

BACHELORTHESIS
Sylvester Ofulue

Design and Implementation of a Centralized
Network Switch Management System

FACULTY OF ENGINEERING AND COMPUTER SCIENCE
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

i

Sylvester Ofulue

Design and Implementation of a Centralized

Network Switch Management System

Bachelor Thesis based on the examination and study regulations for the
Bachelor of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Pawel Buczek
Second examiner: Mr. Sasikumar Subbarayan

Day of delivery: 11. February 2025

ii

Sylvester Ofulue

Title of the paper
Design and Implementation of a Centralized Network Switch Management System

Keywords
Centralized Network Management, Switch Configuration, Ansible automation, Flask Framework,
SQLite Database, Ansible Playbook, SSH communication.

Abstract
Efficient network switch management is vital for stability, security, and scalability. This thesis
introduces a Centralized Network Switch Management System to prevent configuration drift, human
errors, and inconsistent practices. Using Flask for the backend, Ansible for automation, and SQLite
for storage, the system offers reliability, monitoring, and secure SSH-based management for Cisco
switches. While suitable for ongoing management, it excludes initial switch deployment due to its
reliance on pre-configured SSH access. The system lays a robust foundation for future advancements
like analytics and broader vendor integration.

End of text

Sylvester Ofulue

Thema der Bachelorthesis
Entwurf und Implementierung eines zentralisierten Netzwerk-Switch-Managementsystems

Stichworte
Zentralisiertes Netzwerkmanagement, Switch-Konfiguration, Ansible-Automatisierung, Flask
Framework, SQLite-Datenbank, Ansible Playbook, SSH-Kommunikation.

Kurzzusammenfassung

Eine effiziente Verwaltung von Netzwerk-Switches ist für Stabilität, Sicherheit und
Skalierbarkeit unerlässlich. Diese Arbeit stellt ein zentralisiertes Netzwerk-Switch-
Verwaltungssystem vor, um Konfigurationsabweichungen, menschliche Fehler und
inkonsistente Vorgehensweisen zu verhindern. Das System verwendet Flask für das Backend,
Ansible für die Automatisierung und SQLite für die Speicherung und bietet Zuverlässigkeit,
Überwachung und sichere SSH-basierte Verwaltung für Cisco-Switches. Es eignet sich zwar
für die laufende Verwaltung, schließt jedoch die anfängliche Bereitstellung von Switches aus,
da es auf vorkonfigurierten SSH-Zugriff angewiesen ist. Das System legt eine solide Grundlage
für zukünftige Weiterentwicklungen wie Analysen und eine breitere Anbieterintegration.

Ende des Textes

iii

Acknowledgement

I would like to express my sincere gratitude to my supervisors, Prof. Dr. Pawel Buczek and

Mr. Sasikumar Subbarayan, for their invaluable guidance and support throughout this project.

I also thank q.beyond Logineer GmbH for providing the necessary resources for this research.

I am deeply grateful to my colleagues, Timo Luttmann, Philipp Kaufmann, Christian Wolken,

Stefan Riese, Franziska Mohr, and Seyi Ewegbemi, for their assistance and collaboration

throughout this process. Additionally, I would like to acknowledge the use of OpenAI’s

ChatGPT for assisting with initial code implementation and Grammarly for proofreading and

grammar corrections. Finally, I am truly thankful to my family and friends for their

encouragement and patience during this journey.

iv

Table of Contents

Chapter 1: Introduction ... 1

1.1 Background and Motivation ... 1

1.2 Problem Statement ... 1

1.3 Company Overview ... 2

1.4 Objectives .. 2

1.5 Scope of the Project .. 3

1.6 Methodology Overview .. 4

1.7 Thesis Structure .. 4

Chapter 2: Literature Review .. 6

2.1 Challenges in Network Switch Management ... 6

2.2 Existing Network Switch Management Solutions ... 6
2.2.1 Cisco Catalyst Center ... 6
2.2.2 SolarWinds Network Management Software ... 7
2.2.3 Ansible Automation ... 8

2.3 Key Technologies and Frameworks .. 14
2.3.1 Flask Framework ... 14
2.3.2 Ansible Automation ... 15
2.3.3 SQLite Database ... 15
2.3.4 Nginx Web Server .. 16

2.4 Best Practices in Switch Configuration Management [19] 17

2.5 Gaps in Existing Solutions .. 17

Chapter 3: System Design and Architecture .. 19

3.1 System Requirements ... 19
3.1.1 Functional Requirements .. 19

v

3.1.2 Non-Functional Requirements ... 19

3.2 Framework Conditions .. 20
3.2.1 Hardware .. 20
3.2.2 Software ... 20
3.2.3 Organizational Constraints .. 20

3.3 Architectural Design .. 20
3.3.1 High-Level Architecture ... 21
3.3.2 Modular Components .. 22

3.4 Technology Alternatives and Evaluation ... 23
3.4.1 Automation Tools: Ansible vs. Puppet, Chef ... 24
3.4.2 Backend Framework: Flask vs. Django ... 24
3.4.3 Database: SQLite vs. MySQL, PostgreSQL .. 24
3.4.4 Front-End Framework: HTML/Bootstrap vs. React, Angular .. 25

3.5 Key Design Decisions .. 25

Chapter 4: Implementation .. 27

4.1 Overview of the Technology Stack .. 27

4.2 Backend Implementation .. 27
4.2.1 Integration with Ansible ... 29

4.3 Database Schema ... 30

4.4 Ansible Playbooks ... 31

4.5 Frontend Implementation .. 33
4.5.1 Dashboard Functionality and Behavior ... 33
4.5.2 Error Handling and Validation .. 34

4.6 Deployment to Azure ... 35
4.6.1 Creating an Azure Virtual Machine .. 35
4.6.2 Setting Up the Application ... 35
4.6.3 Configuring Nginx as a Reverse Proxy ... 36
4.6.4 Establishing Secure Access ... 36

4.7 Security Measures ... 37

vi

Chapter 5: Testing and Evaluation .. 38

5.1 Application Initialization .. 38

5.2 Test Cases .. 39
5.2.1 Login Functionality .. 39
5.2.2 Adding Switches .. 41
5.2.3 Database Operations .. 42
5.2.4 Device Dashboard Monitoring .. 45
5.2.5 Scalability Testing ... 46
5.2.6 Threading Optimization ... 49
5.2.7 Playbook Execution (Single Host) ... 49
5.2.8 Playbook Execution (Multiple Hosts) .. 51
5.2.9 Command-Line Interface (CLI) Access ... 52
5.2.10 Secure Communication via HTTPS ... 53

Chapter 6: Conclusion and Future Work ... 55

6.1 Conclusion ... 55

6.2 Future Work .. 56

6.3 Final Remarks ... 56

Bibliography .. 57

Appendix A: Source Code Overview .. 60

A.1: app.py ... 60

A.2: schema.sql .. 60

A.3: script.js ... 60

A.4: README.md .. 60

A.5: requirements.txt .. 60

Appendix B: Playbook Source Code Files on the CD .. 61

B.1: get_status.yml ... 61

B.2: reboot_device.yml ... 61

vii

B.3: backup_config.yml ... 61

B.4: device_info.yml ... 61

B.5: device_resources_uptime.yml .. 61

B.6: interface_status.yml .. 61

B.7: restore_config.yml ... 62

B.8: save_config.yml ... 62

B.9: security_compliance.yml ... 62

B.10: vlan_config.yml .. 62

Appendix C: Time Response Measurement ... 63

C.1: Load Test for Online Switches .. 63

C.2: Load Test for Offline Switches .. 63

C.3: Optimization with Threading ... 63

viii

Figure 1: High-Level System Architecture .. 22

Figure 2: Component Interaction Flowchart .. 23

Figure 3: App.py Code Snippets .. 28

Figure 4: Schema.sql .. 31

Figure 5: Get Status Playbook ... 32

Figure 6: Reboot Device Playbook .. 33

Figure 7. JavaScript Add Host Code Snippet .. 34

Figure 8: Ubuntu Linux VM Overview ... 35

Figure 9: Generating Server Certificate using Let's Encrypt ... 36

Figure 10: NSG Configuration ... 36

Figure 11: Starting the Application from a Remote Terminal ... 39

Figure 12: Failed Login Attempt ... 40

Figure 13: Application Log Showing the Failed and Successful Login Attempts 41

Figure 14: Adding Switch with an invalid and a Valid IP Address ... 42

Figure 15: Added Switches verified on the Database .. 43

Figure 16: Updating a Host .. 44

Figure 17: Deleting a Host ... 45

Figure 18: Device Monitoring Dashboard ... 46

Figure 19: Plot of System Response to Online Host.. 47

Figure 20: Plot of System Response to Offline Hosts ... 48

Figure 21: Threading Optimization ... 49

Figure 22: Executing Playbook on an Offline Host ... 50

Figure 23: Executing Playbook on an Online Host ... 51

Figure 24: Executing Playbook on a Group with Online and Offline Hosts 52

Figure 25: CLI Access to Online Switch ... 53

Figure 26: Secure Communication Protocol .. 54

ix

Table 1: List of Abbreviations

Abbreviation Definition
ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
CLI Command-Line Interface
CRUD Create, Read, Update, Delete
CSS Cascaded Style Sheets
DBMS Database Management System
DDoS Distributed Denial-of-Service
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP(S) HyperText Transfer Protocol (Secure)
IaC Infrastructure as Code
INI Initialization
IOS Internetwork Operating System
IP Internet Protocol
MFA Multi-Factor Authentication
NSG Network Security Group
OSI Open Systems Interconnections
RBAC Role-Based Access Control
RESTful Representational State Transfer
SQL Structured Query Language
SSH Secure Shell
SSL Secure Socket Layer
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TLS Transport Layer Security
UI User Interface
URL Uniform Resource Locator
UX User Experience
vCPU virtual Central Processing Unit
VM Virtual Machine
VPN Virtual Private Network
WSGI Web Server Gateway Interface
YAML Yet Another Markup Language

1

Chapter 1: Introduction

1.1 Background and Motivation

Maintaining consistent and secure switch configurations in modern network environments is

essential for ensuring network stability, security, and performance. Many organizations,

including q.beyond Logineer GmbH, rely on predefined templates to configure network

switches. These templates aim to standardize device configurations, reduce variability, and

simplify troubleshooting. However, despite these efforts, human errors during manual

configuration or troubleshooting are inevitable [1] [2] [3].

