly regarding sensors and actuators.

Due to the evolving development status of the NDS , the software will be implemented with
reference to Figure 11.
Only the sensors and actuators listed in this diagram will be considered for the current implemen-
tation.
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Figure 11: Schematic diagram of the NDS hardware design [7]³

A detailed list of all identified sensors and actuators, along with additional information, can be
found in Section A.2 in the appendix.

³personal communication

16



6 Design
The purpose of this section is to define a software design that satisfies the requirements outlined
in Section 5.
The chapter is divided into three main sections:

First, the TMTC model is described, which defines how the system will be monitored and controlled
remotely.
This part is largely independent of the remaining software structure.

Second, the main software architecture is presented, forming the technical backbone of the
implementation.

Finally, the control algorithms are discussed, which are tightly coupled to specific hardware signals
and subsystem behavior.

6.1 TMTC model
To enable remote control and monitoring of the subsystem, the software uses the Telemetry and
Telecommand Packet Utilization ECSS Standard (PUS) .
All packets are received by the Datahandeling and Control System (DHCS) and distributed to the
respective subsystems.
Packets relevant to the NDS are referred to in the following as the packets.

The pando utility is used to generate code for handling received telecommands and for assembling
telemetry packets. This ensures the operability of the software as part of EDEN luna.

Figure 12: Section of nds_luna.xml showing the definition of EnumStockSolution data type

pando expects all packets to be defined in a structure description .xml file.
In addition to packet definitions, this file also specifies custom data types (Figure 12) and para-
meters that are used to describe and interpret these packets.

Together with a corresponding mapping .xml file, pando generates source files for telemetry
packet generation and telecommand reception.
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This approach ensures that telemetry data is transmitted in the correct format and that incoming
commands trigger the appropriate system responses.

6.1.1 Telemetry
Telemetry refers to any data transmitted back from the spacecraft.
In this case, it is used to reflect the current state of the subsystem.

It includes:

1. Sensor data

2. Device and valve states

3. Other operational data

All sensors and actuators listed in Section A.2 in the appendix are part of the telemetry set.

6.1.2 Telecommands
Telecommands refer to any command packets sent to the spacecraft.
For the NDS , they are used to directly control all defined actuators.

This implementation is designed to provide users with a level of control and flexibility similar to
that available in the current EDEN Lab environment. Command pairs are typically specified - for
example, to open and close a valve or to turn a pump on and off.

Since the hardware design (Figure 11) makes frequent use of repeated structural elements - such
as multiple dosing pumps in the mixing loop - many telecommands expect additional arguments.
An example of such a command is shown in Figure 13.
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Figure 13: Definition of NdsTrunOn/OffStockMixingPump packets

6.2 Software design
This section describes the overall design of the subsystem software. Special attention is given to
measures taken to satisfy the requirement of easy adaptability.
The software is implemented in C++17. In addition, SCons is used as the build system to allow
integration of existing code developed for the EDEN project and to align with the department’s
common development practices.

The structure of the software is largely based on the existing EDEN Lab implementation.
Figure 14 shows the structure of all components that were written or modified as part of this thesis.
To produce a complete, running application, additional code components are required. Since these
were externally provided, they are not shown in the figure.

Figure 14: Software structure with underlying hardware architecture
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The following subsections explain each software component and discuss the design decisions
made.

6.2.1 Domain controller class
As already mentioned in Section 6.1.2, the hardware design of the NDS subsystem uses multiple
instances of individual components and even duplicates entire assemblies.
This leads naturally to a further logical subdivision of the system into distinct sections (Figure 15).

Figure 15: Definitions of Domains, modified Figure 11

These assemblies are referred to as domains in the following. In the figure above, the domains
are marked with red boxes.
Each box corresponds to an instance of the respective domain class in the final software.

