
Bachelorarbeit
Florian Be�in

Solving the Tantrix board game puzzle using a template-based
Wave Function Collapse approach

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science



Florian Bettin

Solving the Tantrix board game puzzle using a template-based
Wave Function Collapse approach

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Informatik Technischer Systeme
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Philipp Jenke
Zweitgutachter: Prof. Dr. Christian Lins

Eingereicht am: 18. Juni 2024



Florian Bettin

Thema der Arbeit
Lösen des Tantrix-Brettspielpuzzles mit einem vorlagenbasierten Wave-Function-Collapse-
Ansatz

Stichworte
Wave Function Collapse, WFC, Tantrix, Hexagon, Template, prozedurale Generierung, PCG

Kurzzusammenfassung
Diese Bachelorarbeit wendet den Wave Function Collapse Algorithmus auf das Tantrix Brett-
spiel an, um automatisch Ausgabebilder zu erzeugen, die visuell den Regeln des Spiels folgen.
Um dies zu erreichen, werden zunächst digitale Versionen der echten Spielsteine erzeugt, zusam-
men mit einer Datei, welche die erlaubten Nachbarschaftsbeziehungen der Steine beschreibt.
Da die Spielsteine eine hexagonale Form haben, wird ein schon vorhandenes Framework
dahingehend erweitert, dass es den WFC auch auf diese Form anwenden kann. Des Weiteren
wird eine neue Funktionalität eingeführt, bei der ein Benutzer ein Bild mit einer handgemalten
Form in das Programm laden kann. Der Algorithmus rekonstruiert diese Form dann mit den
digitalen Steinen und füllt übrige Lücken im Bild automatisch auf. Am Ende dieser Arbeit wird
die modi�zierte Version des WFC Algorithmus hinsichtlich Laufzeit und Erfolgsrate evaluiert.

Florian Bettin

Title of the paper
Solving the Tantrix board game puzzle using a template-based Wave Function Collapse ap-
proach

Keywords
Wave Function Collapse, WFC, Tantrix, hexagon, template, procedural content generation,
PCG

Abstract
This bachelor thesis applies the Wave Function Collapse algorithm (WFC) to the Tantrix board
game in order to automatically create output images that visually adhere to the game’s rules.
To achieve this, digital representations of the game’s physical tiles are created, along with a
�le describing the adjacency rules for the tiles. Since the Tantrix tiles are of hexagonal shape, a
preexisting framework containing a basic implementation of the WFC is expanded to support



hexagonal tiles. Furthermore, an additional functionality is added to the algorithm: A user
can provide an image with a hand drawn shape to the program, which is then recreated by
the algorithm using the digital Tantrix tiles. Any open spaces are afterwards �lled in using
the normal WFC. At the end of this thesis, the performance of the modi�ed WFC algorithm is
evaluated in terms of runtime and success rate.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 4
2.1 Procedural Content Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Texture Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Model Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Constraint Satisfaction Problems (CSPs) . . . . . . . . . . . . . . . . . 10
2.4.2 Constraint Optimization Problems . . . . . . . . . . . . . . . . . . . . 12

2.5 Wave Function Collapse Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Hexagons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work 17
3.1 Enhancing Wave Function Collapse with Design-Level Constraints . . . . . . 17

4 Concept 22
4.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Development Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Constraint File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Template Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Implementation 37
5.1 Creation of Digital Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Method: main() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Method: build_tile(tile_string, draw_object, hex_size, image_width,

image_height, middle_point) . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Method: �nd_colors_and_edges(tile_string) . . . . . . . . . . . . . . . 39

v



Contents

5.1.4 Method: connect_edges(draw_object, hex_size, image_width, image_height,
middle_point, edges_2_connect, color) . . . . . . . . . . . . . . . . . . 39

5.2 Creation of the Constraint File . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Method: main() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Method: �nd_tiles_with_color(original_tile, edge_color, tile_list, reuse_tiles) 42
5.2.3 Method: create_rotated_tile_names(matching_tile_name, indexes_of_appearances,

target_direction, angle_between_edges) . . . . . . . . . . . . . . . . . 43
5.3 Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 SimpleTiledModel2DHex . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 WaveFunctionCollapseHex . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.3 Bu�eredImageDrawerHex . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Template Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.1 WaveFunctionCollapseHex . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.2 Bu�eredImageDrawerHex . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.1 Constructor: Controller(ViewHex view) . . . . . . . . . . . . . . . . . 58
5.5.2 Method: main(String[] args) . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.3 Methods: startTemplateMode()/startNormalMode() . . . . . . . . . . . 58
5.5.4 Method: renameFile(String �lePath, String newFileName) . . . . . . . 59

5.6 ViewHex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Evaluation 61
6.1 Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Template Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion 73
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Glossary 77

vi



List of Figures

1.1 Example layout of Tantrix tiles next to the game package and the rule book. . 1

2.1 Example models for model synthesis. . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Example of a part of the model synthesis algorithm in 2D. . . . . . . . . . . . 8
2.3 Model synthesis algorithm working on smaller parts of the grid. . . . . . . . . 9
2.4 Two types of orientations for a hexagon with corresponding properties. . . . . 14
2.5 Hexagonal grid using cube coordinates. . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Time cost for di�erent constraints and map sizes. . . . . . . . . . . . . . . . . 19
3.2 Memory usage for di�erent constraints and map sizes. . . . . . . . . . . . . . 20

4.1 The staged delivery model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 All Tantrix tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Tantrix tiles with the four di�erent patterns and their names. . . . . . . . . . . 27
4.4 Tantrix tiles with same pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Digital Tantrix tiles with naming scheme. . . . . . . . . . . . . . . . . . . . . . 28
4.6 Impossible placement scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Problem when placing a tile next to a corner tile. . . . . . . . . . . . . . . . . . 34
4.8 Problem with �xed color distribution. . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Model-view-controller architecture. . . . . . . . . . . . . . . . . . . . . . . . . 35
4.10 GUI for the Tantrix WFC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Sequence diagram for the tile_creator.py script. . . . . . . . . . . . . . . . . . 38
5.2 Hexagon with construction lines. . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Class diagram for the Tantrix project. . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Class diagram for the SimpleTiledModel2DHex class. . . . . . . . . . . . . . . . 45
5.5 Class diagram for the WaveFunctionCollapseHex class. . . . . . . . . . . . . . . 47
5.6 Sequence diagram for function calls during WFC. . . . . . . . . . . . . . . . . 48
5.7 Class diagram for the Bu�eredImageDrawerHex class. . . . . . . . . . . . . . . 51
5.8 Tile mask with black corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.9 An empty grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.10 Class diagram for the Controller class. . . . . . . . . . . . . . . . . . . . . . . . 59
5.11 Class diagram for the ViewHex class which implements the GUI. . . . . . . . . 60

6.1 Correct output from the normal mode for di�erent grid sizes. . . . . . . . . . . 63
6.2 Memory errors for di�erent grid sizes in normal mode. . . . . . . . . . . . . . 64
6.3 Average �le sizes for the output �les of di�erent grid sizes in normal mode. . . 64

vii



List of Figures

6.4 Average duration of the WFC for di�erent grid sizes in normal mode. . . . . . 65
6.5 Two exemplary template images in template mode for di�erent grid sizes. . . . 66
6.6 Error message when no template �le is selected. . . . . . . . . . . . . . . . . . 67
6.7 Error message when the grid size in the template �le does not match the

currently selected grid size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.8 The output image is automatically displayed once the algorithm is �nished. . . 67
6.9 Filled out template �les of di�erent grid sizes with di�erent di�culties. . . . . 68
6.10 Results of the template mode for templates of di�erent grid sizes and di�culties. 69
6.11 False output image that should not have been created during template mode. . 70
6.12 Average amount of restarts for di�erent grid sizes and di�culties in template

mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.13 Success rates and template solvability rates for di�erent grid sizes and di�cul-

ties in template mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.14 Average durations in template mode for di�erent grid sizes and di�culties. . . 72

viii



1 Introduction

1.1 Motivation

Figure 1.1 shows an exemplary layout of the tiles from the Tantrix board game 1, which was
�rst released in 1988. The rule book to this game features several ways to play. However, all
variants share one common premise: Every tile that is placed on the table has to �t to all the
neighbors surrounding it. This means that all colored lines that directly connect to each other
show the same color. While most of the rules describe multiplayer games, there is also one
interesting solitaire version explained: The player is motivated to take as many tiles as they
wish and form di�erent shapes with a certain color using these tiles (e.g. only paying attention
to the yellow lines for the shape).

Figure 1.1: Example layout of Tantrix tiles next to the game package and the rule book.

1Website of the Tantrix board game. http://www.tantrix.com/. Accessed 06/13/24

1



1 Introduction

In the �eld of procedural content generation (PCG), the wave function collapse algorithm
(WFC), designed by Maxim Gumin (Gumin [2022]), gained widespread recognition after its
release in 2016. In its basic form, the algorithm has two modes that it can work in. Either the
user provides the algorithm with a small example image. Then the algorithm looks for patterns
in this image and constructs a new, bigger image following the style of the example image.
Or the user provides multiple small images of tiles coupled with adjacency constraints that
de�ne which tiles can be neighbors to each other. The algorithm then creates a big image by
placing multiple tiles next to each other, following these adjacency rules. This mode is called
the Simple Tiled Mode.

The Tantrix board game and the Simple Tiled Mode of the WFC both share the same premise
of only placing tiles next to each other, if no adjacency rules are violated. This sparked the
idea for this thesis: The physical tiles of the Tantrix game should be represented by digital
versions, including a �le that describes which tiles can be adjacent to each other. Those digital
tiles can then be used in the WFC to automatically create output images with multiple tiles
placed adjacent.
Since the supervisor for this thesis already provides a framework that includes a basic imple-
mentation of the WFC2, this work should use the framework as a foundation. However, the
WFC in the framework can only work with rectangular tiles, but the Tantrix tiles are hexagonal.
Therefore, the framework has to be expanded in order to support hexagonal tiles.
Running the normal WFC with hexagonal tiles shall henceforth be called the normal mode. A
second mode that shall be implemented is the template mode. This mode is inspired by the
solitaire version for Tantrix, mentioned above. A user should be provided with an image of a
grid of empty hexagonal tiles. In this image, the user can then draw an arbitrary shape, as long
as the shape is one connected loop, in the end. The algorithm should then load this template
image and recreate the given shape as best as possible by placing Tantrix tiles on a new grid.
The rest of the grid can then be �lled out using the normal WFC.

1.2 Overview

Apart from this introductory chapter, this thesis comprises six additional chapters. The
second chapter explains important theoretical concepts that are the basis for the WFC and
the implementation of this work. Chapter three discusses a related work whose authors also
modi�ed the basic WFC and measured the impact of those changes on the runtime and memory

2CG Algorithms Datastructures framework. https://git.haw-hamburg.de/Philipp.Jenke/cg_algorithms_
datastructures. Accessed 06/07/24

2



1 Introduction

usage of the algorithm. In chapter four, the concept for the software is outlined, detailing
requirements which the program should meet, the architecture of the software, the general
development model, and ideas for the implementation of the various functionalities that the
program needs to provide. How exactly these functionalities are realized is then described in
chapter 5. The performance of the implementation is evaluated in chapter 6, which is followed
by the last chapter that summarizes this work and gives an outlook for possible future work.

3



2 Theory

This chapter �rst gives a short introduction to the general �eld of procedural content generation.
Afterwards, three di�erent techniques are discussed that were in�uential in the development
of the Wave Function Collapse algorithm (WFC). Furthermore, the WFC itself is described in
this chapter. Lastly, fundamental aspects for working with hexagons are introduced.

2.1 Procedural Content Generation

As its name already implies, procedural content generation (PCG), in its broadest sense, means
that some form of artifact is automatically created by an algorithm. The kind of content that is
being synthesized can be manifold and depends on the method that is applied. For example,
the result could be a piece of music, an image/art, 3D models, or text (Angelides and Agius
[2014]).
PCG is also an integral part in game development. Because it is tedious for the developer to
model a whole game world by hand, PCG can be helpful in creating either the whole world
on its own, or parts of it (Shaker et al. [2016]). For example, Lindenmaier systems (aka L-
systems) can be used to build realistically looking trees and shape grammars are well suited
for generating buildings.
In the game NoMan’s Sky1, a whole universe is procedurally generated, where every planet that
is visible to the player can also be visited. In the looter-shooter Borderlands, all the weapons
that can be found are procedurally generated 2, as well.
It is apparent, that PCG can therefore facilitate the work of a game designer. However, if a
developer wants to have more control over the creation process, a mixed initiative strategy
can be chosen. There, e.g. while designing a game map, the designer would provide parts of
the map themselves and the algorithm could take over at that point.
An additional bene�t of PCG can be to save space during distribution of a game. The content
that is being generated does not have to be created in advance and saved in �les but can be

1No Man’s Sky homepage. https://www.nomanssky.com/press/. Accessed 03/17/2024.
2Wiki for the Borderlands game. https://borderlands.fandom.com/wiki/Borderlands_Weapons. Accessed

03/17/2024.

4



2 Theory

generated on the computer where the game is played on (Togelius et al. [2011]).
Furthermore, especially in game genres such as rogue-likes 3, where a part of the game loop is
to restart the game from the beginning frequently, procedural content generation can provide
replayability to the game, because each runthrough is most likely di�erent to the previous
ones.
The rise of machine learning in recent years has also impacted PCG, with neural networks being
able to synthesize content similar to the one generated by traditional methods (Summerville
et al. [2017], Mitra et al. [2019]).