For instance, engineers may inadvertently misconfigure switches or forget to revert temporary

changes made during troubleshooting. These errors can result in configuration drift, where a

switch's running configuration deviates from the intended baseline. Such deviations may go

unnoticed for extended periods, leading to performance degradation, potential security

vulnerabilities, and operational inefficiencies [1].

Additionally, the lack of a centralized management platform often means network

administrators must rely on fragmented tools or direct access to individual switches, which

increases the likelihood of errors and complicates oversight [1] [3] [4].

This project proposes designing and implementing a Centralized Network Switch

Management System to address these challenges. The system aims to minimize human error,

ensure consistent configuration standards, and provide a clear overview of switch status and

reachability while adhering to zero-cost principles and maintaining robust security measures.

1.2 Problem Statement

The current approach to switch configuration management within q.beyond Logineer GmbH

relies heavily on manual processes and adherence to standard configuration templates.

However:

• Human errors during manual configurations may result in configuration drift.

• Temporary troubleshooting changes may not always be reverted, leading to

inconsistencies.

2

• Detecting and identifying misconfigurations manually can be time-consuming and

error-prone.

• The lack of a centralized platform complicates monitoring, auditing, and enforcing

compliance.

• Existing proprietary solutions are often expensive and may not align with cost-saving

objectives.

This project seeks to address these problems by developing a centralized, automated, and

secure network switch management system that will simplify configuration tasks, reduce

errors, and ensure consistent oversight.

1.3 Company Overview

Logineer is a specialized IT service provider for the international logistics sector. It offers a

comprehensive range of IT services tailored to the unique needs of logistics companies,

particularly those involved in sea and air freight. These services encompass IT infrastructure,

digital workplace solutions, and essential logistics applications, all delivered globally within a

few days [5].

Logineer offers IT consulting, system integration, implementation, and operation. It strongly

emphasizes cyber security, ensuring maximum protection for data and processes through

extensive vulnerability analysis and redundant infrastructure [5]. Additionally, Logineer is a

platinum-certified CargoWise service partner, helping companies automate and standardize

their logistics processes using the CargoWise Transport Management System [5].

With a dedicated team of 200 IT and logistics experts, Logineer supports its clients' digital

transformation efforts, making them faster, more efficient, and more competitive in the digital

age [6]. Their 24/7 help desk ensures continuous support and promptly addresses IT-related

issues [5].

1.4 Objectives

The primary objectives of this project are:

1. Centralized Management: Develop a unified web-based interface to manage multiple

network switches from a single platform efficiently.

3

2. Error Reduction: Minimize manual configuration errors by leveraging automation

through Ansible playbooks.

3. Configuration Consistency: Standardize switch configurations using predefined

templates, ensuring device uniformity.

4. Monitoring and Visibility: Provide visibility of switch availability and operational

status through an interactive dashboard.

5. Zero-Cost Implementation: Build a cost-effective solution by utilizing open-source

tools and platforms.

6. Security: Implement robust security measures, including VPN connectivity, user

authentication, and secure communication protocols like HTTPS and SSH.

7. Flexibility: Ensure interoperability with switches from any vendor, focusing on Cisco

Catalyst switches with SSH access.

8. Deployment Options: Offer flexible hosting options, including Azure cloud

infrastructure or on-premises deployment.

1.5 Scope of the Project

This project focuses on automating switch configurations using Ansible playbooks, tailored

explicitly for Cisco switches with SSH enabled. It provides a centralized platform for

management and monitoring through a Flask-based web interface. Data persistence is achieved

through an SQLite database, storing essential information such as switch details, user

credentials, and group associations.

The system incorporates ping-based monitoring to detect switch reachability and display

results on an interactive dashboard for better visualization and to maintain network stability.

Secure remote access is facilitated using OpenfortiVPN, ensuring safe communication between

the management system and network devices. Furthermore, the system supports flexible

deployment options, functioning effectively in both on-premises environments and Azure

cloud infrastructure.

However, the project does not include advanced analytics, proprietary switch management

tools integration, or direct hardware-level control over switches. It is also important to note that

the system is not designed for initial switch deployment, as it relies on pre-existing SSH

4

configurations to establish communication with devices. Despite these limitations, the project

provides a robust and scalable centralized network switch management foundation.

1.6 Methodology Overview

The project utilizes the following methodologies and technologies to achieve the defined

objectives:

• The Flask Framework develops the backend Application Programming Interface

(API) to manage application logic and server-side operations [7].

• HTML, JavaScript, and CSS are utilized to create the web interface, ensuring

usability, responsiveness, and user interaction.

• Ansible automates configuration tasks and standardizes deployments across network

devices [8].

• SQLite Database stores persistent data, including user credentials and switch details

[9].

• OpenfortiVPN ensures secure communication between the management system and

remote network switches.

• Azure Infrastructure offers cloud-based deployment, supporting scalability and

availability. [10]

• Nginx is used to serve the Flask application securely and efficiently [11].

The system integrates these components to establish a robust, scalable, and secure switch

management platform. It’s important to highlight that the initial code development and

brainstorming were conducted with the support of OpenAI’s ChatGPT.

1.7 Thesis Structure

This thesis is organized into six chapters:

• Chapter 1: Introduction — Introduces the background, problem statement,

objectives, scope, and methodology.

• Chapter 2: Literature Review — Analyzes current network switch management

systems, highlighting their shortcomings and identifying opportunities for

enhancement.

5

• Chapter 3: System Design and Architecture covers the system requirements,

including functional and non-functional specifications, as well as the architectural

design.

• Chapter 4: Implementation — Outlines the technical implementation, covering the

backend, frontend, database schema, Ansible playbooks, and security measures.

• Chapter 5: Testing and Evaluation examines the testing methodologies, results, and

assessment of system performance.

• Chapter 6: Conclusion and Future Work — Summarizes the key contributions,

lessons learned, and possible future improvements.

6

Chapter 2: Literature Review

This session analyzes existing research, tools, and technologies related to centralized network

switch management systems. This chapter explores the challenges associated with manual

switch configuration, the benefits of automation and centralization, and the tools and

frameworks available for building such systems. Furthermore, it evaluates industry best

practices, existing solutions, and the technological landscape to establish a foundation for the

current project.

2.1 Challenges in Network Switch Management

Network administrators face numerous challenges when managing network switches,

including:

• Configuration Drift: Manual configurations often lead to inconsistencies, especially

when temporary troubleshooting changes are not reverted [2].

• Human Errors: Misconfigurations during deployment or troubleshooting may result

in network outages or vulnerabilities [4].

• Scalability Issues: Managing an increasing number of switches without centralized

tools becomes inefficient [3].

• Lack of Centralized Oversight: Monitoring individual switches without a unified

platform increases operational complexity [3].

• Security Risks: Unauthorized access, misconfigurations, or outdated firmware may

expose switches to security threats [2].

Addressing these challenges requires centralized management, automation, and standardized

configuration practices.

2.2 Existing Network Switch Management Solutions

This section reviews commonly used tools and platforms for network switch management.

2.2.1 Cisco Catalyst Center

Cisco Catalyst Center is a management platform designed to enhance network operations

through automation, security policies, and analytics. It simplifies managing Cisco network

7

infrastructure while ensuring consistent performance across wired and wireless environments

[12].

Benefits

This system has numerous benefits. Automation streamlines network operations and reduces

operational costs. Additionally, it provides valuable insights into application and client

performance, enhancing overall efficiency. Integrating with third-party tools significantly

improves business agility, allowing for more flexible and responsive operations. Automated

compliance checks strengthen network security, ensuring security protocols are consistently

met [12].

License Cost

Cisco Catalyst Center operates under a subscription-based licensing model, typically

dependent on the number of managed devices. Pricing details vary based on deployment

specifics and required features, and it is recommended that you consult with Cisco sales

representatives [13].

Supported Cisco Switch Models

Cisco Catalyst Center supports a wide range of Cisco switch models, including but not limited

to the Catalyst 2960, 3560-CX, 3650, 3850, 4500, 6500, 9000 Series, and Nexus 9000 Series.