Five domain types are defined:

• Solutions Storage Domain

• Mixing Loop Domain

• Bulk Tank Domain

• FEG Domain

• Fresh Water Domain

To support easy hardware replacement and modification, an abstraction layer is introduced at
this level.
For each domain, a domain controller is implemented. These are pure virtual classes that define
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an interface to be implemented by concrete subclasses.
An example is shown in Figure 16 for the solution storage domain controller. The base class
defines all required control methods and relevant data types.

Figure 16:  UML class diagram of SolutionStorageDomainController with inheritance

The child classes implement the hardware-specific functionality in addition to the inherited control
methods.
This inheritance-based structure ensures a clean separation of concerns: hardware-specific
behavior is encapsulated in the subclasses and is not exposed to higher-level control logic.

Because these specific domain controllers are a limited resources some kind of access control
has to be implemented to avoid race conditions.

A runtime polymorphism approach was chosen due to its simplicity. Although a design based on
static polymorphism was briefly considered - and would have offered potentially better execution
performance[21] and alignment with DLR internal guidelines for reducing dynamic operations in
flight software - it was ultimately not pursued.

The decision in favor of runtime polymorphism was based on the following considerations:

• The software is intended for terrestrial applications, so strict flight software require-
ments do not fully apply.

• Existing code developed for EDEN luna already uses runtime polymorphism.

• It simplifies support for new hardware configurations through straightforward inher-
itance.

The UML class diagrams of the other domain controllers can be found in Section A.4.

6.2.2 Housekeeping class
The housekeeping class HK is responsible for creating telemetry packets.
It collects current sensor values and serializes them for transmission.
These sensor values are accessed through domain controller references, which are passed
initially to the constructor (see Listing 1).
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Hk(uint8_t threadPriority,
     size_t stackSize,
     SolutionStorageDomainController& solutionStorageDc,
     MixingLoopDomainController& mixingLoop1Dc,
     MixingLoopDomainController& mixingLoop2Dc,
     BulkTankDomainController& bulkSolution1Dc,
     BulkTankDomainController& bulkSolution2Dc,
     FegDomainController& leftFegDc,
     FegDomainController& rightFegDc,
     FreshWaterDomainController& FreshWaterDc);

Listing 1: Hk constructor

Since housekeeping data must be provided at regular intervals, this class inherits from
outpost::rtos_utils::PeriodicThread.
This thread type requires implementation of the pure virtual method step(), which is called at fixed
intervals.
A period of 1 second was chosen, balancing the critical nature of the data and the slow response
time of some sensors, such as those measuring water temperature.
The step() method gathers all telemetry data and sends the serialized output to the download
channel.

Additionally, Hk implements several protected helper methods(see Listing 2) to modularize the
logic within step().
This structure simplifies unit testing of step() since the helper methods can be tested separately.

  void
  Hk::setNdsStockMixingPumpState(
      packets::nds::nds::NdsHousekeepingApplicationData& data) const
  {
      data.setNdsStockMixingPumpAState(mSolutionStorageDc.getTankMixingPumpState(
              packets::nds::EnumStockMixingPumpId::mixTankA));
      data.setNdsStockMixingPumpBState(mSolutionStorageDc.getTankMixingPumpState(
              packets::nds::EnumStockMixingPumpId::mixTankB));
      data.setNdsStockMixingPumpCState(mSolutionStorageDc.getTankMixingPumpState(
              packets::nds::EnumStockMixingPumpId::mixTankC));
      data.setNdsStockMixingPumpDState(mSolutionStorageDc.getTankMixingPumpState(
              packets::nds::EnumStockMixingPumpId::mixTankD));
  }

Listing 2: Hk helper function for Stock Mixing Pump States

The Hk class includes telemetry.h, which is generated by pando .
This header provides the telemetry data structure and type-safe setter functions (see Listing 2) to
ensure correct serialization.
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6.2.3 Control class
The control class is responsible for reacting to received telecommands.
It inherits from the pando-generated NDSFunctionManagement class, which defines handler methods
for all supported telecommands.
pando also provides a template .txt file as a base for implementing the required C++ header.

