Hochschule fir Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Faculty of Engineering and Computer Science
Department Computer Science

Sandro Grizzo

Mapping process IDs to NFSv4 1/0O metrics
between computing and storage nodes

through Linux kernel inquiry using eBPF

Bachelor thesis submitted for examination in Bachelor 's degree

in the study course Bachelor of Science Informatik Technischer Systeme
at the Department Computer Science

at the Faculty of Engineering and Computer Science

at University of Applied Sciences Hamburg

First Supervisor: Prof. Dr. Christian Lins (HAW)
Second Supervisor: Dr. Thomas Hartmann (DESY)
Consultant Supervisor: Tigran Mkrtchyan (DESY)

Submitted on: 06.01.2025

Sandro Grizzo

Thema der Arbeit

Zuordnung von Prozess-IDs zu NFSv4 |/O-Metriken
zwischen Rechen- und Speicherknoten

durch Nachforschungen im Linux-Kernel mittels eBPF

Stichworte

eBPF, Linux kernel, NFSv4+, dCache-Speicher, DESY

Kurzzusammenfassung

Die Verwaltung komplexer wissenschaftlicher Rechen- und Speicheranlagen, wie die am
Forschungsinstitut DESY (Deutsches Elektonen-Synchrotron), stellt Systemadministratoren
insbesondere bei der effektiven Diagnose und Ldsung von Systemstdrungen vor grole Her-
ausforderungen. In dieser Arbeit wird die Entwicklung benutzerdefinierter eBPF-Programme
(extended Berkeley Packet Filter) untersucht, um den Einblick in den Betrieb des Linux-
Kernels zu ermoglichen und den Administratoren Uberwachungs- und Diagnosefunktionen zur
Verfligung zu stellen. Die vorgeschlagenen Programme zielen darauf ab, die Systemadminis-
tration insbesondere im Hinblick auf die Handhabung von Problemen zu vereinfachen und zu
beschleunigen. Dabei wird die Fahigkeit von eBPF genutzt, Echtzeiteinblicke in den Kernel

mit minimalen Leistungseinbulen zur Verfiigung zu stellen.

Sandro Grizzo

Title of Thesis

Mapping process IDs to NFSv4 1/O metrics
between computing and storage nodes

through Linux kernel inquiry using eBPF

Keywords

eBPF, Linux kernel, NFSv4+, dCache storage, DESY

Abstract

Managing complex scientific computing and storage facilities such as the ones at the research
center DESY (Deutsches Elektonen-Synchrotron), presents significant challenges for system
administrators, particularly in diagnosing and resolving issues effectively. This thesis explores
the development of custom eBPF (extended Berkeley Packet Filter) programs to enhance
visibility into Linux kernel operations and provide monitoring and diagnostic capabilities to
administrators. By leveraging eBPF's ability to enable real-time insights into the kernel with
minimal performance costs, the proposed programs in particular aim to simplify and accelerate

system administration practices with regard to managing issues.

Contents

List of Figures viii
List of Tables X
Listings Xi
List Of Acronyms Xiv
1 Introduction 2
1.1 Experimental Physics and Research at DESY and abroad 2
1.2 The Scientific Computing Infrastructure at DESY 4
1.3 The National Analysis Facility (NAF) 4
1.3.1 Bird's Eye View of a Job Workflow 5

1.4 Current State Analysis 6
1.5 Research Objectives 7
1.6 Related Work 8

2 Core Concepts 9
2.1 Processesand Threads 9
2.2 The Process Descriptor 11
221 Thecurrent Macro 12

2.2.2 Declaring a Per-CPU Variable for the current_task 12

2.2.3 Retrieval of the Per-CPU Variable 13

2.3 Process Identifiers 17
2.4 The System Call Interface 19
2.5 The Virtual Filesystem Switch (VFS) 20
2.6 The Common File Model 21
2.6.1 Filesystem Type Objects. 22

2.6.2 Superblock Objects 25

2.6.3 Inode Objects 26

2.6.4 Dentry Objects 27

2.6.5 File Objects 28

Contents

2.7 The File Description Table
2.8 The Network Filesystem Protocol Version 4+

2.9

2.8.1

NFSv4+ Features
2.8.1.1 Unified Core Protocol
2.8.1.2 Statefulness
2.8.1.3 Sessions
2.8.1.4 Compound Procedures and Callbacks
2.8.15 Parallel NFS

The dCache Storage System

29.1
2.9.2
293
294
295
2.9.6
29.7
2.9.8

Main Components of a dCache Instance
An Entry PointtodCache L.
The dCache Namespace Provider
Storage Pools and the Poolmanager Service
dCache Data Mover
dCache Internal File ID
Java NFSv4+ Server and RPC Implementations Used by dCache . . .
The dCache admin interface

3 Linux Kernel Tracing and Probing

3.1 Tracing and Metrics Collection Utilities

3.2

3.1.1
3.1.2
3.13
3.14
3.15
3.1.6

The 1sof Command
The /proc Filesystem
The rpcinfo, rpectl and rpcdebug Utilities
The tshark/wireshark Network Packet Tracer Utility
ftrace - Linux Kernel Function Tracer
Event Tracing
3.1.6.1 Tracepoint-Based Event Tracing
3.1.6.2 Kprobe-Based Event Tracing

eBPF (Extended Berkeley Packet Filter)

3.2.1
3.2.2
3.23
3.2.4
3.25

BPF Development Frameworks
BPF Program Structure
The BPF Verifier
The In-Kernel BPF Virtual Machine
BPF CO-RE and the BPF Type Format

52
53
53
54
56
59
60
61
61
62
63
64
65
66
67
68

vi

Contents

4 Methodology

4.1 The Test and Experimentation Environment

4.2 OQutline of the Custom BPF Programs

421 BPF program 1: nfs4_byte_picker
422 BPF program 2: nfs4_path_finderv
4.2.3 BPF program 3: socket_collector

4.3 Qutcome Verification Methods
4.4 Real-World Use Cases

5 Evaluation
5.1 Kernel Metrics Made Available Through
5.2 Time-Savings During Issue Management
5.3 User Process ID Tracking
5.4 NFSv4+ Bytes Per User PID

6 Discussion and Conclusion
References
Acknowledgments

A Appendix
A.1 Expansion Macros
A.2 Mounting a NFSv4+ Share

BPF

A.3 Filesystem Context and Superblock Objects with NFSv4+

A.3.1 Entering kernelspace
A.4 Inode Objects and NFSv4+
A.5 Dentries in the NFS Mount Process . .

A.6 XDR Encoding of a NFSv4+ LOOKUP Operation

A.7 Wireshark NFSv4.1 payload dissection

Declaration of Authorship

69
69
70
70
71
72
72
76

79
79
82
85
86

89

91

100

101
101
102
104
105
113
115
116
120

123

vii

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

25

2.6

2.7

2.8

2.9

2.10

3.1

4.1
4.2

Increase in dCache storage space (in PB) for HEP (blue) and photon science
(orange) at DESY over the last 13 years. Brighter colors show the absolute
space, darker colors the effectively used space. 3
Heatmap illustrating access to dCache storage elements on the y-axis over
time on the x-axis. Higher access rates are depicted in red, low activity is

shown in green. Each rectangle represents a time span of three hours. 7

Main components involved in servicing an NFS file /O operation on the client

Overview of interrelationships between VFS objects and other data structures
involved in the kernel's file and filesystem management (... indicate omissions) 30
The eia_clientowner field contents of the client’s EXCHANGE ID call
(all figures captured with t shark and dispayed with Wireshark Network Pro-

tocol Analyzer [1]) 33
The contents of the Data alias co_ownerid field of the same client Ex—
CHANGE_ID callasin Figure 2.3 33
The clientid constructed by the server and returned in its EXCHANGE 1D
reply . .o 34
The eir_server_owner field contents of the server's EXCHANGE_ID reply 34
pNFS control and data flow diagram 38
pNFS communication between NFSv4.1+ client, metadata server (MDS) and
data server (DS) for a OPEN and READ file I/O operation 41
Share of per-protocol transfers between the NAF and the dCache storage
system in August and September of 2024 44
Main components involved in servicing a NFS file I/O operation on the dCache
storageend 51
The eBPF infrastructure (drawn according to [2]) 64

JSON formatted entry from a socket_collector BPF program output . 74
Activity diagram of a Job Workflow as described in use cases 1 and 2 (no

custom BPF program involved) 78

viii

List of Figures

5.1
5.2

53
54
55

5.6

Al

A JSON formatted entry from the nfs4_path_finderV BPF program output 82
Kibana query result showing NFSv4+ paths opened by processes with PIDs
in the range of 2505-2535 and their scheduling activity from user with UID
35XYZ on the batch1568 worker node 84
Activity diagram of a Job Workflow with custom BPF program involved . . . 85
JSON formatted entry from the nfs4_byte_picker BPF program output 86
A Kibana query result showing the NFSv4+ bytes sent (blue) and received
(green) by a process with given PID on the batch1255 worker node 87
Kibana query result showing the sum of all bytes sent (lower) and received
(upper) through the network cards of the batch1255 worker node 88

NFS network packets exchanged between NFS client and server during the
mount process started with the command in Listing A.2 (captured by t shark,
displayed by Wireshark) 119

List of Tables

5.1 Comparison of metrics obtained through BPF to available metrics through
the dCache admin interface (IF). LEGEND: + = available - = not available

yet/doesnotapply 81
5.2 Comparison of time needed for the scanning of 18 file descriptors in the kernel 83

Listings

2.1
2.2
2.3

2.4
25
2.6
2.7
2.8
2.9

2.10

2.11

2.12
2.13

2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
2.22
2.23

The ulimit command with the —s switch for stack size retrieval 10
The getconf command yielding the utilized memory page size. 11
Retrieving the size of a task structure in bytes in the slab’s task struct cache

fromsysfs. 11
Declaration of the current_task per-CPU variable 13

Macro expansions showing the per-CPU variable's memory section assignment 13

Definition of the current macro 14
Macro expansions used in the access path to the per-CPU variable 14
The function macro definition of percpu_stable_op () 15

Same definition as in listing 2.8 but with all macros and parameters expanded
andreplaced. 15
The ps command listing the thread group #773. The NetworkManager thread
is the main thread and thread group leader. LWP stands for Lightweight
Process and denotes the actual thread's PID. 17
Excerpt from the st ruct file_system_ type asdeclaredin /include/lin-
ux/fs.h . 22
Invocation of modinfo command to verify module interdependence 23
The definition of nfs4_fs_type of type struct file_system_ type

in /fs/nfs/fs_context.c containing the first NFS specific routine (in

line4) invoked during the NFS mount process 24
The command shell prompt after login to the admin interface 47
Accessing the dCache NFS door 47
Listing available information on pools associated to the dCache NFS door . . 47
Querying the location of a file given the chimera ID 48

Asking the namespace provider sevice to transform a path into a chimera ID . 48

Asking the namespace provider sevice to transform a chimera ID into a path . 48

Retrieving information on active mover instances 49
Listing NFSv4.1 sessions associated to dCache storage nodes 49
Listing NFSv4.1 clients associated via a NFSv4.1 session 49
Retrieving information on NFSv4 transfers 50

Xi

Listings

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

51

Al

A2
A3

Excerpt output of the invocation of the 1sof command showing the remote
file .test nfs42.swp opened by the local program vim 54
Excerpt listing output of the /proc/1088623/£d directory revealing the
remote file .test nfs42.swp opened by the user process with PID 1088623 . . 54
Output of the content of the /proc/1088623/fdinfo/4 file revealing the
offset (pos) plus file flags and the mount ID/inode number combination which
renders the inode number unique even across multiple mounted filesystems [3] 55
Excerpt output of the content of the /proc/net/rpc/nfs file revealing
only numerical values without informative descriptions 55
Excerpt output of the invocation of the nfsstat command which applies
informative labels to the numerical values from Listing3.4. 56
Output of the invocation of the rpcinfo command with the -a option fol-
lowed by the server IP address and port number plus the transport to be used
and the specification of the RPC program number and version 57
Output of two invocations of the rpcct1 command showing RPC client and
transport (xprt) related metricso 57
Setting all available debug flags (with the —s option) for the RPC module (-m
rpc) using the rpcdebug utility followed by an invocation of the dmesg
command showing excerpts of the corresponding debug messages 58
Excerpt from the kernel sources in the /net/sunrpc/xprtsock.c file
revealing the responsilble dprintk statement and its parameters. 59
Excerpt from the xprt_request_transmit () kernel function reveals

three embedded tracepoints (comments added for clarity) 62

Assignment of the tk_owner field of a new RPC task structure with the

TGID of the current task inside the rpc_init_task () routine. 70
Testing BPF probe functionality at an early development stage using t race_—

pipe live stream (time stamps omitted for brevity) 73
Timing the 1s /proc/<PID>/fdcommand 82