Compatibility with advanced features may depend on hardware and software versions [14].

2.2.2 SolarWinds Network Management Software

SolarWinds offers network management tools tailored for monitoring, analyzing, and

optimizing network performance. Known for its scalability and user-friendly interface,

SolarWinds supports both small and large-scale networks [15].

Benefits

The system offers centralized monitoring of devices, servers, and applications, providing a

detailed overview of the network. It includes advanced analytics for identifying performance

bottlenecks and ensuring optimal operation. The scalable architecture accommodates network

growth, allowing for seamless expansion. Enhanced security and compliance monitoring are

integral features, ensuring the network stays secure and adheres to regulations. Additionally,

8

the system provides customizable dashboards and reporting tools, enabling users to tailor the

interface to their specific needs [15].

License Cost

SolarWinds licensing depends on the number of monitored elements, such as devices,

interfaces, and nodes. Pricing varies based on selected modules, deployment size, and support

requirements [15].

Supported Network Devices and Switch Models

SolarWinds supports various network devices, including switches, routers, firewalls, and

wireless access points from multiple vendors. Commonly supported switch models include the

Cisco Catalyst Series, HP ProCurve Series, Juniper EX Series, Aruba Switches, and Dell EMC

Networking Series.

The software’s device compatibility ensures seamless integration with diverse network

hardware, allowing IT teams to monitor multi-vendor environments effectively. Specific

features and monitoring capabilities may vary based on device firmware and software versions

[15].

2.2.3 Ansible Automation

Ansible is a free, open-source automation platform developed by Red Hat that manages

configurations, deploys applications, and efficiently orchestrates tasks. It simplifies complex

IT tasks by automating workflows and managing infrastructure as code (IaC). Known for its

agentless architecture, Ansible leverages SSH for Linux systems and WinRM for Windows

systems, eliminating the need for client-side agents. This lightweight design reduces resource

overhead and simplifies deployment [8].

Key Features of Ansible [8]:

• Agentless Architecture: Uses SSH and WinRM to connect to target devices without

requiring additional software installations.

• Simplicity: Configurations are defined in YAML files (playbooks), which are human-

readable and easy to understand.

• Scalable Automation: Supports large-scale deployments, simultaneously managing

thousands of devices and systems.

9

• Modular Design: It offers a vast library of pre-built modules covering networking,

cloud services, application management, and more.

• Idempotency: Ensures repeated tasks will not produce unintended changes to the

system state.

• Extensibility: Supports custom modules and plugins to extend functionality as per

organizational requirements.

Benefits of Ansible:

Managing configurations is simplified, allowing for consistent results across multiple devices.

Deployment is rapid, efficiently automating software installations, updates, and configuration

changes. IaC enables standardized infrastructure management and version control through

playbooks. The system supports multiple platforms, including Linux, Windows, cloud

environments, and network devices. Innovation is driven by a robust open-source community

that frequently contributes modules, roles, and best practices [8].

Use Cases in Network Management:

Ansible plays a crucial role in modern network management by simplifying and automating

complex tasks across diverse network environments. It is extensively used for automating

network switch configurations, particularly on Cisco Catalyst devices, ensuring consistency

and reducing the risk of human errors. Additionally, Ansible enforces security policies

uniformly across network nodes, ensuring compliance with organizational standards and

industry regulations. The tool is also employed for continuous network health monitoring,

enabling administrators to detect and address issues proactively while generating detailed

compliance reports. Furthermore, Ansible facilitates the seamless deployment of software

patches and updates across multiple devices, maintaining uniform configurations and

minimizing downtime [8].

Ansible Concepts

1. Building an Inventory:

An inventory in Ansible organizes managed nodes, providing system details and network

locations in INI (default) or YAML formats. Inventories define groups of hosts, enabling

centralized management and simplified task execution [16].

The example below shows an inventory file named switches with no specified extension. In

such cases, the default .ini format is assumed:

10

#inventory/switches inventory file
[all]
HAW-SWT ansible_host=172.16.1.100 ansible_user=sylvester ansible_password=mypass
ansible_network_os=ios ansible_connection=network_cli
LAB-SWT ansible_host=172.16.2.100 ansible_user=sylvester ansible_password=mypass
ansible_network_os=ios ansible_connection=network_cli
SMS-SWT ansible_host=172.16.3.100 ansible_user=sylvester ansible_password=mypass
ansible_network_os=ios ansible_connection=network_cli
HOME-SWT ansible_host=192.168.2.240 ansible_user=admin ansible_password=my_pass
ansible_network_os=ios ansible_connection=network_cli

[HOME]
HOME-SWT ansible_host=192.168.2.240 ansible_user=admin ansible_password=my_pass
ansible_network_os=ios ansible_connection=network_cli

[LAB]
HAW-SWT ansible_host=172.16.1.100 ansible_user=sylvester ansible_password=mypass
ansible_network_os=ios ansible_connection=network_cli
LAB-SWT ansible_host=172.16.2.100 ansible_user=sylvester ansible_password=mypass
ansible_network_os=ios ansible_connection=network_cli
SMS-SWT ansible_host=172.16.3.100 ansible_user=sylvester ansible_password=mypass
ansible_network_os=ios ansible_connection=network_cli

In the example, any of the groups in square brackets ([all], [HOME], [LAB]) can be specified

as a target. Individual hosts, such as LAB-SWT, can also be targeted.

Verification Commands:

• List inventory: ansible-inventory -i switches --list
(myenv) sylvesterofulue@Sylvesters-iMac switch_management % ansible-
inventory -i inventory/switches --list
{
 "HOME": {
 "hosts": [
 "HOME-SWT"
]
 },
 "LAB": {
 "hosts": [
 "HAW-SWT",
 "LAB-SWT",
 "SMS-SWT"
]
 },
 "_meta": {
 "hostvars": {
 "HAW-SWT": {
 "ansible_connection": "network_cli",

11

 "ansible_host": "172.16.1.100",
 "ansible_network_os": "ios",
 "ansible_password": "mypass",
 "ansible_user": "sylvester"
 },
 "HOME-SWT": {
 "ansible_connection": "network_cli",
 "ansible_host": "192.168.2.240",
 "ansible_network_os": "ios",
 "ansible_password": "my_pass",
 "ansible_user": "admin"
 },
 "LAB-SWT": {
 "ansible_connection": "network_cli",
 "ansible_host": "172.16.2.100",
 "ansible_network_os": "ios",
 "ansible_password": "mypass",
 "ansible_user": "sylvester"
 },
 "SMS-SWT": {
 "ansible_connection": "network_cli",
 "ansible_host": "172.16.3.100",
 "ansible_network_os": "ios",
 "ansible_password": "mypass",
 "ansible_user": "sylvester"
 }
 }
 },
 "all": {
 "children": [
 "ungrouped",
 "HOME",
 "LAB"
]
 }
}

• Test connectivity: ansible [target-group] -m ping -i switches
(myenv) sylvesterofulue@Sylvesters-iMac switch_management % ansible HOME -m
ping -i inventory/switches
HOME-SWT | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

2. Creating a Playbook

Playbooks are YAML-based automation blueprints Ansible uses to deploy and configure

managed nodes. A playbook comprises a sequence of plays, where each play contains an

12

ordered set of tasks assigned to managed nodes listed in an inventory file. These plays dictate

Ansible's sequence of operations to achieve a specific objective [17].

An essential aspect of the playbook is its use of Cisco IOS collection to facilitate configuration

management, state validation, and information retrieval from IOS-based network infrastructure

[18].

Key Cisco IOS Modules [18]:

• ios_facts: Collects device-specific information (e.g., version, model, serial number).

• ios_config: Applies configuration commands to Cisco IOS devices.

• ios_command: Executes arbitrary commands on Cisco IOS devices.

• ios_interfaces: Manages interface configuration, including enabling/disabling

interfaces.

• ios_system: Manages global configurations, including hostname and domain settings.

The ios_facts module, as shown in the example below, efficiently gathers device-specific

information from Cisco IOS devices.

Example playbook: Collect Device Information from Cisco IOS Devices

playbook_collect_device_info.yml
This playbook collects and displays device information from Cisco IOS devices.

- name: Collect device information
 hosts: all # Target all hosts. This can be passed dynamically.
 gather_facts: no # Disable fact gathering.
 tasks:
 - name: Gather device facts
 cisco.ios.ios_facts: # Ansible module to collect facts from Cisco IOS
devices.

 - name: Display device information # Task name: Displaying collected device
information
 debug: # Debug module to show the gathered information
 msg: # Displayed messages
 - "Model: {{ ansible_net_model | default('N/A') }}" # Show device model,
default to 'N/A' if not available.
 - "Serial: {{ ansible_net_serialnum | default('N/A') }}" # Show device
serial number, default to 'N/A' if not available.
 - "Software Version: {{ ansible_net_version | default('N/A') }}" # Show
software version, default to 'N/A' if not available.
 - "Hardware: {{ ansible_net_hardware | default('N/A') }}" # Show
hardware type, default to 'N/A' if not available.

13

Playbooks execution syntax:

ansible-playbook playbooks/device_info.yml -i inventory/switches -l HOME

Ansible will default to the value passed to the hosts variable within the playbook if no target is

specified. In the example above, the target would be set to all.

