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to Carlo and Melissa

"Design must reflect the practical and aesthetic in business,
but above all . . . good design must primarily serve people."

- Thomas J. Watson

"We are drowning in information, while starving for wisdom.
The world henceforth will be run by synthesizers, people able
to put together the right information at the right time, think

critically about it, and make important choices wisely."

- Edward O. Wilson
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SUMMARY

Designing complex systems that are increasingly subject to sustainability, economic, and
safety constraints requires the integration of disruptive technologies, while considering
the entire system life-cycle and weighting conflicting stakeholder needs. The system
architecture describes what functions the system performs in order to meet the design
goals, and how the components of the system collaborate to fulfill these functions.
Architectural choices are taken early in the systems engineering process, and greatly
influence to which extent design goals are achieved by the system.

Due to the combinatorial nature of architectural choices, the architecture design
space, which represents the set of all possible architectures for a given design problem,
can be extremely large. Additionally, integrating innovative technologies requires
the application of multidisciplinary, simulation-based evaluation, due to a lack of
historical data to base decisions on. These two challenges drive the need for a design
methodology that allows exploring the architecture design space without the need to
evaluate all possible architectures, as that would be infeasible.

System Architecture Optimization (SAO) does just that: it combines numerical
optimization algorithms for automatically searching the architecture design space
(the "architecture generator") with multidisciplinary, simulation-based evaluation of
architecture candidates (the "architecture evaluator").

The architecture generator consists of two elements:

• A way for the system architect to model the architecture design space and formu-
late the optimization problem.

The architecture design space model should be able to represent function de-
composition, function-to-component allocation, function and component char-
acterization and specialization, as well as component connection choices. Once
the architecture optimization problem has been defined, it should then be au-
tomatically encoded into a formalized numerical optimization problem, and the
generated design vectors should be decoded into architecture instances.

Currently, no combination of modeling language and encoding and decoding algo-
rithms exists that supports all of the above.

• Optimization algorithms that can solve the formulated optimization problem.

SAO problems are challenging, because in general they feature mixed-discrete
design variables, design variable hierarchy, black-box and expensive evaluation
functions, multiple conflicting objectives, design constraints, and hidden con-
straints. Design variable hierarchy comes from activation relationships (variables
determining whether other variables are active) and from value constraints (vari-
ables restricting the available options of other variables). Evolutionary algorithms

ix



x SUMMARY

and Bayesian optimization algorithms are global optimization algorithms with
the potential to solve such problems.

However, existing sampling algorithms1 do not explicitly consider the hierarchical
nature of the design space, thereby potentially over- or under-sampling certain re-
gions in the design space. Additionally, it is not clear how the correction algorithm2

influences optimization performance. Finally, Bayesian optimization algorithms
have not been demonstrated for the combination of all SAO problem challenges.

The architecture evaluator calculates the performance of a given architecture instance.
The multidisciplinary nature of systems engineering and the need for simulation-
based evaluation calls for the application of Multidisciplinary Design Analysis and
Optimization (MDAO). Collaborative MDAO extends this by supporting the coupling of
diverse analysis tools that are developed, managed, and executed by distributed teams
and/or organizations in large systems engineering project.

Currently, however, collaborative MDAO workflows are static whereas their behavior
should be flexible in order to be able to process all generated architecture instances. Ad-
ditionally, all relevant architecture information should be communicated to the MDAO
workflow, not only numerical parameter values as is currently done. Finally, the architec-
ture generator should be integrated in the same computational environment as where the
MDAO workflow is executed.

This work contributes towards the practical application of SAO by addressing the
science gaps presented above.

OPTIMIZATION ALGORITHMS FOR SAO
In the first part, efficient global optimization algorithms for SAO are made available by:

• developing a hierarchical sampling algorithm that prevents over- or under-
sampling regions in the hierarchical design space;

• showing that problem-specific correction is sufficient: problem-agnostic correc-
tion algorithms do not significantly improve optimization performance;

• integrating information about the hierarchical design space into the optimization
algorithms, to support generating valid design vectors and to leverage activeness
information for sampling and surrogate model creation (for Bayesian optimiza-
tion); and

• developing a strategy for handling hidden constraints (due to simulation failures)
for Bayesian optimization by predicting the Probability of Viability of selected
infill points.

Above developments are demonstrated using three benchmark problems and a jet
engine architecture optimization problem featuring hidden constraints. It is shown that
Bayesian optimization can solve SAO problems with up to 92% less function evaluations
compared to evolutionary algorithms. In practice this means that optimization results

1A sampling algorithm generates the initial set of architectures to initialize global optimization algorithms.
2A correction algorithm ensures that value constraints are satisfied.
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are available sooner, or that a larger design space can be explored within the same time.
Optimization algorithms and test problems are available open-source3.

MODELING SAO PROBLEMS

In the second part, a methodology for modeling SAO problems is developed, consisting
of:

• the Design Space Graph (DSG) for modeling hierarchical selection and connection
choices, for automatically encoding these choices into design variables, and for
automatically decoding design vectors into graph instances;

• the Architecture Design Space Graph (ADSG), extending the DSG with node types
and rules specific to system architecting, such as functions, components, and
ports; and

• ADORE, providing a web-based graphical user interface for creating and inspect-
ing the ADSG, and providing various interfaces for connecting to evaluation code
and optimization algorithms.

The DSG is available open-source4.
A bottom-up function-based process is defined to support engineers in applying

ADORE for modeling SAO problems. It is shown that this process results in a more
natural approach compared to existing top-down processes. The methodology is
demonstrated by a hybrid-electric propulsion SAO problem. An additional investigation
using three test problems shows that optimization problems defined and encoded by
ADORE perform as well as or better than manually-formulated optimization problems.

COLLABORATIVE MDAO FOR SAO
In the third part, collaborative MDAO is extended for use in SAO problems:

• The behavior of the collaborative MDAO workflow is dynamically modified during
runtime to be appropriate for a given architecture instance, such as by modifying
data connections between tools, modifying the number of repeated executions of
tools, or by dynamically including or excluding tools.

• Architecture data is propagated from ADORE to the central data schema5 of the
MDAO workflow using a rule-based translation mechanism.

• ADORE is integrated in the computational environment where the collaborative
MDAO workflow is executed by applying a modified ask-tell pattern.

Collaborative MDAO for SAO is demonstrated by the design of a multi-stage rocket.

3SBArchOpt: https://sbarchopt.readthedocs.io/
4ADSG-Core: https://adsg-core.readthedocs.io/
5A central data schema defines the common language for data exchange between disciplinary analysis tools in

an MDAO problem.

https://sbarchopt.readthedocs.io/
https://adsg-core.readthedocs.io/
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To summarize, by combining

• efficient global optimization algorithms that are modified for application to SAO
problems, resulting in a 92% reduction in function evaluations compared to
existing algorithms,

• a function-based methodology for modeling architectural design spaces, sup-
porting engineers in formulating SAO problems without requiring expertise in
numerical optimization, and

• collaborative MDAO extended to be used for evaluating architecture instances,
enabling the application of SAO in large cross-organizational systems engineer-
ing projects,

engineers can use SAO to automatically explore large architectural design spaces for
finding the best architecture instance for their design problem.
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Het ontwerpen van complexe systemen die in toenemende mate onderhevig zijn aan
voorwaarden op het gebied van duurzaamheid, economie en veiligheid vraagt om de
integratie van innovatieve technologieën. Hierbij moet rekening worden gehouden met
de gehele levenscyclus van het systeem en de tegenstrijdige doelen van belanghebben-
den. De systeemarchitectuur beschrijft welke functies het systeem uitvoert om aan de
ontwerpdoelen te voldoen en hoe de componenten van het systeem samenwerken om
deze functies te vervullen. De keuzes voor de architectuur worden vroeg in het systeem-
ontwerpproces gemaakt en hebben grote invloed op de mate waarin de ontwerpdoelen
door het systeem worden bereikt.

Door de combinatorische aard van architecturale keuzes kan de architectuuront-
werpruimte, die de verzameling van alle mogelijke architecturen voor een bepaald
ontwerpprobleem vertegenwoordigt, extreem groot zijn. Bovendien vereist de integratie
van innovatieve technologieën de toepassing van multidisciplinaire, op simulatie geba-
seerde evaluatie, vanwege een gebrek aan historische gegevens om beslissingen op te
baseren. Deze twee uitdagingen zorgen voor de behoefte aan een ontwerpmethodologie
die het mogelijk maakt om de architectuurontwerpruimte te verkennen zonder alle
mogelijke architecturen te evalueren, aangezien dat niet haalbaar is.

Systeemarchitectuuroptimalisatie (SAO) doet precies dat: het combineert numerieke
optimalisatiealgoritmes om automatisch de architectuurontwerpruimte te doorzoeken
(de “architectuurgenerator”) met multidisciplinaire, op simulatie gebaseerde evaluatie
van architectuurkandidaten (de “architectuurevaluator”).

De architectuurgenerator bestaat uit twee elementen:

• Een manier voor de systeemarchitect om de architectuurontwerpruimte te mo-
delleren en het optimalisatieprobleem te formuleren.

Het model van de architectuurontwerpruimte moet keuzes voor functiedecompo-
sitie, functietoewijzing aan componenten, de karakterisering en specialisatie van
functies en componenten, en verbindingen tussen componenten kunnen repre-
senteren. Zodra het architectuuroptimalisatieprobleem is gedefinieerd, moet het
automatisch kunnen worden gecodeerd als een geformaliseerd numeriek opti-
malisatieprobleem en moeten de gegenereerde ontwerpvectoren kunnen worden
gedecodeerd als architectuurinstanties.

Momenteel bestaat er geen combinatie van modelleertaal en coderings- en decode-
ringsalgoritmes die al het bovenstaande ondersteunt.

• Optimalisatiealgoritmes die het geformuleerde optimalisatieprobleem kunnen
oplossen.

SAO-problemen zijn uitdagend, omdat ze in het algemeen gekenmerkt worden
door gemengd-discrete ontwerpvariabelen, hiërarchie van ontwerpvariabelen,

xiii
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black-box en dure evaluatiefuncties, meerdere conflicterende doelfuncties, ont-
werpbeperkingen en verborgen beperkingen. De hiërarchie van ontwerpvariabe-
len komt voort uit activeringsrelaties (variabelen die bepalen of andere variabelen
actief zijn) en uit waardebeperkingen (variabelen die de beschikbare opties van
andere variabelen beperken). Evolutionaire algoritmes en Bayesiaanse optima-
lisatiealgoritmes zijn globale optimalisatiealgoritmes die dergelijke problemen
kunnen oplossen.

Huidige steekproefalgoritmes6 houden echter niet expliciet rekening met de hiërar-
chische aard van de ontwerpruimte, waardoor bepaalde gebieden in de ontwerp-
ruimte mogelijk over- of onderbemonsterd worden. Bovendien is het niet duidelijk
hoe het correctiealgoritme7 de optimalisatieprestaties beïnvloedt. Tot slot is Baye-
siaanse optimalisatie nog niet gedemonstreerd voor alle uitdagingen van SAO-pro-
blemen tegelijk.

De architectuurevaluator berekent hoe goed een gegeven architectuurinstantie pres-
teert. De multidisciplinaire aard van systeembouw en de behoefte aan evaluatie
gebaseerd op simulatie maakt het nodig Multidisciplinaire Ontwerpanalyse en Opti-
malisatie (MDAO) toe te passen. Collaboratieve MDAO voegt daar aan toe dat het
mogelijk wordt gemaakt om diverse analysemodellen aan elkaar te koppelen die worden
ontwikkeld, beheerd en uitgevoerd door verspreid werkende teams en/of organisaties
in grote systeembouwprojecten.

Momenteel zijn collaboratieve MDAO-processen echter statisch, terwijl hun gedrag
flexibel zou moeten zijn om alle gegenereerde architectuurinstanties te kunnen verwer-
ken. Bovendien moet alle relevante architectuurinformatie worden doorgegeven aan het
MDAO-proces, niet alleen numerieke parameterwaarden zoals nu het geval is. Tot slot
moet de architectuurgenerator in dezelfde rekenomgeving worden geïntegreerd als waar
het MDAO-proces wordt uitgevoerd.

Door de hierboven beschreven open punten in mijn onderzoek aan te pakken, komt
de toepassing van SAO in de praktijk dichterbij.

OPTIMALISATIEALGORITMES VOOR SAO
In het eerste deel worden efficiënte globale optimalisatiealgoritmes voor SAO toepas-
baar gemaakt door:

• een hiërarchisch steekproefalgoritme te ontwikkelen dat voorkomt dat sommige
gebieden in de ontwerpruimte over- of onderbemonsterd worden;

• aan te tonen dat probleemspecifieke correctie voldoende is: probleemagnostische
correctiealgoritmes verbeteren de optimalisatieprestaties niet significant;

• het integreren van informatie over de hiërarchische ontwerpruimte in de optima-
lisatiealgoritmes, om het genereren van geldige ontwerpvectoren te ondersteunen
en om informatie over activiteit te gebruiken voor het nemen van steekproeven
en het creëren van surrogaatmodellen (voor Bayesiaanse optimalisatie); en

6Een steekproefalgoritme genereert de initiële reeks architecturen om globale optimalisatiealgoritmes te initi-
aliseren.

7Een correctiealgoritme zorgt ervoor dat aan de waardebeperkingen wordt voldaan.
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• het ontwikkelen van een strategie voor het omgaan met verborgen beperkingen
(door simulatiefouten) voor Bayesiaanse optimalisatie door het voorspellen van
de waarschijnlijkheid dat geselecteerde invulpunten te simuleren zijn.

Bovengenoemde ontwikkelingen worden gedemonstreerd aan de hand van drie testpro-
blemen en de optimalisatie van een straalmotorarchitectuur met verborgen beperkin-
gen. Het wordt aangetoond dat het Bayesiaanse optimalisatiealgoritme SAO-problemen
kan oplossen met tot 92% minder functie-evaluaties in vergelijking met evolutionaire
algoritmes. In de praktijk betekent dit dat optimalisatieresultaten sneller beschik-
baar zijn, of dat een grotere ontwerpruimte binnen dezelfde tijd kan worden verkend.
Optimalisatiealgoritmes en testproblemen zijn open-source beschikbaar8.

MODELLERING VAN SAO-PROBLEMEN

In het tweede deel wordt een methodologie ontwikkeld voor het modelleren van SAO-
problemen, bestaande uit:

• de Ontwerpruimtegraaf voor het modelleren van hiërarchische selectie- en ver-
bindingskeuzes, voor het automatisch coderen van deze keuzes als ontwerpvaria-
belen, en voor het automatisch decoderen van ontwerpvectoren naar graafinstan-
ties;

• de Architectuurontwerpruimtegraaf voegt aan de Ontwerpruimtegraaf knoop-
types en regels toe die specifiek zijn voor systeemarchitectuur, zoals functies,
componenten en poorten; en

• ADORE, dat een webgebaseerde grafische gebruikersomgeving biedt voor het
creëren en inspecteren van de Architectuurontwerpruimtegraaf, en verschillende
interfaces biedt voor het verbinden met evaluatiecode en optimalisatiealgoritmes.

De Ontwerpruimtegraaf is open-source beschikbaar9.
Een bottom-up op functies gebaseerd proces wordt gedefinieerd om ingenieurs te

ondersteunen bij het gebruik van ADORE voor het modelleren van SAO-problemen. Het
wordt aangetoond dat dit proces resulteert in een natuurlijker aanpak in vergelijking
met bestaande top-down processen. De methodologie wordt gedemonstreerd aan de
hand van een SAO-probleem voor hybride-elektrische aandrijving. Een aanvullend
onderzoek met drie testproblemen toont aan dat optimalisatieproblemen die door
ADORE gedefinieerd en gecodeerd zijn, even goed of beter presteren dan handmatig
geformuleerde optimalisatieproblemen.

COLLABORATIEVE MDAO VOOR SAO
In het derde deel wordt collaboratieve MDAO uitgebreid voor het gebruik in SAO-pro-
blemen:

• Het gedrag van het collaboratieve MDAO-proces wordt tijdens runtime dynamisch
aangepast voor de gegeven architectuurinstantie, bijvoorbeeld door gegevensver-
bindingen tussen modellen te wijzigen, het aantal herhaalde uitvoeringen van
modellen te wijzigen, of door modellen dynamisch over te slaan.

8SBArchOpt: https://sbarchopt.readthedocs.io/
9ADSG-Core: https://adsg-core.readthedocs.io/

https://sbarchopt.readthedocs.io/
https://adsg-core.readthedocs.io/
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• Architectuurinformatie wordt van ADORE naar het centrale gegevensschema10

van het MDAO-proces overgedragen door middel van een op regels gebaseerd
vertaalmechanisme.

• ADORE wordt geïntegreerd in de rekenomgeving waar het collaboratieve MDAO-
proces wordt uitgevoerd door toepassing van een aangepast vraag-antwoord-
patroon.

Collaboratieve MDAO voor SAO wordt gedemonstreerd door het ontwerp van een meer-
trapsraket.

Samengevat, door het combineren van

• efficiënte globale optimalisatiealgoritmes die zijn aangepast voor toepassing op
SAO-problemen, resulterend in 92% minder functie-evaluaties vergeleken met
bestaande algoritmes,

• een op functies gebaseerde methodologie voor het modelleren van architectuur-
ontwerpruimtes, om ingenieurs te ondersteunen bij het formuleren van SAO-
problemen zonder dat ze expertise in numerieke optimalisatie nodig hebben,
en

• collaborative MDAO uitgebreid voor het evalueren van architectuurinstanties,
waardoor SAO kan worden toegepast in grote en verspreide systeembouwprojec-
ten,

kunnen ingenieurs SAO toepassen om automatisch grote architectuurontwerpruimtes
te verkennen om de beste architectuurinstantie voor hun ontwerpprobleem te vinden.

10Een centraal gegevensschema definieert hoe gegevens worden uitgewisseld tussen disciplinaire analysemo-
dellen in een MDAO-probleem.



ZUSAMMENFASSUNG

Die Entwicklung komplexer Systeme, die zunehmend Einschränkungen in Bezug auf
Nachhaltigkeit, Wirtschaftlichkeit und Sicherheit unterliegen, erfordert die Integrati-
on innovativer Technologien, die Berücksichtigung des gesamten Systemlebenszyklus
und den Ausgleich widersprüchlicher Ziele der Beteiligten. Die Systemarchitektur
beschreibt, welche Funktionen das System erfüllt, um die Entwurfsziele zu erreichen,
und wie die Komponenten des Systems zusammenarbeiten, um diese Funktionen zu
erfüllen. Architektonische Entscheidungen werden bereits in einem frühen Stadium des
Systementwurfs getroffen und haben großen Einfluss darauf, inwieweit die Entwurfs-
ziele durch das System erreicht werden.

Aufgrund der kombinatorischen Natur architektonischer Entscheidungen, kann der
Architekturentwurfsraum, die Sammlung aller möglichen Architekturen für ein be-
stimmtes Entwurfsproblem, extrem groß sein. Darüber hinaus erfordert die Integration
innovativer Technologien die Anwendung multidisziplinärer simulationsbasierter Be-
wertungen, da es an historischen Daten mangelt, die als Grundlage für Entscheidungen
dienen können. Diese beiden Herausforderungen führen dazu, dass eine Entwurfs-
methodik benötigt wird, die es ermöglicht, den Architekturentwurfsraum zu erkunden,
ohne alle möglichen Architekturen bewerten zu müssen.

Die Systemarchitekturoptimierung (SAO) tut genau das: Sie kombiniert numeri-
sche Optimierungsalgorithmen zur automatischen Durchsuchung des Architekturent-
wurfsraums (“Architekturgenerator”) mit einer multidisziplinären, simulationsbasierten
Bewertung von Architekturkandidaten (“Architekturbewerter”).

Der Architekturgenerator besteht aus zwei Elementen:

• Eine Möglichkeit für den Systemarchitekten, den Architekturentwurfsraum zu
modellieren und das Optimierungsproblem zu formulieren.

Das Modell des Architekturentwurfsraums sollte in der Lage sein, Entscheidungen
für die Funktionszerlegung, die Zuordnung von Funktionen zu Komponenten,
die Charakterisierung und Spezialisierung von Funktionen sowie Komponen-
ten, und die Verbindungen zwischen Komponenten darzustellen. Sobald das
Optimierungsproblem der Architektur definiert ist, sollte es automatisch in ein
Optimierungsproblem codiert und die generierten Entwurfsvektoren in Architek-
turinstanzen decodiert werden können.

Derzeit gibt es keine Kombination aus Modellierungssprache und Kodierungs- und
Dekodierungsalgorithmen, die alle oben genannten Herausforderungen adressiert.

• Optimierungsalgorithmen, die das Optimierungsproblem lösen können.

SAO-Probleme sind anspruchsvoll, da sie im Allgemeinen gekennzeichnet sind
durch gemischt-diskrete Entwurfsvariablen, eine Hierarchie von Entwurfsvaria-
blen, Blackbox- sowie aufwendige Bewertungsfunktionen, mehrere widersprüch-
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liche Zielfunktionen, Entwurfsnebenbedingungen und verborgene Nebenbedin-
gungen. Die Hierarchie der Entwurfsvariablen ergibt sich aus Aktivierungsbe-
ziehungen (Variablen, die bestimmen, ob andere Variablen aktiv sind) und aus
Wertbedingungen (Variablen, welche die verfügbaren Optionen anderer Variablen
begrenzen). Evolutionäre Algorithmen und Bayes’sche Optimierungsalgorithmen
sind globale Optimierungsalgorithmen, die solche Probleme lösen können.

Bestehende Abtastalgorithmen11 berücksichtigen jedoch nicht explizit die hierar-
chische Natur des Entwurfsraums, sodass es zu einer Über- oder Unterabtastung be-
stimmter Regionen im Entwurfsraum kommen kann. Außerdem ist nicht klar, wie
sich der Korrekturalgorithmus12 auf die Optimierungsleistung auswirkt. Schließ-
lich wurde die Bayes’sche Optimierung noch nicht für alle Herausforderungen von
SAO-Problemen gleichzeitig demonstriert.

Der Architekturbewerter berechnet die Leistung einer gegebenen Architekturinstanz.
Der multidisziplinäre Charakter des Systementwurfs und die Notwendigkeit einer simu-
lationsbasierten Bewertung erfordern die Anwendung der Multidisziplinären Entwurfs-
analyse und -Optimierung (MDAO). Die kollaborative MDAO erweitert diesen Ansatz,
indem sie es ermöglicht, verschiedene Analysemodelle zu verknüpfen, die von verteil-
ten Teams und/oder Organisationen in großen Systementwurfsprojekten entwickelt,
verwaltet und ausgeführt werden.

Derzeit sind die kollaborativen MDAO-Prozesse statisch. Ihr Verhalten sollte jedoch
flexibel sein, um alle generierten Architekturinstanzen zu berücksichtigen. Außerdem soll-
ten alle relevanten Architekturinformationen an den MDAO-Prozess weitergegeben wer-
den und nicht nur numerische Parameterwerte, wie es heute der Fall ist. Schließlich
sollte der Architekturgenerator in dieselbe Rechenumgebung integriert werden, in der der
MDAO-Prozess ausgeführt wird.

Diese Arbeit trägt zur praktischen Anwendung von SAO bei, indem sie die oben
genannten wissenschaftlichen Lücken schließt.

OPTIMIERUNGSALGORITHMEN FÜR SAO
Im ersten Teil wurden effiziente globale Optimierungsalgorithmen für SAO über fol-
gende Schritte anwendbar gemacht:

• die Entwicklung eines hierarchischen Abtastalgorithmus, der ein Über- oder eine
Unterabtastung einiger Regionen im Entwurfsraum vermeidet;

• zeigen, dass eine problemspezifische Korrektur genügt: Problemagnostische
Korrekturalgorithmen verbessern die Optimierungsleistung nicht wesentlich;

• die Integration von Informationen über den hierarchischen Entwurfsraum in
die Optimierungsalgorithmen, um die Generierung gültiger Entwurfsvektoren zu
unterstützen und Informationen über die Aktivität für die Abtastung und die
Erstellung von Ersatzmodellen (für die Bayes’sche Optimierung) zu nutzen; und

11Ein Abtastalgorithmus generiert den Anfangssatz von Architekturen, um globale Optimierungsalgorithmen
zu initialisieren.

12Ein Korrekturalgorithmus stellt sicher, dass die Wertbedingungen eingehalten werden.
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• die Entwicklung einer Strategie für den Umgang mit verborgenen Nebenbedin-
gungen (aufgrund von Simulationsmiserfolgen) für die Bayes’sche Optimierung
durch die Vorhersage der Wahrscheinlichkeit, dass ausgewählte Einfügepunkte
simulierbar sind.

Die Entwicklungen wurden anhand von drei Testproblemen und der Optimierung
einer Triebwerksarchitektur mit verborgenen Nebenbedingungen demonstriert. Es hat
sich gezeigt, dass der Bayes’sche Optimierungsalgorithmus SAO-Probleme mit bis zu
92% weniger Funktionsauswertungen im Vergleich zu evolutionären Algorithmen lösen
kann. In der Praxis bedeutet dies, dass Optimierungsergebnisse früher zur Verfügung
stehen oder dass ein größerer Entwurfsraum in derselben Zeit erkundet werden kann.
Die Optimierungsalgorithmen und Testprobleme sind open-source verfügbar13.

MODELLIERUNG VON SAO-PROBLEMEN

Im zweiten Teil wurde eine Methodik zur Modellierung von SAO-Problemen entwickelt,
die aus folgenden Elementen besteht:

• der Entwurfsraumgraph für die Modellierung hierarchischer Auswahl- und Ver-
bindungsentscheidungen, für die automatische Kodierung dieser Entscheidungen
als Entwurfsvariablen und für die automatische Dekodierung von Entwurfsvekto-
ren zu Graphinstanzen;

• der Architekturentwurfsraumgraph, welcher den Entwurfsraumgraph um Kno-
tentypen und Regeln erweitert, die für die Systemarchitektur spezifisch sind, wie
z.B. Funktionen, Komponenten und Ports; und

• ADORE, eine webbasierte grafische Benutzeroberfläche für die Erstellung und Un-
tersuchung des Architekturentwurfsraumgraphens, sowie verschiedene Schnitt-
stellen zur Anbindung von Bewertungscode und Optimierungsalgorithmen.

Der Entwurfsraumgraph ist open-source verfügbar14.
Es wurde ein funktionsbasierter Bottom-up-Prozess definiert, der Ingenieure bei

der Anwendung von ADORE zur Modellierung von SAO-Problemen unterstützt. Es
wurde gezeigt, dass dieser Prozess im Vergleich zu bestehenden Top-down-Prozessen
zu einem natürlicheren Ansatz führt. Die Methodik wurde anhand eines SAO-Problems
für hybrid-elektrische Antriebe demonstriert. Eine zusätzliche Studie mit drei Testpro-
blemen zeigt, dass von ADORE definierte und kodierte Optimierungsprobleme genauso
gut oder besser abschneiden als manuell formulierte Optimierungsprobleme.

KOLLABORATIVE MDAO FÜR SAO
Im dritten Teil wurde die kollaborative MDAO für den Einsatz bei SAO-Problemen
erweitert:

• Das Verhalten des kollaborativen MDAO-Prozesses wird während der Laufzeit
für die gegebene Architekturinstanz dynamisch angepasst, z.B. durch die Än-
derung der Datenverbindungen zwischen Modellen, die Änderung der Anzahl

13SBArchOpt: https://sbarchopt.readthedocs.io/
14ADSG-Core: https://adsg-core.readthedocs.io/

https://sbarchopt.readthedocs.io/
https://adsg-core.readthedocs.io/
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sich wiederholender Ausführungen von Modellen oder durch das dynamische
Überspringen von Modellen.

• Die Architekturinformationen werden mit Hilfe eines regelbasierten Überset-
zungsmechanismus von ADORE in das zentrale Datenschema15 des MDAO-
Prozesses übertragen.

• ADORE wird in die Rechenumgebung integriert, in welcher der kollaborative
MDAO-Prozess ausgeführt wird, indem ein modifiziertes Frage-Antwort-Muster
angewendet wird.

Die kollaborative MDAO für SAO wird durch den Entwurf einer mehrstufigen Rakete
demonstriert.

Zusammengefasst lässt sich sagen, dass Ingenieure durch die Kombination von

• effiziente globale Optimierungsalgorithmen, die für die Anwendung auf SAO-
Probleme angepasst sind, was zu 92% weniger Funktionsauswertungen im Ver-
gleich zu bestehenden Algorithmen führt,

• eine funktionsbasierte Methodik zur Modellierung von Architekturentwurfs-
räumen, zur Unterstützung von Ingenieuren bei der Formulierung von SAO-
Problemen, ohne dass Fachkenntnisse in numerischer Optimierung erforder-
lich sind, und

• kollaborative MDAO erweitert für die Bewertung von Architekturinstanzen, so
dass SAO in großen und verteilten Systementwurfsprojekten angewendet wer-
den kann,

SAO anwenden können, um automatisch große Architekturentwurfsräume zu erkunden
und die beste Architekturinstanz für ihr Entwurfsproblem zu finden.

15Ein zentrales Datenschema definiert, wie Daten zwischen disziplinären Analysemodellen in einem MDAO-
Problem ausgetauscht werden.
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S YSTEMS developed in the future will be subject to more stringent requirements, such
as sustainability [31], economic [32], and safety [33] requirements, and will operate

in environments characterized by high uncertainty [34]. To meet these requirements,
there is a need to integrate disruptive technologies [35, 36], while considering the entire
system life-cycle [37, 38] and weighting conflicting stakeholder interests [39]. Take for
example the development of aircraft propulsion systems:

• Thrust can be generated by propellers, turbofans, open rotors, or combinations of
these [37, 40].

• Propulsion units can be integrated at different locations on the aircraft, and can
be installed in different amounts (e.g. distributed electric propulsion architec-
tures [40]).

• Mechanical power can be generated by turbines (either burning conventional
fuels or novel fuels such as hydrogen), by electric motors (supplied by batteries,
turbines, fuel cells, or a combination), or hybrid-electric architectures [33, 40].

This chapter is based on [1, 4–6, 8].
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• Energy can be stored in conventional fuels, in sustainable fuels such as hydrogen
(see Figure 1.1), in batteries, or again a combination [33, 40, 41].

• Connections from energy storage, to energy distribution, to energy consumption
components can be established in various ways, all representing different trade-
offs (e.g. reliability vs. weight [42]).

• Conventional fuels, hydrogen, and electricity can be sustainably produced from
different sources [43, 44], and using various chemical processes [41, 45].

(a) Direct hydrogen combustion (top) and fuel cell (bottom)
propulsion architectures.

(b) Comparison of various hydrogen tank (shown in red) lo-
cations in the aircraft.

Figure 1.1: Hydrogen propulsion and tank integration architectures. Figure adapted from [33].

The selection of components or technologies to include in a system, and how these
collaborate to achieve the system goals is described by the system architecture [39]. The
number of components, their specializations, and connections between components
are also part of the system architecture description [39].

The set of all possible architectures for a given design problem is referred to as
the architecture design space, which is combinatorial in nature and can be extremely
large, making an exhaustive assessment and comparison of all possible architectures
infeasible [46, 47]. Additionally, due to the push for more innovative technologies for
which historical data are lacking, there is a need to apply multidisciplinary, simulation-
based evaluation earlier in the design phase [48]. Architectural choices need to be
considered holistically, because in general, combinations of choices affect the system
and its (conflicting) performance metrics in non-trivial and non-linear ways [47, 49].
These challenges drive the need for a methodology that allows considering different
architectures in the early design phase without the need to consider all architectures, as
that would be infeasible.
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This research work explores the application of System Architecture Optimization
(SAO) to address these challenges. SAO formulates the architecting process as a nu-
merical optimization problem, where an optimization algorithm automatically searches
the design space to find the optimal architecture(s) for the design problem at hand.
Applying SAO therefore requires:

• the architect to be able to specify the SAO problem;

• the application of multidisciplinary, simulation-based evaluation; and

• optimization algorithms that can solve SAO problems.

The following sections start by introducing the context in which this research was
performed in Section 1.1. Then, Section 1.2 places SAO in the wider systems engineering
context to show where the system architecture plays a role. System architecture and how
it is defined is treated in more details in Section 1.3, and Section 1.4 discusses the need
for quantitative performance evaluation in the design process. From there, Section 1.5
introduces SAO in more details, and identifies the science gaps addressed by this work.
The research questions and objectives are finally presented in Section 1.6.

1.1. RESEARCH CONTEXT
The development of the SAO methodologies and tools presented in this work was
partially done in two EU-funded international research projects: AGILE 4.0 (Towards
Cyber-Physical Collaborative Aircraft Development) and COLOSSUS (Collaborative Sys-
tem of Systems Exploration of Aviation Products, Services & Business Models).

AGILE 4.01 [16] ran from 2019 to 2023, with a high-level objective to investigate new
methodologies and tools to accelerate the development process of complex aviation
systems, including their supporting production and certification systems. To do
so, existing collaborative Multidisciplinary Design Analysis and Optimization (MDAO)
capabilities were integrated with Model-Based Systems Engineering (MBSE). The system
architecture forms the bridge between the two, and was envisioned to be a driver of the
optimization process by enabling the automated generation and evaluation of system
architectures. This technical goal is what lead to the developments towards System
Architecture Optimization (SAO) as presented in this dissertation. In the AGILE 4.0
project, the first versions of the methodologies and tools were tested in seven application
cases (ranging from hybrid-electric propulsion to the design of manufacturing systems),
with varying levels of integration of SAO into the MDAO process.

The objective of COLOSSUS2 [50] (running from 2023 to 2026) is to develop System-
of-Systems (SoS) evaluation methodologies and tools, applied to sustainable urban
mobility and wildfire fighting application cases. SoS are a form of complex systems
characterized by the mutual interplay of several independently operated and evolving
systems, thereby increasing development and operational complexity. In the COLOSSUS
project, SAO is applied and further developed to support modeling and exploring SoS
architecture design spaces. Also, optimization algorithms for solving SAO problems are
further developed.
1https://www.agile4.eu/
2https://colossus-sos-project.eu/

https://www.agile4.eu/
https://colossus-sos-project.eu/
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1.2. (MODEL-BASED) SYSTEMS ENGINEERING
INCOSE and ISO 15288 define Systems Engineering (SE) as follows [34, 51]:

Systems Engineering is a transdisciplinary and integrative approach to
enable the successful realization, use, and retirement of engineered systems,
using systems principles and concepts, and scientific, technological, and
management methods.

with a system being a combination of elements that together provide functions (or
capabilities) that the individual elements do not [34, 38]. SE considers the system holis-
tically, ensuring that contributions of individual engineering disciplines are balanced, to
produce a consistent result not dominated by one domain over another [38]. The overall
goal of SE is to realize systems that accomplish their intended purposes, are resilient to
operational uncertainty, and minimize unintended consequences [34].

The SE process proceeds from the whole to the details, and structures the develop-
ment and implementation process according to various life-cycle phases [34, 47, 51].
First, the purpose of the system is determined by eliciting stakeholder needs. Needs
are formalized into system requirements, which form the basis for the definition of the
system architecture. The design process then proceeds with lower-level, more detailed
design phases, which are at later stages integrated together to realize the higher-level
system design. Detailed design and implementation also feature extensive verification
and validation against system requirements and stakeholder needs, to ensure the system
will fulfill its purpose. This process is commonly represented in the Vee-model [34],
shown in Figure 1.2.

Requirements Operation

Figure 1.2: The systems engineering Vee-model, showing the architecture definition process on the left side.
Figure adapted from [34].
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Traditionally, the systems engineering process has been implemented by capturing
information in non-semantic and unlinked documents: the document-based systems
engineering approach [34]. In contrast, Model-Based Systems Engineering (MBSE) aims
to improve the development process of complex systems by leveraging models in all life-
cycle phases, to enhance the ability to represent, analyze, share and manage information
about the system [34, 52]. MBSE revolves around the creation and management of a
descriptive system model, which includes data about the system context, requirements,
architecture, behavior, parameters, and verification activities. The model is machine
readable, which opens up the potential for increasing productivity by automation [39, 52,
53], for example by automatically generating documentation from models, automated
consistency checks, automated verification and validation, and automation in the
design process itself. If applied well, MBSE results in improved communication among
stakeholders, increased ability to manage complex systems, improved product quality,
reduced development time, reduced risk, and improved knowledge reuse [52].

The system model integrates information from all involved engineering disciplines,
which are often captured in other types of models, such as geometric and analysis
models, to describe other aspects of the system and analyze its performance. Care is
taken that all integrated information is consistent: i.e. based on shared assumptions
and common terminology. Systems engineers interact with models through views [52],
which only show relevant information for a subset of stakeholders, and limit the amount
of information displayed to manage human cognitive limitations [39]. The types of
artifacts and relationships between artifacts that can be represented in models are
specified by MBSE languages. The main standardized MBSE languages currently are
SysML (Systems Modeling Language) [54–56], OPM (Object Process Methodology) [57,
58], and Arcadia (Architecture Analysis and Design Integrated Approach) [59, 60].

1.3. DEFINING THE SYSTEM ARCHITECTURE
System architecture is the description of what components a system consists of, what
functions they perform (i.e. why they are there), and how they are connected and related
to each other [39]. It provides a bridge between upstream systems engineering activities,
like identifying stakeholders, needs, and requirements, and downstream phases like
detailed design and operation of the system (see Figure 1.2). The architect is responsible
for defining and managing the system architecture, and does so by [39]:

• Reducing ambiguity from upstream activities, by defining the boundary, goals,
and functions of the system through interactions with system stakeholders (e.g.
customers, strategy departments, authorities).

• Defining the system architecture (i.e. the "system architecting" activity), by defin-
ing key performance metrics, developing architecture options, conducting trade-
studies and optimization, and selecting an architecture to continue with in
downstream design phases.

• Managing complexity to ensure the system can be understood by all stakeholders,
by decomposing form and function, defining interfaces between (sub)systems and
the system context, configuring subsystems, defining the degree of modularity,
balancing flexibility and optimality, and balancing make-or-buy decisions.
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As mentioned in the last point, the system should be decomposed in some way in order
to manage complexity when defining the system architecture. Compared to domain-
specific system decomposition such as by engineering discipline (e.g. aerodynamics,
structures) or by ATA (Air Transport Association) chapters [61], functions provide the
basis for decomposition in system architecting [62, 63]: a function-based decomposi-
tion provides a generic breakdown of functions to be satisfied by the system. Functions
are independent of the system architecture, specific solutions or technology. Addi-
tionally, function-based decomposition enables explicit traceability from functional
requirements to the system architecture.

With a function-based decomposition technique, care is taken to define what the
system does (its functions) before how the system looks like (its form) [63]. Form is the
artifact that will be implemented in the physical system to fulfill the functions. Elements
of form are also referred to as system components. Functions describe what the system
should be able to do in order to meet stakeholder needs and functional requirements,
and ultimately provide the reason the system exists. Functions represent a process
(verb) applied to an operand (e.g. material, energy, or signal flow) [39]. For cyber-
physical systems, HIRTZ ET AL. [64] provide a basis for solution-neutral processes and
operands. Examples of functions are "accelerate air", "process signal" and "generate
power".

The system architecture defines how functions are fulfilled, by assigning compo-
nents to functions, based on available knowledge about which components can fulfill
which functions. Additionally, it is possible that components themselves need addi-
tional functions to be performed within the system, thereby requiring the inclusion
of additional components. This iterative "zig-zagging" procedure is completed once
all functions have been fulfilled. The finalized system architecture describes this
function-form allocation, together with relationships among the components [39]: it is
a function-form-structure mapping. This principle is visualized in Figure 1.3.
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α

β

δ

Component 1

Component 2

Component 3

Component 1

Component 2

Component 3

Function A

Function B

Function C

Function A

Function B

Function C

Figure 1.3: System architecture as the combination of functional architecture and the elements and structure
of form (i.e. the components). Figure adapted from [39].
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By separating the architecting activity in solution alternatives generation and perfor-
mance evaluation phases, bias towards selecting conventional or familiar architectures
is reduced [39, 65]. The observation that deferring decision-making until after many
solution alternatives have been systematically generated leads to better designs in the
end, has long been known in the fields of design thinking [66] and Set-Based Design
(SBD) [67]. It is also observed that keeping the design space open further into the
design process, results in designs that are more robust to changes in requirements or
environmental factors (e.g. market, regulations) [68].

The space encompassing all possible architectures that can be generated for a given
problem is known as the architecture design space, and is defined by architectural choices
and constraints. According to CRAWLEY ET AL. [39], types of architectural choices include
(illustrated by the propulsion system example given earlier in this chapter):

• Decomposing form and function. For example, a decomposition of aircraft-level
to propulsion-system-level functions, or a decomposition of a propulsion unit
into its components (propeller, gearbox, power converter, etc.).

• Mapping function to form. An example of this is the allocation of the function to
generate thrust to either propellers, turbofans, open rotors, or a combination of
these.

• Specializing and characterizing form and function. For example the selection of
the number of instances of some component to include (e.g. the number of
engines on a wing), or the selection of some specific off-the-shelf electric motor.

• Connecting form. For example, choosing the different connection pathways from
energy storage, to energy distribution, to energy consumption components.

Architectural constraints restrict which selection of choices are compatible with each
other, often defined in the form of "requires" constraints (one element requiring the
inclusion of some other element) or "exclusion" or "incompatibility" constraints [61,
69, 70]. Architectures can then be generated by combining architectural choice options,
while ensuring architectural constraints are satisfied.

Architectures may further be parameterized by architecture-specific design parame-
ters [49]. These parameters do not modify the architecture itself, however do influence
performance or even feasibility of the architecture. Therefore, they are relevant for
the architecting process, and are also part of the architecture design space. Examples
of architecture-specific design parameters are sizing parameters such as rated power
or bypass ratio, or operational parameters such as hybridization ratio or cruise speed.
Together, architectural choices and architecture-specific design parameters are called
the architecture design choices. An architecture with values assigned to its design pa-
rameters is called an architecture instance, as it represents a specific instantiation of the
architecture. If an architecture contains no design parameters, the architecture only
contains one architecture instance. Figure 1.4 visualizes how the architecture design
space, architectures, and architecture instances are related.



1

8 1. INTRODUCTION
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Figure 1.4: Starting from the architectural design space, taking architectural choices yields the architectures.
Starting from an architecture, assigning values to architecture-specific design parameters yields the architec-
ture instances.

Observations:

• Defining system architectures based on functions promotes neutrality when
defining and selecting solutions, and enables traceability to functional re-
quirements.

• Taking a structured approach to architecture instance creation by first ex-
plicitly defining architectural choices before generating and evaluating so-
lution alternatives can improve the design process, resulting in less biased
and more robust final designs.

1.4. AUTOMATED QUANTITATIVE PERFORMANCE EVALUATION
Decisions made when defining the system architecture have a significant impact on
the performance of the final system, i.e. how well the system meets its requirements.
However, during the design stage, limited knowledge about the system behavior is
available, making it challenging to make informed decisions. As the design process
progresses, more becomes known about the behavior of the system and the impact
of decisions, however it also becomes more difficult to retroactively change decisions
taken earlier in the design process. This phenomenon has been called the knowledge
paradox [71, 72], which is part of the reason that SBD places much focus on keeping the
design space open further into the design process [67].

Additionally, and especially for complex systems, the architecture design space, can
be extremely large. This is because during the architecting phase, choices are mostly
of a discrete nature: for example, a choice between technology alternatives. Already
for a low number of discrete choices, a design space can suffer from a combinatorial
explosion of alternatives [46, 47]. For such design spaces, it is infeasible to exhaustively
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search all possible combinations of options.
Involving expert judgement and experience can support taking decisions in such

uncertain and large design spaces, however, may suffer from expert bias, subjectivity,
conservatism or overconfidence [39, 47, 73, 74], and cannot be used for novel systems
that bear little resemblance to existing systems [48]. Instead, performance metrics
and goals should be formulated first [75], which should then be used to compare
generated alternatives in the search for the "best" solution(s) to the problem [47]. The
identification of the best solution(s) can only be done for such large design spaces
if the comparison can be done without designer interaction, which requires that the
performance metrics [76]:

• are quantitative in nature, such that "better" can be expressed as the minimization
or maximization of some performance metric; and

• can be calculated automatically, to enable exploring a large design space within
an appropriate time.

When designing complex systems, the views and considerations of diverse engineering
disciplines should be considered [38]. Often, these disciplines are strongly connected,
meaning that it is not possible to design the system by considering each discipline in
sequence, but rather all disciplines should be considered simultaneously to obtain a
feasible, let alone optimal, design [72]. Therefore, the performance metrics should be
evaluated keeping the multidisciplinary nature of systems engineering in mind.

Multidisciplinary Design Analysis & Optimization (MDAO) provides techniques and
tools for doing exactly that [72]: it enables coupling disciplinary analysis tools in
automated calculation workflows, thereby ensuring that all contributions of individual
engineering disciplines are balanced and consistent with each other while analyzing
and optimizing system-level performance. Figure 1.5 shows an example of a coupled
MDAO system. MDAO has been identified as an important technology to support
MBSE [53, 77, 78], and thus by extension also for SAO.

Observations:

• Quantitatively evaluating system architecture performance mitigates the
knowledge paradox and reduces bias.

• Automating the calculation of performance metrics enables searching a
large design space.

• Considering the multidisciplinary nature of systems engineering when cal-
culating performance metrics ensures that a realistic, balanced design is ob-
tained.
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Figure 1.5: Example of a coupled computational system (as is typical for Multidisciplinary Design Analysis and
Optimization (MDAO)), driven by an optimizer. Figure adapted from [49].

1.5. SYSTEM ARCHITECTURE OPTIMIZATION
System Architecture Optimization (SAO) combines a structured approach for creating
architecture instances (Section 1.3) with automated quantitative performance evalua-
tion (Section 1.4) to search architecture design spaces. It does so by formulating the
architecting process as a numerical optimization problem, and applying optimization
algorithms to suggest architecture instances to evaluate [79]. Conceptually, any opti-
mization problem consists of two elements: an algorithm to suggest design solutions
(the optimization algorithm) and a function to tell the algorithm how good a given
solution is (the evaluation function) [49]. Similarly, a system architecture optimization
problem consists of [80]:

1. a mechanism to suggest architecture instances to be evaluated, the architecture
generator; and

2. a function to evaluate the performance of a given architecture instance, the
architecture evaluator.

In SAO, the architecture generator is driven by an optimization algorithm, which requires
a formal definition of the architecture design space. The following sections discuss
modeling the architecture design space (Section 1.5.1), how to use that to generate
architecture instances (Section 1.5.2). Then, salient characteristics of SAO problems
(Section 1.5.3) and appropriate classes of optimization algorithms (Section 1.5.4) are
discussed. Section 1.5.5 discusses the architecture evaluator in more details.
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1.5.1. ARCHITECTURE DESIGN SPACE MODELING
The architecture generator is an automated version of the architecture synthesis [47]
or concept generation [39, 81] step in systems engineering. It generates architecture
instances from an associated architecture design space. As introduced in Section 1.3, the
architecture design space is defined by architectural choices and architecture-specific
design parameters (when combined, known as architecture design parameters), and
constrained by architectural constraints. The design space should be specified formally
enough so that automatic reasoning by a computer program is possible. However, it
should be possible to do so without requiring the systems engineer to have expertise
in numerical optimization. This can be achieved by using function, form, and other
systems engineering concepts, instead of optimization jargon, to define the design
space. This additionally enables the smooth integration of SAO in the MBSE process
and maintain traceability from requirements to elements in architecture instances [63].

A system model created in an MBSE setting typically represents a specific architec-
ture instance or several architecture instances [63, 65]. Although useful for a variety of
reasons [82], such models by themselves do not represent architecture design spaces
and therefore cannot be used as a basis for architecture optimization. To model an
architecture design space, architecture design choices should be modeled explicitly. In
literature, choice modeling is also known as variability modeling, a term originating
from the (software) Product Line Engineering (PLE) domain [69, 83].

Modeling choices in an MBSE context is made possible by specific extensions of the
Systems Modeling Language (SysML), such as Common Variability Language (CVL) [84,
85], Variant-Specific Stereotypes (VSS) [86], Variant Modeling with SysML (VAMOS) [87],
or other custom approaches [65, 76, 88]. Variability is an integral part of SysMLv2 [89–
91], see Figure 1.6 for an example, showing that it is considered an important capability
to be supported in the future.
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«variant»
«part»
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constraints
engine==engine::engine4cyl xor (engine==engine::engine6cyl and transmission==transmissionAuto)

Figure 1.6: Variability model of a vehicle family with different variants for the engine and transmission, mod-
eled using SysMLv2. Figure reproduced from [92].

Another approach is by creating a dedicated variability model that specifies how a
150% architecture model (a model containing all architecture elements in the design
space) is transformed to an architecture instance [93]. This can for example be done
using feature models [69, 94, 95], of which Figure 1.7 shows an example. Feature models
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are trees of choices, where each choice represents some "feature" of the object under
design, and choices select which features are implemented by selecting from a list of
options (often mutually-exclusive, however also other cardinalities are possible [94]).
Each selected option can then activate further feature selection choices, and/or pose
constraints on other choices such as requiring or preventing some option to be chosen.
Feature models were originally developed for modeling software variability [83], however
have also found application in MBSE for the design of (cyber-)physical systems, known
as Model-Based PLE (MBPLE) [96–98]. Notably, Airbus is developing and deploying
MBPLE methods for modeling variability in system architectures as part of their Digital
Design Manufacturing and Services (DDMS) program [99].