Definitions in /arch/x86/include/asm/percpu.h used to expand the

percpu_stable_op macro (see 2.8) 101
The mount(8) command issued from the Linux command shell. 102
Excerpt from the output of the strace mount call (user PID: 9893) 103

xii

Listings

A4

A5

A6

AT

A8

A9

Excerpt from a function graph traced with ftrace showing the begin of
the in-kernel call sequence for the __x64_sys_mount () syscall (comments
added for clarity) 105
Excerpt from the body of the alloc_fs_context () routine (comments
and omissions added for clarity) 106
Sequel #1 of the in-kernel call sequence for the ___x64_sys_mount ()
syscall (comments added for clarity) 107
Sequel #2 of the in-kernel call sequence for the ___x64_sys_mount ()
syscall showing NFS specific function invocations (comments added for clarity) 109
Sequel #3 of the in-kernel call sequence for the ___x64_sys_mount ()
syscall (comments added for clarity) 112
Assigning the encode/decode routines for the NFSv4+ lookup operation . . . 117

A.10 Excerpt from the mount process function call graph in the NFS and RPC layer

(curly brackets and most ommission dots omitted comments added for clarity) 118

A.11 Linux NFSv4.1 client PUTROOTFH request dissected by wireshark 120
A.12 NFSv4+ server reply (on the dCache end) dissected by wireshark 121

xiii

List Of Acronyms

ALICE A Large lon Collider Experiment
ALPS Any Light Particle Search

API Application Programming Interface
ATLAS A Toroidal LHC ApparatuS

BCC BPF Compiler Collection

BPF see eBPF

BTF BPF Type Format

CERN European Organization for Nuclear Research
CO-RE Compile Once - Run Everywhere
CMS Compact Muon Solenoid

CPU Central Processing Unit

DCAP dCache Access Protocol

DESY Deutsches Elektronen-Synchrotron
DNS Domain Name System

DOT dCache Operation Team

DS Data Server

eBPF Extended Berkeley Packet Filter
EOS Exactly Once Semantics

FD File Descriptor

FLASH Freie-Elektronen-Laser in Hamburg
FTP File Transfer Protocol

GID Group Identifier

HEP High Energy Particle Physics

HPC High-Performance Computing
HTC High-Throughput Computing

ID Identifier

IETF Internet Engineering Task Force
JVM Java Virtual Machine

JSON JavaScript Object Notation

1/0 Input/Output

Xiv

Listings

IP Internet Protocol

LHC Large Hadron Collider

MDS Metadata Server

NAF National Analysis Facility

NFS Network Filesystem

NFSv4+ Network Filesystem Version 4 with + € {0, 1,2}
ONC Open Network Computing

OOP Object-Oriented Programming
PB Petabyte

PID Process Identifier

PNFSID Perfectly Normal Filesystem Identifier
pNFS Parallel NFS

RHEL Red Hat Enterprise Linux

RPC Remote Procedure Call

RFC Request For Comments

SMP Symmetric Multi-Processing

SSH Secure Shell

TGID Thread Group Identifier

TCP Transmission Control Protocol
UID User Identifier

UUID Universally Unique Identifier
VFS Virtual Filesystem Switch

VM Virtual Machine

WLCG Worldwide LHC Computing Grid
WN Worker Node

XDR eXternal Data Representation
XFEL X-Ray Free Electron Laser

XFS X Filesystem

XID RPC-related Transfer ID

XV

«Follow the white rabbit...»

The Matrix, Wachowskis, 1999

1 Introduction

In modern scientific computing and storage facilities, the increasing complexity and scale of
infrastructure pose significant challenges to system administrators. These professionals’ task
is to ensure the seamless operation of computational and storage systems that support a wide
range of research activities. The management of such facilities often requires deep insight
into system behavior to allow for a fast resolution of issues. However, obtaining these levels
of insight is a non-trivial task.

The Linux kernel, as the basis of many large-scale computing environments, plays a crucial
role in scientific system operations, too. Yet, despite its brilliantly engineered functionality, it
often appears as an opaque space in many aspects, making it difficult to gain detailed insight
into its internal workings. Unfortunately, this lack of transparency works to the disadvantage
of those tasked with handling the related issues. It often leaves system administrators without
the tools needed to fully comprehend or manage issues efficiently.

This thesis explores the development of custom eBPF (extended Berkeley Packet Filter)
programs tailored to enhance system administrators’ ability to monitor and diagnose system-
related issues in these complex environments. Leveraging eBPF as a customizable technology
offers a flexible way to enable real-time insights into the kernel's operations without sig-
nificantly impeding system performance. Through the design and implementation of these
custom-built programs, this study seeks to contribute to a more transparent system environ-

ment, supporting the operational efficiency of system administrators in their critical roles.

1.1 Experimental Physics and Research at DESY and abroad

The German research center DESY (Deutsches Elektronen-Synchrotron) has evolved into
an ideal catalyst for fundamental research in the field of experimental physics in the past six
decades. Besides its important role as driving force for the design, development and execution
of on-site and off-site experimentation, it offers an extensive computational infrastructure for
the analysis of data obtained through these experiments. [4] The main fields of experimental
physics hosted at the DESY campus encompass the domains of high energy particle (HEP)

physics, photon science and the development of accelerator technology. Photon science

1 Introduction

experiments are carried out at Petra Ill, a synchrotron radiation source, together with the
European XFEL and FLASH, which both produce ultra-short x-ray-laser flashes. [5]

The high energy particle sector at DESY is represented by an experiment named ALPS II.
This research project deals with lightweight particles and their potential entanglement with
the dark matter of the universe [6]. The main contributors to high energy particle research
and experimentation outside of the DESY campus are settled at the renowned LHC (Large
Hadron Collider) at CERN (Organisation Européenne pour la Recherche Nucléaire). This huge
circular accelerator, located underneath the border area between Switzerland and France is
home to experiments such as ATLAS, CMS, LHCb and ALICE. All of them, in one way or
another, examine the inner structure of particles and study the smallest forces that keep
matter consistent. [7]

A consequence of this vivid experimentation activity is a veritable «data deluge». The average
amount of collision data recorded on disk by the LHC experiments in 2024 has exceeded the
900 petabyte (PB) mark already. And the trend points upward. [8] Figure 1.1' shows the
demand for storage space at DESY over the course of the last thirteen years. Blue denotes the

demand by the on-site HEP experiments, while orange shows the same for photon science.

150
140
130
120
110
1600
90
80
70
60
50
40
30
20
10

Space [Bytes]
T © v v v © VUV U © ©U U © UV O WO

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Figure 1.1: Increase in dCache storage space (in PB) for HEP (blue) and photon science
(orange) at DESY over the last 13 years. Brighter colors show the absolute
space, darker colors the effectively used space.

lFigure kindly provided by Thomas Hartmann, NAF and Grid system administrator at DESY.

1 Introduction

1.2 The Scientific Computing Infrastructure at DESY

These large amounts of experimental data require infrastructure for their storage and archiving
as well as computing facilities to analyze them. With its scientific computing infrastructure,
the DESY research center provides storage and computational capacities to experiments con-
ducted both on campus and abroad. For the global HEP-Community, DESY contributes
to the Worldwide LHC Computing Grid (WLCG) as a Tier-2 grid computing center. The
Maxwell cluster on DESY campus offers a High-Performance Computing (HPC) platform for
the photon science data analysis. In addition, it allows GPU-accelerated computations for
Al development and complex simulations [9]. One of the two infrastructural components
relevant to this study is the National Analysis Facility or NAF. It serves as a general purpose
batch system optimized for High-Throughput Computing (HTC) [10]. This facility is briefly
introduced in Section 1.3. The entirety of the large-scale scientific computing infrastructure
at DESY constitutes the Interdisciplinary Data and Analysis Facility (IDAF). [7]

The second infrastructural element considered in this study is the dCache storage system. At
its core is an eponymous storage management software tailored specifically for the storage
of scientific data. It allows for the deployment of a highly available and scalable distributed

storage network.[11] The dCache storage system is described in more detail in Section 2.9.

1.3 The National Analysis Facility (NAF)

The NAF batch system, as the name states, is a computing facility available to scientists
at DESY as well as to researchers from other institutes located in Germany. At the time of
writing, the NAF comprises a total of 80 working group servers and about 200 worker nodes
hosting 10390 computing cores [12] with a performance benchmark according to the HEP
benchmark suite® HS23 [14] metrics of approximately 287 kHS23 [12]. All involved nodes run
the Red Hat Linux distribution (RHEL 9.4) as their operating system.

Among other computing tasks, such as the development, testing and debugging of applica-
tions, the NAF allows scientists to interactively perform small-scale, fast-turnaround analyses
of their experimental data [15]. The resource management of the worker nodes is managed
by a batch and scheduling software called HT Condor [16]. The open source software> pro-

vides an appropriate match of available resources on the worker nodes to the hardware and

*«The HEP Benchmark Suite is a toolkit which orchestrates different benchmarks in one single application
for characterizing the performance of individual and clustered heterogeneous hardware» [13].
*At the time of writing, HT Condor version 24.0.2 is used.

1 Introduction

computation time requirements of the user's computation tasks. The latter are commonly
referred to as user jobs by the administrators of the analysis facility. HT Condor allocates a
job to a so-called slot. These slots define the computation time, the number of CPU cores,
and the amount of memory resources tailored to match the job's requirements as closely as

possible.

1.3.1 Bird’s Eye View of a Job Workflow

For a user to submit an analysis job to the computing nodes of the NAF, they have to connect
to a working group server (WGS) first. After successful authentication with the WGS the user
starts job submission by defining their requirements in a submit file. Entering the appropriate
shell commands will initiate a sequence of steps according to the user’s specification of
computation time and hardware requirements.

HT Condor will . ..

evaluate the submit file and queue the job,

- negotiate an appropriate slot for the job,

- schedule the job within the chosen slot on a worker node,

- make sure the time and space constraints are not exceeded by the job,
- return computation results to the user application and

- free the slot off the worker node after expiration of assigned computing time.

In order to perform the desired computation during the execution of the job, externally stored
file data are required. In the case of the NAF, the file data are stored and managed by the
dCache storage system. In order to access the remotely stored file data, a filesystem tree of the
dCache storage is mounted onto the worker node’s local filesystem via the network filesystem
protocol version 4.1 (NFSv4.1). This is accomplished by the Linux built-in NFSv4+ client on
the computing nodes of the NAF and a Java-based custom NFSv4.1 server implementation
on the dCache storage end. The NFSv4.1 client handles the user job's file /O requests such
as open, read and write, by serializing them with the help of remote procedure calls (RPC)
which are subsequently transmitted via the Transmission Control Protocol (TCP) across an
Ethernet network.

At the other end of the network, a dCache NFSv4+ entry point receives the RPCs and
deserializes them to NFSv4+ operations again. Once the appropriate dCache storage node

that is capable of serving the file I/O request is determined, the transmission of the file data

1 Introduction

is initiated. Files stored on dCache storage are immutable. Consequently, they can be written
to or read from the storage nodes. But modified file data is never written back to the same
file again4. The file data received by the NFSv4.1 client on the worker node of the NAF is
made available to the user’s job for computations and analyses subsequently.

Section 2 provides a more detailed discussion of the two core concepts briefly introduced here.
The dCache storage system is covered in Section 2.9, while the NFSv4+ protocol is addressed
in Section 2.8.

1.4 Current State Analysis

Considering the number and complexity of interactions between components of a computing
and storage environment as the one presented above, the probability of any kind of issues to
arise is high. The issues contained in the task space which administrators of these facilities
are confronted with depend on multiple factors that are not always clearly distinct from one
another. The fact that system administrators at DESY have no insight into the source code
of jobs submitted by the scientific users of the facilities often leaves them guessing as to the
solution for issues they perceive. Consequently, their ability to take appropriate measures is
limited to the amount of information or metrics about the flawed system accessible to them.
Several recently submitted theses address this lack of information on the administrator’s side
and explore potential solutions to increase the amount of valuable metrics to facilitate and
accelerate solving issues. One of the submitted theses deals with dCache storage access pat-
terns from user jobs that endanger the high availability of the storage system by overloading
storage elements, consequently throttling transfer rates or even rendering the former inacces-
sible [18]. The author of the stated thesis proposes and implements a software utility based
on machine learning algorithms aimed to allow predictions about potentially harmful access
patterns. A second thesis proposes enhancing information readily available to administrators
by providing pre-mortem messages from a dCache component involved in data transfer called
mover (see chapter 2.9) [19]. Through these messages, such issues as the overload of stor-
age elements mentioned earlier can be anticipated and prevented. Figure 1.2° illustrates the
effect of diverging access patterns of user jobs onto dCache storage elements over time. Each
colored rectangle represents a time span of three hours. The heatmap depicts high access

rates in reddish colors, while low activity is colored green.

*This type of storage is commonly referred to as WORM - Write-Once, Read-Many storage [17]
*Kindly provided by Tigran Mkrtchyan, head of the dCache developer team at DESY.

® 0-8706

1 Introduction

* 8706 -171.2 17112 - 2,618 * 2611.8-3,482.4 3,182 - 1,353 e 1,353 - 4,354 o >1351

Figure 1.2: Heatmap illustrating access to dCache storage elements on the y-axis over time
on the x-axis. Higher access rates are depicted in red, low activity is shown in
green. Each rectangle represents a time span of three hours.

Another issue related to the NFSv4+ communication between computing nodes and storage
nodes at DESY is the infinite NFSv4+ client loop. An unrecoverable loss of state information
between a metadata server and a data server causes a NFSv4+ client to oscillate infinitely
between the two servers due to contradictory information received from either. While the
client loops, the user’'s application hangs waiting for the 1/O request to complete. This,
among many other issues, shows the urgent necessity to provide administrators with insight

into the inner proceedings of their systems.

