
Vol.:(0123456789)

CEAS Aeronautical Journal 
https://doi.org/10.1007/s13272-025-00870-x

ORIGINAL PAPER

CPS prototype development for AI‑based scenario adaptation in flight 
simulator training

H. Lilla1   · O. Niggemann2 · T. Netzel1

Received: 27 February 2025 / Revised: 4 June 2025 / Accepted: 13 June 2025 
© The Author(s) 2025

Abstract
Evidence-based training as part of competency-based training and assessment confronts pilots with unexpected events in 
realistic scenarios in order to promote problem-solving and adaptability. Linking theory and practice is essential to promote 
these competencies. To achieve this, a cyber-physical system is presented that enables this through the innovative approach 
of “deep-linking keywords.” A heuristic scoring function determines a fulfillment score for each keyword. Based on the 
assessment, scenario-based training is adapted, enabling necessary individualization. Compared to existing systems, the 
prototype generates a coherent dataset that bridges knowledge work and scenario-based training, allowing for comprehensive 
scenario adaptation. The cyber-physical system consists of a computer-based training system built on the Django framework, 
a Basic Instrument Training Device, and flight simulator software, integrated via an application programming interface. 
After each evidence-based training session, performance data are processed through structured analysis pipelines to extract 
and evaluate scenario-linked feature vectors. This enables iterative parameter optimization for adaptive scenario control. 
Building on the prototype and the proven effectiveness of the heuristic scoring function, a large dataset will be compiled, 
and the rule-based method will be replaced by machine learning to enhance safety, effectiveness, and efficiency in aviation 
through highly individualized training enabled by an AI-based cyber-physical system.
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1  Introduction

Data-driven approaches are playing an increasingly impor-
tant role in the analysis and diagnostics of cyber-physical 
systems (CPS). They enable continuous adaptation to 
dynamic conditions and complement classical expert sys-
tems when models are incomplete or difficult to maintain 
[1]. Similar needs arise in competency modeling, where the 
relationship between knowledge, skills, and professional 
actions must be captured and adapted to individual learning 
progress [2–4]. In pilot training, this is particularly relevant 
for adapting realistic scenarios to learner needs [5–7].

Evidence-based training (EBT), within the framework 
of competency-based training and assessment (CBTA), 
promotes adaptive competencies through scenario-based 
challenges [8–10]. This requires alignment of theoretical 
knowledge and practical execution, as enabled by work-
based learning (WBL) concepts [11, 12]. Simulator-based 
training is central to this process [7, 13, 14], but the assess-
ment of competencies demands a holistic view that includes 
declarative, procedural, strategic, and adaptive knowledge 
[15].

Recent AI-based systems support this through feedback 
models, intelligent tutoring assistants, or learning dashboards 
[16–18]. However, these solutions typically focus on either 
theoretical assessments or simulator performance. The dis-
crepancy between cognitive and behavioral data remains 
unresolved. While WBL-oriented concepts exist in adjacent 
domains such as smart manufacturing and Industry 5.0, they 
lack a methodological integration of knowledge diagnostics 
and real-time performance data that would support reflective 
and adaptive learning in aviation [19].
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A major obstacle is the incoherence of datasets across 
training phases, as highlighted by Gehr and Dunagan [20]. 
Without unified data structures, CPS-based adaptation remains 
limited. New standards are emerging to support such integra-
tion [21, 22], but their application to flight training remains 
underexplored.

This paper addresses these challenges by developing a 
CPS for pilot training that links theoretical knowledge work 
with scenario-based training through semantic keywords and 
structured performance data. The following research questions 
guide the development: 

RQ1:	� How can metrics from knowledge work and simula-
tor training be integrated into a data-driven model 
to capture individual learning progress?

RQ2:	� How can these metrics serve as a valid basis for 
the algorithmic adaptation of realistic simulator 
scenarios?

RQ3:	� How can an integrated model support adaptive 
competency diagnostics in CBTA-based training 
environments?

RQ4:	� How can a CPS be designed to enable adaptive 
coupling of theory and practice phases through an 
AI-based system?

To address these questions, we developed a CPS prototype 
combining a web-based training environment (Django), the 
X-Plane flight simulator with control hardware, and diagnos-
tic modules for theory and practice. Competency levels are 
assessed through multiple-choice, calculation, and free-text 
tasks, and linked to scenario performance. Learner actions are 
mapped to domain-specific keywords via expert profiles. These 
are aggregated into feature vectors and used to adapt simulator 
parameters dynamically. Scenario evaluation, structured feed-
back, and threat-and-error management [5] support problem-
solving and adaptability. The resulting data structure enables 
both formative and summative diagnostics and forms the basis 
for individualized, competence-driven training across all pilot 
development phases. To underpin the research questions and 
the proposed system architecture, the next section provides a 
structured overview of existing concepts and technologies in 
the domains of competency-based pilot training, artificial intel-
ligence in assessment, and cyber-physical systems.

2 � State of the art

2.1 � Competency‑based pilot training

2.1.1 � Competency‑based training and assessment

Traditional aviation training primarily focuses on obtaining 
and maintaining qualifications by accumulating theoretical 

knowledge, logging flight hours, and passing exams [9]. This 
qualification-based approach stands in contrast to compe-
tency-based training, which focuses on the development of 
skills and competencies aligned with defined performance 
standards [23]. This enables pilots to successfully manage 
situations and solve problems [8]. The paradigm shift is 
driven by the increasing complexity of aviation, aiming to 
prepare pilots for unpredictable situations [5, 6, 24] and is 
aligned, for example, with the “ATP(A) Integrated Course 
Manual” [25] and the EASA Part-ORA guidance [26]. 
Scenario-based training (SBT), as pat of work-based learn-
ing, embeds each learning objective within authentic flight 
tasks and supports contextualized competence development. 
WBL emphasizes the integration of theoretical and practi-
cal knowledge in real-world environments, thus providing 
a didactic foundation for SBT in aviation. This approach 
promotes the application of theoretical knowledge in com-
plex operational situations and strengthens professional 
judgment, decision-making, and problem-solving skills. In 
aviation training, the structure of WBL aligns well with the 
CBTA/EBT framework and supports adaptive, task-specific 
learning.