Figure 1.7: Feature model of an elevator system, showing different options for different features. Cross-tree
constraints are shown near the bottom. Figure reproduced from [95].

Function-means models [70, 100] and configurable components [101] offer a hybrid
between dedicated systems modeling languages and variability models, incorporating
variability and systems elements (function and form) in one model.

Observations:

Specifying the system architecture design space based on functions and other sys-
tems engineering terminology enables integration in the MBSE process and main-
tain traceability from requirements to elements in architecture instances.

1.5.2. GENERATING ARCHITECTURE INSTANCES
Generating architecture instances from some architecture design space model can either
be done exhaustively (architecture enumeration) or selectively (architecture optimiza-
tion). Several architecture enumeration methods based on graph grammars [102–104]
have been developed in the past, including ArchEx [105], perfect matchings [106, 107],
RoMOGA [108], and Automatic Topology Generation [109]. In such approaches, graph
nodes represent architecture elements and edges represent some connection between
elements; graph structure constraints are formulated to ensure established connections
are feasible. Siemens Simcenter Studio enables architecture enumeration by modeling
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architecture elements and port connection constraints, and then solving a Constraint
Satisfaction Problem (CSP) [110–112]: Figure 1.8 shows an example architecture design
space model.

Figure 1.8: Architecture model created in Siemens Simcenter Studio that models an Electric Power System
(EPS) with components that can be connected to each other by establishing connections between ports of the
same color. Component cardinality (instantiation) choices are shown in square brackets. Figure reproduced
from [110].

The morphological matrix is a well-developed method for modeling system vari-
ability. Table 1.1 shows an example morphological matrix: it contains 14 architecture
design choices with up to 5 options each, with a total of 144 million different combina-
tions. Usually also some way to model (in)compatibilities between options is needed
before the morphological matrix can be used to enumerate architecture instances: an
(in)compatibility matrix is used to do this by ARMA [61], IRMA [113], and [114]; [115]
uses a Constraint Satisfaction Problem (CSP) formulation instead. Other methods for
architecture enumeration include functional flows [42, 116, 117], resource flows [118],
Architecture Decision Graph (ADG) [119], RAAM [46], and using description logic
reasoners [120].

The main downside of architecture enumeration is that architecture design spaces
can be extremely large: for example 144 million architectures for the design space shown
in Table 1.1, or 79 million architectures in the Guidance, Navigation and Control (GN&C)
system architecture problem in [122]. This makes architecture enumeration impractical
and/or infeasible due to time or computational resource constraints [73], which can
stem from the enumeration process, the architecture evaluations, or both. Especially
architecture evaluation can be constraining, due to a need for simulation-based simula-
tion for novel systems as discussed previously. A more practical approach therefore is to
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Table 1.1: An example morphological matrix of an aircraft. Contents are based on the morphological matrix
from [121].

Choice Options

Configuration Tube and Wing BWB
Fuselage Cross-section Elliptical Circular
Wing Shape Elliptical Rectangular Diamond Triangular
Wing Sweep Forward Backward Variable Straight Switch
Wing Structure Internal Truss Strut Cable
Materials Aluminum Steel Composites
High Lift Devices Slats Flaps Both
Nr of Engines 1 2 3 4
Engine Type Turboprop Turbofan Turbojet Propfan Piston
Engine Position Over Wing Under Wing Fuselage Tail Embedded
Fuel Type Conventional Biofuels Synthetic Hydrogen Fuel Cells
Takeoff Traditional Floating Assisted Vertical
Landing Traditional Assisted Vertical Spiral Steep
Piloting Manned Auto Ground Pilots

selectively generate architectures and only evaluate these to incrementally explore the
design space. Architecture optimization indeed selectively generates architectures and
uses evaluation results to steer the exploration towards the best architecture(s).

Feature models [123–125], variability modeling in SysML [85, 88], and the morpho-
logical matrix [79, 126, 127] have found limited application in architecture optimization.
In these cases, architectural choices are encoded as discrete design variables which can
then be used by optimization algorithms. Repair operators are used to correct invalid
combinations, ensuring that architectural constraints are satisfied. APAZA AND SELVA

present the Architecture Decision Diagram (ADD), which enables the user to model
architectural decisions [122] based on architecture decision patterns [128], which are
then encoded as design variables and dedicated search and repair operators for use in
evolutionary algorithms [80, 129]. There exists no architecture optimization method,
however:

• that captures all relevant information about the architectures, such as function
and form, and characterization of form;

• that supports all types of architectural choices: function decomposition, function-
to-form mapping, function and form characterization and specialization, and
form connection choices;

• that supports continuous design variables for defining architecture-specific de-
sign parameters; and

• that enables automatically encoding the problem definition as a numerical opti-
mization problem, and automatically decoding design vectors generated by the
optimization algorithm into architecture instances.
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Observations:

Selective generation of architecture instances by applying optimization techniques
prevents the need for full enumeration, which would be infeasible for large design
spaces.

Science Gaps:

Currently, no method for formulating SAO problems exists that supports:

• Definition based on system functions;

• Defining architectural choices related to function decomposition, function-
to-component allocation, function and component characterization and
specialization, and component connection;

• Defining architecture-specific design parameters, discrete or continuous;

• Automatically encoding the SAO problem as a numerical optimization prob-
lem; and

• Automatically decoding design vectors into architecture instances.

1.5.3. ARCHITECTURE OPTIMIZATION PROBLEM CHARACTERISTICS
Optimization represents the automation of a design task: the goal is to find one or more
design vectors x that minimize3 one or more objective functions f (x), while satisfying
design constraints g (x) ≤ 0 [49]. Design vectors x are constructed by assigning a value
to each of the design variables x; each design vector represents a design point in the
design space. In the context of System Architecture Optimization (SAO), a design vector
x represents an architecture instance in the architecture design space. The solution
space represents the objective and constraint functions evaluated for associated design
vectors. A discussion of characteristics of the design and solution spaces for SAO
problems follows.

DESIGN SPACE CHARACTERISTICS

Mixed-Discrete Variables Design variables are defined from architecture design choices
(architectural choices and architecture-specific design parameters) as specified by the
architecture design space model. The design variables are mixed-discrete, since both
continuous and discrete design variables can be part of the problem [130, 131]:

• Continuous design variables xc can take any value between some lower bound xc
and some upper bound xc (inclusive). Examples of continuous design variables
are wing sweep and engine bypass ratio.

• Discrete design variables xd can only take one from a finite set of values, encoded
as an index between 0 and N j −1 (inclusive), with N j representing the number of
possible discrete values for discrete design variable xd , j . Discrete design variables
can be of the following types:

3Maximization of an objective function is enabled by negating the objective function value, and therefore min-
imization is treated as the default in the rest of this work.
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– Integer, which takes an integer value between two bounds (inclusive).

An example of an integer discrete variable is the number of seat rows in an
aircraft cabin (e.g. between 20 and 40).

– Ordinal, which takes any value from a specified list of values, where the order
of the values is relevant.

An example of an ordinal discrete variable is the number of engines for an
aircraft (e.g. 1, 2 or 4; order is relevant).

– Categorical, which takes any value from a specified list of values, where the
order of the values is irrelevant.

An example of a categorical discrete variable is aircraft power source (there
is no order between kerosene, hydrogen and electricity).

Architectural choices are always of discrete type; architecture-specific design parame-
ters can be either discrete or continuous.

Hierarchical Variables SAO design spaces feature strong interaction between design
variables as defined from architecture design choices. For example, consider the Apollo
mission architecture problem analyzed by SIMMONS [119]: the choice whether or not a
lunar-orbit-rendezvous or earth-orbit-rendezvous maneuver will be performed is only
relevant if an architecture with a lunar module is selected. Another example from the
same architecture problem is crew assignment: the lunar module can have 1, 2 or 3 crew
members, except if there are only 2 crew members in the command module, in which
case the lunar module can only contain 1 or 2 crew members. Another example is the
launch vehicle design problem by PELAMATTI ET AL. [132], where the number of stages
is a choice (1 to 3), as well as several choices such as fuel type and dimensions for each
of the stages: it follows that if a one-stage architecture is selected, the choices regarding
the second and third stages do not have to be considered.

In general, choices constraining available options of other choices is a common
theme in architecture optimization. These interactions between design variables create
a hierarchical structure in the design space through the following two mechanisms [133]:

• Activation: design variables higher up in the hierarchy determining which vari-
ables lower in the hierarchy are active or inactive.

• Value constraints: design variables higher up in the hierarchy determining which
options are available for lower-level design variables.

Figure 1.9 shows an example design space containing both types of hierarchy. It shows
that the Generate Thrust variable determines whether the Generate Torque, Compressor
Stages, and Bypass Ratio variables are activated based on its selected value (Turbofan or
Propeller). It also defines a value constraint, preventing Batteries from being selected
as the Energy Carrier if a Turbofan is selected. The Compressor Stages variable can be
activated either by Generate Thrust (if a Turbofan is selected) or by Generate Torque (if
a Turboshaft is selected). The selection of the value for Generate Torque additionally
constraints the available options for the Energy Carrier through two value constraints. A
more detailed discussion of the two mechanisms follows.
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Generate Thrust
{Turbofan, Propeller}

Compressor Stages
{1, 2, 3}

Bypass Ratio
[5 .. 15]

Generate Torque
{Turboshaft, Electric Motor}

Energy Carrier
{Kerosene, Hydrogen, Batteries}

if Turbofan:
activate

if Turbofan:
activate

if Propeller:
activate

if Turbofan:
remove Batteries

if Turboshaft:
remove Batteries

if Electric Motor:
must select Batteries

if Turboshaft:
activate

Figure 1.9: Illustration of design variable hierarchy. The blue rectangles represent design variables and their
options (discrete options shown in curly brackets; continuous bounds by square brackets). Ellipses represent
hierarchical relationships between design variables: green represents activation relationships; orange repre-
sents value constraints. Design variables with dashed borders are conditionally active.

Activation Relationships and Imputation An activation relationship between two de-
sign variables defines for which option selection(s) of the first design variable, the
second design variable is activated. Figure 1.9 shows activation relationships as green
ellipses.

The property of being active or inactive is called activeness, and can be queried
through the activeness function δi (x) [134], which returns a 1 indicating active or 0
indicating inactive for design variable xi . Variables that may be inactive are denoted
as conditionally active, shown in Figure 1.9 as design variables with dashed borders.
In architecture optimization problems often only discrete design variables determine
the activeness of other design variables, however in the general case also continuous
variables could determine activeness as in the work by ZAEFFERER & HORN [133]. Hi-
erarchical design spaces are also known as conditional design spaces [135] (as design
variables can be conditionally active), design spaces with tree-structured dependen-
cies [122, 136, 137], and variable-size design spaces [138, 139] (as inactive design
variables can also be seen as the results of a locally-reduced size of the design space).

Inactive design variables do not influence the performance of the design and are
therefore irrelevant for objective and constraint evaluations. If an optimizer is not aware
of this, it can however still generate design vectors with different values for inactive
design variables, resulting in the possibility of multiple design vectors representing
the same design (i.e. the design vector to design mapping is no longer one-to-one)
and therefore the same objective and constraint values. This wastes computational
resources, because the optimizer might require the evaluation of effectively the same
design point multiple times. To mitigate this, each inactive design variable can be
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assigned a canonical value, for example 0 for discrete variables and mid-bounds for
continuous variables [133]. The process of replacing inactive design variables with
canonical values is called design vector imputation [133, 140], and the resulting design
vector is called an imputed or canonical design vector. The effect on optimizer
performance then is twofold:

• Evaluation results (objective and constraint values) of a canonical design vector
can be stored. These stored results can then be returned for repeated evaluation
requests of the same canonical design vector (possibly originating from a different
non-canonical design vector), thereby saving computational resources.

• The optimizer will maintain a one-to-one mapping from design to solution
space. This prevents multiple design vectors mapping to the same objective and
constraint values, which would result in "flat" areas in the solution space.

Value Constraints and Correction Restricting option availability of active variables
lower in the hierarchy is done using value constraints, also known as enumeration
constraints in the context of architecture optimization [80] or configuration constraints
in product line engineering [62, 69]. Figure 1.9 shows value constraints as orange
ellipses. According to the taxonomy by LE DIGABEL & WILD [141] value constraints are:

• Non-quantifiable: it is only known whether they are violated, not by how much.

• Unrelaxable: a design point with a failed value constraint does not represent
anything that can be evaluated.

• A priori: they can be corrected without running an evaluation.

• Known: they are defined in the design space.

The process of ensuring value constraints are satisfied is called correction. A correct and
canonical (imputed) design vector is called a valid design vector. Since value constraints
only depend on the design space definition, correction can be applied as a standalone
operation (i.e. without running an evaluation).

Figure 1.10 visualizes the processes of correction and imputation for an example
hierarchical design space. It shows a combination of four discrete variables (two options
each, shown between brackets) with one conditionally active design variable (x3 is
inactive if x1 = 0) and two value constraints (if x0 = 0, x2 = 0 and x3 = 0). The correction
and imputation process goes through four stages:

1. The declared design space is defined by the Cartesian product of these four
discrete variables resulting in 16 design vectors.

2. Value constraints are corrected for to obtain the correct design space.

3. Determining which variables are inactive and imputing their values yields the
imputed design space.

4. By removing duplicate design vectors (therefore only keeping unique design
vectors), the valid design space is obtained. The valid design space only consists
of 8 design vectors, showing the discrepancy between the sizes of the declared
and valid design spaces.
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Figure 1.10: Illustration of correction and imputation in hierarchical design spaces, showing how the Cartesian
product of all discrete values relates to the set of correct, imputed, and valid design vectors. Correction (step 2)
modifies design variables such that value constraints are satisfied. Imputation (step 3) assigns canonical values
to inactive design variables. The valid design space (step 4) consists of all unique corrected and imputed design
vectors.

SOLUTION SPACE CHARACTERISTICS

Black-Box, Expensive Evaluation Functions The objective and design constraint
functions f (x) and g (x), also known as the evaluation functions, are assumed to be
black-box functions: their behavior is not known in advance. As a consequence, the
evaluation functions may exhibit non-linear, non-smooth (the function may contain
discontinuities or gaps) and multi-modal behaviors (there may be multiple local min-
ima; this also implies that the function is non-convex), and gradients cannot be assumed
to be available (also due to the mixed-discrete nature of the problem) [39]. Evaluation
functions are assumed to be deterministic: repeated function calls with the same inputs
yield the same outputs.

In many cases the evaluation is expensive in terms of time and/or computational
resources, due to the use of simulation-based evaluation and Multidisciplinary Design
Analysis and Optimization (MDAO [72]) approaches. The consequence of this is that
the time to perform one evaluation can be orders of magnitude more than the time
for the optimization algorithm to generate a new design vector to evaluate. Therefore,
to reduce the computational time needed to find an optimum, the evaluation function
should be accelerated (e.g. by surrogate modeling or enabling parallel calculations)
and/or the number of evaluations requested by the optimization algorithm should be



1

20 1. INTRODUCTION

reduced. Since the optimization algorithm can only influence the latter, the focus of
this work lies on the reduction of the number of function evaluations Nfe needed for
convergence [142].

Multiple Objectives When designing a system architecture, needs of system stake-
holders may conflict with each other [39] and the associated architecting problem thus
becomes a trade-off between these conflicting needs. In general, therefore, an SAO
problem is a multi-objective optimization problem [79].

Multi-objective optimization results in a set of Pareto-optimal design points [143]
rather than a single optimum. This so-called Pareto set is comprised of design points
that are not dominating each other (see Figure 1.11a: a design point x a dominates a
design point xb if fm(x a) ≤ fm(xb) for all m and fm(x a) < fm(xb) for at least one m. The
consequence is that within the Pareto set, no design point is better than any other design
point, and that improving one or more of the objective values by moving from one point
to another, will necessarily make at least one other objective value worse. The Pareto
front contains the objective values of the points in the Pareto set. The challenge that
multi-objective optimization algorithms face is to simultaneously progress towards the
Pareto front and maintain sufficient design point diversity along the Pareto front [144],
see Figure 1.11b.
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(a) Visualization of Pareto dominance relations: B dominates
E; A, B, C and D are non-dominated and form the Pareto
front.
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(b) Challenges of multi-objective optimization problems:
progress towards the Pareto front and maintain diversity
along the Pareto-front. Figure adapted from [144].

Figure 1.11: Pareto dominance relations and associated challenges of multi-objective optimization algorithms.

Design Constraints SAO problems can, next to value constraints, be constrained by
design constraints. Design constraints g (x) can arise from physical (e.g. maximum
material stresses or temperatures) or operational limitations (e.g. maximum take-off
field length, maximum wing span), for example.

In this work, only inequality design constraints are considered; equality constraints
can also be defined as two inequality constraints [145], can be eliminated by design
variable substitution, or can be eliminated by non-linearly solving implicit residual
equations [49]. According to the taxonomy of LE DIGABEL & WILD, design constraints
are [141]:



1.5. SYSTEM ARCHITECTURE OPTIMIZATION

1

21

• Quantifiable: the degree of feasibility can be quantified.

• Relaxable: a violated constraint is still meaningful to the optimizer.

• Simulation-based: to know whether the constraint is satisfied, an evaluation must
be run.

• Known: the constraint is defined in the problem formulation.

Design points where one or more design constraints are violated are called infeasible, as
opposed to feasible if all constraints are satisfied.

Hidden Constraints Simulations used for evaluating architecture performance can
fail, for example due to an unstable system of equations, infeasible underlying physics,
or infeasible geometric parameterization [146]. Any problem that employs simulation
could therefore include a so-called hidden constraint (also known as unspecified, un-
known, forgotten, virtual, and crash constraints [141, 147]): a constraint that manifests
itself through failed evaluations. The objective f and design constraint g function
outputs are assigned NaN (Not a Number) values when a hidden constraint is violated.
In the taxonomy of LE DIGABEL & WILD [141] hidden constraints are classified as:

• Non-quantifiable: the degree of constraint violation is not available, only whether
it is violated or not.

• Unrelaxable: violating the constraint yields no meaningful information about the
design space.

• Simulation: a simulation must be run in order to find out the status.

• Hidden: the existence of the constraint is not known before solving the problem.

It is assumed that hidden constraints are deterministic, resulting in the same status
when repeatedly evaluating the same design point. Additionally, finding out about if the
hidden constraint is violated takes at least as long as completing a successful evaluation,
if not longer [147]. Points with violated hidden constraints are denoted failed; points
where this is not the case are viable. The region of failed points can span a large part
of the design space: KRENGEL & HEPPERLE report a Failure Rate (FR) of up to 60% for a
wing design problem [148], and for an airfoil design problem FORRESTER ET AL. report
an FR of up to 82% [146].

PROBLEM FORMULATION

Combining all relevant behavioral aspects, SAO problems can be formulated as:

minimize fm(x ,δ(x)) m = 1,2, . . . ,n f

w.r.t. xc,i ≤ xc,i ≤ xc,i i = 1,2, . . . ,nxc

xd , j ∈ {0, .., N j −1} j = 1,2, . . . ,nxd

subject to gk (x ,δ(x)) ≤ 0 k = 1,2, . . . ,ng

cv,l (x) = 0 l = 1,2, . . . ,ncv

ch(x) = 0

(1.1)

where fm(x ,δ(x)) represents the multiple objective functions to be minimized, x the
design vector consisting of nxc continuous and nxd discrete design variables, and δ(x)
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the activeness function representing design space hierarchy. Continuous design variable
xc,i bounds are represented by xc,i and xc,i , and N j is the number of discrete options
for the discrete variable xd , j . The inequality design constraint k is given by gk (x ,δ(x)).
The value and hidden constraints (both unrelaxable) are defined by the functions cv,l (x)
and ch(x), respectively, both returning 1 if the constraint is violated and 0 otherwise.
Considering all types of constraints, the design points and regions can have several
different non-exclusive statuses as explained in the previous sections and summarized
in Table 1.2.

Table 1.2: Possible statuses of design points. In order for any of the conditions to be met, conditions and
operations above have to be met and performed as well.

Status if condition is ... Performed
Condition met not met operations

Any x within bounds Declared
Value constraints satisfied Correct Invalid Correction
x is canonical Valid Non-canonical Imputation
Hidden constraint satisfied Viable Failed Evaluation
Design constraint satisfied Feasible Infeasible Optimization
Optimality achieved Optimal Non-optimal Optimization

Observations:

• SAO problems are characterized by mixed-discrete design variables, design
variable hierarchy, and the presence of multiple conflicting objectives.

• Due to the need for simulation-based, multidisciplinary evaluation, the
evaluation functions may additionally be black-box and expensive, and the
problems may include design constraints and hidden constraints.

1.5.4. OPTIMIZATION ALGORITHMS FOR SAO
The characteristics of SAO problems have several consequences, also summarized in
Table 1.3, on the types of optimization algorithms that can be used to solve these
problems. The fact that the objective and design constraint functions exhibit non-linear,
non-smooth, and multi-modal behavior without gradient availability (due to mixed-
discrete and hierarchical variables and black-box nature of the evaluation function)
necessitates a global, gradient-free optimization algorithm [49]. Hierarchy induces the
need to move design points from the declared to the valid design space by applying
correction and imputation [133]. The expensive nature of the evaluation functions
drives the need to minimize the number of evaluations needed to find the optimum
Pareto set [142], which is challenging for gradient-free algorithms [49]. Finally, constraint
handling is needed for both the design constraints [49] and hidden constraints [147].

Many classes of global optimization algorithms exist, designed for various pur-
poses [49]. Exact optimization methods such as grid search [149] or DIRECT [150]
are designed to yield reproducible results with provable convergence behavior, and are
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relevant for problems where finding the true optimum is important [151], however exact
methods struggle to solve high-dimensional problems and might need many function
evaluations to converge [150]. On the other hand, heuristic optimization methods
depend on strategies that work well in practice to search a design space more efficiently
than exact optimization methods, although without providing mathematical proof of
convergence to the true optimum [152].

Table 1.3: Properties of architecture optimization problems and algorithm capability needs.

Space Property Capability needs

Design space
Mixed-discrete Gradient-free optimization [49]
Hierarchical Correction and imputation [133]

Solution space

Black-box Global, gradient-free optimization [49]
Expensive Minimize function evaluations [142]
Multi-objective Find the Pareto-set [143]
Design constraints Constraint handling [49]
Hidden constraints Failed area avoidance [147]

EVOLUTIONARY ALGORITHMS

One of the most powerful classes of heuristic global optimization methods are Evolu-
tionary Algorithms (EA). Evolutionary algorithms are population-based algorithms that
mimic evolutionary processes found in nature: an initial population of individuals (de-
sign points) is evolved (optimized) for maximum fitness (objective value) by generating
offspring (new design points) from selected parents whose genes (portions of the design
vector) are crossed-over and mutated [153]. Major variations between evolutionary
algorithms lie in the way design points are encoded (i.e. the encoding grammar [80]),
how parents are selected for the basis of the new generation, types of cross-over and
mutation operators used, and how the new generation is created from the current
generation by a survival operator.

Evolutionary algorithms are robust in dealing with mixed-discrete design spaces:
dealing with continuous variables was in fact a development that came later, for
example through Differential Evolution [153] or CMA-ES [154]. Design constraints
are handled either by applying a penalty on the objective functions or by integrating
constraints in the selection and survival operators directly [153], by reducing the chance
of selection/survival for design points with violated constraints.

Multi-Objective Evolutionary Algorithms (MOEA) have been developed to deal with
multi-objective problems by modifying selection and survival operators for searching
for a Pareto-front rather than a single optimal point [153]. One of the most popular
MOEAs is the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [155] due to its
low configuration effort and good performance. NSGA-II uses the non-dominated
sorting procedure to select parents for offspring generation, visualized in Figure 1.12.
Non-dominated sorting sorts by Pareto-rank first, and within a rank it sorts by crowding
distance. Pareto-rank represents which Pareto front the design point belongs to,
assigning rank 1 to the overall Pareto front, and subsequent ranks to Pareto fronts
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obtained by removing design points in the higher-ranking sets. Points are sorted from
high to low rank (i.e. low to high rank number), thus meaning that points located closer
to the overall Pareto front are preferred. Crowding distance represents the distance to
neighboring points within a Pareto rank. Points are sorted from high to low crowding
distance, therefore putting closely-spaced points at a disadvantage which results in
more diversity along a Pareto front.

Figure 1.12: Design points sorted by the non-dominated sorting procedure, resulting in points closer to the
Pareto front (towards the left bottom of the figure) being ordered before points further away.

Finally, EAs can explore hierarchical design spaces using the hidden genes ap-
proach [138, 139, 156–159], where genes representing inactive design variables are
retained in the chromosome, however are hidden since they are not "expressed" in the
evaluation function. EAs additionally support hidden constraints using the extreme
barrier approach [160], where objective and constraint values of failed evaluations are
set to +∞ and therefore have less chance to be selected for generating offspring for
subsequent generations. The appropriateness of evolutionary algorithms in general and
NSGA-II in particular for SAO is noted by CRAWLEY ET AL. [39] and has been demon-
strated in the past by various applications, see Table 1.4. Evolutionary algorithms have
also found application for optimizing software architecture [161] and software product
lines [124], which involves optimization problems characterized by strong hierarchy and
choice dependencies, similarly to SAO.

As powerful as evolutionary algorithms are for dealing with the challenges of
architecture optimization, the high number of needed function evaluations Nfe [165]
poses a problem if the objective and constraint functions are expensive to evaluate.
As can be seen in Table 1.4, Nfe typically is in the order of thousands to hundreds of
thousands for EA.

SURROGATE-BASED OPTIMIZATION ALGORITHMS

To solve problems with expensive evaluation functions, Surrogate-based Optimization
(SBO) algorithms have been developed [142, 166]. SBO algorithms use surrogate models
(also known as response surface models or metamodels): models that approximate some
expensive function by fitting some mathematical function(s) to training data generated
from the expensive function. Evaluating a surrogate model is computationally very
cheap compared to the fitted function. During the SBO process, surrogate models are
created to approximate the objective and constraint values as a function of the design
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Table 1.4: Past applications of evolutionary algorithms to architecture optimization problems. Nomenclature:
nvalid,discr = number of valid discrete design points, nxc = number of continuous dimensions, n f = number of
objectives, ng = number of constraints, Nfe = number of function evaluations.

Algorithm(s) Application nvalid,discr nxc n f ng Nfe Ref.

GA1 Supersonic aircraft 576 100 10 200 000 [162]
NSGA-II Aircraft engine 1 163 30 3 15 2 4 000 [11]
ACO + GA Aircraft subsystem 9 600 2 96 000 [79]
NSGA-II Aircraft family 21 875 4 4 200 000 [163]
NSGA-II Launch vehicle 123 000 23 3 50 000 [130]
NSGA-II Space transport 49e6 30 2 4 50 000 [164]
MOEA GN&C system 79e6 2 1 000 [122]
(3) Satellite instruments 8.8e12 4 20 000 [80]

1 Acronyms: Ant Colony Optimization (ACO), Genetic Algorithm (GA),

Non-dominated Sorting GA II (NSGA-II), Multi-Objective Evolutionary Algorithms (MOEA),

Guidance, Navigation and Control (GN&C).
2 This problem additionally featured hidden constraints.
3 A special-purpose evolutionary algorithm for architecture optimization was used.

variables. These surrogate models are then used to efficiently determine interesting
extra design point(s) to evaluate: the infill point(s). Infill points are selected using
infill criteria (also known as acquisition functions) evaluated on the surrogate model,
which are normally defined to represent some kind of trade-off between exploration
(finding new interesting regions in the design space) and exploitation (improving already
interesting regions in the design space). Once the infill points have been evaluated using
the expensive evaluation functions, the surrogate model is reconstructed and the
process starts over, until some termination criterion has been reached. Figure 1.13
visualizes the SBO process.

The main choices involved in using SBO are the initial sampling (Design of Experi-
ments) method for training the first surrogate model, the type of surrogate model, the
infill criterion, and the termination criterion. Many sampling methods for creating the
initial Design of Experiments (DoE) have been developed in the past [49]; the most
popular methods for SBO are random sampling, low-discrepancy sequences (e.g. Sobol
sequences) or Latin Hypercube Sampling (LHS) [167].

Especially powerful types of SBO algorithms are Bayesian Optimization (BO) algo-
rithms [167]. BO algorithms use surrogate models that provide standard error estimates
σ̂(x) in addition to function estimates ŷ(x), and therefore can use infill criteria that
leverage this additional information in order to better predict where interesting points
lie. Most applications of BO use Gaussian Process (GP) surrogate models [165, 168],
also known as Kriging models [169]. One of the most popular BO algorithms is Efficient
Global Optimization (EGO), which uses GP models and the Expected Improvement
(EI) infill criterion to solve continuous, unconstrained, single-objective optimization
problems [142].

Extensive research has been performed on handling design constraints [170, 171]
and solving multi-objective [172, 173] problems using BO. GP models were originally
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Figure 1.13: The Surrogate-Based Optimization (SBO) process.

developed for continuous variables, however research has been performed into methods
for supporting mixed-discrete [174–180] and hierarchical [26, 132, 133, 137, 181–183]
design spaces. Enabling the use of GP models for high-dimensional design spaces is an
active area of research [167, 184–186]. BO has also been extended with strategies for
dealing with hidden constraints [147]. BO has not been used to solve SAO problems, and
although BO has been applied for some combinations of SAO problem challenges, it has
not been demonstrated for a combination of all challenges. Especially the combination
of a mixed-discrete, hierarchical design space with hidden constraints has not yet been
explored.

ADDITIONAL CONSIDERATIONS

Hierarchical design spaces introduce three additional considerations for global opti-
mization algorithms:

• Due to the hierarchical nature of the SAO design space, global optimization
algorithms can either be applied in a global approach or in a decomposition-based
approach [139]. The decomposition-based approach decomposes the hierarchical
design space into multiple non-hierarchical design spaces which are then solved
individually, as for example done in [115, 130]. The global approach, on the other
hand, maintains the hierarchical structure of the design space and considers this
behavior directly in the optimization algorithm (e.g. by correcting and imputing
design vectors).

Compared to the global approach, the decomposition-based approach requires
the definition of two additional heuristics [132, 139]: how to decompose the
problem and how to assign function evaluation budget (Nfe) to each of the
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decompositions. Additionally, evidence shows that the global approach leads to
better optimizer performance (i.e. how closely the optimum can be approached)
for a given function evaluation budget, both for MOEA [157–159, 187] and for
BO [132, 187, 188]. For these reasons, only the global approach is considered in
this work.

• When sampling the design space to create the initial DoE, some regions in the
design space may be over- or under-represented due to hierarchy in the design
space [39]: a region in the design space that has inactive variables contains less
valid design vectors than a region with more active variables. Existing sampling
algorithms do not take this effect into account [49].

• Design variable correction might affect design space exploration by modifying
design vectors generated by the optimization algorithm. It is not clear what
the impact is of the correction algorithm on the performance of optimization
algorithms.

Observations:

• Evolutionary algorithms and Surrogate-Based Optimization (SBO), in par-
ticular Bayesian Optimization (BO), algorithms are powerful classes of
global, gradient-free optimization algorithms.

• BO can solve optimization problems with less function evaluations than
evolutionary algorithms.

Science Gaps:

• Existing sampling algorithms do not explicitly take the hierarchical nature
of the design space into account.

• It is not clear what the impact is of the selection of the correction algorithm
on the performance of optimization algorithms.

• BO has not been demonstrated for the combination of all previously-
mentioned SAO problem characteristics: mixed-discrete, hierarchical,
multi-objective, constrained by design and hidden constraints, expensive,
black-box optimization.
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1.5.5. EVALUATING ARCHITECTURE INSTANCES
The architecture evaluator represents the evaluation function in an optimization pro-
cess: it returns performance metrics for a given architecture instance, thereby providing
the optimization algorithm with feedback for searching the design space. The evalu-
ation function is problem-specific and can be implemented as anything ranging from
a simple script using lookup tables or low-fidelity handbook equations, to distributed
multi-disciplinary high-fidelity simulation toolchains, as long as it fulfills the following
requirements [119]:

• The performance metrics should be sensitive to all relevant architecture design
choices. If architecture design choices do not influence any of the performance
metrics, they should either be removed from the design space or the evaluation
function should be modified to include effects due to these choices.

• The performance metrics should be available for all possible architectures, and
with similar accuracy/fidelity. This ensures that the evaluation function is flexible
enough to handle all possible architectures, and that architecture instances can
be fairly compared to each other. Metrics used as objectives f should always be
available; metrics used as constraints g may not always be available for a given
architecture instance.

• The evaluation function should be executable without user interaction when
running the optimization. This ensures that the design space can be searched
automatically.

Some research has been performed on methodologies for integrating system archi-
tecture models with system simulation, to ensure consistency between the system
architecture and evaluation code and to enable verification and validation [53]. Directly
integrating calculations in architecture models is for example possible using MAXIM in
OPM [58], priced feature models [125], SysML parametric diagrams [54], SysPhs SysML
extension [189], or SysMLv2 expressions [90]. Direct integration means that calcula-
tions as needed for performance evaluation are specified in the same model as the
system architecture, for example using component properties as inputs and calculating
performance metrics using relatively simple equations. System architecture modeling
languages and/or tools, however, are not appropriate for more complicated computa-
tions. Rather, connections to external simulation environments should be established
in those cases, for example Modelica [190, 191], Knowledge-Based Engineering (KBE)
tools [192], or dedicated solvers [193, 194].

Simulating complex systems at the system-level often involves multiple interacting
heterogeneous system models [36]. One way to simulate such systems is using co-
simulation, a set of methods and tools for solving coupled systems of equations, both
in discrete and in time domains [195]. Standardized interfaces such as the Functional
Mockup Interface (FMI) [196, 197] enable model exchange between design teams
involved in designing a system.

(COLLABORATIVE) MULTIDISCIPLINARY DESIGN ANALYSIS AND OPTIMIZATION

As previously discussed in Section 1.4, MDAO is another useful method for obtaining
system-level performance metrics by numerically coupling disciplinary analysis tools
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and ensuring all computations are consistent with each other [72]. This enables
integrating calculations stemming from all relevant engineering disciplines, none of
which can be ignored or should be allowed to take the overhand in defining the
design. It fits well with systems engineering, as there the goal is also to integrate
all relevant engineering disciplines into one system-level design (see Section 1.2),
and using MDAO leads to better performing systems that are designed in less time
when compared to sequential design approaches [49]. For simulation-based system
architecture performance evaluation, MDAO is considered a key enabler [53], as is also
shown by recent interest in coupling MBSE to MDAO [77, 198–205]. However, changes
in system architecture were not synchronized to the MDAO workflow, rendering these
approaches not usable for SAO.

Local integration and execution of MDAO workflows is difficult or infeasible for
the distributed and/or diverse disciplinary competences and tools needed to design a
complex system. Collaborative MDAO allows coupling disciplinary analysis tools that
are developed and managed by different teams, potentially from different organizations,
in a single MDAO workflow [36], visualized in Figure 1.14. It is characterized by the
application of a Central Data Schema (CDS) and the distributed, cross-organizational
management, development, and execution of analysis tools.

Competence 1

Competence 2

Competence n

Optimization

Sensitivities

It
er
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n

Meta-Models Database

Requirements,
Targets

Parameter

Performance,
Properties

Central
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Figure 1.14: Principles of collaborative MDAO, showing the distributed management, development and exe-
cution of disciplinary competences, integrated through a central product model. Figure adapted from [206].

The application of a CDS is essential to ensure all tools "speak the same lan-
guage" [207]: the CDS defines the common vocabulary and data storage structure of
the central product model (see Figure 1.14), from (to) which each tool reads (writes)
its inputs (outputs). This ensures data syntax and semantics are consistent for tools
originating from diverse engineering disciplines. It also reduces the amount of in-
terfaces to implement from N (N −1) (quadratic growth; with N being the number of
disciplinary analysis tools) if tool-to-tool ad-hoc data exchange is implemented, to 2N
(linear growth) if a CDS is used [207], as also shown in Figure 1.15. Data interfaces
are implemented by the tool developers, shifting this burden away from the workflow
integrator, who can focus on setting up and running the workflow.
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Figure 1.15: Visualization of the reduction in data interfaces from N (N −1) to 2N when using a Central Data
Schema (CDS). Figure adapted from [207].

The distributed, cross-organizational execution of collaborative MDAO workflows
needs to comply with network security and intellectual property right constraints
imposed by the collaborating organizations [36]. This enables disciplinary tools to be
used in MDAO systems outside of the developing organization, without sharing the tool
and while keeping control over computational resources. Collaborative MDAO problems
are executed in Process Integration and Design Optimization (PIDO) environments,
which handle aspects like cross-platform disciplinary tool integration and sharing,
data orchestration, execution status monitoring, and distributed (cross-organizational)
execution [208]. Before a workflow can be executed, some of these features may require
manual configuration. Although workflows can be defined directly in PIDO tools, a
more formalized approach, based on a CDS that enables automatic data matching
and MDAO problem definition, requires specialized MDAO formulation tools [19, 209].
Such formulation tools can automatically connect inputs and outputs between the
different tools, determine execution order, and (with some amount of user input)
make the MDAO problem executable by adding solvers and/or applying an MDAO
architecture [210]. Formulation tools enhance insight into what data is generated and
consumed at what point in the workflow, which can support discovering and solving
bugs in disciplinary tools. Therefore, there is usually a clear separation between
the MDAO problem formulation phase and the execution phase [211], as shown in
Figure 1.16.

Figure 1.16: The main steps and interactions involved in executing a collaborative MDAO workflow, showing
the formulation and execution phases. Figure adapted from [208].

Collaborative MDAO is a powerful methodology to design complex systems in large
project consortia, and should therefore be available as a way to evaluate architecture
instances in SAO. Effort towards applying collaborative MDAO for SAO is relatively
recent. HELLE ET AL. [212] present a method for modeling variability-aware analysis
architectures in SysML using Parametric Analysis Models (PAM), and executing analysis
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architectures from architecture instances manually defined from a superset model.
BRUGGEMAN ET AL. [213] present an MDAO workflow that dynamically swaps a sub-
workflow depending on a selection of the manufacturing process of the part being
designed. SONNEVELD ET AL. [214] demonstrate an MDAO workflow that dynamically
modifies a sub-problem: the number of design variables governing the skin thickness
is not known in advance, however is determined based on the number of ribs selected
in an aileron. The integration of these methods into a collaborative MBSE and MDAO
framework is presented in [78].

As discussed before, an architecture evaluator should be flexible enough to handle
all architectures, it should be sensitive to relevant architecture design choices, and it
should be executable without user interaction. Translated to collaborative MDAO, this
means that:

• To be flexible enough to handle all architectures, the execution behavior (i.e. data
connections and tool inclusion and execution order) of the collaborative MDAO
workflow should be adapted to the architecture instance being evaluated. Existing
methods do not fully support changing MDAO workflow behavior due to changes
in system architecture.

• To be sensitive to relevant architecture design choices, all relevant data from the
architecture instance (e.g. function allocation, component selection and char-
acterization, component connections) should be communicated to the MDAO
workflow. Existing MBSE-to-MDAO methods do not transfer all relevant architec-
ture data [53]: changes in system architecture can therefore not be communicated,
or only in a limited manner.

• To be executable without user interaction, the architecture generator and the
collaborative MDAO workflow should be executed in a shared computational
environment. This has not been demonstrated before.

Observations:

• Defining system-level performance metrics that are sensitive to architecture
design choices enables comparison of architecture instances.

• Collaborative MDAO supports calculating metrics that requires solving cou-
pled computational problems, where different computational blocks are
provided by cross-organizational heterogeneous teams of experts.

Science Gaps:

• MDAO workflows currently do not fully support dynamically changing their
behavior due to changes in system architecture.

• Existing MBSE to MDAO connection methods do not support transferring all
relevant architecture data to the collaborative MDAO workflow.

• Generating architectures in the same computational environment as where
the MDAO workflow is executed has not been demonstrated before.
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1.6. RESEARCH QUESTION AND OBJECTIVES
Based on the observations in the previous sections, the main research question is as
follows:

How can System Architecture Optimization (SAO) improve the design space
exploration and optimization of complex systems?

The research question is divided into three sub-questions:

1. How to formulate SAO problems based on system functions?

2. How to solve SAO problems using global optimization algorithms?

3. How to evaluate and optimize system architecture instances in a collaborative
MDAO environment?

To answer the research questions, the objective of this research is

to enable practical usage of System Architecture Optimization (SAO), by
developing a methodology for formulating SAO problems, providing algo-
rithms for solving these problems, and by using collaborative MDAO to
evaluate architecture instances.

The research objective is broken into three sub-objectives:

1. Develop global evolutionary and Bayesian Optimization (BO) algorithms capable
of efficiently solving SAO problems, by:

(a) integrating information about the hierarchical design space into the opti-
mization algorithms;

(b) developing a sampling algorithm that explicitly takes the hierarchical nature
of the design space into account;

(c) investigating the impact of the correction algorithm on optimization perfor-
mance; and

(d) developing a strategy for solving problems with hidden constraints when
using BO algorithms.

2. Develop a way to formulate SAO problems, consisting of:

(a) a method for modeling SAO problems based on system functions, that
supports the definition of architectural choices and architecture-specific
design parameters; and

(b) algorithms to encode the model as an optimization problem (i.e. in terms of
design variables, objectives, and constraints), and to decode design vectors
into architecture instances.

3. Develop a methodology for leveraging collaborative MDAO for quantitative archi-
tecture evaluation, by:

(a) enabling changing MDAO workflow behavior due to architectural changes;
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(b) propagating architecture data to the collaborative MDAO workflow; and

(c) integrating SAO within a collaborative MDAO process integration platform.

The research sub-objectives presented above can be mapped to the optimization
process according to MARTINS & NING [49], as shown in Figure 1.17: formulating the SAO
problem, optimization algorithms ("update design variables"), and using collaborative
MDAO to "evaluate objective and constraints". This is also how this dissertation is
structured: Chapter 2 proposes improvements to efficient optimization algorithms
for SAO (sub-objective 1). The architecture design space modeling and problem
formulation methodology (sub-objective 2) is presented in Chapter 3. Integration with
collaborative MDAO (sub-objective 3) is presented in Chapter 4. Chapter 5 concludes
the dissertation and provides recommendations for future research.

1

2

3

Figure 1.17: Design optimization process according to MARTINS & NING [49], with the three research sub-
objectives highlighted. Figure adapted from [49].





2
OPTIMIZATION ALGORITHMS

CHAPTER CONTENTS

2.1 Non-hierarchical Foundation of the Bayesian Optimization Algorithm . . . 37
2.2 Hierarchical Design Space Characterization . . . . . . . . . . . . . . . . 39

2.2.1 Imputation and Correction Ratio . . . . . . . . . . . . . . . . . . 40
2.2.2 Rate Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Optimization in Hierarchical Design Spaces . . . . . . . . . . . . . . . . 43
2.3.1 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Sampling Hierarchical Design Spaces . . . . . . . . . . . . . . . . 44
2.3.3 Design Vector Correction Algorithms . . . . . . . . . . . . . . . . 48
2.3.4 Using Hierarchy Information in Optimization Algorithms . . . . . . 53

2.4 Bayesian Optimization with Hidden Constraints . . . . . . . . . . . . . . 58
2.5 Implementation in SBArchOpt . . . . . . . . . . . . . . . . . . . . . . . 67
2.6 Application Case I: Jet Engine Architecture Optimization . . . . . . . . . . 68
2.7 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

T HIS chapter presents optimization algorithms for solving System Architecture Op-
timization (SAO) problems. This forms the first part of the objectives presented in

Section 1.6.
As discussed in Section 1.5.3, SAO problems feature one or more of the following

characteristics: mixed-discrete design variables, design variable hierarchy (condition-
ally active design variables and value constraints), black-box, expensive evaluation
functions, multiple objectives, design constraints, and hidden constraints. The first
thing to note is that if the evaluation functions are not expensive to evaluate or if
the design space only consists of several architecture instances, it might be feasible to
fully enumerate and evaluate the design space. In the general case, however this is
not feasible and optimization algorithms will have to be used; this will be the main
assumption underlying the remainder of this chapter.

This chapter is based on [3, 4, 6, 7].
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As discussed in Section 1.5.4, global optimization algorithms will be used to solve
SAO problems, in particular Multi-Objective Evolutionary Algorithms (MOEAs) and
Bayesian Optimization (BO) algorithms. One is not better than the other: MOEAs
should be used if evaluation is not expensive (e.g. one evaluation takes at most in the
order of seconds), and BO should be used if evaluation is expensive (e.g. in the order of
minutes or more) [159]. BO should not be used for inexpensive problems, as then time
for model fitting and searching for infill points becomes limiting, rather than function
evaluation time [165].

Section 2.1 presents the non-hierarchical basis of the BO algorithm further devel-
oped in this work. Following sections then present the contributions of this work to
optimization algorithms for SAO:

• metrics to characterize hierarchy in SAO problems (Section 2.2);

• improvements to optimization in hierarchical design spaces (Section 2.3): test
problems, hierarchical sampling and correction, and including hierarchy infor-
mation into algorithms;

• strategies for dealing with hidden constraints in BO (Section 2.4); and

• the implementation of results in the open-source SBArchOpt library (Section 2.5).

The developments are demonstrated using a jet engine architecture optimization
problem in Section 2.6. Section 2.7 concludes the chapter. The dataset containing all
experimental results presented in this chapter is available at [18]. The code used to run
the experiments is available at 1.

1github.com/jbussemaker/ArchitectureOptimizationExperiments (HIDDEN-CONSTRAINTS branch)

https://github.com/jbussemaker/ArchitectureOptimizationExperiments/tree/hidden-constraints
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2.1. NON-HIERARCHICAL FOUNDATION OF THE BAYESIAN OP-
TIMIZATION ALGORITHM

This section presents the non-hierarchical basis of the Bayesian Optimization (BO)
algorithm used and further developed in this work. An advantage of BO is the high level
of composability: many specializations of BO (e.g. mixed-discrete, multi-objective) can
be combined without negative interactions [215]. In this work the same approach is
followed: specializations (e.g. hierarchy and hidden constraints support) build on prior
specializations (e.g. mixed-discrete and multi-objective support).

Similarly to most application of BO, the BO algorithm developed in this work uses
Gaussian Process (GP) models [165, 168], also known as Kriging models [169]. For each
objective f and constraint g , one GP model is trained. GP models work by starting
from a prior distribution of estimated values and obtaining a posterior distribution by
fitting the prior to observed (sampled) values [168], see Figure 2.1. The prior represents
the prior beliefs (i.e. before observation) about the kind of function to be modeled
(Figure 2.1a). Because the objective and constraint functions are non-linear black-box
functions, no assumptions can be made about their structure, and thus the prior is set
to a constant value of 0 with a standard deviation of 1.

(a) Gaussian Process (GP) prior distribution, showing confidence interval and three functions sampled from the
process.

(b) Gaussian Process (GP) posterior distribution, updated by three observations, clearly showing the reduced vari-
ance near the observed points.

(c) Expected Improvement (EI) function for the above GP posterior, indicating where the next observation should
be performed in order to maximize the function. Note that here EI is selected by maximization, and EI is slightly
higher at the selected point than at the "hill" to the left of it.

Figure 2.1: Visualization of a Gaussian Process (GP) and the Expected Improvement (EI) infill criterion. Figures
reproduced from [167].
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The posterior is constructed by a covariance function (also known as kernel) which
relates points to each other using some measure of distance (Figure 2.1b). The result
of this is that points in the GP that are "closer" to observed points have a value that is
"closer" to the observed value as well. Additionally, the variance of the GP is reduced to
0 near observed points, and towards the variance of the prior distribution further away
from sampled points. For a given non-observed point x , a GP can thus both give the
most likely value ŷ(x) (Eq. (A.4)) of that point and a standard deviation σ̂(x) (Eq. (A.5)),
which represents how confident the model is about the mean value prediction at x .

The fact that both ŷ(x) and σ̂(x) are available enables the formulation of infill
criteria that balance exploration and exploitation without the need for any manual
configuration. This is exactly what the popular Expected Improvement (EI) criterion
provides in the Efficient Global Optimization (EGO) algorithm [142]: EI(x) is calculated
from the area under (i.e. the integral of) the part of the cumulative distribution function
of σ̂(x) that improves over the best observed f , see Figure 2.2 for a visualization. Points
with a higher EI therefore represent points with a higher potential for improving the
current best point (Figure 2.1c). This explanation skips over many of the mathematical
and practical details, and the interested reader is referred to [167, 168] for more details.
[216] provides an interactive visualization of GP modeling.

Figure 2.2: Visualization of the Expected Improvement (EI) infill criterion. At xtest, the probability distribution
is highlighted, including the shaded region that represents an improvement over the current best function
value f ∗: EI represents the centroid of the shaded region.

The BO algorithm uses a GP model that supports mixed-discrete, including categor-
ical, design variables. Categorical variables pose a particular challenge to GP models,
since there is no inherent ordering in the possible values and therefore conventional
distance measures used for modeling correlation for continuous and integer variables
might not be able to model the variable accurately. The approach for modeling inte-
ger and categorical variables is based on the work by SAVES ET AL. [174], which uses
dedicated kernels to model categorical variables.

Infill points are selected by formulating an infill ensemble. An ensemble combines
multiple infill criteria into a multi-objective infill optimization problem, solved using
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the NSGA-II multi-objective evolutionary algorithm, and infill points are selected from
the resulting Pareto front (see Section A.2 for more details). There are two advantages to
the ensemble-infill strategy [217]:

1. The selected infill points are a compromise of the underlying infills, thereby
mitigating the problem with different infill criteria suggesting to explore very
different parts of the design space [218].