2.2 Texture Synthesis

The basic idea of texture synthesis is to create an output image that resembles an input image
provided by the user. The input image is oftentimes smaller than the output image and is a
means to provide the style that the output image shall have. In addition to creating a bigger
image, texture synthesis can also be used to �ll in holes in an image as they might appear, for
example, after multiple images were merged while creating a panorama image.
In this context, texture means some kind of pattern in 2D. Typically, textures are categorized
on a spectrum between regular textures and stochastic textures. While regular textures exhibit
more structured patterns, e.g. an image of a stonewall, stochastic textures appear random, e.g.
a roughcast.
There exist di�erent approaches to realize texture synthesis, but this section concentrates on the
method described by Efros and Leung [1999], because this was in�uential in the development
of the WFC (Gumin [2022]).
Nevertheless, all methods have common goals they try to achieve (Wei et al. [2009]):

1. The output image should have dimensions as speci�ed by the user.

2. The output should be similar to the input.

3. There should not be artifacts like visible seams, apparent tiling or misalignments in the
output.

4. There should be no repetition of the exact same pattern in the output.

In the approach from Efros and Leung [1999], the output image is synthesized one pixel per
time. For a new pixel p, for which a value has to be set, its surrounding pixels (which already

3Heise website addressing rogue-likes. https://www.heise.de/download/specials/
Die-besten-Roguelike-Spiele-fuer-PC-Mac-7478489. Accessed 03/17/2024.

5



2 Theory

have values) are considered. They form the context of p and are taken from a squared window
in whose center lies p and whose size is chosen by the user via a parameter.
For now, assume that all pixels in the output image are already set, but the one pixel p. To �nd
a value for p, the algorithm will try to identify windows in the input image that are similar to
p’s context. To do this, a distance function d is used whose return value expresses the similarity
between the window and p’s context. For the function d, the sum of squared di�erences is
used, combined with a Gaussian kernel. This punishes di�erences between the pixels that are
in the vicinity of p more than pixels that lie further away. As a result, the local structure of the
texture is better preserved than if all errors would be weighted the same.
It is unlikely that an exact copy of the context of p can be found in the input image. Therefore,
at �rst, a context is identi�ed that resembles p’s context the most. Then further contexts, for
which d does not exceed a chosen threshold, are searched.
The values of the pixels at the centers of all found contexts can then be assembled in a histogram.
Finally, the value for p can be taken from this histogram, either by taking a random value from
it or by weighting the choice according to the previous results from d.
Of course, in reality not all pixels but one will be synthesized, at the beginning. This can be
solved by initiating the output image with a random 3-by-3 seed from the input image. The
algorithm can then grow layer by layer from that seed. If the input only contains a hole that is
to be �lled, the algorithm can grow from the hole’s edges. All pixels in the context of p that do
not have a value yet can simply be ignored during the calculation of d.
The size of the context, which is chosen by the user, determines the appearance of the output
image. A small size will often result in a more random looking output because potential
patterns in the input might not be captured in the context.

2.3 Model Synthesis

Texture synthesis is able to create new, larger images that are similar in style to an input image.
However, the algorithms from texture synthesis are mainly developed with 2D textures in
mind. Model synthesis can be viewed as an extension of texture synthesis operating in the 3D
space (note: theoretically it can also operate in 2D, but the main application is in 3D). It also
works with an example input and produces a larger, similar output. But, in contrast to texture
synthesis, the input does not consist of a 2D image but a 3D model. The output is a 3D model
as well.
Model synthesis was originally devised by Paul Merrell in the 2000s. He has since re�ned the
method, but Gumin took inspiration for the WFC in the earlier versions of model synthesis,

6



2 Theory

or more speci�cally, in the method that Merrell calls discrete model synthesis. This section
therefore focuses on discrete model synthesis as presented in Merrell [2007].
Model synthesis is described by Merrell as a general-purpose procedural modeling tool, because
the models that can be provided by the user as input only have to follow two rules:

1. They have to be on a 3D grid.

2. They have to be divisible into smaller pieces.

Therefore, as long as the user follows these rules, they can provide any desired model and
thereby produce a variety of outputs.
Unlike in grammar based algorithms, where the user has to describe the rules that govern
the creation process, in model synthesis these rules are automatically learned from the input
model in the form of adjacency constraints.
Figure 2.1(a) shows a 3D model that could function as the input for the model synthesis

Figure 2.1: (a) Example model that could be an input, (b) Model that breaks adjacency con-
straints, (c) Model that follows adjacency constraints. Image taken from Merrell
[2007]

algorithm. The pillar can be divided into four pieces that each �ll exactly one cell in the 3D
grid: The bottom part of the pillar, the middle part which consists of two identical pieces and
the top part. Each distinct piece is assigned a label (1 through 3). Empty spaces are labeled 0.
Figure 2.1(b) displays a generated model in which the di�erent pieces from (a) are randomly
placed in the 3D space. This model ignores adjacency rules that are expressed in (a). For

7



2 Theory

example, a piece with label 3 always has to be on top of a piece with label 2. This rule is not
followed in (b), which results in a top part of the pillar that is �oating in the air. The model
shown in (c) follows all adjacency constraints. This results in a model that is similar to the
input. A model which adheres to all adjacency rules is called consistent.
The goal of model synthesis is to assign each space in the grid a label while still keeping

Figure 2.2: Example of a part of the model synthesis algorithm in 2D. Image taken from Merrell
[2007]

the resulting model consistent. Figure 2.2 partly shows how the algorithm would work in 2D.
C(M) is a list that, for each space of the grid, contains all the labels that could potentially be
assigned to that space. At the start, every space could be assigned every label. The algorithm
then randomly selects a space and, also randomly, chooses a label for that space. The e�ect
of this selection on C(M) can be seen in C0(M). In order to follow the adjacency rules from
the example model, the possible labels for the spaces bordering the just selected space have to
be restricted, now. For those spaces, not all labels are possible anymore. This can be seen in
C1(M). In sequence, for every space marked with a U , its neighbors also have to be restricted
further. This causes a ripple e�ect propagating through the grid, which is why this step is

8



2 Theory

called propagation. Once propagation is �nished, most of the spaces will not have all the labels
available to them anymore. This is shown in C(M). At this point, the algorithm chooses the
next space that still has more than one label available and starts the process again. This is
repeated until every space is assigned exactly one label.
One problem of model synthesis is that creating a consistent model becomes harder, the larger
the output model is supposed to be. Merrell solved this issue by dividing the grid into smaller
parts and only solving one part at a time.
Figure 2.3 demonstrates this process. First, the whole model is initiated in a state that is known

Figure 2.3: Model synthesis algorithm working on smaller parts of the grid. Image taken from
Merrell [2007]

to be consistent (in this case the label 0 is assigned to each space). Then, a subarea of the grid
is chosen to be worked on (named B). In the beginning, most spaces in B could be assigned
every possible label, as was already seen in Figure 2.2. An exception to this are the spaces
at the edges of B. Those spaces already have to take into account the neighboring spaces
that are just outside of B (the areas marked with orange). Therefore, those edge spaces might
not have all the labels available to them. Then, the algorithm can be carried out as described
earlier. Once B is completely solved, a new subarea is chosen with the same dimensions as B
previously, but moved one row or column further. All labels in that new area are removed and
the process can be repeated. Over time, this will create a consistent model.
Even though the algorithm is explained for the 2D space here, it works for 3D just as well.

9



2 Theory

2.4 Constraint Programming

Constraint programming is a programming paradigm that emerged in the 1980s (Ja�ar and
Lassez [1987]). It is a generalization of logic programming with its well known programming
languages like PROLOG. Therefore, predicate logic, which is at the heart of logic programming,
is also an essential part of constraint programming.
One of the features of constraint programming, that separates it from other programming
paradigms, is the declarative description of the problem that is to be solved rather than the
imperative speci�cation of the program. Constraint programming opens the possibility to the
programmer of de�ning what the problem is instead of how the solution to the problem should
be reached.
A typical application for constraint programming is solving combinational problems, like e.g.
creating timetables, or optimization.
These are examples for the two major kinds of problems that constraint programming is used
for: Constraint satisfaction problems (CSPs) and constraint optimization problems, which will
be shortly introduced in the following. (Apt [2003])

2.4.1 Constraint Satisfaction Problems (CSPs)

A well known example for a CSP is the game of Sudoku 4. There is a set of decision variables
that have to be assigned a number between one and nine, each. In Sudoku, these variables are
represented by the individual �elds on the game board. Each decision variable has a set of
values belonging to it - the domain of that variable. This domain contains all values that could
be potentially assigned to the variable.
In addition, a CSP also contains a set of constraints on the decision variables that have to be
ful�lled in a valid solution. In the case of Sudoku, these constraints are as follows:

1. Each row must contain the numbers one through nine, without duplicates.

2. Each column must contain the numbers one through nine, without duplicates.

3. Each block must contain the numbers one through nine, without duplicates.

A solution to this problem would be an assignment of one value to each decision variable,
where none of the constraints is violated. A programmer would provide these constraints and
the initial domains of the decision variables. The search for a solution is then handled by a
constraint solver.

4Sudoku rules. https://www.sudokuonline.io/tips/sudoku-rules. Accessed 03/06/2024.

10



2 Theory

Constraint solvers contain a library of tests and operations that can be applied to di�erent
constraints in order to check if the problem can be solved at all (satis�ability) and if so, to
calculate a solution. Di�erent constraint solvers are limited to speci�c classes of constraints,
i.e. the algorithms contained in them work very di�erently.
After being given the problem description, a constraint solver �rst tries to reduce the search
space of the problem. This is the space of all possible variable assignments (which are not
necessarily all valid solutions at this point).
The �rst tool for achieving this is to check node consistency. Node consistency is given, when
all domains of the decision variables adhere to the unary constraints given in the problem. For
example:

C1 = (y ≥ 3) ∧ (x > y) ∧ (x ∈ {1, 3, 5, 7}) ∧ (y ∈ {2, 4, 6, 8})

is not node consistent, because the value 2 from the domain of y breaks the unary constraint
(y ≥ 3). The constraint solver would then remove that value from the domain to get

C2 = (y ≥ 3) ∧ (x > y) ∧ (x ∈ {1, 3, 5, 7}) ∧ (y ∈ {4, 6, 8})

which is node consistent (Hofstedt and Wolf [2007]).
A second way of pruning the search space is to consider arc consistency. Here, each binary
constraint (involving two decision variables) contained in a problem is evaluated in sequence.
For each variable that is part of that constraint, each element in its domain must have at least
one partner in the domain of the other variable with which it ful�lls the constraint (Mackworth
[1977]). C2 is not arc consistent, because e.g. the value 1 from the domain of x does not
have a suitable partner in the domain of y that ful�lls the constraint (x > y). Removing the
problematic values from the domains eventually leads to

C3 = (y ≥ 3) ∧ (x > y) ∧ (x ∈ {5, 7}) ∧ (y ∈ {4, 6})

which is arc consistent (Hofstedt and Wolf [2007]). A sophisticated algorithm for establishing
arc consistency is the AC-4 algorithm developed by Mohr and Henderson [1985], which is
also used in Maxim Gumin’s implementation of the WFC algorithm (Gumin [2022]). These
consistency checks do not necessarily create a solvable CSP. However, if at one point any of
the domains do not have any values in them anymore, it becomes clear that the problem is not
solvable.
After (potentially) reducing the search space, the constraint solver still has to �nd a viable
solution to the given problem. This can be achieved by applying di�erent search algorithms

11



2 Theory

to the search space such as the branch and bound algorithm. Backtracking is also often used
during search. When the solver settles on a value for a variable, this information is propagated
throughout the search space, which can eliminate further values from the domains of the other
variables (Rossi et al. [2008]).

2.4.2 Constraint Optimization Problems

Constraint optimization problems are in essence also constraint satisfaction problems. Addi-
tionally, they feature an objective function that expresses the quality of a discovered solution. A
famous example for this kind of problem is the Traveling Salesman Problem (TSP). In it, a graph
is given, which is made up of a set of vertices accompanied by the edges that connect two of the
vertices, each. Furthermore, each edge is assigned a numerical value which represents the cost
of said edge. The objective of the problem is then to �nd a route through this graph, starting
at a speci�c vertex, which includes each of the vertices exactly once. The cost of the solution
is calculated by adding the costs of all the edges that are being used in this solution. This
cost shall be minimized. Thus, a solution that has a lower cost than another one is considered
"better" and therefore preferable (Gutin and Punnen [2007]).
Even though the objective function in the TSP should be minimized, this is not the case for
all constraint optimization problems. The goal could be to maximize the objective function,
just the same. In general, a constraint optimization problem consists of �nding an assignment
to the decision variables such that all constraints are satis�ed and the objective is optimized
(Rossi et al. [2008]).