1.5 Research Objectives

This present thesis aims to pursue this goal by providing administrators with an x-ray view
into one of the principal software components underlying the whole scientific computing in-
frastructure at DESY: The Linux operating system kernel. This is achieved by leveraging
a technology called eBPF whose infrastructure is already built into the Linux kernel itself.
The eBPF technology enables the monitoring of all kernel subsystems at runtime. It al-

lows the collection of relevant metrics that can help administrators to aggregate valuable

1 Introduction

information about their systems at runtime and derive effective strategies for the resolution
of kernel-related issues[2]. This work focuses primarily on monitoring the kernel's built-in
NFSv4+ client including its associated subsystems. It specifically explores the viability of
obtaining metrics about the amount of data transferred via the NFSv4+ protocol and the
feasibility of attributing those amounts of data to a specific user's job or a sub-process con-
tained therein. Furthermore, it investigates the potential time-savings in the administrator’s
procedure of attributing opened file-related metrics to user jobs with and without the help
of eBPF. This comprises the implementation of three custom eBPF programs including the

gradual verification of the accuracy of the obtained metrics.

1.6 Related Work

Apparently, as far as the author's inquiries are concerned, no research has been done on this
site-specific subject to date. However, in the context of research on leveraging eBPF to track
down system specific performance issues such as network bottlenecks [20], memory manage-
ment issues [21], lock and scheduling related problems [22], as well as security issues [23, 24],
many articles and even a few books [2, 25] have been published by researchers as well as
expert system administrators. One recent publication [26], which could be considered closely
related to the research objectives of this present thesis, addresses the subject of real-time
NFS performance metrics extraction with a custom-built eBPF program called Tracklops.
The said publication, however, looks at the subject for the sake of mitigating load-balancing

issues which is not directly the concern of this present work.

2 Core Concepts

This section examines the core concepts underlying the development and application of the
proposed custom eBPF programs. The purpose of this detailed exploration is to outline
the level of understanding required to identify and gather all relevant information from the
involved systems and technologies, such as the Linux kernel.

The ultimate goal of the eBPF programs is to monitor metrics from the running Linux kernel
and make them accessible to system administrators. Identifying the appropriate approach for
developing and applying an eBPF program requires a thorough understanding of the kernel
subsystem to be monitored. Part of this identification process is reflected in the descriptions
provided in the following sections.

All given references and paths to the Linux kernel source code are meant relative to the root

directory of the kernel source tree and refer to version 5.14.

2.1 Processes and Threads

One fundamental concept in operating systems is that of a process. According to a commonly
cited definition, a process is an instance of a program in execution [27, 28]. Every userland
process has its own user address space allocated in memory that is not accessible by other
userland processesl. Neither can this very process access address spaces of other processes,
unless it utilizes inter-process communication mechanisms provided by the kernel exactly for
that purpose. The address space of a userland process is subdivided into so-called segments,
or mappings in memory. One of these segments contains one, out of two, of the process’
stacks, called user mode stack, as opposed to its kernel mode stack, discussed further below
in this section. In addition, the dynamically allocatable heap memory as well as segments for
the machine code (.text segment) of the process and its global and static variables (.data
segment) coexist in this user address space. Library code used by the process is typically
also mapped between the stack and heap segment. Every process consists of at least one
thread of execution, commonly referred to as main thread. A thread can be considered an

independent execution path within a process. Although being independent, it shares all the

"The following information are cited from [29], if not mentioned otherwise.

2 Core Concepts

system resources currently used by the process as well as the segments that are contained
within the address space of the process, apart from its stack. Naturally, the extent of shared
resource usage between a newly spawned thread and its parent thread can be customized with
the help of flags passed as arguments to the clone () call, which is invoked whenever a new
thread has to be spawned. Each thread has its own stack memory space that is not shared
with other threads but is smaller in size than the main thread's stack space. The Linux default
main thread's stack size can be queried from a command shell with the ulimit command,

as shown in Listing 2.1.

$ ulimit -s
8192

Listing 2.1: The ulimit command with the —s switch for stack size retrieval

The ulimit command, invoked with the —s option, yields the value of 8 MiB (the values
are in increments of 1024 bits). New threads spawned by the main thread during run-
time, usually get a default stack size of 2MiB on x86 64 architectures, according to the

man 3 pthread_create Linux manual page entry.

In Linux, there are two levels of execution privileges. Each processor architecture executes
specific instructions to switch between these two levels. One is the unprivileged user mode,
which is active when userland program code is being executed on a CPU core. In this mode,
the process is unable to access any kernel data structures. The very moment the user process
requires access to resources or data that are unreachable from within the unprivileged user
execution context, a system call (more on this in Section 2.4) has to be issued toward the
kernel, triggering a switch from user mode to privileged kernel mode. In kernel mode, kernel
code paths are executed safely and efficiently to service the user thread's requests. Once the
request is completed, the user process is switched back to unprivileged user mode [27]. While
executing in kernel mode, the user thread utilizes its kernel mode stack allocated to every
active process within kernel memory. Consequently, every user thread, including the main
thread, has access to two stacks, the one it owns in the user address space and the other
residing in the kernel address space of memory. One exception from this proceeding are the
so-called kernel threads. These threads are either created at boot time and have very specific
tasks assigned to them, or they are created on demand, whenever needed. Kernel threads
execute kernel code exclusively and therefore have access to a stack in kernel memory only.
They are completely unaware of the userland address space. In contrast to the size of the

user stack, the kernel stack spans only 4 pages on 64-bit architectures, with a typical page

10

2 Core Concepts

size of 4KiB. The page size can be easily verified by invoking the get conf command on a

Linux command shell as shown in Listing 2.2.

$ getconf PAGE_SIZE
4096

Listing 2.2: The getconf command yielding the utilized memory page size.

Awareness of the stack sizes is relevant for understanding the constraints enforced by the
verifier component in the context of the in-kernel eBPF probe development described in
Section 3.2.

2.2 The Process Descriptor

One of the main purposes of an operating system is to enable user applications to run safely
and fast. Thus, in the context of active applications and processes, it is often stated that
the Linux «kernel itself is not a process but a process manager» [27]. In order to keep track
of all processes running on the system, be it threads in user applications or kernel threads,
the kernel maintains a process descriptor, sometimes also referred to as process control block
(PCB). It is allocated within a kernel slab cache in the form of a data structure called st ruct
task_struct, defined in /include/linux/sched.h. The slab cache is the domain
of the slab allocator which, instead of performing frequent time-consuming allocations and
de-allocations, maintains memory areas of fixed sizes and reuses them for repeated memory
allocation requests of the same type [27]. The size of the rather large task data structure is
almost 8 KiB. This value can be obtained by querying the slab’s task struct cache from a

command shell as shown in Listing 2.3 [30].

cat /sys/kernel/slab/task_struct/object_size }
7368

Listing 2.3: Retrieving the size of a task structure in bytes in the slab’s task struct cache
from sysfs.

In the following, the terms process, thread and task are used interchangeably.

As mentioned before, the st ruct task_struct isthe kernel's representation of one active
thread of execution. It gathers all available information about the thread's execution context.
The data structure stores information about the process' state, the memory address space

and its usage, CPU scheduling details such as priorities, currently opened files, credentials

11

2 Core Concepts

and identifiers as well as relationships to other processes such as parent, siblings and children.
In total, struct task_struct contains more than 270 fields. Filesystem and namespace
information are also contained. Additionally, the kernel maintains a circular, doubly linked list
of type struct list_head in a field called tasks containing pointers to the previous
and the next active task structures, respectively. Naturally, the head of this list is the task first
born during the system'’s boot process, the root of the task tree, called init_task[27].

2.2.1 The current Macro

For the sake of lookup, retrieval, and manipulation of information it is indispensable that
the diverse kernel subsystem routines have access to the task structure of the currently
running thread at any time. While iterating the tasks list for this purpose is too costly
due to the potentially high number of tasks in the list and the application of costly locking
mechanisms, the kernel developers have designed a different, more efficient approach. A
macro called current is utilized that contains the pointer to the task structure of the
currently executed thread. The definition of the current macro is architecture-dependent.
And while architectures like aarch64 or powerpc store the pointer in one of their abundant
processor registers, where it can be read from very rapidly, the x86_64 architecture lacks
this abundance of registers. Thus, the mechanism used in x86_64 architectures to retrieve
the pointer to the struct task_struct containing the current execution context, starts
by declaring a so-called per-CPU variable. [29]

2.2.2 Declaring a Per-CPU Variable for the current_task

These special variables are allocated in a per-CPU memory area of each processor core present
in a symmetric multiprocessing (SMP) system. The advantage of using per-CPU variables is
that every processor core has its own copy of the per-CPU variable, allowing a fast, lock-free
yet exclusive access to its own instance of the variable [31]. In order to set the preconditions
for the retrieval of a per-CPU variable's value, like the pointer to struct task_struct,
from the per-CPU memory area, the per-CPU variable has to be declared first. Listing 2.4
shows the DECLARE_PER_CPU macro, which takes the type of the per-CPU variable to be

declared and an identifier as arguments.

12

2 Core Concepts

[DECLARE_PER_CPU (struct task_structx, current_task); }

Listing 2.4: Declaration of the current_task per-CPU variable

The chain of macro expansions, all defined in /include/linux/percpu-defs.h is
shown in Listing 2.5.

#define DECLARE_PER_CPU (type, name)
DECLARE_PER_CPU_SECTION (type, name, "")

/% which in turn expands to */
#define DECLARE_PER_CPU_SECTION (type, name, sec)
extern _ PCPU_ATTRS (sec) __ _typeof__ (type) name

/* which expands to #*/

#define _ PCPU_ATTRS (sec)

__percpu __attribute__ ((section (PER_CPU_BASE_SECTION sec)))
PER_CPU_ATTRIBUTES

/% with PER _CPU_BASE_SECTION finally expanding to */
#define PER_CPU_BASE_SECTION ".data..percpu"

Listing 2.5: Macro expansions showing the per-CPU variable’'s memory section assignment

The last line of Listing 2.5 reveals that after all macros are expanded, the current_task
per-CPU variable is allocated in the .data. . percpu section of the per-CPU memory area of
each processor core. This occurs, as already established above, during the kernel initialization
phase at system boot time [32]. With this precondition set, it is now possible to comprehend
how the access path to the currently running thread’'s task_struct pointer is implemented

by studying the kernel sources.

2.2.3 Retrieval of the Per-CPU Variable

Returning to the /arch/x86/include/asm/current.h file, in which, apart from the
per-CPU variable declaration macro described above, the current macro is defined for
machines with x86_64 processor architectures. This macro definition is illustrated in List-
ing 2.6.

During compile time, current is replaced by the function call to get_current () by the

C compiler’s preprocessor everywhere in the kernel code. As expected, the get_current ()

13

2 Core Concepts

[#define current get_current () }

Listing 2.6: Definition of the current macro

function returns a pointer to the struct task_struct of the currently running thread.
It is actually a wrapper for a macro named this_cpu_read_stable (current_task).
The latter is defined in /arch/x86/include/asm/percpu.h like the rest of the macro
definitions and inline assembly code presented in the following with one exception. The
macro called _ pcpu_size_call_return(stem, variable), which is also part of

Listing 2.7, is defined in /include/linux/percpu—defs.h instead.

#define this_cpu_read_stable (pcp)

__pcpu_size_call_return(this_cpu_read_stable_, pcp)

/* which, assuming a variable size of 8 bytes returns: x/

this_cpu_read_stable_8 (pcp)

/* which itself 1s a macro that resolves to #*/

#define this_cpu_read_stable_8 (pcp)

percpu_stable_op (8, "mov", pcp)

Listing 2.7: Macro expansions used in the access path to the per-CPU variable

At the very end of the macro expansion chain, as shown in Listing 2.7, another macro called
percpu_stable_op (8, "mov", pcp) emerges. It contains the inline assembly code
needed to copy the per-CPU variable from the per-CPU memory area to a general-purpose
register of the processor core for fast retrieval. This piece of kernel code, illustrated in its
original form in Listing 2.8 needs a more detailed explanation. To a great extent, the difficulty
to read it results from its generic nature. Note that Listing 2.9 shows the same definition as
Listing 2.8. But, for the sake of clarity, all macros are expanded and the actual parameter
values are passed to the parameter list. These parameters replace every variable listed in the
function body that references one of them. Now the code reveals the instructions that are
used to find the address of the current_task per-CPU variable at runtime. The listing
containing the macros used for expansions and replacements can be found in Appendix A.1.

14

2 Core Concepts

1 #define percpu_stable_op(size, op, _var)

2 ({

3 _ _pcpu_type_##size pfo_val_ ;

4 asm(__pcpu_op2_##size (op, _ _percpu_arg(P[var]), "S[vall")
5 : [val] __pcpu_reg_##size("=", pfo_val_)

6 [var] "p" (&(_var)));

7 (typeof (_var)) (unsigned long) pfo_val__ ;

8 1)

Listing 2.8: The function macro definition of percpu_stable_op ()
The code of Listing 2.9 begins with the declaration of a variable of type unsigned integer,
64-bit in size, called pfo_val__. Inline 4 the asm keyword announces a forthcoming block

of inline assembly code to the gcc compiler.