2. It is trivial to select multiple infill points per iteration for batch optimization
without needing to retrain the underlying GP models [167].

For single-objective problems, an ensemble of Lower Confidence Bound (LCB) [219]
(Eq. (A.9)), Expected Improvement (EI) [142] (Eq. (A.10)), and Probability of Improve-
ment (PoI) [220] (Eq. (A.11)) infills is used (see Section A.3). For multi-objective prob-
lems, the ensemble consists of the Minimum Probability of Improvement (MPoI) [221]
(Eq. (A.12)) and Minimum Euclidean PoI (MEPoI) [10] (Eq. (A.13)) infills (see Section A.4).
The infill batch size nbatch is set to the maximum amount of designs that can be evalu-
ated in parallel by the architecture evaluation code: nbatch = nparallel. See Appendix A for
more details about the infill optimization procedure and the infill ensembles.

Inequality design constraints are handled by constraint function mean prediction
ĝ [171] (Eq. (A.14)) by default, or by Probability of Feasibility (PoF) [222] (Eq. (A.15)) if a
more or less conservative (achieved by PoF above or below 50%, respectively) criterion
is requested. To summarize, the non-hierarchical basis of the BO algorithm can deal
with the following SAO problem challenges: mixed-discrete design variables, black-box,
expensive evaluation functions, multiple objectives, and design constraints. Support
for design variable hierarchy and hidden constraints is developed and presented in the
following sections.

2.2. HIERARCHICAL DESIGN SPACE CHARACTERIZATION
This section introduces four metrics for characterizing hierarchical design spaces,
developed as part of this work and discussed in the following sections:

• Imputation ratio IR: the ratio between the size of the declared design space (i.e.
only considering the design variable definitions) and the size of the valid design
space (i.e. only containing valid design vectors). A higher value means more
discrepancy.

• Correction ratio CR: the ratio between the size of the declared design space and
the size of the correct design space (i.e. the number of correct design vectors
considering only value constraints). A higher value means more discrepancy.

• Correction fraction CRF: the fraction of hierarchy that is due to the need for
correction (correcting value constraints) versus the need for imputation (imputing
inactive design variables). The larger this value, the larger the impact of correction.

• Max rate diversity MRD: the largest encountered rate diversity in a problem. Rate
diversity is a measure for how often the different values of a given discrete design
variable are encountered in all valid design vectors. The higher this value, the
larger the difference in occurrence rates.
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2.2.1. IMPUTATION AND CORRECTION RATIO
Imputation Ratio Due to hierarchy, the valid design space (i.e. the set of all design
vectors where value constraints are satisfied and all inactive variables have been
imputed) might be much smaller than the declared design space (see Table 1.2), as also
discussed in Section 1.5.3. Since this might pose a challenge to optimization algorithms,
a metric to quantify this discrepancy is introduced: the ratio between the declared and
valid discrete design space sizes is defined as the discrete imputation ratio IRd :

IRd =
∏nxd

j=1 N j

nvalid,discr
, (2.1)

where nxd is the number of discrete design variables, nvalid,discr is the number of
valid discrete design vectors, and N j is the number of options for discrete variable j .
An imputation ratio of 1 indicates a non-hierarchical problem, values higher than 1
indicate hierarchy: for the suborbital vehicle design problem in [130], the imputation
ratio is 2.8e6/123e3 = 22.8. The higher the value, the more invalid (non-canonical and
non-corrected) vectors would be generated in a random search, and therefore the more
difficult it is for an optimization algorithm to search the design space if this effect is not
considered. Variability factor [223] as used in software product line engineering is the
reciprocal of discrete imputation ratio. The continuous imputation ratio IRc is defined
as follows:

IRc =
nvalid,discr nxc∑nvalid,discr

l=1

∑nxc
i=1δi (xd ,l )

, (2.2)

where δi (xd ,l ) is the activeness function for continuous variable i for valid discrete
design vector xd ,l , nvalid,discr the number of valid discrete design vectors, and nxc

the number of continuous design variables. A value of 1 indicates that all continuous
variables are always active. A higher value indicates that for some discrete design vectors
one or more continuous variables are inactive. Note that this formulation assumes that
only discrete design variables determine activeness of continuous design variables. The
overall imputation ratio for a given optimization problem is given by the product of the
two:

IR = IRd IRc , (2.3)

The example problem from Figure 1.10 has 16 declared design vectors (4 design
variables with 2 options each) of which only 8 are valid, so it has an imputation ratio of
IR = IRd = 16/8 = 2.

Correction Ratio Similarly to the discrepancy between the declared and valid design
space sizes, the discrepancy between the declared and correct (i.e. the set of design
vectors where value constraints are satisfied, however where inactive variables have not
been imputed yet; see Table 1.2) design spaces sizes can also be quantified. This can
help determine how much of the design space hierarchy is due to value constraints that
need correction, as opposed to design variable activeness. The correction ratio CR is
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defined as:

CRd =
∏nxd

j=1 N j

ncorr,discr
, (2.4)

CRc =
ncorr,discr nxc∑ncorr,discr

l=1

∑nxc
i=1δi (xd ,l )

, (2.5)

CR = CRd CRc , (2.6)

where CRd is the discrete correction ratio, ncorr,discr the number of correct discrete
design vectors, and CRc the continuous correction ratio.

Correction Fraction The impact of the need of correction to the design space hierar-
chy can be quantified by the correction fraction CRF:

CRF = logCR

logIR
, (2.7)

CRF varies between 0% and 100%, where 0% indicates no hierarchy is due to correction
(CR = 1) and 100% indicates all hierarchy is due to correction (CR = IR, and there are no
activeness relationships).

The valid design vectors shown in Table 2.1 represent a design space with a declared
size of 12 (N0 ·N1 = 4 ·3 = 12), however nvalid,discr = 6, and therefore IR = IRd = 12/6 = 2.0.
Additionally, the example has ncorr,discr = 10, because the inactive design variables can
take any declared value and still represent a correct (but not necessarily valid) design
vector. Therefore, CR = CRd = 12/10 = 1.2. From this, CRF = log1.2/log2.0 = 26%,
indicating that 26% of the design space hierarchy is because of the need for correction,
while the other 74% are because the need for imputation of inactive design variables.

Table 2.1: Example set of valid design vectors, showing inactive variables in red.

id v x0 x1

1 0 0
2 0 1
3 1 0
4 1 2
5 2
6 3

2.2.2. RATE DIVERSITY
In addition to the potentially large gap between declared and valid design space sizes,
there might also be a discrepancy in how often individual discrete values appear in all
possible discrete design vectors, as also noted by CRAWLEY ET AL. [39]. They mention
that for a partitioning problem of 10 elements, where the goal is to choose the best
subset of elements from the available set, there are 115 thousand possibilities to choose
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from, however 88% of those possibilities are made up of the subsets composed of 4, 5,
and 6 elements. This means that the subset of all other sizes are represented much less
in the total number of possibilities. This observation can be extended to design variable
values too: for a large version of the engine architecting benchmark problem presented
in Section 2.3.1, there are a little over 142 thousand valid architectures, however only
27 of those (about 0.02%) represent a pure jet engine architecture; the rest are turbofan
architectures, because the turbofan design space contains more active design variables.
Therefore there is a large gap between how often the two possible values of this design
variable appear in all valid discrete design vectors xvalid,discr. This gap can be quantified
by the rate diversity RD j , which is defined for each discrete design variable xd , j , and the
max rate diversity MRD, which is defined at the problem level:

Rates j =
{
Rate( j ,δ j = 0),Rate( j ,0), ..,Rate( j , N j −1)

}
, (2.8)

RD j = maxRates j −minRates j , (2.9)

MRD = max
j∈1,..,nxd

RD j , (2.10)

with j the index of the discrete design variable, δ j = 0 denoting the case when design
variable j is inactive, and Rate( j ,value) returning the relative occurrence rate of that
value in all valid discrete design vectors xvalid,discr. Rate diversity RD j then represents
the difference between the most and least occurring values for a given discrete design
variable j , and max rate diversity MRD the maximum of all rate diversities. Rate diversity
and max rate diversity are normally defined without the inactive case Rate( j ,δ j = 0)
included. If the inactive case is included, the subscript "all" is added to denote all cases
and values are considered.

Table 2.2 shows occurrence rates, the rate diversity and maximum rate diversities
of a smaller version of the turbofan problem. The rate diversity of the choice between
turbojet and turbofan architectures (defined by x1) is not as extreme as for the afore-
mentioned larger version, however there is still a rate diversity of 60% as only 20% of
possible discrete design vectors represent a turbojet architecture.

A large MRD thus indicates that for at least one discrete design variable some of
its values occur often in xvalid,discr, whereas others occur rarely. This effect should
be considered when exploring the design space, to prevent spending not enough
computation effort exploring (or even skipping over) the values that occur rarely.

Table 2.2: Rate diversity RD of the simple turbofan architecting problem. The maximum rate diversity MRD
values are underlined. Only discrete variables are shown, as rate diversity does not apply to continuous vari-
ables.

x1 x4 x11 x13 x14 x15

Inactive − − 20% 20% 7.1% 7.1%
x j = 0 20% 7.1% 40% 40% 35.7% 35.7%
x j = 1 80% 28.6% 40% 40% 35.7% 35.7%
x j = 2 − 64.3% − − 21.4% 21.4%
RDal l 60% 57.1% 20% 20% 28.6% 28.6%
RD 60% 57.1% 0% 0% 15.4% 15.4%
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2.3. OPTIMIZATION IN HIERARCHICAL DESIGN SPACES
This section deals with optimization in hierarchical design spaces using MOEAs and
BO algorithms. First, several hierarchical test problems are presented in Section 2.3.1.
Then, the section presents results of the research performed:

• A hierarchical sampling algorithm for creating a Design of Experiments (DoE)
in hierarchical design spaces to deal with max rate diversity (MRD) effects
(Section 2.3.2).

• An investigation into problem-agnostic correction algorithms for hierarchical
design spaces to deal with correction ratio (CR) effects (Section 2.3.3).

• An investigation into whether including more information about the hierarchical
design space (e.g. activeness information and the availability of xvalid,discr) into
the optimization algorithm is beneficial (Section 2.3.4).

2.3.1. TEST PROBLEMS
Developing optimization algorithms requires test problems that behave as "realistic"
problems would also behave [224]. For SAO, that means that the test problems are based
on system architecting activities and that their evaluation code is derived from physics
simulations. Evaluation time should be kept near-instantaneous to enable testing many
configurations of an optimization algorithm, and allow repeating a test multiple times to
correct for randomness in the tested algorithms. Additionally, they should be available
openly to enhance transparency and reproducibility of presented optimization results,
and they should support tuning the difficulty of the problem [224].

As part of this work, several existing test problems have been modified and used,
however three main test problems stand out due to their basis in realistic SAO problems:

• A multi-stage rocket design problem ("Rocket"), which is a mixed-discrete (6
continuous and 8 discrete design variables), multi-objective (launch cost mini-
mization and payload maximization), constrained (∆V , structural, and volume
constraints), hierarchical (see Table 2.3) problem.

In addition to the multi-objective version ("Rocket"), two single-objective versions
are also available: one that minimizes cost ("RCost") and one that minimizes a
weighted function of cost and payload mass ("RWt"). The cost minimum lies in
the group of single-stage rockets, which only makes up 0.3% of all valid discrete
design vectors, whereas the weighted minimum lies in one of the much larger
multi-stage rocket groups.

• A Guidance, Navigation & Control (GNC) problem, adopted from [39, 122],
which is a mixed-discrete (6 continuous and 11 discrete design variables), multi-
objective (mass and failure rate minimization), hierarchical (see Table 2.3) prob-
lem. The original problem has been modified to use continuous variables for
selecting object types, to turn the problem into a mixed-discrete problem (com-
pared to fully discrete).

Next to the multi-objective version ("MD GNC"), a single-objective version that
minimizes weight only ("Wt GNC"), a single-objective version that minimizes
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failure rate ("FR GNC"), and a single-objective version that solves a scalarized
objective composed of weight and failure rate ("SO GNC") are also implemented.
The weight minimum lies in a group of one x of xvalid,discr (1 / 327 = 0.3%).

• The jet engine architecture optimization problem of Section 2.6, which is a mixed-
discrete (9 continuous and 6 discrete design variables), single-objective (fuel
consumption minimization), constrained (5 inequality constraints), hierarchical
(see Table 2.3) problem subject to hidden constraints. In a random DoE, the
problem has a failure rate (FR) of 50%. The evaluation code of the test problem
("Jet SM") uses random forest regressors for each output to reduce evaluation
times (milliseconds, compared to minutes for the original problem).

Table 2.3 presents some statistics for the problem versions used for testing optimization
algorithms in this chapter: both single-objective and multi-objective problems are
included, and all except the GNC problems contain design constraints. The GNC
problems feature a relatively high imputation ratio IR, showing that they indeed feature
hierarchical design spaces. The GNC and Jet SM problems need correction as they get
about half their IR from the need for correction shown by a correction fraction CRF
being a little over 50%. Max rate diversity (MRD) is shown as being common in SAO
problems. The Jet SM problem contains hidden constraints, with an FR of 50%.

Table 2.3: Characteristics of test problems used for testing SAO algorithms. Abbreviations and symbols: n f =
number of objectives, ng = number of inequality constraints, nxc = number of continuous design variables,
nxd = number of discrete design variables, nvalid,discr = number of valid discrete design vectors, IR = imputa-
tion ratio, CR = correction ratio, CRF = correction fraction, MRD = max rate diversity, FR = failure rate.

Problem n f ng nxc nxd nvalid,discr IR CR CRF MRD FR

Rocket 2 3 6 8 18 522 3.7 1.0 0% 94%
MD GNC 2 6 11 327 150 16.1 56% 88%
Jet SM 1 5 9 6 70 3.9 2.1 55% 60% 50%

2.3.2. SAMPLING HIERARCHICAL DESIGN SPACES
When sampling the design space to create the initial Design of Experiments (DoE), for
use as initial database of design points for SBO algorithms or initial population for
evolutionary algorithms, the effects of rate diversity should be considered: if this effect
is ignored, some regions in the design space may be over- or under-represented [39].

Sampling design vectors directly from the set of valid design vectors xvalid,discr

ensures generated design vectors are valid, and therefore correction is not needed
after sampling: this is called the hierarchical sampling procedure. To prevent over- or
under-representation, xvalid,discr may be divided into subdivisions, and sampling can be
separated in two steps: first decide how many samples to draw from each subdivision,
then sample from the subdivisions. If xvalid,discr is not available, a non-hierarchical
sampling procedure must be used. Here, first discrete vectors are sampled randomly,
then correction and imputation are applied to ensure that resulting design vectors are
valid. Both the hierarchical and non-hierarchical samplers end by sampling continuous
design variables by Sobol’ sampling [225], ignoring inactive continuous design variables.
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Defining Subdivisions Subdivisions (groups) can be defined based on design vector
values and/or activeness information. In addition to not defining any subdivisions, the
following ways to define subdivisions are considered in this investigation:

• Based on the number of active design variables nact [226].

• Based on which design variables are active xact.

This approach is similar to how FRANK ET AL. [130] define their architecture
optimization problems: they divide by selections of values from a morphological
matrix constrained by a compatibility matrix, then for each set of selections with
the same active design variables they define a separate optimization problem.
Table 2.4 shows an example of how the valid discrete design vectors xvalid,discr are
separated into groups based on xact.

• Based on values of high-RD (rate diversity) variables.

Subdivisions are made by recursively selecting argmax RD j subject to a minimum
RD to ensure only high-RD variables are used for grouping.

Another way is to define subdivisions based on the value of certain discrete design
variables. For example, PELAMATTI ET AL. [132] define subdivisions based on dedicated
dimensional variables, for example the selection of the number of components. This
approach, however, requires the user to define which variables act as such grouping
variables, thereby requiring the user to think in terms of the design variables rather than
the architecture design space (i.e. domain-specific design space model). Therefore, this
approach will not be considered further.

Table 2.4: Grouping and weighting process of the hierarchical sampling algorithm: discrete design vectors
are grouped by xact and weighted by w = nact (number of active x); wrel represents the relative weighting
for sampling design vectors from groups (e.g. wrel = 36% means 36% of x is sampled from that group). Red
background indicates an inactive variable.

x0 x1 x2 x3 x4 xact w = nact wrel

0 0 0 0
x0, x1
x2, x4

4 36%0 0 0 1
0 0 0 2

0 0 1 0
x0, x1
x2, x3

4 36%
0 0 1 1
0 0 2 0
0 0 2 1

0 1 x0, x1 2 18%

1 x0 1 9%

Sampling from Subdivisions After subdivisions are defined, it should be determined
how many samples to take from each subdivision by assigning weights w to each group.
Three distributions are compared:
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• uniform weighting as applied in [226]: w = 1;

• weighting by number of active design variables as applied in [132]: w = nact; and

• weighting by group size: w =p
nx,rel, where nx,rel is the number of x in the group.

The reason for the latter two is that although smaller subdivisions (i.e. subdivisions
with less active variables and therefore less possible discrete design vectors) should
not be under-represented compared to larger subdivisions, larger subdivisions might
need more samples to give a good overview of subdivision behavior to the optimization
algorithm. Weighting by group size uses w =p

nx,rel, because if nx,rel is used directly it
is equivalent to hierarchical sampling without grouping. The square root is applied to
prevent oversampling large groups.

Table 2.4 shows how the valid discrete design vectors xvalid,discr are separated into
groups based on xact and weights are assigned based on nact. The relative weighting wrel

then determines how many of the requested samples are sampled from each group. For
example, if 100 samples are requested, 36 will come from the first group, 36 from the
second group, and 18 and 9 from the last two groups, respectively.

Comparison of Sampling Algorithms (NSGA-II) First, the previously discussed sam-
pling strategies are tested on NSGA-II. NSGA-II is executed with a DoE size of 10 ·nx ,
25 generations and 100 repetitions. Optimization performance is compared based on
∆HV regret (Eq. (E.3)) using the procedure described in Appendix E. ∆HV (∆ hyper-
volume; (Eq. (E.1))) represents the distance to the known optimum (or Pareto front in
case of multi-objective optimization) normalized to the range of objective values. A
lower ∆HV regret is better, as it shows that the optimum was approached more closely
and/or reached sooner. Table 2.5 presents the results of sampling strategies for NSGA-II.
The columns before the "rank" columns present the strategy performance ranks per
test problem: the best performing strategies are assigned rank 1; higher ranks are
progressively assigned to worse performing strategies. Higher percentages in the rank
columns represent a strategy more often reaching the associated rank, as seen over all
test problems. The penalty represents an increase of mean ∆HV regret compared to the
best strategy: lower is better. Throughout the table, darker background colors represent
better results. The overall best performing strategy is underlined. For more details on
how to interpret such results tables, refer to Appendix E.1.

Table 2.5 shows that the hierarchical non-grouping sampling performs worst, espe-
cially on the rocket problems and weight-minimizing GNC problem (rank 8 and 455%
penalty compared to the best strategy). This is because in those problems (part of) the
optimum lies in architectures represented by only 0.3% of xvalid,discr (1 sensor/computer
for the GNC problem; 1 stage for the Rocket problem). The non-grouping sampler
uniformly samples over all xvalid,discr and therefore has a high chance of not sampling
these architectures. Problems with high MRD potentially suffer from this effect, de-
pending on where the optimum lies. From the other samplers, the hierarchical samplers
without weighting consistently perform better than samplers with weighting. Among
the non-weighted hierarchical samplers, the nact sampler performs best, with the other
hierarchical samplers incurring between 6% and 7% relative penalty.
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Comparison of Sampling Algorithms (BO) For the BO algorithm, the non-hierarchical
sampler and hierarchical non-weighted samplers are compared. The BO algorithm is
executed with ndoe = 3 ·nx , 40 infill points and 24 repetitions. For the Jet SM problem,
ndoe = 10 ·nx for BO will be used, to correct for the fact that this problem features
a hidden constraint and therefore needs a larger DoE. Table 2.6 presents sampling
results for the BO algorithm. It shows the hierarchical xact sampler performs best. The
hierarchical nact sampler performs worse with an 18% mean performance penalty.

Non-hierarchical sampling performs slightly worse than the best sampler, at a
12% mean performance penalty both for NSGA-II and for the BO algorithm. There-
fore, although the availability of xvalid,discr improves algorithm performance, the non-
availability does not prevent the problem from being solved.

When comparing between NSGA-II and the BO algorithm, therefore, xact and MRD
are good candidates for hierarchical sampling. Hierarchical sampling based on xact is
selected for its slightly better performance on the BO algorithm.

2.3.3. DESIGN VECTOR CORRECTION ALGORITHMS
Correcting invalid design vectors might affect design space exploration by modifying
results of evolutionary operators for evolutionary algorithms and infill optimization for
SBO algorithms. Correction behavior is especially important for problems with a high
correction ratio (CR) due to the low chance of randomly finding a correct design vector.
This investigation only considers correction of discrete design variables, as in this work
it is assumed that only discrete variable determine hierarchy.

The mechanism of correction depends on the hierarchical structure of the opti-
mization problem and therefore can be implemented on a per-problem basis, known as
problem-specific correction. In such a case, design variables are corrected during parsing
of the design vector into an architecture description: design variables not representing
a valid option value are corrected one-by-one to the closest correct value. For example,
when a design variable selects the third compressor stage for bleed off-take when only
two compressor stages are available, the design variable is modified to select the second
compressor stage instead. This is called a greedy correction algorithm, as it takes the
locally best choice for correcting invalid values for each invalid design variable. It is
arguably the most convenient way to implement problem-specific correction, because
of this step-by-step correction mechanism.

Problem-agnostic correction algorithms instead may reduce implementation effort
and potentially improve optimizer performance. Two classes of correction algorithms
are defined: eager algorithms for when xvalid,discr is available, and lazy algorithms for
when it is not.

Eager Problem-Agnostic Correction The following eager correction algorithms have
been developed as part of this work:

• Any-select: As eager correction algorithms have access to xvalid,discr, the simplest
algorithm selects any of the available vectors as a replacement. A variant that
always returns the first (or any index for that matter) valid design vector can be
defined, however that would not help with exploration at all: for problems with
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high correction ratios there would still be a low chance to generate a new valid
design vector. A better option therefore is to select a random valid design vector,
as shown in Figure 2.3b.

• Greedy: this algorithm (see Figure 2.3c) repeatedly filters xvalid,discr based on the
selected value of each design variable, starting from the left of the design vector to
be corrected xcorr. If a given design variable value leaves no valid design vectors to
be selected from, it is corrected to the closest value that does.

• Similarity: eager correction based on similarity (see Figure 2.3d) is done by
calculating the weighted distances from xcorr to all vectors in xvalid,discr and
selecting the valid vector with the minimum distance to replace xcorr. Weighting
factors linearly varying from 1.1 to 1.0 are applied to favor changes on the right
side of the design vector over changes on the left, assuming that left-side design
variables represent higher-impact choices. As distance metrics either Euclidean
(deuc) or Manhattan (dmanh) distance can be used:

deuc(x , x ′) =
√

nx∑
i=1

(
xi −x ′

i

)2, (2.11)

dmanh(x , x ′) =
nx∑

i=1

∣∣xi −x ′
i

∣∣ . (2.12)

(a) Example xvalid,discr

(b) Random Any-select (c) Greedy
(d) Similarity (Manhattan distance,
Eq. (2.12))

Figure 2.3: A visualization of different eager correction strategies.
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Lazy Problem-Agnostic Correction Lazy correction algorithms do not have access to
xvalid,discr and instead provide some way to generate design vectors and then check with
a user-provided function isCorrect(x) whether that design vector is correct or not. This
generation and checking process continues until a correct design vector is found. The
following lazy correction algorithms have been developed:

• Any-select: analogous to the any-selection eager algorithm, also an any-selection
lazy algorithm can be defined. Randomized selection is used, which on average
needs to generate CR (correction ratio) design vectors before finding a correct
design vector. This is the main limitation of lazy compared to eager correction
algorithms.

• Similarity: lazy correction by similarity is done by modifying xcorr with some ∆corr

vector, which can either be generated depth-first or distance-first:

– Depth-first directly applies the generated Cartesian product of ∆ values for
each design variable.

– Distance-first first generates all possible∆corr vectors and then sorts them by
Euclidean or Manhattan distance before applying them to xcorr. The same
distance-weighting process as for eager similarity selection is used here.

Note that greedy correction is not possible for lazy algorithms, because it is assumed
that isCorrect(x) only operates on complete design vectors and not fractions of design
vectors as would be needed for greedy correction.

Table 2.7 presents an overview of discussed correction strategies.

Table 2.7: Overview of correction algorithms for hierarchical design spaces. Euc and Manh refer to Euclidean
and Manhattan distance metrics, respectively. See Figure 2.3 for a visualization of eager correction algorithms.

Type Algorithm Configuration Requires

Problem-specific Custom correction function
Eager Any-select xvalid,discr

Greedy xvalid,discr
Similarity Euclidean distance xvalid,discr

Manhattan distance xvalid,discr
Lazy Any-select isCorrect(x)

Similarity Depth-first isCorrect(x)
Distance-first; Euclidean distance isCorrect(x)
Distance-first; Manhattan distance isCorrect(x)
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Comparison of Correction Algorithms (NSGA-II) The identified correction strategies
are tested on NSGA-II first, with a DoE size of 10 ·nx , 25 generations and 100 repetitions.
Eager correction strategies are tested with the hierarchical xact sampling algorithm; lazy
strategies with the non-hierarchical sampler as here the assumption is that xvalid,discr

is not available. Correction strategies are tested for the various algorithm-specific
configuration options (see Table 2.7). Eager and lazy correction are additionally
compared to problem-specific correction.

Table 2.8 presents results of correction strategies for NSGA-II. Eager correction
performs better than lazy correction, and comparable to problem-specific correction.
Eager Any-select performs best, with Eager Similarity (Manhattan or Euclidean distance)
performing comparably. Lazy Similarity (depth-first) correction performs best among
lazy correction strategies. Lazy correction, however, takes between 1 and 2 orders of
magnitude longer than problem-specific and eager correction: 2 to 50 ms, compared
to 0.1 to 1 ms for eager and problem-specific correction. Additionally, lazy correction
time increases linearly with correction ratio CR, because it is based on a trial-and-error
approach.

Comparison of Correction Algorithms (BO) For the BO algorithm, best performing
eager and lazy correction algorithms and problem-specific correction are compared.
The BO algorithm is executed with ndoe = 3 ·nx (ndoe = 10 ·nx for the Jet SM problem),
40 infill points and 24 repetitions. Table 2.9 presents sampling results for the BO
algorithm. Problem-specific correction with hierarchical sampling performs best. Eager
correction performs comparable to problem-specific correction, however attains rank
1 less often. Lazy correction and problem-specific correction with non-hierarchical
sampling perform worst.

Based on these investigations, it is concluded that problem-specific greedy cor-
rection is sufficient for good optimizer performance, both for NSGA-II and BO. If the
user prefers not to implement problem-specific correction instead, and if xvalid,discr is
available, then Eager Any-select correction should be used.
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2.3.4. USING HIERARCHY INFORMATION IN OPTIMIZATION ALGORITHMS
The hierarchical sampling and correction algorithms investigated in the preceding
sections assume that all information about the hierarchical design space is readily
available: design vectors are corrected and imputed, information about design variable
activeness is available, and optionally the set of all valid discrete design vectors xvalid,discr

is available. This section discusses how such information can be integrated in existing
optimization algorithms, and investigates whether it indeed improves optimization
algorithm performance. According to ZAEFFERER ET AL. [133] there are three high-level
strategies for integrating information about design space hierarchy when implementing
and solving an optimization problem:

1. Naive: no modification of the optimization algorithm at all, thereby effectively
ignoring the effect of design variable hierarchy.

2. Correction and imputation: correction and imputation are applied to ensure that
all evaluated design vectors are valid.

3. Explicit consideration: the hierarchical structure is explicitly made available to
and used by the optimization algorithm.

Figure 2.4 compares the three high-level integration strategies. It highlights the exis-
tence of a standalone corrector function that corrects and imputes design vectors and
optionally returns activeness information. A discussion of the three strategies follows.

1: Naive

2: Correction
& Imputation

3: Explicit
Consideration

Optimizer

x
Evaluator

xvalid,δ훿
Corrector

xvalid

f,g

Optimizer

x
Evaluator

xvalid

Corrector

xvalid

f,g

Optimizer

x
Evaluator

f,g

Figure 2.4: High-level strategies for dealing with hierarchical optimization.

Naive With the naive approach, the evaluation function is left unmodified compared
to non-hierarchical optimization:

f , g = evaluate(x) . (2.13)

The results of this is that there might be a discrepancy between which design vectors
the optimizer thinks are being evaluated and which design vectors actually are being
evaluated. Not making this information available to the optimizer might lead to wasted
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computational resources, because exploration could be performed in sections of the
design space that have no influence on performance. For example, the optimizer might
decide to generate new design vectors by modifying inactive variables of a previously-
evaluated design vector, thereby effectively exploring the same already-explored design
vector. This effect is especially present for problems with a high imputation ratio IR,
because of the low chance of randomly finding new valid design vectors in that case.

Correction and Imputation As discussed in Section 1.5.3, correction and imputation
ensure that design vectors are correct by ensuring value constraints (constraints that
restrict options of design variables based on selected options of other design variables)
are satisfied and by imputing inactive design variables to some default value, respec-
tively. The result is a valid design vector xvalid that then is evaluated. Applying these
operations avoids the design vector mapping problems encountered in the "naive"
strategy. Applying correction and imputation requires that the optimization algorithm
supports the fact that the design vector might be modified by the evaluation function,
and that it records such modifications in its database of evaluated design vectors. With
the correction and imputation approach, Eq. (2.13) is modified to:

f , g , xvalid = evaluate(x) . (2.14)

Another way to support correction and imputation is through an ask-and-tell inter-
face [227]: here a process external to the optimizer has control over the optimization
loop, "asking" the optimizer for one or more design vectors to evaluate and "telling"
the optimizer the results after evaluation is finished. Results are "told" to the optimizer
together with the corresponding design vectors, which means the ask-and-tell pattern
allows integrating correction and imputation steps without any further modifications.

Correction and imputation can also be implemented using a repair operator [228]:
a problem-specific function that modifies design vectors. The advantage of a repair
operator over modifying design vectors in the evaluation function is that the correction
and imputation operators are now available as a standalone function rather than always
tied to evaluation. The standalone repair operator can be formulated as:

xvalid = repair(x) . (2.15)

This allows correction and imputation to be applied during other steps in the optimiza-
tion process than evaluation, for example when generating initial design points or when
searching the design space for the best infill point for surrogate-based optimization
algorithms [175].

Explicit Consideration The most invasive way of supporting hierarchical design
spaces is through explicit consideration by optimization algorithms. Here, correction
and imputation become an integral part of the optimizer and activeness information
is made available to the optimizer. Activeness information comprises both the active-
ness vector δ for a given design vector x, and the list of which design variables are
conditionally active. The availability of activeness information makes it possible to
generate all possible valid design vectors xvalid,discr, and therefore it allows using the
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hierarchical sampling algorithm presented in Section 2.3.2. Also, it enables applying
hierarchical kernels in GP models used by BO [26, 134, 140, 182]. When using the explicit
consideration strategy, the evaluation function (Eq. (2.14)) is modified to:

f , g , xvalid,δ= evaluate(x) . (2.16)

In addition, the repair operator (Eq. (2.15)) is modified to:

xvalid,δ= repair(x) . (2.17)

Finally, the problem also returns xvalid,discr, δvalid,discr, and information about which
design variables are conditionally active. Note that returning all valid design vectors
xvalid,discr and associated activeness information is optional, because it might not be
possible to determine them all due to time or memory limits. Adherence to these
interfaces has been implemented by the author in the Surrogate Modeling Toolbox
(SMT) [26] as part of this work.

Modeling the Hierarchical Design Space One way to explicitly consider the hierar-
chical structure is by formally modeling the hierarchical structure and making this
model available to the optimization algorithm. Because the model then provides all
information needed without needing to interrogate the problem definition (i.e. as
needed for a repair operator) this opens up the possibility for physically separating
the optimizer from the function evaluation, for example to enable remote ask-and-tell
execution. Hierarchical design space models can be classified according to different
levels of complexity:

1. Single-level: one set of variables determining activeness of a disjoint set of
conditional variables, e.g. [132, 181].

2. Tree-structured: conditional variables can also determine activeness of other
variables, e.g. BoTorch [229].

3. Directed acyclic graph: activeness can be determined by multiple variables,
e.g. [134, 188] and ConfigSpace [230].

4. Directed graph: additionally supports cyclic dependencies.

It should be noted that also if the optimization problem does not expose an explicit
hierarchical design space model, the problem still contains some model of the hier-
archical structure, either explicitly defined or implicitly embedded in the evaluation
code. Table 2.10 presents a detailed overview of the discussed integration strategies. It
breaks down the three high-level strategies into various levels of additional capabilities
gained, based on the data interfaces being made available to the optimizer, and based
on whether the design space model is made available explicitly.
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Table 2.10: Different strategies for dealing with design variable hierarchy in optimization algorithms.

General strategy Integration Usage 1 2 3 4 5 6

Naive N/A N/A
Correction & imputation x-output Evaluation ✓

Ask-and-tell Evaluation ✓
Repair operator Evaluation, sampling ✓ ✓

Explicit consideration Activeness δi (x) Sampling ✓ ✓ ✓
Activeness δi (x) Sampling & modeling ✓ ✓ ✓ ✓
Formal model Sampling & modeling ✓ ✓ ✓ ✓ ✓ ✓

1 All evaluated x are valid.
2 All x in sampling and infill search are valid.
3 Availability of all valid discrete design vectors xvalid,discr.
4 Hierarchical kernels for surrogate modeling.
5 Dedicated search operators and possibility for problem decomposition.
6 Physical separation between optimization and evaluation code.

Comparison of Strategies The different levels of integration are now compared to
investigate if applying higher levels of integration indeed results in better optimizer
performance. Experiments are run for the Naive, x-output, Repair and Activeness
integration strategies. For BO, the activeness strategy is run in two configurations: one
where activeness is only used for hierarchical sampling, and one where activeness is
available additionally for the GP models. An overview of tested integration strategies is
provided in Table 2.11. NSGA-II is executed with ndoe = 10 ·nx , 25 generations and 100
repetitions. The BO algorithm is executed with ndoe = 3 ·nx (ndoe = 10 ·nx for the Jet SM
problem), 40 infill points and 16 repetitions.

Table 2.11: Tested hierarchy integration strategies and impact on available capabilities. Abbreviations: hier. =
hierarchical, corr. = correction, expl. cons. = explicit consideration.

Naive x-output Repair Hier. sampling Activeness

Strategy Naive Corr. Corr. Expl. cons. Expl. cons.
Valid x-output ✓ ✓ ✓ ✓
Repair operator ✓ ✓ ✓
Hierarchical sampling ✓ ✓
Hierarchical GP (BO only) ✓

Table 2.12 shows that for NSGA-II, the level of integration does not influence
performance much. Repair performs best, indicating that hierarchical sampling (as
used in Activeness) is not necessarily beneficial. Table 2.13 shows that for BO a higher
level of integration improves optimizer performance. Naive, x-output and Repair
integration is penalized significantly (134%, 149% and 89%, respectively), showing that
in these cases the BO algorithm is less well able to suggest valid infill design points.
However, a reduction in performance when using hierarchical kernels (Activeness)
compared to non-hierarchical kernels (Hierarchical sampling) is observed. Hierarchical
kernels work well for querying hierarchical models [26], however might work less well
when subject to clustering of sampling points as would occur in an SBO run.
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2.4. BAYESIAN OPTIMIZATION WITH HIDDEN CONSTRAINTS
This section identifies and investigates various strategies for dealing with hidden
constraints in Bayesian Optimization (BO) algorithms.

Rejection Strategy The simplest strategy is to train the surrogate models only on
viable points, thereby in effect rejecting failed points from the training set [147]. The
disadvantage to this approach is that knowledge of the design space is ignored: the
optimizer might get stuck suggesting the same infill point(s) over and over, because it
cannot know that these infill points will fail to evaluate.

Replacement Strategy A more advanced approach is to replace the failed points by
some values derived from viable points, as initially suggested by FORRESTER ET AL. [146]
and inspired by imputation in the sense of replacing missing data in statistical datasets.
They reason that failed points actually represent missing data and can be replaced by
values of close-by viable points. However, the replaced values should drive the optimizer
towards the viable region of the design space, which leads them to formulate a method
for finding replacement values from a Gaussian Process (GP) model trained on the
viable points only:

yreplace (x failed) = ŷ (x failed)+α σ̂ (x failed) , (2.18)

where y represents the output value to be replaced, ŷ (Eq. (A.4)) and σ̂ (Eq. (A.5)) the
output and uncertainty estimates of the GP trained on viable design points, and α some
multiplier (α= 1 in [146]). They show that their approach works well for a continuous
single-objective airfoil optimization problem.

Another strategy for replacing values of failed points is by simply selecting one
or more neighbor points and applying some aggregation function to get one value to
replace. For example, HUYER & NEUMAIER [231] replace failed values by the max of nnb

neighbor points. This concept can be expanded by considering nnb = 1 to use the closest
point to select the replacement value, or nnb = nviable to consider all viable points for the
replacement value.

Prediction Strategy The most advanced method for dealing with hidden constraints
in SBO algorithms is to predict where the failed region lies with the help of another
model [232]. It is possible to do this based on distances, such as hyperspheres [233] or
Voronoi tesselation [234], however these only work for continuous design spaces.

For mixed-discrete and hierarchical design spaces the application of machine
learning models is investigated. Here the idea is as follows:

1. Assign binary labels to all design points based on their failure status: 0 for failed
points and 1 for viable points.

2. Train a model on these labels.

3. Use the model to predict the Probability of Viability (PoV):

PoV(x) = ŷPoV(x), (2.19)

where ŷPoV is the value predicted by the model.
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PoV lies between 0 (0%) and 1 (100%), and therefore represents the predicted probability
that a newly-selected infill point will be viable (i.e. will not fail). During infill
optimization, PoV can be used in two ways: either as a penalty multiplier to the infill
criterion [232], or as a constraint to the infill problem that ensures that the PoV of
selected infill points is at or above some threshold [235].

Different types of surrogate models have been used to predict PoV, mainly selected
due to their ability for modeling such binary classification problems. Used models
include Random Forest Classifiers (RFC) [232], piecewise linear Radial Basis Functions
(RBF) [147], Support Vector Machines (SVM) [236], SVM’s with RBF kernel [235],
Gaussian Process models [237–239], and K-Nearest Neighbors (KNN) classifiers [239,
240].

Implementation Approaches The rejection and replacement strategies are imple-
mented into the BO algorithm in a preprocessing step before training the GP models.
The training set is separated into a viable and a failed set; for rejection the viable set is
then simply discarded, whereas for replacement the points in the failed set are assigned
some value for each output that is based on the viable points. Afterwards, the GP models
are trained and the infill selection process continues as usual.

The integration of the prediction strategy requires the modification of the infill
process itself. As for rejection and replacement, the training set is separated into the
viable and failed set. The viable set is then directly used to train the GP models for infill
search. The additional surrogate model for Probability of Viability (PoV) prediction is
trained with a set containing all points and with binary labels assigned according to
the viability status of the points: 0 for failed points and 1 for viable points. The infill
optimization problem can then be modified by adding an inequality constraint that
ensures that PoV(x) ≥ PoVmin:

gPoV(x) = PoVmin −PoV(x) ≤ 0, (2.20)

where PoVmin represents a user-defined minimum PoV to be reached, and PoV(x)
(Eq. (2.19)) represents the predicted PoV for a given design point. PoV can also be
integrated by modifying the infill objectives:

fm,infill,mod(x) = 1− ((
1− fm,infill(x)

)
PoV(x)

)
, (2.21)

where fm,infill represents the mth infill objective, and assuming infill objectives are
normalized and to be minimized.

To illustrate this process, Figure 2.5 presents several steps of running BO on a test
problem, with an RBF model as PoV predictor used as an infill constraint (Eq. (2.20))
with PoVmin = 50%. The test problem is the single-objective problem from ALIMO ET

AL. [235], modified to have its optimum at the edge of the failed region near the bottom
of the 2D design space. As can be seen, all suggested infill points satisfy the gPoV

constraint, however, in the earlier iterations this constraint can be inaccurate. Several
infills are generated that violate the hidden constraint, and after each iteration the
model gets more accurate at the edges of the failed regions for the three locations in the
design space where the optimizer expects the optimum to lie. Additionally, it is shown
that the model should be able to handle closely-spaced failed and viable points.
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Figure 2.5: Several optimization steps between iteration 1 and 20 of BO executed on a test problem with its
optimum lying at the edge of the failed region, as shown in the bottom row. The main GP is shown on the left
(darker means a lower, more optimal value), and the RBF model for predicting PoV is shown on the right. The
RBF model is used as an infill constraint with PoVmin = 50%, showing green and red contours for satisfied and
violated constraint values, respectively. Green, red, and magenta points represent viable, failed, and selected
infill points, respectively.
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Comparison of Strategies To compare strategy performance, the test problems listed
in Table 2.14 are used to run the set of hidden constraint strategies listed in Table 2.15.
Compared to the previously identified predictor models, additionally a Variational GP
and the mixed-discrete GP developed in [241] are tested. A Variational GP does not
assume a Gaussian distribution and therefore might be able to more accurately model
discontinuous functions as seen in classification problems [180, 242]. To ensure there
are enough viable points to train models on for the infill search, the DoE size of problems
containing hidden constraints should be increased:

ndoe =
kdoe nx

1−FRexp
, (2.22)

where kdoe is the DoE multiplier, nx the number of design variables, and FRexp the
expected fail rate. An expected fail rate of 60% and kdoe = 2 (kdoe can be relatively small
for BO, compared to creating a DoE for constructing a surrogate model that is accurate
throughout the design space) are used for the following tests. Each optimization is
executed with ninfill = 50 and is repeated 8 times.

Table 2.14: Test problems for comparing hidden constraint strategies. Abbreviations and symbols: IR = impu-
tation ratio, FR = failure rate, HC = hidden constraints, MD = mixed-discrete, H = hierarchical, MO = multi-
objective, nxc and nxd = number of continuous and discrete design variables, respectively, n f = number of
objectives, ng = number of constraints.

Name Ref. nxc nxd n f ng IR FR

Branin [166] 2 1 0%
HC Branin [237] 2 1 33%
Alimo [235] 2 1 51%
Alimo Edge 2 1 53%
HC Sphere [236] 2 1 51%
Müller 1 [147] 5 1 67%
Müller 2 [147] 4 1 40%
HC CantBeam 4 1 1 83%
HC Carside Less 7 1 9 39%
HC Carside 7 3 8 66%
MD/HC CantBeam 2 2 1 1 81%
MD/HC Carside 3 4 3 8 66%
H Alimo 2 5 1 5.4 51%
H Alimo Edge 2 5 1 5.4 53%
H Müller 2 4 4 1 5.4 37%
H/HC Rosenbrock [243] 8 5 1 1 1.5 21%
MO/H/HC Rosenbrock [243] 8 5 2 1 1.5 60%
Jet SM Section 2.3.1 9 6 1 5 3.9 50%
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Table 2.15: Tested Bayesian Optimization hidden constraint strategies. Abbreviations: GP = Gaussian Process.

Strategy Sub-strategy Configuration Implementation

Rejection
Replacement Neighborhood Global, max

Local
5-nearest, max
5-nearest, mean

Predicted worst α= 1 SMT1

α= 2 SMT1

Prediction Random Forest Classifier PoVmin = 50% scikit-learn2

K-Nearest Neighbors PoVmin = 50% scikit-learn2

Radial Basis Function PoVmin = 50% Scipy3

GP Classifier PoVmin = 50% scikit-learn2

Variational GP PoVmin = 50% Trieste4

Mixed-Discrete GP PoVmin = 50% SMT1

1 https://smt.readthedocs.io/
2 https://scikit-learn.org/
3 https://scipy.org/
4 https://secondmind-labs.github.io/trieste/

Table 2.16 presents optimization performance results. It can be seen that prediction
with a Random Forest Classifier (RFC) performs best (rank 1) or good (rank ≤ 2)
compared to other strategies, with mixed-discrete (MD) GP prediction and predicted
worst replacement (α= 1) closely following. Table 2.17 presents performance measures
averaged over all test problems, relative to the rejection strategy. A reduction in ∆HV
regret is usually combined with a reduction in failure rate, as a lower failure rate indicates
a better capability of avoiding the failed region. Replacement strategies approximately
double the training and infill cycle time, due to the fact that the trained GP models (one
for each f and g ) contain the complete set of design points as training values, whereas
for rejection and prediction only the viable points are used. Prediction strategies train
an extra model to predict the PoV, which leads to a moderate increase in training and
infill time.

https://smt.readthedocs.io/
https://scikit-learn.org/
https://scipy.org/
https://secondmind-labs.github.io/trieste/


2.4. BAYESIAN OPTIMIZATION WITH HIDDEN CONSTRAINTS

2

63

Ta
b

le
2.

16
:

C
o

m
p

ar
is

o
n

o
fh

id
d

en
co

n
st

ra
in

t
st

ra
te

gi
es

o
n

va
ri

o
u

s
te

st
p

ro
b

le
m

s,
ra

n
ke

d
b

y
∆

H
V

re
gr

et
(l

ow
er

ra
n

k
/

d
ar

ke
r

co
lo

r
is

b
et

te
r)

.
B

es
t

p
er

fo
rm

in
g

st
ra

te
gy

is
u

n
d

er
li

n
ed

.
A

p
p

en
d

ix
E

.1
ex

p
la

in
s

h
ow

to
in

te
rp

re
t

th
es

e
ki

n
d

s
o

f
re

su
lt

s
in

m
o

re
d

et
ai

ls
.

A
b

b
re

vi
at

io
n

s:
H

C
=

h
id

d
en

co
n

st
ra

in
ts

,
M

D
=

m
ix

ed
-d

is
cr

et
e,

H
=

h
ie

ra
rc

h
ic

al
,M

O
=

m
u

lt
i-

o
b

je
ct

iv
e,

R
F

C
=

R
an

d
o

m
Fo

re
st

C
la

ss
ifi

er
,K

N
N

=
K

-N
ea

re
st

N
ei

gh
b

o
rs

,R
B

F
=

R
ad

ia
lB

as
is

Fu
n

ct
io

n
s,

G
P

=
G

au
ss

ia
n

P
ro

ce
ss

.

B
ra

n
in

H
C

B
ra

n
in

A
li

m
o

A
li

m
o

E
d

ge
M

ü
lle

r
2

H
C

Sp
h

er
e

M
ü

lle
r

1
H

C
C

an
tB

1
H

C
C

ar
si

d
e

R
ej

ec
ti

o
n

1
4

2
4

1
2

2
5

6
6

R
ep

la
ce

m
en

t
G

lo
b

al
m

ax
2

3
2

5
1

4
3

2
3

4
R

ep
la

ce
m

en
t

Lo
ca

l
2

2
1

4
3

2
2

4
5

5
R

ep
la

ce
m

en
t

5-
n

ea
re

st
,m

ax
2

2
1

3
1

2
1

3
4

3
R

ep
la

ce
m

en
t

5-
n

ea
re

st
,m

ea
n

1
2

1
3

2
1

1
4

2
2

R
ep

la
ce

m
en

t
P

re
d

ic
te

d
w

o
rs

t
2

1
1

4
1

3
1

1
2

2
R

ep
la

ce
m

en
t

P
re

d
.w

o
rs

t(
α
=

2)
2

2
2

3
2

4
2

1
3

3
P

re
d

ic
ti

o
n

R
F

C
1

2
1

1
1

2
1

1
3

1
P

re
d

ic
ti

o
n

K
N

N
2

2
1

3
2

2
2

2
3

4
P

re
d

ic
ti

o
n

R
B

F
2

1
1

2
1

3
3

1
2

2
P

re
d

ic
ti

o
n

G
P

C
la

ss
ifi

er
1

1
1

1
1

2
2

1
3

3
P

re
d

ic
ti

o
n

V
ar

ia
ti

o
n

al
G

P
1

1
1

1
1

3
4

1
4

2
P

re
d

ic
ti

o
n

M
D

G
P

2
1

1
2

1
2

1
2

1
1

M
D

/H
C

C
an

tB
M

D
/H

C
C

ar
si

d
e

H
A

lim
o

H
A

li
m

o
E

d
ge

H
M

ü
lle

r
2

H
/H

C
R

o
se

n
b

r.
M

O
/H

/H
C

R
b

r.
Je

tS
M

R
an

k
1

R
an

k
≤

2

5
3

4
4

2
3

3
4

11
%

33
%

2
2

2
3

1
4

5
3

11
%

44
%

4
3

3
3

2
2

4
3

6%
39

%
3

2
2

2
1

2
4

2
22

%
67

%
3

1
1

2
1

2
2

2
39

%
83

%
2

1
1

2
1

1
3

1
56

%
83

%
1

1
1

1
1

2
3

1
39

%
72

%
1

1
1

2
1

1
1

1
78

%
94

%
2

2
3

4
1

3
1

2
17

%
67

%
2

1
2

3
1

1
1

1
50

%
83

%
1

1
3

3
1

2
1

1
61

%
78

%
1

1
2

3
1

2
2

1
56

%
78

%
1

1
1

1
1

1
5

1
72

%
94

%

1
H

C
C

ar
si

d
e

Le
ss



2

64 2. OPTIMIZATION ALGORITHMS

Ta
b

le
2.