2.5 Wave Function Collapse Algorithm

The Wave Function Collapse algorithm was originally released in 2016 by Maxim Gumin 5.
It quickly gained popularity, because it is easy to use, even for users that are not technically
inclined, and the generation process is pleasing to look at.
As Gumin himself states (Gumin [2022]), the algorithm takes inspiration from texture synthesis
and also from Merrell’s discrete model synthesis (Merrell [2007]). Furthermore, the algorithm
is deeply rooted in the �eld of constraint programming.
The indie skateboard game Proc Skater 2016 6 was one of the earliest games to use the algorithm
for procedural level generation. Since then, it has been been used in further games from di�erent

5Gumin’s original tweet �rst mentioning the WFC. https://x.com/ExUtumno/status/781833475884277760?s=20.
Accessed 04/01/24.

6Proc Skater 2016. https://arcadia-clojure.itch.io/proc-skater-2016. Accessed 04/01/2024.

12



2 Theory

genres like in the strategy game Bad North 7, the town modeling game Townscaper 8 or the
traditional roguelike Caves of Qud 9. But the WFC is also used outside of the video game genre,
for example as a generator for poems in the style of di�erent authors 10.
The WFC has two modes that it can operate in: The simple tiled mode and the overlapping

mode. These two modes dictate what the input to the algorithm looks like. In the overlapping
mode, the user provides one input image that represents the style that the output image shall
take on. The algorithm extracts di�erent visual patterns from that input image together with
the adjacency rules for those patterns.
In the simple tiled mode, the user does not provide one large image but rather multiple smaller
images that represent the tiles with which the algorithm assembles the output image. The
adjacency constraints for those tiles have to be provided by the user in a separate �le.
Aside from the �rst step of handling the input, the algorithm works the same for both modes:
The output image is instantiated in a completely unobserved state. This means that every NxN
area (or cell, if the tiled mode is chosen) of the output can potentially be assigned any one
of the input patterns. At the beginning, the algorithm chooses one of those areas at random
since every area has the same options of patterns that it can be �lled in with. This metric is
called entropy. The entropy of an area becomes smaller, when less options of patterns to �ll
the area with remain. Aside from the beginning, the next area to place a pattern in is always
determined by �nding the area with the lowest entropy. Once an area is settled on, one of
the possible patterns is chosen at random to �ll the area with. The possibility for a pattern to
be chosen depends on the input and is rarely uniform. Gumin calls this part of the algorithm
(�nding the next area and choosing a pattern) observation. When a pattern is chosen, the area
(or cell) is said to be collapsed.
The next step is the propagation. Once a pattern for an area is settled on, this new information
has to be spread to every neighbor of this area. The reason being, that the choice of the pattern
will most likely reduce the options of patterns left for the neighbors, that can be placed in
those areas without breaking adjacency constraints. If the options for at least one neighbor
changed, this change in turn has to be propagated to the neighbor’s neighbors. This process
will continue until every area is updated.
Next, a new observation cycle is started followed by propagation. This is repeated until either
the whole output image is completely �lled out, or until a contradiction is encountered. A

7Strategy game Bad North. https://www.badnorth.com/. Accessed 04/01/2024.
8Modeling game Townscaper. https://www.townscapergame.com/. Accessed 04/01/2024.
9Roguelike Caves of Qud. https://www.cavesofqud.com/. Accessed 04/01/2024.

10Oisín: Wave Function Collapse for poetry. https://github.com/mewo2/oisin. Accessed 04/01/2024.

13



2 Theory

contradiction occurs when there is no valid pattern for an area that can be chosen without
breaking adjacency constraints.

2.6 Hexagons

As can be seen in �gure 2.4, hexagons can have two types of orientation: Flat-top orientation
and pointy-top orientation. There is no fundamental di�erence between both orientations, but
the code has to be adapted to the chosen orientation. Therefore, for simplicity, this work only
uses hexagons in �at-top orientation.
Figure 2.4 also displays further properties of the hexagons that are being used11:

• The hexagons are of regular type, meaning that all sides have the same length.

• The size of a hexagon is de�ned to be the distance from the middle point to a corner.

• The height of a hexagon in �at-top orientation is
√
(3) ∗ size.

• The width of a hexagon in �at-top orientation is 2 ∗ size.

• A hexagon that is rotated by multiples of 60° yields a congruent hexagon.

Figure 2.4: Two types of orientations for a hexagon with corresponding properties. Im-
age inspired by https://www.redblobgames.com/grids/hexagons/#basics. Accessed
03/25/2024.

11Amit Patel’s website about hexagons. https://www.redblobgames.com/grids/hexagons/#basics. Accessed
03/25/2024.

14



2 Theory

Figure 2.5 shows one way to combine multiple hexagonal tiles into a grid12. This grid uses
a cube coordinate system, which consists of three dimensions q, r and s. The origin of this
grid is located at the center of the grid where q = r = s = 0. This is because the maximal tile
count in each dimension is chosen to be equal, here. It also causes the grid to be symmetric.
In a cube coordinate system, the constraint

q + r + s = 0

always has to be satis�ed. Therefore, moving from one tile to a neighboring tile involves
increasing the value of one coordinate and decreasing the value of another one.
The horizontal distance between the centers of two neighboring hexagons is

distanceh = (3/2) ∗ size

The vertical distance between the centers of two neighboring hexagons is

distancev =
√
(3) ∗ size

12See footnote 11.

15



2 Theory

Figure 2.5: Hexagonal grid using cube coordinates. Image taken from https://www.
redblobgames.com/grids/hexagons/#basics. Accessed 03/25/2024. Permission for
use granted by creator.

16



3 Related Work

This chapter gives an overview of another work that introduces global constraints to the WFC
and evaluates the impact of those constraints on the algorithm’s performance.

3.1 Enhancing Wave Function Collapse with Design-Level
Constraints

In their paper, Sandhu et al. [2019] describe di�erent ideas to introduce design-level constraints
to the WFC and the impact that those introductions have on the performance regarding com-
putational time and memory usage.
In the introduction, the authors describe the bene�ts that PCG can provide in the process of
game development, such as the acceleration of level creation. They also describe possible costs
that reside in di�erent PCG techniques. For example, constraint satisfaction solvers have an
upfront cost that lies in designing the system. The programmers usually need to have a good
understanding of the problem domain in order to formulate useful constraints. However, the
payo� of this work are assets that can look more convincing and less random than creations
that were generated by stochastic algorithms. Nevertheless, according to the authors, designers
often shy away from said upfront cost and rather select a stochastic technique. In this context,
the appearance of the WFC is noteworthy, because WFC is able to combine the advantages of
constraint satisfaction solvers with the ease of use of other PCG techniques.
The authors also relate their work to the two games Bad North and Caves of Qud, because
those games use online PCG, meaning the creation of the assets is not just done upfront (which
would be o�ine PCG), but also during gameplay. Furthermore, both games use design oriented
variations of the WFC: Bad North applies a new search heuristic to guarantee a walkable path
in the game world and Caves of Qud uses a multipass system to create a more interesting
game world. This inspired the authors to work on online, design focused modi�cations and
extensions to the WFC, themselves.
After reiterating the general procedure of the WFC, the authors describe their alterations to
the base implementation of the WFC. The �rst addition they call weighted choice. While the

17



3 Related Work

base WFC uses entropy to decide which cell should be collapsed next, the tile that is placed in
that cell is chosen at random. At this point, the weight that each tile contributed to the entropy
value does not have an impact on the random choice of the tile, anymore. The authors state
that they use "a combination of binary search with cumulative weight method" to also consider
the weight of a tile during selection. However, they do not further describe this approach.
The �rst design constraints that the authors introduce are non-local constraints. For this, they
modify the normal observation/propagation loop by adding an additional observation step.
Furthermore, they introduce new non-tile items (like chests or keys) that can be placed by the
WFC on top of normal tiles.
In the new observation step, a check is performed, if a forced observation of an item or a tile
has to happen. For example, for a chest item, the designer can specify an upper and lower
bound for the distance from the chest, where a key item has to be placed. Furthermore, a forced
observation can also be triggered for a certain tile. Then, the algorithm places that tile in a
subarea which is de�ned by the upper and lower bounds and subsequently observes the whole
subarea by running a small scale WFC on that area.
Additionally, the authors establish a frequency counter that can limit the occurrence of items.
Another constraint that is introduced to the WFC is weight recalculation. This is achieved by
adding a new trigger to the observation step. If the trigger condition is met, the weight for a
speci�c tile is changed and the whole wave is updated accordingly. For example, the placement
of a certain item in the map could trigger the recalculation of the weight of a tile to in�uence
the look of the map, afterwards.
The last addition to the WFC is area propagation. Conceptually, it is similar to the non-local

constraints. However, this method alters the propagation step of the original WFC. For a
speci�ed area, instead of propagating which objects/tiles are still allowed in that area, the
algorithm spreads information about what objects/tiles are banned. For example, if a torch is
placed in a room, then the tiles that make up the room are only allowed to be lightened ones.

In order to evaluate the performance of the di�erent constraints, the authors use execution
time and memory usage as metrics for weighted choice, non-local constraints and weight recal-

culation. Only one constraint is used per time and compared against the base implementation
of the WFC. Each test consists of 50 runs using di�erent map sizes of 10x10, 20x20, 30x30,
40x40, 50x50, and 100x100 tiles. Because area propagation causes a lot of con�icts during map
creation, for this constraint the rate of successful creations out of 50 runs is used as a metric,
instead.

18



3 Related Work

Figure 3.1: Time cost for di�erent constraints and map sizes. Note: The authors mislabeled the
units of measurement on the y-axis. It should be seconds instead of milliseconds.
This becomes obvious when reading the paper. (Sandhu et al. [2019])

19



3 Related Work

Figure 3.1 shows the results in respect to execution time. The weight recalculation constraint
has the most impact on the runtime. For a map size of 2500 tiles, this constraint can delay
the execution by up to 1.8 seconds. The non-local constraint has a less severe e�ect on the
runtime, although it can still cause a delay of about 500ms compared to the baseline WFC.
Weighted choice has the least negative in�uence. For 2500 tiles, the greatest delay is about
100ms. In contrast, the authors state that for 10000 tiles this constraint even decreases runtime
by 3 seconds, on average.

Figure 3.2: Memory usage for di�erent constraints and map sizes (Sandhu et al. [2019]).

Figure 3.2 shows the average memory usage for di�erent constraints and map sizes. It is
noteworthy to point out two weaknesses in this �gure: First, the authors did not include
measurements for the weighted choice constraint. Second, the measurements are absolute
values and there are no baseline measurements for the normal WFC. Therefore, it is unclear in
what way the memory usage of the baseline WFC is impacted by the constraints. However, it
still becomes clear that a growing map size increases the memory usage for both constraints.
The results for the area propagation constraint are hardly discussed in the paper. The authors
reference a table, but fail to actually include the table in the paper. However, they mention
that the con�ict rate for this constraint is around 60% for a map size of 100 tiles.

20



3 Related Work

Even though parts of the evaluation of the constraints’ impact on the performance is
imprecise, the inclusion of the runtime measurements is still valuable to this thesis. The impact
of introduced constraints on the execution time is considered most interesting in this work.

21



4 Concept

4.1 Problem

Before the WFC could be applied to the Tantrix board game puzzle, several preparations had
to be done in advance. First, a digital representation of the real world Tantrix tiles had to be
created. Next, the constraints describing what tiles can be adjacent to each other had to be
formulated and saved in a �le. Furthermore, the framework that this project is working with
only supports squared tiles. Therefore, one major task was to extend the framework so that it
is able to work with hexagonal tiles as well.
Once the normal WFC was able to correctly create images with hexagonal tiles, the software
had to be expanded to be able to provide a template �le, that contains an empty grid with
hexagonal tiles, to the user. Then the functionality of processing the template �le, which
contains the hand drawn shape from a user, needed to be incorporated into the WFC.
Finally, for ease of use of the software, a simple GUI had to be created.

4.2 Requirements

4.2.1 Functional Requirements

Output

1. General:

a) The output image shows hexagonal tiles. (Req.1)

b) Each tile shows three lines. (Req.2)

c) The lines on a tile have di�erent colors. (Req.3)

d) Possible colors for the lines are red, blue, green, yellow. (Req.4)

e) Each line connects two edges on a tile. (Req.5)

f) An edge cannot have more than one line crossing it. (Req.6)

22



4 Concept

g) There are no contradictions: Two edges of adjacent tiles, that are touching, need to
have a line of the same color crossing them. (Req.7)

h) The grid on the output image has the same size as speci�ed by the user. (Req.8)

i) If the WFC is unable to generate a correct output, it is restarted until a valid output
is created. (Req.9)

2. Template mode: In addition to the general requirements listed above, the output from
the template mode also needs to meet the following requirements:

a) The shape that is formed by the yellow lines resembles the hand drawn shape given
by the user. (Req.10)

b) Yellow lines are only used to recreate the shape given by the user. (Req.11)

GUI

1. The user can de�ne the grid size. (Req.12)

2. The user can start the normal mode via a button. (Req.13)

3. The user can start the creation of an empty template �le via a button. (Req.14)

4. The user can load the drawn in template �le into the program via a button. (Req.15)

5. The user can start the template mode via a button. (Req.16)

6. If there was no image uploaded by the user before starting the template mode, an error
is displayed on the screen. (Req.17)

7. If the grid size of the template �le provided by the user does not match the currently
selected grid size, an error message is displayed on the screen. (Req.18)

8. Once the algorithm is �nished, the output is displayed on the screen. (Req.19)

4.2.2 Non-Functional Requirements

The program must meet the following non-functional requirements:

Organizational Constraints

• The implementation is based on the framework CG Algorithms Datastructures1. (Req.20)
1CG Algorithms Datastructures framework. https://git.haw-hamburg.de/Philipp.Jenke/cg_algorithms_

datastructures. Accessed 06/07/24

23



4 Concept

Documentation

• Every method and class has to have Javadoc comments. (Req.21)

• Source code needs to be commented for better understanding. (Req.22)

Readability

• The naming in the source code has to be meaningful and descriptive. (Req.23)

• The naming has to follow the naming conventions introduced by Google 2. (Req.24)

• For better understanding, the code follows the decomposition paradigm (Pohl and Rupp
[2015]). (Req.25)

Testability

• The correct functionality of the program has to be veri�ed via tests. (Req.26)

• The need for tests at a later stage is already kept in mind while designing methods.
(Req.27)

Performance

• The algorithm �nishes in a reasonable time, depending on the grid size. (Req.28)

4.3 Assumptions

In order for the algorithm to work, speci�cally for the template mode, there are some assump-
tions that need to be made concerning the hand drawn shape provided by the user:

• The user needs to draw the shape in red (RGB: 255/0/0).