#define percpu_stable_op (8, "mov", current_task)
({
u64 pfo_val__ ;

asm("movg %$%gs:%P[var] , %[vall")

[var] "p" (& (current_task)));

1

2

3

4

5 : [val] "=r" (pfo_val_)

6

7 (typeof (current_task)) (unsigned long) pfo_val__ ;
8

})

Listing 2.9: Same definition as in listing 2.8 but with all macros and parameters expanded
and replaced.

According to the documentation [33] of the GNU Compiler Collection, the general AT&T

syntax of the assembly code in lines 4 through 6 can be formalized as:

7 < instruction+wordsize >< src >:< of fset >, < dst > 7
1< output operand constraints >

1< input operand constraints >

With this in mind, the assembly instructions can be interpreted as the following sequence of
actions:
Copy the contents of the memory address®, to which the contents of the gs register plus

the offset to the memory address of the current_task per-CPU variable points to, into

’Of a quadword, hence the g appended to the mov mnemonic. In contrast to a byte (8-bit), word (16-bit)
and long (32-bit) wordsizes, the quadword on x86 64 architectures is defined as being 64-bit in size [34].

15

2 Core Concepts

a general purpose register of the processor and store it in the pfo_val__ variable. Finally,
cast the pfo_wval__ variable to be of type struct task_structx* pointer.
The documentation notes found in /arch/x86/include/asm/stackprotector.h

inform about the following gs register related context:

«[...] The same segment (to which the contents of the gs register points to)3 is
shared by percpu area and stack canary.
On x86 64, [...] %gs (64-bit) points to the base of percpu area. [...]»

The mentioned stack canary4 is a method to check for and protect against stack over-
flows by issuing a warning in the case a stack canary is overwritten by buggy or malicious
code. However, with the chain of events described above, the kernel is able to retrieve the
struct task_struct of the currently running task whenever needed. This is achieved
by expanding the current macro down to assembly instructions which allow the memory

address of the task structure to be read and copied from per-CPU memory rapidly.

*Added for clarity.

*The term canary is said to be deriving from the days of coal mining. Canaries were used as alarms in case
poisonous gases leaked. The moment the canaries stopped singing, it was time to leave [35].

16

2 Core Concepts

2.3 Process ldentifiers

As seen in Section 2.2 the kernel maintains a st ruct task_struct for each active thread
of execution. The task structure has two fields of type pid_t. One is called pid, the other
one is called tgid. The PID or process identifier field contains a numeric value that uniquely
identifies every single active thread. The TGID which stands for thread group identifier in
turn uniquely identifies the thread group each active thread with a given PID belongs to. In
a single threaded process, the only thread that exists is the main thread. Its TGID is the
same as the its PID. The main thread, being the first thread of the process, is automatically
assigned the role of the so-called thread group leader. In a multi-threaded process this still
applies for the main thread. The other threads share the main thread's TGID but have a
distinct PID assigned to them. Listing 2.10, for once, does not seem helpful in clarifying
the circumstances of the identifiers in a multi-threaded process. The reason is that since the
POSIX standard demands all threads in a multi-threaded process to have the same PID, their
actual PID is stored in the t gid member of each thread's st ruct task_struct and the
shared TGID is stored in the corresponding pid field. Consequently, the ps command which
lists all processes and threads on the Linux command shell, shows the actual TGID under the
column named PID and the individual PIDs of each thread under the column named LWP
which stands for Lightweight Process. [27, 29]

ps -LA | grep 773

PID LWP TTY TIME CMD

773 773 ? 00:30:25 NetworkManager
773 816 ? 00:02:21 gmain

773 817 ? 00:00:00 gdbus

Listing 2.10: The ps command listing the thread group #773. The NetworkManager thread
is the main thread and thread group leader. LWP stands for Lightweight Process
and denotes the actual thread's PID.

Things start getting more complex in situations where multiple so-called namespaces are
required. This is the case in containerized environments where every container has its own
set of identifiers that overlap with those of other namespaces. But since containers are
isolated entities within a given root namespace there is no danger of confusion between the
identifiers of the different namespaces. Still, other issues can arise which unfortunately go
beyond the scope of this present thesis and will be not further considered. The Linux kernel,

however, is well capable of handling multiple namespaces. [36]

17

2 Core Concepts

user process

)

N

libraries
syscalls()

userland

[
v
.................]

system call interface |-

kernelspace

dentry
cache

inode
cache

local storage

network

Figure 2.1: Main components involved in servicing an NFS file /O operation on the client
side

18

2 Core Concepts

Interfacing Userland and Kernelspace

In order to understand the operating principles of eBPF with respect to file /0O, it is crucial
to examine how the kernel deals with file 1/O requests coming in from userland. File 1/0O op-
erations include all routines operating on files and manipulating their contents. Fundamental
operations perform tasks like creating a new file, opening an existing file, either stored on
disk, in memory or remotely, retrieve or assign file attributes or so-called metadata, read from
and write to a file and, of course, close the file or remove it. And since the old paradigm that
in Unix «Everything Is A File» [36] still holds true, file I/O operations apply to numerous
operating system objects such as regular files, pipes, directories, sockets and device files, also
known as special files. [28] Flawless file 1/O is a crucial aspect in all digitalized domains,
including the one of experimental physics, where files hold the precious experimental out-
comes. Therefore, the mechanisms and requirements of file |/O handling from userland to
kernelspace are described in the next sections. Therein, special focus lies on the interplay of
the kernel subsystems involved in file /O with the built-in network filesystem client which is
extensively used for file transfers between computing worker nodes and dCache storage nodes
in the HTC environments at DESY.

2.4 The System Call Interface

Considering the fact that userland applications commonly do not have the privileges to interact
with hardware components directly, they have to call into the kernel to request the system
resources needed to perform the computation they were written for. The mechanism to
perform this task is by issuing a system call (also called syscall in kernel developer parlance)
into the kernel. In most cases the syscall issued by the application is a wrapper around the
actual userland syscall code. Thus it does not directly call into the kernel, but, as shown in
Figure 2.1, takes a detour into a standard library such as e.g. libc. [28] The first boundary
landmark the library syscall encounters on its way into the kernel is the system call interface.
This interface permutes the userland syscall to a generic kernel syscall that the underlying
kernel layers, such as the virtual filesystem switch (more in Section 2.5), will understand. In
accordance with the definition of an interface being a collection of function declarations in
contrast to their concrete implementation, the function permutation that the syscall interface
performs, helps to avoid mingling userland with kernel function code, whilst maintaining
flexibility in the kernel's syscall implementations [28]. In this context, the utilization of an

interface at the boundary between userland and kernelspace contributes to maintain a kernel

19

2 Core Concepts

developer’s paradigm called «Do Not Break User Space!» [37, 38]. Evidently, the goal is to
be able to make frequent and numerous improvements to kernel code in an ever-accelerating
release process without affecting the operability of userland programs.

It is worth mentioning the similarity of the interface usage approach in the Linux kernel
to common design patterns in object-oriented programming languages as discussed in Neil
Brown's article about object-oriented (OOP) design patterns in the Linux kernel [39]. In OOP
an interface contains function prototypes that an object of the implementing class must be
able to call to validly represent its declared type [40]. The kernel displays this concept in its
virtual filesystem layer (see also Section 2.5). This layer acts as a uniform interface, which
contains file 1/O operations as function prototypes that every interfacing filesystem must
implement to be considered interoperable. Erich Gamma et al. expressed this in their design
principle called «program to an interface, not an implementation» [41], which by implication

means that the interfaces must not be changed.

«Since changing interfaces breaks clients you should consider them as immutable
once you've published them.[...] Once you depend on interfaces only, you're
decoupled from the implementation. That means the implementation can vary,
and that's a healthy dependency relationship.[...]» [42]

More similarities to OOP design patterns will be pointed out in the further course of the

description.

2.5 The Virtual Filesystem Switch (VFS)

Once the syscall has made the transition into the kernel, it hits the virtual filesystem switch
layer. This layer is often simply referred to as virtual filesystem. Although unreflected in its
name, the term virtual filesystem points to the fact that it acts as an interface to numerous
filesystem implementations [43]. It interacts with them through a common set of functions.
Without, however, being a real filesystem itself, but rather a virtual one. Looking at it from
another angle, it can also be seen as a decision node or a demultiplexer, receiving one syscall
as input and deciding on a set of function arguments, which of the many specific filesystem
implementations (outputs of the demultiplexer) to delegate the call to. The latter view is
emphasized by the term virtual filesystem switch, which simultaneously avoids a name clash
with filesystems like procfs, sysfs, devfs and many other virtual (or pseudo) filesystems, that
solely exist in memory. Both ways of looking at the VFS are equally valid. Additionally, there

is a second crucial aspect to the purpose of the VFS layer. File I/O operations like reads and

20

2 Core Concepts

writes of file data stored on storage devices like hard disks or tape machines, especially those
to remote ones, are slow and costly for obvious reasons. As an intermediate layer designed to
facilitate and accelerate the access to the requested file data, the VFS therefore also queries
different caches for a potentially faster retrieval of recently used file metadata and contents
(see also Figure 2.1). In case of cache hits, that is the presence of the requested data in the
cache, the call chain towards the corresponding filesystem is discontinued, as long as the file
[/O request can be serviced out of the cache directly. The caches, upon which the VFS heavily
relies, are namely the page cache, the inode cache and the directory entry cache, or shortly
dcache. Not to be confused with the distributed storage system management software dCache
mentioned earlier. The inode cache and the dcache both store VFS objects that are part of

the kernel's common file model, which will briefly be described in the following section.

2.6 The Common File Model

In the same way as the VFS requires the underlying filesystems to implement a common set
of file 1/O routines to ensure interoperability, it also enforces the exposure of a number of
filesystem objects. This has to be fulfilled in such a way, that both, VFS and filesystems,
can agree on these representations as being structured according to the specification of the
kernel's common file model. As W. Mauerer states in his book about the architecture of the
Linux kernel, this common file model is a «structure model consisting of all components that

mirror a [...] filesystem>» [36]. The common file model comprises the following components:

o filesystem type objects

e superblock objects

dentry objects (common abbr. for directory entry objects)

inode objects (common abbr. for index node objects)

file objects

All of these objects are software constructs that, just like the classes found in object-oriented
design, define fields that hold state information about the object and routines that define

which actions an object is able to perform [27].

21

2 Core Concepts

2.6.1 Filesystem Type Objects

Although most literature about the Linux kernel does not list it as a member of the group
of common file model objects, the filesystem type object plays a crucial role in registration
and identification of all filesystem types that the kernel maintains. The VFS actually enforces
filesystem implementations to define a data structure called struct file_system_type
declared as a prototype in /include/linux/fs.h. As the name states, the filesystem
type object holds information about the type of a specific filesystem that the kernel is already
aware of. That is either because the module containing the filesystem has been loaded into

kernel memory or it has been already mounted.

1 struct file_system_type {

2 const char xname;

3

4 int (xinit_fs_context) (struct fs_context «);
5 const struct fs_parameter_spec *parameters;
6

7 void (xkill_sb) (struct super_block x);

8 struct module xowner;

9 struct file_system type x next;

10 struct hlist_head fs_supers;

11 5

12 };

Listing 2.11: Excerpt from the struct file_system_type as declared in
/include/linux/fs.h

Listing 2.11 shows an excerpt from the struct file_system_type revealing most of
its contents. Line 2 lists the declaration of a field called name which is used as an identi-
fier for the specific type of filesystem such as e.g. nfs4, ext4 or btrfs whenever it is
mounted. By means of this identifier and its length, it is found in the singly linked list of
pointers to filesystem type structs. As will be shown in an example further below in this
section, this list contains pointers to all filesystem type structs that have been already regis-
tered by the VFS. The next field of type struct file_system_type pointerin line 9
of Listing 2.11 points to the next filesystem type entry in this list. The corresponding rou-
tines performing tasks such as register_filesystem(), find_filesystem() and
get_fs_type () are all defined in /fs/filesystems.c of the kernel sources.

Furthermore, in its function as a uniform interface for all filesystem types, the VFS declares
function pointer prototypes within its filesystem type object. Lines 4 and 7 of Listing 2.11

show two function pointers declarations that will be assigned a memory address of a filesystem

22

2 Core Concepts

specific function implementation in the course of the registration procedure. The struct
fs_parameter_spec serves the purpose of storing the types of all potential parameters
associated with a specific filesystem. For NFS, this long list of parameters is defined in
/fs/nfs/fs_context.c as an array called nfs_fs_parameters of type struct
fs_parameter_spec. The module owner in line 8 of Listing 2.11 holds a reference to
a list of all modules known to the kernel, the module’s state and the name of the module,
respectively.

The fs_supers field in line 10 of Listing 2.11 holds a reference to the head of a list con-
taining all superblocks (see Section2.6.2) of filesystems belonging to one type only. This
list is maintained by the kernel to keep track of the many filesystem instances of the same

filesystem type that are mounted simultaneously. [36]

But how and at which point does the VFS become aware of the nfs4 filesystem type?
To understand this, the filesystem registration procedure has to be examined in more detail.
Before the nfsv4 module can be loaded into the kernel, three other modules have to be
loaded first. Namely the dns_resolver, sunrpc and nfs module. The order in which
they are listed here is the same order in which they are loaded into kernel memory as a cause
of their interdependence. Listing 2.12 shows the verification of this statement by invoking

the modinfo command on the Linux command shell.