(myenv) sylvesterofulue@Sylvesters-iMac switch_management % ansible-
playbook playbooks/device_info.yml -i inventory/switches -l HOME

PLAY [Collect device information]

**

TASK [Gather device facts]

ok: [HOME-SWT]

TASK [Display device information]

**
ok: [HOME-SWT] => {
 "msg": [
 "Model: WS-C3560-24TS",
 "Serial: FDO1313X3U6",
 "Software Version: 15.0(2)SE11",
 "Hardware: N/A"
]
}

PLAY RECAP

HOME-SWT : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

If parameters, especially SSH connection parameters, are not correctly configured, playbook

execution will fail precisely when the error occurs. In the example below, an SSH key

misconfiguration resulted in a fatal error during execution.

(myenv) sylvesterofulue@Sylvesters-iMac switch_management % ansible-
playbook playbooks/device_info.yml -i inventory/switches -l SMS-SWT

PLAY [Collect device information]

**

TASK [Gather device facts]

14

fatal: [SMS-SWT]: FAILED! => {"changed": false, "msg": "ssh connection
failed: ssh connect failed: kex error : no match for method server host key
algo:
server [ssh-rsa], client [ssh-ed25519,ecdsa-sha2-nistp521,ecdsa-sha2-
nistp384,ecdsa-sha2-nistp256,sk-ssh-ed25519@openssh.com,sk-ecdsa-sha2-
nistp256@opens
sh.com,rsa-sha2-512,rsa-sha2-256]"}

PLAY RECAP

SMS-SWT : ok=0 changed=0 unreachable=0 failed=1
skipped=0 rescued=0 ignored=0

As previously mentioned, one significant advantage of using playbooks is their simultaneous

ability to execute commands across thousands of devices [17]. A significant disadvantage is

that Ansible is primarily designed as a command-based tool, which might be very difficult to

memorize, especially when it is rarely used.

The centralized network switch management system project offers a GUI from which these

Ansible engines will be executed.

2.3 Key Technologies and Frameworks

2.3.1 Flask Framework

Flask is a lightweight Python web framework designed to build web applications quickly and

efficiently. Known for its simplicity and extensibility, Flask is ideal for small-scale projects

and large, complex systems. It follows the WSGI (Web Server Gateway Interface) standard

and provides developers with the essential tools to create web services, APIs, and dynamic web

applications with minimal boilerplate code [7].

Key Features of Flask

Flask is designed as a microframework, offering core essentials while allowing developers to

add additional components. It includes built-in support for Jinja2, enabling developers to create

dynamic HTML templates efficiently. Flask's architecture is highly extensible, supporting

many extensions for adding functionality such as authentication, database integration, and API

management. It also features a built-in development server and debugger, facilitating efficient

15

development and testing. Flask simplifies URL handling with clean and flexible routing

mechanisms and is well-suited for building RESTful APIs with precise and structured request

handling. Additionally, it provides integrated support for secure cookies, enabling session

management to maintain user state [7].

Advantages of Flask

Flask has several advantages. It is easy to learn due to its minimalistic approach, making it

beginner-friendly. It is highly customizable, allowing developers to tailor applications to

specific requirements without unnecessary overhead. Flask benefits from an active community,

which provides extensive documentation and third-party libraries. Additionally, it offers

compatibility, seamlessly integrating with popular Python libraries and tools [7].

2.3.2 Ansible Automation

For an in-depth discussion on Ansible Automation, please refer to session 2.2.3 Ansible

Automation.

2.3.3 SQLite Database

SQLite is a lightweight, serverless, self-contained SQL database engine widely recognized for

its simplicity, reliability, and cross-platform compatibility. It is an open-source database

management system suitable for embedded systems and lightweight applications [9].

Appropriate Uses for SQLite

SQLite is particularly suitable for applications with low to medium traffic, embedded systems,

and situations where simplicity and ease of use are paramount. SQLite is applicable when a

full-fledged client-server database system would be more than required [9].

Distinctive Features

SQLite's distinctive features include its zero-configuration setup, cross-platform compatibility,

and public domain licensing. These features make it widely acceptable and integrated into

various projects [9].

Testing and Reliability

Rigid testing, including extensive automated tests and real-world usage scenarios, ensures

SQLite's reliability and helps maintain the database engine's robustness and stability [9].

16

2.3.4 Nginx Web Server

Nginx is a high-performance, open-source reverse proxy server and web server that handles

many concurrent connections with low memory usage and high efficiency. Originally

developed to address the C10K problem, it has become one of the most widely used web servers

globally. It offers capabilities beyond traditional web serving, including reverse proxying, load

balancing, caching, and efficient static content serving [11].

Key Features of Nginx

Nginx acts as a reverse proxy, serving as an intermediary between clients and backend servers,

which improves performance and enhances security. It enables load balancing by evenly

spreading incoming requests among multiple servers, ensuring efficient use of resources and

avoiding overloading any single server. Caching mechanisms store frequently accessed data

locally, reducing backend load and improving response times. With its scalable architecture,

Nginx efficiently handles a high volume of concurrent connections, which is suitable for high-

traffic websites. Additionally, it integrates robust security features, such as Secure Socket

Layer/Transport Layer Security (SSL/TLS) termination, access controls, and Distributed

Denial-of-Service (DDoS) mitigation. The modular design further allows Nginx to support

extended functionalities without compromising performance [11].

Deployment Scenarios

Nginx is widely used as a reverse proxy to handle incoming traffic and enhance scalability.

Additionally, it acts as a load balancer, evenly spreading requests across backend servers to

maintain optimal performance. Caching static content reduces latency and minimizes server

load, while SSL/TLS termination offloads cryptographic tasks from backend servers,

enhancing overall efficiency [11].

Integration with Flask Applications

In web application development, Nginx is often used as a frontend reverse proxy with Flask.

Nginx manages client requests, serves static files, and forwards dynamic content requests to

the Flask application server (e.g., Gunicorn or uWSGI). This integration significantly improves

the performance, scalability, and security of Flask-based applications.

By incorporating Nginx into the deployment architecture, organizations can build an optimized

and resilient web infrastructure that meets modern application demands [11].

17

2.4 Best Practices in Switch Configuration Management [19]

Standardized Configuration Templates: Reducing variability by enforcing uniform

configurations.

Regular Auditing and Compliance Checks: Ensuring switches comply with security and

operational policies.

Regular Backups: Regularly backing up configurations to prevent data loss.

Maintain Documentation: Up-to-date records of configurations, inventories, and topologies

simplify troubleshooting, streamline changes, and ensure clarity in network modifications.

These practices are essential for minimizing configuration errors and ensuring long-term

network stability.

2.5 Gaps in Existing Solutions

While existing network management tools offer robust features, they often exhibit key

limitations that impact usability, flexibility, and cost efficiency. The primary gaps include:

• High Licensing Costs: Proprietary tools usually have substantial licensing fees, which

conflict with zero-cost objectives. Open-source solutions like Ansible effectively

address this concern.

• Vendor-Specific Limitations: Many tools are restricted to specific hardware vendors,

limiting their versatility in multi-vendor environments. Ansible mitigates this with its

vendor-agnostic approach.

• Complex Command-Line Dependency: Despite Ansible's flexibility, running

playbooks traditionally relies on memorizing and executing command-line instructions.

This dependency creates a steep learning curve for users without extensive technical

expertise.

This project addresses the command-line dependency gap by introducing a user-friendly

Graphical User Interface (GUI). Instead of requiring users to memorize commands or interact

with the terminal, the GUI simplifies playbook execution, host management, and configuration

tasks. While Ansible remains the backend engine, the GUI empowers users with an intuitive

and accessible interface, enhancing overall efficiency and reducing the barriers to effective

network management.

18

By bridging this gap, the project combines Ansible's powerful automation capabilities with a

streamlined GUI, offering an accessible, zero-cost, and scalable solution for switch

configuration management.

19

Chapter 3: System Design and Architecture

This chapter outlines the foundational aspects of the system’s design and architecture. It

includes an overview of the system requirements, functional and non-functional specifications,

the architectural structure, and the rationale for chosen technologies. Additionally, it explores

alternatives considered during the design phase and integrates system diagrams for clarity.

3.1 System Requirements

The system requirements define the functionality, performance, and environmental constraints

the centralized switch management system must meet. These requirements are categorized as

functional and non-functional.

3.1.1 Functional Requirements

• Switch Configuration Management: Enable the execution of Ansible playbooks to

configure and manage Cisco Catalyst switches seamlessly.

• User Management: Provide secure user authentication and access control mechanisms

to prevent unauthorized access.

• Device Monitoring: Display the status of switches (online or offline) upon user login.

Device status updates are available through manual dashboard refreshes.

• Configuration Backup: Provide on-demand backups of switch configurations to

prevent data loss.

• Group Operations: Allow users to group switches logically for efficient batch

operations, such as running playbooks on multiple devices simultaneously.

3.1.2 Non-Functional Requirements

• Scalability: The system can support many switches without compromising

performance, with a target capacity of at least 500 devices.

• Usability: Provide an intuitive web interface to simplify user interaction.

• Security: Ensure secure access with robust authentication mechanisms and adhere to

organizational cloud security policies.

• Cost-Effectiveness: Use open-source tools to ensure a zero-cost solution.