2.1.2 � Evidence‑based training

The EBT concept adopts a data-driven approach. Based on 
a validated data foundation and a data-driven model [5], a 
systematic and competency-based training and assessment 
framework for pilots is implemented [8]. During training 
and the associated competency acquisition, pilots go through 
two sessions. The key phases include the evaluation (EVAL) 
and maneuvers training phase (MT), as well as the tailored 
training phase, which serves as SBT.

2.1.3 � Computer‑based training

Computer-based training (CBT) facilitates the computer-
assisted delivery of theoretical content in a modular struc-
ture. The learning objectives (LO) conveyed within this 
modular framework are defined in Part-FCL [10]. The 
integration of LOs into CBT enables computer-based learn-
ing, allowing students to acquire content across different 
knowledge levels [2]. Embedding a competency model into 
professional actions enables the assessment of a pilot’s dem-
onstrated performance, enabling measurable competency 
diagnostics [8, 10, 27].
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2.2 � AI‑based assessment

Machine learning (ML) enables data-driven analysis of 
learning progress and the assessment of learning trajectories 
[2, 17, 28–30], as shown in Fig. 1.

Within the EBT-based CPS structure, learning progres-
sion follows defined phases from knowledge diagnostics 
(Phase 0) to performance-based evaluation (Phase 7). As 
shown in Fig. 1, the effectiveness of these phases depends 
on timely data interpretation. Descriptive and predictive ana-
lytics in early phases (Phase 0–3) allow targeted adaptation 
before degradation occurs, whereas diagnostic analytics in 
later phases (Phase 6–7) only explain deficiencies retrospec-
tively. This underscores the need for timely scenario adapta-
tion between Session 1 and Session 2.

The CPS distinguishes between gain and loss of learning 
efficiency. Scenario control must occur before performance 
drops (i.e., before the event), as delayed intervention reduces 
training impact. This justifies integrating CBT-based knowl-
edge diagnostics (Phase 0) prior to simulator sessions to ena-
ble prescriptive adaptation in Phase 4. By linking theoretical 
insights with practical performance through keyword-based 
KSA vectors, the CPS fosters early feedback and prevents 
consolidation of incorrect routines.

To meet CBTA [31] and Area 100 KSA requirements [26, 
32], the prototype follows a structured cycle of formative and 
summative assessment. In the prototype, this is operational-
ized as follows: Phase 0 provides computer-based diagnos-
tics, Phase 3 enables debriefing with root cause analysis, and 
Phase 7 supports scenario-based performance assessment.

Summative assessment, conducted at the end of the 
training cycle, evaluates final competency levels and can be 
analyzed using ML as part of a data-driven approach [33]. 
Results from all phases are aggregated into a weighted fea-
ture vector ( ⃗𝛼total ) and visualized in a session-wise tensor to 
track progression across scenarios.

The EBT framework ensures evidence-based scenario 
adjustments and alignment with ICAO and EASA guidelines 

[21, 22]. AI-based applications in aviation must comply with 
these standards to ensure safety and traceability.

2.3 � Synthetic flight training devices

Synthetic flight training devices play a central role in avia-
tion training and education, allowing pilots to develop com-
petencies under safe, controllable, and reproducible condi-
tions [5, 6, 34]. The simplest form of flight training devices 
(FTDs) is the basic instrument training devices (BITDs). 
These devices enable familiarization with instruments and 
cost-effective procedure training [7, 35–37]. Studies com-
paring the effectiveness of BITDs with real flight training [7, 
13, 38] have found no significant differences in performance 
assessments for tasks such as the instrument proficiency 
check (IPC) when conducted in BITD training compared to 
real flight training. The combination of scenario-based simu-
lator training and real flight training enhances the efficiency 
and cost-effectiveness of pilot education. The combination 
of scenario-based simulator training and real flight train-
ing enhances the efficiency and cost-effectiveness of pilot 
education and can additionally be used to generate synthetic 
training data for AI-based assistance systems [39]. Thus, 
BITDs appear to be a cost-effective and suitable means for 
imparting and reinforcing competencies, while also account-
ing for sustainability aspects [14].

2.4 � Cyber‑physical system

CPS for use in training and education enable innovative and 
practical training concepts [40, 41]. As a didactic frame-
work, WBL allows the application of knowledge in realis-
tic training scenarios [14], facilitating a close integration 
of theory and practice [11, 12]. By incorporating synthetic 
flight training devices, CPS provides a highly realistic flight 
environment, optimizing pilot training [7, 13, 14]. The col-
lected data enable data-driven competency development to 
support individualized learning [2–4]. Diagnosed knowledge 
is directly transferred into realistic scenarios to facilitate 
adaptive learning [11, 12, 42] in a holistic learning experi-
ence [43]. The didactic component of the CPS, structured as 
CBT, utilizes linear heuristics [19], data analytics [44], AI-
based systems [45], and pretrained language models such as 
KeyBERT for semantic keyword extraction [46], to monitor 
learning progress and enable individualized task adaptation 
[47]. A major challenge lies in data integration, as measure-
ment values from theoretical learning and simulator training 
differ significantly [20, 48].

Fig. 1   Data analytics in CPS (adapted from [2]) Inaccurate adapta-
tion of the scenario-based training session leads to a loss of learning 
efficiency. This can be mitigated by incorporating CBT-based assess-
ment results into scenario design. Reflective debriefing contributes to 
a gain of learning efficiency by improving alignment in subsequent 
training sessions and by enabling scenario tuning through ML model 
refinement
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3 � Prototype

The prototype, as shown in Fig. 2, is designed around the 
structured integration of keyword-based features into both 
theoretical knowledge work and flight simulator training.