$ modinfo nfsvi4

depends: nfs, sunrpc,dns_resolver

Listing 2.12: Invocation of modinfo command to verify module interdependence

Repeating the above procedure by invoking modinfo for each of the three modules that
nfsv4 depends on, finally reveals their loading sequence mentioned above. An examination
of the kernel code shows that the nfs module performs the actual registration with the VFS

as described in the following.

Whenever the nfs module needs to be loaded into kernel memory, the routine module_-
init (init_nfs_fs) is invoked. The routine init_nfs_fs () itself causes both, the
nfs and the nfs4 filesystem types to be registered. At the same time it invokes func-
tions that initialize caches such as the page cache and the inode cache, already introduced
in Section 2.5, reserved only for the NFS filesystem. The registration proceeds within the
body of a routine called register_nfs_fs () defined in /fs/nfs/super.c. Focusing

on the registration of the nfs4 filesystem type only, from this point on, the call to the

23

2 Core Concepts

generic function register_filesystem() is the next link of the call chain. This reg—
ister_filesystem() routine is invoked with the memory address of a variable named
nfs4_fs_type of type struct file_system_type passed as an argument (declared
in /fs/nfs/nfs4_£fs.h). Listing 2.13 shows how the nfs4_fs_type variable is filled
with NFSv4 specific content. Part of this content is the hard-coded string nfs4, that is
assigned to the filesystem type's name field in line 3. Moreover, memory addresses of NFS
specific function implementations are assigned to the init_fs_context and kill_sb
function pointers as expected by the VFS specification in struct file_system_type
of Listing 2.11. The former will be invoked as the very first NFS specific code during the

mount procedure as demonstrated in the example given in Appendix A Section A.3.1.

1 struct file_system_type nfsd_fs_type = {

2 .owner = THIS_MODULE,

3 .name = "nfs4",

4 .init_fs_context = nfs_init_fs_context,
5 .parameters = nfs_fs_parameters,

6 .kill_sb = nfs_kill_ super,

7

8 };

J

Listing 2.13: The definition of nfs4_fs_type of type struct file_system_type in
/fs/nfs/fs_context.c containing the first NFS specific routine (in line 4)

invoked during the NFS mount process

Two steps are left to complete the registration procedure of the nfs4 filesystem type with
the VFS.

First, after sanity checking its argument the stated register_filesystem(&nfs4_-
fs_type) function invokes the find_filesystem() routine. The latter call does not
exactly do what the name promises. It rather tries to find or searches for the filesystem type
name in the list of filesystem types that the VFS already knows about. Thus, it either returns
a valid pointer to an already registered filesystem type, or it returns NULL, indicating that no
entry of that name was found in the list. Only the latter case induces the actual registration
of the struct file_system_type named nfs4_fs_type by adding it to the list of
registered filesystem types.

Secondly, at some point, the module_init (init_nfs_v4) routine, defined in /fs/n-
fs/nfs4dsuper.c is called for the activation of the nfs4 module which was not possible
prior to the complete loading of the nfs module. As both filesystem types are already

registered at this point, the init_nfs_v4 routine initializes a DNS resolver, required for

24

2 Core Concepts

resolving a hostname into a corresponding IP address, ensuring that DNS resolution func-
tionality is available to NFSv4+ clients before they start mounting NFS shares. In addition,
a DNS entry cache for faster name-address resolutions among other NFSv4.2-related cache
allocations in kernel memory are performed.

In conclusion, this exercise of following the function call graph of the filesystem type regis-
tration has revealed the mechanisms that are utilized by the VFS to make filesystem types
available and ready to be mounted in case userland syscalls request them. More specifically,
what was demonstrated by looking closer at the filesystem registration process is the way the
VFS takes care of assigning the correct filesystem function implementations to the prototypes
provided and invoked by the VFS to delegate control to the specific filesystem in charge. This
function pointer assignment technique is frequently encountered throughout the design of the

various kernel subsystems. [29]

The level of detail with which these mechanisms are reproduced here reflects the level of
knowledge necessary for developing effective eBPF programs. Only by following along and
thereby understanding the interplay of the VFS, NFS and RPC layer it becomes possible to
find the appropriate kernel routine to attach an eBPF probe to. An appropriate kernel routine,
with respect to the intended query, is defined by the relevance of the metrics contained therein

as well as its position in the sequence of the call graph (see Section 4.2.1 for more).

2.6.2 Superblock Objects

The object which is used by the kernel in order to describe the characteristics of a mounted
filesystem is called superblock. It contains all the metadata and function prototypes associated
with a specific filesystem instance. For a locally mounted, disk-based filesystem like the Linux
native ext4, the filesystem control block represents a superblock on a physical storage device
which is read during the mount process. All relevant metadata therein are copied into a
structure in kernel memory called struct super_block. It stores information like the
blocksize used by the storage device, the filesystem type, mount flags, the mountpoint dentry,
a UUID, quota information, a pointer to the default superblock manipulation routines declared
as function pointers, a pointer to the default dentry function pointers and, most importantly,
a list containing all inodes associated with the superblock. The above enumeration is by far
not exhaustive. [27, 28]

In the general context of the development of the eBPF programs it suffices to keep in mind that

the struct super_block maintains metadata that describe the associated filesystem.

25

2 Core Concepts

More specifically, it is crucial to remember that a struct file_system_type field is
contained in each superblock structure which can be accessed from inside an eBPF probe for
filtering purposes (see Section 4.2.1). With regard to NFSv4, a more detailed description of
how the superblock is organized in the kernel is given in Appendix A.3.

2.6.3 Inode Objects

Similar to how superblocks store the metadata of filesystems, inodes store the metadata of
files. Inodes store metadata such as the type of a file, its access permissions, the file size, last
modification or access times as well as owner credentials in the form of a user identifier (UID)
and a group identifier (GID). As a blueprint for an inode object the VFS layer declares a data
structure called struct inode. Defined in include/linux/fs.h, this data structure
contains fields holding file metadata as well as pointers to associated data structures. A unique
64-bit identification number, generally referred to as inode number, is contained in struct
inode as well. Additionally, it contains a reference to the superblock of the filesystem
it belongs to as well as a reference to the address space of the actual file data. Lastly,
but not exhaustively, the VFS inode contains pointers to a data structure called struct
inode_operations and interestingly also to one called struct file_operations.
The latter is assigned to the inode when it is first allocated. The file operation structure is
passed on to an associated struct file later in the inode's life-cycle (see also Section
2.6.5). Oddly, an inode contains everything there is to know about a file, except its name.
Since file names are subject to change, their administration lies within the responsibility of the
dentry object discussed in Section 2.6.4. [36] Figure 2.2 shows the interrelationships between
struct inode and other data structures of the kernel's file and filesystem management

for orientation.

As the VFS demands it, all supported filesystem types are required to have their very own
compatible definition of an inode data structure. So does the network filesystem. The NFS
representation of an inode is called struct nfs_inode defined in /include/lin-
ux/nfs_£fs.h. It embeds a complete VFS struct inode in a field named vfs_inode
and declares two NFS specific file identifiers, namely a 64-bit £ileid, which corresponds
to the VFS inode number, and secondly, a field £h of type struct nfs_fh, where fh
abbreviates the term filehandle in this context. The struct nfs_fh is a small data struc-
ture defined in /include/linux/nfs.h that solely contains the filehandle as an array
of type character and the filehandle size, which is defined as the macro NFS_MAXFHSIZE

26

2 Core Concepts

and limited to 128. For an in-depth examination of the organization of inode structures, with

respect to the NFS layer, refer to Appendix A.4.

2.6.4 Dentry Objects

Dentry and inode objects are tightly coupled constructs. As mentioned in Section 2.6.3, the
inode object maintains every metadatum about a file, except its name, since that is subject to
change and thus not unique. There can be many file names referring to one inode. Nonethe-
less, an inode lookup with a given path to a file must be efficiently practicable for the VFS
layer. That is where directory entries or short dentries come into play. By providing the file
name, dentries are a link between an filesystem object (file or directory) and its associated
inode [36]. The Linux VFS layer declares a struct dentry in /include/linux/d-
cache.h that contains a reference to struct super_block, which in turn contains
a reference to a struct dentry called s_root. As the name states, this dentry is
the root directory of the filesystem administered by the superblock to which a given dentry
belongs.[27]

Every given dentry holds references to its parent, to a list of its siblings and a list of its
own children. With regard to a path lookup, there are two important pointers in struct
dentry. One points to a struct inode and the other points to a struct gstr called
d_name that stores the name of the path component this dentry is responsible for. A path
component can be any string literal that follows specific naming conventions, of course. Thus,
a path name is an assembly of string literals separated by forward slashes, plus, if present,
the initial forward slash, which always stands for the root of the namespace tree. All of these
path name components refer to directories, while the final component, if present, does not
necessarily. The final component is the looked for resource, be it a directory or a file, and
marks the end of the path lookup that the VFS performs to finally get hold of the associated
inode. [44]

When the VFS is unfamiliar with the path components passed by a system call, it queries
the underlying filesystem for more information and allocates the dentries and inodes in kernel
memory on the fly. As mentioned earlier in Section 2.5, the memory regions allocated for
this purpose are referred to as dcache and inode cache. Dentries actually only exist for
performance reasons [45]. They increase the path lookup speed by reducing the necessity
of querying the underlying filesystems that are always time consuming to service, regardless

of the fact whether the storage is attached locally or remotely. As opposed to inodes, the

27

2 Core Concepts

Linux sources of the NFSv4 module do not implement any dentry representation specific to
the NFSv4 filesystem, but use exactly the same struct dentry the VFS exposes to all
of its known filesystems. The dentries used by NFSv4 kernel code hold a reference to a
field called vEfs_inode of type struct inode embedded within the filesystem specific
struct nfs_inode data structure, already known from Section 2.6.3. Appendix A.5
provides a more detailed view on the role of dentry object during the mount process of a NFS

share.

2.6.5 File Objects

The last object of the common file model discussed here is the file object. A file object
represents a file opened by a process [45]. Its VFS representation is the struct file
declared in /include/linux/fs.h. It stores a reference to its associated inode and to
a struct path that includes a dentry with the file's name. A field called f_pos stores
the byte offset from the start of the file to the current position used for subsequent file
operations. Owner credentials, a reference count and file mode are also part of the contents
of the struct file. It does not include the file data itself or any metadata. Both are the
domain of the associated inode, which holds references to the file data memory locations as

well as to its metadata.

When a new file is opened by a process issuing an open syscall, a new struct file is
allocated in a file cache with the help of the alloc_empty_file () routine defined in
fs/file_table.c. After successful allocation in the kernel's file cache, toward the end of
the function body of the do_open () routine defined in £s/namei.c, the vEs_open ()
function invokes a do_dentry_open () routine, both defined in /f£s/open.c. This is
the point, where the newborn file structure is filled with values, such as the associated inode
to the £_inode field plus a set of function pointers to the struct file_operations
field. The function pointers are provided by the associated inode, which holds a reference to
those routines for this very moment.

The NFSv4+ specific implementation of the open file operation is a routine named nfs4_—
file_open (), defined in /fs/nfs/nfsd4file.c. It is immediately invoked once the
struct file_operations field has been assigned. It causes the allocation of a st ruct
nfs_open_contex (/fs/nfs/inode.c), which contains fields related to the process
of opening a file in NFSv4+, such as NFS lock contexts, NFSv4+ state information (see also
Section 2.8 for details), file credentials, and the associated dentry. Once the struct nfs_-

open_contex is allocated, it is assigned to the private_data field of the file structure.

28

2 Core Concepts

A following call to the nfs_inode_attach_open_context () routine causes the final
embedding of the associated VFS inode into the struct nfs_inode, which creates the
link between the regular VFS file object and the NFS inode. This association remains valid
until the file is closed. In the latter case, once the file’s reference count drops to zero the
associated file structure is deallocated and all NFSv4+ related resources are released from

kernel memory.

2.7 The File Description Table

In order for the kernel to keep track of the files that are currently opened by a given
process, each process descriptor maintains a pointer to a data structure of type struct
files_struct simply called files. The struct files_struct isdeclared in /in-
clude/linux/fdtable.h. To arrive at the actual array of open files, a field called fdt
of type struct fdtable pointer has to be dereferenced. Another pointer named fd
within struct fdtable points to the actual array of open files, also referred to as open
file description table. The array is stored with a bitmap called open_fds containing the
currently used array indices. As expected, the f£d table is of type struct file double-
pointer. This means, £d points to an array containing pointers to file structures. In other
words, accessing the file description table at a given index returns a pointer to a struct
file currently in use by the corresponding process. The indices to the file description table
are of type integer and commonly referred to as file descriptors. Hence the name of the table.
Figure 2.2 illustrates the interrelationships between data structures involved in the kernel's

file and filesystem management including the open file description table.