17
:

P
er

fo
rm

an
ce

o
f

h
id

d
en

co
n

st
ra

in
t

st
ra

te
gi

es
re

la
ti

ve
to

th
e

re
je

ct
io

n
st

ra
te

gy
,a

ve
ra

ge
d

ov
er

al
lt

es
t

p
ro

b
le

m
s

at
th

e
en

d
o

f
th

e
o

p
ti

m
iz

at
io

n
ru

n
s.

D
ar

ke
r

co
lo

r
is

b
et

te
r

fo
r
∆

H
V

re
gr

et
an

d
Fa

il
ra

te
;w

o
rs

e
fo

r
ti

m
e

co
lu

m
n

s.
A

b
b

re
vi

at
io

n
s:

H
V

=
h

yp
er

vo
lu

m
e,

R
F

C
=

R
an

d
o

m
Fo

re
st

C
la

ss
ifi

er
,K

N
N

=
K

-N
ea

re
st

N
ei

gh
b

o
rs

,
R

B
F

=
R

ad
ia

lB
as

is
Fu

n
ct

io
n

s,
G

P
=

G
au

ss
ia

n
P

ro
ce

ss
.

St
ra

te
gy

Su
b

-s
tr

at
eg

y
∆

H
V

re
gr

et
Fa

il
ra

te
Tr

ai
n

in
g

ti
m

e
In

fi
ll

ti
m

e
Tr

ai
n

in
g

+
in

fi
ll

ti
m

e

R
ej

ec
ti

o
n

+0
%

+0
%

+0
%

+0
%

+
0%

R
ep

la
ce

m
en

t
G

lo
b

al
m

ax
-9

%
-6

1%
+1

99
%

+7
4%

+7
4%

R
ep

la
ce

m
en

t
Lo

ca
l

-1
3%

-1
5%

+2
02

%
+7

6%
+7

9%
R

ep
la

ce
m

en
t

5-
n

ea
re

st
,m

ax
-3

0%
-4

3%
+2

07
%

+7
8%

+8
4%

R
ep

la
ce

m
en

t
5-

n
ea

re
st

,m
ea

n
-3

5%
-2

3%
+1

93
%

+7
8%

+7
7%

R
ep

la
ce

m
en

t
P

re
d

ic
te

d
w

o
rs

t
-3

3%
-4

8%
+1

92
%

+6
7%

+7
3%

R
ep

la
ce

m
en

t
P

re
d

.w
o

rs
t(
α
=

2)
-3

0%
-5

3%
+1

99
%

+7
5%

+7
8%

P
re

d
ic

ti
o

n
R

F
C

-4
4%

-6
1%

+8
6%

+9
4%

+8
3%

P
re

d
ic

ti
o

n
K

N
N

-2
7%

-3
9%

+4
8%

+5
9%

+4
9%

P
re

d
ic

ti
o

n
R

B
F

-3
5%

-6
1%

+1
26

%
+8

7%
+8

0%
P

re
d

ic
ti

o
n

G
P

C
la

ss
ifi

er
-3

7%
-5

8%
+1

06
%

+1
56

%
+1

14
%

P
re

d
ic

ti
o

n
V

ar
ia

ti
o

n
al

G
P

-3
2%

-6
0%

+6
8%

+2
43

%
+1

89
%

P
re

d
ic

ti
o

n
M

D
G

P
-3

8%
-6

2%
+1

16
%

+9
5%

+9
1%



2.4. BAYESIAN OPTIMIZATION WITH HIDDEN CONSTRAINTS

2

65

Parameter Studies Predicted worst replacement, prediction with RFC, and prediction
with MD GP are selected as most promising candidates. These three strategies are
further investigated to find out the influence of their parameter settings: α for predicted
worst replacement, and PoVmin for the prediction strategies. In addition, the prediction
strategies are tested with integration as f -infill penalty (Eq. (2.21)). Tests are run with
the same settings as the previous experiment.

Figure 2.6 shows the relative improvement over the rejection strategy for the tested
strategy configurations. Fail rate is reduced significantly for higher values of PoVmin

and α, which is expected as higher values result in a more conservative approach and
therefore less exploration of the failed region. A reduction in failure rate, however,
decreases optimizer performance (seen by an increase in ∆HV regret), showing that a
certain amount of failed evaluations is needed to sufficiently explore the design space.
This is needed both for exploring new regions of the design space where the data about
the hidden constraint is inaccurate, and for ensuring that the border of the hidden
constraint is accurate if the optimum of the problem lies near the constraint boundary.

Table 2.18 presents ranking of algorithm performance. The best performing strate-
gies are the prediction strategies at low PoVmin values. It also shows that f -infill penalty
behaves similar as low PoVmin values. Prediction with MD GP or RFC are behaving
similarly-well, although MD GP for a little wider range of PoVmin than RFC.

From these results, it is concluded that either MD GP or RFC prediction should be
used to deal with hidden constraints in BO. PoV should be integrated as a constraint, be-
cause it allows more control over exploration vs exploitation compared to integration as
f -infill penalty. PoVmin should be kept relatively low to promote sufficient exploration:
a value of PoVmin = 25% will be used subsequently.

(a) Predictor strategies (b) Predicted worst replacement strategy

Figure 2.6: Comparison of hidden constraint strategy settings relative to the rejection strategy, averaged over
all test problems at the end of the optimization runs (repeated 8 times). Abbreviations: HV = hypervolume,
MD = mixed-discrete, GP = Gaussian Process, RFC = Random Forest Classifier.
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2.5. IMPLEMENTATION IN SBARCHOPT
As part of this work, the results of this chapter are implemented in SBArchOpt
(Surrogate-Based Architecture Optimization)2: an open-source Python library for solv-
ing SAO problems.

SBArchOpt features a problem definition class with interfaces for executing hier-
archical optimization problems, developed to support the highest level of hierarchy
integration as discussed in Section 2.3.4. The problem definition class is built on top of
pymoo’s3 PROBLEM class [244], extends the evaluation function according to Eq. (2.16),
adds functions for performing imputation and correction according to Eq. (2.17), and
makes these available as a standalone repair operator. Additional functions are pro-
vided for getting information about which design variables are conditionally active,
for generating all valid discrete design vectors xvalid,discr, and for calculating various
statistics such as IR, CR, CRF, and MRD (see Section 2.2). The hierarchical structure
of the problem can either be provided implicitly by implementing the correction and
imputation function, or it can be modeled explicitly using ConfigSpace4 [230].

Next to the problem definition class, SBArchOpt also implements the following
optimization algorithms:

• DOEALGORITHM: an optimization algorithm that only runs the hierarchical
sampling algorithm presented in Section 2.3.2.

The sampling algorithm itself is implemented as HIERARCHICALSAMPLING, a
pymoo SAMPLER class.

• ARCHOPTNSGA2: NSGA-II that uses the hierarchical sampling algorithm, and
supports results storage and restart.

• ARCHSBO: the BO algorithm developed in this chapter, including the hierarchical
sampling algorithm, support for results storage and restart, the possibility to
either use an RBF or a GP model (both using the implementation in SMT [26]),
and automatic selection of ensemble infill and constraint handling strategies (see
Section 2.1) and the hidden constraint strategy (see Section 2.4).

• To test and promote solving SAO problems with SBO in general, SBArchOpt addi-
tionally implements connections to other SBO libraries, including BoTorch [229],
Trieste [245], HEBO [217], SEGOMOE [246] and SMARTy [247].

Finally, to support SAO algorithm development, SBArchOpt contains a library of test
problems consisting of the test problems developed in this work (see Section 2.3.1) and
many other problems from literature and pymoo’s test problem database. The library
features various combinations of continuous or mixed-discrete, (non-)hierarchical,
single-objective or multi-objective, (un)constrained problems, with or without hidden
constraints.

2https://sbarchopt.readthedocs.io/
3https://pymoo.org/
4https://automl.github.io/ConfigSpace/

https://sbarchopt.readthedocs.io/
https://pymoo.org/
https://automl.github.io/ConfigSpace/
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2.6. APPLICATION CASE I: JET ENGINE ARCHITECTURE OPTI-
MIZATION

This application case presents the design of a jet engine architecture solved by the
developed BO algorithm. As discussed in Section 2.3.1, the jet engine problem has been
implemented as a benchmark problem for testing SAO algorithms.

The benchmark problem is defined using a jet engine optimization testing frame-
work implemented as part of this work, the purpose of which is to provide a flexible
way to define more or less difficult optimization problems [11]. Figure 2.7 provides an
overview of the framework. The user defines the optimization problem by selecting
from available architectural choices (that define the design variables) and metrics, and
by inputting the flight conditions and power offtakes to size the engine for. Available
architectural choices include whether to define a turbofan or turbojet architecture, the
number of compressor and turbine stages, the use of intercooling and inter-turbine
burning, and where to apply bleed and power offtakes.

Optimizer

Problem

definition

Design variables:

- Include fan, gearbox, mixed nozzle, etc.

- FPR, BPR, OPR

- Compressor stages (1, 2, 3)

- Shaft rpmsMetrics (as objectives

or constraints):

- TSFC, noise, NOx

- Weight, size

Design

vector x Translator

Base turbojet
architecture

Architecture
instance

Builder

OpenMDAO

problem

Flight conditions

& offtakes

1. Thermodynamic cycle
analysis using pyCycle

2. Handbook methods
for weight, noise, NOx,
size estimation

ExecutorObjectives

& constraints

Performance

metrics

Optimization loop

User inputs

Optimizer

Class-based
architecture
definition

Corrected x

& activeness

Figure 2.7: Overview of the jet engine optimization testing framework. The user provides the problem defini-
tion (in terms of design variables and metrics selected from a database) and the flight conditions and power
offtakes to size the engine for.

A translator code is provided that translates a design vector generated by the
optimizer into an architecture instance defined using objects. These objects contain
all information required to build the analysis problem, including input parameters
(from flight conditions, offtake requirements, or design vectors) and airflow connection
sequences (e.g. compressor to combustor, combustor to turbine, etc.). A builder code
then takes these objects and constructs an OpenMDAO [248] problem that performs
thermodynamic cycle analysis and engine sizing using pyCycle [249], with the main
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output being the Thrust-Specific Fuel Consumption (TSFC) of the engine. Handbook
methods are added to calculate additional metrics such as noise level, NOx emissions,
weight, and size. Thermodynamic cycle analysis takes between 1 and 5 minutes to
complete. However, it is not guaranteed to converge to a feasible solution, leading to the
presence of a hidden constraint. If the hidden constraint is violated, metrics are set to
NaN (not a number).

The testing framework enables specification of a wide variety of test problems,
all based on realistic engineering behavior, however with varying number of design
variables, objectives, and constraints. The code is available open source5.

Problem Instance Selection In this demonstration, the following problem formulation
is used (available in SBArchOpt as SIMPLETURBOFANARCH):

minimize TSFC
w.r.t. IncludeFan ∈ {False,True}

if IncludeFan = True :
2.0 ≤ BPR ≤ 12.5
1.1 ≤ FPR ≤ 1.8
MixedNozzle ∈ {False,True}
IncludeGearbox ∈ {False,True}
if IncludeGearbox = True :

1.0 ≤ GearRatio ≤ 5.0
1.1 ≤ OPR ≤ 60.0
nshafts ∈ {1,2,3}
if nshafts > 1 :

0.1 ≤ PRfactor,i ≤ 0.9 i = 2, . . . ,nshafts

1000 ≤ RPMi ≤ 20000 i = 1, . . . ,nshafts

PowerOfftake ∈ {1, . . . ,nshafts}
BleedOfftake ∈ {1, . . . ,nshafts}

subject to Mjet ≤ 1.0
PRfactor,sum ≤ 0.9
PRmax,i ≤ 15.0 i = 1,2,3

which is a single-objective (TSFC minimization) problem with several architectural
choices: fan inclusion IncludeFan, number of compressor stages nshafts, gearbox
inclusion IncludeGearbox, mixed nozzle selection MixedNozzle and power offtake
locations PowerOfftake and BleedOfftake. The problem includes several levels of
activation hierarchy: bypass ratio BPR, fan pressure ratio FPR, gearbox inclusion
IncludeGearbox and mixed nozzle selection MixedNozzle are only active if the fan is
included (IncludeFan = True); the gear ratio GearRatio is only active if IncludeGearbox =
True; and shaft-related pressure ratio factors PRfactor,i and rotational speeds RPMi

are only active if the respective number of shafts are selected. The power offtake
PowerOfftake and bleed offtake BleedOfftake selections are always active, however are
value-constrained by the number of shafts nshafts.

5https://github.com/jbussemaker/OpenTurbofanArchitecting/

https://github.com/jbussemaker/OpenTurbofanArchitecting/
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In total, the problem features 15 design variables, of which 9 are continuous and 6
are discrete (3 integer and 3 categorical). Of the design variables, 9 are conditionally
active and 2 are value-constrained: the problem therefore requires both correction and
imputation operations in order to ensure design vectors are valid. The problem features
5 design constraints, constraining the output jet Mach number Mjet and pressure
ratio distributions over the selected compressor stages (PRfactor,sum and PRmax,i). The
underlying thermodynamic cycle analysis and sizing code does not always converge,
leading to a hidden constraint with a failure rate (FR) of approximately 50% in a random
DoE.

In total, there are 70 valid discrete design vectors. However, the Cartesian product
of discrete variables leads to 216 combinations: the discrete imputation ratio therefore
is IRd = 216/70 = 3.1 (Eq. (2.1)). The continuous imputation ratio IRc = 1.26 (Eq. (2.2)),
meaning that there are on average 9/1.26 = 7.14 continuous variables active (as seen
over all valid discrete design vectors). The overall imputation ratio is IR = 3.89 (Eq. (2.3)).
The correction ratio CR = 2.10 (Eq. (2.6)), which leads to correction ratio fraction
CRF = 55% (Eq. (2.7)). Thus, a little over half of the design space hierarchy is due to value
constraints (i.e. the need for correction). The max rate diversity MRD of the problem is
60%, stemming from the fact that 20% of the design vectors is made up by the turbojet
architectures (IncludeFan = False) and the remaining 80% by the turbofan architectures
(IncludeFan = True).

Optimization Results The BO algorithm is executed 24 times with ndoe = 113, ninfill =
187 (a budget of 300 evaluations), and nbatch = 4. The algorithm is executed for
Repair integration (no hierarchy information exposed, however the repair operator is
available), Hierarchical Sampling (therefore a non-hierarchical GP is used during the
optimization), and Activeness (both hierarchical sampling and a hierarchical GP is
used); refer to Table 2.11 for an overview. The hierarchical sampling configuration
is executed for both the RFC and MD GP PoV predictors; all others only with the
RFC predictor. NSGA-II was already able to deal with hidden constraints, however for
completeness BO results are compared against NSGA-II results. NSGA-II is executed
with repair operator available and using hierarchical sampling.

Figure 2.8 presents the results of the jet engine optimization for NSGA-II and the BO
algorithm with the three compared hierarchy integration strategies. Table 2.19 presents
achieved median optimal TSFC and∆HV regret values. The BO algorithm configurations
find results within 0.3% of each other with a budget of 300 function evaluations. NSGA-II
is able to find the same result with 3250 evaluations: BO therefore can be considered to
be able to find the same result in 92% less function evaluations. For the BO algorithm,
Activeness and Hierarchical sampling perform with similar ∆HV regret (see Table 2.19).
However, Activeness is able to find a slightly better TSFC. Repair yields a significantly
higher∆HV regret due to less effective initial sampling, however in the end finds a better
TSFC than Hierarchical sampling.

Figure 2.9 presents a comparison between two different PoV predictors. It shows
that the MD GP PoV predictor slightly outperforms the RFC PoV predictor, resulting in a
slightly better TSFC at a better ∆HV regret.
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Table 2.19: Comparison of median optimal TSFC (minimization) values achieved for the jet engine problem.
Refer to Table 2.11 for comparison of hierarchy integration strategies. ∆HV regret was not available for NSGA-II
with 3250 evaluations.

Algorithm Hierarchy integration PoV Predictor Nfe TSFC [g/kNs] ∆HV regret

BO Activeness RFC 300 6.633 0.91
BO Hierarchical sampling RFC 300 6.653 (+0.30%) 0.86 (-4.8%)
BO Hierarchical sampling MD GP 300 6.635 (+0.03%) 0.67 (-27%)
BO Repair RFC 300 6.640 (+0.11%) 1.59 (+75%)
NSGA-II 300 7.455 (+12.4%) 3.67 (+305%)
NSGA-II 3250 6.640 (+0.11%) −

Figure 2.8: Comparison of NSGA-II to the BO algorithm with different levels of hierarchy integration (see also
Table 2.11): Repair (no hierarchy information; repair operator available), Hierarchical sampling (no hierarchi-
cal GP) and Activeness (hierarchical sampling and hierarchical GP).∆HV represents the distance to the known
Pareto front (Eq. (E.1)). The bands around the lines represent the 50 percentile range around the median over
24 algorithm runs.

Figure 2.9: Comparison of two PoV predictors (see also Table 2.15) for dealing with hidden constraints in the
BO algorithm (executed with "Hierarchical sampling" integration).
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2.7. CHAPTER CONCLUSIONS
In this chapter, developments to optimization algorithms for solving SAO problems
have been presented. As optimization algorithms, mainly Multi-Objective Evolutionary
Algorithms (MOEAs; represented by NSGA-II in tests) and Bayesian Optimization (BO)
algorithms are considered for solving SAO problems: BO if evaluation is expensive,
MOEAs if not. Section 2.1 presents the non-hierarchical basis of the further-developed
BO algorithm, featuring a mixed-discrete GP, an ensemble of infill criteria, and a
constraint handling strategy. Section 2.2 defines several metrics for quantifying various
aspects of design space hierarchy:

• imputation ratio IR, correction ratio CR, and correction fraction CRF for quantify-
ing the impact of the need for imputation and correction for finding valid design
vectors; and

• max rate diversity MRD for quantifying the behavior that some values of discrete
design variables occur much more often than other values.

To support algorithm development, three collections of test problems are presented in
Section 2.3.1: multi-stage launch vehicle problems, GNC problems (adopted from [39]),
and jet engine architecture problems. Then, the main contributions of this research to
improve performance of MOEAs and BO algorithms for SAO are presented:

• The development of a sampling algorithm for hierarchical design spaces to ensure
no region in the design space is over- or under-represented in Section 2.3.2. The
hierarchical sampling algorithm works by separating valid discrete design vectors
into groups by active design variables xact, uniformly sampling from these groups,
and using Sobol’ sampling to assign values to continuous variables.

• An investigation into whether problem-agnostic correction improves optimization
performance compared to problem-specific greedy correction in Section 2.3.3,
showing that it does not necessarily improve performance and thus problem-
specific greedy correction is sufficient.

• An investigation into integration of hierarchy information into optimization
algorithms in Section 2.3.4, showing that integrating more information (returning
the corrected design vector and activeness information from the evaluation
function, making correction and imputation available as a standalone repair
operator, exposing which design variables are conditionally active, and making
xvalid,discr available) leads to better optimizer performance.

• The development of a strategy for dealing with hidden constraints in BO in
Section 2.4. The strategy involves training an additional model that calculates the
Probability of Viability (PoV), which is used in the infill search process to steer
infill towards viable regions of the design space. Mixed-discrete GP and a Random
Forest Classifier (RFC) models perform best.
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All benchmark problems and developed optimization algorithms have been made
available open-source in the SBArchOpt library, presented in Section 2.5. The developed
algorithms are demonstrated in Section 2.6 by a jet engine architecture optimization
problem, showing:

• the definition of a flexible jet engine architecting framework for defining SAO
benchmark problems;

• the application of NSGA-II and the BO algorithm to a single-objective instance of
that test problem; and

• optimization results showing that BO can be used to effectively solve SAO prob-
lems, including those subject to hidden constraints, with a significant reduction
in function evaluations (92% for this application case) needed compared to
evolutionary algorithms like NSGA-II.

To summarize, the BO algorithm developed in this chapter uses:

• hierarchical, mixed-discrete GP models;

• ensemble infill criteria with a sequential-optimization procedure for batch infill
generation for single- and multi-objective optimization problems;

• a design constraint handling approach using constraint function mean prediction;

• a hierarchical sampling algorithm that groups valid discrete design vectors by
active design variables xact, to deal with rate diversity effects (also applied to
NSGA-II);

• several strategies for dealing with imputation ratio effects (also applied to NSGA-
II): returning the corrected design vector and activeness information from the
evaluation function, making correction and imputation available as a standalone
repair operator, exposing which design variables are conditionally active, and
making xvalid,discr available; and

• a strategy for handling hidden constraints that uses a mixed-discrete GP for
predicting the Probability of Viability (PoV).

With these results, the first sub-objective has been achieved:

1. Develop global evolutionary and Bayesian Optimization (BO) algorithms capable
of efficiently solving SAO problems, by:

(a) integrating information about the hierarchical design space into the opti-
mization algorithms;

(b) developing a sampling algorithm that explicitly takes the hierarchical nature
of the design space into account;

(c) investigating the impact of the correction algorithm on optimization perfor-
mance; and

(d) developing a strategy for solving problems with hidden constraints when
using BO algorithms.
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T HIS chapter presents a function-based method for defining System Architecture Op-
timization (SAO) problems. This forms the second part of the objectives presented

in Section 1.6, allowing the optimization problem to be modeled and executed. Here
follows a short overview of the SAO optimization concept, and an introduction to the
contents of this chapter.

As also discussed in Section 1.5.3, design variable hierarchy has as a result that a
design vector x suggested by an optimization algorithm is not always valid, that is:
a design vector where value constraints have been corrected for, and where inactive

This chapter is based on [1, 2, 5, 8].
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design variables have been imputed with canonical values. Because only valid design
vectors represent architecture instances, an architecture generation step is introduced
into the SAO loop. The purpose of this step is twofold:

• The design vector x is made valid by correction and imputation.

• The design vector x is transformed into a system architecture instance.

The valid design vector, along with information about which design variable is active
(the activeness δ), is communicated back to the optimization algorithm in accordance
with Eq. (2.16).

Figure 3.1 presents the concept of the SAO loop, divided into the architecture
generator and the architecture evaluator. The Architecture Generator combines the
Optimization Algorithm with the following additional functionality:

• The Encode Design Variables step, which encodes architecture design choices
(consisting of architectural choices and architecture-specific design parameters)
in the SAO problem model as a set of design variables x.

• The Generate Architecture step, which transforms ("decodes") a design vector x
(representing a specific point in the design space) into an architecture instance,
and corrects and imputes the design vector in the process.

• The Interpret Metrics step, which interprets performance metrics as objectives or
constraints in the context of the SAO problem.

The Architecture Evaluator implements the Evaluate Architecture step, which takes an
architecture instance as input, and provides performance metrics as output. Note that
this is different from "classical" optimization, where the input to the evaluation function
is the design vector.

Design vector x
Generate

Architecture
Architecture

instance

Evaluate
Architecture

Interpret
Metrics

Objectives f
Constraints g

Valid x

Activeness δ

Optimization
Algorithm

Performance
metrics

SAO problem
model

Design variables x
Encode Design

Variables

Architecture EvaluatorArchitecture Generator

Figure 3.1: The SAO loop, highlighting the elements making up the Architecture Generator and Architecture
Evaluator. The optimization loop is shown by bold blue arrows.
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The SAO problem model provides all the information needed to perform the
Architecture Generator steps. In this dissertation, these functionalities are developed
and implemented in three layers:

1. Defining a way to model SAO problems for providing Architecture Generator
functionality (Encode Design Variables, Generate Architecture, and Interpret
Metrics) in the SAO loop.

Section 3.1 presents the Design Space Graph (DSG), which implements:

• a directed graph for modeling hierarchical architecture choices and defining
roles of performance metrics; and

• algorithms for encoding architecture choices as design variables x and for
decoding design vectors x into architecture instances.

2. Modeling SAO problems using systems engineering principles.

Section 3.2 presents the Architecture Design Space Graph (ADSG), which extends
the DSG by defining node types and connection rules so that SAO problems can
be defined using systems engineering principles.

3. Providing a user-friendly Graphical User Interface (GUI) for modeling.

Section 3.3 presents ADORE, which provides:

• a web-based GUI for modeling SAO problems using the ADSG; and

• application Programming Interfaces (APIs) for connecting to architecture
evaluation code and optimization algorithms.

Section 3.4 presents the function-based process to use ADORE and the ADSG to
model architecture design spaces.

Section 3.5 demonstrates the methodology by the architecture optimization of a hybrid-
electric propulsion system. Section 3.6 compares optimization performance of SAO
problems formulated with ADORE to manually-formulated SAO problems. The chapter
is concluded in Section 3.7.
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3.1. THE DESIGN SPACE GRAPH (DSG)
The Design Space Graph (DSG) implements mechanisms for modeling hierarchical
architecture choices, defining design variables x from them, and for generating an
architecture instance from a design vector x . The process of defining design variables
from architecture design choices (architectural choices and architecture-specific design
parameters) is called "encoding". The process of generating an architecture instance
from a design vector is called "decoding". The hierarchical structure between choices
defines how choices select and connect nodes in a graph. Nodes represent elements (e.g.
components, functions) of an architecture instance. The Python implementation of the
DSG is available open-source as ADSG CORE1 (named as such because it represents the
core mechanism of the ADSG).

CRAWLEY ET AL. argue that the basic tasks of a system architect involve decomposing
form and function, mapping function to form, specializing and characterizing form
and function, and connecting form and function [39]. SELVA ET AL. observe various
reoccurring patterns in architecture choices [128], and map the architecting tasks to
these patterns. Considering this, the Design Space Graph (DSG) has been developed
based on the following assumptions:

1. The decomposing, mapping, specializing, and characterizing tasks involve the
selection of architecture elements for inclusion in an architecture instance, and
can therefore be referred to as selection tasks.

2. Architecture elements might select other architecture elements to be included,
which might in turn activate other selection choices: there is a hierarchy between
selection choices.

3. The connecting task is performed after selection tasks have been performed, and
the elements to connect therefore depend on which elements have been selected
in the selection tasks.

The selection and connection tasks are modeled using a directed graph with node
and edge types defined in the selection and connection domains, respectively. The
selection and connection domains are presented in more details in Section 3.1.1 and
3.1.2, respectively. Section 3.1.3 presents how these domains are combined to define the
complete SAO problem.

1https://adsg-core.readthedocs.io/

https://adsg-core.readthedocs.io/
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3.1.1. THE SELECTION DOMAIN
The selection domain defines node and edge types for modeling choices involving the
selection of architecture elements, and for modeling hierarchy between such selection
choices. First the various node and edge types and their behavior are introduced, then
the procedure for encoding and decoding selection choices is presented.

SELECTION CHOICE MODELING

Selection choices are modeled using three main concepts: derivation edges, start nodes,
and selection choice nodes. Incompatibility constraints and choice constraints offer
additional mechanisms for restricting selection choices.

Derivation Edges A derivation edge is a directed edge that asserts that if the source
node is included in an architecture instance, then the target node is also included in that
same instance. A derivation edge can be interpreted as a "requires" relationship between
two nodes, and can for example be used to represent a function to form mapping that is
not subject to a choice (e.g. function induction [61]), or a static decomposition from a
source (higher-level) function to one or more target (lower-level) functions.

Nodes can have any number of incoming and outgoing derivation edges. Multiple
outgoing derivation edges mean that all target nodes are selected if the node is selected;
multiple incoming derivation edges mean the node is selected if at least one of the
source nodes is selected. Figure 3.2a shows an example of derivation edges. Aircraft
derives both Airport and Fuel, so if Aircraft is selected both Airport and Fuel are selected
as well. Fuel is derived by Aircraft and Ship, meaning that Fuel is selected if at least one
of these is selected.

Cycles are allowed in the DSG: Figure 3.2b shows an example of this. If any of
Turbine, Combustor, or Compressor are selected (in the example, the Turbine is selected
by the Generator), all of them and their derived nodes (Inflow) are selected. The DSG
therefore implements "level 4" (directed graph) of the hierarchical design space model
classes as defined in Section 2.3.4.

(a) Aircraft derives Airport and Fuel; Ship derives Fuel.

(b) Generator derives Turbine; Turbine, Combustor and Compressor derive each other
in a cycle; Compressor derives Inflow.

Figure 3.2: DSG examples demonstrating derivation edges.
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Start Nodes One or more nodes are designated as start nodes: these nodes and their
derived nodes (not passing through selection choice nodes, see below) are present in
all architectures and therefore are designated permanent nodes. Non-permanent nodes
that have at least one path originating from a starting node (passing through one or
more selection choice nodes) are conditional nodes. Nodes that are neither permanent
nor conditional, are removed from the DSG after "applying" the start nodes. Start nodes
are needed because cycles in the DSG may make it unclear where the derivation process
starts.

Figure 3.3 shows an example of how start nodes behave. Aircraft is designated as a
start node, and it derives Airport and Fuel: these three nodes are therefore permanent
nodes. Ship is not a start node and is also not derived by one, therefore it is neither
permanent nor conditional, and is removed from the DSG after applying the start node.

(a) Aircraft is designated as a start node. It and its derived
nodes, Airport and Fuel, are permanent nodes.

(b) The DSG after applying the start node. Ship is re-
moved, as it is neither permanent nor conditional.

Figure 3.3: DSG example demonstrating a start node.

Selection Choice Nodes A selection choice node represents an architectural choice
where one of the option nodes is selected. A selection choice node can only have one
node connected by an incoming derivation edge: the source node. Choosing an option
for a selection choice and modifying the DSG to reflect that choice is called resolving the
selection choice, and consists of the following steps:

1. Mark the selected option node and its derived edges and nodes as confirmed.
Include any encountered choice nodes, however exclude their option nodes (and
derived nodes) from the set of confirmed nodes.

2. Mark the non-selected option nodes and their derived edges and nodes for
removal, including choice nodes and their derived nodes. Exclude confirmed
nodes and nodes that have multiple incoming derivation edges (if the incoming
nodes are not also marked for removal). Include nodes and derived nodes targeted
by incompatibility constraints that are triggered by confirmed nodes.

3. Remove the selection choice node and the nodes marked for removal from the
DSG.

4. Connect the source node to the selected option node.

The DSG is considered to be in a new state after resolving each choice node. States that
still contain choice nodes (except the initial state) are called partial states; states where
there are no more choice nodes left are called final states. DSGs in a final state are also
called architecture instances.

Figure 3.4a shows a selection choice between Kerosene, Hydrogen and Battery (the
option nodes) as an Energy Carrier (the source node). Figure 3.4b shows Kerosene
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selected as the option (step 1) and Hydrogen and Battery marked for removal (step 2).
Figure 3.4c shows the selection choice after it has been resolved: the nodes marked for
removal are removed from the DSG (step 3) and Energy Carrier has been connected to
Kerosene (step 4).

(a) Selection choice before resolving it. (b) The selected option node (Kerosene)
is marked as confirmed; other op-
tion nodes (Hydrogen and Battery) are
marked for removal.

(c) The selection choice has been
resolved.

Figure 3.4: DSG example demonstrating a selection choice node. Choice nodes are shown in blue.

Option nodes may derive each other, and since derived nodes of confirmed nodes
are excluded from removal (step 2), option nodes may be selected as a derived node
from another option node. Figure 3.5a shows an example of this: if the Tri-surface node
is selected, H-tail and Canard will also be confirmed, however only an edge from Pitch
Stability to Tri-surface will be established.

As nodes may be selected from multiple sources, nodes that are options of multiple
selection choices can are confirmed if they are selected by at least one of the selection
choices. Figure 3.5b shows an example: Hydraulic System 2 can be selected by either
choices, and may co-exist with the other Hydraulic System nodes.

Choice nodes are active if they are or have been confirmed, inactive otherwise. This
is relevant if not all choices are derived from start nodes, as is the case in the example
in Figure 3.5c. There, the second choice is only active if Kerosene has been selected
as Energy Carrier. Before that selection, or after selecting Battery, the second choice is
inactive.

(a) Tri-surface also derives H-tail and Canard. (b) Hydraulic System 2 can be selected for Aileron Power, for
Rudder Power, or for both.

(c) The second choice (C2) is only active if Kerosene is selected as Energy Carrier.

Figure 3.5: DSG examples demonstrating interactions within and between selection choices.
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Incompatibility Constraints An incompatibility constraint is defined using an in-
compatibility edge: an undirected edge that asserts that if either of the two nodes is
confirmed, the other node and its derived and deriving nodes are not. Note that also
upstream nodes are affected: this is needed because if some node is removed by an
incompatibility node, then it cannot be derived by any other node anymore, so to pre-
vent violating the meaning of derivation edges the deriving nodes have to be removed
as well.

Figure 3.6a shows an incompatibility constraint defined between two independent
selection choices. It defines a Cable-based Flight Control System to be incompatible
with an enabled Flight Envelope Protection system. If, however, Fly-by-wire is selected
as basis for the Flight Control System, then the choice whether to enable Flight Envelope
Protection is left free. Figure 3.6b shows an incompatibility constraint defined between
different hierarchy levels. It defines that the two Turboshaft nodes may not exist together
in an architecture instance. This means that if the Hybrid solution is chosen for Power
Generation, only Batteries can be used as Energy Source for the Electric Motor. However,
if only the Electric Motor is chosen for Power Generation, then the Energy Source choice
is left free. Note that if the Turboshaft is chosen for Power Generation, the second choice
(and therefore its option nodes) are removed from the DSG.

(a) Cables used as the basis for a Fight Control System are incompatible with En-
abled (referring to the Flight Envelope Protection system).

(b) A Turboshaft used for Power Generation is incompatible with a Turboshaft used as Energy Source for an Electric Motor.

Figure 3.6: DSG examples demonstrating incompatibility constraints.
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Choice Constraints Choice constraints can be applied to a set of selection choices to
constrain the available options of choices in the set. This can be useful when defining
choices in multiple locations in the design space that are actually linked, the number of
compressors should for example be the same as the number of turbines in a turbofan
engine. A choice can only be part of one choice constraint set. Four types of choice
constraints are available:

• Linked ("="): all choices are assigned the same option index, e.g. considering 2
choices with 3 options (A, B, and C): AA, BB, CC.

• Permutations ("̸="): all choices have a different option index, e.g. AB, AC, BA, BC,
CA, CB.

• Unordered combinations ("≥"): choices have an equal or higher index than
preceding choices, e.g. AA, AB, AC, BB, BC, CC.

• Unordered non-replacing combinations (">"): choices have a higher index than
preceding choices, e.g. AB, AC, BC.

Note that "permutations" and "unordered non-replacing combinations" constraints
require at least the same amount of options as the amount of choices: it is not possible
to define permutations of 2 values for 3 choices for example.

Figure 3.7a shows an example of a linked choice constraint: there should be the same
amount of Compressors and Turbines. Figure 3.7b shows an example of a permutations
choice constraint: each Aileron should be assigned to a different Hydraulic System.

(a) The choices are linked: for both choices the same option
is selected.

(b) A "permutation" constraint is applied: for each choice a
different option should be selected.

Figure 3.7: DSG examples demonstrating choice constraints.
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Figure 3.8 lists all node and edge types used for modeling selection choices.

Figure 3.8: Legend showing all node and edge types involved in modeling selection choices.

Selection Choice Example Figure 3.9 shows an example DSG with 12 nodes (Nx), two
selection choice nodes (Cx), N1 as the starting node, and two incompatibility edges.
Table 3.1 lists for the same example which nodes are permanent or conditional, and for
an enumeration of C1 and C2 options which nodes are confirmed or infeasible. There
are 12 states for this DSG: 1 initial state (only containing permanent nodes), 3 partial
states (C1 is resolved; C2 not) and 8 final states (including 2 infeasible and 6 feasible
states). Starting nodes and nodes derived from any starting node not passing through a
selection choice node are permanent: in this case N1, N2, N3 and C1. N0 is neither a
permanent node (a starting nodes or derived by a starting node) nor a conditional node
(derived by a selection choice), so it is never part of any architecture instance. Selection
choice C1 is permanent and therefore always active, and its option node are N4, N5, N6,
N12 and N13. N12 is incompatible with N2, and since N2 is permanent, N12 can never
be selected. Selecting N4, N5 or N13 also selects N7 and therefore activates C2. Selecting
N5 additionally selects N6, which selects N9. N9 is in a cycle with N10 and N8, meaning
that if any of these nodes is selected, all of them are. If C2 is active, either N11 or N8 can
be selected. Selecting the latter implies also selecting N9 and N10 due to the cycle. If N5
was selected for C1 and N11 for C2, both N8 and N11 are part of the final architecture.

Figure 3.9: DSG example with generic nodes N and selection choice nodes C (shown in blue). Edges include
derivation edges (black arrows) and incompatibility edges (red). Node N1 is the start node.
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ENCODING AND DECODING SELECTION CHOICES

This section presents how selection choices are encoded as a set of discrete design
variables x, and how a given design vector x is decoded into a selection of nodes.

Encoding is done by mapping each selection choice to a separate discrete design
variable, with option nodes mapped to integer values. Table 3.2 shows the result of
encoding the selection choices in Figure 3.9: it shows valid design vectors xvalid,discr,
activeness information δvalid,discr, and node existence for all feasible architecture (see
also Table 3.1). Selection choices C1 and C2 are mapped to design variables x0 and
x1, respectively. Even though selection choice C1 has 5 options, the associated design
variable x0 only has 4 options, because N12 can never be selected as a feasible option.
Selection choice C2 is not present in architecture 5, resulting in an inactive x1 (δ1 = 0).
This is also a good example of the difference between declared design space and valid
design space sizes: the declared design space is given by the Cartesian product of design
variable options, in this example ndeclared = 4 ·2 = 8, whereas the valid design space is
given by the number of feasible architectures, in this example nvalid = 6. This difference
is quantified by the imputation ratio IRd , see Section 2.2.1.

Table 3.2: For each architecture in Table 3.1, the associated design vector x and activeness information δ.
Selection choices C1 and C2 are mapped to x0 and x1, respectively.

Design vector Activeness
Architecture x0 x1 δ0 δ1

1 0 0 1 1
2 0 1 1 1
3 1 0 1 1
4 1 1 1 1
5 2 0 1 0
6 3 1 1 1

Two selection choice encoding algorithms have been developed as part of this work:
the fast encoder and the complete encoder. The complete encoder results in design
variable definitions with lower imputation ratios IR compared to the fast encoder,
and enables the exhaustive identification of all valid design vectors. The complete
encoder, however, requires significantly more computational resources (time, memory)
than the fast encoder. When encoding the design space, therefore, first the complete
encoder is tried. If some time or memory limit is reached, the fast encoder is used
instead. A discussion of general principles follows. For more technical details about the
implementation of the selection choice encoders see Appendix B.

Fast Encoder The fast encoder maps selection choices to discrete design variables,
with option nodes mapped to integer values between 0 and nopts-1 for each selection
choice. For choice groups constrained by a linked choice constraint (i.e. all choices are
assigned the same option index), only one discrete design variable is defined.

Decoding and correcting design vectors is performed in a greedy manner: starting
from the initial DSG, confirmed (active) selection choices are assigned options from the
given design vector. If for a given selection choice the requested option node is not
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available, the requested option node is corrected to the closest available option, thereby
ensuring that the design vector represents a valid architecture. The process continues
until the graph contains no more selection choices. Activeness information δ is provided
by keeping track of which selection choices had options assigned during this process.

Complete Encoder The complete encoder exhaustively identifies all possible discrete
design vectors xvalid,discr, associated activeness δvalid,discr information, and node ex-
istence information. This enables using the hierarchical sampling and correction
algorithms presented in Chapter 2 and the calculation of the number of valid architec-
tures.

The complete encoder can additionally improve the discrete imputation ratio IRd

(Eq. (2.1)) of the problem by detecting forced selection choices: selection choices which
only ever have one available option (when active) due to other selection choices dis-
abling the other options. The selection choice Ci is forced if there exists a combination
of selection choices {Ca ,Cb , . . . } which fully defines the selected option index for Ci over
all valid design vectors. Forced choices can be the result of incompatibility or choice
constraints. Selection choices are encoded as discrete design variables by mapping each
non-forced selection choice to a discrete design variable with available option nodes
mapped to integer values.

Decoding and correcting design vectors is done by first checking if the requested
design vector is valid (i.e. is part of xvalid,discr): if this is not the case, the closest valid
design vector as measured by the Manhattan distance (Eq. (2.12)) is selected instead.
The selected design vector is then used to derive an architecture instance graph from
the initial DSG, by recursively resolving selection choices based on option node indices
defined by the design vector.

3.1.2. THE CONNECTION DOMAIN
The connection domain defines node and edge types for modeling choices involving
the connection from a set of source nodes to a set of target nodes. First the various node
and edge types and their behavior are introduced, then the procedure for encoding and
decoding connection choices is presented.

CONNECTION CHOICE MODELING

Connection choices offer a generic way to model source to target connection problems:
problems where there are different connections that can be established between two
sets of elements (sources and targets), and those connections are subject to constraints
on the number of connections accepted by each source and target, and constraints on
the total number of connections between each source and target element. Connection
choices are modeled using three main concepts: connector nodes, connection edges,
and connection choice nodes. Connector grouping nodes and exclusion edges may
further restrict the number of options available for a given connection choice.
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Connector Nodes Source and target nodes are represented using connector nodes, and
specify their connector constraint as follows:

• The number of outgoing or incoming connection edges the connector node can
accept. This can be specified as a list of numbers (e.g. 1, 2 or 3 connections:
1,2,3), a lower and an upper bound (e.g. between 0 and 3, inclusive: 0..3), or
only a lower bound (e.g. 1 or more: 1..*).

• Whether parallel connection edges originating from or targeting the connector
node are allowed, shown using the ∥ symbol.

Connection Choice Nodes and Connection Edges A connection choice is defined by
adding connection edges from one or more source connector nodes to a connection
choice node, and from the connection choice node to one or more target connector
nodes. Connector nodes can only be part of one connection choice, and connection
choices in the DSG are independent of each other.

Connection choice options are made up of sets of valid connection edges: sets of
edges from source to target connector nodes that adhere to all connector constraints.
Choosing a set of valid connections for a connection choice and modifying the DSG to
reflect that choice is called resolving the connection choice, and consists of the following
steps:

1. Remove the connection choice node (and therefore also its incoming and outgoing
connection edges).

2. Add valid connection edges from the set to the DSG.

Figure 3.10a shows a connection choice with Actuator as the source connector node, and
two Power Systems as target connector nodes. Actuator requires 1 outgoing connection;
both Power Systems accept either 0 or 1 incoming connections. Effectively this means
that Actuator can connect to either Power System. These two options are shown as
resolved connection choices in Figures 3.10b and 3.10c.

Actuator C

Power System 1

Power System 2

1

0,1

0,1

(a) Actuator requires 1 outgoing connection; The Power Systems accept either 0 or
1 incoming connections.

Actuator

Power System 1

Power System 2

(b) Resolved connection choice (option 1): a connection
to Power System 1.

Actuator

Power System 1

Power System 2

(c) Resolved connection choice (option 2): a connection
to Power System 2.

Figure 3.10: DSG examples demonstrating a connection choice.
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The property of whether parallel connections are allowed enables modeling connec-
tion choices where the order of connections is not relevant. To illustrate, Figure 3.11a
shows a connection choice from 3 Actuators to 2 Control Surfaces. Each Actuator
connects to either of the Control Surfaces independently of the others, however for the
third Actuator the connection is optional (i.e. it can also be left "unused"). Figure 3.11b
represents a similar connection choice, except that the order of connections does not
matter: only the number of connections from the Actuators to the different Control
Surfaces matters. Therefore, an architecture where Actuator 1 (2) connects to Control
Surface 1 (2) is seen as a different architecture from one where Actuator 1 (2) connects
to Control Surface 2 (1) in the first example, however they would be seen as the same
architecture in the second example.

Actuator 1

C

Control Surface 1

Control Surface 2

1 1..*

1..*

Actuator 2 1

Actuator 3 0,1

(a) A connection choice with no parallel edges: each Actuator connects to one of
the Control Surfaces.

Actuators C

Control Surface 1

Control Surface 2

2,3 ∥

1..* ∥

1..* ∥

(b) A connection choice with parallel edges: the Actuators node connects to the
Control Surfaces, allowing parallel connections between nodes. The ∥ symbol in-
dicates that parallel connections are allowed.

Figure 3.11: DSG examples demonstrating connector constraints with or without parallel edges allowed.

Connector Existence Scenarios Connection choices are resolved after selection choi-
ces. Connector nodes behave just as any other node in the selection domain (Sec-
tion 3.1.1), and may therefore exist conditionally. In the context of a given connection
choice, each combination of connector node existence statuses defines a connector
existence scenario. Since each existence scenario therefore includes a different set of
source and/or target connector nodes, effectively each existence scenario defines a
separate connection choice.

Figure 3.12 shows an example of this behavior. Selection choice C1 determines
whether or not Actuator 3 exists. If Actuator 3 exists, then its outgoing connection
has to be established; if it does not exist, then no outgoing connection is established.
Effectively this means that for both existence scenarios (one where Actuator 3 exists;
one where it does not) the connection choice is different, because different sets of valid
connection edges are available as options. In terms of valid connection sets, Figure 3.12
shows the same behavior as Figure 3.11a. The difference is that in the former, the choice
of whether or not a connection is made by the selection choice, whereas for the latter,
the choice is made by the connection choice.
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Actuator 1

C2

Control
Surface 1

Control
Surface 2

1
1..*

1..*

Actuator 2 1

Actuator 3 1

C1
Actuate
Control

Surfaces

Control
Airflow

Figure 3.12: DSG example demonstrating conditional connector nodes. The existence of Actuator 3 depends
on selection choice C1. If Actuator 3 does not exist, no outgoing connection is established.

Connector Grouping Nodes Connector grouping nodes can be used to represent cases
where the order of connections is not relevant. This is done by grouping the connector
constraints of multiple connector nodes into one overall connector constraint, and
using the grouping node as the actual connector node in the connection choice. The
use case is similar to parallel edges, except that the grouped connector constraint is
modified for different node existence scenarios: if one or more of the grouped connector
nodes does not exist, then their connector constraints are not included in the grouping.

Figure 3.13 shows an example of a connector grouping node. Outgoing connections
from the Actuator connector nodes are grouped into one set of outgoing connections.
If all Actuators exist, the grouping node provides 3 outgoing connections which are
optionally parallel. If Actuator 3 does not exist, however, the grouping node connector
constraint is updated to only 2 outgoing connections. Note that the DSG visualization
shows the grouped connector constraint for the case where all connector nodes exist.
In terms of possible established connections, Figure 3.13 shows the same behavior as
Figure 3.11b. The difference is that in the former, the number of established connections
is determined by the number of Actuator nodes and therefore by the selection choice,
whereas for the latter, the number of connections is determined by the connection
choice.

Actuator 1

C3

Control
Surface 1

Control
Surface 2

1 ∥
1..* ∥

1..* ∥

Actuator 2
3 ∥

Actuator 3 1 ∥

Control
Airflow

C2

Actuate
Control

Surfaces

Grp
1 ∥

Figure 3.13: DSG example demonstrating a connector grouping node. The Actuator connector nodes are
grouped into one set of outgoing connections. See Figure 3.8 for an overview of elements related to selec-
tion choices.
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Exclusion Edges Finally, it is also possible to define combinations of source and target
nodes that may not be connected, using exclusion edges. Figure 3.14 shows an example
of a connection choice with an exclusion edge, preventing any connections from being
established between the Backup Flight Computer and Sensor 1.

Flight Computer 1

C

Sensor 1

Sensor 2

1..* 1..*

1..*Flight Computer 2 1..*

Backup Flight Computer 1..* Sensor 31..*

Figure 3.14: DSG example demonstrating an exclusion edge. The Backup Flight Computer may not be con-
nected to Sensor 1.

Figure 3.15 lists all node and edge types used for modeling connection choices.

A Connector node

B C Connection (B is connected to C)

Cn
F

G

H

I

1n ∥

n,m n..*
n..m

D E Exclusion (D may not connect to E)

Connection
choice node

Connector nodes with
connector constraints:
- List (n,m)
- Range (n..m)
- Lower bound (n..*)
- Parallel connections (∥)

Grp Connection grouping node

Figure 3.15: Legend showing all node and edge types involved in modeling connection choices.

Connection Choice Example Figure 3.16 shows an example DSG with a connection
choice (C2). C2 has as source nodes the connector grouping node Grp (which groups
the connections of S1 and S2) and connector node S3, and target nodes T1 and T2. The
connection edges, shown by dashed black arrows, display the connection constraints.
The connection constraint of the grouping node Grp is aggregated from its underlying
source nodes S1 and S2: each of these can have either 1 or 2 outgoing connections, which
is aggregated to 2, 3 or 4 connections. The selection choice C1 determines whether
S2 is confirmed (S1 is always confirmed). If S2 is not confirmed, only S1 remains and
the aggregated connection constraint of Grp is modified to 1 or 2 connections (i.e.
derived from S1 only). Table 3.3 enumerates all valid connection sets that exist for the
example shown in Figure 3.16. It shows that if S2 exists, there are 3 possible sets of valid
connection edges. If S2 does not exist, 5 valid connection sets exist.
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N0

C1

S3

S1

S2

Grp

C2 N1

T1

T2
0..* ∥

1,2 ∥

1,2 ∥

2,3,4 ∥ 1

0,2 ∥

Figure 3.16: DSG example with generic nodes N , choice nodes C (blue). Connection (choice) nodes are shown
as hexagons; connection edges as dashed lines. Nodes N 0 and N 1 are the start nodes. See Figure 3.8 for an
overview of elements related to selection choices.