Rather than aiming for full automation, the current 
implementation demonstrates the proof of concept of “deep-
linking keywords” through a heuristic scoring function. In 
addition, an AI-based component is already integrated in the 
form of a pretrained language model (KeyBERT) to extract 
domain-specific keywords from free-text responses. More 
advanced machine learning techniques will be integrated 
at a later stage to support individualized scenario adapta-
tion through keyword-based feature vectors and to enhance 
explainability. This architecture enables a highly individual-
ized learning process within a work-based learning (WBL) 
framework. Scenario-based training (SBT) is adapted using 
a heuristic scoring function based on feature vectors rep-
resenting knowledge, skill, and attitude (KSA). Each com-
ponent is derived from task-specific keywords associated 
with a fulfillment score reflecting the learner’s demonstrated 
competence. By linking theory and practice through these 
keyword-based features, the system promotes contextual 
application of knowledge, adaptive decision-making, and 
reflective acquisition—key elements for improving safety, 
effectiveness, and efficiency in pilot training.

The CPS is implemented using Django as a web frame-
work and follows the Model-View-Template pattern to 
ensure modularity. A modular web interface connects the 
system to the X-Plane flight simulator via X-Plane Connect 
(XPC), enabling seamless scenario execution in a BITD.

Training data from both theoretical and simulator-based 
activities are stored in a PostgreSQL database and evalu-
ated using the heuristic scoring function. At this stage, 
the scenario adaptation relies on expert-weighted feature 
combinations. Once a sufficiently large dataset has been 
gathered, this rule-based method will be replaced by a 
decision tree algorithm to enable more nuanced adapta-
tion. The two approaches—heuristic and ML-based—will 
then be systematically compared, with particular atten-
tion to competence classification, feature attribution, and 
explainability via SHapley Additive exPlanations (SHAP).

Sections 3.2 and 3.3 detail the conceptual framework for 
knowledge and simulator-based training, while Sect. 3.4 
outlines the current implementation status.

3.1 � Storyboard: stall scenario

Using the “Stall Scenario” as a representative use case, 
this section illustrates how theoretical knowledge from 
Phase 0 (CBT) and practical experience from Phase 3 are 
integrated through a deep-linked feature vector to foster 
individualized learning and adaptive decision-making. 
This use case is structured in seven distinct phases accord-
ing to the EBT baseline model, combining knowledge 
acquisition, simulator-based tasks, and reflective assess-
ment to enhance learner competence in stall recovery—
one of the most safety-critical tasks in general aviation.

Aerodynamically induced loss-of-control events caused 
by stall conditions remain one of the leading causes of 
fatal accidents in general aviation. Within the CBTA 
framework, the scenario is designed to foster both theo-
retical understanding and practical competence within a 
realistic training environment. The objective is to enable 
learners to detect a stall condition early, respond appro-
priately, and stabilize the aircraft.

The scenario is structured into seven distinct training 
phases (see Fig. 3), following the baseline session model 
of evidence-based training, and integrates knowledge 
acquisition, simulator-based practice, and reflective evalu-
ation within a task-specific learning context.

Phase 0—knowledge acquisition (CBT)  In this initial phase, 
learners complete a variety of theory-based tasks that target 
declarative, procedural, and reflective aspects of relevant 
knowledge. These tasks are aligned with predefined key-
words (e.g., “Stall Speed”) and are used to diagnose the 
learner’s theoretical entry level. Although no feedback is 
provided at this stage, the results are recorded for subsequent 
integration into the debriefing process.

Phase 1—briefing  Learners are presented with a standard-
ized flight simulator scenario. The briefing includes aircraft 

Fig. 2   System architecture of the CPS The View coordinates data 
exchange between the Django-based application (violet), the database 
(orange), ML modules (green), and the simulator interface (blue). 
The adapted output tensor, generated by the ML algorithm, is stored 
in PostgreSQL via the Django Model and View and transmitted to the 
simulator interface through a modular web interface (REST-API) to 
enable adaptive scenario control
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configuration, weather conditions, initial position, and learn-
ing objectives. No adaptation is applied at this stage, ena-
bling a neutral baseline assessment of practical performance. 
This ensures comparability across learners.

Phase 2—evaluation and maneuvers training  During the 
evaluation and maneuvers training (EVAL + MT), learners 
execute the baseline scenario to provoke a controlled stall. 
The system logs flight and behavioral data (e.g., airspeed, 
altitude loss, and heading deviation). This complements the 
theoretical input from Phase 0.

Phase 3—facilitated debriefing  After completing the sce-
nario, learners receive structured, keyword-based feedback 
that integrates their theoretical and practical performance. 
Each dimension—knowledge, skill, attitude—is evaluated 
and contextualized. The feedback highlights what was done 
well, where performance gaps remain, and how theory and 
practice were aligned (Table 1).

The learner’s competence level is derived from nor-
malized scores in the range [0–1]. The mapping to the 

evidence-based training standard is defined in Table 6. The 
knowledge fulfillment score �

k
 is computed using the heu-

ristic scoring function defined in Sect. 3.2. This enables 
targeted feedback on theoretical strengths and weaknesses.

Phase 4—tailored briefing  Based on the keyword-specific 
performance from the heuristic scoring function, the system 
generates a personalized scenario. The adapted briefing out-
lines the modifications in the scenario setup (e.g., reduced 
altitude, increased turbulence) and specifies the targeted 
learning objectives. Learners are encouraged to address 
previously identified weaknesses while consolidating their 
demonstrated strengths.

Phase 5—scenario‑based training  Learners perform the 
tailored scenario in the simulator. Compared to the baseline 
scenario, the difficulty level is adjusted to provide an appro-
priate challenge. Adjustments may include environmental 
stressors, earlier failure triggers, or modified aircraft config-
urations. The goal is to foster progression without overload-
ing the learner. All performance metrics are recorded again.

Phase 6—facilitated debriefing  A second structured debrief-
ing follows the adapted simulator session. The learner’s pro-
gress is assessed by comparing performance before and after 
adaptation. Improvements are acknowledged, persistent gaps 
are analyzed, and tailored recommendations are provided. 
This reflective phase promotes self-assessment and prepares 
the learner for summative evaluation or further iteration 
(Table 2).

The overall score �total is computed as the weighted aver-
age of the normalized KSA values and serves as a summa-
tive indicator for progression assessment.

Phase 7—assessment and reflection  The final phase aggre-
gates all available performance data into a comprehensive 
assessment. The scores across Session 1 and Session 2 are 
visualized and summarized for each keyword. The resulting 
classification enables instructors and learners to determine 
whether minimum standards have been achieved or if reme-
dial instruction is necessary. It also facilitates long-term 
tracking of individual learning progress (Table 3).