When a userland process requests a file to be opened by issuing a corresponding syscall, e.g.
open () or socket (), the kernel associates the smallest unused file descriptor found in
the open_fds bitmap to a pointer to the just opened struct file and returns the file
descriptor to the process as a handle to it. Each userland process has its own file description
table as well as its own set of file descriptors. The latter will be subsequently used as an
argument in every syscall the process issues to refer to the corresponding open file. Once the
process completes its interaction with the opened file it issues a close () system call which
causes the file descriptor to be erased from the open_fds bitmap. This declares the entry

in the file description table as free and ready for the next open file association again. [27]

29

2 Core Concepts

Process Descriptor

File Description Table

struct task_struct struct files_struct struct fdtable *file[]
/include/linux/sched.h /include/linux/fdtable.h /include/linux/fdtable.h
[0]
struct files_struct* files; struct fdtable* fdt; struct file** fdt; [
long* open_fds; 2]
[31
struct qstr struct path struct file [4]
/include/linux/dcache.h /include/linux/path.h /include/linux/fs.h
[51
const char* name; struct vfsmnt* mnt; L struct path f_path;
struct dentry* dentry; —| struct inode* f_inode;
struct dentry
/include/linux/dcache.h

struct gstr d_name;

struct super_block* d_sb;

struct inode* d_inode;

struct inode

/include/linux/fs.h

struct super_block

/include/linux/fs.h

struct file_system_type

/include/linux/fs.h

struct
file_system_type* s_type;

const char* name;

struct super_block* i_sb;

Figure 2.2: Overview of interrelationships between VFS objects and other data structures
involved in the kernel's file and filesystem management (...

indicate omissions)

30

2 Core Concepts

2.8 The Network Filesystem Protocol Version 4+

Various mechanisms used by the Linux kernel to handle NFSv4+ requirements have been
already introduced and illustrated with examples from the kernel source code in the previous
sections. A short but more detailed introduction into critical features of the NFSv4+ protocol

itself are presented in this section.

The development of the network filesystem predates the first release of the Linux kernel in
1991 by six years [46]. It was first proposed at Sun Microsystems back in 1985 [47]. Since
its first appearance in the UNIX kernel [43], it has been ported to other operating systems
in different versions. The latter of which has undergone a protocol redesign and extensive
reimplementation, resulting in the current NFS version 4, with its minor version numbers 1 and
2. NFSv4 was standardized by the IETF in RFC 7530 in March 2015 [48] with supplementary
protocol additions in RFC 8881 for NFSv4.1 [49] and in RFC 7862 for NFSv4.2 [50].

As the name states, NFS is a distributed filesystem which is shared across a network. It offers
client access to files by mounting a remotely hosted filesystem onto a mount point of a local
filesystem. While the NFS mount appears as a coalescent extension of the local filesystem
tree, it hides all the network communication and file |/O details from the user. Since its first
proposal [47] the NFS protocol standard utilizes the XDR standard as a machine independent
representation of serialized data types and formats. The XDR standard, which is defined in
the latest RFC 4506 [51] document, determines how data transmitted across a network is to
be encoded such that a recipient is able to decode the same data without loss of meaning,
independently from the hardware components and operating systems used on both machines.
Additionally, the RPC mechanism, which is standardized through RFC 5531 [52], has been
utilized by the NFS from the beginning until today. It has been updated by RFC 9289
introducing transport layer encryption of RPC requests in transit [53]. Being the carrier of
the NFSv4+ payloads, RPC allows a client to execute locally defined procedures on a remote
machine and return the results thereof back to the client. Both, the XDR and the RPC
mechanisms were also first developed by Sun Microsystems and are still referred to as sunrpc
and sunrpc/xdr in the Linux kernel source code. The critical new features that the redesign

of the NFS protocol introduced with version 4+ are described in the following subsections.

*See also Figure 2.1 for orientation

31

2 Core Concepts

2.8.1 NFSv4+ Features
2.8.1.1 Unified Core Protocol

In contrast to previous versions, the NFSv4+ protocol standard is self-contained, meaning it
is not dependent from ancillary protocols anymore. Those were needed to provide services
necessary for mounting NFS shares, negotiating ports, handling locks or querying the status of
the network communication participants with regard to network partitions or system crashes.
In this sense, the presence of the previously used port manager for all these auxiliary services
called rpcbind in Linux, the Lock Manager (NLM) protocol called 1ockd, the Network
Status Monitor (NSM) RPC protocol called rpc.statd and a daemon called mountd
necessary for client access permission handling during the mount process of NFS shares, have
become obsolete by the 4+ version of the NFS protocol. [? | The effectuation of the mount
process as well as locking state and mechanisms thereof have been incorporated into the core
protocol instead. Locking state, specifically, «is maintained by the NFSv4+ server under a
lease-based model» as stated in RFC 7530 [48].

2.8.1.2 Statefulness

Mentioning the term state in the previous paragraph already suggests that the NFSv4+
protocol is stateful in contrast to previous versions. In the context of locking, the server
grants a lock in concert with a lease to the client and preserves the locking state even across
network partitions or client machine reboots. If the client, which has been granted a lock
for a lease period, does not renew the lease before its expiration, the server may release all
states associated with the client’s lease. But locking is not the only state related topic. State
can also be expressed by identifiers such as the c1ientid, which uniquely identifies a client
during a NFSv4.1+ session. It is generated by the NFSv4.1+ server. In one of the primary
handshake operations called EXCHANGE ID, which plays a crucial role in the initiation
of a valid NFSv4.1+ session, the client transmits two identifiers in a eia_clientowner
field of the payload. According to RFC 8881 [49] this field contains a client-owner-verifier
(abbreviated as co_verifier in the following) and a client-owner-identifier (abbreviated
as co_ownerid6), respectively.

In order to make this more tangible, the relevant NFSv4.1 handshakes during the mount of the

®Not to be confused with the clientid generated by the server for a given co_ownerid. After the
primary handshake the clientid is used for subsequent client-server communication.

32

2 Core Concepts

NFS share described in Section A.2 will exemplarily be looked into at a deeper level. Figure
2.3 shows the entries in the eia_clientowner field of the EXCHANGE ID compound
procedure sent by the NFSv4.1 client to the server.

v Opcode: EXCHANGE_ID (42)
~ eia_clientowner
verifier: @x1800cdba53b3@dc7

v Data: <DATA>
length: 39
contents: <DATA>

Figure 2.3: The eia_clientowner field contents of the client's EXCHANGE ID call
(all figures captured with t shark and dispayed with Wireshark Network Protocol
Analyzer [1])

The verifier appears as a 64-bit numerical value (often boot time of the system [3]), while
the co_ownerid is represented by a unique string composed of client-related information.
Figure 2.4 displays the contents of the Data field, which is an alias for the co_ownerid
field name used by Wireshark.

cd ba 53 b3 0d c7 00 00 27 4c 69 6e 75 78 20 S

4e 46 53 76 34 2e 31 67 72 69 64 2d 64 65 76 NFSv4.1 grid-dev

2d 73 61 6e 64 72 6f 31 2e 64 65 73 79 2e 64 -sandro@ 1l.desy.d
65 00 00 00 01 01 @0 00 00 00 00 00 A1 0@ @0

Figure 2.4: The contents of the Data alias co_ownerid field of the same client
EXCHANGE_TD call as in Figure 2.3

In the given example, the NFSv4.1 client has chosen the string «Linux NFSv4.1» as a pre-
fix to the hostname «grid-dev-sandro0l.desy.de» of the client machine to be the unique
co_ownerid. As a result of the co_ownerid value, the server constructs a unique c1i-
entid that is used to identify the NFSv4.1 client throughout the existence of a successfully
established session. In contrast, the co_verifier is a verifier for a client incarnation,
«allowing the NFSv4.1 server to distinguish successive incarnations of the same client after
reboots» [49].

In its reply to the client's EXCHANGE ID request, the server transmits the clientid as
well as a unique server_owner identifier consisting of a numerical so_minor_id and an
opaque so_major_id (shown in Figure 2.5 and Figure 2.6). The server acknowledges the
successful receipt of the client's EXCHANGE ID request with an NFS4 OK status message

and returns the constructed clientid (see Figure 2.5).

33

2 Core Concepts

- Opcode: EXCHANGE_ID (42)
Status: NFS4_0K (@)

<Status: OK (0)>
clientid: @x6717bb0a00010006
seqid: 9x00000001

Figure 2.5: The clientid constructed by the server and returned in its EXCHANGE ID
reply

In the same compound EXCHANGE D procedure the server determines the so_minor_id
to be 0 and the so_ma jor_idto be the server's own socket address, namely «131.169.223.60.8.1»
(see Figure 2.6).

eir_server_owner
minor ID: @

major ID: <DATA>

length: 18

contents: <DATA>
0090 00 12 31 33 31 2e 31 36 39 2e 32 32 33 2e 36 30 ++131.16 9.223.60
00a@ 2e 38 2e 31 00 00 00 00 00 00 00 00 00 01 00 00 N

Figure 2.6: The eir_server_owner field contents of the server's EXCHANGE_ID reply

In IPv4, a socket address is conventionally notated as a tuple of the form:
< I Pv4 address >:< port number >

The corresponding port number of the uaddr IPv4 format notation used in the EXCHANGE _ -
ID reply (defined in RFC 5665 [54]) can be decoded into conventional notation by performing
an 8-bit left shift with the penultimate value of the socket address (here: 8) and adding the

last value (here: 1) to it:
portnumber = (8 << 8) + 1 = 2048 + 1 = 2049

While port number 2049 is the official assignment for the NFS protocol registered by the
IANA as reflected in [55], the socket address now resolves to «131.169.223.60:2049» in
conventional IPv4 notation.

At this point of the network handshake proceedings, both NFSv4.1 server and client have
exchanged unique identifiers that aim at preserving state even when in recovery mode after
failures. Apart from the client and server owner IDs, there are other state enabling IDs such

as the sequenceid, the slotid, the £sid, the stateid and the sessionid, only

34

2 Core Concepts

to name a few. Describing them all would go beyond the scope of this thesis, but since
the concept of state enabling NFSv4.1+ sessions encompassing the sessionid is a feature

introduced in version 4 minor number 1, it will be briefly looked at in Section 2.8.1.3.

2.8.1.3 Sessions

According to RFC 8881 [49], the introduction of sessions to the NFSv4.1 protocol has paved
the way for the support of the Exactly Once Semantics (EOS). The RFC 8881 document
states that each compound procedure sent with a leading SEQUENCE operation «must be
executed by the receiver exactly once». These leading SEQUENCE operations are exchanged
between the NFSv4.1+ client and server in every operation following a successful CREATE _ -
SESSION handshake. This will be demonstrated by resuming the study of NFSv4.1 network
communication, where it was left off in the previous section.

After completion of the EXCHANGE _ID handshake, the next operation is the request issued
by the NFSv4.1+ client to establish a session with the server. This is accomplished with the
help of the CREATE SESSION operation, which is sent by the client providing its newly
acquired clientid and the first sequence identifier called segid. The latter was first
sent by the server in its reply to EXCHANGE ID and is depicted in Figure 2.5 below the
value of the clientid. The seqgid is incremented with every mutually exchanged and
successfully completed compound procedure. The server's reply to the CREATE _SESSION
request contains a session identifier called sessionid in the form of a 128-bit numerical
value. The sessionid generated by the NFSv4.1 server in the example looks like the

following:
session ID: 6717bb0a000100060000000000000001

Taking a closer look at the sessionid reveals that with a NFSv4.1 server implementation
as used by the dCache storage system, the most significant 64-bits match perfectly with the
clientid. However, as already mentioned, from this point on, the two participants will
exchange compound procedures with a leading SEQUENCE operation at the top level of
their operation stack. Inside the SEQUENCE operation a 3-tuple of state-enabling values is
contained. These are called sessionid, segid and slotid, respectively. The slotid
serves as an identifier for a so-called slot maintained in the slot table associated to a NFSv4.1+
session. A slot is an intermediate memory location for a request to be sent and a reply to be
received. The replier will cache its reply in case it receives a request with a segid equal to
the one the replier already replied to. It will recognize the request as duplicate and re-send

the cached reply. In this way, the session slot is used as a reply cache. Thus, by providing

35

2 Core Concepts

an updated 3-tuple with every procedure, the participants can undoubtedly validate if a reply
matches a request utilizing the slotid and can furthermore use the seqid «for a critical
check to determine whether a request with a given slotid is a retransmit or a new never-
before-seen request». EOQOS itself is made possible by using the reply cache for the 3-tuple
values that can be kept in persistent storage. This provides EOS even through server failure
and recovery. [49]

2.8.1.4 Compound Procedures and Callbacks

Prior to the redesign of the NFS protocol in version 4, each operation was sent in a distinct
RPC request. Issuing the NFSv3 equivalent operations of an e.g. OPEN request followed by a
GETATTR and a READ operation, concluded by a second GETATTR and CLOSE operation
would have caused at least five RPC requests to be transmitted and their distinct replies to
be received. Evidently, this verbosity increases latency due to the summation of round trip
times caused by the transmission of the five distinct operations [49]. With the introduction
of compound procedures an attempt was made to counter these shortcomings. Since NFS
version 4 minor version 0, the protocol allows multiple operations to be packed and transmitted
in a single RPC request. This does not only reduce the total number of RPC requests that
have to be transmitted over the network, but also ensures that state enabling operations
like SEQUENCE can be added to every compound procedure as a leading operation. This
enables the association of the operations inside the compound to a specific session and the
corresponding session slots. According to RFC 8881 [49] the recipient of a RPC, be it a
request or a reply, must evaluate the sequence of operations inside a compound procedure
in order. The evaluation ends abruptly at the first failure encountered in the processing
chain and an appropriate NFSv4+ error flag is returned instead of a positive confirmation like
NFS4 OK in the case an operation succeeds. The kernel code examples presented in the
Appendix A in Section A.6 show how compound procedures are composed and prepared to

be XDR encoded prior to their transmission across the network.