Table 3.3: Valid connection sets for the connection choice C2 shown in Figure 3.16. Each row is one set of valid
connections. The left-side columns show the number of connections between pairs of source and target nodes.
The right-side columns show the total number of connections incoming to or outgoing from each node.

Connections Total connections
between nodes to / from node

Grp Grp S3 S3
T1 T2 T1 T2 Grp S3 T1 T2

if S2
exists

0 2 1 0 2 1 1 2
1 1 0 1 2 1 1 2
1 2 0 0 3 0 1 2

if S2 does
not exist

0 1 1 1 1 2 1 2
1 0 0 0 1 0 1 0
1 0 0 2 1 2 1 2
0 2 1 0 2 1 1 2
1 1 0 1 2 1 1 2

All architecture decision patterns identified by SELVA ET AL. [128] can be represented
by connection choices, as shown in Table 3.4. Two additional combining patterns are
defined: unordered (non-replacing) combining, which represents combining patterns
where the order of option selection is not relevant. Additionally, parallel assigning
patterns are added, because parallel (or multiple) connections were not considered
in [128]. Due to its flexible formulation, also other connection choices can be modeled,
such as shown in the example of Figure 3.16. Another example is presented in [23],
where connection choices derived from safety regulations were modeled, specifying that
each electric brake actuator should be connected to at least 2 independent electrical
power sources. Another example are flight control system technology constraints used
by BAUER ET AL. [250]: a constraint that each actuator should be connected to at least 1
but at most 2 flight computers, and a constraint that each control surface should have
at least 2 ailerons assigned.
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Table 3.4: Architecture decision patterns modeled using connection choices. n and m are independent inte-
gers equal to or greater than 1; n @ cc specifies the number of connector nodes (n) with connector constraint
cc; (i , j ) represents a connection from source i to target j ; "∥" indicates that parallel connections are allowed.

Pattern Variation Source nodes Target nodes Excluded edges

Combining n @ 1 m @ 0,1
Combining Unordered 1 @ n ∥ m @ 0..∗ ∥
Combining Unordered non-replacing 1 @ n m @ 0,1
Assigning n @ 0..∗ m @ 0..∗
Assigning Injective n @ 0..∗ m @ 0,1
Assigning Surjective n @ 0..∗ or 1..∗ m @ 1..∗
Assigning Bijective n @ 0..∗ or 1..∗ m @ 1
Assigning Parallel n @ 0..∗ ∥ m @ 0..∗ ∥
Assigning Parallel surjective n @ 0..∗ or 1..∗ ∥ m @ 1..∗ ∥
Partitioning n @ 0..∗ m @ 1
Partitioning Covering n @ 0..∗ m @ 1..∗
Downselecting 1 @ 0..∗ m @ 0,1
Connecting n @ 0..∗ n @ 0..∗ (i , j ) if i ≥ j
Connecting Directed n @ 0..∗ n @ 0..∗ (i , j ) if i = j
Permuting n @ 1 n @ 1

ENCODING AND DECODING CONNECTION CHOICES

This section presents how connection choices are encoded as a set of discrete design
variables x, and how a given design vector x is decoded into a set of valid connection
edges. Here a discussion of the general principles follows; Appendix C provides more
technical details about the implementation of the connection choice encoders.

Encoding connection choices is done by first constructing a Connection Choice
Formulation (CCF) for each connection choice. A CCF consists of connector (grouping)
nodes, connection edges, exclusion edges, and connector node existence scenarios for
a given connection choice node.

Encoder Properties Different CCF patterns are best encoded as design variables using
dedicated encoding grammars [80, 122, 128]. For example, the assignment pattern (i.e.
assigning elements of one set to elements of another) is best encoded using a set of
binary variables, each of which represents one combination of source and target nodes.
The combination pattern (i.e. combining several choices with several options for each
choice), however, is best encoded by each choice having one discrete variable with
the number of available options. This is due to two effects discussed by SELVA [80]:
bijectivity and non-degradedness.

Bijectivity relates to the difference in declared and valid design spaces: if this
difference is large, it is more difficult to explore the design space for an optimization
algorithm, because there is a low chance of generating a valid design vector when
(randomly) searching the design space. In this work, this property is quantified using
the discrete imputation ratio IRd (Eq. (2.1)), the ratio between the number of declared
discrete design vectors (i.e. the Cartesian product of all discrete variables) and the
number of valid discrete design vectors. An imputation ratio of 1 indicates a one-
to-one mapping between design vectors and architectures (i.e. bijectivity), whereas
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values higher than 1 indicate this is not the case. The higher the value, the larger the
discrepancy. Refer to Section 2.2.1 for a more thorough definition.

Non-degradedness refers to the property of having a small (large) change in a design
vector correspond to a small (large) change in what is represented by that design vector.
Optimization algorithms depend on this property for local search and for building
surrogate models for global optimization [251]. Local search namely assumes that if a
small step is taken in the design space, the associated objective and constraint values
also change by a small amount [49]. Surrogate models are based on the assumption
that the closer a design vector lies to a design vector in the training database, the closer
its associated objective and constraint values should be to the value in the training
database [167].

In the case of connection choices, a design vector x represents a set of valid
connections, which can be represented as an nsrc x ntgt connection matrix M , where
nsrc and ntgt represent the number of source and target connector nodes involved in a
given connection choice, respectively, and M(i , j ) represents the number of connections
established between source node i and target node j . To quantify non-degradedness,
the distance correlation Dcorr metric has been developed as part of this work. It
correlates design vector distance to connection matrix distance, and is defined as:

Dcorr = pearsonr
(
{dmanh(x , x ′), . . . }, {dmanh(M , M ′), . . . }

)
, (3.1)

where pearsonr is the Pearson correlation coefficient, dmanh is the Manhattan distance,
and x and x ′ are two randomly sampled valid design vectors with M and M ′ their
corresponding connection matrices. The Pearson correlation coefficient measures
the amount of linear correlation between two datasets, varying between -1 (perfect
negative correlation) and 1 (perfect positive correlation) [252]. The Manhattan distance
dmanh (Eq. (2.12)) is the sum of the differences of each term in the vector or matrix,
thereby providing a good approximation of distance (or similarity) between discrete
design vectors x or connection matrices M . Dcorr thus measures how much the
Manhattan distance between design vectors (i.e. a change from one design vector to
another) is correlated with the Manhattan distance between the associated connection
matrices (i.e. the associated change in connection matrix). Dcorr = 1 indicates perfect
correlation, meaning that a small (large) change in x indeed leads to a similarly small
(large) change in its associated M . Lower values indicate less correlation, and the value
is cutoff below 0 such that the lowest value Dcorr can take is 0, indicating no correlation.

The goal is therefore for a given CCF, to select an encoder that minimizes IRd and
maximizes Dcorr.
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Encoder Classes The following classes of encoders have been developed as part of this
work:

• Pattern-specific encoders: for each of the patterns in Table 3.4, an encoder can be
defined that encodes the CCF according to optimal IRd and Dcorr behavior.

Encoding is lossless, so for a given design vector x the associated connection
matrix M can be reconstructed directly, which is how decoding is implemented.

• Eager encoders: encoders that define a more generic way of encoding and
decoding connection choices compared to pattern-specific encoders. Encoding
is done by first enumerating all valid M , denoted as Mall,valid, and then mapping
these matrices to unique design vectors (M to x mapping), from which then
design variables x are deduced.

Decoding x into M is done by reverse lookup (i.e. looking for an existing x and
obtaining the associated M) on the previously defined mapping, because the
mapping may be lossy and therefore it is not possible to directly decode x into
M . If no matching x is found, it is corrected by greedy correction: starting from
the left, correct the design variables one-by-one to ensure their value is valid (i.e.
matches at least one x in the mapping).

• Lazy encoders: these work without Mall,valid, and can therefore be used if deter-
mining Mall,valid is not possible due to time or memory limits. Encoding is done
directly using the CCF.

Encoding is lossless, so decoding is done by directly reconstructing M from x .
If the resulting M is not valid, x is corrected in a trial-and-error manner: x is
repeatedly modified until a valid M is found.

• Ordinal encoders: encoders that simply map Mall,valid to ordinal indices, and
encode these indices as integers or a numeral system with some base (e.g. binary
variables for base 2).

Decoding is done by index lookup, clipping the index if it is out-of-bounds.

Table 3.5 provides an overview of the different classes of connection choice encoders
and their properties. It lists the encoder classes in the order of decreasing preference:

1. Pattern-specific encoders have the highest preference, because they do not need
Mall,valid, have good IRd and Dcorr by definition, and do not depend on lookup
or trial-and-error procedures for decoding and correction. They are therefore the
fastest encoders with the lowest memory usage.

2. Eager encoders are preferred if the CCF matches no pattern-specific encoder.
Eager encoders have fast decoding and correction times due to the full availability
of Mall,valid.

3. Lazy encoders can be used if eager encoders run into time or memory limits when
determining Mall,valid. Lazy encoders have low memory usage, however are slower
in design variable correction.
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4. Ordinal encoders are used as a fallback if all else either fails or produces a
combination of a high IRd and low Dcorr. Ordinal encoders are the least preferred,
however, because of their by-definition low Dcorr.

Table 3.5: Classes of connection choice encoders and their properties, in order of decreasing preference from
left to right. Abbreviation: CCF = Connection Choice Formulation.

Encoder class Pattern-specific Eager Lazy Ordinal

Applies to Patterns All All All
Needs Mall,valid No Yes No Yes
Encoding Pattern-specific Map M to x Based on CCF Ordinal enumeration
Decoding Pattern-specific Reverse M lookup Encoder-specific M indexing
Correction Pattern-specific Greedy Trial-and-error Clipping
Encoding time Very fast Slow Fast Medium
Decoding time Very fast Fast Fast Very fast
Correction time Very fast Fast Slow Very fast
Memory usage Low High Low Low

Encoding Procedure The overall connection choice encoding procedure starts by
determining all node existence scenarios for the connector nodes involved in a given
connection choice. If the complete selection choice encoder is used (see Section 3.1.1),
this can be done accurately. However, if the fast selection choice encoder is used,
node existence is not available and it has to be assumed that any combination of
existence for all of the connector nodes is possible. This assumption might lead to a
less efficient connection choice encoding, for example because it prevents the use of a
pattern-specific encoder.

Once node existence scenarios are determined, the CCF is obtained and encoders
can be selected based on the preference order as discussed before. The selection
algorithm compares IRd (Eq. (2.1)) and Dcorr (Eq. (3.1)) for all relevant encoders, and
attempts to select the encoder with IRd = 1 and Dcorr = 1. If that is not possible, the
encoder with the highest possible Dcorr below some IRd threshold is selected. The
selection algorithm is presented in more details in Section C.5.

3.1.3. THE SYSTEM ARCHITECTURE OPTIMIZATION PROBLEM
This section discusses additional node types, which together with the selection and
connection domains are combined into the complete SAO problem definition.

Design Variable Nodes Next to selection and connection choices, it is also possible to
define design variables directly using design variables nodes. This can for example be
used to model architecture-specific design parameters. Continuous design variables are
defined by a lower and upper bound (inclusive); discrete design variables by a list of
option values. Design variable nodes are subject to selection choices just as any other
node, and can therefore exist conditionally. If a design variable node is not part of a
DSG, the design variable is inactive. Design variable nodes can be constrained using
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choice constraints (see Section 3.1.1). For continuous design variables only the "linked"
constraint is available.

Figure 3.17 shows an example containing design variable nodes. The Turbofan
derives the Bypass Ratio continuous design variable (value between 5 and 15, inclusive).
The Turboprop derives the Number of Blades discrete design variable (value is either 3,
4, 6 or 8). The design variable nodes are derived by conditional nodes, therefore the
design variable nodes are also conditional.

Figure 3.17: DSG example demonstrating design variable and metric nodes (both shown in gold). Turbofan
and Turboprop each have a design variable associated: Bypass Ratio (continuous) and Number of Blades (dis-
crete), respectively. The Propulsion System has three metrics associated: mass and TSFC (Thrust-Specific Fuel
Consumption) as minimization objectives (indicated by the downward pointing arrows) and Rated Thrust as
inequality constraint.

Metric Nodes The optimization problem definition is completed by defining per-
formance metrics using metric nodes. A metric nodes represents an output of the
architecture evaluation and can be used in three ways:

• As objective f , representing a minimization or maximization goal. A metric node
can only be used as objective if it is permanent, because otherwise it is not
possible to compare the performance of all architecture instances.

• As inequality constraint g , representing a value that should be above (greater
than or equal) or below (lower than or equal) some threshold. Metrics used as
inequality constraints can be conditional: if the node is not part of an architecture,
the constraint is assigned the value of the threshold, meaning that in the context
of the optimization problem the constraint is effectively considered to be satisfied.

• As a generic metric. The metric then plays no role in the context of the optimization
problem, however they can be useful for verifying the correct behavior of the
architecture evaluation code.

The example shown in Figure 3.17 also contains metric nodes, all derived by the Propul-
sion System: Mass and TSFC (Thrust-Specific Fuel Consumption) as minimization
objectives, and Rated Thrust as an inequality constraint.

To summarize, an SAO problem can be modeled with the DSG using:

• derivation edges, start nodes, selection choice nodes, incompatibility constraints
and choice constraints to define selection choices;
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• connector (grouping) nodes with connector constraints, connection edges, exclu-
sion edges and connection choice nodes to define connection choices;

• generic design variable nodes and choice constraints to define additional contin-
uous or discrete design variables; and

• metric nodes to define output metrics, optionally used as objectives or inequality
constraints.

Encoding and Decoding the DSG The set of design variables x that encode a given
DSG is given by the combination of encoded selection choices (see Section 3.1.1),
connection choices (see Section 3.1.2), and design variable nodes. The procedure for
decoding a given design vector x into an architecture instance then is as follows:

1. Decode selection choices: correct and decode the partial design vector associated
to the selection choices, track activeness information, and resolve selection
choices.

2. Decode connection choices: for each connection choice, use the associated
connection choice encoder to correct and decode the partial design vector into a
connection matrix M , then resolve the connection choice using the connection
matrix.

3. Assign values to design variable nodes directly from the associated design vari-
ables, tracking which values were assigned to determine which design variables
are active.

4. Impute inactive design variables: set inactive discrete variables to 0, inactive
continuous variables to mid-bounds.

3.2. THE ARCHITECTURE DESIGN SPACE GRAPH (ADSG)
Nodes in the DSG represent elements that can be included in architecture instances,
however by themselves they have no meaning. This section presents the Architecture
Design Space Graph (ADSG): a database of node types and allowable connections that
assigns meaning to the DSG nodes for use in a system architecting context. Node types
are defined based on the architecting tasks defined by CRAWLEY ET AL. [39]:

• function-to-component (form) allocation and function decomposition;

• function and component characterization; and

• component connection.

Function-to-Component Allocation and Function Decomposition The following node
types are defined for modeling function-to-component allocations:

• Function nodes (symbol: FUN), specifying what the system should do. Functions
that act at the system boundary and deliver the main value to the system
stakeholders are known as boundary functions [61], and are used as start nodes.

Examples of functions are "generate power", "store energy", or "move air".
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• Component nodes (symbol: COMP), representing elements of form. Each compo-
nent node has at least one component instance node (symbol: INST) associated
to it, representing the instantiation of that component. Components fulfill func-
tions, represented by a derivation edge from the function to the component node.
Components can derive the existence of additional functions by defining deriva-
tion edges to function nodes. This is called function induction, because it induces
the existence of the derived functions due to the selection of the component [61].

For example, the "generate thrust" function may be fulfilled by a "turbofan"
component, which in turn might induce the "provide fuel" function.

• Multi-fulfillment nodes (symbol: MULTI), representing multiple components
fulfilling a function simultaneously. Derivation edges are established from the
function node to the multi-fulfillment node, and then from the multi-fulfillment
node to the multiple component nodes.

For example, in a hybrid-electric propulsion architecture the "generate shaft
power" function may be fulfilled by both an "electric motor" and a "turboshaft"
component.

• Non-fulfillment nodes (symbol: NOF), representing the fact that a function is left
unfilfilled. This can be useful in the context of a selection choice where the choice
is between fulfilling a function using some component, or leaving the function
unfulfilled.

For example, in a turbofan system the function "improve performance" may
either be fulfilled by a "gearbox" component or left unfulfilled (i.e. connected to a
non-fulfillment node).

Figure 3.18 shows function fulfillment and function induction by components: the
boundary function GENERATE THRUST is fulfilled by the PROPELLER component. The
PROPELLER component induces two functions: DECOUPLE RPM and GENERATE MECHAN-
ICAL POWER. GENERATE MECHANICAL POWER is either fulfilled by the ELECTRIC MOTOR

component, the TURBOSHAFT component, or the HYBRID multi-fulfillment (which then
derives both of the former components). DECOUPLE RPM is either fulfilled by the
GEARBOX component or left unfulfilled (represented by the DO NOTHING non-fulfillment
node). Note that each component also has one component instance node associated to
it.

The function decomposition task can be modeled using:

• Decomposition nodes (symbol: DE), mapping one higher-level function to one or
more lower-level functions. A decomposition means that the originating function
performs the same as the combination of the target functions: the originating
function is said to emerge from the target functions.

For example, the function "control aircraft" can be decomposed into the "control
pitch", "control yaw", "control roll", and "control thrust" functions.

• Concept nodes (symbol: CON), mapping one solution-neutral function to one
(relatively) solution-specific function [39].
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For example, the function "transport passengers" can be mapped to "transport
passengers by air" when developing an airborne transportation system.

Functions are fulfilled by defining a derivation edge from a function node to a Function
Derivation Node (FDN): a component, multi-fulfillment, non-fulfillment, decomposi-
tion, or concept node. If there are multiple outgoing derivation edges to FDN nodes,
a "function fulfillment" selection choice node is inserted. Figure 3.18 contains two
such selection choice nodes (shown in blue): for choosing how the DECOUPLE RPM and
GENERATE MECHANICAL POWER functions are fulfilled.

FUN:
GENERATE_THRUST

COMP:
PROPELLER

FUN:
DECOUPLE_RPM

func_fulfill

COMP:
GEARBOX

INST:
GEARBOX[0]

MULTI:
HYBRID

COMP:
ELECTRIC_MOTOR

COMP:
TURBOSHAFT

INST:
ELECTRIC_MOTOR[0]

INST:
TURBOSHAFT[0]

FUN:
GENERATE_MECH_PWR

func_fulfill

INST:
PROPELLER[0]

NOF:
DO_NOTHING

Figure 3.18: ADSG example demonstrating function fulfillment and induction by components, and usage of
multi-fulfillment and non-fulfillment elements.

Function and Component Characterization Characterization includes architectural
choices and design parameters (design variables) defined at the function-level or
component-level:

• Design variable value allocation using design variable nodes (symbol: DV; see
Section 3.1.3). Design variable nodes define either discrete or continuous de-
sign variables, and can be associated either to a function, a component, or a
component instance node.

Figure 3.19 shows a BYPASS RATIO design variable associated to the TURBOFAN

component.

• Static input definition using static input nodes (symbol: INP). A static input
node represents some value associated to a function, component or component
instance that provides input to the evaluation, however is not free to change (i.e.
will not be included as a design variable). This can be used to make assumptions
or static component properties more explicit, compared to keeping them as input
(or even hard-coded) variables inside the evaluation code.
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Figure 3.19 shows a RATED THRUST static input associated to the GENERATE THRUST

function.

• Metric definition using metric nodes (symbol: MET; see Section 3.1.3). Metric
nodes can be associated to function, component or component instance nodes
and represent outputs of the architecture evaluation. A metric node can addition-
ally define a direction (maximization or minimization), which allows it to be used
as an objective (symbol: OBJ), or a value threshold, allowing it to be used as an
inequality constraint (symbol: CON).

Figure 3.19 shows a TSFC (Thrust-Specific Fuel Consumption) minimization ob-
jective associated to the GENERATE THRUST function, and a MASS metric associated
to the TURBOFAN component.

• Selecting the number of component instances. Each component instance is
represented by a component instance node (symbol: INST). An instantiation
choice is specified by adding a selection choice node that as options has grouping
nodes which in turn derive the component instance nodes associated to the
number of instances for that option.

An example is shown in Figure 3.19: the TURBOFAN component is either instan-
tiated 2 or 4 times, represented by the component instantiation selection choice
node with two grouping nodes as options, of which the first selects the first 2
instance nodes, and the second selects all 4 instance nodes.

• Component attribute selection using attribute nodes (symbol: ATTR). An attribute
node represents an assignment of one or more attribute values (symbol: VAL). The
assignment choice is modeled using a connection choice (see Section 3.1.2).

INP:

FUN:
GENERATE_THRUST

COMP:
TURBOFAN

comp_instance_TURBOFAN

Grp[I]

INST:
TURBOFAN[0]

INST:
TURBOFAN[1]

Grp[I]

INST:
TURBOFAN[2]

INST:
TURBOFAN[3]

DV: BYPASS_RATIOMET:

OBJ:

[5.0 .. 15.0]

RATED_THRUST = 400TSFC [↓]

MASS

Figure 3.19: ADSG example demonstrating function and component characterization: a design variable node,
a static input node, metric nodes, and a component instantiation choice. Choice nodes are shown in blue;
design variable and metric nodes in gold.
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Component Connection Component connection choices can be modeled using con-
nection choices (see Section 3.1.2) from output port connectors (symbol: OUT) to
input port connectors (symbol: IN). Port connector nodes are derived by component
instances. The number of port connector nodes per component instance can also be a
choice, modeled using a selection choice.

Figure 3.20 shows an example of a component connection choice. The CONTROL

SURFACE and POWER DISTRIBUTION SYSTEM components both have two instances. The
connection choice is defined using the ASSIGN port, with output connectors derived by
the power distribution system instances and input connectors by the control surface
instances. The port connectors define connection constraints: each power distribution
connector can establish any number of connections; the control surface connectors can
either receive 1 or 2 connections.

FUN:
CONTROL_AIR_FLOW

COMP:
CONTROL_SURFACE

FUN:
SUPPLY_POWER

Grp[I]

COMP:
POWER_DISTRIBUTION_SYSTEM

INST:
CTRL_SFC[0]

INST:
CTRL_SFC[1]

Grp[I]

IN:
ASSIGN

IN:
ASSIGN

INST:
PWR_DIST_SYS[0]

INST:
PWR_DIST_SYS[1]

port_ASSIGN

OUT:
ASSIGN

OUT:
ASSIGN

1,2

1,2

0..*

0..*

Figure 3.20: ADSG example demonstrating a component connection choice.

Table 3.6 lists all available ADSG node types and possible derivation edge connec-
tions to and from these node types.
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3.3. ADORE MODELING AND OPTIMIZATION ENVIRONMENT
ADORE (Architecture Design and Optimization Reasoning Environment) is a Python
tool developed as part of this work for defining and solving SAO problems. It provides:

• a web-based Graphical User Interface (GUI) for editing and inspecting an ADSG;

• Python and file-based interfaces for connecting to evaluation code; and

• interfaces for connecting to optimization algorithms.

An overview of these three aspects follows.

3.3.1. ADORE MODELS AND GRAPHICAL USER INTERFACE
The architecture design space is defined in an ADORE model. During the modeling and
optimization processes, in the background the ADSG is created from the ADORE model,
and is used to deduce ADORE model behavior. Appendix D presents the interactions
between the DSG, ADSG and ADORE in more details, and it shows how the SAO loop
shown in Figure 3.1 is implemented.

ADORE models represent the same concepts as the ADSG, however with several
differences to improve clarity and manage complexity. Several model views are defined
to reduce the number of items shown to the user at a given time:

• a system view showing functions, function derivation elements (components,
decompositions, etc.), and ports;

• a component view showing component-level elements such as attributes; and

• a port view showing a port, its port connectors, and associated components.

Metrics, design variables, and static inputs are defined using Quantities of Interest
(QOIs), enabling flexible switching between input or output roles. This is useful, as
during design space definition it may not be known yet whether some value is an
input to or an output from the architecture evaluation process. The ADORE model also
adds the capability for modeling subsystems: recursive groups of elements, where the
number of subsystem instances may also be an architectural choice. Each subsystem
instance then contains copies of the original elements, including choices, and copied
choices are independent of each other. Figure 3.21 shows an example ADORE model.

The web-based GUI of ADORE is built-up of five pages to assist the architect in
defining and executing SAO problems:

1. The design space editing canvas (shown in Figure 3.22), where the ADORE model
is inspected and edited using the three views presented in Figure 3.21.

2. The external database list (shown in Figure 3.23), showing databases of external
elements and how they are linked to ADORE model elements. External databases
are optional, and their usage depends on the context that ADORE is applied in.
For example, in the AGILE4.0 project external databases were used to link ADORE
model elements to requirements [21].

3. The architecture design choices list (shown in Figure 3.24), which allows defin-
ing choice constraints (see Section 3.1), and shows design space statistics (e.g.
encoder types, design space sizes, number of choices, and imputation ratio).
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QOI [OBJ]:
Objective ↓

FUN:
Boundary Function

FUN:
Function 1

FUN:
Function 2

FUN:
Function 3

COMP:
Component 1

COMP:
Component 2

COMP:
Component 3

COMP:
Component 4

DE:
Decomposition

MULTI:
Multi-fulfillment

PORT:
Port

fulfilled by

fulfilled by

includes

fulfilled by

fulfilled by

includes

fulfilled by

emerges from

zooms into

zooms into

zooms into

fulfilled by

outputs toto input

to input

(a) System view

COMP:
Component 4

INST

QOI [DV]:
DV = [0, 1]

PORT:
Port

OUT:
Port

COMP:
Component 1

COMP:
Component 2

1,2 1 1..* to input

to input

(b) Component view (Component 4)

Figure 3.21: ADORE model showing a design space with a boundary function (which is also the start function)
with an objective, a decomposition into 3 lower-level functions, selection choices (2x function fulfillment, 1x
component instantiation), instance-level design variables, and a port connection choice. Blue-dashed arrows
indicate architectural choices.

4. The design problems list, where design (optimization) problems can be formally
defined (shown in Figure 3.25). Their definition additionally allows fixing design
variables to easily enable exploring only a sub-part of the design space. It also
allows changing the output roles (objectives, constraints, or generic metrics).

5. The architecture instances list, showing all architecture instances that have been
generated from the design space model, either as part of a design problem or by
manual creation. Manually creating architecture instances is useful for verifying
that the design space indeed represents the behavior that the architect intends,
and for testing architecture evaluation code. Figure 3.26 shows the decisions
editor for manually creating an architecture instance.
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Figure 3.23: ADORE graphical user interface, showing external databases.

Figure 3.24: ADORE graphical user interface, showing the architecture choices list.



3

108 3. ARCHITECTURE DESIGN SPACE MODELING

Figure 3.25: ADORE graphical user interface, showing a design (optimization) problem.

Figure 3.26: ADORE graphical user interface, showing a manually-created partial architecture.
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3.3.2. EVALUATION INTERFACES
Several interfaces for connecting to evaluation code have been developed as part of this
work. Which interface is used depends on which analysis tools are available, in which
computational environment, and how much programming skills the user has. Table 3.7
lists the available evaluation interfaces. The rest of this section discusses the interfaces
in more details.

Table 3.7: Comparison of evaluation interfaces available in ADORE.

Environment Interface Paradigm Usage Scenario

Python
Direct access Imperative Most flexible
Class Factory Evaluator (CFE) Declarative Rule-based object creation

External
File-based serialization Imperative Serialization
Node Factory Evaluator (NFE) Declarative Rule-based node creation

Direct Access The most flexible way to implement evaluation is by creating a class
that subclasses ADORE’s GRAPHAPIEVALUATOR class in Python, and to override the
evaluation function: the function returning numerical values for all included output
QOIs for a given architecture instance. The architecture instance is provided as
an ARCHITECTURE object that provides details like the associated design vector and
the included elements (subsystems, functions, components, component instances,
connections, QOIs, etc.).

This direct access approach is the most flexible approach, however might require a
steep learning curve and sufficient programming skills. Additionally, since the code
then directly depends on the internal data model of ADORE, any changes to the data
model (e.g. in future ADORE versions) might break such evaluation code.

Class Factory Evaluator Python-based evaluation can be supported by the Class
Factory Evaluator (CFE). With the CFE, the user can define rules for instantiating objects
based on selected architecture elements. To use the CFE, the user defines the following
aspects (as Python code):

• Class factories: a class factory defines rules for instantiating a Python class into an
object, consisting of an external element and class property definitions.

The external element definition ("external" meaning external to the ADORE
model) becomes part of an external database (see Section 3.3.1) and is linked to
one or more ADORE elements by name matching (exact, using wildcards, or using
regular expressions2).

Class property definitions define how the values for the class properties are
obtained: values can be static (e.g. string or numerical literal values), based on
the linked ADORE element (e.g. the name, the ADORE data model object, or the
component instance index), based on a port connection, or derived from a QOI.

2See for example https://regex101.com/ for an introduction to regular expressions.

https://regex101.com/
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• Metric factories: a metric factory defines an external element that is linked to an
output QOI (i.e. an objective, constraint, or metric QOI).

• The evaluation function: the function that receives the ARCHITECTURE instance,
instantiates objects using the class factories, uses these objects to run the
problem-specific evaluation code, and then returns values for all the metric
factories.

Compared to the direct access approach, the CFE approach reduces dependency on
the internal data model of ADORE, and makes it easy to use evaluation code with
object-oriented input.

File-based Serialization If analysis tools are not directly available in Python, it is also
possible to use a file-based evaluation interface. Here, generated architectures are
serialized as an XML, JSON, or RDF file, which are then used as input to an externally-
integrated evaluation function. This approach is useful if another programming
language is used to implement evaluation code, or for use in distributed evaluation
approaches like (collaborative) MDAO integrated in dedicated Process Integration and
Design Optimization (PIDO) platforms.

Node Factory Evaluator Analogous to the CFE for Python-based evaluation, the Node
Factory Evaluator (NFE) can support file-based evaluation by defining rules on how to
add nodes to some XML data file based on selected architecture elements. Compared to
direct serialization, the NFE reduces dependency on the internal data model of ADORE,
and may reduce the learning curve. The NFE is presented in more details in Section 4.2.

In computer science, a distinction is made between declarative and imperative pro-
gramming approaches [253]. Declarative approaches describe the results to be obtained
from some procedure, without prescribing the order in which functions and expressions
need to be evaluated. Imperative approaches, however, describe every step to perform
in order to obtain the desired results. The CFE and NFE interfaces can be regarded as
declarative approaches, as here the user uses rules to define the desired result of the
architecture conversion. Compared to this, the bare Python and file-based serialization
interfaces are imperative approaches, as these require the implementation of additional
code to interpret the architecture for evaluation. The declarative interfaces reduce the
amount of code to be implemented to convert the architecture instances to the format
needed for evaluation, compared to the imperative interfaces.

3.3.3. OPTIMIZATION INTERFACES
After the design space has been modeled and the evaluation function has been con-
nected, the optimization problem can be formulated and executed. Running the
optimization problem is done by connecting to SBArchOpt, presented in Section 2.5.
ADORE provides an SBArchOpt problem definition, thereby allowing the use of any op-
timization algorithm in SBArchOpt. The problem can then be configured and executed
directly using the Python APIs of SBArchOpt and ADORE.
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3.4. THE FUNCTION-BASED ARCHITECTURE DESIGN SPACE MOD-
ELING PROCESS

This section provides a guideline for modeling the architecture design space using the
ADSG as implemented in ADORE, and compares this approach to existing architecture
design space modeling approaches. The modeling process is as follows:

1. Identify boundary functions from functional requirements. Boundary functions
should be specified such that they are solution-neutral from the point of view of
the system of interest [61].

(Boundary) functions (FUN) should be formulated as "[process] [operand]" [39, 64],
where process is a verb applied to an operand (e.g. material, energy, or signal
flow). HIRTZ ET AL. [64] provide a useful database of solution-neutral processes
and operands for functions of cyber-physical systems. Examples of functions are
"accelerate air", "process signal", and "generate power".

2. For each unfulfilled function, define how they can be fulfilled:

(a) Use a concept element (CON), mapping a (relatively) solution-neutral func-
tion to a (relatively) solution-specific function, to reduce the solution scope
for the given design problem.

Normally there are multiple concepts that can fulfill a given function. To
then reduce the solution scope, one or more of the alternative concepts can
be disabled. This documents that the architect is aware of other concepts
that can be used to fulfill the given function, however for the given design
problem these concept(s) are not considered.

An example of this (shown in Figure 3.27) is an aircraft manufacturer that
wants to design a new aircraft to fulfill the high-level function "transport
passengers". Passengers can also be transported over land or water, which
can be documented as alternative concepts, next to transporting by air.
Transporting over land and water can then be disabled, because they will not
be considered by the aircraft manufacturer.

FUN:
Transport Passengers

FUN:
Transport Passengers by Air

FUN:
Transport Passengers by Land

FUN:
Transport Passengers by Water

COMP:
Aircraft

CON:
By Air

CON:
By Land

CON:
By Water

fulfilled by

neutral

specific

neutral specific

neutral

specific

Figure 3.27: Example of function fulfillment by concepts, including disabled alternatives.

(b) Use a function decomposition element (DE), mapping one function to multi-
ple functions, if the following three conditions are satisfied:

• "Parallelism" condition: satisfied if the function can be decomposed
into two or more functions that either act in parallel, or are tightly-
coupled in a loop without a clear starting point.
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• "Solution-neutrality" condition: satisfied if the decomposed functions
are as solution-neutral as the parent function, meaning they do not
imply that some technology or solution is selected for fulfilling the
parent function.

• "Compatibility" condition: satisfied if the fulfillment of the decomposed
functions do not require major cross-tree incompatibility constraints to
be defined later on.

For example, to control the flight path of an aircraft, it should be possible
to control pitch, yaw, roll, and thrust (shown in Figure 3.28): the higher-
level function "control flight path" can be decomposed into the lower-level
functions "control pitch/yaw/roll/thrust". This mapping does not imply
a specific control system solution, as all aircraft (including fixed-wing,
rotorcraft, and lighter-than-air vehicles) need these functions. Also, they
all act in parallel (there is no execution order between the four lower-level
functions).

FUN:
Control Flight Path

FUN:
Control Roll

FUN:
Control Pitch

FUN:
Control Yaw

FUN:
Control Thrust

COMP:
Ailerons

COMP:
Elevators

COMP:
Rudder

COMP:
Engines

DE:
Control Functions

fulfilled by

fulfilled by

fulfilled by

fulfilled by

emerges from

zooms into

zooms into

zooms into

zooms into

Figure 3.28: Example of function decomposition into parallel and solution-neutral functions.

(c) Use a component (COMP) if some element of form can fulfill the function.
Components represent the implementation of the system, and components
should be named as nouns. Components may induce additional functions,
which in turn need to be fulfilled. Components can both fulfill and induce
multiple functions. An example is shown in Figure 3.29.

Determining at what level of granularity to define components depends
entirely on at what level architecture elements or architectural choices can be
considered in the architecture evaluation code. For example, the function to
"generate thrust" (for an aircraft) can be fulfilled by: a "propulsion system",
a "turboprop", or a "propeller", in the order of increasing granularity. The
"propeller" can be used to fulfill the function if there are alternatives for
fulfilling the function, and/or if there are alternatives for fulfilling induced
functions (e.g. electric motor or turboshaft for generating mechanical
power), and if these alternatives can be captured in the evaluation code.
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FUN:
Generate Thrust

FUN:
Generate Mechanical Power

FUN:
Decouple RPM

COMP:
Propeller

COMP:
Electric Motor

COMP:
Turboshaft

COMP:
Gearbox

NOF:
Do Nothing

MULTI:
Hybrid

fulfilled by

needs

needs

fulfilled by

includes

fulfilled by

includes

fulfilled by

linked to

fulfilled by

Figure 3.29: Example of function fulfillment by components, showing usage of multi-fulfillment and non-
fulfillment elements. Architectural choices are shown by blue-dashed edges. Figure 3.18 shows the equivalent
ADSG.

(d) Use a multi-fulfillment element (MULTI) if multiple components can fulfill
a function simultaneously. For example, in a flight control system, the roll
can be controlled by both ailerons and spoilers; in a hybrid-electric aircraft
propulsion system, mechanical power can be provided to propellers by both
electric motors and turboshafts.

Multi-fulfillment elements can be used to define selection choice options
that act at the same level as components (and concepts and function
decompositions). For example, if there are two alternative components to
fulfill a function, the multi-fulfillment can be used to define the third option
of using both components simultaneously. For an aircraft propulsion system
this mechanism can for example be used to model the choice between full-
electric propulsion (electric motor), conventional propulsion (turboshaft),
and hybrid-electric propulsion (both), as also shown in Figure 3.29.

(e) Use a non-fulfillment element (NOF) to indicate the possibility for not
fulfilling a function. This can for example be used for fulfilling secondary
functions that may improve system performance, however at some cost.
This indicates a trade-off which can be relevant at the system level.

An example would be the inclusion of a gearbox in a turbofan: the gearbox
improves the propulsive efficiency of the turbofan, however at the cost of
increased weight, manufacturing cost, and reduced reliability. This choice
can be represented by a secondary function "decouple RPM", which can
be fulfilled by a "gearbox" element or a non-fulfillment, as also shown in
Figure 3.29.

3. Use incompatibility constraints to declare that two elements (functions or com-
ponents) are not allowed to exist in an architecture instance together. This can
be useful if the involved components are derived in different function paths or
decomposition trees.

Incompatibility constraints are also useful if multiple components represent op-
tions in two or more architectural choices. If left unconstrained, each architectural
choice is independent of each other and as such it can happen that more than
one of the components is selected in an architecture, each for fulfilling different
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functions. If that does not represent a realistic architecture, then incompatibility
constraints can be defined between the components.

An example is if for a flight control system, directional stability can be achieved
by a vertical tail or by a V-tail, and longitudinal stability can be achieved by a
horizontal tail or by a V-tail as well (shown in Figure 3.30). The combination of a
V-tail and either a vertical or horizontal tail does not make sense, however if left
unconstrained can be selected as an architecture instance.

FUN:
Stabilize Longitudinally

FUN:
Stabilize Directionally

COMP:
Vertical Tail

COMP:
V-tail

COMP:
Horizontal Tail

fulfilled by

fulfilled by

fulfilled by

fulfilled by

Figure 3.30: Example of incompatibility constraints (shown by red lines) to constrain independent choices.

4. Use subsystems (SYS) to group elements logically belonging together, especially if
the group as such can be instantiated multiple times in an architecture.

For example, elements inside of a propulsor unit can be grouped into a propulsor
subsystem, if also other elements of the aircraft are modeled at a similar level
of detail, or if the propulsor as a whole can instantiated multiple times. This
example is shown in Figure 3.31, including a function fulfillment choice within
the subsystem.

Subsystems can be nested to enabling grouping elements at multiple levels of
system decomposition.

FUN:
Generate Thrust

COMP:
Fuel System

COMP:
Power System

FUN:
Generate Power

FUN:
Provide Fuel

FUN:
Provide Electrical Power

COMP:
Propeller

COMP:
Turbofan Core

COMP:
Electric Motor

needs

fulfilled by

needs

fulfilled by needs

SYS:
Propulsor

fulfilled by

fulfilled by
fulfilled by

Figure 3.31: Example subsystem usage for logically grouping elements.

5. Once components have been defined, function and component characterization
options can be defined:

• Component instantiation represents cases where the component can be in-
cluded multiple times in an architecture, and where the number of instances
is a choice. For example, the number of engines of an aircraft can be a
choice.

• Function and component static design variables represent sizing or property
parameter choices, and can either be continuous, representing a number
between two bounds, or discrete, representing a choice from a finite set
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of options. Design variables can either be defined for the component as
a whole, or for each component instance separately. Examples of design
variables are the bypass ratio of a turbofan (a continuous design variable)
or the number of compressor blade rows of a linear compressor (a discrete
design variable).

• Other characterization options include the definition of static inputs, for
example representing assumptions or static requirements, and design con-
straints. Examples include defining environmental conditions as static
inputs or defining material stress limit constraints.

Whether to use discrete design variables or alternative components for fulfilling a
function depends on the level of granularity appropriate for the design problem.
It is recommended to use alternative components if the different components
induce different functions and/or contain different characterization options as
described above. For example, a choice between two types of turbofans can be
modeled using a turbofan component with a discrete design variable selecting
between the different types . However, a choice between a turbofan, a turboprop,
and other propulsion technologies might be more appropriately modeled using
alternative components, as they might induce different functions to be fulfilled by
other aircraft systems.

Static inputs, design variables, and design constraints are defined using Quantity
of Interest (QOI) elements. QOI elements also define output metrics, optionally
used as objectives or inequality constraints. Figure 3.32 shows an example of
function and component characterization. The generate thrust function has two
QOIs associated to it: a TSFC (Thrust-Specific Fuel Consumption) minimization
objective and a rated thrust static input. The turbofan component has an
instantiation choice (2 or 4 instances), and it has two QOIs associated: a bypass
ratio continuous design variable and a mass output metric.

QOI [OBJ]:
TSFC ↓

QOI [INP]:
Rated Thrust = 400

FUN:
Generate Thrust

COMP:
Turbofan

fulfilled by

(a) System view showing an objective and a static input QOI
associated to a function.

COMP:
Turbofan

INST

QOI [DV]:
Bypass Ratio = [5, 15]

QOI [MET]:
Mass

2,4

(b) Component view showing a design variable and a metric
QOI associated to a component, and a component instanti-
ation choice.

Figure 3.32: Example function and component characterization. Figure 3.19 shows the equivalent ADSG.

6. Architectural choices at the component-instance level or in instances of the same
subsystem are independent of each other. If this should not be the case, the
choices can be constrained by adding a choice constraint. The following types of
choice constraints are available (see also Section 3.1.1):

• "Linked": ensures that all choices are assigned the same option. This
constraint can be applied if for example multiple propulsor subsystems
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exist in the example of Figure 3.31, and all subsystems should either have
turbofans or electric motors.

• "Permutations": ensures that no choice is assigned the same option. The re-
sult is that the set of constrained choices effectively becomes a permutation
choice.

This can be useful if for example a selection of properties across component
instances is fixed, however they may be distributed over components in
different ways (i.e. permutations). It can also be used if there are many
components for fulfilling some function across several subsystem instances,
and each component can only be used in a specific subsystem once.

• "Unordered combinations": ensures that choices are assigned an equal or
later option. This can be used to model situations where component-level
or subsystem-level choices may have different options assigned over their
instances, however where permutations (i.e. different ways of "ordering") of
a set of options should not be considered.

This can for example be used if in the example of Figure 3.31 it is allowed
to have a mix of turbofans and electric motors across the different propul-
sor subsystems, and only the number of turbofans and electric motors
influences the system performance (i.e. not the assigned subsystem index).

• "Unordered non-replacing combinations": ensures that choices are assigned
a later option. The behavior is similar to the unordered combinations
constraint, however prevents choices from having the same option assigned.

This can be useful if there are many components for fulfilling some function
across several subsystem instances, each component can only be used in a
specific subsystem once, however permutations of technology assignment
do not influence system performance.

7. Use port elements (PORT) to model connection, assignment, and/or allocation
choices between (sets of) components.

Such choices are appropriate when the components to be connected are included
for fulfilling different functions (or as part of different function paths). For
example, a turbofan might both have the primary function to generate thrust and
a secondary function to generate electrical power. The primary function derives
turbomachinery components and shafts with multiple compression stages. The
secondary function might derive an electrical generator. The electrical generator
is then connected to one of the shafts: which shaft instance to connect to can be
modeled using a port element.

Ports can also be useful to further elaborate how components within a function
path are connected. For example, some power consumer (e.g. a flight control
surface) might induce the function to provide power, which is fulfilled by a power
distribution system. However, there are multiple control surfaces and multiple
distribution systems for redundancy, and assigning the distribution systems to the
control surfaces is not a trivial problem and is therefore relevant to be included
in the architecture design space. This assignment choice can be modeled using
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a port, see Figure 3.33. Constraints can be added to for example ensure that
each control surface is assigned to at least one distribution system, and each
distribution system supplies at least one control surface with power.

Ports use connection choices (compared to selection choices for function ful-
fillments), see Section 3.1.2, which are more powerful for modeling architecture
decision patterns as identified in [128]. It is for example possible to define
connection, assignment, downselection, or permutation choices.

FUN:
Control Air Flow

FUN:
Supply Power

COMP:
Control Surface

COMP:
Power Distribution System

fulfilled by

needs fulfilled by

PORT:
Assign

outputs toto input

Figure 3.33: Example port usage to model an assignment choice. Figure 3.20 shows the equivalent ADSG.

8. Iterate until all functions are fulfilled, and elements are defined and characterized
at the appropriate level of granularity.

By modeling function fulfillment at the appropriate level of granularity, the
"primary value paths" should emerge. A primary value path is the chain of
functions that delivers the main value of the system (i.e. fulfills the boundary
functions) by executing them sequentially or in parallel [39]. Note that primary
value paths are properties of architecture instances, so architecture design spaces
may contain multiple value paths.

9. Define system-level performance metrics to drive the architecture optimization
loop. Performance metrics are defined using QOI elements (QOI), and can either
take the role of minimization or maximization objectives, design constraints, or
generic metrics:

• Objectives are the main drivers of the optimization, and normally represent
system-level metrics. They can be assigned to the appropriate boundary
function, however they at least should be assigned to some element that
is present in all architecture instances: otherwise architecture instances
cannot be compared to each other.

• Design constraints represent some threshold requirement to be met, and can
either act at the system-level or at the component-level. Constraints do not
have to necessarily always exist, for example if they constrain the behavior of
a particular component only.

• Generic metrics do not drive the optimization, however are useful for
verifying evaluation results. They can for example represent internal cal-
culation results (to verify that the final metrics are calculated correctly), or
component-level calculation results (to verify that system-level aggregated
metrics are calculated correctly).

Figure 3.32 shows an example of QOIs used as objectives and output metrics.
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10. Verify that the evaluation code is sensitive to the modeled architecture design
choices: each choice should influence one or more performance metrics. If for a
given choice this is not the case, there are two options:

• remove the choice by disabling or removing associated model elements; or

• (plan to) modify the evaluation code to be sensitive to the choice.

11. Verify that the architecture design space behavior is correctly implemented by
verifying choices, adding choice constraints if needed, and manually generating
architecture instances.

The manual architecture generation process takes the architecture choice-by-
choice from the design space model towards an architecture instance. By going
choice-by-choice, the architect can verify that choices appear in a logical order,
that the choice hierarchy is correctly implemented, that the correct options for
different combinations of choices are present, and that any choice constraints are
implemented correctly.

The consequence of using the function-based architecture design space modeling
approach presented in this section is that the "zig-zagging" between functions and
components happens along the primary value path. This approach therefore can also
be seen as a bottom-up process, because the primary value path is defined step-by-
step, starting from the final value-providing function (i.e. a boundary function). The
presented bottom-up process is made possible by the fact that the DSG is a directed
graph that may include cycles: this enables creating diverging derivation paths for
function fulfillment, which can be merged and/or crossed-over further back along
the primary value path. In contrast, tree-based approaches like feature models [69]
or function-means trees [70] represent top-down processes, because the granularity
appropriate for modeling function fulfillment choices for a given problem is mainly
achieved using function decompositions. The resulting function fulfillment choices
then reside in different branches of the tree, which requires the definition of cross-tree
constraints to represent component (in)compatibilities.

Figure 3.34 shows the architecture design space of an aircraft propulsion system,
including several options for generating thrust, generating mechanical power, and sup-
plying energy, modeled using both approaches. The top-down approach requires many
cross-tree incompatibility constraints to ensure that only appropriate combinations of
components can be selected. The bottom-up approach, however, requires no incompat-
ibilities, because component compatibilities are defined using function fulfillment and
induction relationships. Additionally, the top-down approach of the presented example
violates two of the three conditions for using a function decomposition element:

• The parallelism condition is violated because there is a clear execution order
between the decomposed functions (execution order: supply energy, convert
energy to work, convert work to thrust), so there is no parallelism or tightly-
coupled execution loop.

• The compatibility condition is violated because many cross-tree incompatibility
constraints have to be defined in order to correctly model compatibilities.
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The bottom-up process may thus result in less need for defining cross-tree constraints,
prevents violating decomposition conditions, and therefore provides a more natural
way to define function fulfillment choices.

FUN:
Generate Thrust

FUN:
Supply Energy

FUN:
Convert Energy to Work

FUN:
Convert Work to Thrust

COMP:
Kerosine

COMP:
Liquid LH2

COMP:
Batteries

COMP:
Piston Engine

COMP:
Electric Motor

COMP:
LH2 Fuel Cell

COMP:
Gas Turbine Core

COMP:
Nozzle

COMP:
Propeller

DE:
Thrust Generation Process

fulfilled by

fulfilled by

fulfilled by fulfilled by

fulfilled by

fulfilled by

fulfilled by fulfilled byfulfilled by

emerges from

zooms into

zooms into

zooms into

(a) Top-down (tree-based) modeling approach.