The overall score per keyword is derived using the heu-
ristic scoring function described in Sect. 3.2, integrating 
knowledge, skill, and attitude components.

Fig. 3   Baseline EBT FSTD session flow Systematic structure of the 
EBT-based learning cycle in the CPS prototype (adapted from the 
IATA Evidence-Based Training Implementation Guide [6]). The dia-
gram extends the baseline EBT model by incorporating a CBT-based 
knowledge phase (Phase 0). The complete sequence from Phase 0 to 
Phase 7, as discussed in Chapter 3, is visualized. In the CPS proto-
type, the assessment for Session 1 is computed algorithmically dur-
ing the structured debriefing in Phase  3 by aggregating evaluation 
results from theoretical tasks (CBT) and simulator performance into 
a keyword-specific feature vector. This vector directly informs the 
individualized scenario adaptation in Phase 4 and the tailored SBT in 
Phase 5. Phases 0–1, 3–4, and 6–7 represent knowledge-related activ-
ities (violet), while Phases  2 and 5 correspond to simulator-based 
training (blue).

Table 1   EVAL + MT 
debriefing—keyword: Stall 
Speed

Dimension Learning object CBT Session 1 Path to competence

Knowledge (K) Stall threshold 0.89 – Effective (4)
Skill (S) Stall recovery – 0.70 Minimum acceptable (2)
Attitude (A) Recovery behavior – 0.635 Minimum acceptable (2)
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3.2 � Knowledge work

The theoretical part of the training system is implemented as 
a CBT module within the CPS platform. It serves to assess 
the learner’s knowledge in three cognitive dimensions: 
declarative (DK), procedural (PK), and reflective (RK) 
knowledge. All tasks are aligned with domain-specific key-
words (e.g., “Stall Speed”), and each keyword is mapped to 
one or more task types.

Phase 0—CBT

Declarative knowledge (DK)  These tasks use multiple-
choice formats to evaluate the learner’s recall of technical 
definitions, standard values, or regulatory requirements. 
An example would be: “State the IAS at which the stall 
warning occurs as specified in the Pilot Operating Hand-
book (POH).” The scoring is based on the ratio of correct 
responses to total responses:

Procedural knowledge (PK)  Learners solve aviation-related 
problems, typically requiring calculations, interpretation of 
diagrams, or application of operational rules. An example is: 
“Calculate the stall speed of the Cessna 172 in level flight 
under standard atmospheric conditions at MTOW and clean 
configuration.” Results are scored in a binary fashion:

Reflective knowledge (RK)  Open-ended questions assess the 
learner’s ability to transfer knowledge to new situations or 
explain causal relationships. An example is: “Explain why 
forward stick input is essential during stall recovery.” These 
responses are evaluated using Natural Language Processing 

DK-Score =
Number of correct answers

Number of total questions
∈ [0, 1]

PK-Score =

{
1 if the result is correct

0 otherwise

(NLP) techniques, particularly semantic similarity to expert-
provided reference answers:

The similarity function is implemented using vector-based 
keyword representations via a pretrained KeyBERT model, 
comparing the semantic proximity of learner ( astudent ) and 
expert ( aexpert ) answers.

Example: RK score for “Stall Speed”  Prompt: Explain why 
forward stick input is essential during stall recovery.

Learner answer: “It helps to reduce angle of attack.”
Expert answer: “Forward stick reduces angle of attack, 

breaking the stall and restoring lift.”
NLP Similarity Score: sim = 0.78 (based on cosine simi-

larity of KeyBERT keyword vectors).

Knowledge feature vector  Each keyword k is associated 
with a three-dimensional vector based on the learner’s scores 
in the cognitive dimensions:

This vector captures the learner’s theoretical competence in 
a structured and comparable format and forms the basis for 
subsequent aggregation and scenario adaptation.

Fulfillment score per Keyword  The aggregated knowledge 
score �

k
 for a keyword k is calculated using a weighted linear 

combination of the three dimensions:

RK-Score = sim(astudent, aexpert) ∈ [0, 1]

vKnowledge =

⎡⎢⎢⎣

DK

PK

RK

⎤⎥⎥⎦

(1)
�Knowledge = wDK ⋅ DK + wPK ⋅ PK + wRK ⋅ RK

with
∑

w
i
= 1

Table 2   Performance for 
keyword: Stall Speed

Dimension Learning object Target Session 2 Path to competence

Knowledge (K) Stall threshold 0.90 0.95 Exemplary (5)
Skill (S) Stall recovery 0.75 0.80 Effective (4)
Attitude (A) Recovery decision-making 0.75 0.82 Effective (4)
Overall score(�

total
) 0.800 0.851 Effective (4)

Table 3   Fulfillment scores, 
learning gains and final 
assessment per scenario

Keyword Session 1 Session 2 Delta �
total

Level Remedial

�
K

�
S

�
A

�
K

�
S

�
A

Δ
K

Δ
S

Δ
A

Stall speed 0.89 0.70 0.635 0.95 0.80 0.82 +0.06 +0.10 +0.185 0.851 3 –
Load factor 0.80 0.80 0.73 0.85 0.87 0.80 +0.05 +0.07 +0.07 0.842 3 –
Bank angle 0.86 0.76 0.70 0.90 0.82 0.78 +0.04 +0.06 +0.08 0.833 3 –
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This heuristic scoring function �
k
 computes the overall 

knowledge fulfillment per keyword and enables scenario 
adaptation based on individual learning needs.

Weightings may be defined per keyword or scenario to 
emphasize specific dimensions (e.g., reflection-heavy top-
ics). For the keyword “Stall Speed”, for example, higher 
weight may be placed on the reflective explanation of stall 
recovery procedures.