20

• Compatibility: Ensure compatibility with existing infrastructure, specifically Cisco

Catalyst switches.

3.2 Framework Conditions

The framework conditions set the stage for system implementation and highlight constraints

based on hardware, software, and organizational policies.

3.2.1 Hardware

Switches: Cisco Catalyst switches form the core network infrastructure.

Server Environment: The system is hosted on an Azure virtual machine or an on-premises

server.

Minimum Server Specifications:

CPU: Dual-core 2 GHz or higher

RAM: 4 GB (8 GB recommended for scalability)

Storage: 10 GB (minimum) with sufficient space for backups

Network: Gigabit Ethernet interface

TFTP Server: Tftpd64 by Ph. Jounin is used for configuration backup and restore operations.

3.2.2 Software

Operating System: Ubuntu 20.04 LTS for the server.

Automation Tool: Ansible is used to manage switch configurations.

Web Framework: Flask is the Python framework for the web application.

Database: SQLite stores user, switch, and group data.

3.2.3 Organizational Constraints

• The system must comply with the company’s security policies and existing IT

infrastructure.

• Development is restricted to open-source tools to adhere to the zero-cost requirement.

3.3 Architectural Design

The system architecture follows a modular design, integrating various components to ensure

scalability, maintainability, and performance.

21

3.3.1 High-Level Architecture

The system comprises the following key components:

User Interface (UI): A web-based interface built using HTML and Bootstrap for managing

switches, users, and groups. UI operates at the application layer of the OSI model, ensuring

user-friendly access to system features.

Application Layer: The Flask framework is the middleware that handles user requests and

executes Ansible playbooks. This component aligns with the session and presentation layers

by bridging the user interface and underlying automation, enabling structured data exchange

and communication flow management.

Database: SQLite stores all persistent data, including user credentials, switch information, and

group associations.

Automation Engine: Ansible automates configuration management tasks, interacting directly

with Cisco Catalyst switches via SSH. These interactions leverage the transport layer (e.g.,

TCP) to ensure reliable data exchange and the network layer (e.g., IP) for routing between

nodes [20].

Monitoring Dashboard: Displays the current reachability status of switches upon user login

and updates upon manual refresh.

22

Figure 1: High-Level System Architecture

3.3.2 Modular Components

Authentication Module: Manages user login/logout and enforces multi-layered access

control.

23

Switch Management Module: Handles add, edit, delete, and group operations for switches.

Monitoring Module: Displays device reachability and health using charts upon user request.

Playbook Execution Module: Executes playbook configuration on-demand.

Figure 2: Component Interaction Flowchart

3.4 Technology Alternatives and Evaluation

During the design phase, alternative technologies were evaluated to determine the most

appropriate solution. The following sections summarize the alternatives and the rationale for

the chosen solutions.

24

3.4.1 Automation Tools: Ansible vs. Puppet, Chef

Alternatives Considered:

• Puppet is a configuration management tool designed to automate the deployment and

configuration of software across multiple servers. It uses an agent-based architecture,

with a Puppet master server controlling deployment and Puppet agents executing tasks

on nodes based on catalogs generated from manifests [21].

• Chef is a configuration management tool designed for server management. It relies on

a central Chef Server and distributed Chef Clients to handle deployments. While

powerful, a human administrator must select the system and use cookbooks to configure

tasks [21].

Chosen Solution:

Ansible was selected due to its simplicity, agentless architecture, and minimal setup

requirements. These features align with the project’s goals of reducing complexity, ensuring

ease of use, and maintaining robust functionality.

3.4.2 Backend Framework: Flask vs. Django

Alternatives Considered:

• Django is a full-stack framework recognized for its extensive built-in features like

authentication, URL routing, a template engine, database migrations, and an ORM.

These features make it ideal for building robust and scalable web applications [22].

Chosen Solution:

Flask's lightweight and modular design offered the project the necessary flexibility. Its

minimalist nature made integrating with the system's specific requirements easier, avoiding the

overhead associated with Django's more extensive feature set.

3.4.3 Database: SQLite vs. MySQL, PostgreSQL

Alternatives Considered:

• MySQL is a widely used relational database management system known for its speed,

reliability, and scalability. It employs a structured data model with tables, rows, and

columns and leverages SQL for database access. Open-source and governed by the

GNU General Public License (GPL), MySQL is flexible and user-friendly and supports

clustering for seamless scalability [23].

25

• PostgreSQL is a powerful, open-source object-relational database system designed for

complex workloads. Developed for over 35 years by the POSTGRES project, it offers

ACID compliance, rich data types, extensibility, and advanced features like geospatial

support with PostGIS. Renowned for its reliability and versatility, it is compatible with

major operating systems and ideal for robust applications [23].

Chosen Solution:

SQLite was sufficient for the system's scale. It offered simplicity and avoided the operational

overhead of managing a full-fledged RDBMS. Its lightweight nature and self-contained setup

made it ideal for a standalone, resource-efficient application.

3.4.4 Front-End Framework: HTML/Bootstrap vs. React, Angular

Alternatives Considered:

• React is a declarative, efficient, and flexible JavaScript library for building user

interfaces. It allows developers to create complex UIs from small, isolated code called

components [24].

• Angular is a web framework maintained by Google that enables developers to build

fast, reliable applications. It offers a comprehensive suite of tools, APIs, and libraries

to streamline development workflows and support projects as they scale in team size

and codebase complexity [25].

Chosen Solution:

Bootstrap’s simplicity and responsiveness made it the optimal choice for the project. It

facilitated the creation of a clean, minimalistic UI that aligns with the system’s focus on

usability and efficiency without introducing unnecessary complexity. Additionally, the

learning curve for HTML and Bootstrap is significantly faster than that of modern frameworks

like React or Angular, making it a practical solution for the project's needs.

3.5 Key Design Decisions

Summary of the decisions made during the system design phase are as follows:

Agentless Automation: Ansible was chosen for its agentless architecture, which simplifies

deployment and reduces overhead.

26

Lightweight Framework: Flask was preferred over Django because of its minimalistic

approach, which aligns with the project’s simplicity requirements.

SQLite Database: Selected for its serverless nature, meeting the project's scale and zero-cost

objectives.

Bootstrap for UI: Ensured responsiveness and simplicity in the user interface design.

On-Demand Operations: All playbook executions, including backups and monitoring, are

initiated by user actions to avoid unnecessary load on devices.

27

Chapter 4: Implementation

This chapter provides an in-depth explanation of the implementation phase of the Centralized

Network Switch Management System. It covers integrating various technologies, including

Flask, Ansible, SQLite, and Nginx, into a cohesive platform for managing network switches.

The chapter also describes the development of backend services, interfaces, database

management, and automation tool integration. Challenges encountered during this phase and

their solutions are discussed to highlight the evolution of the implementation.

The complete source code for the Centralized Network Switch Management System is included

in the submitted CD.

4.1 Overview of the Technology Stack

The system's functionality relies on a carefully designed technology stack, with each

component fulfilling a critical role:

• Flask handles backend logic, routing, and API endpoints.

• Gunicorn serves as the WSGI server, enabling efficient handling of concurrent

requests.

• SQLite provides persistent storage for user accounts, device information, and logs.

• Ansible automates key operations such as configuration management and backups.

• Nginx acts as a reverse proxy, providing SSL/TLS encryption and static content

caching.

• HTML, CSS, and JavaScript (Bootstrap 4.5.2, Chart.js) power the frontend

interface, ensuring usability and real-time visualization.

This technology stack enables seamless interaction between layers, adhering to the multi-tier

architecture described in Chapter 3.

4.2 Backend Implementation

The switch management system's backend is implemented using the Flask framework, which

was chosen for its simplicity, flexibility, and robust support for web application development.

The backend handles user requests, manages database operations, executes Ansible playbooks,

and facilitates communication between the user interface and the underlying system

components.

28

Figure 3 shows code snippets of app.py, the main application file responsible for routing and

initializing the application. For the complete implementation, see Appendix A.1: app.py.

Figure 3: App.py Code Snippets

29

4.2.1 Integration with Ansible

The switch management system integrates seamlessly with Ansible to execute network

automation tasks, such as backing up configurations, retrieving device information, and

ensuring security compliance. This functionality is achieved through a Flask API endpoint

(/run_playbook) that dynamically processes user requests to run specified playbooks on

targeted hosts or groups.

Workflow and Dynamic Inventory Management

The integration uses a dynamic inventory system, allowing hosts or groups to be selected

programmatically based on database queries. The inventory is generated for a specific host or

all reachable hosts within a specified group. This dynamic approach ensures flexibility and

scalability:

1. Host-Based Execution:

o The user specifies a host by name.

o The system fetches the host's details (e.g., IP address, Ansible credentials) from

the SQLite database.

o Before executing the playbook, the system uses a ping utility to check the host's

reachability.

o If the host is reachable, it is added to the dynamic inventory, and the playbook

is executed.

2. Group-Based Execution:

o The user specifies a group name.

o The system fetches all hosts belonging to the group from the database.

o Each host's reachability is checked; only reachable hosts are included in the

dynamic inventory. This ensures that unreachable hosts do not cause playbook

execution failures.