FUN:
Generate Thrust

FUN:
Generate Mech Power

FUN:
Energize Airflow

FUN:
Provide Fuel

FUN:
Provide Fuel

FUN:
Provide Electricity

FUN:
Provide LH2

COMP:
Kerosine

COMP:
LH2

COMP:
Batteries

COMP:
Piston Engine

COMP:
Electric Motor

COMP:
Fuel Cell

COMP:
Gas Turbine Core

COMP:
Nozzle

COMP:
Propeller

fulfilled byfulfilled by

fulfilled by

fulfilled by

fulfilled by

fulfilled by

needs

fulfilled by

needs

fulfilled by

needs

fulfilled by
fulfilled by

needs

fulfilled by

needs

fulfilled by

needs

(b) Bottom-up (graph-based) modeling approach.

Figure 3.34: Comparison between top-down and bottom-up architecture design space modeling approaches.
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3.5. APPLICATION CASE II: HYBRID-ELECTRIC PROPULSION
This application case presents the design of a Hybrid-Electric Propulsion (HEP) system
for a regional aircraft, to demonstrate the use of ADORE for defining and solving
SAO problems. Hybrid-electric aircraft take part of their propulsion energy from
conventional fuel sources such as kerosene, and part from electric sources such as
batteries [254]. The architecture of the propulsion system plays an important role
in the design of such aircraft, as it enables novel combinations of various electrical,
mechanical and thermal components which must be investigated at the early stage of
the design process due to their large impact on aircraft performance [255].

HEP Architecture Evaluation Framework A modular and flexible hybrid-electric pro-
pulsion system architecture builder and evaluation framework is used to enable dynamic
formulation of the propulsion system evaluation model. This framework has been
developed as part of this work, and is detailed in [24]. The evaluation framework is
based on OpenConcept [256], an open-source mission analysis and propulsion system
modeling framework. OpenConcept contains a set of component models and mission
integration routines programmed using OpenMDAO [248], an open-source MDAO
framework. The MDAO problem is setup automatically for each generated architecture
by an architecture builder module. The architecture builder constructs an OpenMDAO
model using OpenConcept library items from a definition of the propulsion system in
a PROPSYSARCH class. Each architecture consists of thrust, mechanical power, and
electrical power generation elements. Thrust generation elements convert mechanical
power into thrust; mechanical power is generated from fuel or electrical power; and
electrical power is generated from batteries and/or generators, and are only included if
electrical power is needed for mechanical power generation.

In the OpenMDAO problem, the engines of the aircraft, the batteries required to
complete the mission (if the architecture has batteries), propeller blade sizes, and
airspeeds and vertical speeds along the mission are optimized by the objective:

fsizing
(
xsizing

)= (1− tcoeff) (wfuel +0.01MTOW)+0.01tcoefftflight, (3.2)

where tcoeff is an architecture-level design variable steering the optimization towards
optimizing for flight time tflight or towards fuel weight wfuel and Maximum Take-off
Weight (MTOW) optimization.

The aircraft is sized by the aircraft design tool OpenAD [257], which takes as
inputs the top-level aircraft requirements (TLARs) and mission simulation results from
OpenConcept. Aircraft requirements include the design range, cruise altitude, design
payload, cruise Mach number and the wing loading. The output of OpenAD is a
consistent aircraft design, including geometry, weights breakdown, and drag polar.
These parameters are then input to OpenConcept, together with the mission definition,
and PROPSYSARCH instance. OpenConcept then simulates the mission and calculates
the propulsion system weight, amount of fuel used, and battery state-of-charge at
the end of the mission. Fuel usages, the propulsion system weight, and mission
segment durations are fed back into OpenAD. The cycle continues until OpenAD and
OpenConcept results are consistent with each other: a good example of a coupled
computational system as is common in MDAO [72].



3.5. APPLICATION CASE II: HYBRID-ELECTRIC PROPULSION

3

121

The appropriateness of the architecture builder for SAO comes from the fact that
all propulsion architectures have a common computational interface for connecting to
analysis at a higher system level (e.g. mission analysis and aircraft sizing): the compu-
tational elements that are different between architecture instances are contained within
the common interface, and are therefore effectively “hidden” from the rest of the com-
putational problem. Additionally, the class-based definition used by the architecture
builder is conveniently used with the Class Factory Evaluator (CFE; see Section 3.3.2).
For example, a class factory might specify to instantiate the PROPELLER class if the
propeller component occurs in an architecture instance, and assign properties taken
from associated Quantities of Interest (QOIs) such as diameter and number of blades.
Each component class that can be part of the PROPSYSARCH has an associated class
factory, defining for which ADORE model elements it should be instantiated, and which
QOIs from the ADORE model should be taken as property values.

The architecture evaluation function then comprises the following automated steps:

1. Instantiate architecture builder classes from the ADORE architecture instance
using the CFE.

2. Assemble the PROPSYSARCH instance.

3. Build the OpenMDAO problem using the architecture builder.

4. Execute the OpenMDAO problem.

5. Extract performance metrics from the converged OpenMDAO problem.

Figure 3.35 displays the problem in XDSM [258] view, showing the interaction between
the outer SAO loop and the inner aircraft sizing and mission analysis MDAO problem.

ADORE SAO Model The ADORE model representing the architecture design space is
shown in Figure 3.36. The boundary function of the propulsion system is to Provide
Propulsive Power [259]. This is fulfilled by the Thrust Generator component, which in
order to produce thrust needs another function to be provided, which is to Accelerate
Air. For this problem, only propellers are considered, although in a broader design space
also turbofans or turboprops could fulfill this function. The optimization objectives,
fuel consumption, MTOW, and flight duration are system-level QOIs, and are therefore
associated to the boundary function. The Propeller induces two functions: Decouple
RPM, which is fulfilled by a Gearbox, and Generate Shaft Power. Shaft power can be
generated in three ways:

• by a Mechanical Turboshaft, which represents a conventional architecture;

• by an Electric Motor, which represents an electric architecture; or

• by a Mechanical Bus, which merges the Mechanical Turboshaft and Electric Motor
power sources and therefore represents a hybrid-electric architecture.
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If the Electric Motor is selected to provide (part of) the mechanical power, the
architecture part related to electric power generation and distribution is included.
Electric motors only work with AC power, and therefore Inverters are needed in order
to convert the DC power provided by the DC bus into AC power. Then, there are three
options for producing DC power:

• by Batteries;

• by a Generator that takes mechanical power from a Turboshaft and uses a Rectifier
to convert AC power into DC power; or

• by a hybrid between the two, merged by an Electric Splitter3 component.

Each propulsion assembly (propeller + gearbox + mechanical power source) is modeled
as a subsystem, as this allows to define the number of assemblies as an architecture
choice: between 1 and 5 propulsion assemblies per wing can be selected, and each
assembly can have a different source of shaft power. However, the order at which
the subsystems are placed along the wing has no influence on calculated performance
metrics. For example, a wing with two propellers where the first has a turboprop and
the second has an electric motor for mechanical power generation results in the same
weight, fuel burn, and flight time as a wing where these two have swapped places. This
limitation stems from the used analysis tools that cannot represent effects of engine
order on for example wing root bending moment, aerodynamic interactions or other
phenomena. In order to avoid repeated definition of architectures with the same
output metrics, a choice constraint is applied such that only unordered combinations
of mechanical power generation components can be defined. This constraint reduces
the number of combinations of mechanical power source selections from

∑5
k=1 3k = 363

to
∑5

k=1

(
3+k−1

k

) = 55 [260], a reduction of 85%. The constrained nature of the choice is
shown by purple-dashed lines in Figure 3.36.

3In OpenConcept, a "splitter" is a component for splitting one flow into multiple flows, but its behavior can
easily be reversed so that it can be used as a merger instead.
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The optimization problem is encoded as:

minimize wfuel,MTOW, tflight

w.r.t. 0 ≤ tcoeff ≤ 1
nblades ∈ {3,4}
nprop ∈ {1,2,3,4,5}
GenPoweri ∈ {Turboshaft,Electric,Hybrid} i = 1, . . . ,nprop

if GenPoweri = Hybrid : i = 1, . . . ,nprop

0 ≤ DOHmech,<phase>,i ≤ 1 i = 1, . . . ,nprop

if any
(
GenPower = ElectricMotor∨Hybrid

)
:

GenDCPower ∈ {Turboshaft,Batteries,Hybrid}
if GenDCPower = Hybrid :

0 ≤ DOHelec,<phase> ≤ 1
subject to idx(GenPoweri ) ≤ idx(GenPoweri+1) i = 1, . . . ,nprop −1

where DOH refers to the Degree of Hybridization, which is a parameter for determining
what fraction of energy is generated by the electrified source compared to the conven-
tional source. The DOH is defined separately for the mechanical ("mech" subscript)
and electrical ("elec" subscript) power generation elements, and independently for each
flight phase (denoted by the "<phase>" subscript): climb, cruise, descend, loiter, reserve
climb, reserve cruise, and reserve descend. In total, the problem features 3 objectives,
4 constraints and 51 design variables, of which 43 are continuous and 8 are discrete
(2 integer and 6 categorical). Additionally, all constraints and 47 of the variables are
conditionally active.

Optimization Problem Execution The propulsion system architecture is designed and
optimized for the King Air C90GT airframe: a twin-turboprop aircraft with a capacity for
seven passengers. The SAO loop is driven by the Bayesian Optimization (BO) algorithm
developed in Chapter 2, with an evaluation budget of 250 design points (Design of
Experiments (DoE) size of 100, with 150 infill points). The default settings of the
algorithm are used as described in Section 2.7: mixed-discrete hierarchical Gaussian
Process (GP) models, constraint function mean value estimation as constraint handling
technique, an ensemble of infill criteria, and a hierarchical sampling algorithm.

Figure 3.37 shows the optimization results. The Pareto front contains 88 design
points. The extreme points of the Pareto front correspond to the fully electric architec-
ture (lowest fuel consumption and highest MTOW) and the conventional architecture
(highest fuel consumption and lowest MTOW). Between these two clusters of points,
almost all the architectures that can be found in the Pareto front are parallel hybrid-
electric architectures (i.e. mechanical power is generated both by electric motors and
turboshafts). And in general, if a lower flight time is designed for, more energy will
be necessary to complete the mission, in the form of a higher fuel consumption or a
heavier aircraft.
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(a) All evaluated design points, including the Pareto front in blue. Note that there are three objectives,
however only two objectives can be plotted here.

(b) Pareto front showing architectures by power source.

(c) Pareto front showing normalized flight time.

Figure 3.37: Results of the HEP system application case.
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3.6. COMPARISON TO MANUAL SAO PROBLEM FORMULATION
This section compares SAO problems as modeled and formalized using ADORE to
manually-formulated SAO problems. The automated design variable encoding capa-
bilities of ADORE are convenient for systems engineers, because then they do not
have to be optimization experts in order to formalize the SAO problem. In order to
be practically useful, however, the automated formulation should perform similarly or
better than manually-formulated problems. Optimization performance is measured
by ∆HV regret and calculated using the procedure described in Appendix E. ∆HV (∆
hypervolume) represents the distance to the known optimum (or Pareto front in case
of multi-objective optimization) normalized to the range of objective values. A lower
∆HV regret is better, as it shows that the optimum was approached more closely and/or
in less iterations. Optimizations are performed using using NSGA-II, a multi-objective
evolutionary algorithm (MOEA), and the BO algorithm developed in Chapter 2, using
the default settings as described in Section 2.7.

The investigation is done with the three test problems from Section 2.3.1: the
design of a multi-stage launch vehicle featuring selection choices (Section 3.6.1), the
design of a guidance, navigation and control system featuring connection choices
(Section 3.6.2), and the design of a jet engine featuring the Class Factory Evaluator (CFE,
see Section 3.6.3). For each test problem, at least the following three formulations are
compared:

• Manual: manual formulation.

• ADORE Fast: ADORE formulation, encoded using the fast selection choice encoder
(see Section 3.1.1).

• ADORE Complete: ADORE formulation, encoded using the complete selection
choice encoder (see Section 3.1.1).

The complete encoder uses xvalid,discr to yield a more efficient encoding scheme in
terms of imputation ratio (IR), correction ratio (CR), and therefore needs more memory
and time for encoding compared to the fast encoder (which does not use xvalid,discr).
However, the complete encoder uses design vector lookup for correction, and is
therefore faster at correction than the fast encoder. To demonstrate these effects, next
to optimization performance also the following aspects are measured:

• the hierarchical design space structure in terms of IR, CR, correction fraction
(CRF), and max rate diversity (MRD), see Section 2.2 for their definitions; and

• the correction time (CT): the average time needed to correct and impute one
design vector. The CT is relevant, because this operation may be called orders of
magnitude more often than function evaluation, for example when generating a
DoE or when searching for infill points in SBO.



3

128 3. ARCHITECTURE DESIGN SPACE MODELING

3.6.1. MULTI-STAGE LAUNCH VEHICLE ARCHITECTURE
The multi-stage launch vehicle SAO problem involves the choice of number of stages,
several stage-level choices (number of engines, engine types, and stage length) and
rocket geometry choices (head shape and length-to-diameter ratio). It is a multi-
objective problem, with the goal to maximize payload mass (mpayload) and minimize
cost (Cost) for a given target orbit altitude, subject to delta-V, structural and payload
volume constraints (∆V Margin, StructuralMargin and VolumeMargin, respectively).

SAO Problem Definition Figure 3.38 presents the ADORE model, showing the decom-
position of the main function "Carry Payload to Orbit", the associated objectives, and
the rocket stage subsystem. The Stage subsystem contains the rocket body component
with the stage length design variable (lstage,factor), and the engine assembly with the en-
gine type choice (EngineType). Both the Stage and Engine Assembly subsystems can be
instantiated 1, 2 or 3 times (nstages and nengines, respectively). Engine selection choices
are constrained by a "linked" constraint, shown by the purple dashed edges, because it is
not possible to select different engine types within a stage. The overall rocket geometry
is further parameterized by the head shape selection (HeadShape) to fulfill the "Guide
Airflow" function, which can either be a cone, elliptical or a semi-sphere. Selecting
a cone additionally requires the selection of the cone angle (ConeAngle); selecting an
elliptical head requires the selection of the length ratio (LengthRatio).

FUN:
Guide Airflow

COMP:
Elliptical

fulfilled by

QOI [OBJ]:
Payload Mass ↑

QOI [OBJ]:
Cost ↓

FUN:
Carry Payload to Orbit

FUN:
Carry Loads

COMP:
Launch Vehicle

COMP:
Cone

COMP:
Semi-sphere

COMP:
Rocket Body

FUN:
Generate Thrust

COMP:
VULCAIN

COMP:
SRB

COMP:
RS68

COMP:
S_IVB

COMP:
P80

COMP:
GEM60

fulfilled by
fulfilled by fulfilled by fulfilled by

fulfilled by
fulfilled by

Engine Assembly
SYS:

SYS:
Stage

fulfilled by

needs needs

needs

fulfilled by
fulfilled by

fulfilled by

Figure 3.38: ADORE model showing the design space of the launch vehicle problem in system view.
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The optimization problem is encoded as:

minimize Cost
maximize mpayload

w.r.t. nstages ∈ {1,2,3}
nengines,i ∈ {1,2,3} i = 1, . . . ,nstages

EngineType, i ∈
{SRB,P80,GEM60,VULCAIN,RS68,SIVB} i = 1, . . . ,nstages

0 ≤ lstage,factor,i ≤ 1 i = 1, . . . ,nstages

10 ≤ LDRatio ≤ 11
HeadShape ∈ {Cone,Ellipse,SemiSphere}
if HeadShape = Cone :

28 ≤ ConeAngle ≤ 32
if HeadShape = Ellipse :

0.15 ≤ LengthRatio ≤ 0.21
subject to ∆V Margin ≤ 0

StructuralMargin ≤ 0
VolumeMargin ≤ 0

In total, the problem features 14 design variables, of which 6 are continuous and 8 are
discrete (4 integer and 4 categorical). Additionally, 8 variables are conditionally active.

Comparison of Formulations Table 3.8 lists problem statistics. All formulations result
in the same design variables and IR, CR, and CRF because of the low degree of
hierarchical coupling: activeness is only determined by the number of stages and head
shape design variables. Max rate diversity (MRD) also is the same for all formulations.
MRD is relatively high, because 0.3% of valid discrete design vectors represent single
stage rockets (nstages = 1); 94% of valid discrete design vectors represents rockets with
nstages = 3. Correction time (CT) for the Manual and ADORE Complete formulations is
significantly lower than ADORE Fast, because for the ADORE Fast formulation xvalid,discr

is not available and therefore a trial-and-error approach has to be used. ADORE
Complete, however, still requires some model-parsing overhead, so Manual has the
lowest CT. The manual formulation is available as LCROCKETARCH in SBArchOpt.

Table 3.8: Multi-stage launch vehicle problem formulations. Symbols and abbreviations: nxd = number of
discrete design variables, nxc = number of continuous design variables, IR = imputation ratio, CR = correction
ratio, CRF = correction fraction, MRD = max rate diversity, CT = correction time.

Formulation nxd nxc IR CR CRF MRD CT [ms]

Manual 8 6 3.7 1.6 38% 94% 0.21
ADORE Fast 8 6 3.7 1.6 38% 94% 17
ADORE Complete 8 6 3.7 1.6 38% 94% 7.0

nvalid,discr 18 522
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Comparison of Optimization Performance The different formulations are solved us-
ing NSGA-II and the BO algorithm. Both algorithms start from an initial DoE of 70
points; NSGA-II is executed for 25 generations (population size 140) and 40 repetitions,
BO is executed for 100 infill points with a batch infill size of 4, and 12 repetitions.

Figure 3.39 presents optimization results. For NSGA-II, the Manual formulation
performs best and the two ADORE formulations perform similarly. The difference in
performance is due to a different arrangement of design variables, leading to slight
differences in the initial population. For the BO algorithm, the ADORE Fast formulation
is performing worse than the Manual and ADORE Complete formulations.

(a) NSGA-II (40 repetitions) (b) BO (12 repetitions)

Figure 3.39: Multi-stage launch vehicle problem solved using two optimization algorithms. ∆HV represents the
distance to the known Pareto front (Eq. (E.1)). The bands around the lines represent the 50 percentile range
around the median.

3.6.2. GUIDANCE, NAVIGATION AND CONTROL ARCHITECTURE
The GNC (Guidance, Navigation & Control) problem [39, 122] features the definition
of an architecture connecting sensors to flight computers, and flight computers to
actuators. Each object (sensors, computers, actuators) can be instantiated 1, 2 or
3 times, and for each instance there are three types available with different masses
and reliabilities associated to each (with in general increasing reliability as mass
increases). The connections from sensors to computers and computers to actuators
are architectural choices, with each connection increasing reliability of the system. A
constraint is applied that ensures that no object is left unconnected. For each object,
only unordered combinations of types can be assigned, as permutations of types lead
to the same architecture if also the associated connections are permuted. The problem
objectives are mass, calculated from the sum of selected object masses, and system-level
reliability, calculated from a failure-tree approach assuming that the system does not
fail as long as at least one sensor-computer-actuator path is still operational (i.e. the
objects and connections have not failed). The interpretation of the problem is slightly
different from [39, 122], so results cannot be compared directly.
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SAO Problem Definition In ADORE, the architecture design space is modeled by
decomposing the boundary function Provide GNC into Sense Orientation (fulfilled by
Sensors), Determine Action (fulfilled by Computers), and Control Orientation (fulfilled
by Actuators). Ports are used to model component connections: Data represents
the sensor to computer connection, Command the computer to actuator connection.
Figure 3.40a shows the system view, including the two system-level objective mass and
failure rate, both to be minimized. Each component has 1, 2 or 3 instances, and an
attribute specifying the type, see Figure 3.40b. Attributes are modeled as connection
choices, "connecting" from attribute to value: in this case each component instance has
an attribute needing exactly 1 connection, and each value can be connected to between
0 and 3 times. On the attribute side, order is set to irrelevant (shown by "!order"),
effectively grouping outgoing connections and ensure only unordered combinations
can be selected. Connections are modeled using ports, with the only constraint being
that each connector has at least one connection (shown by "1..*"), see Figure 3.40c.

(a) System view

(b) Component view (Sensor)

(c) Port view (Data)

Figure 3.40: ADORE model showing the design space of the GNC problem in system view, component view
and port view.

Component instantiation is modeled using selection choices, and these are rele-
vant for determining all connector node existence scenarios for encoding connection
choices. Therefore, it is expected that there will be a difference in behavior between
the ADORE Fast and ADORE Complete formulations. The Manual formulation uses 3
integer variables for selecting the number of objects, 9 categorical variables for selecting
object types, and 18 (2 times 9) binary variables for establishing object connections.
The GNC problem features an additional formulation: "Encoded", which is manually
formulated (i.e. not using ADORE), however uses connection choice encoders (see
Section 3.1.2) for the connection choices. The Encoded formulation uses three com-
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bining pattern encoders (see also Table 3.4) for number of object selection (IR = 1,
Dcorr = 100%), three unordered combining pattern encoders for object type selection
(IR = 2.53, Dcorr = 16%), and two assigning pattern encoders for establishing connec-
tions (IR = 14.1, Dcorr = 100%). The Manual and Encoded formulations are available
in SBArchOpt as GNC and ASSIGNMENTGNC, respectively. The ADORE versions of the
optimization problem are encoded as:

minimize Mass,FailureRate
w.r.t. nsensors ∈ {1,2,3}

ncomputers ∈ {1,2,3}
nactuators ∈ {1,2,3}
typesensor,i ∈ {A,B,C} i = 1, . . . ,nsensors

typecomputer,i ∈ {A,B,C} i = 1, . . . ,ncomputers

typeactuator,i ∈ {A,B,C} i = 1, . . . ,nactuators

connectsensor→computer,i ∈ {0,1} i = 1, . . . ,nx,connect

connectcomputer→actuator,i ∈ {0,1} i = 1, . . . ,nx,connect

The problem only features discrete variables, of which 3 are integer (the variables select-
ing the numbers of elements). The element type selection variables are constrained to
ensure only unordered combinations are selected, as discussed before. The connection
variables are encoded using connection choice encoding algorithms (see Section 3.1.2),
and therefore the number of variables depends on the specific problem formulation
(yielding nx,connect categorical variables) and cannot be determined statically.

Comparison of Formulations Table 3.9 presents statistics of the GNC problem, in-
cluding and excluding actuators. It shows that the ADORE Complete formulation
obtains the same problem definition as the Encoded formulation. The Manual formu-
lation results in a higher IR and CR compared to the Encoded and ADORE Complete
formulations, showing that automatically choosing the connection choice encoders im-
proves problem formulation. ADORE Fast formulation results in a very high IR, because
the fast selection choice encoder is not able to correctly determine all connector node
existence scenarios, which results in less efficient connection choice encoding. MRD
is the same for all formulations. Manual formulation has the fastest correction time
(CT) as it features problem-specific code tailored to the formulation. Encoded and
ADORE Complete formulations are slightly slower, as they depend on greedy correction
that uses design vector lookup. ADORE Fast correction is slowest as it depends on
trial-and-error correction.

Comparison of Optimization Performance The different formulations (including ac-
tuators) are solved using NSGA-II and the BO algorithm. Both algorithms start from an
initial DoE of 150 points; NSGA-II is executed for 25 generations (population size 150)
and 40 repetitions, BO is executed for 100 infill points with a batch infill size of 4, and
12 repetitions. Figure 3.41 presents optimization results. It shows that for NSGA-II, the
Manual formulation performs significantly worse than the other formulations, which
all perform similarly. For BO, all formulations perform similarly, with the Manual
formulation performing slightly worse than the others. It can be concluded that the
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Table 3.9: GNC problem formulations. The "Encoded" formulation is manually formulated (i.e. not using
ADORE), however uses the connection choice encoders from Section 3.1.2. Symbols and abbreviations: nxd
= number of discrete design variables, IR = imputation ratio, CR = correction ratio, CRF = correction fraction,
MRD = max rate diversity, CT = correction time.

Including actuators Excluding actuators
Formulation nxd IR CT [ms] nxd IR CR CRF MRD CT [ms]

Manual 30 1761 4.7 17 113 17.2 60% 94% 1.4
Encoded 33 367 38 19 39.5 6.0 49% 94% 12
ADORE Fast 30 23460 650 17 632 — — 94% 102
ADORE Complete 33 367 62 19 39.5 6.0 49% 94% 17

nvalid,discr 79 091 323 29 857

ADORE formulations all result in problem formulations that can be solved by EA and BO
algorithms, and that they perform as well as the Encoded formulation and better than
the Manual formulation.

(a) NSGA-II (40 repetitions) (b) BO (12 repetitions)

Figure 3.41: GNC problem (including actuators) solved using two optimization algorithms. ∆HV represents the
distance to the known Pareto front (Eq. (E.1)). The bands around the lines represent the 50 percentile range
around the median.

3.6.3. JET ENGINE ARCHITECTURE
The jet engine architecture problem features the selection and sizing of jet engine
components. The same problem definition as in Section 2.6 is used, which is a
single-objective problem minimizing Thrust-Specific Fuel Consumption (TSFC) subject
to several feasibility constraints. Architectural choices include adding a fan (turbofan
architecture) or not (turbojet architecture), the number of compressor/turbine stages,
whether bypass and core flows are mixed before flowing out, whether a gearbox is
added between the fan and low-pressure shaft, and the locations of bleed air and
power offtakes. Continuous sizing variables include bypass ratio, fan pressure ratio,
compressor pressure ratios, gearbox ratio and shaft RPM’s. Refer to Section 2.6 for more
details.
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SAO Problem Definition Figure 3.42 shows the ADORE model with three boundary
functions: Generate Thrust, Provide Bleed Air, and Provide Power. The Generate Thrust
function has the TSFC objective and weight metrics associated to it, and its fulfillment
represents the choice whether to include a fan or not. The nozzle mixing choice is
represented by the fulfillment of the Exit Core/Bypass Flow functions. Incompatibility
constraints are used to model the constraint that either a mixed nozzle is selected, or
both the (core) nozzle and bypass nozzle. The (core) nozzle and mixed nozzle both
need the Energize Air function, which derives the remaining components in the engine
core. The Compressor, Shaft and Turbine components include instantiation choices (1,
2 or 3), which are linked by a choice constraint ensuring that the number of instances
match. The Provide Bleed Air and Power functions are fulfilled by connecting a Bleed
Air Duct and Generator to one of the Compressors and Shafts, respectively. The gearbox
choice is an example of non-fulfillment: the function Uncouple Fan RPM represents an
"improvement" function which can either be fulfilled by the gearbox, or it can be left
unfulfilled. Sizing variables (e.g. bypass ratio, compressor ratios) are modeled as design
variable QOIs of the respective components.

Jet engine architecture instances are sized and evaluated using the framework
presented in Section 2.6, which constructs an MDAO problem using pyCycle [249]
and OpenMDAO [248] based on a set of ARCHELEMENT classes that represent engine
elements. In the ADORE formulations, ARCHELEMENT classes are instantiated from
architecture elements using the Class Factory Evaluator (CFE) interface. The Manual
formulation of the problem is available in SBArchOpt as SIMPLETURBOFANARCH.

Figure 3.42: ADORE model showing the design space of the jet engine problem in system view.
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Comparison of Formulations Table 3.10 lists statistics, showing that the Manual and
ADORE Complete formulations are similar, and the ADORE Fast formulation leads to
a higher Imputation Ratio (IR). MRD is the same for all formulations. Manual and
ADORE Complete CT values are significantly lower than ADORE Fast due to xvalid,discr

availability.

Table 3.10: Jet engine problem formulations. Symbols and abbreviations: nxd = number of discrete design
variables, nxc = number of continuous design variables, IR = imputation ratio, CR = correction ratio, CRF =
correction fraction, MRD = max rate diversity, CT = correction time.

Formulation nxd nxc IR CR CRF MRD CT [ms]

Manual 6 9 3.9 2.1 55% 60% 9.0
ADORE Fast 7 9 9.3 2.1 33% 60% 87
ADORE Complete 6 9 4.6 2.1 55% 60% 17

nvalid,discr 70

Comparison of Optimization Performance Optimizer performance is compared for
the BO algorithm. The algorithm is executed with an initial DoE of 75 points, 200
infill points, 4 points evaluated in parallel, and 12 repetitions. NSGA-II is not used
for this SAO problem, because evaluating one design vector takes between 1 and 5
minutes. Figure 3.43 presents optimization results, showing that the Manual and
ADORE Complete formulations perform similarly, and ADORE Fast performs slightly
worse.

Figure 3.43: Jet engine problem solved using the BO algorithm (12 repetitions). ∆HV represents the distance
to the known Pareto front (Eq. (E.1)). The bands around the lines represent the 50 percentile range around the
median.
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3.7. CHAPTER CONCLUSIONS
In this chapter the architecture design space modeling approach developed in this
research has been presented. The tasks of the modeling approach as integrated in
the SAO loop are to define architecture design choices (architectural choices and
architecture-specific design parameters), encode them as design variables, convert
design vectors to architecture instances, and to interpret performance metrics as
objectives and constraints. The developed design space modeling approach is built-up
of three layers:

• The Design Space Graph (DSG; Section 3.1) implements the mechanism for
modeling hierarchical selection and connection choices using a directed graph.
The design space can be constrained using incompatibility constraints and choice
constraints. The problem formulation is completed by the definition of additional
design variables and metrics that can take the role of objectives or constraints.
Choices are automatically encoded using a complete or fast encoder for selection
choices and a repository of encoding algorithms for connection choices. The
implementation of the DSG is available open-source.

• The Architecture Design Space Graph (ADSG; Section 3.2) adds a semantic layer
on top of the DSG to use it in a function-based system architecting context.
Various node types representing system architecture concepts are defined, such
as functions, components, component instances, and ports. Rules are defined for
which nodes can be connected to which nodes, and where selection choices are
automatically inserted.

• ADORE (Section 3.3) is the tool for editing the ADSG in a web-based GUI.
It defines a user-friendly model visualization with various views, and several
additional elements like subsystems and Quantities of Interest (QOIs). ADORE
also provides interfaces for connecting to evaluation code, either directly using
the Python API or through file-based interfaces. Finally, it also provides a problem
definition interface to SBArchOpt (see Section 2.5) for solving SAO problems.

Section 3.4 presents the bottom-up process for modeling architecture design spaces
using ADORE and the ADSG. Guidelines are defined for defining functions, fulfilling
functions using components, multi-fulfillment or non-fulfillment elements, manag-
ing complexity using decompositions, concepts, and subsystems, defining component
characterization and connection choices, for using incompatibility and choice con-
straints, and for defining performance metrics. It is shown that the bottom-up process
results in a more convenient design space definition compared to top-down approaches.

The modeling approach is then demonstrated by a hybrid-electric propulsion (HEP)
system architecture optimization problem (Section 3.5), showing:

• an object-oriented way for implementing a locally-executed, dynamically formu-
lated MDAO problem used as architecture evaluation function;

• the use of the Class Factory Evaluator (CFE) to instantiate PROPSYSARCH classes
based on selected architecture elements;

• an ADORE model defining the function-based architecture design space, featuring
QOI definitions, choice hierarchy, a subsystem, and a choice constraint; and
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• the execution of the three-objective SAO problem using the Bayesian Optimization
(BO) algorithm developed in Chapter 2, resulting in a Pareto front of optimal HEP
architectures.

Finally, Section 3.6 shows that SAO problems modeled using ADORE and encoded by the
ADSG result in formulations that perform similarly or better than manually-encoded
SAO problems, determined by how quickly and closely the optimum is approached
(measured by ∆HV regret). The complete selection choice encoder performs better than
the fast selection choice encoder. This results shows that ADORE can be used to define
and solve SAO problems, and that the system architect thus does not need to be an
expert in numerical optimization to manually define the design variables.

With these results, the second sub-objective has been achieved:

2. Develop a way to formulate SAO problems, consisting of:

(a) a method for modeling SAO problems based on system functions, that
supports the definition of architectural choices and architecture-specific
design parameters; and

(b) algorithms to encode the model as an optimization problem (i.e. in terms of
design variables, objectives, and constraints), and to decode design vectors
into architecture instances.
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M ULTIDISCIPLINARY Design Analysis and Optimization (MDAO) enables coupling
analysis tools stemming from various engineering disciplines, none of which can

be ignored or should be allowed to take the overhand in defining the design, into one
coupled computational system to analyze and optimize the product at the system-
level [72]. The utility of MDAO for System Architecture Optimization (SAO) has already
been demonstrated for the design of a hybrid-electric propulsion system in Section 3.5.
There, the automatically-constructed MDAO problem that couples mission analysis to
overall aircraft design was used to get a system-level estimate of weight, energy usage,
and flight time for a given system architecture. That MDAO system, however, was locally
integrated and executed, something which would be difficult or impossible if a more
distributed and diverse set of disciplinary tools is needed to design a system.

Collaborative MDAO allows coupling diverse disciplinary analysis tools, developed
and managed by different teams potentially from different organizations, in a single
MDAO workflow [36]. It is characterized by the application of a Central Data Schema

This chapter is partly based on [2, 8, 9].
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(CDS) and the distributed, cross-organizational management, development, and exe-
cution of analysis tools. This chapter presents the developments done to enable the
application of collaborative MDAO for SAO, according to the three requirements placed
on evaluation functions as defined in Section 1.5.5:

• The evaluation function should be flexible enough to handle all architectures. For
collaborative MDAO this means that the workflow should automatically modify
its execution behavior (i.e. data connections and tool inclusion and execution
order) according to the architecture instance being evaluated.

Section 4.1 presents high-level strategies, identifies the influences that changing
the system architecture might have on the workflow behavior, and shows how this
can be implemented in a collaborative MDAO modeling tool.

• The evaluation function should be sensitive to relevant architecture design
choices. For collaborative MDAO this means that all relevant information about
the architecture instance (e.g. function allocation, component selection and char-
acterization, component connections) should be communicated to the MDAO
workflow through its Central Data Schema (CDS).

Section 4.2 presents a mechanism for translating an architecture instance into the
CDS of a collaborative MDAO workflow.

• The evaluation function should be executed without user interaction. For collab-
orative MDAO this means that the architecture generator and MDAO workflow
should be executed in a shared computational environment.

Section 4.3 presents a strategy for integrating the architecture generator in the
Process Integration and Design Optimization (PIDO) environment where the
collaborative MDAO workflow is deployed.

The design of a multi-stage launch vehicle demonstrates the combination of these three
aspects in Section 4.4. Section 4.5 concludes the chapter.

4.1. DYNAMIC BEHAVIOR IN MDAO WORKFLOWS
This section discusses how MDAO problems can be made flexible enough to calculate
system performance for all architecture instances in a given SAO problem. First, how
architectural changes influence MDAO workflow behavior is discussed in Section 4.1.1.
Then, Section 4.1.2 presents high-level strategies for implementing such behavioral
changes in MDAO. Finally, an implementation of one of the high-level strategies to
support dynamic collaborative MDAO is presented in Section 4.1.3.

4.1.1. ARCHITECTURAL INFLUENCES ON MDAO WORKFLOW BEHAVIOR
Traditionally, MDAO has been used to formulate and solve computational problems
only involving continuous variables [210]. However, some research has been performed
into also supporting discrete state and coupling variables in MDAO, as would be needed
for SAO [49]. The following discussions extend this state-of-the-art to the support for
dynamic behavior of MDAO workflows for SAO.
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MDAO problems are formulated and solved for a given system architecture, and
changing the system architecture requires changing the MDAO formulation by adding
or removing disciplines, or partly redefining discipline inputs or outputs [36]. The
mechanisms by which a change in system architecture may trigger a change in MDAO
problem formulations are called architectural influences. Four architectural influences
have been identified as part of this work:

1. conditional variables;

2. data connection;

3. discipline repetition; and

4. discipline activation.

The following subsections introduce the influences, as well as proposed modifications
of the Extended Design Structure Matrix (XDSM) [258] notation to show them. For more
background on how the four architectural influences were derived as part of this work,
the reader is referred to [261].

INFLUENCES ON VARIABLE ROUTING

Two influences impact the routing of variables: "conditional variables" and "data
connections".

Conditional Variables System components are parameterized by variables in the
CDS, therefore adding or exchanging components leads to the addition or removal
of variables. Such variables are called conditional variables, because they may exist
depending on architectural choices. Conditional variables are similar to conditionally
active design variables (see Section 1.5.3), however can also represent state and coupling
variables in the MDAO problem.

has_winglet

aero

[winglet],wing[winglet],wing

weight

1:
Wing Geometry

2:
Aerodynamics

2:
Structures

3:
Performance

Figure 4.1: Example of a "conditional variables" influence: only if the wing has a winglet, the winglet variables
(e.g. angle, length, taper ratio) are passed to the aerodynamics and structures tools. Conditional variables are
wrapped by square brackets.
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An example of this could be an architectural choice about whether or not to include
a winglet on a wing, see Figure 4.1: if included, new state and/or coupling variables such
as angle, length and taper ratio will be defined in the CDS, along with their usage in the
MDAO problem, for example for aerodynamic and structural analysis. In the XDSM,
conditional variables are wrapped by square brackets (see Figure 4.1).

Data Connections A coupling variable represents an output from a tool and an input
to one or more other tools: the coupling variable represents a data connection. If due to
some architectural choice, the tool from which the variable is an output or the tool to
which the variable is an input changes, this is called a data connection influence. In the
case of this influence, the variable itself always exists (so it is not a conditional variable),
however its usage in terms of discipline input and/or output may change.

An example of this influence could be a choice about landing gear attachment, see
Figure 4.2: whether the landing gear is attached to the wing or to the fuselage determines
whether landing gear loads (for example output by a mass or inertia discipline) are
inputs to the fuselage or wing structural sizing discipline. In the XDSM, variables subject
to a data connection influence are displayed in bold-italic font (see Figure 4.2). The
logic determining when which data connection is active is not displayed, in order to
save space.

lg_attachment lg_attachment

loadsloads1:
Landing Gear Loads

2:
Fuselage Structure

2:
Wing Structure

Figure 4.2: Example of a "data connection" influence: the Loads will be transferred to the Fuselage Structure
tool if the landing gear is attached to the fuselage, and to the Wing Structure tool if the landing gear is attached
to the wing. Variables that are subject to data connection influences are shown in bold-italic.

INFLUENCES ON TOOL EXECUTION

Two influences are related to disciplinary tool execution: discipline repetition and
discipline activation.

Discipline Repetition When disciplinary tools are directly mapped to system com-
ponents, architectural choices may influence usage of these disciplinary tools. If the
number of instances of a component is an architectural choice, discipline repetition may
be needed. Discipline repetition involves variations in the inputs or outputs, as each
discipline iteration uses and produces slightly different sets of inputs/outputs. Note that
discipline repetition only refers to in-place repetition of tool execution, not to including
a tool multiple times in the workflow at different locations.
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An example of a discipline repetition influence could be a disciplinary tool that
simulates one aircraft engine at a time, see Figure 4.3: the number of times the
discipline should be repeated in the MDAO workflow then depends on the number
of engine instances in the system architecture. In the XDSM, a repeated discipline is
shown using the stacked representation, and by showing the variable that determines
the number of repetitions in the top-right corner of the block, after an "x" meaning
"times" (see Figure 4.3). A subscript "i" appended to variable names indicates that each
repetition uses/provides a different index of that variable.

geometryi,n_eng

total_weight

weighti
1:

Engine Sizing

x n_eng

2:
Rollup

Figure 4.3: Example of a "discipline repetition" influence: the propulsion performance tool is executed once
for each engine instance, determined by the number of engines "n_eng". A repeated discipline is shown using
the stacked representation used for parallel execution in the original XDSM notation [258], and by showing the
variable determining the number of repetitions, prefixed by an "x" (meaning "times"), in the top-right corner
of the block. Geometry and weight are variables of which each repetition takes/provides a different index, as
indicated by the subscript "i".

Discipline Activation The other architectural influence that determines tool usage is
discipline activation. This influence simply determines whether a discipline is used or
not based on an architectural choice.

Figure 4.4 shows an example of the activation of a tool that sizes the structure for
composite materials and simultaneous deactivation of a tool that does so for metallic
materials, based on the choice of material for some part. In the XDSM, the activation
condition of a tool subject to activation is shown below the tool name, after "Activation:"
(see Figure 4.4). BRUGGEMAN ET AL. [213] instead visualize tool activation by using a
switch element, which output decision-variables which determine which one of several
branches (a branch can be a tool or a group of tools) is executed.

Any combination of influences may exist in an MDAO workflow, and some influences
may trigger other influences. For example, discipline activation or repetition may
also involve changes in input or output definitions, which may make some variables
conditional or result in data connection changes. Influences may apply to groups of
disciplines as well, as also observed by BRUGGEMAN ET AL. [213]. This is in agreement
with [19], where it is observed that groups of disciplines may be collapsed into a
block with the union of the inputs and outputs while preserving the MDAO workflow
execution logic.
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material material

forces

weights

weights

forces1:
Loads

2:
Metallic Structure Sizing

Activation: material = metal

2:
Composite Structure Sizing

Activation: material = composite

3:
Cost

Figure 4.4: Example of a "discipline activation" influence: if a metallic material is chosen, the Metallic Structure
Sizing tool is executed; if a composite material is chosen, the Composite Structure Sizing is executed. The
activation condition is shown in the discipline block under the name of the discipline, after "Activation:".

4.1.2. COMPARISON OF DYNAMIC MDAO STRATEGIES
Architectural influences are introduced in the MDAO problem through "influence
logic": the logic governing how the MDAO workflow modifies its behavior for each
architecture instance it is evaluating. Influence logic covers any type of computational
logic implemented for supporting architectural influences, such as if-statements to
check whether a discipline should be activated, and the logic for determining the
number of times a discipline should be executed.

Regardless of implementation or user interface, MDAO problems are formulated in
three main steps [208] (see also Figure 1.16):

1. A tool repository is developed, with tools adhering to a CDS.

2. The MDAO problem is defined by selecting tools from the repository, establishing
data connections, and selecting design variables, objectives and constraints.

3. The MDAO problem is made executable by applying an MDAO solution strategy:
adding solvers and/or applying an MDAO architecture [210].

For SAO, the second step is extended to also include the implementation of the influence
logic.

After formulation, the MDAO problem is deployed in some execution environment,
such that it can be solved without user interaction in the architecture evaluator of the
SAO loop (Figure 3.1). The formulation and deployment tasks are implemented by an
MDAO formulator, which depending on where it is applied in the process, may require
user interaction or not. Considering these aspects, the following high-level strategies for
using MDAO for architecture evaluation are identified as part of this work:

1. Single static (Figure 4.5): a single static MDAO problem is defined. Influence logic
is handled at the discipline-level (i.e. inside the disciplinary tools) instead of at the
MDAO workflow level. The formulator is applied in the MDAO formulation phase
(i.e. before running the SAO loop), and architecture evaluation consists of running
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the static MDAO problem in the execution environment with the architecture
instance as input. For this, no change in process and tooling is needed compared
to non-SAO MDAO problems. However, this strategy is only possible if all
architecture influences can be handled at the discipline-level, without requiring
changes in tools and/or data connections for different architecture instances.
This might require modification of disciplinary tools, which might be difficult or
infeasible to manage in a cross-organizational team.

Figure 4.5: "Single static" dynamic MDAO strategy. The formulation phase (orange dashes) is executed before
running the optimization loop (blue dashes). The optimization loop is executed without user interaction.

An example of an SAO problem solved with a single static MDAO workflow is
the design of a business jet family [13, 16]: there, the architectural choices were
regarding the sharing of aircraft components between family members, which
were implemented using binary variables (0 = no sharing, 1 = sharing). The
actual sharing logic was implemented in a dedicated tool in the workflow. This
tool, however, always has the same inputs (sharing decision and potentially shared
components) and outputs (overwritten component parameters), so a static MDAO
problem was sufficient in that case. Another example is the comparison of various
electrification levels of aircraft on-board systems [262]: here all the architectural
changes are "contained" within one tool, allowing one static MDAO workflow
being used for analyzing multiple architectures.

2. Multi static (Figure 4.6): multiple static MDAO problems are defined, each of
which solves a predefined set of architecture instances. These sets are defined by
enumerating all architectures and clustering by similar influence logic behavior,
for example all architectures that lead to the same selection of tools and appear-
ance of data connections. During execution of the SAO loop, the influence logic is
then used by a router to determine which static MDAO problem should be used
for the given architecture instance. This approach is limited by the number of
architectures that can be considered as part of an architectural design space: if
the number is too high, the overhead of implementing and managing the different
workflows would become infeasible.

A specific version of this strategy is one where the different architecture sets are
defined and explored independently of each other, in which case the routing logic
consists of the user triggering the independent execution. An example of this is the
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Figure 4.6: "Multi static" dynamic MDAO strategy.

strategy by FRANK ET AL. [130], who cluster architectures by active design variables
and perform independent optimizations for each cluster, the results of which are
later combined into a system-level Pareto front. BRUGGEMAN ET AL. [213] executed
two independent static MDAO problems for two material selections (metal or
composite), admittedly to compare their performances against a dynamic MDAO
workflow. In this version of the strategy, all architectures are explored equally,
which prevents the targeted exploration of more promising architectures and
therefore potentially wastes computational resources.

3. Single dynamic (Figure 4.7): a single dynamic MDAO problem is defined. The
dynamic MDAO problem implements influence logic directly in the workflow:
influence logic is applied during execution, resulting in dynamically applied
conditional data connections and tool execution. The dynamic MDAO workflow
is setup in the formulation phase and executed with the architecture instance

Figure 4.7: "Single dynamic" dynamic MDAO strategy.
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as input during the SAO loop. The effectively established data connections
and tool execution sequence is represented by the "effective" MDAO problem,
a hypothetical problem representing the fact that the dynamic MDAO problem
changes its behavior for different architecture instances. This strategy requires
the MDAO formulation and execution process to also include influence logic in
the MDAO problem.

This strategy was demonstrated by BRUGGEMAN ET AL. [213] with an MDAO prob-
lem that dynamically switches between two sub-workflows and adds/removes
constraints based on an architectural decision (production method). The work-
flow was formulated before running the SAO loop, and the influence logic (choose
the sub-workflow based on some architectural choice) was embedded in the
executable workflow.

4. On-demand (Figure 4.8): automatically formulate a static MDAO problem for each
architecture instance. This strategy requires a formulator that can perform the
complete formulation and deployment process subject to influence logic, without
user interaction.

Figure 4.8: "On-demand" dynamic MDAO strategy.

Examples of this strategy are the jet engine architecture (Section 2.6) and hybrid-
electric propulsion system (Section 3.5) application cases. For both, the static
MDAO problems used for architecture evaluation were formulated and executed
on-demand for each architecture instance. The static MDAO problems were
implemented in OpenMDAO [248], and the OpenMDAO problems were defined
from the architecture instances using extensive problem-specific Python code.

In another application, SONNEVELD ET AL. [214] dynamically changed a sub-
workflow based on the number of ribs selected in an aileron, with the ribs
indirectly influencing the number of material-thickness design variables through
the torsion box geometry. No influence logic was explicitly embedded in the
workflow: rather, the sub-workflow was generated on-demand by running a
MDAO formulation tool that automatically formulates and executes the sub-
workflow for the torsion box being designed.
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Implementation for Collaborative MDAO For implementing the high-level strategies
in collaborative MDAO, several aspects have to be considered: the use of a Central Data
Schema (CDS), the black-box and distributed nature of the involved disciplinary tools,
and the separation between the MDAO formulation and execution platforms.

The single static strategy requires a certain level of control over disciplinary tool
development, something which might not be possible when using collaborative
MDAO [206, 211], and might simply not be flexible enough for complex SAO prob-
lems. Therefore, single static is not deemed feasible for the general SAO case combined
with collaborative MDAO.

The multi static strategy requires managing multiple workflows simultaneously,
which will not be feasible above a relatively low number of workflows. As SAO problems
may feature very large design spaces, this strategy is not deemed feasible for SAO either.

The on-demand dynamic strategy requires an automated formulator that also
automatically deploys the workflow. As discussed in the introduction of this chapter,
however, in collaborative MDAO the formulation phase is usually separate from the
execution phase, and some manual steps may be needed before the workflow as
deployed in the Process Integration and Design Optimization (PIDO) environment can
be executed. These manual steps are what currently prevents the application of the
on-demand strategy for collaborative MDAO.

Therefore, for the implementation in this research, the single dynamic workflow
strategy (Figure 4.7) is chosen. The following section presents the implementation of
this strategy in a collaborative MDAO tool.

4.1.3. IMPLEMENTATION IN MDAX
The MDAO Workflow Design Accelerator (MDAx) is a workflow modeling tool developed
by the DLR [19, 28]. It features an interactive GUI for creating and manipulating MDAO
workflows in an XDSM [258] representation, automatically connecting declared tool
input and output. For this, all tool inputs and outputs are declared in terms of a
Central Data Schema (CDS). It builds on the graph-based MDAO definition principles
developed by VAN GENT and implemented in the open-source KADMOS tool [209]. Both
MDAx and KADMOS implement the MDAO workflow formulation phase as discussed
in the previous section, and delegate execution to Process Integration and Design
Optimization (PIDO) platforms. MDAO problem visualization and limited interactivity
for KADMOS was provided by VISTOMS [263]; MDAx provides its own interactive GUI
for creating and inspecting MDAO workflows. Further differences between the two tools
are discussed in [19].

To deploy and execute the workflow, MDAx supports two export formats: the
CMDOWS format [264] and a Remote Component Environment (RCE) [265] workflow.
RCE is an open-source PIDO tool also developed by the DLR that enables distributed
and cross-organizational execution of disciplinary tools in simulation workflows. In
this work, the single dynamic MDAO strategy is applied and implemented in MDAx
(excluding the GUI) and MDAx’ RCE export (the CMDOWS format and MDAx’ CMDOWS
export is not modified).