Example: keyword “Stall Speed”  Assume the learner pro-
vides the following responses:

With the following weights:

The resulting knowledge fulfillment score is

This value is used during debriefing (Phase 3) to explain 
how well the learner understood the topic in theory and 
serves as a basis for scenario adaptation in Phase 5. A low 
score in reflective knowledge, for instance, would trigger 
increased focus on the attitude dimension—since insufficient 
theoretical understanding of stall recovery suggests that the 
learner may not respond appropriately in a real-time sce-
nario, potentially compromising safety and decision-making 
under stress. The CBT environment is built using Django 
and presented via a responsive web frontend. Each question 
type is mapped to a model entry, storing user answers, times-
tamps, and scores. The NLP pipeline runs asynchronously 
after submission to allow immediate retrieval of similarity-
based scores for RK tasks. Final keyword vectors are stored 
in the PostgreSQL database and synchronized with the simu-
lator interface via JSON during scenario preparation.

3.3 � Simulator‑based training

The simulator-based training process comprises Phases 1 
through 6 and is structured into two iterative loops: the 
initial baseline scenario and the personalized, adapted sce-
nario. In both iterations, real-time performance data from the 
simulator are continuously recorded and evaluated along the 
Skill and Attitude dimensions. These data serve as inputs to 
the heuristic scoring functions, support scenario adaptation, 
and contribute to both formative and summative assessment 
within the CPS training cycle.

vKnowledge =

⎡
⎢⎢⎣

DK

PK

RK

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

1.0

1.0

0.78

⎤
⎥⎥⎦

wDK = 0.2, wPK = 0.3, wRK = 0.5

�Knowledge = 0.2 ⋅ 1.0 + 0.3 ⋅ 1.0 + 0.5 ⋅ 0.78 = 0.89

Phase 1—briefing  In this phase, the CPS initializes a stand-
ardized baseline scenario without any adaptive elements. 
The aircraft is positioned in a predefined flight state (e.g., 
3500 ft MSL, calm weather (CAVOK), trimmed configura-
tion), and the corresponding training task and competency 
objective (e.g., stall recognition and recovery) are presented 
to the learner. All scenario parameters remain constant and 
establish a reference for subsequent adaptation. No perfor-
mance data are recorded during this phase; however, the 
simulator environment is configured via XPC commands 
according to the briefing parameters.

Phase  2—evaluation and maneuvers training  Once the 
briefing is completed, the learner performs the assigned task 
in the simulator. During this session, key flight parameters 
are monitored in real time at 200 ms intervals. In this exam-
ple, evaluation focuses on four core flight metrics derived 
from the predefined scenario:

•	 IAS: Indicated airspeed,
•	 ALT: Altitude deviation,
•	 HDG: Heading deviation,
•	 TRST: Thrust setting (0 = idle, 1 = full power).

Each parameter is continuously compared against predefined 
reference values. The deviation from the expected trajectory 
is used to assess how accurately the learner maintained the 
flight path. These four parameters collectively form the skill 
feature vector:

where each entry reflects the degree of conformity to the 
expected flight path on a scale from 0 (complete deviation) 
to 1 (perfect match), computed over the duration of the 
maneuver.

In addition to this flight path conformity, three continu-
ous parameters are extracted from flight data to assess the 
learner’s behavioral response:

Situational awareness (SA)  Situational awareness is assessed 
based on the time delay between the stall cue and the learn-
er’s first control input (e.g., pitch or power adjustment). A 
delay of less than 2 s is considered ideal and yields a high 
SA score. Reaction times above 5 s result in a significantly 
reduced score. The final value is normalized between 0 and 
1, reflecting the timeliness of the initial response to an unex-
pected event.

vSkill =

⎡⎢⎢⎢⎣

IAS

ALT

HDG

TRST

⎤⎥⎥⎥⎦
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Action quality (AQ)  AQ evaluates the learner’s control 
response to deviations in the aircraft’s flight path. Four core 
parameters are continuously monitored: heading (HDG), 
altitude (ALT), airspeed (IAS), and thrust (TRST). If a devi-
ation exceeds a defined threshold for one of these param-
eters, the system checks whether a corrective control input 
follows within a predefined time window (e.g., 2–3 s). A 
reaction is counted as correct if it occurs in the expected 
direction:

•	 HDG deviation: lateral control via aileron or rudder,
•	 ALT deviation: thrust increase or decrease,
•	 IAS deviation: pitch control via elevator,
•	 excessive or insufficient TRST: pitch or throttle correction.

For each of these four regulation pairs, one point is assigned 
if both a significant deviation and an appropriate correc-
tive action are detected. The AQ score is calculated as the 
ratio of successful control responses to the total number of 
observed deviations (maximum of four), resulting in a value 
between 0 and 1.

Flight stabilization (FS)  Flight stabilization measures how 
quickly the aircraft returns to a stable flight state after the 
initial control input. A short stabilization time (e.g., less than 
5 s) indicates good control and results in a high FS score. 
Longer durations reduce the score accordingly. The value 
is normalized to a scale from 0 (instability) to 1 (fast and 
stable recovery).

These parameters form the attitude feature vector:

Phase 3—facilitated debriefing  After the simulator session, 
a structured debriefing is conducted. From a technical per-
spective, the CPS merges the knowledge vector from Phase 0 
(cf. 3.2), the normalized skill vector from Phase 2 (cf. 3.3), 
and the continuous attitude vector derived from simulator data.

To support formative assessment and instructional feed-
back, individual KSA fulfillment scores are computed using 
weighted scoring functions. These scalar values allow com-
parison against threshold values and support the selection of 
remedial or advanced scenarios in subsequent phases.

Skill fulfillment score
The aggregated skill score �Skill is computed using the 

weighted sum of the normalized simulator parameters:

vAttitude =

⎡⎢⎢⎣

SA

AQ

FS

⎤⎥⎥⎦

(2)
�
Skill

= w
IAS

⋅ IAS + w
ALT

⋅ ALT + w
HDG

⋅ HDG+

w
TRST

⋅ TRST

Attitude fulfillment score
Likewise, the attitude score �Attitude is derived as follows:

Total fulfillment score
Finally, the total fulfillment score �total is computed as the 

weighted sum of the knowledge, skill, and attitude scores:

Example: keyword “Stall Speed”  As derived in Phase  0 
(cf. Sect. 3.2), the aggregated knowledge score for the key-
word Stall Speed is

Assume the normalized simulator scores for the skill vector 
are Then:

The simulator-derived attitude scores are

Then,

Using default weights w = [0.30, 0.40, 0.30] , the total ful-
fillment score at this stage is

This result reflects that while the learner maintains good 
situational awareness and regains flight stability effectively, 
the delayed or inappropriate control response to flight path 
deviations (low AQ) indicates incomplete consolidation of 
stall recovery routines. The result corresponds with a low 
RK score in Phase 0 and suggests targeted reinforcement in 
the next tailored scenario (cf. 3.1).