• The hand drawn shape has to be closed (i.e. a loop).

• While drawing, the user can enter and leave a tile only once with the drawn line.

• The start and end of the shape has to be on the same tile. However, the end does not
need to exactly hit the pixel of the start.

2Google style guide. https://google.github.io/styleguide/javaguide.html#s2.1-�le-name. Accessed 05/20/2024.

24



4 Concept

4.4 Development Model

For the realization of the project, the incremental development model was used (Alshamrani
and Bahattab [2015]). More speci�cally, the staged delivery model, as seen in 4.1. With this
model, the project could be divided into smaller problems, namely the digitization of the
hexagonal tiles and their constraints, the implementation of the normal mode, the realization
of the template mode and lastly the implementation of a simple GUI. Furthermore, the model
was �exible enough to react to possible suggestions and/or problems that might arise during
development.

Figure 4.1: The staged delivery model. Image inspired by https://www.geeksforgeeks.org/
software-engineering-incremental-process-model/. Accessed 05/19/2024.

4.5 Tiles

The physical board game version of Tantrix comes with 56 distinct tiles. An image of these real
tiles can be seen in �gure 4.2. Each tile shows three lines that each connect two edges of a tile.
If a line connects two edges adjacent to each other, it shall be called corner. If it connects two
edges that have one edge between them, it is a curve. Lastly, a line that connects two edges
opposite from each other is called a straight.
These lines can appear in four di�erent patterns on the tiles, which can be seen in �gure 4.3

25



4 Concept

Figure 4.2: All Tantrix tiles

26



4 Concept

with their respective names that are commonly used: bridge, double intersection, roundabout
and single intersection3.
It is noteworthy that there is never more than one straight on a tile. In an early version of the
Tantrix game, a tile with three straights existed, but this tile was removed from the game in
19934 and therefore it is not included in this project, either.
Lines can either be red, blue, green or yellow. The di�erent lines on a tile show three of these
colors. A speci�c pattern of a tile always exist in all color combinations. An example of this
can be seen in �gure 4.4.
In this project, tiles always have the �at-top orientation (see 2.4). For referencing, the edges of
a tile are labeled 0 through 5, starting with 0 for the edge at the top of the tile and continuing
clockwise.
The pattern and color combination of a tile is encoded in its name. Figure 4.5 shows the
digitalized version of all tiles with their respective names. Each character in the name describes
the color of the line that crosses a certain edge (B=blue, G=green, R=red, Y=yellow). The �rst
character stands for the color at edge 0, the second character for edge 1, and so forth.

Figure 4.3: Tantrix tiles with the four di�erent patterns and their names.

4.6 Constraint File

In order for the algorithm to know what tiles can be placed next to each other, it has to be
provided with a �le that contains the adjacency rules for the tiles. The structure of this �le,
as it is used in this project, is based on the constraint �les from the parent framework and
adapted where needed.
First, the o�sets are declared, which describe the vectors in a cube coordinate system, that
point to all six neighbors of an arbitrary cell on the grid.

3FAQ section of the Tantrix website. http://www.tantrix.com/english/TantrixUseful.html. Accessed 05/21/24
4See footnote 3.

27



4 Concept

Figure 4.4: Tantrix tiles with same pattern.

Figure 4.5: Digital Tantrix tiles with naming scheme.

28



4 Concept

Next, there is an entry for each tile (by name) which contains the �lename of that tile, its
symmetry type, the weight of the tile, and for each direction a list of possible tiles, that could
be placed in that direction. Further details of the constraint �le and its creation are discussed
in 5.2.

4.7 Normal Mode

Fundamentally, the normal mode should just work like the Simple Tiled Mode, explained in 2.5.
This functionality has already been provided in the framework. However, as mentioned earlier,
the implementation in the framework is only able to work with squared tiles. Therefore, there
were some changes needed to be made to the code base to enable the use of hexagonal tiles.
The whole process of the algorithm can be structured into three main steps:

1. Process the constraint �le and create the digital tiles.

2. Run the WFC.

3. Create the output �le.

The constraint �le only describes possible neighbors for a tile that is in its normal, unaltered
orientation. However, the WFC can also rotate a tile before placement. Therefore, the adjacency
rules also have to be formulated for each possible orientation that a tile can be in. This happens
in step 1. For this purpose, in the framework, tiles were originally rotated in 90° steps. To
support hexagonal tiles, the rotation of tiles in 60° steps was implemented. In addition, the
possible directions from a tile to its neighbors were expanded from four to six directions.
The WFC itself works mostly as implemented in the framework: First, a grid of cells is built,
where each cell could potentially be �lled with any of the initial tiles. In contrast to the
framework, where the grid has a rectangular shape, this project builds a grid using cube
coordinates. Because the dimensions in each direction of the grid are the same, this results in a
hexagonal grid.
The algorithm then chooses a cell with the minimal entropy value (of all available cells, this
one has the least possible states to choose from) and collapses it to one state (i.e. tile). If at
least one cell has no more possible states available, the algorithm restarts, since there is an
unsolvable contradiction. Once a cell has been collapsed to one state, this change is propagated
through the grid. This procedure is repeated until all cells have only one state left.
While the WFC could mostly be used without modi�cation, special care had to be given
when collapsing a cell. In the real world, each tile could only be used once. Applying this

29



4 Concept

(a) 4 di�erent colors entering a
cell.

(b) Red enters the same cell
three times.

Figure 4.6: Impossible placement scenarios.

restriction also to this project has been considered. However, since there are only 56 unique
tiles and the patterns on the tiles themselves are already very restrictive, the decision was
made not to include this additional restriction. Another important circumstance, caused by
the aforementioned restrictiveness of the tiles, had to be considered during the collapse of a
cell: Placing a tile on the grid, even while following the adjacency constraints to the already
collapsed neighbors, can make an empty neighboring cell impossible to be solved. This can
happen in two situations, which are depicted in �gure 4.6. In 4.6a, lines of four di�erent
colors point to the same empty cell. In 4.6b, three lines of the same color enter the same
cell. As can be seen in �gure 4.5, there exists no valid tile that could solve either of the two
situations. Therefore, the appearance of those situations had to be prevented. While collapsing
a cell, a check is performed to see if the potential tile would create this problem for the empty
neighboring cells. If so, this tile is dismissed and a new tile is selected.
For the creation of the output �le in step 3, the framework needed to be modi�ed to work with
a cube coordinate system, rather than an euclidean coordinate system, again. Furthermore,
since an image �le is always of rectangular shape, it cannot be completely �lled with a hexagon
and has empty space in the corners. However, in the creation of the tile images it was ensured
that those corners are transparent, which enables the overlapping of tile images in such a way,
that hexagons can be placed directly adjacent to each other. Therefore, during the creation of
the output �le, the tiles had to be placed with some o�sets.

4.8 Template Mode

The template mode is built on top of the normal mode, handling the processing of a template
�le before the WFC is used. Conceptually, it can be separated into �ve steps:

30



4 Concept

1. Create the template �le containing the empty grid.

2. Load and process the template �le, after the user added a hand drawn shape.

3. Start the normal WFC.

4. Restart the WFC or the whole algorithm, if contradictions arise.

5. Create the output �le.

At step 1, the template �le is created, which only contains the gray outlines of the tiles. The
interiors of the tiles remain white. Together, the tiles form an image of a hexagonal grid with
symmetrical dimensions speci�ed by the user.
The user then draws a shape into the template �le, using any external image editor. The line
to draw the shape has to be pure red (RGB = (255, 0, 0)) and it has to start and end on the same
tile. However, the start and end points do not need to align 100%. The template �le can then
be loaded into the program via the GUI to start the actual processing of the template in step 2.
In this step, the algorithm checks every cell of the grid in the template �le for the red line
drawn in by the user. If such a line is found, it needs to determine what kind of line on a
regular Tantrix tile best approximates the hand drawn line. For this, two di�erent methods
were considered. The �rst idea was to use an error function whose value should be minimized.
This function would consider the di�erences between the hand drawn line on the tile and each
type of line present on the Tantrix tiles (straight, curve, corner). However, this method had
several drawbacks: To avoid further complicating the calculation of the error function, the
hand drawn line would have needed to have a width of just one pixel. Also, for every type of
line (straight, curve, corner), a representative tile would be needed whose line, again, is only
one pixel wide. Furthermore, determining the path of the hand drawn line on each tile would
have required additional image processing.
The alternative approach is to check for each tile that contains a hand drawn line, which two
edges of the tile are crossed by that line. The position of those two edges automatically dictates
the type of line needed to connect them (e.g. edges 0 and 2 are connected by a curve). This
method was ultimately chosen due to its simplicity. Also, it is speculated that both approaches
would settle on the same type of line, anyway.
Once the type of line, that is needed, is determined, one tile that contains such a line in yellow
is chosen at random from the pool of all tiles. Even though the hand drawn lines are done in
red, the tracing in the software is done in yellow. In both situations, those colors were selected
for better visibility.
All tiles that are chosen this way are placed, in sequence, on a fresh grid with the same

31



4 Concept

dimensions as the grid from the template �le. The location of the tiles on the new grid is
the same as the location of the tiles containing the hand drawn lines in the template �le,
respectively.
However, before a chosen tile can actually be placed, the same checks that were described in
section 4.7 need to be done to prevent unsolvable situations as the ones shown in �gure 4.6.
Additionally, the placement of a corner tile can introduce another problem which is shown
in �gure 4.7: During the processing of the template �le, the WFC algorithm is not started,
yet. This means that the placement of a tile does not reduce the options of the tiles that could
be placed in neighboring cells. In most situations this is not problematic, because during
the tracing/recreation of the template �le, most tiles that are placed next to each other, only
connect on the edges that are crossed by the yellow line. However, in a situation like in �gure
4.7, where a yellow corner has been placed before, the two tiles that connect to that corner
also connect to each other. In �gure 4.7, the tile with the thin red outline was initially chosen
to be placed next. At this point, an additional check has to be performed to avoid its placement.
If a chosen tile is deemed to be invalid, it is no longer considered for that location and a new
�tting tile is chosen at random.
The Tantrix tiles have one property that has a signi�cant impact on the whole template mode:
Each line on a tile, no matter the color, always connects two edges on that tile. This means,
that each line that appears somewhere on the grid, has to be continued until it either reaches
the outer edge of the grid, or until it connects with a line of the same color, forming a closed
shape. A line can never simply stop somewhere within the grid.
As stated in the assumptions (4.6), the hand drawn shape provided by the user has to be closed
and thereby forming a loop. As a consequence, each colored line in the output image, that
enters the shape by crossing the yellow line (which recreates the hand drawn shape), needs to
leave the shape at some other location, again. This means, that the total number of lines, that
cross the yellow shape in the end, need to be even. If the total number were odd, then there
would be one colored line that could not leave the shape anymore and the problem would be
unsolvable for the WFC. Looking at the tiles in �gure 4.5, it can be seen, that the di�erent types
of lines are always crossed by a certain number of other lines: A straight is either crossed by
two (di�erently) colored lines, or not at all. A curve is always crossed by exactly one other line.
And a corner is never crossed at all. Consequently, the shape that is drawn by the user must
not have an odd number of curves, because then the total number of lines entering/leaving the
shape would always be odd, no matter how many straights and curves are otherwise part of
the shape.
Furthermore, while recreating the hand drawn shape and selecting �tting tiles to place on the

32



4 Concept

grid, the color distribution of the lines entering the shape has to be kept in mind. For example,
if the last tile to be placed was a yellow curve with a blue line crossing it, but there were only
two additional blue lines crossing the shape at other locations, the problem would become
unsolvable, again.
To reduce the likelihood of these situations arising, two solutions were considered. For the �rst
one, the number of curves in the hand drawn shape was counted beforehand by the algorithm.
Based on that count, a color distribution was generated, ensuring that every color appeared an
even amount of times, if at all. Then, when a yellow curve needed to be placed next, the color of
the line crossing that curve was already dictated by the distribution. However, predetermining
the next color to be used introduced unsolvable situations. For example, if the tile, outlined in
red in �gure 4.7, was actually required by the distribution to have the red line, the problem
could never be solved. A similar situation can be seen in �gure 4.8, where a third curve that had
a predetermined red line could never be placed, because it would invalidate the neighboring
empty cell.
Therefore, another, simpler approach was chosen. Once a tile is placed that has one or two
colored lines crossing the yellow line, those colors are noted. Then, if there is an uneven
amount of lines of the same color in the shape, the weight of all tiles that have this color
crossing the yellow line, is increased. This incentivizes the algorithm to place a tile with that
color again, in the future. If a color is present an even number of times, the weights are reset
to their normal value. Because this method does not guarantee the creation of a shape that
is solvable in the end, the template mode uses a restart mechanism. If the WFC reaches a
contradiction, it is restarted with the same generated shape. However, if a certain threshold
for the number of restarts is reached, the whole template mode is restarted, generating a new
version of the recreated shape.