In the RCE export of an MDAx workflow, the disciplinary analysis tool is wrapped by
various scripts that implement various dynamic MDAO mechanisms. Figure 4.9 shows
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Input filter: removes
nodes not declared as
tool input.

Input from
previous tool

Data path if
tool is skipped

Data path if tool
is activated

Data path
towards next
iteration

Output to
next tool

Activation logic script: checks
whether the tool should be executed
using a (compound) assertion.

Global-to-local script: applies
iteration index to input and removes
dynamically deactivated inputs.

Tool: the actual
analysis tool,
integrated in RCE.

Output filter: removes
nodes not declared as
tool output. Local-to-global script:

reverses the iteration
index application.

Merger: merges tool
outputs into original
input file.

Iterator: checks whether
there are more iterations,
and sets iteration index.

Figure 4.9: Annotated detail of MDAx RCE export showing all possible wrapper mechanisms around a tool:
activation logic script, G2L and L2G scripts, input and output filters, merger and iterator.

a detailed view of such an export, with the wrapped analysis tool on the lower left side
of the figure. The input and output filter blocks are retained from the non-dynamic
MDAx implementation, preparing the tool input and output such that only declared
inputs reach the tool and only declared outputs are merged back into the CDS file (in the
merger script) [19]. A summary of the mechanisms for supporting the dynamic MDAO
architecture influences follows. For more details refer to [261].

Discipline Activation Disciplines can be assigned an activation assertion, which when
evaluated to true activates the discipline, and when false deactivates the discipline
(a deactivated discipline is skipped during execution). The assertion is executed right
before executing the discipline, so disciplines may be activated and/or deactivated
various times during the execution of the dynamic MDAO workflow.

Various assertion primitives are implemented, and assertions can be recursively
combined into compound assertions using and and or operators. Assertion primitives
include checking for CDS variable existence, whether variables have a value, or checking
if the value of a variable adheres to some condition (including numerical lower than,
equal to, and greater than comparisons). Also checking the number of nodes that exists
at some xpath1 (currently MDAx only supports XML as data storage format) is possible.

In the exported RCE workflow (see Figure 4.9), an activation logic script is added to
every disciplinary tool that contains an activation assertion. In addition to the current
CDS file, this script outputs whether or not the assertion was satisfied, which is then
used in a "switch" component to execute or bypass the tool execution block based on
the activation assertion.

1https://www.w3.org/TR/xpath/

https://www.w3.org/TR/xpath/
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Discipline Repetition Disciplines can be assigned a repetition property, which deter-
mines the number of times a tool should be executed based on the CDS. The number
can either come from the number of nodes referred to by an xpath expression, or the
numerical value of a variable in the CDS.

In the RCE workflow, a Global-to-Local (G2L) conversion step converts from the
iteration-index-aware workflow-level ("global") input to index-agnostic tool-level ("lo-
cal") input (see Figure 4.9). This ensures that at the tool-level, each repetition re-
ceives the same input variables. For example, a repeated engine sizing tool might
need the geometry of each respective engine, defining its input to be located at
/inputs/engine/geometry in the CDS. However, the CDS contains the different en-
gine geometries at /inputs/engine_i/geometry (where i is the index of the engine
being processed in the current iteration): the G2L conversion translates this "global"
CDS to the "local" CDS as needed by the tool. The result is that the input/output
definition of the repeated tool can stay static (and therefore black-box), even though it
is applied to different instances of input/output data.

Data Connection and Conditional Variables Because MDAx is based on automati-
cally deriving data connections from tool input/output definitions, data connection
changes are implemented by dynamic modification of these definitions. Conditional
input/output variables are supported using the same mechanism. Dynamically modi-
fying tool input/output is done by associating assertions to xpaths that refer to (groups
of) variables in the tool’s input or output definition. These assertions are the same as
implemented for supporting discipline activation. The mechanism has only been im-
plemented for dynamic modification of tool inputs, however can also be implemented
for tool outputs in the future.

In the RCE export (see Figure 4.9), dynamic modification of tool inputs is imple-
mented in the G2L converter block, which simply removes variables in the input file if
the associated assertion resolves to true. Dynamic modification of tool outputs would
be implemented in the local-to-global block.

This section has presented how dynamic MDAO principles can be implemented in
an MDAO workflow, such that the workflow can be used as the architecture evaluator
in an SAO loop. The following section presents how a two-way data connection can be
established between the architecture generator and the dynamic collaborative MDAO
workflow.
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4.2. ARCHITECTURE DATA PROPAGATION
Previous work on connecting system architecture models to MDAO workflows has only
supported linking numerical parameter values, for example [77, 200, 203, 205]: the
system architecture is kept static, and if the system architecture would have changed,
the MDAO workflow would have had to be updated manually. This section extends
previous work by enabling the communication of any relevant information about
system architecture (such as the selection and instantiation of components, function
allocations, and port connections), so that it can be used by the MDAO workflow to
dynamically modify its behavior (see Section 4.1) based on the system architecture
being evaluated.

Architecture data propagation from architecture instances generated by ADORE to
the Central Data Schema (CDS) of a collaborative MDAO workflow is implemented by
the Node Factory Evaluator (NFE). By basing its implementation on the Class Factory
Evaluator (CFE; see Section 3.3.2), it supports transmitting all available information.
Additionally, the translation rules are defined in the base file itself, thereby effectively
making the user-interface that input file: this requires less context-switching (e.g.
between the workflow and some GUI) when defining and testing node factories.

The NFE works by defining node and metric factories. Node factories determine how
architecture elements (e.g. components, QOIs) are transformed into XML nodes, which
are then merged into the base file to obtain the input MDAO file. Metric factories define
where values for output metrics can be read from the CDS file. If a value is not found,
the metric is assigned NaN (not-a-number). In addition to the factories themselves,
the NFE also needs as input the xpath where the factories are defined, as this might be
specific to the used CDS.

Figure 4.10 shows the working principle of the NFE by an example. It shows how
the NFE base file contains the node and metric factory definitions, with the xpath to the
factories being /data/nfeSettings. A node factory consists of:

1. an element definition, linking the factory to an architecture element;

2. the xpath where the resulting XML node is merged into the base file;

3. the tag of the created node; and

4. value, child node, or attribute definitions, determining the contents of the node.

A metric factory only consists of an element definition and an xpath. This flexibility of
defining the xpath, tag, attributes, and contents (node value or child nodes) for each
factory and to define where factories are defined allows close adherence to the CDS
format. The node factory is used to transform the Turbofan component of the created
architecture instance to a turbofan node with a bypassRatio child node, of which the
value comes from the Bypass Ratio design variable. The created node is then merged
into the base file at the specified xpath, resulting in the MDAO input file. The metric
factory is applied to the MDAO output file: the Mass QOI of the Turbofan is assigned the
value at the specified location.
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Node Factory Evaluator (NFE) base file
<data>

<propulsion>
</propulsion>

<nfeSettings>
<factories>

<factory>
<element><name>Turbofan</name></element>
<xpath>/data/propulsion</xpath>
<tag>turbofan</tag>
<childNodes>

<bypassRatio>
<element>

<name>Bypass Ratio</name></element>
</bypassRatio>

</childNodes>
</factory>

</factories>

<metrics>
<metric>

<qoi><name>Mass</name></qoi>
<xpath>/data/propulsion/turbofan/mass</xpath>

</metric>
</metrics>

</nfeSettings>
</data>

linked to

linked to

linked to

Created XML node

<turbofan>
<bypassRatio>10.0</bypassRatio>

</turbofan>

instantiate
architecture

merge into
base file

determines tag
determines child

tag and value

MDAO output file

<data>
<propulsion>

<turbofan>
<bypassRatio>10.0</bypassRatio>
<mass>5000.0</mass>

</turbofan>
</propulsion>
<nfeSettings>...</nfeSettings>

</data>

execute
MDAO

workflow

COMP:
Turbofan

QOI [DV]:
Bypass Ratio = [5, 15]

QOI [OBJ]:
Mass ↓

COMP:
Turbofan

QOI [OBJ]:
Mass = 5000

QOI [DV]:
Bypass Ratio = 10

create
XML node

set metric value

determines
location

MDAO input file
<data>

<propulsion>
<turbofan>

<bypassRatio>10.0</bypassRatio>
</turbofan>

</propulsion>
<nfeSettings>...</nfeSettings>

</data>

determines
location

Figure 4.10: Example of the Node Factory Evaluator (NFE) applied to the evaluation of the Turbofan compo-
nent with two Quantities of Interest (QOIs): a bypass ratio design variable and a mass minimization objective.
The node and metric factories are linked to elements in the ADORE architecture model. After an architecture
has been instantiated, the node factory is applied, resulting in the MDAO input file. The output metric value
(Mass) is read from the MDAO output file.
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4.3. PROCESS INTEGRATION
The previous sections have presented how to define dynamic MDAO workflows and ex-
ecute them in Process Integration and Design Optimization (PIDO) environments, and
how to propagate data from the architecture generator (ADORE) to the MDAO workflow.
This section discusses how ADORE can be integrated in a PIDO environment, so that
the complete SAO loop can be executed from that same environment. Additionally, it
presents how the SAO problem can be defined without requiring programming or local
installation of ADORE. The principles of integrating SAO in PIDO environments are
presented in Section 4.3.1. Section 4.3.2 then presents the implementation into ADORE
and a PIDO environment.

4.3.1. THE SAO ASK-TELL PATTERN
The architecture generator consists of the optimization algorithm and the architecture
generator step. For collaborative MDAO, this is extended by either direct translation
of the architecture instance to XML (or whatever format the MDAO workflow uses) or
translation using the Node Factory Evaluator (NFE; see Section 4.2). To integrate these
three steps into the PIDO environment, where the PIDO environment has control over
what is executed when, the ask-tell pattern is applied.

The ask-tell pattern comes from numerical optimization and decouples the opti-
mization algorithm from the evaluation function [227]: an external loop "asks" the
optimizer for a new design vector to be evaluated, and after evaluation "tells" the
optimizer the results. This approach has three main advantages compared to letting the
optimizer drive the optimization loop:

• The execution of the optimizer and the evaluation code are decoupled. This
makes it easier to implement advanced optimization strategies like multi-start
or replacing the optimization algorithm during the optimization (for example
to start with a global optimization algorithm to approximate the optimum, and
finish with a local optimization algorithm to increase accuracy).

• The decoupling also enables executing the optimizer and evaluation code on
different machines, which can be used to offer the optimizer as a service and/or
for protecting intellectual property rights.

• Optimizer state must be stored in a well-defined data structure. This enables stor-
age of intermediate results and restart, which is useful when running expensive
evaluations.

For integration of SAO and collaborative MDAO, the principle of decoupling is applied
to the interface between the MDAO workflow and the architecture generator (including
the NFE). The resulting so-called SAO ask-tell pattern is listed in Algorithm 1. The STATE

variable contains the union of all inputs to the ask and tell functions (except nbatch

and OUTPUTFILES), consisting of the architecture design space model and the state and
configuration of the optimization algorithm and Node Factory Evaluator (NFE). STATE

should be stored in a file to ensure that the steps can be executed decoupled and without
requiring the architecture generator to run in the background.
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Algorithm 1 The collaborative SAO optimization loop. The "ask" and "tell" functions are
detailed in Algorithms 2 and 3, respectively. The STATE variable contains the union of all
inputs to the ask and tell functions, except nbatch and OUTPUTFILES.

Require: nbatch, state
Ensure: state, archList

1: repeat
2: inputFiles,state ← ask(state,nbatch) ▷ Ask architecture generator
3: outputFiles ← evaluate

(
inputFiles

)
▷ Execute collaborative MDAO problem

4: state ← tell
(
outputFiles,state

)
▷ Tell results to architecture generator

5: until len
(
inputFiles

)= 0
6: archList ← getArchList(state) ▷ Extract generated and evaluated architectures

Algorithms 2 and 3 present the ask and tell steps in more details, respectively.
Compared to the original ask-tell pattern, a buffer is added between the optimization
algorithm and the architecture generation step, to support evaluating a different number
of architectures than suggested by the optimization algorithm. For example, the first
generation of an evolutionary algorithm will suggest to evaluate ndoe points, whereas
collaborative MDAO workflows can typically only evaluate one input file at a time.

Algorithm 2 "Ask" step of the collaborative SAO optimization loop, using the NFE
for providing input data for collaborative MDAO. Requesting multiple input files for
parallel evaluation is supported (nbatch > 1). An empty list of input files means that the
optimization has finished.

Require: nbatch, buffer, optimizer, optState, designSpaceModel, archList, staticInput,
nodeFactories

Ensure: inputFiles, buffer, optState, archList
1: if len(buffer) = 0 then ▷ If buffer is empty
2: buffer,optState ← askOpt

(
optimizer,optState

)
▷ Ask the optimization algorithm

3: end if
4: x ← get(buffer,nbatch) ▷ Get next nbatch design points from the buffer
5: inputFiles ← [] ▷ Clear list of input files
6: for xi in x do
7: arch ← generate

(
designSpaceModel, xi

)
▷ Generate architecture instance

8: archList ← {archList,arch} ▷ Store generated architecture
9: inputFile ← apply

(
arch,staticInput,nodeFactories

)
▷ Generate input file

10: inputFiles ← {
inputFiles, inputFile

}
▷ Add to list of input files

11: end for
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Algorithm 3 "Tell" step of the collaborative SAO optimization loop, using the NFE for
reading output data from collaborative MDAO. Multiple output files can be supplied,
the amount set by nbatch.

Require: outputFiles, nbatch, buffer, optimizer, optState, designSpaceModel, archList,
staticInput, metricFactories

Ensure: buffer, optState
1: results ← []
2: for outputFile in outputFiles do ▷ Loop over output files
3: arch ← read

(
outputFile,metricFactories,archList

)
4: ▷ Match output file to an architecture and interpret output metrics
5: x,δ, f , g ← extract(arch) ▷ Extract evaluation results from the architecture
6: results ← {results, [x,δ, f , g ]} ▷ Append to list of results
7: end for
8: buffer ← apply(buffer,results) ▷ Update buffer with evaluation results
9: xnext ← get(buffer,nbatch) ▷ Get new design points from the buffer

10: if len(xnext) = 0 then ▷ If the buffer contains new design points anymore
11: optState ← tellOpt

(
buffer,optimizer,optState

)
▷ Tell results to optimizer

12: buffer ← [] ▷ Clear the buffer
13: end if

4.3.2. IMPLEMENTATION OF THE SAO ASK-TELL PATTERN
This section presents the implementation of the SAO ask-tell pattern in ADORE and
RCE, DLR’s open-source PIDO environment [265]. The implementation into RCE can be
applied to other PIDO environments using the same mechanisms.

Implementation in ADORE ADORE uses SBArchOpt (see Section 3.3.3) for optimiza-
tion, which is based on pymoo [244]. Pymoo optimization algorithms are structured
such that they support the ask-tell pattern2. Optimization state is managed by ADORE
and stored in an ADOREOPT file, which stores the following inputs to the ask and tell
steps (Algorithms 2 and 3, respectively):

• The ADORE model, including generated ADORE architectures.

• Selection, configuration, and state of the optimization algorithm.

• Selection and configuration of the architecture translator.

• The design points buffer, including evaluation status and iteration counter.

Storing all above in a file also allows transitioning from the GUI where the SAO problem
is configured, to the PIDO environment where the SAO problem is executed.

2https://pymoo.org/algorithms/usage.html#nb-algorithms-ask-and-tell

https://pymoo.org/algorithms/usage.html#nb-algorithms-ask-and-tell
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In the GUI, the process to define the SAO problem is then as follows (see also Sec-
tion 3.3.1):

1. Model the architecture design space (see Section 3.4).

2. Encode the design space as an optimization problem, optionally freezing design
variables and/or reassigning output metric roles.

3. Select and configure the optimization algorithm, one of (see Chapter 2): Design of
Experiments, NSGA-II, or Bayesian Optimization algorithm.

4. Select and configure the evaluation interface, one of (see Section 3.3.2): XML NFE
(see Section 4.2), XML or JSON file-based serialization.

5. Export the ADOREOPT file.

Note that the available optimization algorithms and evaluation interfaces can be
extended, as long as they are compatible with the SAO ask-tell pattern.

Implementation in PIDO Environments After the ADOREOPT file has been created,
the process moves to the PIDO environment. In this discussion that is RCE, however the
principles also apply to others. In the PIDO environment, a new computational block is
integrated that implements the architecture generator step. This architecture generator
block is connected to the rest of the MDAO workflow: the architecture generator
block provides as output the generated input file to the blocks comprising the MDAO
workflow, and receives as input the file resulting from the MDAO workflow blocks.
Combining these two connections actually means that the architecture generator block
implements a tell-ask step, that is: first, outputs are told to (Algorithm 3) and then,
new inputs are asked from (Algorithm 2) the architecture generator. In the current
implementation, the collaborative MDAO workflow can only process one input file at a
time, so nbatch = 1 in the ask step.

Figure 4.11 shows all the steps involved in the collaborative SAO loop, including the
NFE (Section 4.2) and a dynamic MDAO workflow formulated in MDAx (Section 4.1).
After execution, the ADOREOPT file can be opened in the ADORE GUI to inspect or export
the generated and evaluated architectures.

When first starting the workflow, there are no outputs so there is some starting file
that will be passed to the tell-ask block to start the collaborative SAO loop. If the NFE is
used, the start file is actually the base file (see Figure 4.10) which will subsequently be
stored in the ADOREOPT file. This principle of providing the base file when executing the
workflow (rather than when defining the SAO problem in the ADORE GUI) enables quick
development and testing of the defined node and metric factories, since the results are
observed in the same environment as where the base file is defined.

The tell-ask block runs some Python function in ADORE, and therefore requires that
ADORE is installed in the Python environment. In some project contexts it might not
be desirable or possible to share the ADORE code to the same machine that is running
the SAO problem. This scenario is supported by the fact that the input to and output
from the tell-ask block only consist of files to be transferred: the tell-ask block can
thus be hosted on another machine than the one running the workflow according to
collaborative MDAO principles.
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4.4. APPLICATION CASE III: MULTI-STAGE LAUNCH VEHICLE
This application case presents the design of a multi-stage launch vehicle architecture
using dynamic MDAO, the Node Factory Evaluator (NFE), and the integration of ADORE
in RCE as presented in the preceding sections. The ADORE model and resulting
optimization problem is presented in Section 3.6.1. The SAO problem involves the
choice of number of stages, stage-level choices (number of engines, engine types, and
stage length), and rocket geometry choices (head shape and length-to-diameter ratio). It
is a multi-objective problem, with the goal to maximize payload mass and minimize cost
for a given target orbit altitude, subject to structural and payload volume constraints.

Dynamic MDAO Workflow The MDAO workflow for sizing and evaluating the gen-
erated rocket architectures contains the following disciplinary tools, shown also in
Figure 4.12:

• Propulsion calculates the thrust produced by the selected engines for a given
stage, and is implemented by either:

– Solid propulsion for either the SRB, P80 or GEM60 engines; or

– Liquid propulsion for either the VULCAIN, PS68 or S_IVB engines; also
calculates nozzle expansion ratio.

• Geometry calculates some geometrical parameters like fuel and oxidizer (if liquid
propulsion is used) tank surface or volume, and the rocket head surface and
volume. For this it needs inputs such as the engine types, stage lengths, length-to-
diameter ratio, and head shape and associated parameters.

• Propellant mass calculates how much propellant each stage can store, given
engine types and tank volumes.

• Structural mass calculates masses of various structural components for each stage,
such as outer structure, tank structure, and masses of other systems.

• Trajectory simulates the trajectory taken by the rocket given the masses, geometry
(to calculate drag), thrust, and engine types, and solves for the maximum payload
mass that can be taken while still reaching the requested orbit altitude. If the orbit
cannot be reached even without payload, the payload mass is set to zero.

• Cost calculates the cost to manufacture and launch the rocket, based on statistical
correlations on the engine types and propellant and structural masses.

• Structural constraint calculates whether the structure would fail during launch, by
comparing the maximum dynamic pressure achieved during the solved trajectory
to the maximum permissible dynamic pressure.

• Payload volume constraint calculates whether enough volume is available in the
rocket head by comparing the head volume to the maximum payload mass
multiplied by an assumed payload density.
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The propulsion, propellant mass, and structural mass disciplines all act on one stage
at a time and therefore need to be repeated according to the number of selected stages
(discipline repetition influence). Their inputs and outputs are also only applied to the
location within the used Central Data Schema (CDS) that applies to the respective stage.
The propulsion discipline is implemented by a solid or liquid propulsion tool depending
on the type of engine selected for each stage (discipline activation influence). Various
tool inputs and outputs exist conditionally depending on architectural choices, such as
propellant masses, tank geometry, and nozzle expansion ratio. An example of the CDS
used in the workflow is listed in Appendix F.

Figure 4.12 shows the problem in XDSM [258] view, including architectural influ-
ences as presented in Section 4.1.1. The implementation of the MDAO disciplines
and RCE workflow exported from the MDAx model of the dynamic MDAO workflow is
available open-source3.

Connection to ADORE The connection between the ADORE model and the dynamic
MDAO workflow is established using the NFE. Appendix F shows the start file including
NFE node and metric factories. The start file does not contain any nodes of the CDS,
because the complete data structure is constructed only by the node factories. Each
factory adds a node with some contents at some xpath. Since factories are executed
in the order they are defined, factories can add nodes to nodes previously constructed
by other factories. This mechanism is used to add geometry and engine selection
information to the different "Stage" nodes.

The MDAO workflow is implemented in an RCE workflow, which also contains the
ADORE ask-tell block introduced in Section 4.3.

Optimization Results The optimization problem is solved using NSGA-II (evaluation
is not expensive) with a population size of 150 and 30 generations (a budget of 4500
function evaluations). Figure 4.13 shows the feasible results of this optimization, which
consists of 763 design points, of which 32 are in the Pareto front. Figure 4.14 presents
various categorizations of the Pareto front. It shows a clear separation by number of
stages, with more stages used for larger rockets (rockets that can carry more payload
and are more expensive). Larger rockets also use solid (higher power output) over
liquid propulsion (lighter), and tend to use an elliptical head shape (lower drag) versus
semisphere (more payload volume) for smaller rockets.

3https://github.com/raul7gs/Space_launcher_benchmark_problem

https://github.com/raul7gs/Space_launcher_benchmark_problem
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Figure 4.13: Results of the multi-stage launch vehicle SAO problem, implemented using NFE and dynamic
MDAO. Payload mass is to maximized; cost to be minimized.

(a) By number of stages. (b) By 1st stage propulsion. (c) By rocket head shape.

Figure 4.14: Various categorizations of the Pareto front (maximizing payload mass vs minimizing cost) of the
multi-stage launch vehicle SAO problem.
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4.5. CHAPTER CONCLUSIONS
In this chapter, the connection of System Architecture Optimization (SAO) to collabo-
rative Multidisciplinary Design Analysis and Optimization (MDAO) as developed in this
research has been presented.

• Four high-level strategies have been identified for implementing MDAO for SAO
(Section 4.1): single static, multi static, single dynamic, and on-demand. This work
implements the single dynamic strategy: a single MDAO workflow dynamically
modifying its behavior for each architecture instance being evaluated. The
following architecture influences are supported:

– Discipline activation: the dynamic activation or skipping of disciplinary
tools as determined by some assertion acting on the Central Data Schema
(CDS).

– Discipline repetition: repeating a tool according to the number of times
some node in the CDS is repeated.

– Data connection and conditional variables: dynamically rerouting data
connections or variables that may or may not exist due to some architecture
decision.

Previous work has either not supported dynamic behavior at all, or has only
supported it to a limited extent.

• Implementing a way to transfer all relevant information from an architecture
instance (such as the selection and instantiation of components, function alloca-
tions, and port connections) as generated by ADORE to the CDS as used in the
collaborative MDAO workflow (Section 4.2).

This is done using the Node Factory Evaluator (NFE), which uses node factories
to dynamically add nodes to the CDS file based on architectural elements, and
metric factories to read resulting performance metrics from the CDS file. Previous
work has only supported the transfer of numerical parameter values, assuming a
static system architecture and CDS structure.

• Decoupling the architecture generator from the evaluation using an SAO tell-ask
pattern (Section 4.3). The Process Integration and Design Optimization (PIDO)
environment coordinates when the architecture generator is "asked" for a new
architecture to evaluate (converted to the CDS using the NFE), and when the
architecture generator is "told" the results of the MDAO workflow. This enables
the integration of the architecture generation step into the PIDO environment
where the MDAO workflow is deployed.

Additionally, allowing the user to define the SAO problem and configure the
optimization algorithm from the GUI enables smooth switching between ADORE
and the PIDO environment.

These three developments enable collaborative MDAO to be used for evaluating archi-
tectures in an SAO loop: the workflow is available for all architecture instances, sensitive
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to architecture design choices, and can be executed automatically for every generated
architecture.

The collaborative SAO approach is demonstrated using a multi-stage launch vehicle
problem (Section 4.4). The application case shows the development of a dynamic
MDAO workflow contains all identified architecture influences, and a demonstration of
the NFE for converting the architecture instances generated by ADORE to the CDS. The
problem was solved using NSGA-II, resulting in a Pareto front of optimal architectures
trading-off cost and maximum payload mass.

The main difference of the dynamic collaborative MDAO approach (Section 4.4)
compared to the locally-integrated Python-only implementation (Section 3.6.1) is that
it allows for the distributed management, development, and execution of disciplinary
analysis tools [36]. For projects involving different organizations, this might be nec-
essary due to intellectual property management constraints (preventing centralized
execution of tools) and/or due to resource constraints (preventing the problem-specific
modification of tools). However, if such constraints do not apply to an SAO problem,
and if it would be feasible to manage, develop, and execute all analysis tools by one
person, on one machine, then a locally-integrated approach might be more suitable.
A locally-integrated MDAO workflow requires less tool and interface (such as the CDS)
management overhead, because tools and interfaces are managed by the workflow
integrator only.

With these results, the third sub-objective has been achieved:

3. Develop a methodology for leveraging collaborative MDAO for quantitative archi-
tecture evaluation, by:

(a) enabling changing MDAO workflow behavior due to architectural changes;

(b) propagating architecture data to the collaborative MDAO workflow; and

(c) integrating SAO within a collaborative MDAO process integration platform.





5
CONCLUSIONS &

RECOMMENDATIONS

This dissertation has introduced a methodology and tools for defining and solving Sys-
tem Architecture Optimization (SAO) problems. SAO automates the system architecting
phase of a Model-Based Systems Engineering (MBSE) process, by modeling the archi-
tecture design space and then transforming this model into a numerical optimization
problem that can be solved by appropriate optimization algorithms. The architecture
design space should be defined based on system functions to promote unbiased selec-
tion of form and enable traceability from system requirements, and it should be possible
to define architecture-specific design parameters in addition to architectural choices.
Applying numerical optimization algorithms prevents the need to fully enumerate the
potentially large combinatorial design space. The optimization algorithms, however,
should be able to deal with the mixed-discrete, hierarchical, multi-objective, expensive,
black-box, constrained (due to design constraints and hidden constraints) nature of
SAO problems.

Design vectors generated by the optimization algorithm in the SAO design loop are
transformed to architecture instances, which are automatically evaluated by multidis-
ciplinary system-level codes. This automatic, quantitative, multidisciplinary evaluation
of system performance further reduces design bias, enables searching a larger design
space, and ensures a realistic, balanced design is the result. Architecture evaluation
should be flexible enough to ensure relevant performance metrics are available for
all generated architecture instances, and it should be sensitive to relevant architec-
tural choices and design parameters. Collaborative Multidisciplinary Design Analysis
and Optimization (MDAO) enables computational coupling of heterogeneous, cross-
organizational engineering disciplines, thereby supporting the multidisciplinary nature
of architecture evaluation. Combining these observations, the objective of this research
was the following:

to enable practical usage of System Architecture Optimization (SAO), by
developing a methodology for formulating SAO problems, providing algo-
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rithms for solving these problems, and by using collaborative MDAO to
evaluate architecture instances.

This chapter reviews the achievements of this objective in Section 5.1, recommends
topics to move research into and application of SAO forwards in Section 5.2, and
provides a vision for the future of SAO in Section 5.3.

5.1. CONCLUSIONS
To answer the main research question:

How can System Architecture Optimization (SAO) improve the design space explo-
ration and optimization of complex systems? By modeling and formally defining
SAO problems using the Architecture Design Space Graph (ADSG) as implemented in
ADORE, applying Bayesian Optimization (BO) adapted for SAO to solve the problems,
and supporting the definition of dynamic collaborative MDAO workflows connected to
the architecture generator to evaluate architecture instances.

More details are provided by the answers to the three sub-questions below.

How to formulate SAO problems based on system functions? By using a layered ap-
proach consisting of:

• the Design Space Graph (DSG) (available open-source as ADSG CORE1, resulting
from this work), which models hierarchical selection and connection choices and
provides algorithms for encoding these choices into design variables, and metrics
into objectives and constraints for formal definition of the optimization problem;

• the Architecture Design Space Graph (ADSG), which extends the DSG with node
types and rules specific to system architecting, such as functions, components,
and ports; and

• ADORE (Architecture Design and Optimization Reasoning Environment), which
provides a user-friendly graphical user interface way to define the ADSG, and
various interfaces for connecting to architecture evaluation code and optimization
algorithms, enabling integration into the MBSE process.

A bottom-up process for modeling SAO problems using ADORE and the ADSG was
defined, including guidelines for formulating functions, fulfilling functions using com-
ponents, decomposing functions, using subsystems and architectural constraints, and
for defining performance metrics. It was demonstrated that the bottom-up process
(which starts from boundary functions and mainly uses function-component zig-
zagging) results in a more natural approach compared to top-down processes (which
mainly use function decomposition), such as enabled by tree-based models.

A hybrid-electric propulsion architecture optimization problem demonstrated the
developed approach, featuring an ADORE model with function allocation choices,

1https://adsg-core.readthedocs.io/

https://adsg-core.readthedocs.io/
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choice hierarchy, a subsystem, choice constraints, and Quantity of Interest (QOI)
definitions. Architectures were evaluated using a locally-executed and on-demand
constructed MDAO problem, which was connected to ADORE using the Class Factory
Evaluator (CFE) interface. A second demonstration showed using three SAO problems
that the optimization problems defined and encoded by ADORE and the ADSG perform
as well as or better than manually-formulated optimization problems.

How to solve SAO problems using global optimization algorithms? By using global
optimization algorithms specifically adapted for SAO. Evolutionary algorithms such as
NSGA-II can deal with most of the SAO optimization challenges, except that they require
a large number of function evaluations to converge, which is problematic if evaluation is
expensive. For expensive evaluation, Bayesian Optimization (BO) algorithms are more
appropriate as they use Gaussian Process (GP) models to create a surrogate model of
the design space and thereby reach the optimum (or Pareto front in case of multiple
objectives) in less function evaluations. These global optimization algorithms were
adapted for SAO by:

• developing a hierarchical sampling algorithm that ensures regions of the design
space are not over- or under-represented, thereby considering max rate diversity
(MRD) effects;

• investigating how correction ratio (CR) effects can be considered by comparing
several problem-agnostic correction algorithms to problem-specific correction,
showing that problem-specific greedy correction is sufficient;

• integrating information about the hierarchical design space into the optimization
algorithm to support generating valid (corrected and imputed) design vectors
and to leverage activeness information for sampling and model creation, thereby
considering imputation ratio (IR) and correction ratio (CR) effects; and

• developing a strategy for handling hidden constraints in BO, by training a model
to predict the Probability of Viability (PoV) and including that model in the infill
search process as an inequality constraint.

The adaptations were tested using three benchmark problems and a jet engine archi-
tecture optimization problem that features hidden constraints. It is shown that BO can
solve SAO problems with up to 92% less function evaluations than NSGA-II, showing it
is appropriate for solving expensive SAO problems. Algorithms and test problems are
implemented in the open-source SBArchOpt library2 as a result of this work.

How to evaluate and optimize system architecture instances in a collaborative MDAO
environment? By enabling dynamically changing MDAO workflow behavior, propa-
gating architecture instance data to the MDAO workflow, and running the architecture
generator in the same environment used for running the MDAO workflow:

• Dynamic behavior in collaborative MDAO workflows was enabled by identifying
architectural influences (discipline activation, discipline repetition, data connec-
tions, and conditional variables) and defining several high-level strategies for

2https://sbarchopt.readthedocs.io/

https://sbarchopt.readthedocs.io/


5

168 5. CONCLUSIONS & RECOMMENDATIONS

implementing dynamic MDAO: the "single dynamic" strategy was applied, where
a single MDAO workflow is deployed that dynamically changes its behavior during
execution.

Then, methods were developed to define architectural influences in MDAO work-
flows (activation assertions, repetition iterators, and global-to-local mapping),
and finally the methods were implemented in MDAx (a DLR in-house MDAO
workflow modeling tool) and its RCE (Remote Component Environment; a Pro-
cess Integration and Design Optimization (PIDO) platform) workflow export.

• Architecture instance data was propagated from ADORE to the Central Data
Schema (CDS) using the Node Factory Evaluator (NFE), which defines rules to
dynamically create XML nodes (for an XML-based CDS) for associated architecture
elements, and metric factories to read resulting performance values from the CDS
and associate them to output metrics (used as objectives and constraints).

• Architecture generation was integrated in the collaborative MDAO environment
by combining the ADORE architecture generator, the optimization algorithm,
and the NFE as a tell-ask block in RCE, and allowing the user to configure the
optimization problem and algorithm from the ADORE GUI.

These techniques were demonstrated by a multi-stage launch vehicle SAO problem,
showing the development of the dynamic collaborative MDAO workflow and a demon-
stration of the NFE for propagating data from the generated ADORE architectures to the
CDS, with integrated execution of the architecture generation step in the RCE workflow.

5.2. RECOMMENDATIONS
Here, the author would like to recommend some research topics and courses of action
to move research into and application of SAO forwards.

5.2.1. SYSTEM ARCHITECTURE OPTIMIZATION METHODOLOGY

IMPLEMENTATION (DSG, ADSG AND ADORE)
• Function fulfillment choice options (ADSG) are mutually-exclusive, and modeling

options for multiple components fulfilling a function together is possible using
multi-fulfillment elements. More elaborate cardinality constraints [94] might
increase expressivity of such selection choices. Care should be taken to not
increase modeling complexity by too much.

• The previous recommendation might be supported by also allowing connection
choices to influence node selection in the DSG, and allowing chaining connec-
tion and selection choices in any order (compared to currently only resolving
connection choices after resolving selection choices).

For example, target nodes that are not connected after resolving a connection
choice might be removed from the DSG, having the same impact as a removed
selection choice option node. This would allow using connection choices to
model function fulfillment choices, and in general allow supporting more general
architecture pattern chaining, as for example applied by APAZA & SELVA [122].
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GHANJAOUI ET AL. presented a DSG application case about co-development
of cabin and assembly architectures where this functionality would have been
useful [29]: connection interfaces (between cabin elements and the airframe)
were assigned to joining technologies using connection choices, however the
assignment of joining technologies had downstream influence on the selection
of resources for performing the associated assembly process steps (modeled
using selection choices). Since connection choices do not influence downstream
selection choices, part of the architecture design space was redundant.

• The complete selection choice encoder of the DSG should be extended with the
capability to detect sets of selection choices where at most one selection choice is
active at a time. This can for example occur if there are selection choices that are
derived by separate option nodes of an upstream selection choice. Detecting such
sets allows to collapse the selection choices in the set into one design variable,
reducing the discrete imputation ratio IRd .

• The complete selection choice encoder of the DSG becomes inefficient (in time
and memory usage) from a certain design space size. To support larger de-
sign spaces, the complete encoder should be improved, for example by applying
Constraint Satisfaction Problem (CSP) [266] solving techniques or Satisfiability
Modulo Theory (SMT) [267].

ARCHITECTURE DESIGN SPACE MODELING METHODOLOGY

• Better support should be implemented for progressively decomposing an architec-
ture design space model, which would facilitate progressively refining the system
architecture as suggested by [39, 268]. To enable this, it should for example be
possible to convert a component to a subsystem block, and having that system
maintain its functional interfaces (fulfilled and needed functions).

• Modeling variability in functional architecture (system behavior) should be sup-
ported. This is relevant when it is possible to consider different concepts of
operation for a system [34, 39], and is especially relevant in the context of
System-of-Systems [269].

To support this, it should first be possible to model functional architecture in
more details, mainly supporting function flow (inputs and outputs) to model
connections and dependencies between functions [62, 270]. Then, variability
can be modeled using selection choices to select alternative preceding or sub-
sequent functions. It is expected that the bottom-up approach (see previous
recommendation) works best for that, which should be verified through further
investigation.

• Architecture generation and evaluation are currently strictly separated, however
allowing some level of evaluation already in the architecture generation envi-
ronment might help speed up the process by filtering-out architectures with a
low chance of being optimal. This could be achieved by supporting some level
of simple calculations, for example mass or Technology Readiness Level (TRL)
aggregation [271, 272], or by calculating metrics directly from the architecture
itself, for example complexity [102, 273] or decomposability [274].
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• Currently, the complete architecture design space is specified in one ADORE
model, however to increase reusability and improve modularity it should be
possible to compose architecture design spaces from multiple models.

One way would be to make it possible to import other ADORE models as a system
block, and in the other direction to extract system blocks as separate ADORE
models. Some mechanism should be implemented to keep function definitions
synchronized between models, as for example a function in the top-level system
would be a boundary function in the extracted model of a subsystem. These
functionalities would be useful for application cases like System-of-Systems
and simultaneous development of the system and its enabling systems (i.e.
manufacturing and maintenance systems).

MBSE PROCESS INTEGRATION

• Because ADORE does not represent a full Architecture Description Language
(ADL) [275] (e.g. because stakeholder, needs, and various other contextual el-
ements are missing), connections should be established between ADORE and
existing standardized MBSE languages, such as SysML [55], OPM [57], and Arcadi-
a/Capella [59].

An especially promising candidate is SysMLv2 [89], as it defines standardized APIs
for data integration and includes variability modeling as an integral part of the
language. For example, ADORE functions can be mapped to SysMLv2 actions,
components to parts, selection choices to variation definitions, design problems
to trade studies, and generated architectures to trade study alternatives.

• Semantic and traceable connections should be established from requirements to
architecture elements, including but not limited to (boundary) functions defined
from functional requirements and QOIs defined from performance requirements.

• It should be possible to run architecture-level sensitivity analysis studies, to in-
vestigate what the impact is of inputs other than architectural choices or design
variables on optimization results. For example, to investigate the impact of
assumptions (such as battery energy density, or the price of something), or to
investigate the impact of exchanging some technology for another.

This sensitivity analysis process can be automated by running the SAO loop
nested within a DoE over such "assumption scenarios". This process might
be accelerated by reusing evaluation results across scenarios, for example using
multi-fidelity surrogate modeling techniques.

• It should be investigated whether generative Artificial Intelligence (AI) [276, 277]
techniques can be used to support and/or accelerate certain steps in the system
architecting process. Generate AI may be used to improve the system architecting
process by:

– supporting the formulation of the design space by suggesting technology/-
component options for fulfilling a given function, identifying incompatibili-
ties or potential synergies, and/or decomposing higher-level functions into
more detailed lower-level functions;
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– helping engineers that are not familiar with the modeling tool with modeling
architecture design spaces;

– supporting design space exploration by suggesting analysis models to be
used or by suggesting interesting architecture instances to consider (e.g. for
an initial sampling or as a goal in itself); and/or

– supporting decision-making by answering questions about design space
exploration results to help the systems engineer understand the design
space, for example as demonstrated by APAZA & SELVA [278].

OTHER APPLICATION DOMAINS

• It should be investigated whether SAO principles are applicable to Model-Based
Product Line Engineering (MBPLE). PLE originated to manage product lines, for
managing configurations of a system where for each application of that system
(e.g. different customers) a different configuration is appropriate. However, recent
efforts have included MBPLE in system design phases to define architecture
instances, most notably in Airbus’ MOFLT (Mission - Operation - Function -
Logical - Technical) framework [97].

• SAO can be made applicable to more engineering domains by supporting the
creation of domain-specific architecture design space modeling languages. Just
as the ADSG and ADORE can be seen as layers on top of the DSG specific to
the system architecting domain, other domains could be supported by similar
mechanisms.

For that, the mechanisms for defining new node types (for example Table 3.6) and
choice definition rules currently implemented in the ADSG and the definition of
the associated GUI (ADORE) should be generalized. Possible application domains
include aircraft onboard systems [42, 106, 279, 280], System-of-Systems [269, 281],
and manufacturing systems [282].

Other applications may include formulating hyperparameter tuning problems for
automated machine learning (AutoML) [135, 230], neural network architecture
search problems [283, 284], and formulating hierarchical design spaces in gen-
eral [26, 188]. These mechanisms can also be used to integrate with standardized
MBSE languages (e.g. SysMLv2), by enabling architecture design space modeling
using the same terminology as the connected language.

• The previous recommendation can also be (partly) implemented by support-
ing the development of Domain-Specific Languages (DSLs) [285]: programming
languages that are developed for a specific application domain (as opposed to
general-purpose programming languages). First, a general SAO-DSL for defining
DSGs and/or ADSGs can be developed. Compared to the Python API for defining
DSGs in ADSG CORE, this might already offer a more intuitive text-based interface
for defining DSGs. This general SAO-DSL can then be used as a basis for develop-
ing DSLs for specific application domains (see previous recommendation).
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5.2.2. OPTIMIZATION ALGORITHMS

CURRENT METHODS

• Including more information about the hierarchical design space generally im-
proves optimizer performance (see Section 2.3.4), however for some specific
cases this is not true.

For NSGA-II, for example, the single-objective versions of the GNC problem
performed better if no hierarchy information was included (the Naive approach),
see Table 2.12. For BO, the same test problems performed as well as with full
hierarchy information availability, see Table 2.13, whereas a worse performance
would be expected.

It should be investigated what problem properties can lead to this behavior,
and then either correct for these properties or dynamically adapt the hierarchy
integration strategy based on such properties.

• Optimization performance of the BO algorithm should be improved for:

– Problems with many design variables (i.e. up to hundreds [286]), as currently
GP models have difficulty training to many dimensions, or need too much
time for practical application of BO in high-dimensional design spaces.

Techniques to investigate include dimension reduction techniques such as
Kriging with Partial Least Squares (KPLS) [287], Manifold GPs [288], and
EGO with Random and Supervised Embedding (EGORSE) [185]. However,
evidence exists that normal GPs can be used for high-dimensional design
spaces too [289].

– Problems with many objectives, as in this work only problems with up to 2
objectives have been tested. Examples of research in this area include [290,
291].

• The hierarchical sampling algorithm presented in Section 2.3.2 depends on the
availability of xvalid,discr, which might not be available due to memory or time
limits for very large design spaces. A hierarchical sampling algorithm should be
developed that does not depend on the availability of xvalid,discr.

• An extension to multi-fidelity BO [292] should be considered to speed up BO
processes if it is possible to formulate architecture evaluation functions at different
levels of fidelity. This might combine well with the recommendation to allow
defining simple calculation in the architecture design space model.

• Automatically decomposing SAO problems into multiple nested optimization
problems [139] should be investigated, for example to benefit from the avail-
ability of gradients for continuous variables. The application case presented
in Section 3.5 was implemented as a multi-level optimization problem, albeit
manually.
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NEW METHODS

• Considering uncertainty in the architecture evaluation is important for supporting
the decision-making process [293]. It should therefore be possible to propagate
uncertainty throughout the SAO loop [294]. This also enables the application of
robust optimization techniques [49], with the result of finding (Pareto) optimal
architectures that are robust in changes in the system context and/or to evaluation
model assumptions.

• The GP models in BO algorithms for SAO are trained using distance metrics
applied to the design vectors, and even though the selection and connection
choice encoders are developed such that a small change in a design vector should
result in a small change in the associated system architecture (i.e. the encoders
should exhibit non-degradedness, see Section 3.1.2), this agreement will not be
perfect in all cases.

It should be investigated whether it is also possible directly train the GP models on
differences in system architecture, represented by difference in their DSGs, which
can then be used to define graph kernels [295–299].

• Alternatively to GP models using graph kernels, it should be investigated whether
graph neural networks [300–302], which directly learn performance metrics from
the graph structure, are also applicable. It should be investigated whether in-
cluding more generic output metrics (instead of only the objective and constraint
values to be predicted) improves predictor performance.

• Solving the MDAO problem should be made more efficient, and a good candidate
for achieving this is Efficient Global MDO (EGMDO) [303]. Recently, EGMDO has
been extended to support design constraints [304], however for application in
SAO it should also support mixed-discrete variables, multiple objectives, hidden
constraints, all architecture influences as identified in this work, and it should be
compatible with collaborative MDAO techniques.

5.2.3. ARCHITECTURE EVALUATION AND MDAO
COLLABORATIVE AND DYNAMIC MDAO

• The architecture generator step (as implemented in the tell-ask block) should be
included in MDAx dynamic MDAO workflow models as an optimizer block, with
appropriate inputs and outputs as translated by the NFE.

• CMDOWS [264] should be extended to support all identified architectural influ-
ences in dynamic MDAO, building on partial support for architectural influences
as presented in [213, 214].

• Support for dynamic MDAO should be implemented in more MDAO frameworks,
such as OpenMDAO [248], GEMSEO [305], CoSApp [306], CSDL [307], and
commercial PIDO environments. To achieve this, a common standard format
should be developed (or an existing standard should be extended) that specifies
such dynamic MDAO behavior, which can then be implemented by the various
platforms.
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• A consistent extension of the XDSM notation should be developed, that supports
visualizing dynamic MDAO behavior relevant to the MDAO research community.
The first contributions of Chapter 4 and Figures 8 and 9 of [213] should be
considered.

• It should be investigated whether it is possible to generate and execute collabora-
tive MDAO workflow on-demand (see Figure 4.8), by automating the setup steps
as currently still required in the PIDO environment. This would effectively provide
an advanced optimization MDAO bot as proposed in Figure 8.7b in [208].

ARCHITECTURE EVALUATION METHODS

• The relationship between the architecture design space and the simulation archi-
tecture [197] should be investigated more, and guidelines should be developed
to support the implementation of architecture evaluation for SAO. Special focus
should be placed on making sure that the simulation architecture is flexible
enough to support changing its structure and behavior for different architec-
ture instances. The development of the design space model and simulation
architecture should be more formally linked by (not exhaustive):

– Defining the simulation architecture based on the system architecture design
space. Preliminary work on applying MBSE to the formulation of MDAO
systems can be used as a basis, such as [203, 308].

– Automatically generating architecture influence logic for dynamic MDAO
from the architecture design space.

– Analyzing whether all parts of the architecture design space are sufficiently
covered by the simulation architecture.

– Generating a library of components that can be used in defining the ar-
chitecture design space from the library of simulation blocks available in a
simulation environment [309].

This can be used to connect to component-based simulation tools like
Simulink 3, Hopsan [310], PACE SysArc [311], or GTlab [312]. HALSEMA [294]
used a component library for defining electric heavy-duty vehicle drivetrain
architecture design spaces.

• It should be investigated how Knowledge Based Engineering (KBE) methods can
be applied for SAO. KBE should be suitable for SAO, as it relies on object-
oriented construction of system-level models using low-level primitives, and
fundamentally treats these as subject to multidisciplinary analysis [71]. The
object-oriented nature should make it integrate well with the CFE (see Table 3.7).
It also ensures that the KBE model supports the types of architectural changes
present in SAO design spaces, such as component selection (replacement) and
component instantiation.

3https://www.mathworks.com/help/simulink/block-libraries.html

https://www.mathworks.com/help/simulink/block-libraries.html
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5.3. OUTLOOK
Only a relatively small, although important, set of aspects related to SAO could be
explored in the scope of this dissertation. In this final section, the author would like
to share a vision for the future of complex systems engineering where SAO plays an
important role. In that future . . .

SAO is a well-known and well-established method in the systems engineer’s toolbox,
that complements and integrates with existing MBSE methods, and is applied in in-
dustry contexts for the architecting phases of many complex systems and in particular
novel systems with a need for simulation-based evaluation. Defining SAO problems can
be done with little additional training, by being integrated in standardized MBSE lan-
guages. SAO problems can be executed without switching software environments and
without the need for writing code (except as needed for architecture evaluation). Ultra-
efficient global optimization algorithms exist that can solve SAO problems with very
large, highly-constrained design spaces with many conflicting objectives within a low
number of architecture and/or disciplinary tool evaluations. The appropriate optimiza-
tion algorithm is automatically selected based on SAO problem characteristics. It is easy
to develop and deploy multidisciplinary analysis toolchains, with disciplines, MDAO
strategy, and dynamic workflow behavior tightly coupled with the architecture design
space model, and with a focus on leveraging collaborative MDAO and Knowledge-Based
Engineering (KBE) principles.

Uncertainties in evaluation models and/or assumptions in input parameters are
propagated throughout the complete SAO loop, and are used for decision-making and
robust optimization. Resulting Pareto-optimal architectures are available in the MBSE
environment, and are the basis for subsequent detailed design phases without much
(if any) additional work. Architecture design space and evaluation models are reusable
between SAO campaigns within a project and between projects.