A second feature new to NFSv4+ is the utilization of callback operations. Due to its state-
ful nature, the version 4 protocol introduces the possibility that in addition to the standard
fore channel on which the client sends RPC requests to the server and receives its replies,
a backchannel can optionally be established. This enables the server to commence com-
munication on its own initiative. As a result, the NFSv4+ server is able to revoke locks
held by the client or recall delegated server responsibilities from the client at any time by
transmitting a compound callback procedure containing operations like CB_ SEQUENCE and
CB_RECALL. [49]

36

2 Core Concepts

2.8.1.5 Parallel NFS

NFS environments with high file data access rates that run on protocol versions prior to
NFSv4.1 suffer from throughput losses due to the bottleneck caused by the NFS server.
In such a scenario, the data transfer from the storage devices toward all requesting NFS
clients has to be led through the server machine. To make matters worse, this happens
on top of the administrative communication the server has to maintain with all clients [56].
The introduction of the optional parallel NFS (pNFS) feature to the NFSv4 minor version 1
protocol has led to significantly better file access performance as it allows «direct client access
to the storage devices containing the requested file data» [49]. Figure 2.7 shows a typical
pNFS setup as it is also encountered in the HTC environment at DESY. The main components
of a setup that use the pNFS feature comprise a node with an operational NFSv4.1+ client
on the one end. On the other, the NFSv4.1+ servers can play the role of a metadata server
(MDS) or the role of a data server (DS). It is also possible that one physical machine takes
both roles. The server will communicate its role to the client by setting the EXCHGID4 -
FLAG_USE PNFS_MDS or the EXCHGID4 FLAG USE PNFS DS flag or both flags in
the reply to the EXCHANGE ID operation, respectively. The NFSv4.1+ client will negotiate
all administrative handshakes regarding its file operation request with the metadata server.
The actual READ and WRITE operation will be serviced directly from the data servers on
which the file data is stored. This can be performed by accessing multiple data servers in

parallel. Hence the name of the parallel NFS feature.

The two main goals of pNFS are, first, to separate the metadata access path from the actual
file data access path, avoiding one server to become a bottleneck by having to service both of
them. And secondly, the data transfer performance is further enhanced by leveraging direct
parallel access to the file data storage devices. Simultaneously, a control path exists between
the MDS and the DS allowing for the management of «state required by the storage devices to
perform client access control» [49]. This means, the MDS can enforce restrictions regarding
authentication and authorization to the DS as well. The control path protocol, however, is
not part of the NFSv4+ protocol itself and can include further management functionality

other than the above-mentioned client access control.[57]

37

2 Core Concepts

Worker Node NFSv4.1
NFSv4.1 Client Metadata-Server Database
— — Metadata
— NFSv4.1 + pNFS — Query/
— —
o o Update

A
Control Path

1
1
[}
e e

Parallel-

Data-

Paths

Data-Servers

Figure 2.7: pNFS control and data flow diagram

In the HTC environment at DESY the MDS of the dCache storage relies on a chimera database
to match an inode to a dCache-internal 36-byte long chimera ID" and to retrieve or update
metadata about the associated file [59, 60].

The sequence diagram in Figure 2.8 illustrates all pNFS procedures exchanged between a
NFSv4.1+ client and a MDS or a DS, respectively. It was drawn according to the sequence of
NFSv4.1+ payload transfers captured on the wire with t shark. In this scenario, the client
requests to open and read a specific file, which is stored in the directory tree of the mounted
NFS share specified by the path the client provides. After the client and the MDS exchanged
IDs, established a session, and negotiated state reclaims and security flavors successfully, the
NFS filehandle of the root directory is provided by the MDS in its reply to PUTROOTFH. In
order to obtain different sets of file attributes associated with the root filehandle, the client
repeatedly transmits GETATTR operations. Starting from the root of the exported NFS

share, the path to the file requested by the client reads as follows:

7Commonly referred to as pnfsID for historical reasons, since pnfs resolves to the name of chimera's prede-
cessor called «Perfectly Normal Filesystem» [58]. However, for the sake of avoiding name clashes, in this
work the less common name chimera ID will be used [59].

38

2 Core Concepts

/pnfs/desy.de/dot/data_volatile/test_nfs42 8

In consequence, five repetitions of the ACCESS operation followed by a LOOKUP operation
are needed to traverse all directory components until the final component (the filename in
this case) is reached. Figure 2.8 depicts only the main operations contained in the compound
procedures exchanged during this communication. This means that every shown LOOKUP
operation is part of the compound procedure enveloping a SEQUENCE, PUTFH, LOOKUP,
GETFH and a GETATTR operation. In this manner, the client obtains the NFS filehandle of
every path component in concert with the associated metadata. With this information, the
client is able to create a struct nfs_inode as described in Section 2.6.3 and store it in

the inode cache for faster access if needed later on.

After having checked that permissions to access all components of the path are valid, the
client transmits a request that contains an OPEN operation for the requested file and a pNFS
specific operation called LAYOUTGET to the MDS. The concept of layouts is new to the
NFSv4.1 protocol and solely used if the client and the MDS agreed on utilizing the pNFS
feature initially. A layout is a set of parameters that defines the location of file data as well as
how the file data is organized on one or multiple data servers. The client itself conveys a set
of layout parameters to the MDS that it wishes to use when accessing the file data. These
parameters include the layout type, which is supported by the client, an /O mode, which
indicates the type of I/O operation (read or write) the client wants to perform on the file.
According to RFC 8881 a layout type can be a block, an object or a file layout type, which
all contain different sets of parameters depending on the way file data are to be accessed
on the DS [49]. The provision of a layout is associated with the maintenance of state as
well. It therefore has to be verifiable through sequence IDs and a layout state ID, which are
consequently present in every layout. Already granted layouts can be recalled by the MDS
with the transmission of a CB_ LAYOUTRECALL operation via the backchannel.

Returning to the sequence shown in Figure 2.8 the MDS confirms the client's parameters,
adding a device ID, the filehandle of the requested file and a set of layout flags in its LAY-
OUTGET reply. The only layout flag set by the MDS in the captured sequence is FLAG -
NO 10 THRU MDS. As the name suggests, it informs the client that it «should not send
I/O operations to the metadata server» as stated in RFC 8435 [61], which is the document
that defines an additional layout type called flexfile layout.

After agreeing on the layout to be used to access the file data on the DS, the client needs to
be informed about the location of the file data. Thus, it requests this information by trans-
mitting a GETDEVINFO operation to the MDS. This request contains the formerly received

39

2 Core Concepts

device ID and the layout type to be used for access. The MDS replies by confirming the
layout type and providing the socket address of the DS (in case file or flexfile layout types
are used), to which the client has to connect to in order to access the file data. Network
protocol type, NFS version, and read and write buffer sizes to be used with respect to the
DS are transmitted from the MDS to the client as well.

The next steps the client performs in the communication sequence of Figure 2.8 are the
establishment of a session with the DS, which it redirects to using the stated information
from the GETDEVINFO reply received from the MDS. A subsequent transmission of a READ
request toward the DS initializes the file data transfer. Once the file data transmission from
the DS is completed, the client returns to communicate with the MDS. Since the provision of
the layout, as mentioned above, is associated with state, a proper handover of the updated
layout has to be performed by the client. This is achieved by transmitting a LAYOUTRETURN
operation, in which the client indicates the completion of its request to the MDS. But since the
MDS cannot be aware of any statistics about the transfers that took place between the client
and the DS, the client populates the layout with a //O Stats data structure containing metrics
about the amount of bytes read, the read latency, the overall duration of the interaction and
an error count. Additionally, the client returns information about the device ID and socket
address of the DS it communicated with, the filehandle of the file read, and finally the layout
state ID formerly granted with the layout itself. A subsequent CLOSE operation properly
concludes the client-server interaction for the given file access and, by chance, this brief

description of the pNFS feature incorporated in the NFSv4.1+ protocol.

40

2 Core Concepts

sd pNFS procedures)

[wes 1

A

EXCHANGE_ID g

_________ EXCHANGE_ID ________ _VL_‘

A

CREATE_SESSION -~
________ CREATE_SESSION. _______ 'LJ

A

RECLAIM_COMPLETE -

RECLAIM_COMPLETE

- - - - -
=

1
1
1
1
I
I
I
1
1
1
1
1
1
1
1
I
I
I
I
1
1
1
1
1
1
|
SECINFO_NO_NAME _ i
,_______§E_c_"sF_Q1N_0,MM_E________'LJ !
| 1
PUTROOTFH ol |
1
1
————me P _UI_RQQIE'“_'__________VIT‘ i
loop7) | GETATTR o |
1
Ll ___________ GETATTR __________ :u i
1
I L 1
loop 5) | ACCESS o l
1
ACCESS |
I—:_|< ____________________________ 1 :
1
: LOOKUP o i
1
1
- R PO |
. . !
! OPEN | LAYOUTGET o | |
I
EL________OEENLLAY_O_QT_QE_T________'I_J !
1
1 1 \
! GETDEVINFO o i |
1
GETDEVINFO !
I—:—I‘ ____________________________ 1 :
I
: NULL i . !
1
LH‘ “““““““““““ NOL™ =~~~ ittt TI‘;J
I
i EXCHANGE_ID | o
|
D o ___BXCHANGEID ! _______________ E
| “ : |
i CREATE_SESSION | o
I
L_l CREATE_SESSION _|
I A CoTTTTTTTTTTTTT T .
1
i RECLAIM_COMPLETE | o
LL _________________ RECLAIM COMPLETE! _______________ tu
1 | 1
! READ I >
T
I
| P S .
1
| LAYOUTRETURN | CLOSE o
----1 LAYOUTRETURN | CLOSE _ __ __ _VI_J

I
|
|
|
I
I
i
!
NFSv4.1+ client [os |

Figure 2.8: pNFS communication between NFSv4.1+ client, metadata server (MDS) and 41
data server (DS) for a OPEN and READ file /O operation

2 Core Concepts

2.9 The dCache Storage System

When talking about the dCache storage system, it is reasonable to differentiate between the
dCache storage managing software on the one hand and the assemblage of physical nodes
running that software, forming the actual distributed storage system on the other. The
development of the dCache software has undoubtedly been the consequence of a constantly
growing demand for highly available mass storage space capable of handling data quantities
at the petabyte scale. These huge amounts of scientific data are the outcome of numerous
scientific experiments in the domain of high energy particle physics and photon science as
mentioned initially in Section 1.1. Consequently, in the year 2000 the developers of the

dCache storage idea expressed their vision in the following:

«The goal of this project is to provide a system for storing and retrieving huge
amounts of data, distributed among a large number of heterogeneous server
nodes, under a single virtual filesystem tree with a variety of standard access
methods. [62]»

Around the same time this vision was expressed, the development of the open source dCache
software began as a joint effort of the two laboratories DESY and FNAL (Fermi National
Accelerator Laboratory). The developing team was reinforced by developers from the Nordic
Data Grid Facility (NDGF)B, who joined the project in the year 2007 [63]. To a great
extent (more than 95%) the dCache storage software is written in the Java programming

language [64].

An important aspect of the dCache storage system is its ability to act as a data disk cache in
front of a tertiary storage facility, e.g. magnetic tape. In fact, the flow of data typically begins
with the ingress of newly gathered experiment data coming from one of the experimentation
sites into dCache disk storage. From there, the freshly stored data is immediately flushed to
tape media. At the time the group of scientists decides to analyze their data, it is staged
back into the disk cache and pinned there for a determined amount of time. Once the file
data is available on disk again, it can be requested by the scientist’'s jobs running on the
compute nodes of the NAF or Grid via the NFSv4 or other supported access protocols. Since
the staging of file data from tape media back to disk storage is significantly slower than the
direct access from disk, dCache's caching mechanism allows for a faster access and transfer
of experiment data to the worker nodes of the NAF or the Grid during periods of computation
and analyses [65, 11].

®*Nowadays named Nordic e-Infrastructure Collaboration (NelC)

42

2 Core Concepts

The architectural structure of the dCache storage software can be described as an agglom-
eration of microservices. Each distinct microservice is technically represented by a so-called
cell in dCache nomenclature. They are contained in a dCache domain. Cells communicate
by exchanging messages. This communication takes place even across domain boundaries
using an address schema in the form of cellName@domainName. A single node can host one
or more domains, since each domain technically represents a Java Virtual Machine (JVM).
Distinct domains communicate with each other across cell tunnels by transmitting messages
via TCP connections. The assemblage of all interconnected domains finally form a so-called
dCache instance. An advantage implied by these architectural design choices is that a dCache
instance can be easily scaled horizontally by simply adding new nodes, onto which domains
of nodes under high load can be migrated. Otherwise, brand new domains can be created on

those newly added nodes to balance the load as well. [60]

2.9.1 Main Components of a dCache Instance

The mandatory cell types that make up a minimal dCache instance are a dCache door,
a namespace provider, a storage pool, a poolmanager and a coordination and discovery
service. The latter service is needed for the auto-discovery of running cells and domains in
the instance. It additionally performs the mapping of cells and domains to IP addresses of
the physical nodes they are running on. As auto-discovery and coordination service dCache
uses the Apache Zookeeper software, which provides configuration information and ensures
coordination among the distributed domains [66].