Validating Playbook Parameters

The system includes a validation mechanism to ensure that only authorized playbooks are

executed. Each playbook is mapped to a predefined list of required variables. When a playbook

is selected, the system verifies whether the necessary variables are provided in the request. If

required variables are missing, an appropriate error message is returned to the user.

For instance:

30

• The restore_config.yml playbook requires extra parameters, such as the tftp_server and

filename variables. The vlan_config.yml playbook requires variables such as the

vlan_id, vlan_name, interface, description, and mode.

Playbook Execution

Once the dynamic inventory is created and the variables are validated, the system executes the

playbook using the subprocess module. The command dynamically includes inventory details,

optional extra variables, and target specifications:

result = subprocess.run(
 ['ansible-playbook', playbook, '-i', inventory_file, '-l', target,
 *extra_vars_args],
 capture_output=True, text=True
)

Error Handling and Logging

Comprehensive error-handling mechanisms are implemented to manage potential issues during

playbook execution:

• Invalid playbook names are logged, and a 400 error is returned.

• Missing required variables prompt detailed error messages, enabling users to correct

their input.

• Unreachable hosts are identified and logged, and the user is informed about which hosts

cannot be accessed.

• Playbook execution failures are captured, and the system returns both the standard error

output and the return code for debugging.

Additionally, the system logs every playbook request, including the logged-in user's username,

the playbook executed, and the targets involved. To maintain security, sensitive information

such as Ansible passwords is excluded from the logs.

4.3 Database Schema

The system uses SQLite as the database engine to store persistent information about users,

switches, and groups. The schema consists of three primary tables: users, switches, and groups

tables. On Linux OS, the schema.sql is read to switch_management.db using the following

commands:

$sqlite3 switch_management.db

31

>. read schema.sql

Figure 4: Schema.sql

The relationships between tables ensure that switches are associated with groups and that user

credentials are stored securely. The implementation code location on the CD is in Appendix

A.2: schema.sql.

4.4 Ansible Playbooks

Ansible playbooks automate tasks such as getting or setting device configurations. Each

playbook is tailored for Cisco Catalyst switches and uses SSH (Secure Shell) for secure

communication.

Figure 5 shows the get_status.yml playbook, which retrieves device status information from

Cisco Catalyst switches.

32

Figure 5: Get Status Playbook

Figure 6 illustrates the reboot_device.yml playbook, designed to reboot Cisco Catalyst

switches. This playbook ensures a secure SSH connection and executes the necessary

commands to safely reboot the devices.

33

Figure 6: Reboot Device Playbook

Appendix B: Playbook Source Code Files on the CD contains the complete implementation of

these playbooks and additional playbooks.

4.5 Frontend Implementation

The frontend offers an intuitive interface for managing devices, monitoring their status, and

accessing reports. It leverages HTML, CSS, JavaScript, and Bootstrap for seamless

interactivity and responsiveness.

4.5.1 Dashboard Functionality and Behavior

The dashboard allows users to perform tasks such as:

• Adding new hosts and managing configurations.

• Viewing the status of devices through monitoring tools.

• Accessing logs and historical data for troubleshooting.

A sample code snippet for adding a new host is shown in Figure 7

34

Figure 7. JavaScript Add Host Code Snippet

This snippet illustrates how the system processes user input to add a new host and fetches

updated information. It highlights the on-demand interaction model, where updates to the

interface occur after user-triggered actions, such as form submissions or button clicks.

4.5.2 Error Handling and Validation

The system employs:

• Frontend Validation: JavaScript ensures user input is accurate before submitting data

to the server.

• Backend Validation: As mentioned, Flask performs additional checks to maintain data

integrity and security.

35

This layered approach minimizes errors and guides users with meaningful feedback.

For further details on the frontend code, refer to Appendix A.3: script.js.

4.6 Deployment to Azure

The application is hosted on Microsoft Azure, leveraging its scalability, reliability, and secure

infrastructure. The deployment process included the following key steps:

4.6.1 Creating an Azure Virtual Machine

An Ubuntu VM was provisioned to host the application. It was configured with 8GB RAM and

two virtual CPUs to support concurrent user operations and Ansible tasks efficiently. Figure 8

provides an overview of the created VM.

Figure 8: Ubuntu Linux VM Overview

4.6.2 Setting Up the Application

The application code was managed using GitHub, which enabled seamless version control and

collaboration. The code and required dependencies were then directly deployed to the Azure

VM by cloning the repository.

36

4.6.3 Configuring Nginx as a Reverse Proxy

Nginx was installed and configured to act as a reverse proxy for the Flask application. SSL/TLS

certificates were configured using Let's Encrypt to enable secure communication. This setup

aligns with modern security practices for web applications.

Figure 9: Generating Server Certificate using Let's Encrypt

4.6.4 Establishing Secure Access

Azure Network Security Groups (NSGs) were configured to allow access only to essential

ports, such as port 443 for HTTPS. OpenfortiVPN was used to establish a secure connection to

the lab's SSL VPN, enabling remote access to switches from the Azure-hosted application. As

shown in Figure 10, ports 22, 69, and 443 were enabled for external access and TFTP file

transfer. Access will be restricted to the company's management network in the production

environment, ensuring only authorized personnel can connect.

Figure 10: NSG Configuration

37

4.7 Security Measures

Security was a critical consideration during the system's implementation, and several measures

were adopted to protect data and ensure secure operations. For user authentication, passwords

were securely hashed using SHA-256 before being stored in the database, eliminating the risk

of saving plaintext passwords. Flask-Login managed user sessions securely, providing

mechanisms for session handling, login tracking, and authentication.

Communication between the system and managed switches was conducted exclusively using

SSH, which ensured data encryption during transmission and protected against interception.

To secure user interactions with the application, Nginx was configured as a reverse proxy with

enforced HTTPS, using SSL/TLS certificates to enable end-to-end encryption.

A robust logging mechanism was also implemented to monitor critical system activities. User

logins were tracked to identify unauthorized access, while every playbook execution request

was logged to create a traceable audit trail. Additionally, warnings and errors were logged to

monitor potential issues and anomalies, aiding in troubleshooting. Logging was managed

carefully to avoid excessive information at the INFO level, prioritizing relevant details for

security and operational monitoring.

These combined measures significantly enhanced the system's security posture, ensuring the

integrity, confidentiality, and accountability of data and operations.

38

Chapter 5: Testing and Evaluation

This chapter evaluates the functionality, performance, and reliability of the Centralized

Network Switch Management System through a series of structured test cases. Testing ensures

the system meets the design objectives and performs as expected under various scenarios.

Before initiating the tests, a few steps were required to prepare the environment. These steps

are outlined in Appendix A.4: README.md.

5.1 Application Initialization

The database was preloaded with a default admin user to allow immediate access to the

application upon startup.

Starting the Application: To start the application, follow these steps:

• SSH to the Linux VM

ssh username@switch.westeurope.cloudapp.azure.com or IP address

• Create a virtual environment (if not already created) using:

python3 -m venv venv

• Activate the virtual environment:

source venv/bin/activate

• Install all necessary dependencies listed in the requirements.txt file (see Appendix
A.5: requirements.txt):
pip install -r requirements.txt

• Launch the Flask application with Gunicorn:

• gunicorn -k eventlet -w 1 --bind 0.0.0.0:8000 app:app

• (Optional) Establish a VPN connection for secure access to a network

sudo openfortivpn

Once these steps are complete, the application can be tested through a web browser.

mailto:username@switch.westeurope.cloudapp.azure.com

39

Figure 11: Starting the Application from a Remote Terminal

5.2 Test Cases

The following test cases were designed to validate key functionalities and measure system

performance:

5.2.1 Login Functionality

Objective: To ensure the system correctly authenticates users.

Test: Login attempts were made using incorrect and correct credentials.

Expected Outcome:

• Incorrect credentials: Display an error message without granting access.

• Correct credentials: Redirect to the dashboard with appropriate session management.

Result: Authentication worked as expected, preventing unauthorized access and correctly

handling valid logins.

40

Figure 12: Failed Login Attempt

Figure 13 below shows a screenshot of the application log. The failed and successful logins

were correctly logged, which can be helpful in cases of security breaches.

41

Figure 13: Application Log Showing the Failed and Successful Login Attempts

5.2.2 Adding Switches

Objective: Verify the system's ability to add switches with valid IPs.

Test: New switches with invalid and valid IPs were added to the system.

Expected Outcome:

• Invalid entries: Display an error message, and no database changes occur.

• Valid entries: Switches are added to the database and displayed in the managed switches

list.

Result: Switch addition was successful, with appropriate validation handling. In Figure 14

below, an attempt was made to add a switch with an IP address of 292.168.2..240. Since it

failed validation, it was rejected with an error, allowing the user to add a switch with the

acceptable IP address format. Other checks were implemented to avoid duplicate hostnames

and IP addresses.

42

Figure 14: Adding Switch with an invalid and a Valid IP Address

5.2.3 Database Operations

Objective: To validate CRUD operations for switches.

Test Procedure: Switches were added, edited, and deleted from the GUI.

Expected Outcome: The database reflects all changes accurately.

43

Result: All operations were successful, and updates were immediately reflected in the GUI and

Database. Figure 15 to Figure 17 compare the GUI displayed with the database to verify that

changes were correctly reflected.