4.9 Architecture

The implementation of the software follows the model view controller architecture (Gharbi et al.
[2018]). The general structure of this architecture can be seen in �gure 4.9. This architecture
allows for a clear separation of di�erent software components, which in turn upholds the
maintainabilty of the code. Also, the components can be implemented and tested on their
own. Furthermore, the software is easily extendable. In the following sections, the di�erent
components of the architecture are explained in more detail.

33



4 Concept

Figure 4.7: Problem when placing a tile next to a corner tile.

Figure 4.8: Problem with �xed color distribution.

34



4 Concept

Figure 4.9: Model-view-controller architecture. Image inspired by Gharbi et al. [2018].

Model

The model contains the main logic of the Wave Function Collapse algorithm to run the normal

mode and additional logic for processing the template �le in order to execute the template

mode.
Furthermore, the model includes data structures that are needed to run the algorithm, like a
class representing the cells on the grid and a class for the individual tiles.
In addition, there are several support classes and support methods, for example a class that
handles the creation of an output �le.

View

The view component provides the GUI for the software that acts as the link between the user
and the program. It can be seen in 4.10. Here, the user can input the desired size that the output
grid shall have in the end. They can also start the normal mode for the WFC via a button.
For the template mode, the user can request the creation of an empty template �le with the
currently selected number of tiles per direction for the grid. Once the template �le has been
drawn in by the user, they can upload it to the program via another button. Lastly, they can
start the template mode via the Start template mode button.
In the end, the result of either mode is displayed in a new window.

35



4 Concept

Figure 4.10: GUI for the Tantrix WFC.

Controller

The main purpose of the controller is the management of the view and the model components.
The controller initializes those components and starts the GUI in a separate thread. It is then
able to receive user input from the GUI, process this input, and then initiate required actions
in the model.

36



5 Implementation

This chapter explains how the concepts described in chapter 4 were implemented, using the
Java programming language, unless stated otherwise. The level of detail of those explanations
depends on whether a class/method was already present in the framework and simply used as
is, or if it was modi�ed or added speci�cally for this project.

5.1 Creation of Digital Tiles

For the creation of the digital Tantrix tiles, a Python script, called tile_creator.py, was written
that takes a text �le with the names of all the tiles and creates a PNG �le for every di�erent
tile.
In order to facilitate the drawing of the tiles, the Pillow library1 for Python was used, because
it provides many modules with methods to create and manipulate images. Additionally, the
Numpy library2 was utilized for easy vector handling.
Besides the main method, the script also contains helper functions whose call sequence is
shown in �gure 5.1.
The following subsections describe these methods in more detail, but concentrate on highlight-
ing important parts.

5.1.1 Method: main()

After the initialization of some variables such as hex_size, image_width and image_height, the
text �le, containing the names of all the tiles, is read in and saved as a list of strings called
tile_list. This list is then iterated over to create an image for each individual tile.
For every tile string, at �rst a draw_object is created that represents a completely transparent
image. The transparency is important, because even though the tiles themselves are hexagons,
they have to be drawn on a rectangular image. Later, when tiles are placed directly next to
each other, corners of the images might overlap other tiles. The transparency prevents the

1Website for the Pillow library. https://pillow.readthedocs.io/en/stable/index.html. Accessed 05/24/24
2Website for the Numpy library. https://numpy.org/. Accessed 05/24/24

37



5 Implementation

Figure 5.1: Sequence diagram for the tile_creator.py script.

38



5 Implementation

tiles from being overdrawn in those moments.
Next, a black regular polygon is added to the draw_object via a built-in method from the Pillow
library. Then, the build_tile method is called, with the draw_object as one of the arguments
along with the tile_string. This method handles the addition of the correct colored lines to the
draw_object, which are dictated by the tile_string. Finally, the image is saved and the next
tile_string can be processed.

5.1.2 Method: build_tile(tile_string, draw_object, hex_size, image_width,
image_height, middle_point)

First, in this method a dictionary colors is de�ned which maps characters that represent colors
to the full names of those colors. For example ’Y’ is mapped to "yellow". This is necessary,
because the methods that are used to draw the colored lines later do not accept the shorthand
version.
Afterwards, the �nd_colors_and_edges method is called with the tile_string as the only argument
to �gure out what edges need to be connected with which color. Those information are returned
to the build_tile method which then delegates them, in sequence, to the connect_edges method,
where the colored lines are then drawn onto the hexagon.

5.1.3 Method: find_colors_and_edges(tile_string)

This method iterates over the tile_string which it received as an argument. For each character
that is encountered and which has not been seen this far in this string, the two indexes are
determined, where that character appears in this string. Those two indexes directly encode the
two edges that need to be connected by the color represented by the current character. The
two indexes are merged into a single string which is then put into a tuple with the current
character (e.g. (’R’, "03")).
This way, because a tile always contains exactly three lines, three tuples will be found in the
end. They are bundled in a list colors_and_edges and returned to the calling method.

5.1.4 Method: connect_edges(draw_object, hex_size, image_width,
image_height, middle_point, edges_2_connect, color)

In this method, the two edges that are encoded in the argument edges_2_connect are connected
by a line whose color is de�ned by the color argument. However, before the line can be drawn,
some trigonometrical calculations have to be done, which are based on �gure 5.2.

39



5 Implementation

First, the line h between the center of the hexagon (given by the argument middle_point) and
point H has to be determined. This can be accomplished by calculating

h = cos(30) ∗ size

If the edges have to be connected by a curve or a corner, this is done by using the arc method
from the Pillow library. This method expects a radius for the arc as one of its parameters. For
a curve, this radius can be calculated with

radius_curve = cos(30) ∗ 2 ∗ h

For a corner, the formula is
radius_corner = size/2

Furthermore, the arc method needs a center point, around which the arc will be drawn. For a
corner, this is simply the corner point of the hexagon which lies between the two edges that
are to be connected.
For a curve, it is the center of the hexagon, moved by an x and y o�set (represented by the
green lines b and c in �gure 5.2). Depending on which edges need to be connected by the curve,
the o�sets need to be added or substracted from the center point. The o�sets can be calculated
with

b = sin(30) ∗ 2 ∗ h

and
c = cos(30) ∗ 2 ∗ h

If the edges need to be connected by a diagonal straight line across the hexagon, there are
di�erent o�sets that need to be applied to the center point. This is shown in �gure 5.2 by the
blue lines a and d, which can be calculated by

a = sin(30) ∗ h

and
d = cos(30) ∗ h

Those two points can then be passed to the line method from Pillow. Because for each possible
pair of edges that need to be connected by a line the potential addition of o�sets is unique,

40



5 Implementation

the edges_2_connect argument is checked in a switch statement, where the matching case will
then call either the line or arc method with the appropriately calculated arguments.

Figure 5.2: Hexagon with construction lines.

5.2 Creation of the Constraint File

The constraint �le is implemented as a JSON �le 3. As described in 4.6, the �rst �eld has the
key o�sets and as its value a JSON object containing the vectors of the di�erent directions. In
this object, each direction serves as a key (e.g., "0"), and the corresponding value is a vector
represented as a JSON array (e.g., [0, -1, 1]).
The second �eld has the key adjacencyRules and its value is a JSON object that has an entry for
each of the 56 tiles. Every entry consists of another key-value pair, where the tile name is the
key and the value is a JSON object describing, in the form of further key-value pairs, the name
of the �le which contains the image of the tile, the symmetry type of the tile, the weight of the
tile, and for each direction a JSON array with the names of the tiles, that can be adjacent in
that direction.
Similar to the creation of the digital tiles, a Python script was written in order to construct the

3JSON �le format. https://www.oracle.com/de/database/what-is-json/. Accessed 05/26/24

41



5 Implementation

constraint �le. Again, besides the main method, the script contains some helper functions. All
methods are roughly described in the following subsections.

5.2.1 Method: main()

First, a boolean variable reuse_tiles is initialized with the default value True, which expresses
that the algorithm shall be able to place the same tile more than once, later. A value of False
would re�ect the real world scenario, where each tile is only available once. Then the text
�le, containing the names of all the tiles, is read in and saved as a list of strings called tile_list.
Furthermore, a dictionary o�sets is initialized as de�ned above.
Next, the tile_list is iterated over. For each tile, the �le name is formed by concatenating the
".png" �le extension to the tile_name. The symmetry type is set to "L" and the weight to 1.
Afterwards, for each direction, the tiles that could be placed adjacent to the current tile have
to be determined. For this, the color on the current tile that is facing in the current direction is
identi�ed and passed to the �nd_tiles_with_color method. This method returns a list (match-

ing_tiles), containing tiles that each have a line of the sought-after color. This list is then iterated
over. Each matching_tile �ts the current tile in exactly two orientations, because the correctly
colored line crosses two edges on the matching_tile. The method create_rotated_tile_names

determines if and how the matching_tile has to be rotated to �t next to the current tile and
returns the names of the matching_tile in both orientations (e.g. RRGGBB60 and RRGGBB120),
which are then added to the list of valid tiles for the current tile in the current direction. Once
every tile is processed this way, the information that was collected is written to a �le called
constraints.json.

5.2.2 Method: find_tiles_with_color(original_tile, edge_color, tile_list,
reuse_tiles)

At the beginning of the method, an empty list called tiles_found is created, which will hold all
tiles that contain a line with the color that is speci�ed in the argument edge_color.
To �ll this list, the tile_list is iterated over, checking for every individual tile_string if it contains
the color character that is de�ned in edge_color. If it does, it might be a valid tile. However,
if reuse_tiles is set to False and the current tile is equal to the argument original_tile, the tile
cannot be used. If reuse_tiles is True or the current tile is not equal to original_tile, then there
is no problem and the tile can be added to tiles_found.
After all tiles have been checked, the tiles_found list can be returned to the caller.

42



5 Implementation

5.2.3 Method: create_rotated_tile_names(matching_tile_name,
indexes_of_appearances, target_direction, angle_between_edges)

This method gets a tile string matching_tile_name as input and a list indexes_of_appearances
that contains two indexes. Those indexes stand for the two edges of the matching tile which
contain the color that has to face in the direction of the tile whose adjacency constraints are cur-
rently being formulated. The direction to said tile is passed to the method via target_direction.
For both indexes, the method now calculates the di�erence between the index and the tar-

get_direction and deduces from that di�erence, how often the matching tile has to be rotated
such that the tile is oriented correctly. The number of rotations is then multiplied by an-

gle_between_edges and the result concatenated to the matching_tile_name.
This way, two versions of the matching_tile_name are formed which are returned in a list to
the calling method.

5.3 Normal Mode

As mentioned in 4.7, a lot of the code base from the framework could be reused in this project,
requiring modi�cations in some parts. Figure 5.3 gives a rough overview for the classes
used in the project. The packages that have a green background were already present in the
framework. The package named tantrixwfc, with an orange background, was added for the
project. The classes Controller, ViewHex and HexSupport were created completely from scratch.
The classes SimpleTiledModel2DHex, Bu�eredImageDrawerHex and WaveFunctionCollapseHex

are independent classes, but took inspiration/code from classes from the framework (indicated
by the based on arrow). However, those classes needed heavy modi�cations in some parts
compared to the original classes. Therefore the decision was made to create completely new
classes that are separated from the originals.
The following subsections describe these classes in more detail, highlighting the parts that
needed modi�cation or were added for this project.

5.3.1 SimpleTiledModel2DHex

This class handles the processing of the constraint �le, initializing the tiles and their constraints.
Figure 5.4 shows the corresponding class diagram, highlighting in red text the parts that were
modi�ed to support hexagonal tiles. These modi�cations are explained below.

43



5 Implementation

Figure 5.3: Class diagram for the Tantrix project. Packages with green background stem from
the framework, an orange background marks the package that was added for the
project.

44



5 Implementation

Figure 5.4: Class diagram for SimpleTiledModel2DHex. Red text indicates parts that have been
modi�ed compared to the original.

Method: getTiles()

In this method, for each tile name in the constraint �le, a new tile object is created and added to
the tiles map. Additionally, the same tile is rotated �ve times to cover the remaining orientations
that the tile could be in. Those versions are added to the tiles map as well. In order to rotate
the image of a tile, the rotateImage method in the Support class was overloaded, enabling the
rotation by an arbitrary angle instead of �xed 90° steps.
Lastly, for each tile name, the addAllConstraints method is called using all six directions, instead
of the original four.