This analytic structure aligns with Area 100 KSA learn-
ing objectives LO 100 02 and LO 100 03, which empha-
size decision-making, threat-and-error management, upset 
recovery, and resilience. By quantifying knowledge, skill, 
and attitude fulfillment, the CPS enables fine-grained diag-
nostic analysis and informed instructional adaptation.

with
∑

w
i
= 1

(3)�Attitude = wSA ⋅ SA + wAQ ⋅ AQ + wFS ⋅ FS

with
∑

w
i
= 1

(4)�total = w
K
⋅ �Knowledge + w

S
⋅ �Skill + w

A
⋅ �Attitude

with w
K
+ w

S
+ w

A
= 1

�Knowledge = 0.89

�Skill = 0.25 ⋅ (0.8 + 0.5 + 0.9 + 0.6) = 0.7

SA = 0.85, AQ = 0.4, FS = 0.9

wSA = 0.3, wAQ = 0.5, wFS = 0.2

�Attitude = 0.3 ⋅ 0.85 + 0.5 ⋅ 0.4 + 0.2 ⋅ 0.9

= 0.255 + 0.20 + 0.18 = 0.635

�
(1)

total
= 0.3 ⋅ 0.89 + 0.4 ⋅ 0.70 + 0.3 ⋅ 0.635 = 0.784
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All results are stored keyword-wise in the CPS database 
and visualized in the user interface. These metrics form the 
basis for adaptive scenario configuration in Phase 4 and 
are later aggregated for longitudinal evaluation in Phase 7 
(cf. 3.4).

Phase 4—tailored briefing  In this phase, the CPS constructs 
a personalized scenario configuration based on the aggre-
gated knowledge, skill, and attitude scores per keyword (cf. 
Phase 0–-3). This configuration is encoded in a weighted 
scenario feature vector (SFV):

Each cell is computed from prior scores (cf. Phase 0-–3) and 
scenario-specific weightings. This matrix serves to parame-
terize simulator settings such as turbulence intensity, trigger 
altitude, scenario timing, and potential distractions.

Example: SFV for keyword “Stall Speed”  Given the previ-
ously derived values (cf. 3.2 and Phase 2–3):

with

results in

Didactic focus of the briefing  The tailored briefing high-
lights specific learning needs as identified in the aggregated 
KSA scores: while theoretical knowledge ( �Knowledge = 0.89 ) 
and aircraft handling ( �Skill = 0.70 ) are generally solid, the 
low action quality ( AQ = 0.4 ) and suboptimal thrust adapta-
tion suggest difficulties in dynamically managing the flight 
path.

To close this gap, the briefing reintroduces the aero-
dynamic principles behind stall recovery, emphasizes the 
interplay between pitch, power, and attitude correction, and 
configures a slightly more demanding scenario. Additional 

VSFV =

⎡⎢⎢⎢⎣

wDK ⋅ DK wPK ⋅ PK wRK ⋅ RK

wIAS ⋅ IAS wALT ⋅ ALT wHDG ⋅ HDG

wTRST ⋅ TRST null null

wSA ⋅ SA wAQ ⋅ AQ wFS ⋅ FS

⎤⎥⎥⎥⎦

DK = 1.0, PK = 1.0, RK = 0.78

IAS = 0.8, ALT = 0.5, HDG = 0.9, TRST = 0.6

SA = 0.85, AQ = 0.4, FS = 0.9

wDK = 0.2, wPK = 0.3, wRK = 0.5

wIAS = 0.25, wALT = 0.25

wHDG = 0.25, wTRST = 0.25

wSA = 0.3, wAQ = 0.5, wFS = 0.2

VSFV =

⎡⎢⎢⎢⎣

0.20 0.30 0.39

0.20 0.125 0.225

0.15 null null

0.255 0.20 0.18

⎤⎥⎥⎥⎦

complexity (e.g., turbulence or time pressure) is introduced 
to assess the learner’s resilience and decision-making under 
dynamic conditions.

The goal is to strengthen understanding and execution of 
stall recovery procedures in line with Area 100 KSA learn-
ing objective LO 100 03, focusing on flight path manage-
ment under manual control.

Phase 5—scenario‑based training  In this phase, the learner 
completes a second simulator session under adaptive condi-
tions. Based on the scenario feature vector (SFV) derived 
in Phase 4, the CPS dynamically adjusts the aircraft con-
figuration, scenario parameters (e.g., altitude, cue timing), 
and environmental conditions (e.g., turbulence, distractions) 
to match the learner’s current performance profile. The aim 
is not to penalize performance gaps, but to address them 
through simplified conditions while increasing complexity 
in areas of strength. For example, low heading accuracy leads 
to stabilized flight conditions, while high resilience intro-
duces turbulence to evaluate recovery behavior. All param-
eters are automatically mapped to simulator datarefs via a 
plugin-based interface. Note that the skill vector in this phase 
reflects performance under modified conditions; thus, values 
may differ from those in Phase 2 even for similar control 
behavior, due to scenario-specific adaptation thresholds. Per-
formance data are collected using the same telemetry struc-
ture as before, enabling direct comparison of KSA fulfillment 
across phases. This allows the system to evaluate whether the 
learner has internalized theoretical feedback and improved 
their performance under the adapted scenario constraints.