Figure 15: Added Switches verified on the Database

44

Figure 16: Updating a Host

45

Figure 17: Deleting a Host

5.2.4 Device Dashboard Monitoring

Objective: Verify whether the dashboard displays the number of managed hosts and the count

of the online and offline hosts.

Test Procedure: Log in to the switch management system or refresh the current session

session.

Expected Outcome: A doughnut chart should show online hosts in green and offline hosts in

red. Additionally, it should display the total number of managed hosts.

46

Result: In Figure 18, the device monitoring dashboard accurately displays the number of

managed hosts. The green section of the chart represents online hosts, and the red section

represents offline hosts.

Figure 18: Device Monitoring Dashboard

5.2.5 Scalability Testing

To ensure the system could handle growing demands, scalability testing was conducted to

measure response times and performance as the number of managed devices increased.

Test Environment:

Server - Ubuntu Virtual Machine on Azure: 2 vCPUs, 8 GB RAM.

Client – Google Chrome on Ubuntu Machine: 4 CPUs, 4 GB RAM.

The application was configured with 50 threads and two ping retries.

Postman was used to simulate and analyze API requests.

47

5.2.5.1 Load Test with Online Hosts

This test evaluated the system's ability to manage requests for online and reachable devices.

Test Procedure: Three Cisco switches were provided in the lab. Additional online switches

were simulated with the hosts' loopback addresses. Five reachability (load) tests were

performed on up to 1,000 hosts, and their average was recorded. The screenshots of the

measurements are provided in Appendix C.1: Load Test for Online Switches.

Expected Outcome:

• The system should remain responsive without crashing.

• Loading times should be within 1000ms.

Results: The system performed as expected, maintaining an acceptable average response time

of 720ms for 500 online devices.

Figure 19 shows the system response time when all the added hosts are online.

Figure 19: Plot of System Response to Online Host

48

5.2.5.2 Load Test with Offline Hosts

This test evaluated the system's ability to manage requests for offline and unreachable devices.

Test Procedure: Three Cisco switches were provided in the lab. Additional offline switches

were simulated with an off-net of 10.0.0.0/8.

Five reachability (load) tests were performed on up to 1,000 hosts, and their average was

recorded. The screenshots of the measurements are provided in Appendix C.2: Load Test for

Offline Switches.

Expected Outcome:

• The system should remain responsive without crashing.

• Loading times should be within 1000ms.

Results: The system experienced slower response times for offline hosts, with a response time

of 10 seconds for 500 offline hosts.

Figure 20 shows the system response time when all hosts are offline.

Figure 20: Plot of System Response to Offline Hosts

49

5.2.6 Threading Optimization

Objective: Investigate the impact of threading on system performance when managing offline

devices.

Test Procedure: The threading parameter (max_threads) was adjusted incrementally (e.g., 2,

4, 8, 16…) to evaluate its effect on response times.

Observation:

Response times improved proportionally as the number of threads increased.

However, increasing the thread count beyond 50 was not recommended due to resource

constraints. Also, the system is not designed to manage offline hosts. If all hosts are offline, it

is likely because the system is offline or off-net with the managed network environment.

Figure 21: Threading Optimization

5.2.7 Playbook Execution (Single Host)

Objective: To verify playbook execution for individual hosts.

Test: Playbooks were run on:

50

1. An offline switch.

2. An online switch.

Expected Outcome:

• Offline: The system halts execution and displays an error message.

• Online: Playbook executes successfully.

Result: The system behaved as expected, ensuring pre-checks for connectivity. When a host is

offline, playbook execution fails but runs on an online host.

Figure 22: Executing Playbook on an Offline Host

51

Figure 23: Executing Playbook on an Online Host

5.2.8 Playbook Execution (Multiple Hosts)

Objective: To verify playbook execution for multiple hosts.

Test Procedure: Execute playbook on a group with a mix of online and offline hosts

Expected Outcome: The playbook should successfully run on online hosts and display the list

of unreachable hosts.

52

Figure 24: Executing Playbook on a Group with Online and Offline Hosts

Result: The system correctly differentiated between online and offline hosts, ensuring reliable

execution.

5.2.9 Command-Line Interface (CLI) Access

Objective: To enable direct access to individual switches for custom configurations.

Test: CLI access was tested for an online switch.

Expected Outcome: Administrators can successfully establish an SSH session.

53

Figure 25: CLI Access to Online Switch

Result: CLI access did not function properly, though the admin could establish a connection

and log in. Since input and output occur on the same interface, commands and responses

overlap.

5.2.10 Secure Communication via HTTPS

Objective: To ensure secure communication through HTTPS.

Test: The application was accessed using both HTTP and HTTPS.

Expected Outcome:

HTTP: The system should redirect users to HTTPS or block insecure access.

HTTPS: The system should establish a secure connection.

54

Figure 26: Secure Communication Protocol

Result:

Access via HTTP (http://switch.westeurope.cloudapp.azure.com) failed as expected, indicating

that the server does not respond on port 80. This prevents insecure access. Access via HTTPS

(https://switch.westeurope.cloudapp.azure.com) succeeded, with the server responding with an

HTTP 302 status code, indicating a redirect or a successful connection to the secure endpoint.

The server configuration ensures that port 80 (HTTP) does not serve requests, effectively

enforcing HTTPS-only communication. However, HTTP requests are redirected to HTTPS on

the browser.

55

Chapter 6: Conclusion and Future Work

This chapter presents the key contributions and potential future improvements to the switch

management system.

6.1 Conclusion

The Centralized Network Switch Management System has successfully achieved its objectives

by providing a unified platform for managing network switches, ensuring security and

reliability. Key accomplishments include:

• User Authentication: The login functionality works as designed, ensuring only

authorized users can access the system.

• Database CRUD Operations: The system reliably handles creating, reading, updating,

and deleting records for switches, users, and groups, performing consistently during

testing.

• Monitoring Dashboard: Displays accurately as intended.

• Logging: Critical events—such as user logins, warnings, and playbook executions—

are logged, enhancing accountability and simplifying troubleshooting.

• Playbook Execution: The system efficiently executes Ansible playbooks on single and

multiple hosts, enabling streamlined switch configuration and management.

• CLI Access: Secure CLI access allows customized configurations for individual

switches.

• HTTPS Communication: Secure communication is ensured through HTTPS, with

successful redirection from HTTP to HTTPS verified during testing.

These achievements demonstrate the system’s ability to monitor and manage network switches

from a single pane of view. While limited to Cisco switches as it relies heavily on Ansible

libraries to set or retrieve switch configurations, the system’s ping-base capability is a

milestone in displaying the status of multi-vendor switches on the dashboard. However, some

areas need further improvement, such as optimizing the offline switch load time and ensuring

a smooth user experience when communicating with the switches via CLI.

56

6.2 Future Work

Several areas have been identified for future development to build on the current

implementation. First, performance optimization efforts should focus on reducing latency in

playbook execution to improve system responsiveness and enhance offline host handling by

exploring asynchronous methods or parallel processing to overcome current threading

limitations.

In terms of monitoring and reporting, introducing real-time monitoring dashboards would

provide instant insights into switch availability and system performance, while developing

comprehensive reporting features would enable better tracking of system activities and

performance metrics.

The system’s capacity should be expanded for scalability to manage a more significant number

of switches without compromising performance. Exploring distributed architectures or cloud-

native solutions could further improve scalability.

Enhanced security measures should include implementing advanced authentication

mechanisms like multi-factor authentication (MFA), conducting regular audits and updates of

dependencies to address vulnerabilities, and introducing role-based access control (RBAC) for

finer control over administrator privileges.

Feature expansion could involve supporting non-Cisco devices to increase flexibility and

integrating scheduling capabilities to automate playbook execution at predefined intervals.

Finally, user interface improvements should focus on refining the web interface to enhance

usability and accessibility and incorporating visual indicators for real-time updates on switch

statuses and playbook progress.

6.3 Final Remarks

This project demonstrates the viability of a cost-effective, centralized network switch

management solution built using open-source tools. While the current implementation meets

core requirements, load testing and performance analysis insights provide a roadmap for future

enhancements. By addressing the identified areas for improvement, the system can evolve into

a more versatile and efficient tool, empowering network administrators with greater control

and flexibility.

57

Bibliography

[1] Huawei Technologies Co., Ltd, Data Communications and Network Technologies,

Singapore: Springer Nature, 2023, pp. 537-538.

[2] L. Jia, S. Wenyan, W. Qiang, Y. Ren and H. Mingyi, "An Efficient Configuration

Management Framework of Data Collection System in Power Dispatching

Automation," in 2023 Power Electronics and Power System Conference (PEPSC),

Hangzhou, China, 2023.

[3] G. Elena, V. Elena and S. Sergey, "Automated Service Configuration Management in

IP/MPLS Networks," in 2022 International Conference on Modern Network

Technologies (MoNeTec), Moscow, 2022.

[4] W. Rui, L. Yan, W. Zepeng and Z. Limei, "Research on Application Configuration

Management Technology for Cloud Platform," in 2022 IEEE 10th Joint International

Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing,

China, 2022.

[5] q.beyond Logineer GmbH, "Logineer IT Services for International Logistics," 2025.

[Online]. Available: https://www.logineer.com/. [Accessed 1 January 2025].