Method: addAllConstraints(JSONArray array, String direction, String tileName)

Here, the constraints for a given tile and direction are read in from the constraint �le and
added to the respective tile object by making a call to the addConstraint method. The same
adjacency constraints also apply to the rotated versions of the tile. This is handled by calling
the addRotatedConstraints method.
Furthermore, adjacency constraints are always symmetrical: If tile B can be adjacent in direction
0 to tile A, then tile A can be next to tile B in direction 3. This is also handled in this method,
using a newly added getOppositeDirection method from the HexSupport class and modi�ed
versions of the rotateTileName and rotateDirection methods.

45



5 Implementation

Method: addRotatedConstraints(String tileName, String direction, String
allowedNeighbor, String symmetryConstraint)

Constraints that apply for a tile in its original orientation also apply for the rotated versions
of the same tile. This is handled in this method by rotating the tile �ve times, adjusting the
direction accordingly by calling the rotateDirection method and adding the allowedNeighbor as
a constraint under the adjusted direction to the rotated tile.

Method: rotateTileName(String name)

Rotating the tile name of a tile is done by appending the angle of rotation to the original tile
name. This method checks if the tile has already been rotated and adds 60° (instead of the
original 90°) to the current rotation (e.g. RRGGBB60 becomes RRGGBB120).

Method: rotateDirection(String dir)

This method simply returns the direction that is next to the input direction in a clockwise
manner. In the original version, it mapped, for example, top to right. Now it maps, for example,
0 to 1.

5.3.2 WaveFunctionCollapseHex

As the name suggests, the WaveFunctionCollapseHex class implements the WFC algorithm.
Figure 5.5 shows the associated class diagram. The parts written in orange can be ignored while
considering the normal mode, because they only concern the template mode. The methods
written in red and green are observed in more detail in the following, because they are either
modi�ed versions from the original or newly added.
For a better understanding of the general �ow of the algorithm, �gure 5.6 shows the rough
sequence of function calls that are triggered during execution of the algorithm. However, this
diagram does not include every call to helper functions, that might occur.

Constructor: WaveFunctionCollapse(IPreProcessor<T> preproc,
IPostProcessorExtended<T> postproc, int[] sizes)

The main purpose of the constructor is to initialize the wave member variable which represents
the grid that is to be �lled in with tiles, later. Every coordinate on the grid is associated with
a cell. At the beginning, each cell could potentially collapse to any of the tiles provided to
the algorithm. The coordinates in this version of the algorithm are in cube coordinate format.

46



5 Implementation

Figure 5.5: Class diagram for the WaveFunctionCollapseHex class. Methods and �elds written
in red are modi�ed versions from the original WaveFunctionCollapse class. A green
text color marks newly added parts. Black means unmodi�ed. Orange are parts
that are either modi�ed or added but are only important for the template mode.

47



5 Implementation

Figure 5.6: Sequence diagram which shows the fundamental method calls during execution of
the WFC. Note: This diagram does not include every call to helper functions.

48



5 Implementation

While initializing the wave, which is done by iterating through the coordinate space de�ned
by the dimensions in each direction of the grid, it is important that the coordinate values for
each direction add up to zero. Otherwise, the coordinate is not a valid cube coordinate and
does not lie on the grid. Therefore is has to be skipped.

Method: generate()

This method is the entry point to start the execution of the algorithm. It calls the initWave

method in order to propagate any prede�ned tiles for certain cells through the grid, if such
initial constraints were given to the algorithm.
Afterwards, the tick method is called in a loop, until each cell is left with only one state,
meaning that there is one distinct tile assigned to each cell.
In this version of the generate method, once the algorithm is done, the name of the output �le
is extended with the amount of restarts that the algorithm needed to �nish its execution.

Method: collapse()

The collapse method starts with a call to the getLowestEntropy function to �nd the cell that has
the lowest entropy and therefore the smallest amount of possible states that it could collapse to.
If the return value from getLowestEntropy is null, at least one cell has no more possible states
available to collapse to. This indicates a contradiction, prompting a restart of the algorithm.
Otherwise, if a lowest entropy cell is found, one of the possible tiles is chosen at random. In the
original version of this method, the chosen tile was directly placed (by associating the cell with
said tile). However, as mentioned in 4.7, while working with the Tantrix tiles, the chosen tile
cannot simply be placed but the placement has to be checked for validity in advance. Therefore,
the checkValidPlacement method is called. If it returns True, the tile can be used. Otherwise,
the tile is removed from consideration for this cell for this moment and another possible tile is
chosen at random. If no suitable tile is found this way, the algorithm is restarted.

Method: checkValidPlacement(Cell<T> cell, Tile<T> chosenTile)

For the given cell, the neighboring cells in each direction are considered. If a neighbor is neither
null (which indicates the edge of the grid) nor already collapsed to one �nal state, the color of
the line on the chosenTile that faces in the direction of the neighbor is determined by calling
the getColorInDirection method. This color is passed, together with the neighboring cell, to
the checkIfColorIsPresentTooOften method to check if the same color already points at least
twice to that neighboring cell from other tiles. If the method returns False, a second method,

49



5 Implementation

checkTooManyColors, is called with the same arguments to see if the color would be the fourth
distinct color that is pointing towards the neighboring cell. Only if that method also returns
False is the placement considered valid.

Method: getColorInDirection(String direction, Tile<T> tile)

This helper function determines the color of the line leaving a given tile in a speci�ed direction.
Theoretically, this color is already encoded in the tile name string and could be determined by
looking at the character that is at the same index as indicated by direction (e.g. the color for
direction 1 on the tile RRGGBB is R).
However, the tile could also be rotated. A rotation of a tile is not encoded in the sequence of
the characters in the tile name, but the angle of rotation is added to the end of the tile name.
Therefore, the shiftTilenameByRotation method is called in advance to get the tile name that
actually represents the current rotation of the tile (e.g. RRGGBB60 would become BRRGGB).
Then the method described above can be applied to determine the color of the line.

Method: shi�TilenameByRotation(String tilename)

This helper function shifts the name of a tile according to the rotation. For this purpose, the
angle of rotation is �rst extracted from the tilename, removing it from the name in the process.
Then the angle of rotation is divided by 60 in order to calculate how often the tile name needs
to be shifted to get a string that correctly represents the orientation of the tile.
During shifting, a character at the end of the string gets moved to the front, therefore wrapping
around. Once the correct number of shifts are performed, the new name can be returned.

Method: checkIfColorIsPresentTooO�en(Cell<T> neighborCell, char color2Check)

The neighborCell that is passed to the method has not been collapsed yet. It has to be determined,
if the color described by color2Check is already pointing towards this cell from any of its
neighbors at least twice. Therefore, the neighboring cells in each direction are considered.
If a neighbor exists and the cell is already collapsed to one tile, the color on that tile that is
facing the original neighborCell is determined. If it equals color2Check, a counter colorPresent
is incremented by one.
Once colorPresent exceeds a value of two, the method can stop and return True, because the
color would already be present too often. If all directions get checked and the counter stays
below two, False can be returned.

50



5 Implementation

Method: checkTooManyColors(Cell<T> neighborCell, char color2Check)

Like in the checkIfColorIsPresentTooOften method, the neighborhood of the neighborCell is
checked. However, this method records, which colors are facing this cell.
In the beginning, color2Check is added to an empty list called colorsPresent. While iterating the
neighbors of the neighborCell, if a new color is encountered that points in the direction of the
neighborCell, it is added to colorsPresent.
If the size of colorsPresent ever exceeds three, the method can return True, because then too
many di�erent colors would be facing towards the neighborCell. If all directions get checked
and the size of colorsPresent stays below four, False can be returned.

5.3.3 Bu�eredImageDrawerHex

The main purpose of this class is to draw the completed grid and save it to a PNG �le. The class
diagram is depicted in 5.7. Even though the constructor is marked as modi�ed, this modi�cation
only encompasses the addition of a new parameter sizes. Otherwise, for the normal mode, only
the modi�ed drawWave method is important.

Figure 5.7: Class diagram for the Bu�eredImageDrawerHex class. Methods and �elds written in
red are modi�ed versions from the original Bu�eredImageDrawer class. A green
text color marks newly added parts. Black means unmodi�ed. Orange are parts,
that are either modi�ed or added but are only important for the template mode.

Method: drawWave(Map<Coordinates, Cell<Bu�eredImage» wave)

This method iterates through all valid cube coordinates that belong to the grid. For every
coordinate, it gets the image belonging to the �nal state (tile) of the cell located on that

51



5 Implementation

coordinate. This image of the tile is drawn onto a bigger image result at the position de�ned
by the coordinate. However, because the images that show the tiles are actually rectangular
and not hexagonal themselves, they have to be placed with an o�set. The new position of the
upper left corner of the tile image can be calculated with:

x = (int)((centerOfGridX + (tileSize ∗ (3/2 ∗ q)))− tileSize)

and

y = (int)((centerOfGridY +(tileSize∗(
√
(3)/2∗q+

√
(3)∗r)))−((

√
(3)∗tileSize)/2))

The values for centerOfGridX and centerOfGridY are the halfway points of the width and height
of the output image. The variable tileSize is passed into the constructor and is de�ned as size
in 2.6. The variables q and r stand for the current position in the respective dimension of the
coordinate.
Once every cell of the grid has been processed and drawn, the result image can be saved as a
PNG �le to the location speci�ed in the path member variable.

5.4 Template Mode

This mode extends the normal mode with the functionality of providing the template �le
(containing an empty grid) to the user and processing the drawn in template �le afterwards.
The SimpleTiledModel2DHex class did not need any more changes than described in 5.3. How-
ever, the WaveFunctionCollapseHex and Bu�eredImageDrawerHex classes needed additional
modi�cations, which are outlined in the following.

5.4.1 WaveFunctionCollapseHex

On top of running the normal WFC as described in 5.3, this class also provides the functions to
process the template �le. Again, �gure 5.5 shows the member variables and methods that were
either modi�ed or added to this class. For the template mode, only the parts written in orange
need to be considered.

52



5 Implementation

Constructor: WaveFunctionCollapseHex(IPreProcessor<T> preproc,
IPostProcessorExtended<T> postproc, int[] sizes, int tileSize, String
pathToTemplate, String pathToTileMask)

This is an overloaded version of the constructor that was used in the normal mode. The �rst
addition to this version is the inclusion of three more parameters: tileSize, pathToTemplate and
pathToTileMask.
The constructor starts with a call to the constructor used in the normal mode to do the normal
preparations. Then, the wave is prepared further by calling the initWave method. Afterwards,
the arguments provided are used to initialized the respective member variables. The �ag
templateMode is set to True, in order to indicate that the template mode is currently executed.
Finally, the processTemplate method is called in a loop, until the template �le is successfully
processed.

Method: initWave()

This method resets all cells in the wave to their initial states. First, it is checked if the tem-

plateMode �ag is set to True, the template �le has been successfully processed at least once
(�nishedProcessingTemplate == True) and the variable restartsWithSameTemplateTracing is
greater than TEMPLATE_BOUNDARY. In this case, the WFC was not able to calculate a valid
solution for the currently generated tracing of the template and a full restart needs to be
initiated. This includes a call to the resetAllCells method, setting �nishedProcessingTemplate

to False, resetting restartsWithSameTemplateTracing to zero and calling the processTemplate

method again, until it returns successfully.
Afterwards, the states for all cells that are marked as resettable, are reset to include the whole
current tile set saved in tiles. Note that at this point tiles does not include any tiles that have
yellow lines on them anymore.
Lastly, the wave is searched for any cells that have their resettable �ag set to False. Those are
cells that already have a predetermined state (for example after processing the template �le).
For each of those cells, the �nal state is then propagated through the grid in order to adjust
the adjacency constraints of other cells.

Method: resetAllCells()

This helper function resets all cells to the original state, even the ones that are normally
not resettable. This has to be done when the processing of the template �le fails or when
the number of restarts using the same generated tracing exceeds the threshold de�ned by

53



5 Implementation

TEMPLATE_BOUNDARY.
Afterwards, the states include all the initial tiles again, even the yellow tiles that were removed
from tiles in the processTemplate method.