Skill fulfillment score
Based on updated telemetry from Phase 5, the normalized 

skill vector is

Assuming uniform weights:

we compute:

Attitude fulfillment score
The attitude vector from telemetry is

v
Skill

=

⎡⎢⎢⎢⎣

IAS

ALT

HDG

TRST

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0.9

0.8

0.9

0.7

⎤⎥⎥⎥⎦

wIAS = wALT = wHDG = wTRST = 0.25,

�Skill = 0.25 ⋅ (0.9 + 0.8 + 0.9 + 0.7) = 0.25 ⋅ 3.3 = 0.825

vAttitude =

⎡⎢⎢⎣

SA

AQ

FS

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0.90

0.85

0.70

⎤⎥⎥⎦
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with weightings

resulting in

These updated values reflect the learner’s improved control 
and situational behavior under adaptive scenario conditions 
and serve as the basis for the final reflection in Phase 7.

Phase  6—facilitated debriefing  Following the adapted 
scenario, a second structured debriefing is conducted. In 
contrast to Phase 3 (cf. 3.3), this session not only provides 
descriptive feedback but focuses on quantifying individual 
learning progress. The CPS compares the learner’s perfor-
mance from Phase 5 to the initial scores from Phase 2, com-
puting delta values:

Example: learning progress in the stall scenario  Assume the 
following fulfillment scores were recorded for the keyword 
“Stall Speed” (Table 4):

These improvements indicate a successful transfer of 
theoretical and procedural knowledge into applied behav-
ior. Specifically, the Skill delta reflects more precise air-
craft handling and better coordination of pitch and thrust. 
The Attitude gain shows faster cue response, appropriate 
control input, and quicker flight stabilization—hallmarks of 
improved decision-making and resilience under increased 
workload.

This development aligns with the EBT Word Picture for 
Application of Knowledge and Aircraft Flight Path Man-
agement, manual control, confirming progression within the 
CBTA framework. No remedial action is required, and the 
learner proceeds to summative assessment in Phase 7.

All results are stored keyword-wise in the CPS database 
and contribute to the longitudinal training record.

3.4 � Deep‑linking keywords for CBTA

The CPS prototype enables adaptive and explainable learn-
ing by semantically linking theoretical and practical training 
components through keyword-based data structures. Each 
simulator session is associated with a domain-specific key-
word (e.g., “Stall Speed”) and produces standardized per-
formance indicators across the knowledge, skill, and attitude 

wSA = 0.3, wAQ = 0.5, wFS = 0.2,

�Attitude = 0.3 ⋅ 0.90 + 0.5 ⋅ 0.85 + 0.2 ⋅ 0.70

= 0.27 + 0.425 + 0.14 = 0.835

(5)ΔSkill = �
(5)

Skill
− �

(2)

Skill

(6)ΔAttitude = �
(5)

Attitude
− �

(2)

Attitude

(KSA) dimensions. These values are collected per phase, 
aligned with the evidence-based training (EBT) session 
structure, and systematically evaluated.

The resulting data are stored session-wise and keyword-
specific in structured vectors and are organized over time 
into a session-indexed matrix. This enables the CPS to track 
learning progression across multiple simulator sessions, sup-
port tailored scenario adaptation, and compute individual 
competence levels. In particular, Phase 7 performs a sum-
mative assessment by aggregating all available KSA values 
and comparing them to previously recorded scores.

In addition to computing an overall fulfillment score, 
Phase 7 introduces reflection prompts based on observed 
learning deltas. These questions help the learner identify 
cognitive gaps, understand behavioral patterns, and reinforce 
the connection between theoretical understanding and practi-
cal execution. This final step ensures that each training unit 
concludes with a complete evaluation of demonstrated per-
formance and self-assessed insight—aligning the CPS with 
CBTA standards for formative and summative competence 
development.

Phase 7—summative assessment and reflection  Based on 
the deltas in TKSA , targeted prompts are generated to support 
causal reasoning and self-assessment, such as

•	 “At what IAS did the stall warning activate in Ses-
sion 2?”

•	 “Which recovery technique improved most and why?”

These prompts close the learning loop and align with CBTA 
principles by supporting both summative evaluation and 
reflective insight (Table 5).

For the keyword “Stall Speed“, assume the updated 
scores:

Using default weights w = [0.30, 0.40, 0.30] , the total score 
is

�
(2)

K
= 0.95, �

(2)

S
= 0.80, �

(2)

A
= 0.82

�
(2)

total
= 0.3 ⋅ 0.95 + 0.4 ⋅ 0.80 + 0.3 ⋅ 0.82 = 0.851

Table 4   KSA fulfillment scores before and after adaptation

Dimension �(2) �(5) Δ

Knowledge 0.89 – –
Skill 0.70 0.825 +0.125
Attitude 0.635 0.835 +0.20



CPS prototype development for AI‑based scenario adaptation in flight simulator training﻿	

Compared to the baseline score �(1)

total
= 0.784 , this results in 

a learning gain:

This places the learner at Competency Level 4 (Effective) 
according to Table 6.

Keyword‑based result tensor  To support reflective and sum-
mative assessment across all targeted keywords, the system 
aggregates phase-specific KSA scores and associated learn-
ing deltas into a structured result tensor: (Fig. 4)

Through formative and summative assessment of the 
dimensions knowledge, skill, and attitude within a learning 
unit across multiple keywords, learning-relevant progress 
can be made visible, adaptive training decisions can be 
supported in a data-driven manner, and individual compe-
tency development can be systematically consolidated into 
a coherent dataset.

4 � Verification

To verify the feasibility of competence-based scenario adap-
tation, a linear-heuristic approach was initially implemented, 
as outlined in Chapter 3 and Equation (4). The evaluation 
aims to confirm validity, reliability, and objectivity through 
systematic unit and integration tests conducted in a con-
trolled development environment.

4.1 � Unit testing

Unit tests focused on computational accuracy, scenario 
scaling (basic, moderate, complex), and robustness against 
boundary conditions. These were iteratively executed during 
development, revealing and resolving issues in parameter 
handling and edge case behavior. Final test runs produced 
consistent results, with all assertions met as expected. In 
addition, a dataset from twelve test flights was used to assess 
real-world functionality, although execution was limited to 
localhost conditions due to the current non-hosted status 
of the system. The twelve test flights were conducted by 
students (non-professional pilots) using example scenarios 
such as “Constant Descent” and “Stall Speed Recovery”. 