[6] q.beyond Logineer GmbH, "About Us: logineer," 2025. [Online]. Available:

https://www.logineer.com/en/about-us/. [Accessed 1 January 2025].

[7] Pallets Projects, "Flask Documentation (3.1.x)," 2024. [Online]. Available:

https://flask.palletsprojects.com/en/stable/. [Accessed 5 January 2024].

[8] Ansible Community, "Introduction to Ansible," 2024. [Online]. Available:

https://docs.ansible.com/ansible/latest/getting_started/introduction.html. [Accessed 3

January 2025].

[9] SQLite Documentation Team, "SQLite Documentation," 2024. [Online]. Available:

https://www.sqlite.org/docs.html. [Accessed 5 January 2025].

[10] Microsoft Corporation, "What is Azure," 2025. [Online]. Available:

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-

azure.

58

[11] NGINX, Inc., "NGINX Documentation," 2024. [Online]. Available:

https://nginx.org/en/docs/. [Accessed 5 January 2025].

[12] Cisco Systems, Inc., "Cisco DNA Center At-A-Glance," 2024. [Online]. Available:

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-

center/nb-06-cisco-dna-center-aag-cte-en.html. [Accessed 2 January 2025].

[13] Cisco Systems, Inc., "Cisco Catalyst Software Subscription for Switching," December

2024. [Online]. Available:

https://www.cisco.com/c/en/us/products/collateral/software/one-wireless-

subscription/nb-06-dna-acces-wl-sw-faq-ctp-

en.html?oid=faqswt027039#CiscoCatalystsoftwaresubscriptionforSwitching .

[Accessed 2 January 2025].

[14] Cisco Systems, Inc., "Cisco Catalyst Center Compatibility Matrix," October 2024.

[Online]. Available:

https://www.cisco.com/c/dam/en/us/td/docs/Website/enterprise/catalyst_center_compa

tibility_matrix/index.html. [Accessed 2 January 2025].

[15] SolarWinds Corporation, "Systems Management Software," 2024. [Online]. Available:

https://www.solarwinds.com/system-management-software. [Accessed 2 January

2025].

[16] Ansible Community, "Getting Started with Ansible Inventory," 2024. [Online].

Available:

https://docs.ansible.com/ansible/latest/getting_started/get_started_inventory.html.

[Accessed 3 January 2025].

[17] Ansible Community, "Getting Started with Ansible Playbook," 2024. [Online].

Available:

https://docs.ansible.com/ansible/latest/getting_started/get_started_playbook.html.

[Accessed 3 January 2025].

[18] Ansible Community, "Cisco.Ios — Ansible Community Documentation," 2024.

[Online]. Available:

https://docs.ansible.com/ansible/latest/collections/cisco/ios/index.html. [Accessed 3

January 2025].

59

[19] Cisco Systems, Inc., "Configuration Management: Best Practices White Paper," 2006.

[Online]. Available: https://www.cisco.com/c/en/us/support/docs/availability/high-

availability/15111-configmgmt.html. [Accessed 7 January 2025].

[20] P. Buczek, Lecture Notes on Bus Systems and Sensors, vol. 002_OSI Model, Hamburg:

Hochschule für Angewandte Wissenschaften Hamburg, SoSe 2024, pp. 28-29.

[21] H. Nico, B. Geoffrey and V. Holger, "A Reference Architecture for Deploying

Component-Based Robot Software and Comparison with Existing Tools," in 2018

Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA,

USA, 2018.

[22] T. Pooja and J. Prashant, "Django: Developing web using Python," in 2023 3rd

International Conference on Advance Computing and Innovative Technologies in

Engineering (ICACITE), Greater Noida, India, 2023.

[23] A. Dany, L. Maria, S. Luzia, A. Maryam, M. Pedro and S. José, "Performance

Comparison of Redis, Memcached, MySQL, and PostgreSQL: A Study on Key-Value

and Relational Databases," in 2023 Second International Conference On Smart

Technologies For Smart Nation (SmartTechCon), Singapore, 2023.

[24] React Team, "React Tutorial," 2025. [Online]. Available:

https://legacy.reactjs.org/tutorial/tutorial.html. [Accessed January 2025].

[25] Angular Team, "Overview," 2025. [Online]. Available: https://angular.dev/overview.

[Accessed January 2025].

60

Appendix A: Source Code Overview

A.1: app.py

• Description: Main Flask application file containing API routes, database integration,

and playbook execution logic. ChatGPT generated the initial structure of this code

while modifications and expansions were made.

• Location: See CD: ~/switch_management/app.py

A.2: schema.sql

• Description: SQL schema file defining the database structure.

• Location: See CD: ~/switch_management/schema.sql

A.3: script.js

• Description: JavaScript functions that handle the home page's interactive elements and

dynamic behaviors (index.html). It also serves as the intermediary between the frontend

and the server. ChatGPT generated the initial structure of this code while modifications

and expansions were made.

• Location: See CD: ~/switch_management/static/script.js

A.4: README.md

• Description: README.md provides a high-level overview of the Centralized Switch

Management System and instructions for quickly starting the application.

• Location: See CD: ~/switch_management/README.md

A.5: requirements.txt

• Description: This contains the necessary dependencies needed to run the application.

• Location: See CD: ~/switch_management/requirements.txt

61

Appendix B: Playbook Source Code Files on the CD

B.1: get_status.yml

• Description: This function verifies whether hosts are reachable. It retrieves and

displays the device’s uptime, model, and firmware version if they are.

• Location: See CD: ~/switch_management/playbooks/get_status.yml

B.2: reboot_device.yml

• Description: Save the device configuration and perform a reboot operation.

• Location: See CD: ~/switch_management/playbooks/reboot_device.yml

B.3: backup_config.yml

• Description: This program creates a backup of the current device configuration and

stores it locally on the host computer for recovery or auditing purposes.

• Location: CD Path: ~/switch_management/playbooks/backup_config.yml

•

While not directly referenced in the main document, the following playbooks are part of the

overall system and serve various purposes for managing network switches:

B.4: device_info.yml

• Description: Retrieves detailed device information, including hostname, management

IP, and hardware specifications.

• Location: CD Path: ~/switch_management/playbooks/device_info.yml

B.5: device_resources_uptime.yml

• Description: This program collects data about device resources, such as CPU and

memory usage and uptime. It helps monitor device health and performance.

• Location: CD Path: ~/switch_management/playbooks/device_resources_uptime.yml

B.6: interface_status.yml

• Description: This function checks the status of all device interfaces and provides

information on operational status, errors, and bandwidth usage.

62

• Location: CD Path: ~/switch_management/playbooks/interface_status.yml

B.7: restore_config.yml

• Description: This function restores a previously backed-up configuration to the device,

ensuring consistent settings in case of failure or configuration drift.

• Location: CD Path: ~/switch_management/playbooks/restore_config.yml

B.8: save_config.yml

• Description: Saves the device's running configuration to persistent storage, ensuring

changes are retained after a reboot.

• Location: CD Path: ~/switch_management/playbooks/save_config.yml

B.9: security_compliance.yml

• Description: Verifies device security compliance policies, such as ensuring access lists

and secure protocols are configured.

• Location: CD Path: ~/switch_management/playbooks/security_compliance.yml

B.10: vlan_config.yml

• Description: Configures VLANs on network devices, enabling segmentation and

isolation of network traffic for better management and security.

• Location: CD Path: ~/switch_management/playbooks/vlan_config.yml

63

Appendix C: Time Response Measurement

This MATLAB script file can generate the plots used in the corresponding sessions.

C.1: Load Test for Online Switches

clf;
Number_of_Hosts = [1,3, 5, 10, 20, 30, 50, 100, 150, 200, 300, 400,
500, 1000];
Response_time = [38,40,55,69,80,90,117,178,245,303,481,612,720,1370];

plot(Number_of_Hosts,Response_time, '-o', 'MarkerSize', 5, 'LineWidth',
1)
title('Load Test for Online Hosts')
grid minor
ylabel('Response Time in milliseconds')
xlabel('Number of Hosts')

Screenshots Location: CD Path: ~/Measurements/Online_Hosts

C.2: Load Test for Offline Switches

clf;
Number_of_Hosts = [1, 3, 5, 10, 20, 30, 50, 100, 150, 200, 300, 400,
500, 1000];
Response_time = [1080, 1080, 1080, 1070, 1080, 1080,
1120,2120,3250,4210,6230,8260,10290,20380];

plot(Number_of_Hosts,Response_time, '-o', 'MarkerSize', 5, 'LineWidth',
1)
title('Load Test for Offline Hosts')
grid minor
ylabel('Response Time in milliseconds')
xlabel('Number of Hosts')

Screenshots Location: CD Path: ~/Measurements/Offline_Hosts

C.3: Optimization with Threading

clf;
Number_of_Thread = [2, 4, 8, 16, 32, 64, 128, 256, 512];
Response_time = [251.22, 125.70, 63.42, 32.19, 16.16, 8.21, 4.43, 2.38,
2.24];

64

loglog(Number_of_Thread,Response_time, '-o', 'MarkerSize', 5,
'LineWidth', 1)
title('Threading Optmization')
grid minor
ylabel('Logarithm of Response Time in seconds')
xlabel('Logarithm of Max-Thread')

Screenshots Location: CD Path: ~/Measurements/Optimization