Since telecommands directly trigger actuator operations, the Control class receives references to
all domain controller instances via its constructor (see Listing 3).

  Control(outpost::time::Clock& clock,
          SolutionStorageDomainController& SolutionStorage,
          MixingLoopDomainController& MixingLoop1,
          MixingLoopDomainController& MixingLoop2,
          FreshWaterDomainController& FreshWater,
          BulkTankDomainController& BulkTank1,
          BulkTankDomainController& BulkTank2,
          FegDomainController& FegLeft,
          FegDomainController& FegRight,
          Hk& hk);

Listing 3: Control constructor

Although large parts of the header can be derived from the template, the reaction logic must be
implemented manually in the .cpp file.
Listing 4 shows an example. The method reads the command parameters and returns an appro-
priate verification status.

outpost::pus::FunctionVerification
Control::commandNdsTurnOnStockMixingPump(
                              outpost::pus::TelecommandIdentification, 
                              NdsTurnOnStockMixingPumpPacketReader parameter)
  {
    if(mSolutionStorage.turnOnTankMixingPump(parameter.getNdsStockMixingPumpId())
            == EnumDeviceState::on)
    {
        return outpost::pus::FunctionVerification::success();
    }
    else
    {
        return outpost::pus::FunctionVerification::failure();
    }
  }

Listing 4: Definition of Control::commandNdsTurnOnStockMixingPump

For each telecommand defined in the TMTC model, one handler is generated and a corresponding
response is implemented.
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In addition, the Control class inherits from outpost::pus::Application.
This ensures correct handling of telemetry and telecommand packets in accordance with the PUS
architecture.
This structure mirrors the design used in the current EDEN Lab implementation.

6.2.4 State machine classes
The state machine classes are responsible for the actual control flow of the subsystem.
In total four different types of state machine are implemented. See Section 6.3 for detailed infor-
mations on those types.

Regardless the type of state machine they are all based on the
outpost::rtos_utils::LoopingThread class. The class defines a continuous looping thread
similar to the aforementioned PeriodicThread but without a fixed period of dormancy
between calling the step() method. Never the less, to free up system resources a
outpost::rtos::Thread::sleep(outpost::time::Milliseconds(500)) is called at the end of each
state machine step() method. This is in the current implementation functional very similar to the
behavior of PeriodicThread but could easily modified to facilitate a settable dormancy for the
Thread.

Additionally, each state machine class provides methods to start or stop its thread by means of a
outpost::rtos::BinarySemaphore (see below).

  inline void
  startFsm()
  {
      mSemaphore.release();
  }

  inline void
  stopFsm()
  {
      mSemaphore.acquire();
  }

Listing 5: Use of Semaphores for thread halting and releasing

A handy feature given the fact that the whole system may have to hibernate for prolonged time.

All classes heavily rely on the outpost::time::Timeout class for multiple types of time-triggered
events.

Said this, all implemented state machine constructors need following arguments to be passed:

• uint8_t threadPriority and size_t stackSize for Thread constructor
• outpost::time::Clock& clock for use in Timout constructor
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6.3 FSM Design
As mentioned in Section 6.2.4 a detailed description of each state machine type will be given in
this section.

6.3.1 SstStateMachine
This state machine is responsible for the solution storage.
It is the simplest of all Final state machines (FSMs) . It only has to provide means to mix the
stock solutions and replenishing the Combined Regenerative Organic food Production (C.R.O.P.)
solution storage.
Since this FSM only needs access to sensors and actuators of the solution storage domain a
SolutionStorageDomainController reference is passed in addition to the obligatory ones.

Triggered by a timer the mixing pumps of the stock tanks will be turned for a specified duration.
Both timer durations are settable.

Refilling the C.R.O.P. storage is triggered by the installed level switch.

6.3.2 ConditioningStateMachine
Following the simplest FSM is the most complex. The ConditioningStateMachine is designed to
handle everything regarding the production and monitoring of the nutrient solution. This FSM
differs from the others by getting two different domain controller passed. To perform properly it
requires both a BulkTankDomainController and MixingLoopDomainController reference.