Δtotal = +0.067

The simulator environment was operated locally with the full 
hardware setup, including rudder pedals, stick, and throttle 
quadrant.

4.2 � Integration testing

Integration testing addressed the stability of communication 
between Django and the XPC interface, focusing on data 
extraction, authentication via bearer tokens, and transmis-
sion latency for adaptive scenario configuration. All func-
tions operated reliably, with response times consistently 
below the defined threshold of 150 ms. Observed deviations 
correlated with system load but did not impair functionality.

4.3 � NLP component testing

The natural language processing pipeline was evaluated 
separately to verify keyword extraction, conceptual map-
ping to predefined knowledge areas, and performance across 
diverse free-text responses. Tests confirmed stable detection 
and alignment, although database query durations increased 
with the number of extracted keywords. This did not affect 
usability but highlights potential for optimization via index-
ing or caching. Keyword extraction is currently implemented 
using KeyBERT, which applies a pretrained neural network 
to identify relevant terms in learner responses. This method 
constitutes the core AI-based component of the prototype.

4.4 � Latency and responsiveness

Since scenario adaptation occurs prior to flight execu-
tion, average latencies of around 140 ms remained within 

Table 5   KSA fulfillment scores before and after adaptation

Dimension �(2) �(5) Δ

Knowledge 0.89 0.95 +0.06
Skill 0.70 0.80 +0.10
Attitude 0.635 0.82 +0.185

Table 6   Grading scheme based on �
total

Level �
total

 Range Descriptor

5 �
total

≥ 0.90 Exemplary
4 0.80 ≤ 𝛼

total
< 0.90 Effective

3 0.75 ≤ 𝛼
total

< 0.80 Adequate
2 0.35 ≤ 𝛼

total
< 0.75 Minimum acceptable

1 𝛼
total

< 0.35 Not adequate

Fig. 4   T
KSA

 including domain scores, deltas, and total fulfillment 
level for formative and summative assessment and reflection.
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acceptable bounds and did not affect simulator responsive-
ness or visual synchronization. Minor sampling delays (e.g., 
16.67 ms at 60 Hz) and hardware-induced variations were 
considered negligible for pre-flight configuration.

5 � Discussion

The verification results confirm the feasibility of a CPS-
based training concept that systematically links theoretical 
and practical learning via keyword-based feature vectors. 
The following section discusses how the prototype addresses 
research questions RQ1–RQ4 and outlines implications for 
further development.

The knowledge levels (RQ1) are measured during the 
CBT phase using multiple-choice, calculation, and free-
text tasks. These are aggregated into keyword-specific fea-
ture vectors and complemented by performance data from 
simulator sessions. The resulting fulfillment scores reflect 
individual competence development and are continuously 
updated, providing a structured basis for scenario adaptation.

The current rule-based heuristic enables these metrics to 
serve as a valid foundation for scenario adaptation (RQ2). 
Based on deviations from sample solutions and defined 
thresholds, the system adjusts simulator parameters to chal-
lenge learners according to their individual progress.

The integration of theoretical and simulator assessments 
enables a data-driven model supporting adaptive compe-
tency diagnostics (RQ3). The multidimensional tensor pre-
sented in Sect. 3.4 captures the evolution of KSA features 
and serves as a basis for reflective feedback and summative 
evaluation.

The CPS design (RQ4) enables adaptive coupling of theo-
retical and practical training phases, as illustrated in Fig. 2. 
All data streams are processed via Django and XPC, allow-
ing diagnostic results to inform scenario configuration. In 
addition to structured tasks, NLP techniques evaluate free-
text responses to meaningfully inform the adaptation logic.

The prototype demonstrates that deep-linking of key-
words generates a coherent dataset. Each keyword is rep-
resented by a feature vector of depth n , linking knowledge, 
skill, and attitude (KSA) domains. In the “Stall Speed” 
example, n = 9 , including three types of declarative, proce-
dural, and reflective knowledge and six simulator indicators: 
IAS, ALT, HDG, SA, AQ, and FS. This structure enables 
individualized scenario-based training and forms a robust 
basis for adaptive diagnostics.

6 � Conclusions and outlook

6.1 � Conclusion

A CPS prototype was developed that enables scenario-based 
training to be adapted based on diagnostic results from both 
theoretical and simulator-based assessments. The core inno-
vation lies in the deep-linking of keywords across knowl-
edge, skill, and attitude dimensions, generating a coherent 
data structure that connects knowledge work and simulator 
performance. The integration of evidence-based training 
into competency-based training and assessment shows that 
data-driven approaches can support adaptive learning envi-
ronments. The implemented system combines rule-based 
heuristics with feature vectors derived from structured and 
unstructured assessments to enable individualized training 
paths. The prototype thereby offers a structured founda-
tion for the evaluation of explainable AI methods in flight 
training.

6.2 � Outlook

Future iterations of the CPS will focus on expanding the 
current feature set within single-pilot training environments. 
In addition to the already implemented dimensions—appli-
cation of knowledge, situation awareness, and decision-
making—further refinement will target improved diagnos-
tic accuracy and scenario adaptation using interpretable 
machine learning techniques. A key objective will be the 
systematic comparison of rule-based adaptation and machine 
learning models, such as Decision Trees combined with 
SHAP. This comparative approach aims to evaluate trans-
parency, adaptability, and instructional effectiveness within 
the same controlled prototype architecture.

6.3 � Limitations

This work validates core functionality in a restricted feature 
set—application of knowledge, situation awareness, and 
decision-making—in single-pilot scenarios. Behaviorally 
rich competencies such as communication, leadership and 
teamwork, or workload management remain outside the 
scope, as they require multi-crew interaction and additional 
sensor or voice data. Scenario adaptation is currently imple-
mented using a heuristic scoring function. Data collection 
for a sufficiently large, labeled dataset is ongoing, enabling 
the future integration of interpretable ML models such as 
Decision Trees with SHAP. The prototype serves as a con-
trolled benchmark to evaluate the potential of explainable AI 
(XAI) in flight training by comparing it to rule-based adapta-
tion under realistic conditions. Feasibility was demonstrated 
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in a set of N = 12 simulator sessions validating keyword-
based assessment and dynamic training adaptation.
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