Method: processTemplate(String pathToTemplate, String pathToTileMask)

This method starts with reading in the images for the templateFile and tileMask from the
locations de�ned by both arguments, respectively.
Next, all tiles that contain a yellow line are �ltered from tiles and saved in a new ArrayList
called tilesWithYellow. Those tiles are further categorized in a map called yellowTilesSorted.
The key set of this map contains R, G, B, GR, BR, BG and noCrossing. Every key describes the
color(s) of the line(s) that cross the yellow line on the tiles stored under that key. For each tile
in tilesWithYellow, the colorsThatCrossLine method is called to determine where the tile has to
be placed in the map.
Next, the method searches for all tiles in the template �le that contain a hand drawn line. For this,
it iterates through all the coordinates that belong to the grid. For each coordinate, a subimage
is taken from the templateFile at that location and stored in a temporary Bu�eredImage called
tileImage. The subimage has the same size as the images of the tiles provided to the algorithm
and therefore depicts the tile present in the templateFile at the current coordinate. However,
because the subimage is of rectangular shape, it also includes parts of neighboring tiles in the
corners of the image. For further processing of the tileImage, those parts need to be blacked
out, �rst. This is done by comparing the tileImage with the tileMask (seen in �gure 5.8) pixel
by pixel. Every pixel in the tileMask that is black also gets set to black in the tileImage.
Afterwards, the �ndEdgesCrossedByLine method is called for the current tileImage to �nd the
two edges on the tile, that are connected by the hand drawn line. Those edges are returned
from the �ndEdgesCrossedByLine method and stored in an ArrayList edgesCrossedByLine. If
this list is empty, the tile does not include any hand drawn line and the next coordinate can be
assessed. However, if edgesCrossedByLine does contain edges, a �tting tile needs to be found
next, that could be placed on the current coordinate in order to recreate the hand drawn line.
Such a tile features a yellow line that connects the same edges. Therefore, the �ndFittingTiles

method is called, which searches all tilesWithYellow for appropriate tiles and returns them as
an ArrayList, which is stored in �ttingTiles.
Next, one tile is selected at random from �ttingTiles. As described in 5.3 for the collapse

method, the placement for the tile has to be checked �rst by calling checkValidPlacement.
Additionally, a second check has to occur that is described in 4.8 and is implemented in the
isAllowedForAllNeighbors method. If the tile cannot be placed, it is removed from �ttingTiles

54



5 Implementation

and a new tile is chosen randomly. If no tile can be found this way, the processTemplate method
needs to be restarted.
Once a valid tile is found, it is set in the wave using the setCell method. This automatically
collapses the cell to one state, containing the �tting tile, and marks the cell, which belongs to
the current coordinate, as not resettable.
There is a high chance that the tile, which was just placed, has colored lines that cross the
yellow line. As described in 4.8, this circumstance has to be considered to ensure the solvability
of the generated shape. Therefore, the colorsThatCrossLine method is called, whose return
value are all the colors that cross the yellow line on this tile. Those colors are saved in a list
colorsThatCrossShape. This list is then iterated over and for each color present a respective
boolean variable (needToUseBlue, needToUseRed or needToUseBlue) is �ipped. If that variable
shows True after �ipping, the weight of every tile that has a line in the respective color crossing
the yellow line is set to 100. This increases the chance of those tiles being chosen in the
getRandomTile method. This helps in creating a template tracing which has an even amount of
lines for every color crossing the yellow shape. If the variable shows False after �ipping, the
weights of the tiles for that color are reset to the normal value of 1.
Finally, after processing each coordinate on the template �le, all tilesWithYellow are removed
from tiles, because for visual clarity no more yellow tiles should be used in the normal WFC
anymore. Furthermore, the weights of all tiles are reset to the normal value (1) by calling
resetWeights. Afterwards, the processTemplate method can return True, indicating to the caller
that the template was successfully processed.

Figure 5.8: Tile mask with black corners.

Method: findEdgesCrossedByLine(Bu�eredImage tileImage)

This method �nds the edges of a tile that are crossed by the red line drawn across the tile (if
present) and returns the indexes of those edges in a list. The indexes start at 0 for the top edge
of the hex and are increased clockwise.
As a �rst step, the coordinates of every corner of the hexagon in the tileImage are calculated by

55



5 Implementation

calling the helper function �ndCoordsOfAllCorners, which is implemented in the HexSupport

class. Then, for every pair of adjacent corners, the pixels that belong to the edge, which
connects those two corners, are calculated and stored in an ArrayList named like the respective
edge (e.g. edge0). These calculations are done using the Bresenham algorithm (Janser and
Luther [1992]), which is implemented in the calcBresenhamLine method in the HexSupport

class.
Next, for each edge the method edgeContainsColor is called to check if the red line crosses that
edge. If it does, the name of the edge is added to the edgesCrossedByLine list, which is returned
at the end of the method.

Method: edgeContainsColor(Bu�eredImage tileImage, ArrayList<Coordinates>
edge, int color)

This helper function determines if a given edge in an image of a hexagon contains a given
color. This is done by iterating every pixel, de�ned in the edge argument, in the tileImage and
comparing its color value with the color argument. In case of a match, True can be returned.
Otherwise, False is returned.

Method: findFi�ingTiles(ArrayList<Tile<T» tilesWithYellow, ArrayList<Integer>
edgesCrossedByLine)

This method searches the list tilesWithYellow for tiles, where the yellow line connects the same
edges as de�ned by the parameter edgesCrossedByLine. To achieve this, the name of every
tile in tilesWithYellow is shifted by calling shiftTilenameByRotation to correctly represent the
orientation of that tile. Each tile name can then further be examined. If the two characters at
the indexes de�ned in the argument edgesCrossedByLine in the tile name are both a ’Y’, this
tile is a correct �t and can be added to the list �ttingTiles which is returned in the end.

Method: isAllowedForAllNeighbors(Cell<T> cell, Tile<T> tile)

Before a tile can be placed, in addition to the normal checkValidPlacement call, in the template

mode it has to be checked if the tile does correctly connect to all tiles that are already placed
in the neighborhood of the cell. Therefore, for every tile that has already been placed in the
neighborhood, the set of tiles that is allowed in the direction of the cell is queried. If the tile is
contained in this set for every neighbor, the tile can be safely placed.

56



5 Implementation

Method: resetWeights()

This method simply iterates through all tiles in tiles and sets their weight to 1.

Method: colorsThatCrossLine(char lineColor, String tileName)

This method checks for a given tile (represented by tileName), which other colors cross a
speci�ed colored line (lineColor) on that tile.
First, the two indexes in the tileName, where the character lineColor appears, are determined.
Then the substring in the tileName between those indexes is formed. If another colored line
crosses the speci�ed line, the character describing the colored line can only appear once in the
substring. If it appears twice, it is a corner and does not cross the speci�ed line. Each character
that appeared once is added to a list colorsThatCrossLine.
Finally, the characters in this list are ordered alphabetically, before returning the list to the
caller.

5.4.2 Bu�eredImageDrawerHex

As can be seen in �gure 5.7, indicated by the orange text font, the two methods drawEmptyGrid

and drawIntendedTile were added to this class speci�cally for the template mode.

Method: drawEmptyGrid()

This method works very similarly to the drawWave method. However, while iterating through
all possible coordinates on the grid, instead of drawing the appropriate tile from the �nished
wave, this method always draws the same image of an empty tile. This image consists of a
white hexagon with a gray outline. The result is an empty grid like the one shown in �gure 5.9.

Method: drawIntendedTile(Bu�eredImage tempGridImage, Coordinates coord,
Tile<Bu�eredImage> tile)

For debugging purposes, it was desirable to have a way of showing and highlighting a tile that
is intended to be placed next on the partially �lled out grid.
The tempGridImage is the image of the un�nished grid, that can be created by calling the
drawWave method. The argument tile is the tile that is supposed to be placed next and coord is
the location on the grid, where the tile should be placed.
Besides calculating the x and y o�sets that were already described earlier in the drawWave

57



5 Implementation

Figure 5.9: An empty grid.

method, this function simply draws the image of the tile to the appropriate coordinate in the
tempGridImage and draws a red outline around the tile in order to highlight it.

5.5 Controller

The Controller class forms the link between the user (via the View) and the WFC algorithm (in
the normal mode and the template mode). Its structure is shown in �gure 5.10.

5.5.1 Constructor: Controller(ViewHex view)

The constructor initializes the member variables that do not already have a default value.
Furthermore, it sets the various behaviors for the buttons displayed in the GUI.

5.5.2 Method: main(String[] args)

The main method initializes a new ViewHex and a new Controller and starts a new thread for
the view.

5.5.3 Methods: startTemplateMode()/startNormalMode()

The main purpose of both methods is to start the normal mode or the template mode, respectively.
For this, a newWaveFunctionCollapseHex object is created by calling the appropriate constructor.

58



5 Implementation

Figure 5.10: Class diagram for the Controller class.

The algorithm is started by calling the generate method.
Otherwise, both methods only handle organizational tasks such as measuring the execution
time of the algorithm and adding important information to the name of the output �le, like the
grid size or a time stamp.

5.5.4 Method: renameFile(String filePath, String newFileName)

Some information, like the grid size, can already be appended to the name of the output �le
before that string is handed to the algorithm. However, the total execution time can only be
added to the �le name, after the algorithm is �nished. At that time, the output image is already
created in the �le system. This method provides a means of renaming said �le with a new
name.

5.6 ViewHex

This class implements standard functionality of a GUI. Therefore, besides providing the class
diagram in �gure 5.11, it shall not be explained in more detail at this point.

59



5 Implementation

Figure 5.11: Class diagram for the ViewHex class which implements the GUI.

60



6 Evaluation

In this chapter, the implementation of the concept is evaluated. It is checked, which functional
requirements (4.2.1) could and which could not be met. If a requirement was broken, a short
reason shall be given. In order to evaluate the performance of the implementation, the normal

mode and template mode were run with di�erent grid sizes (and di�culties for the template

mode). For each setting, 10 runs were performed. The hardware that was used for these
runs is as follows: LENOVO L390 Yoga (20NT0011GE) with Intel(R) Core(TM) i5-8265U CPU
@1.60GHz, Intel(R) UHD Graphics 620, 16GB RAM. The program is started using IntelliJ IDEA
2023.2.5 (Ultimate Edition) on Windows 11 Pro.
For both modes, the two timestamps used to measure the duration of a run were taken directly
before the constructor of the WFC and directly after the subsequent call of the generate method.
The correctness of an output was determined by visual inspection of the output image. Im-
plementing a function to validate the output image did not seem feasible in the scope of this
project.

6.1 Normal Mode

Figure 6.1 shows the correctly generated output images for di�erent grid sizes. It can be seen
that requirements 1-8 are ful�lled for the normal mode. Requirement 9, concerning the restart
of the WFC in case of a contradiction, cannot be checked here, because the WFC was always
able to create a correct output image without the need for restarts during this mode.
However, with increasing grid sizes, the normal mode faces another problem: Starting at grid
sizes of 31x31x31 and above, the program sometimes runs out of heap space. This behavior can
be seen in �gure 6.2. The heap size (set in IntelliJ) for the system that the tests were performed
on is 2GB. Once this memory is exceeded, the algorithm cannot continue and the execution
is canceled. Taking a look at �gure 6.3, which shows the average sizes of the output �les for
di�erent grid sizes, it does not come as a surprise that the algorithm reaches its limits sooner
or later for growing grid sizes. For example, the average �le size for the output of a 41x41x41
grid is 16.39Mb. However, this is only the image that is created at the end of the algorithm.
During execution, the WFC works internally with Bu�eredImages, each cell having multiple

61



6 Evaluation

of those Bu�eredImages assigned to it before it is collapsed to one �nal state. For a 41x41x41
grid, there are 1261 such cells. As �gure 6.2 shows, for a grid size of 43x43x43, the algorithm
was only able to �nish in two out of ten runs and for a grid size of 51x51x51 it could not �nish
at all. Concerning this problem, the algorithm could probably be improved by optimizing it
further. Also, a di�erent data structure might be advantageous.
Apart from these memory errors, the algorithm performs well during normal mode. When
considering all output images that could be �nalized, the success rate was 100% (i.e. no output
image showed incorrectly placed tiles), without the need for any restarts. The average duration
for di�erent grid sizes over ten runs can be seen in 6.4. As expected, the execution time rises
with increasing grid sizes, but with about 50 seconds for a 41x41x41 grid it stays withing a
reasonable window. This satis�es requirement 28.

6.2 Template Mode

For the template mode, as requested in requirement 14, the user can start the creation of an
empty template �le via a button. Figure 4.10 shows the respective button and �gure 6.5 displays
two exemplary results of that action. Figure 4.10 also shows the other buttons/�elds that are
demanded in requirements 12, 13, 15 and 16. The two types of error messages speci�ed in
requirements 17 and 18 are shown in �gure 6.6 and 6.7. The automatic displaying of the output
image, once the algorithm is �nished (Req.19), can be seen in �gure 6.8.
In order to evaluate the implementation of the template mode, di�erent template �les with grid
sizes between 3x3x3 and 21x21x21 were created. For each grid size, the template �le was �lled
out three times with three kinds of shapes of di�erent di�culties: easy, medium, hard. Those
di�culties are roughly de�ned by how many tight corners and narrow passages are present
in the shapes, although they remain largely subjective. Grid sizes above 21x21x21 were not
chosen, because drawing the template shape became too imprecise due to the small size of
the individual tiles when the image was completely zoomed out. Zooming in was not a good
option, because that would have required a lot of panning the image while drawing, making
it harder to draw a closed loop. Furthermore, each template �le had to contain a shape that
is theoretically solvable. Therefore, the number of curves in the shape has to be even, which
has to be considered during drawing. This is further complicated when the image needs to be
zoomed in and panned.
Figure 6.9 shows these template �les and �gure 6.10 displays results that correctly recreated
the templates. The results show that requirements 1-6 and 8 are also satis�ed for the template

mode. Requirements 10 and 11, which are speci�c for the template mode, are also met.

62



6 Evaluation

(a) 1x1x1 (b) 3x3x3

(c) 5x5x5 (d) 7x7x7

(e) 9x9x9 (f) 11x11x11

(g) 21x21x21 (h) 31x31x31

(i) 41x41x41 (j) 43x43x43

Figure 6.1: Correct output from the normal mode for di�erent grid sizes.

63



6 Evaluation

Figure 6.2: Memory errors for di�erent grid sizes in normal mode.

Figure 6.3: Average �le sizes for the output �les of di�erent grid sizes in normal mode.

64



6 Evaluation

Figure 6.4: Average duration of the WFC for di�erent grid sizes in normal mode.