To be able to receive new water, this FSM is provided with a way of requesting the
transferingAndFilling state from the FreshWaterStateMachine.

6.3.3 FegStateMachine
The FegStateMachine class controls one of the two FEG sides.
Role of the FSM is to spray the plants regularly for a defined duration and make sure to empty the
system sump.
It gets passed a FegDomainController reference of its corresponding side, in addition to references
to both BulkTankDomainController.

Transitioning to and from the spraying state are triggered by timers. Pumping of the sump on the
other hand only occurs when either the top or max level switch is triggered.

This class can request the pressurizing state from a ConditioningStateMachine.

6.3.4 FreshWaterStateMachine
The last type of FSM is responsible for fresh water management.
It is tasked with monitoring the already stored water and refilling the buffer tank. Simultaneous, it
pretreats the water during filling.
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This FSM only relies on its corresponding FreshWaterDomainController, which it gets passed as
reference.

7 Software testing
To ensure the correct functionality of the developed software, a combination of unit testing and
coverage analysis was employed.
This section briefly introduces the tools used and summarizes the testing efforts conducted during
this thesis.

7.1 Unit testing
Unit testing is an established method for verifying the correctness of individual code components
and is commonly used during software development.

As part of this thesis, googletest (gtest) was used to perform unit tests. gtest is an open-source
testing framework for C++, developed by Google.
It is actively used within AVS to ensure code quality.

In addition to standard testing functionality, the framework also supports class mocking through
gMock. This allows complex dependencies—such as hardware interfaces—to be replaced with
simplified mock objects, enabling isolated and hardware-independent testing.

This approach was essential in this thesis, as the domain controllers were designed as pure
virtual classes and no physical hardware was available during development. Mock classes were
therefore used to simulate subsystem behavior.
An example of such a mock implementation can be found in Section A.5 in the appendix.

The primary goal of unit testing was to verify the correctness of control logic and state transitions
under defined input conditions.
This includes verifying expected actuator behavior, proper reaction to domain-specific triggers.

7.2 Coverage testing
Coverage testing is another valuable technique for assessing software quality during develop-
ment. In this context, it was used as a supplement to unit testing.

Coverage analysis provides insight into how much of the code base is executed during testing.
A distinction is made between line coverage, which tracks whether specific lines of code are
executed, and decision coverage, which considers whether conditional branches are evaluated
in both directions.
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Within this thesis, coverage testing was primarily applied to evaluate the control logic implemented
in the FSMs .
The tool used for this purpose was gcovr.

7.3 Testing summary
Testing was originally intended to focus on the custom control algorithms, with the goal of evalu-
ating their functional correctness and robustness. However, due to time constraints, testing could
only be conducted to a limited extent.

Figure 17: Coverage result

As shown in Figure 17, only a small portion of the total code base was executed during testing.
In particular, no boundary tests or negative tests were performed, such as invalid command
sequences or simultaneous state requests.
As a result, potential edge-case behaviors may remain undetected.

Given the limited scope of testing, no conclusive statements can be made regarding the overall
robustness or readiness of the software.
The current test setup is not sufficient for validating the system under realistic or fault-prone
conditions.

Because of this limited testing no answer can be given in regards of code usability. More testing
is needed.

8 Conclusion
This section summarizes the work presented in this thesis, evaluates the current development
status, and outlines the improvements required for future implementation and use.
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8.1 Evaluation
The goal of this thesis was to design and implement a modular and adaptable control software
system for the EDEN LUNA NDS .
While significant progress was made in terms of architectural structure and conceptual design,
the implementation cannot be considered deployable in its current form.
The following evaluation is based on the objectives outlined in Section 1.1.

Control software

The implemented classes cover the essential functionalities required for nutrient delivery and
system actuation. However, due to the very limited extent of functional testing, no reliable conclu-
sions can be drawn regarding the correctness or robustness of the system. The developed code
therefore represents a sound concept, but not a flight- or field-ready implementation.