An interdisciplinary and international research community has been established a-
round the SAO topic, that tightly integrates with the systems engineering, optimization,
and MDAO communities. As part of the research community, regular meetings are
organized for knowledge exchange and collaboration, SAO is applied as core methodol-
ogy in various research projects featuring elaborate industry-backed application cases,
and training material is available for audiences with various levels of expertise. In the
systems engineering community, SAO is seen as an important enabler for the system
architecting process, and knowledge exchange with the Product Line Engineering (PLE)
and variability modeling communities is established. In the MDAO community, SAO is
seen as a relevant method for defining design space exploration problems, and dynamic
MDAO is seen as an important specialization of MDAO, with rigorous theory developed
about the mutual influence of architecture design space models and MDAO workflows,
and with a standardized notation for dynamic MDAO workflows.

It is easy to adopt SAO for domain-specific applications, by defining domain-specific
ontology and rules, and by defining the design space model based on analysis models
available in domain-specific analysis libraries. The application of SAO has expanded to
other application cases such as the design of aircraft onboard systems and System-of-
Systems, and to other domains such as space, defense, energy, and infrastructure.
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A
BAYESIAN OPTIMIZATION:

EQUATIONS AND INFILL SEARCH

PROCEDURE

This appendix presents several equations and procedures related to Gaussian Process
(GP) models and Bayesian Optimization (BO).

A.1. GAUSSIAN PROCESS MODELS
For a given design point x , GP models, also known as Kriging models, provide both the
most likely value ŷ(x) of that point and a standard deviation σ̂y (x), which represents
how confident the model is about the value prediction at x . [167]. A short explanation
of how GP models calculate ŷ and σ̂y for noiseless training data follows, for more details
the reader is referred to [49, 167].

A GP is a random process where any point in the design space is a random variable
and where the join distribution of these variables is Gaussian [167]:

p
(

y
∣∣X

)=N
(

y
∣∣µ,K

)
, (A.1)

where y is the vector of training values at design vectors X . µ represents the mean
function, which is commonly set to 0 for black-box functions (this is referred to as
"simple Kriging"). K is the kernel matrix, with values Ki j = κ

(
x i , x j

)
defined by the

positive definite kernel function κ (also known as covariance function). The kernel
function κ represents the covariance of the design points and their function values:

κ
(
x i , x j

)= cov
(
yi (x i ), y j (x j )

∣∣θ)
, (A.2)

where θ are the hyperparameters of the kernel function. The above equation means
that if two points x i and x j are located closer together, their associated function values
yi (x i ) and y j (x j ) also lie closer together. Kernel functions are based on distances.
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For a continuous space this for example can be the Euclidean distance, however a
distance metric can also be defined for discrete and/or hierarchical spaces [174]. Kernel
functions rely on hyperparameters θ, chosen to maximize the likelihood that the GP fits
the training values [49].

An output value ŷ(x) is predicted by finding the value that maximizes the likelihood
of the GP model if the point would be part of the training set:

p
(
ŷ
∣∣x

)=N

(
y
ŷ

∣∣∣∣0,
K κ∗
κT∗ 1

)
, (A.3)

where κ∗ is the vector containing κ(x , x i ) for every point x i in the training set. Solving
the above equation for the maximum likelihood is beyond the scope of this appendix,
however details are provided in [49, 167]. Doing so results in the equation for the mean
value prediction:

ŷ(x) =κT
∗ K −1 y , (A.4)

and the equation for predicting the associated standard deviation:

σ̂y (x) = 1−κT
∗ K −1κ∗. (A.5)

A.2. BAYESIAN OPTIMIZATION INFILL SEARCH PROCEDURE
Selecting the best infill points in a BO algorithm is an optimization problem itself,
sharing the design space with the SAO problem. To deal with mixed-discrete
hierarchical variables, the following sequential optimization procedure is applied:

1. Use NSGA-II [155] to search the mixed-discrete, hierarchical design space, solving
the multi-objective infill problem:

minimize finfill,m(xd , xc )
w.r.t. xd , xc

subject to ginfill,k(x) ≤ 0,
(A.6)

where finfill,m represents infill criterion m (see Sections A.3 and A.4), xd and xc

represent the discrete and continuous design variables, and ginfill,k(x) represents
the constraint function k (see Section A.5). Infill objectives finfill,m are normalized
and inverted such that they become minimization objectives.

2. Select nbatch points xsel from the resulting Pareto front:

• If nbatch = 1, select a random point.

• If nbatch > 1, select the points with the lowest crowding distance (as used in
NSGA-II [155]).

3. For each selected point x sel ,i , improve the active continuous variables by solving
following single-objective problem using SLSQP1:

minimize fimpr(x)
w.r.t. xc ∩δ

(
xsel,i

)
subject to ginfill,k(x) ≤ 0,

(A.7)

1https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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where xc ∩δ
(
xsel,i

)
represents the active continuous design variables at point

xsel,i, and fimpr the scalar improvement objective:

∆ finfill,m(x) = finfill,m(x)− finfill,m(x sel ,i )

fdeviation(x) = 100
(
max

m
∆ finfill,m(x)−min

m
∆ finfill,m(x)

)2

fimpr(x) =∑
m

(
∆ finfill,m(x)

)+ fdeviation(x).

(A.8)

This objective promotes improvement in direction of the negative unit vector,
so that all underlying infill objectives are improved simultaneously while not
deviating too much from the original xsel,i to maintain batch diversity.

A.3. SINGLE-OBJECTIVE INFILL CRITERIA
For single-objective SAO problems, an infill ensemble combining the following infill
criteria is used:

1. Lower Confidence Bound (LCB) [219], given by:

finfill,1(x) = f̂ (x)−α σ̂ f (x), (A.9)

with α being a scaling parameter of which lower (higher) values lead to more
exploitation (exploration). By default, α= 2 is used.

2. Expected Improvement (EI) [142], given by:

finfill,2(x) = 1−EI(x),

EI(x) = (
f ∗− f̂ (x)

)
Φ

(
f ∗− f̂ (x)

σ̂ f (x)

)
+ σ̂ f (x)φ

(
f ∗− f̂ (x)

σ̂ f (x)

)
,

(A.10)

where f ∗ is the current best value of f , and Φ and φ are the cumulative and
probability distribution functions of the normal distribution, respectively.

3. Probability of Improvement (PoI) [220], given by:

finfill,3(x) = 1−PoI(x),

PoI(x) =Φ
(

f ∗− f̂ (x)

σ̂ f (x)

)
,

(A.11)

A.4. MULTI-OBJECTIVE INFILL CRITERIA
For multi-objective SAO problems, an infill ensemble combining the following infill
criteria is used:

1. Minimum Probability of Improvement (MPoI) [221], given by:

finfill,1(x) = 1−MPoI(x),

MPoI(x) = min
i

(
1−∏

m
Φ

(
f̂m(x)− f ∗

i,m

σ̂f,m(x)

))
,

(A.12)

where f ∗
i,m represents objective m of point i in the Pareto front.
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2. Minimum Euclidean PoI (MEPoI) [10, 313], given by:

finfill,2(x) = 1−EM(x)MPoI(x),

EM(x) =
min

i

√∑
m

(
f̂m(x)− f ∗

i,m

)2
if MPoI(x) > 50%

0 else
,

(A.13)

where EM represents the Euclidean moment [313].

A.5. CONSTRAINT HANDLING
Inequality design constraints are handled by the infill constraint functions ginfill,k (x)
for each design constraint k. The following options can be used as infill constraint
functions:

• Constraint mean prediction [171], given by:

ginfill,k(x) = ĝk (x), (A.14)

where ĝk is the mean prediction of the GP model trained for design constraint k.

• Probability of Feasibility (PoF) [222], given by:

ginfill,k(x) = PoFmin −PoFk (x),

PoFk (x) =Φ
(−ĝk (x)

σ̂g,k(x)

)
.

(A.15)

By default, constraint function mean prediction is used.



B
DSG SELECTION CHOICE

ENCODERS

This appendix provides more details about the selection choice encoders, as introduced
in Section 3.1.1. The selection choice encoding algorithms implement the following
operations, given a Design Space Graph (DSG):

• Encode selection choices into a set of discrete design variables.

Selection choice nodes are sorted by topological order as seen from the start
nodes, resulting in that selection choices that are taken earlier in the derivation
process are moved to the left of the design vector.

• Determine which design variables are forced.

Design variables are forced if their value can be fully determined by the values of
other design variables (see Section 3.1.1 for more details), and as such they can be
ignored by the optimization algorithm as they do not add any extra information
to the design vector.

• For a given design vector x:

– correct the design vector if needed;

– return the corrected design vector x;

– return associated activeness information δ; and

– optionally return the associated DSG instance.

• Enumerate the valid design vectors xvalid,discr and associated activeness
information δvalid,discr.

Note that providing this and the following functionalities might not be possible or
feasible due to memory or time limits.

• Calculate the number of valid design vectors nvalid,discr.
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• Enumerate the node existence status vectors associated to the valid design
vectors.

Each node in the DSG is assigned an element in the vector: (0) node is not
included, (1) node is confirmed, and (2) node is removed. Node existence status
vectors therefore allow the DSG to check for which combinations of selection
choice design variables a set of nodes are included.

• Get all unique node existence status vectors for a set of nodes.

This information is for example used to define node existence scenarios in
Connection Choice Formulations (CCFs), see Section 3.1.2 and Appendix C for
more details.

The Python implementation of the selection choice encoders is available open-source
as part of the DSG in the ADSG CORE1 package. The base for the selection choice
encoders is the HierarchyAnalyzerBase class. The following sections present the fast
and complete selection choice encoders in more details.

B.1. FAST ENCODER
The fast encoder does not implement valid design vector and associated existence status
vector enumeration. It therefore provides the DSG with less information about the
design space behavior, however encodes a DSG into a set of design variables practically
instantly compared to the complete encoder. The fast encoder is implemented in the
FastHierarchyAnalyzer class. It cannot detect forced choices, except those coming
from linked choice constraints (see Section 3.1.3). Decoding a design vector x into a
DSG instance by the fast encoder is done as follows:

1. Start from the DSG representing the architecture design space.

2. Repeat as long as there are active selection choice nodes:

(a) Request the next active selection choice node.

(b) Get the option index as selected by the associated design variable in x.

(c) Resolve the selection choice with the selected option node.

(d) If the option node was not available, quit the loop.

(e) Otherwise, note the taken option index, thereby also noting which choices
were not taken and therefore inactive.

3. If the loop was quit due to an unavailable option, or if the resulting DSG
instance is not feasible (e.g. due to infeasible connection choices or infeasible
incompatibility constraints): mark the design vector as invalid, generate a new
design vector by iterating over neighboring points, and start from step 1.

4. A feasible DSG instance is found, remember the associated feasible design
vector for the original input design vector. Return the (corrected) design vector,
associated activeness information, and generated DSG instance.

1https://adsg-core.readthedocs.io/

https://adsg-core.readthedocs.io/
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Correction is thus done by a trail-and-error approach, and there is no mechanism to
correct a design vector without generating the associated DSG instance. This is why
the fast decoder is slightly slower for correction compared to the complete encoder, as
shown in Section 3.6.

B.2. COMPLETE ENCODER
The complete encoder is able to fully enumerate all valid design vectors xvalid,discr,
associated activeness information δvalid,discr, and associated node status vectors. The
complete encoder starts by constructing an influence matrix: a matrix defining for all
selection choice nodes and their option nodes how they influence each other and all
other generic nodes through derivation and incompatibility edges.

The influence matrix is a square matrix where each row/column represents a
specific node in the DSG. It contains initial node statuses on the diagonal, and node
influences (derivation or removal) on the off-diagonal. Conceptually, the influence
matrix aggregates derivation and incompatibility edges in the DSG, so that for each
option node, all downstream activation or removal influences can be determined. This
enables for a given combination of selected option nodes to determine which selection
choices were active, which option nodes were available, and which nodes are confirmed
in the associated final architecture graph. Selection choice activation and option
node availability information can also be derived for partial architectures (architectures
where some but not all of the selection choices have options assigned). This enables
enumeration of all possible combinations of selection choice options, while keeping
track of selection choice activeness and node existence.

Table B.1 shows the influence for the DSG shown in Figure 3.9. It shows that C1, N1,
N2 and N3 are initially active (1 on the diagonal) and C2 and the other nodes not (0 on
the diagonal). Nodes N4, N5, N6 and N13 are option nodes of C1 and the off-diagonal
influences in their respective rows indicate the nodes (in columns) which they influence
if they are selected as option for C1. An off-diagonal 1 (green) indicates that the node in
the row activates the node in the column if selected; and off-diagonal 2 (red) indicates
removal. For example consider the interaction between C1 and C2: selecting N4 for C1
activates C2 and leaves all its option nodes available, however selecting N13 activates
C2 and removes N8 as option from C2. This behavior is consistent with Table 3.1.

Encoding selection choices into discrete design variables is done by defining one
design variable per selection choice, removing options that never lead to feasible DSG
instances, and detecting which design variables are forced choices.

Two implementations of the complete encoder are available: the brute force
encoder and the declarative lazy encoder. The differ in the ways they perform design
vector correction, determine forced choices, and enumerate valid design vectors. The
brute force encoder enumerates all valid design vectors a-priori, resulting in a simpler
implementation at the cost of more memory usage. The code has been structured,
however, to allow the implementation of new complete encoders by subclassing the
SelectionChoiceEncoder base class. The brute force encoder can be used to verify
that the behavior of newly implemented encoders is correct, by ensuring that all
encoder operations return the same results.
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Table B.1: Influence matrix for the DSG shown in Figure 3.9. On the diagonal, green nodes (1) indicate activated
nodes. Off-diagonal, green nodes (1) indicate that the node in the row activates/selects the node in the column,
and red nodes (2) indicate deactivation/removal.

C1 N4 N5 N6 N13 C2 N8 N11 N1 N2 N3 N7 N9 N10

C1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
N4 0 0 0 0 0 1 0 0 0 0 0 1 0 0
N5 0 0 0 1 2 1 1 0 0 0 0 1 1 1
N6 0 0 0 0 2 0 1 0 0 0 0 0 1 1

N13 0 0 2 2 0 1 2 0 0 0 0 1 2 2
C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N8 0 0 0 0 2 0 0 0 0 0 0 0 1 1

N11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 1 0 0 0 0
N3 0 0 0 0 0 0 0 0 0 0 1 0 0 0
N7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B.2.1. BRUTE FORCE ENCODER
The BruteForceSelectionChoiceEncoder class implements the brute force encoder.
Valid design vector enumeration is done by a branching algorithm, which keeps track
of node status vectors as modified by taking choices, and creates new branches on
remaining active selection choices. Finding the closest-matching design vector index
for a given design vector is done by first checking if there is an exact match (ignoring
forced and inactive design variables). If no exact match was found, the closest matching
design vector by euclidean distance is selected instead.

B.2.2. DECLARATIVE LAZY ENCODER
The declarative lazy encoder is implemented in the HierarchyAnalyzer class, and
provides all the operations requested for a complete encoder without requiring the
a-priori enumeration of all valid design vectors. It does so by formulating selection
scenarios for each selection choice: each selection scenario represents a unique
combination of previously-selected option nodes of other selection choices, and
specifies which remaining available options are available for the selection choice, and
what their influences are on downstream node statuses. The set of all selection
scenarios for all selection choices together declaratively specify all the valid design
vectors, without the need for upfront design vector enumeration: hence the name
"declarative lazy".

In the current implementation, scenario sets are strategically merged such that
in the end only one or more independent scenario sets and associated dependent
scenario sets remain. The independent scenario sets do not depend on other selection
choices, and the dependent sets only depend on the selection choices of the associated
independent scenario set (i.e. they are not mutually dependent). Each time two
scenario sets are merged, however, the valid selection choice options between the
merged scenario sets are enumerated, which increases memory usage and reduces
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the advantage over the brute force encoder. The fact that only one level of scenario
dependency is currently supported therefore represents a limitation, one which could
be relieved in the future by improved complete encoder implementations.

Finding the closest-matching design vector index for a given design vector is
done by first checking if the independent scenario sets contain the requested design
variable values, and correcting to the closest matching (by euclidean distance) partial
design vector if needed. Once the independent scenario sets have been selected,
the dependent scenario sets are parsed and partial design vectors are corrected if
needed. All other encoder operations progress in a similar fashion from independent
to dependent scenario sets. For example, when enumerating all valid design vectors (if
that is requested), first for each independent scenario set and associated dependent
scenario sets the valid (partial) design vectors are generated, which are then combined
by Cartesian product (because they are independent) into the full matrix of valid design
vectors.

B.2.3. DESIGN VECTOR DECODING
Decoding a design vector x into a DSG instance by the complete encoders is done as
follows:

1. Find the closest-matching valid design vector index and associated design vector
x. In that process, the originally provided design vector is corrected if no exact
match is found. Activeness information δ is obtained from the (corrected) design
vector.

Optionally, the set in which to search for design valid design vectors can be
restricted, for example to exclude infeasible DSG instances.

If only correction is requested (i.e. the associated DSG instance is not needed),
the process stops here, returning the (corrected) design vector and design vector
index, and associated activeness information.

2. Start from the DSG representing the architecture design space.

3. Repeat as long as there are active selection choice nodes:

(a) request the next active selection choice node;

(b) get the option index as selected by the associated design variable in x; and

(c) resolve the selection choice with the selected option node.

4. If the resulting DSG instance is not feasible (e.g. due to infeasible connection
choices or infeasible incompatibility constraints): mark the design vector as
invalid and restart the decoding process.

5. A feasible DSG instance is found. Return the (corrected) design vector and
design vector index, the associated activeness information, and the generated
DSG instance.





C
DSG CONNECTION CHOICE

ENCODERS

This appendix presents the database of connection choice encoders, as introduced in
Section 3.1.2. Connection choice encoders always act on one connection choice at a
time, each of which are defined by a Connection Choice Formulations (CCF), consisting
of:

• Source and target connector nodes, which are each defined by:

– an allowable number of connections: either as a list of integers, or as a lower
bound and optional upper bound (inclusive); and

– a flag dictating whether from/to that node parallel connections to/from
some other node can be established.

• An optional list of excluded edges, defined by pairs of nodes or pairs of node
indices.

• An optional list of node existence scenarios, which may define any of the
following:

– for each source and/or target node, whether they exist or not;

– for each source and/or target node, the number of connections they allow
(as a list of integers); and/or

– for source or target nodes, an upper bound on the number of connections
they may allow.

Note that if no existence scenarios are provided, the default existence scenario is
assumed to be the only scenario. This scenario assumes all nodes exist and does
not override any allowable connection settings.

For each node existence scenario, an "effective CCF" can be formulated which
represents the CCF with node existence and/or allowed number of connections
modified.
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• An optional upper bound on the number of parallel connections that may be
established between pairs of nodes.

A given connection pattern is defined by a nsrc ×ntgt (number of source and target
nodes, respectively) connection matrix M , of which element i , j represents the number
of connections from source i to target j . Valid connection matrices can be enumerated
for each existence scenario of a CCF, which are represented in a nsrc ×ntgt ×nM,valid

matrix Mall,valid, where nM,valid is the number of valid connection matrices. Note that it
might not be possible or feasible to determine Mall,valid due to memory or time limits.
Each connection choice encoder implements the following operations:

• Encode a CCF into a set of discrete design variables x.

• Calculate the IRd and Dcorr metrics as introduced in Section 3.1.2.

• For a given design vector x and node existence scenario:

– check whether it is a valid design vector;

– if not, correct the design vector;

– return the corrected design vector x;

– return the associated connection matrix M ; and

– return activeness information δ for the corrected x.

• Enumerate all valid design vectors xvalid,discr and associated activeness
information δvalid,discr for each node existence scenario. Note that this might not
be possible or feasible due to memory or time limits.

The Python implementation of connection choice encoders is available open-source as
part of the DSG in the ADSG CORE1 package. Everything related to connection choice
encoding is implemented in the adsg_core.optimization.assign_enc module.
CCFs are implemented by the MatrixGenSettings class; matrix enumeration is
implemented by the AggregateAssignmentMatrixGenerator class. The connection
matrix enumeration code uses Numba [314] and caches results to speed up execution.

The following sections present the four different classes of connection choice
encoders in the order of decreasing preference (see also Table 3.5). Section C.5 presents
the algorithm for selecting an encoder for a given CCF.

C.1. PATTERN-SPECIFIC ENCODERS
Each pattern-specific encoder is developed to optimally (in terms of IRd and Dcorr)
encode a specific architecture decision pattern [128], as listed in Table 3.4. Compared
to generic encoders, pattern encoders are the fastest in terms of encoding, decoding,
and correcting time, and require the least amount of memory to do so (see Table 3.1.2).
However, the pattern-specific encoders only cover relatively specific CCFs. Each
pattern-specific encoder implements a function to check whether the encoder is
compatible with a given effective CCF. An encoder can then be used to encode a CCF
if the encoder is compatible with (the transpose of) the effective CCFs of all node

1https://adsg-core.readthedocs.io/

https://adsg-core.readthedocs.io/
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existence scenarios. The transpose effective CCFs are checked, because this allows the
pattern-specific encoders to be implemented in only one "direction", reducing code
duplication and the implementation effort. A transpose CCF represents a CCF with
source and target nodes swapped. If a pattern-specific encoder is used for a transposed
CCF, the connection matrices resulting from decoded design vectors are transposed
before returned.

The connection patterns as listed in Table 3.4 can exist in different configurations,
and some patterns are actually equal to or specializations of other patterns:

• bijective assigning is the same as partitioning if source nodes allow 0..∗
connections;

• injective assigning is the same as downselecting; and

• surjective assigning is the same as covering partitioning if the source nodes allow
0..∗ connections.

Table 3.4 also shows that none of the patterns are transposed versions of each other,
showing that source and target node definitions can be freely exchanged. Also note
that any CCF where not both sources and targets allow parallel connections are
effectively non-parallel. Table C.1 lists all implemented pattern-specific encoders,
which configurations of source and target nodes they are compatible with, which
patterns of Table 3.4 are matched for each encoder, how the patterns are encoded into
discrete design variables, and how design vectors are corrected if needed.

C.2. EAGER ENCODERS
Eager encoders can encode any CCF, and to do so require the a-priori enumeration of
Mall,valid. Encoding is then done as follows:

1. Encoder-specific: associate each M to a unique design vector, for each node
existence scenario.

2. Optionally normalize the design vectors:

• move the design variables such that their lower bound is 0;

• remove design variables with less than two unique values; and

• optionally remove value gaps (e.g. if the unique values for a given design
variable are 0,1,3, modify it such that the unique values are 0,1,2).

3. Derive discrete design variables from the matrix of design vectors.

4. Merge discrete design variables derived for the different node existence scenarios,
such that the upper bounds are large enough.

Decoding a design vector x for a given node existence scenario is done as follows:

1. Correct the upper bounds of the design vector values to be consistent with the
design variables of the provided node existence scenario.

2. Check if the design vector matches an encoded design vector (ignoring inactive
values). If a match is found, return the associated M .



C

214 C. DSG CONNECTION CHOICE ENCODERS

Ta
b

le
C

.1
:

O
ve

rv
ie

w
o

f
p

at
te

rn
-s

p
ec

ifi
c

en
co

d
er

s
an

d
w

h
ic

h
ar

ch
it

ec
tu

re
d

ec
is

io
n

p
at

te
rn

s,
se

e
Ta

b
le

3.
4,

th
ey

ar
e

co
m

p
at

ib
le

w
it

h
.

n
,

m
an

d
k

ar
e

n
o

n
-n

eg
at

iv
e

in
te

ge
rs

.
H

ow
p

at
te

rn
s

ar
e

en
co

d
ed

in
to

d
es

ig
n

va
ri

ab
le

s
is

re
p

o
rt

ed
as

th
e

n
u

m
b

er
o

fd
is

cr
et

e
d

es
ig

n
va

ri
ab

le
s

n
x d

an
d

th
e

n
u

m
b

er
o

fo
p

ti
o

n
s

fo
r

d
es

ig
n

va
ri

ab
le

j:
N

j.
n
∥,m

ax
re

p
re

se
n

ts
th

e
m

ax
im

u
m

n
u

m
b

er
o

fp
ar

al
le

lc
o

n
n

ec
ti

o
n

s;
n
∥,m

ax
=

1
if

p
ar

al
le

lc
o

n
n

ec
ti

o
n

s
ar

e
n

o
ta

llo
w

ed
.

E
n

co
d

er
C

o
n

fi
gu

ra
ti

o
n

So
u

rc
e

n
o

d
es

Ta
rg

et
n

o
d

es
C

o
n

st
ra

in
ts

C
o

m
p

at
ib

le
p

at
te

rn
s

n
x d

N
j

C
o

rr
ec

ti
o

n

C
o

m
b

in
in

g
1

@
1

m
@

0,
1

C
o

m
b

in
in

g
1

m
C

li
p

p
in

g
C

o
m

b
in

in
g

C
o

lla
p

se
d

1
@

0.
.∗

∥
1

@
0.

.∗
∥

C
o

m
b

in
in

g
1

m
C

lip
p

in
g

U
n

o
rd

er
ed

co
m

b
in

in
g

W
it

h
re

p
la

ce
m

en
t

1
@

n
∥

m
@

0.
.∗

∥
U

n
o

rd
er

ed
co

m
b

in
in

g
n
+m

−2
2

R
an

d
o

m

U
n

o
rd

er
ed

co
m

b
in

in
g

1
@

n
m

@
0,

1
n
≤

m

C
o

m
b

in
in

g,
u

n
o

rd
er

ed
n

o
n

-r
ep

la
ci

n
g

co
m

b
in

in
g

n
−1

2
R

an
d

o
m

A
ss

ig
n

in
g

n
@

0.
.∗

m
@

0.
.∗

A
ss

ig
n

in
g

n
·m

2
R

an
d

o
m

A
ss

ig
n

in
g

Su
rj

ec
ti

ve
n

@
k

..∗
m

@
1.

.∗
Su

rj
ec

ti
ve

as
si

gn
in

g,
co

ve
ri

n
g

p
ar

ti
ti

o
n

in
g

n
·m

2
R

an
d

o
m

A
ss

ig
n

in
g

Pa
ra

lle
l

n
@

0.
.∗

∥
m

@
0.

.∗
∥

Pa
ra

lle
la

ss
ig

n
in

g
n
·m

n
∥,m

ax
+1

R
an

d
o

m

A
ss

ig
n

in
g

Pa
ra

lle
l

su
rj

ec
ti

ve
n

@
k

..∗
∥

m
@

1.
.∗

∥
Pa

ra
lle

l
su

rj
ec

ti
ve

as
si

gn
in

g
n
·m

n
∥,m

ax
+1

R
an

d
o

m

Pa
rt

it
io

n
in

g
n

@
k

..∗
m

@
1

k
·n

≤
m

Pa
rt

it
io

n
in

g,
b

ij
ec

ti
ve

as
si

gn
in

g
m

n
R

an
d

o
m

Pa
rt

it
io

n
in

g
D

ow
n

se
le

ct
in

g
n

@
k

..∗
m

@
0,

1
k
·n

≤
m

D
ow

n
se

le
ct

in
g,

in
je

ct
iv

e
as

si
gn

in
g

m
n
+1

R
an

d
o

m

C
o

n
n

ec
ti

n
g

n
@

0.
.∗

n
@

0.
.∗

(i
,j

)
if

i
≥

j
C

o
n

n
ec

ti
n

g
(n

·(n
−1

))
/2

2
N

o
tn

ee
d

ed
C

o
n

n
ec

ti
n

g
D

ir
ec

te
d

n
@

0.
.∗

n
@

0.
.∗

(i
,j

)
if

i
=

j
D

ir
ec

te
d

co
n

n
ec

ti
n

g
n
·(n

−1
)

2
N

o
tn

ee
d

ed
Pe

rm
u

ti
n

g
n

@
1

n
@

1
Pe

rm
u

ti
n

g
n
−1

n
−

j
N

o
tn

ee
d

ed



C.2. EAGER ENCODERS

C

215

3. If no match is found, correct the design vector: starting from the left-side of
x, progressively filter the available design vectors that match the partial design
vector. If no design vectors remain, modify the latest variable to an available
option and continue.

This is a greedy correction algorithm, as design variables are corrected locally as
x is being processed. Alternatives would be distance-based correction, where
the closest matching design vector is chosen according to some distance metric,
however tests showed that greedy correction achieved better optimization results
and resulted in faster correction times.

Two types of greedy encoders are implemented: the direct matrix encoder and a
set of grouping encoders. The direct matrix encoder (DirectMatrixEncoder class)
simply flattens the enumerated connection matrices into design vectors. Connection
matrix M element i , j (0-indexed) is therefore directly represented by design variable
k = i ·ntgt + j . Design vector normalization is applied, including value gap removal.

Grouping encoders (GroupedEncoder base class) work by repeatedly separating a
grouping matrix G into groups, until each group represents one unique design vector.
The process is as follows:

• For each column j in G :

– For each group at level j :

⋄ Skip group if the group size is 1 (no need to continue defining
sub-grouping), and set current and subsequent design variables to
inactive.

⋄ Get unique values within the group.
⋄ Skip group if there is only 1 unique value, set current design variables to

inactive.
⋄ Assign design variable values from unique value indices, and define a

new group for each unique value for level j +1.

• Remove design variables that are always inactive.

• Optionally convert the design variable values to some other base (e.g. base 2).

This operation might increase Dcorr (wanted) at the cost of increasing IRd

(unwanted).

Table C.2 shows an example of encoding a grouping matrix G into design vectors x. As
can be seen, groups are progressively created while processing the columns of G , until
all groups have size 1. Column 2 does not create any new groups compared to column
2, resulting in a completely inactive x2, which will subsequently be removed from the
design vectors. It can also be seen that once a group reaches a size of 1, all subsequent
design variables in that group are inactive. Finally, encoded values within a group are
normalized to 0, and gaps are removed.

Table C.3 lists the available grouping encoders. Note that more amount-first
grouping encoders could be defined, for example by also involving the connection
indices for grouping after grouping by amount of connections, however these did not
prove effective and are therefore not used in practice.
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Table C.2: Illustration of the grouping process used by grouping encoders. G j represents column j of the
grouping matrix G . x j represents encoded values for design variable j ; empty cells represent inactive design
variables. Horizontal lines represent group delimiters, shown from the column where they are created.

Grouping matrix G Encoded design vectors x
G0 G1 G2 G3 G4 G5 x0 x1 x2 x3 x4 x5

0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 2 0 0 0 1

0 0 1 0 0 4 0 0 0 2

0 0 1 2 0 0 0 0 1 0

0 0 1 2 1 1 0 0 1 1

0 0 1 3 0 4 0 0 2 0

0 0 1 3 1 0 0 0 2 1

0 1 2 0 0 1 0 1

2 1 2 1 1 5 1

Table C.3: Overview of eager grouping encoders.

Encoder Variation Group by

Element grouping Flattened connection matrices M
Connection index By source Connection indices for each source node
grouping By target Connection indices for each target node

By source, base 2 Connection indices for each source node
By target, base 2 Connection indices for each target node

Amount-first Total amount By amount of connections, then ordinal
grouping Source amount By amount of connections per source node, then ordinal

Target amount By amount of connections per target node, then ordinal

C.3. LAZY ENCODERS
Lazy encoders directly use the effective CCF to define design variables, preventing the
need to enumerate Mall,valid. Decoding a design vector x for a given node existence
scenario is then done as follows:

1. Encoder-specific: construct a connection matrix M from the design vector x.

2. If no M could be constructed, or if the resulting M is not valid according to the
constraints specified in the effective CCF, correct the design vector.

The design vector is corrected by generating adjacent design vectors, by looping
over the Cartesian product of available design variable delta’s and adding these to
the original x. Each generated x is checked for validity against the effective CCF,
until a valid x is found, which then becomes the corrected x.

Correction is based on a trial-and-error approach and therefore might take a relatively
long time, especially if the encoder has a high IRd . Following lazy encoders are available:
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• Direct matrix encoder (LazyDirectMatrixEncoder class): this encoder works
similarly as the eager direct matrix encoder, in that it defines a design variable
for each source and target node pair, with the number of maximum parallel
connections taken as N j for each design variable. Depending on the CCF,
however, many combinations of connections might be invalid, and therefore this
encoder potentially defines many design variable (options) that might not yield
valid matrices.

• Connection index encoder (LazyConnIdxMatrixEncoder class): this encoder is
similar to the eager connection index encoder, in that is defines design variables
that represent the connection index, either source-node-wise or target-node-wise.
It does so by enumerating valid connection matrices that represent cases with the
most connections. The encoding is less efficient than the eager variant, however,
because assumptions have to be made about the valid number of connections
based on the CCF. These assumptions have to be conservative in nature, because
it has to be ensured that all matrices in Mall,valid can be encoded.

This encoder is used in the following variants:

– one design variable ordinally encoding the number of available valid
connection matrices;

– several design variables encoding the valid connection matrices using the
grouping procedure of the grouping eager encoders; or

– design variables encoding the connection indices in the valid connection
matrices, optionally converted to base-2.

• Amount-first encoder (LazyAmountFirstEncoder class): this encoder is similar
to the eager amount-first encoder, in that first design variables are defined to
encode the number of connections, and subsequent design variables encode the
connection indices. This encoder is less efficient than the eager variant for the
same reason as for the connection index encoder.

This encoder is used in two variants: with one design variable ordinally mapping
the unique number of total connections, or with one design variable for each
source and target node specifying the number of connections per node.

C.4. ORDINAL ENCODERS
Ordinal encoders simply map each M in Mall,valid to an index, and either define one
variable with nM,valid options, or encode the indices in some base-k system. For these
encoders, the IRd is usually not too bad (if one variable is defined, IRd = 1 even).
However, Dcorr is usually around 0%, because the encoded indices do not provide any
information about the associated connection matrix M . Therefore, ordinal encoders
should only be used as a last resort. Table C.4 lists the available ordinal encoders.
In practice, the ordinal encode without base conversion, and base-converted ordinal
encoders with k = 2,3,4 are used. Higher values of k quickly approach the behavior of
the ordinal encoder without base conversion, and are therefore not needed.
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Table C.4: Overview of ordinal encoders, listing the number of discrete design variables nxd and number of
options per discrete design variable j : N j .

Base nxd N j

None 1 nM,valid
k ⌈logk

(
nM,valid

)⌉ k

C.5. AUTOMATIC ENCODER SELECTION
The selection algorithm is implemented in the EncoderSelector class, with the goal of
automatically selecting an encoder that maximizes Dcorr and minimizes IRd for a given
CCF. The selection algorithm works by iteratively trying to create sets of encoders and
select the best encoder from the created set for a given CCF.

The following process is used to try to instantiate one encoder:

1. Create the encoder and encode design variables, automatically stopping the
process if:

• a memory overflow error is encountered (in Python, memory overflow errors
are recoverable, as the encoder object and associated memory usage is
destroyed in the process of catching the error);

• some time limit is exceeded (250 ms in the current implementation); or

• a high imputation ratio is detected (100 in the current implementation)
during the recursive grouping process of eager grouping encoders.

2. Calculate the IRd metric.

3. Calculate the Dcorr metric, if IRd ≤ 100 for eager encoders or IRd ≤ 10 for lazy
encoders. As calculating Dcorr involves sampling design vectors and associated
connection matrices, this process can take a long time (for example if decoding or
correction is slow), and therefore also here a time limit is used (the same limit as
used for encoding).

4. If a perfect encoder is found (IRd = 1 and Dcorr ≥ 95%), no further encoders are
created in order to save time.

The following process is used to select the best encoder from a set of created encoders:

1. Divide the IRd - Dcorr landscape in priority areas, as defined in Table C.5.

2. Find the highest-priority area that contains at least one encoder.

3. Within the selected priority area, select the encoder with the highest Dcorr. If
there are multiple encoders that share the highest Dcorr, select the encoder with
the lowest IRd within that set.

The overall selection process is then as follows:

1. Enumerate valid connection matrices Mall,valid for each node existence scenario.
The result of this is cached, so that the enumeration does not have to be repeated
for each tried encoder.
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Table C.5: Priority areas in the IRd - Dcorr landscape for selecting the best encoder within a set of encoders.
Lower numbers have a higher priority for selection. Areas of lower priority do not include areas already covered
by higher priorities.

Dcorr IRd
↓ = 1 ≤ 10 ≤ 40 ≤ 100 > 100

≥ 70% 1 2 9 13 17
≥ 35% 3 4 10 14 18
> 0% 5 6 11 15 19
= 0% 7 8 12 16 20

2. Try creating pattern-specific encoders. If any compatible pattern-specific encoder
is created, select the best from that list, considering only the first 5 priority areas.
If successful, use the selected encoder and quit the process.

3. If the number of valid connection matrices is less than 1000: try creating both
eager and lazy encoders. Otherwise, try creating lazy encoders only. If any
encoder is created, select the best encoder, considering only the first 4 priority
areas. If successful, use the selected encoder and quit the process.

4. If only lazy encoders were tried at the last step, try eager encoders and select the
best, considering all priority areas. If successful, use the selected encoder and
quit the process.

5. Try creating ordinal encoders, and select the best encoder from all created
encoders, considering all priority areas.

Selection results are cached, because the complete selection process can take a long
time, especially if the DSG contains multiple connection choices.





D
DSG, ADSG AND ADORE MODEL

LAYERS

ADORE uses the ADSG, which is a layer on top of the DSG, to model the architecture
design space, formulate optimization problems, and convert design vectors to
architecture instances. Figure D.1 shows the detailed interactions between these three
layers, and how the layers are involved in the architecture optimization loop. It also
shows how the System Architecture Optimization (SAO) loop shown in Figure 3.1 is
implemented by ADORE.

The ADORE GUI edits an ADORE model, which is used to construct an ADSG.
The ADSG is a DSG, which consists of a set of nodes that are subject to choices
and constraints. The DSG is encoded as an optimization problem, which is then
represented in ADORE by a design problem. The design problem is instantiated by
an evaluator, which also provides the evaluation function. The SBArchOpt problem
instance represents the design problem using the SBArchOpt problem API, and is used
to run the SBArchOpt optimization algorithm. The optimization loop then consists
of converting the design vector generated by the optimizer to an architecture graph
(ADSG instance), which is further converted to an architecture instance (ADORE model
instance). This then provides input to the evaluation function, which has performance
metrics as outputs. The performance metrics are finally provided back to the optimizer,
interpreted as objectives and constraints.
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E
OPTIMIZATION ALGORITHM

PERFORMANCE COMPARISON

This appendix describes the method for comparing optimization algorithm perfor-
mance by ranking various algorithm configurations based on ∆HV regret. ∆HV (∆
hypervolume) represents the distance to the known optimum (or Pareto front in case of
multi-objective optimization) normalized to the range of objective values, calculated at
iteration i by:

∆HVi = HVtrue −HVi

HVtrue
, (E.1)

where HVtrue is the hypervolume [315] of the true Pareto front (which is only available
for test problems), and HVi is the hypervolume of the Pareto front at the current
algorithm iteration. To compare multiple optimization runs with different initial Design
of Experiments (DoEs) the ∆HV ratio is used:

∆HVratio,i = ∆HVi

∆HV0
, (E.2)

where ∆HV0 is the value at the first iteration (i.e. after the DoE has been evaluated).
Regret represents the cumulative error, in our case ∆HVratio, over the course of an
optimization [167]: lower values are better, and the value gives an indication of both
how closely the optimum is approached by the end of the optimization and by how
quickly this was achieved. ∆HV regret at iteration i is calculated from:

Regret(∆HV)i = Regret(∆HV)i−1 + 1

2
nstep

(
∆HVratio,i−1 +∆HVratio,i

)
, (E.3)

where nstep = nbatch when comparing performance per function evaluation, and
nstep = 1 when comparing by infill iteration. Performance is sampled nsamples times for
the same configuration to correct for randomness.

This chapter is based on [4].
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Ranking Procedure For a given test problem, the best performing algorithm
configuration has rank 1; higher ranks indicate lower performance. Similarly-
performing configurations have the same rank, as tested by an independent two-sample
t-test as implemented by Scipy’s TTEST_IND_FROM_STATS1 function. The algorithm for
determining rank is listed in Algorithm 4. The best performing algorithm configuration
is then selected by counting ranks over multiple test problems: the best performing
configuration is the one with the highest proportion of rank 1 within the set of
configurations with highest proportion of rank ≤ 2.

Algorithm 4 Determine performance rank Ri for each algorithm configuration Ci given
performance measure pi with standard deviation σi .

Require: C , p, σ, nsamples, perfMin
Ensure: R

1: R ← zer os ▷ Initialize ranks to 0 (unevaluated)
2: if perfMin then ▷ Get initial best performing configuration
3: icomp ← argmin p
4: else
5: icomp ← argmax p
6: end if
7: Ricomp ← 1 ▷ Set initial best performing configuration to rank 1
8: while any(R = 0) do ▷ Loop while there are unevaluated ranks
9: iuneval ← argR = 0 ▷ Get unevaluated ranks

10: if perfMin then ▷ Get best performing unevaluated configuration
11: jcomp ← argmin p(iuneval)
12: else
13: jcomp ← argmax p(iuneval)
14: end if
15: psame ← tTestInd(picomp ,σicomp ,nsamples, p jcomp ,σ jcomp ,nsamples)
16: if psame ≤ 10% then ▷ If probability of being the same is low
17: R jcomp ← Ricomp +1 ▷ Assign higher rank to compared configuration
18: icomp ← jcomp ▷ Update reference configuration
19: else
20: R jcomp ← Ricomp ▷ Assign same rank
21: end if
22: end while

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html
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E.1. INTERPRETATION OF RESULTS TABLES
Table E.1 shows an example table presenting the results of a performance comparison
and ranking. Such a table can be interpreted as follows:

• The rows list the configurations that are being compared to each other.

• The columns (after the first, and before the "rank" columns) list the test problems
the configurations are compared on.

• Per problem (i.e. column), the configuration performances are ranked using the
previously described procedure. The best performing configurations are assigned
a rank of 1, higher ranks are assigned to worse performing configurations.

• The "rank" columns express for a given configuration how often (seen over all test
problems) the configuration achieves these ranks: "rank 1" expresses how often
rank 1 is achieved, "rank ≤ 2" expresses how often rank 1 or 2 is achieved.

• The best configurations are selected by first selecting the set of configurations that
achieve rank ≤ 2 most often, and then within that set selecting the configurations
that achieve rank 1 the most often. The best configurations are underlined.

• The penalty column represents for a given configuration the mean ∆HV regret
increase (seen over all test problems) compared to the best configurations. The
penalty gives a quantitative estimate of how configurations compare to each
other, roughly indicating how much slower to converge and/or how much
further away from the Pareto front the configurations are compared to the best
configurations.

Table E.1: Example of a table comparing the performance of different optimization configurations on a set of
test problems ("A" to "H"), ranked by ∆HV regret (lower rank is better). The best performing configuration is
underlined; darker colors represent better results. Penalty represents the mean∆HV regret increase compared
to the best configuration.

Test Problems
Config A B C D E F G H Rank 1 Rank ≤ 2 Penalty

Config 1 2 1 2 5 4 3 6 4 12% 38% 12%
Config 2 6 5 6 2 1 8 3 1 25% 38% 455%
Config 3 1 2 1 5 5 1 6 2 38% 62% 0%

Config 4 2 2 3 3 3 3 4 2 0% 38% 9%
Config 5 4 4 5 1 2 6 1 1 38% 50% 81%
Config 6 1 2 2 6 6 2 6 3 12% 50% 7%
Config 7 2 1 3 4 4 4 4 1 25% 38% 15%
Config 8 4 4 5 1 2 6 1 1 38% 50% 84%
Config 9 1 2 1 4 4 3 5 1 38% 50% 6%
Config 10 3 3 4 3 3 5 3 1 12% 12% 25%
Config 11 5 4 5 1 2 7 2 1 25% 50% 118%
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MULTI-STAGE LAUNCH VEHICLE

CDS AND NFE

Example input file showing the CDS used in the multi-stage launch vehicle MDAO
problem:

<Rocket>
<Stage UID="stage_1">

<Engines>
<Solid>

<SRB/>
</Solid>

</Engines>
<Geometry>

<Length>32.76</Length>
</Geometry>

</Stage>
<Stage UID="stage_2">

<Engines>
<Liquid>

<SIVB/>
</Liquid>

</Engines>
<Geometry>

<Length>22.39</Length>
</Geometry>

</Stage>
<Stage UID="stage_3">

<Engines>
<Liquid>

<RS68/>
</Liquid>

</Engines>
<Geometry>

<Length>22.53</Length>
</Geometry>

</Stage>
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<Geometry>
<Head_shape>Elliptical</Head_shape>
<L_ratio_ellipse>0.175</L_ratio_ellipse>
<L_D>17.55</L_D>

</Geometry>
<Structure>

<Max_q>50000.0</Max_q>
</Structure>
<Payload>

<Density>2810.0</Density>
</Payload>

</Rocket>

Static input file containing NFE factories at /Rocket/nfeSettings:

<Rocket>
<nfeSettings>

<factories>
<factory><!-- Rocket stage length -->

<element>
<name>Rocket Body</name>
<match>auto</match>

</element>
<!-- Write in Stage with a UID containing the stage system index -->
<xpath>/Rocket/Stage[@UID="stage_{SYS_INDEX}"]</xpath>
<!-- Create a Geometry node with Length child node -->
<tag>Geometry</tag>
<childNodes>

<!-- Length child node contains value of the Length design variable -->
<Length><element>

<name>Length</name>
<match>auto</match>
<type>QOI</type>

</element></Length>
</childNodes>

</factory>

<!-- Stage engines -->
<factory>

<element>
<name>VULCAIN</name>
<match>auto</match>

</element>
<!-- {SYS_INDEX_1} refers to the index of the system

one system up from the containing system: the "Stage" system -->
<xpath>/Rocket/Stage[@UID="stage_{SYS_INDEX_1}"]/Engines/Liquid</xpath>
<tag>VULCAIN</tag>

</factory>
<factory>

<element><name>RS68</name><match>auto</match></element>
<xpath>/Rocket/Stage[@UID="stage_{SYS_INDEX_1}"]/Engines/Liquid</xpath>
<tag>RS68</tag>

</factory>
<factory>

<element><name>S_IVB</name><match>auto</match></element>
<xpath>/Rocket/Stage[@UID="stage_{SYS_INDEX_1}"]/Engines/Liquid</xpath>
<tag>SIVB</tag>

</factory>
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<factory>
<element><name>SRB</name><match>auto</match></element>
<xpath>/Rocket/Stage[@UID="stage_{SYS_INDEX_1}"]/Engines/Solid</xpath>
<tag>SRB</tag>

</factory>
<factory>

<element><name>P80</name><match>auto</match></element>
<xpath>/Rocket/Stage[@UID="stage_{SYS_INDEX_1}"]/Engines/Solid</xpath>
<tag>P80</tag>

</factory>
<factory>

<element><name>GEM60</name><match>auto</match></element>
<xpath>/Rocket/Stage[@UID="stage_{SYS_INDEX_1}"]/Engines/Solid</xpath>
<tag>GEM60</tag>

</factory>

<factory><!-- Head geometry: cone -->
<element><name>Cone</name><match>auto</match></element>
<xpath>/Rocket</xpath><tag>Geometry</tag>
<childNodes>

<Head_shape>Cone</Head_shape>
<Cone_angle><element>

<name>Cone Angle</name><match>auto</match><type>QOI</type>
</element></Cone_angle>

</childNodes>
</factory>
<factory><!-- Head geometry: semi-sphere -->

<element><name>Semi-sphere</name><match>auto</match></element>
<xpath>/Rocket</xpath><tag>Geometry</tag>
<childNodes>

<Head_shape>Sphere</Head_shape>
</childNodes>

</factory>
<factory><!-- Head geometry: elliptical -->

<element><name>Elliptical</name><match>auto</match></element>
<xpath>/Rocket</xpath><tag>Geometry</tag>
<childNodes>

<Head_shape>Elliptical</Head_shape>
<L_ratio_ellipse><element>

<name>Length ratio</name><match>auto</match><type>QOI</type>
</element></L_ratio_ellipse>

</childNodes>
</factory>

<factory><!-- Rocket length-to-diameter ratio -->
<element><name>L to D ratio</name><match>auto</match>

<type>QOI</type></element>
<xpath>/Rocket/Geometry</xpath>
<tag>L_D</tag>
<!-- Set the linked QOI value as node value -->
<value><special>VALUE</special></value>

</factory>

<!-- Static inputs -->
<factory>

<element><name>Max q</name><match>auto</match>
<type>QOI</type></element>
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<xpath>/Rocket/Structure</xpath><tag>Max_q</tag>
<value><special>VALUE</special></value>

</factory>
<factory>

<element><name>Payload density</name><match>auto</match>
<type>QOI</type></element>

<xpath>/Rocket/Payload</xpath><tag>Density</tag>
<value><special>VALUE</special></value>

</factory>

</factories>

<metrics><!-- Link the output metrics -->
<metric><!-- Payload mass -->

<qoi>
<name>Payload Mass</name>
<match>auto</match>

</qoi>
<xpath>/Rocket/Payload/Mass</xpath>

</metric>
<metric><!-- Cost -->

<qoi><name>Cost</name><match>auto</match></qoi>
<xpath>/Rocket/Cost/Total_cost</xpath>

</metric>
<metric><!-- Structural constraint -->

<qoi><name>Structural Constraint</name><match>auto</match></qoi>
<xpath>/Rocket/Structure/Constraint</xpath>

</metric>
<metric><!-- Volume constraint -->

<qoi><name>Volume Constraint</name><match>auto</match></qoi>
<xpath>/Rocket/Payload/Constraint</xpath>

</metric>
</metrics>

</nfeSettings>
</Rocket>
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