However, requirements 7 and 9, which state that the output shall not have any contradictions
and if contradictions are encountered, that the algorithm should restart, are not always ful�lled
during template mode. This can be seen in �gure 6.11. The incorrect tiles in the interior of
the shape should not have been placed, but rather a restart should have been initiated. This
inability of the algorithm to spot a contradiction is a bug that could not be solved during
work on the project. Furthermore, this bug does not always occur: Figure 6.12 shows the
average amount of restarts for di�erent grid sizes and di�culties during template mode. Clearly,
sometimes the algorithm is able to spot contradictions and initiate restarts. During debugging,
it was observed that the recreation of the template sometimes caused many cells in the interior
of the shape to automatically collapse to one state. This depends on the level of restrictiveness
of the shape. For example, narrow passages in the interior of the shape (see left part of the
shape in �gure 6.11), are sometimes deterministically collapsed to one state as a consequence
of the selection of the tiles that trace the template. It is suspected that those (automatically
collapsed) tiles might not be correctly propagated through the grid once the main part of the
WFC starts. This problem has to be further investigated in the future.
As mentioned in 4.8, the recreated shape needs to have a valid color distribution for the lines
that cross the yellow shape for it to be solvable. In order to avoid an organizational overhead,

65



6 Evaluation

(a) 3x3x3 (b) 5x5x5

Figure 6.5: Two exemplary template images in template mode for di�erent grid sizes.

a simple approach was chosen to attempt to create such a distribution. Figure 6.13 shows the
results of the template mode for ten runs for each grid size and di�culty setting. The green
bar shows how many runs yielded a correct output image, the red bar displays how many
outputs were incorrect. The blue bar depicts how often the recreated shape was solvable with
regard to the color distribution. Gray stands for unsolvable color distributions. Considering
the simplicity of the method to ensure correct color distributions, the results are satisfactory.
A success rate of 5/10 or less for some grid sizes might seem bad. However, it should be kept
in mind that the algorithm would normally spot contradictions in the output and restart the
algorithm, if the bug was not present. After a set amount of normal restarts, a full restart would
be initiated which also includes the new recreation of the template shape. Therefore, without
the bug, the blue bar should theoretically always cover 100% of the runs. A possible drawback
would be, that the execution of the template mode could take up signi�cantly more time than
the normal mode. Therefore, a more e�ective method to create a valid color distribution would
be advantageous.
The results of the time measurements for the current state of the template mode can be seen
in �gure 6.14. As expected, the processing of the template image slows the algorithm down
in relation to the normal mode. Compared to the worst delay in execution time of around 1.8
seconds mentioned in the related work (3), the implementation of the template mode performs
worse. The biggest di�erence between the normal mode and the template mode is about 8
seconds for a grid size of 21x21x21. However, the execution time is still reasonable and satis�es
requirement 28.
Therefore, it can be concluded that the template mode, theoretically, ful�lls all requirements.
Fixing the mentioned bug should enable the algorithm to consistently produce correct output
images.

66



6 Evaluation

Figure 6.6: Error message when no template �le is selected.

Figure 6.7: Error message when the grid size in the template �le does not match the currently
selected grid size.

Figure 6.8: The output image is automatically displayed once the algorithm is �nished.

67



6 Evaluation

(a) 3x3x3_easy (b) 3x3x3_medium (c) 3x3x3_hard

(d) 5x5x5_easy (e) 5x5x5_medium (f) 5x5x5_hard

(g) 7x7x7_easy (h) 7x7x7_medium (i) 7x7x7_hard

(j) 9x9x9_easy (k) 9x9x9_medium (l) 9x9x9_hard

(m) 11x11x11_easy (n) 11x11x11_medium (o) 11x11x11_hard

(p) 21x21x21_easy (q) 21x21x21_medium (r) 21x21x21_hard

Figure 6.9: Filled out template �les of di�erent grid sizes with di�erent di�culties.

68



6 Evaluation

(a) 3x3x3_easy (b) 3x3x3_medium (c) 3x3x3_hard

(d) 5x5x5_easy (e) 5x5x5_medium (f) 5x5x5_hard

(g) 7x7x7_easy (h) 7x7x7_medium (i) 7x7x7_hard

(j) 9x9x9_easy (k) 9x9x9_medium (l) 9x9x9_hard

(m) 11x11x11_easy (n) 11x11x11_medium (o) 11x11x11_hard

(p) 21x21x21_easy (q) 21x21x21_medium (r) 21x21x21_hard

Figure 6.10: Results of the template mode for templates of di�erent grid sizes and di�culties.
69



6 Evaluation

Figure 6.11: False output image that should not have been created during template mode.

Figure 6.12: Average amount of restarts for di�erent grid sizes and di�culties in template mode.

70



6 Evaluation

Figure 6.13: Success rates and template solvability rates for di�erent grid sizes and di�culties
in template mode.

71



6 Evaluation

Figure 6.14: Average durations in template mode for di�erent grid sizes and di�culties.

72



7 Conclusion

7.1 Summary

This work creates a digital representation of the Tantrix board game and uses the Wave Function
Collapse algorithm to solve the game.
As a �rst preparation step, the game tiles from the real world are digitally recreated, yielding a
PNG image �le for every distinct tile. Next, the constraint �le, which describes what tiles can
be adjacent to each other, is built. For both steps Python scripts are being used.
The main software itself is divided into two main parts: the normal mode and the template mode.
The normal mode works like the Simple Tiled Mode introduced by Maxim Gumin (Gumin [2022]).
A grid of a user de�ned size, containing only empty cells at the beginning, is sequentially
�lled with tiles. Each tile that is placed adheres to its adjacency constraints. The completely
�lled grid is �nally saved to a PNG �le as the output. In order for both modes to work, the
framework, that this work is based on, needed to be expanded to support hexagonal tiles,
instead of the original squared format. Additionally, due to the inherent restrictiveness of the
Tantrix tiles, before a tile is placed on the grid, a neighborhood check has to be done to avoid
creating unsolvable situations.
A custom GUI allows the user to enter the desired grid size and start both modes. Furthermore,
the user can instruct the creation of an empty template �le which is needed for the template

mode. This �le contains a grid of empty hexagons in which the user can draw a shape that the
algorithm then tries to recreate. The �lled out �le can be loaded into the program via the GUI,
prior to starting the template mode.
Before the template mode starts the normal WFC, it tries to imitate the hand drawn shape,
using tiles with yellow lines. In order for the shape that is generated this way to be solvable,
each color that crosses this yellow shape needs to be present in an even amount of lines. The
template mode possesses a simple mechanism to try to create such a color distribution. In
case the algorithm is faced with contradictions, it restarts. If the amount of restarts reaches
a prede�ned threshold, this indicates that the shape might be unsolvable due to the current
color distribution. As a consequence, the template �le is retraced in a new attempt to create a

73



7 Conclusion

solvable shape.
During evaluation of the algorithm, several problems became apparent. The normal mode

works well for smaller grid sizes, creating no contradictions and therefore not needing any
restarts. However, at grid sizes of 31x31x31 and above, the program starts to run out of heap
space, causing it to cancel the execution.
In the template mode, there seems to be a bug which sometimes hinders the algorithm from
identifying contradictions. This prevents the initiation of required restarts and causes the
algorithm to place inappropriate tiles. The result is a faulty output image.
Nevertheless, in general, the algorithm is able to correctly retrace the input shape and produce
valid output images. That was the aim of this work, which is why the implementation can be
considered to be a success. The impact of the template processing on the runtime is noticeable
when comparing the template mode to the normal mode. However, the maximum di�erence in
average runtimes for the same grid sizes between the two modes was only about 8 seconds,
which is considered acceptable.

7.2 Outlook

While the implementation already works in its current state, there is still room for improve-
ments. The �rst (obvious) task for the future is to �nd the bug that sometimes prevents the
identi�cation of contradictions. Fixing this should elevate the success rate of the algorithm to
100%, since then restarts of the algorithm would be triggered correctly until a correct output is
generated.
Furthermore, in regard to memory usage, the algorithm can certainly be improved. During
execution, it might be advantageous to use other data types than Bu�eredImages for the tiles,
or to optimize the processing/handling of those.
In general, the algorithm could feature a check if the shape provided by the user is solvable
at all. Additionally, after the shape is retraced by the algorithm, it could already examine the
color distribution of the shape for solvability before handing it to the normal WFC part of the
program. This could eradicate unnecessary restarts later on.
While the restart mechanism should guarantee valid outputs, this might come at a severe time
cost. There are already implementations of the WFC that have the ability of backtracking,
should a contradiction be encountered. Introducing this feature to the current implementation
should also improve the runtime.
Lastly, this work only uses Tantrix tiles that exist in the real version of the game. It would

74



7 Conclusion

be interesting to introduce tiles to the program with color and line combinations that are not
available in the original version.

75



Bibliography

Adel Alshamrani and Abdullah Bahattab. A comparison between three sdlc models waterfall
model, spiral model, and incremental/iterative model. International Journal of Computer

Science Issues (IJCSI), 12(1), 2015.

Marios C Angelides and Harry Agius. Handbook of digital games. John Wiley & Sons, 2014.

K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003. ISBN
9781139438704.

A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling. In Proceedings of

the Seventh IEEE International Conference on Computer Vision, 1999. doi: 10.1109/ICCV.1999.
790383.

Mahbouba Gharbi, Arne Koschel, Andreas Rausch, and Gernot Starke. Basiswissen für Soft-

warearchitekten: Aus-und Weiterbildung nach iSAQB-Standard zum Certi�ed Professional for

Software Architecture–Foundation Level. dpunkt. verlag, 2018.

Maxim Gumin. Wavefunctioncollapse. https://github.com/mxgmn/WaveFunctionCollapse,
2022. Accessed: 03/06/2024.

G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Variations. Springer, 2007.

Petra Hofstedt and Armin Wolf. Einführung in die Constraint-Programmierung. Grundlagen,

Methoden, Sprachen, Anwendungen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

J. Ja�ar and J.-L. Lassez. Constraint logic programming. Association for Computing Machinery,
1987.

Achim Janser and Wolfram Luther. Der bresenham-algorithmus und andere graphische grund-
prozeduren. In Multimedia und Computeranwendungen in der Lehre. Springer Berlin Heidel-
berg, 1992. ISBN 978-3-662-00998-7.

Alan K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence, 8, 1977.

76



Bibliography

Paul Merrell. Example-based model synthesis. In Proceedings of the 2007 Symposium on

Interactive 3D Graphics and Games, I3D ’07, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595936288.

Niloy J. Mitra, Iasonas Kokkinos, Paul Guerrero, Nils Thuerey, Vladimir Kim, and Leonidas
Guibas. Creativeai: deep learning for graphics. In ACM SIGGRAPH 2019 Courses, SIGGRAPH
’19, New York, NY, USA, 2019. Association for Computing Machinery.

Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited. 1985.

Klaus Pohl and Chris Rupp. Basiswissen requirements engineering–aus und weiterbildung
nach ireb standard zum certi�ed professional for requirements engineering foundation level,
4. Au�age, Heidelberg, Dpunkt. verlag, 2015.

Francesca Rossi, Peter van Beek, and Toby Walsh. Chapter 4 Constraint Programming. In:

Handbook of Knowledge Representation, Bd.3. Elsevier, 2008.

Arunpreet Sandhu, Zeyuan Chen, and Joshua McCoy. Enhancing wave function collapse with
design-level constraints. In Proceedings of the 14th International Conference on the Foundations

of Digital Games, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450372176.

Noor Shaker, Julian Togelius, and Mark Nelson. Procedural Content Generation in Games. 2016.
ISBN 978-3-319-42714-0. doi: 10.1007/978-3-319-42716-4.

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christo�er Holmgård, Amy Hoover,
Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content generation via machine
learning (pcgml). IEEE Transactions on Games, PP, 2017. doi: 10.1109/TG.2018.2846639.

Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis. What is procedural
content generation? mario on the borderline. PCGames ’11. Association for Computing
Machinery, 2011.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the art in example-based
texture synthesis. In Eurographics 2009, State of the Art Report, 2009.

77



Glossary

Adjacency constraint A rule that dictates, which tile can be next to another tile.

Cell A single unit within the wave in the WFC, which shall be collapsed to a single state by
the algorithm. Also one unit within the grid that is �lled by the WFC.

Corner A line on a Tantrix tile that connects two adjacent edges.

CSP Constraint Satisfaction Problem - de�nes a problem, which can be solved with a
constraint solver.

Curve A line on a Tantrix tile that connects two edges, which have one edge in between them.

Grid A combination of multiple cell, arranged in a coordinate system.

Normal mode Mode that implements the simple tiled model from the WFC, adapted to support
hexagonal tiles.

PCG Procedural Content Generation - used to automatically generate assets, for example
buildings in a computer game.

Shape The outline of the drawing, that a user provides during template mode.

Straight A line on a Tantrix tile that connects two edges opposite from one another.

Tantrix The board game that this thesis is based on.

Template �le A PNG �le that contains a hand drawn shape which should be recreated in the
template mode.

Template mode Mode that extends the normal mode by adding the ability to create and process
a template �le.

Tile Represents a single state that a cell can be collapsed to. It also contains the image that
is shown on the grid for the cell, which was collapsed to this tile.

78



Glossary

Tracing The recreation of a hand drawn shape, using the yellow lines on the Tantrix tiles.

WFC The Wave Function Collapse algorithm, devised by Maxim Gumin.

79



Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 18. Juni 2024