Modularity

The software architecture was successfully designed with modularity in mind.
The use of pure virtual domain controller classes and the ability to mock them during unit testing
demonstrates a clear separation of concerns and high replaceability of hardware interfaces.
This flexibility will be essential for adapting the software to evolving hardware configurations.

Hardware concept

A basic hardware interface concept was established, including the selection of brainboxes remote
I/O modules and the creation of a preliminary signal map (Section A.3). Domain controller classes
specifically adapted to the hardware were not created, which would have been a valuable resource
for future system integration.

Industrial solutions

Commercial fertigation systems were researched and compared.
The thesis provides an overview of operating principles and product specifications, and clearly
justifies the decision to develop a customized NDS solution. While this section remains high-level,
it effectively supports the in-house development decision.

Use of existing frameworks (OUTPOST / pando)

The decision to base the software on OUTPOST and pando allowed for close integration with
existing software.
Standardized TMTC generation and scheduling features were successfully used.
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8.2 Improvements
To develop the current concept into a functional, mission-capable control software, the following
key improvements are required:

1. Comprehensive unit testing and increasing code coverage

2. Improve control algorithms for nutrient solution conditioning

3. Amend TMTC model. Multiple settable variables are currently not reachable with
telecommands

4. Error handling and diagnostics

8.3 Final remark
Despite its limitations, this thesis provides a structured and expandable foundation for a modular
control software architecture.
With targeted improvements, the presented concept can evolve into a solution for use in EDEN
LUNA and related terrestrial or space-based applications.

In summary, this thesis contributes a well-structured and clearly reasoned software concept for
the control of a nutrient delivery subsystem in a highly constrained and modular environment.
While it does not yet meet the requirements of a deployable control system, the architecture,
documentation, and implementation choices provide a foundation for further development.
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A Appendix

A.1 Glossary
Aeroponics: Method of cultivating plants without the use of soil. The plant roots are sprayed

regularly with a nutrient solution instead.

Fertigation: Fertigation is the process of applying mineral fertilizers to crops along with the
irrigation water.
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A.2 Sensor Actuator List

Figure 18: Sensor/Actuator List
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Figure 19: Figure 18 (continued)
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Figure 20: Figure 19 (continued)
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A.3 Signal brainbox map

Figure 21: brainbox Signal List
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Figure 22: Figure 21 (continued)
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Figure 23: Figure 22 (continued)
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A.4 Domain Controller class diagrams

Figure 24: Remaining domain controller class diagrams
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A.5 Mock class example
class MockSolutionsStorageDc : public eden::nds::SolutionStorageDomainController
{
private:
    /* data */
public:
    // MockSolutionsStorageDc(/* args */);
    // ~MockSolutionsStorageDc();

    MOCK_METHOD(bool, turnOffAllDevices, (), (override));

    MOCK_METHOD(packets::nds::EnumDeviceState,
                turnOnTankMixingPump,
                (packets::nds::EnumStockMixingPumpId pumpId),
                (override));
    MOCK_METHOD(packets::nds::EnumDeviceState,
                turnOffTankMixingPump,
                (packets::nds::EnumStockMixingPumpId pumpId),
                (override));
    MOCK_METHOD(packets::nds::EnumDeviceState,
                getTankMixingPumpState,
                (packets::nds::EnumStockMixingPumpId pumpId),
                (override));

    MOCK_METHOD(packets::nds::EnumDeviceState, turnOnCropReplenishingPump, (), 
                  (override));
    MOCK_METHOD(packets::nds::EnumDeviceState, turnOffCropReplenishingPump, (),
                  (override));
    MOCK_METHOD(packets::nds::EnumDeviceState, getCropReplenishingPumpStatus, (),
                  (override));

    MOCK_METHOD(uint8_t, getSolutionLevel, (LevelSwitchID levelSwitchId), (override));
};

Listing 6: Mock of SolutionStorageDomainControll
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