The following three components of a dCache instance were already introduced in the context
of the pNFS feature in Section 2.8.

2.9.2 An Entry Point to dCache

The dCache door is the entry point to a dCache instance, providing access to file data via
«a variety of standard access methods», as stated at the end of the above mentioned quote
about the initially desired dCache design features. Thus, a door converts protocol specific
«instructions to a sequence of internal dCache message-based call sequences» [60]. The
NFSv4.1+ protocol is only one of those data access methods used with dCache. Other
supported protocols are Xrootd, WebDAV, FTP and DCAP, dCache’s own access protocol.

Figure 2.9 shows the share of transfers for each access protocol that occurred between the

9Figure kindly provided by T.Hartmann

43

2 Core Concepts

NAF computing nodes and the dCache storage in August and September of 2024. While each
door implements only one distinct access protocol, more doors for each supported protocol
are typically present in a dCache instance for load balancing and high availability. For the

NFSv4.1 access protocol the door service is the dCache representation of a pNFS metadata
server.

60

w » wn
o o o

Transfers / [1M]

N
o

10

XrootD WebDAV + Legacy
Protocol

Figure 2.9: Share of per-protocol transfers between the NAF and the dCache storage system
in August and September of 2024

2.9.3 The dCache Namespace Provider

The namespace provider used by dCache is the chimera database which maps inodes to
chimera IDs and provides metadata about the requested files [59].

2.9.4 Storage Pools and the Poolmanager Service

A dCache storage pool or simply pool, is a logical storage location within the domain hosted
on a data server. It is the actual container of the file data and is directly accessed by the clients
(NFS or other). The dCache storage pools are administered by a service called poolmanager.
This cell determines the way a file 1/O request is handled. Depending on whether the file

resides only on one pool, or on more pools as a replica, the poolmanager redirects the client

44

2 Core Concepts

toward one specific pool or decides to choose one pool out of many according to a configurable
load balancing policy. If the requested file does not reside on any pool but on tape media,
the poolmanager triggers the file to be staged back to disk. Thus, the poolmanager and a
sub-module called the pool selection unit are crucial components in the dCache control and
data flow. [60]

There are two more dCache related aspects, which have to be mentioned before taking a
closer look at which information about NFSv4+ transfers a dCache system administrator is

able to retrieve from within the dCache system itself.

2.9.5 dCache Data Mover

The first aspect worth mentioning is that of a mover. A mover is the component within the
dCache file data access flow that is prompted by the door to start servicing a file 1/O request
once an adequate pool has been selected by the pool selection unit. In turn the mover pins a
file to the pool and thus saves it from eviction. Subsequently it guarantees the door to serve
the file data to the client. In the case of NFSv4+, the mover is the actual thread pool that
handles all read or write file 1/O requests. The call from the door toward the mover is defined
in the NFSv41Door. java file found following the path10 inside the dCache codebase’’.
Therein, two private classes called ReadTransfer and WriteTransfer are contained,
both defining a method called selectDataServers (), which in turn makes the very
call to a method named selectPoolAndStartMoverAsync (). The important thing
to note here is that the started mover does not silently stop by itself after completion of the
file 1/O request. But is rather «killed» by the door after the latter has been notified by a
completion handler. Thus, once a mover is started, it lives as long as the file I/O request is
not completed, independently from the time it takes to complete it or the fact whether the
mover is actively transferring bytes or idling for any given reason. As a result, an accumulation
of stale movers is possible if e.g. communication with the door fails to complete [67].

The second noteworthy aspect remaining is a file-related ID within dCache which already has

been introduced superficially.

"®dcache/modules/dcache-nfs/src/main/java/org/dcache/chimera/nfsv41/door /NFSv41Door.java
" Github Repository of the dCache codebase: https://github.com/dCache/dcache

45

https://github.com/dCache/dcache

2 Core Concepts

2.9.6 dCache Internal File ID

The chimera ID is a 36-byte long string representation of a hexadecimal number. It uniquely
identifies a given file in front of components inside the dCache storage system. It is con-
structed by performing multiple bit shifting operations on a randomly chosen UUID™? inter-
weaving the associated filesystem ID™ (fsID). The result of the number-crunching algorithm
found in the newlID() and digits() methods in the Inodeld.java file is stored as an array of bytes
by performing a base 16 decoding of the string representation in a class of type Pnfsld™*. A
typical chimera ID is shown in Listing 2.17.

Lastly, the dCache associated custom m‘s4j15 server and oncrpc4j16 implementation are briefly

introduced.

2.9.7 Java NFSv4+ Server and RPC Implementations Used by dCache

The NFSv4.1+ server used by the dCache storage software derives from a custom open
source nfs4j implementation. The server itself is executed in concert with an equally open
source custom implementation of the RPC protocol written in Java called oncrpcdj. The
acronym ONC stands for Open Network Computing. In contrast to the Linux built-in NFS
infrastructure, which is completely embedded within the kernel, the nfs4j server and the
oncrpc4j RPC facility both run as userland applications in a JVM. Figure 2.10 shows the
organization of the components involved in the handling of a NFS file I/O request on the
dCache storage end, as opposed to the situation on the computing end shown in Figure 2.1.
Just to be clear: Machines on both ends, the computing worker nodes end as well as the

nodes on the dCache storage system end run Linux as an operating system.

“Found in dcache/modules/chimera/src/main/java/org/dcache/chimera/Inodeld.java
13Currently hardcoded as zero.

"Found in dcache/modules/dcache-vehicles/src/main/java/diskCacheV111/util/Pnfsld.java
' Java NFSv4+ server implementation: https://github.com/dCache/nfs4]

1% Java ONCRPC implementation: https://github.com/dCache/oncrpc4j

46

https://github.com/dCache/nfs4j
https://github.com/dCache/oncrpc4j

2 Core Concepts

2.9.8 The dCache admin interface

Before concluding the description of the main aspects related to the dCache storage system, a
brief introduction to the so-called dCache admin interface is given in the following subsection.
The dCache admin interface is a facility built into the dCache software that allows system
administrators to interact with a running dCache instance via a custom command shell prompt.

It is accessed by establishing a secure shell (ssh) connection to a dCache storage node.

1 [dcache-head-dot] (local)
2 sandro >

Listing 2.14: The command shell prompt after login to the admin interface

Once logged in, the system administrator has access to the admin interface command line
prompt as shown in Listing 2.14. The identifier given within parentheses on the prompt always
indicates the momentary cellName@domainName location the interface is connected to. The
admin interface is not connected to any specific cell at this point, hence the (local)
indication in the prompt of Listing 2.14. Any specific cell can be accessed with the \c
command as shown in Listing 2.15. Here, the NFS door is accessed, which is reflected by the

new (nfs4-dcache-dot@dcache-dot nfs4wnDomain) location prompt.

[dcache-head-dot] (local)

sandro > \c¢ nfs4-dcache-dot

[dcache-head-dot] (nfs4-dcache-dot@dcache-dot_nfs4wnDomain)
sandro >

A W N =

Listing 2.15: Accessing the dCache NFS door

The NFS door can be prompted to list all associated dCache pool nodes including their role
(here: DS), their device ID and IPv4 and IPv6 socket addresses with the show pools command
(Listing 2.16).

[dcache-head-dot] (nfs4-dcache-dot@dcache-dot_nfs4wnDomain)
sandro > show pools

dcache-pool01:

DS: 00000003000000000000000000000000,

InetAddress:

[/2001:001:200:3004:0:0:5:60:24001, /123.45.67.44:24001]

N o o B~ W N

Listing 2.16: Listing available information on pools associated to the dCache NFS door

After having switched from the NFS door to the pool node mentioned above, a query is sent

47

2 Core Concepts

to the location manager service (\s1) in order to list all the pools which the file with the
given chimera ID is stored on. Listing 2.17 shows that the file resides only on a pool named
dcache-pool01. The chimera ID is reprinted on the console together with metadata such as
the information that the file is only cached on disk and might be persisted on tape storage
(<C flag) [60] and its filesize.

[dcache-head-dot] (dcache-pool0l@dcache-poolOlDomain)
sandro > \sl 0000377415A929BF4C66B816684E12D10F7E rep ls $1

0000377415A929BF4C66B816684E12D10F7E

1

2

3

4 dcache-pool01:

5

6 SCESEEESS L(0)[0]> 135

Listing 2.17: Querying the location of a file given the chimera ID

The following two Listings 2.18 and 2.19 simply show the interface’s capability to transform
a given path into a chimera ID and vice versa by querying the namespace provider service

utilizing the \sn command and the pf (pathfinder) utility, respectively.

1 [dcache-head-dot] (dcache-pool0l@dcache-pool0OlPoolDomain)
2 sandro > \sn pnfsidof /pnfs/desy.de/dot/data_volatile/

3 test_nfs42 10
4
5

0000117A270054204F1E9F068AF74039CC46

Listing 2.18: Asking the namespace provider sevice to transform a path into a chimera ID

1 [dcache-head-dot02] (dcache-poolOl@dcache-pool0lPoolDomain)
2 sandro > pf 0000377415A929BF4C66B816684E12D10F7E

3

4 /pnfs/desy.de/dot/data_volatile/test_nfs42_3

Listing 2.19: Asking the namespace provider sevice to transform a chimera ID into a path

For dCache system administrators, the possibility to list all active movers with the mover 1s
command is a precious source of information about potential transfer related shortcomings.
It is even enhanced by adding the —u option allowing for a listing of the user and group ID
associated with the user, whose application running on a computing worker node on the other
end of the network originally issued the file I/O request (line 8 of Listing 2.20). Line 4 of
the same listing starts with the mover ID, followed by the mover's status and the chimera ID
of the file the mover is transferring data to or from. Interestingly, even the NFSv4+ state
ID and the sequence ID are listed in the output. Both are metrics that can potentially be

matched with their corresponding counterparts on the other end of the network for debugging

48

2 Core Concepts

and failure tracing once gathered (with the help of eBPF programs) from inside the Linux
kernel that embeds the NFSv4+ client. Apart from the client's IPv4 address, line 7 of Listing
2.20 shows a second metric of high importance to the dCache administrators. The parameter
LM indicates the idle time since the mover has last delivered or received any transferred bytes
to or from the NFS client. The assigned number should ideally be zero. The higher the LM

value, the higher the probability of a stuck transfer for any given reason.

[dcache-head-dot] (dcache-pool0l@dcache-pool0OlPoolDomain)
sandro > mover ls -u

1

2

3

4 67108996 : RUNNING : 0000A3FE7233DC7C40B481171F8C0154DD4C
5 IoMode=[WRITE, READ, CREATE]

6 h={NFSv4.1/pNFS,0S=[66a664830001008000000005, seq: 1],

7 cl=[123.45.223.116]} bytes=20480 time/sec=136 LM=63

8 <GidPrincipal[51108], ..,UidPrincipal [1000],

9 Origin[123.45.223.116]>

Listing 2.20: Retrieving information on active mover instances

Fortunately, also the NFSv4.1 session IDs of the associated clients to any dCache storage
node can be queried as shown in the next two Listings (2.21 and 2.22). From Listing 2.21
it is possible to match the port number of the client and the NFSv4.1 session ID to be the
session maintained with the NFS door (alias MDS) itself, while Listing 2.22 shows the session
associated with a dCache pool node (alias DS) from the same client but on a different port

and, of course, with a different session ID.

[dcache-head-dot] (dcache-pool0l@dcache-pool0OlPoolDomain)
sandro > nfs sessions

/123.45.223.116:860 : 66a5646d4000000210000000000000001
slots (max/used): 15/0

g B~ W N =

Listing 2.21: Listing NFSv4.1 sessions associated to dCache storage nodes

[dcache-head-dot] (dcache-poolOl@dcache-poolOlPoolDomain)
sandro > \s nfs4-x show clients

nfs4-dcache-dot:
grid-dev-sandroOl.desy.de/123.45.223.116:673:Linux NFSv4.1
66a55da40001007e0000000000000001 max slot: 15/0

S O W N

Listing 2.22: Listing NFSv4.1 clients associated via a NFSv4.1 session

While the last Listing 2.23 of this sequence contains information about started transfers

already known from previous listings, the new information on line 7 is a very helpful metric

49

2 Core Concepts

for dCache administrators. First, it indicates whether the transfer is a write or a read transfer
and secondly, it lists a metric in the form of moverID@poolname or simply mover@pool.
In those cases, in which the poolname evaluates to null (as in 67108980@null), it becomes
evident that the mover is not associated with a pool anymore and thus has no chance to
complete the transfer it was originally started for. Consequently, the information obtained on
line 7 of Listing 2.23 can be considered an important indicator of abnormal pool behavior or

pool node downtimes for the alert administrative staff.

[dcache-head-dot] (nfs4-dcache-dot@dcache-dot_nfs4wnDomain)
sandro > \s nfs4-* show transfers

1
2
3
4 nfs4-dcache-dot:

5 2024-07-28T00:31:30.74+02:00

6 000012BC097370F64353B30BCFBE85D6ES891

7 WriteTransfer 67108980@dcache-pool01,

8 0S=[66a55da40001007e00000016, seq: 1],

9 cl=[123.45.223.116], status=[idle], redirected=true

Listing 2.23: Retrieving information on NFSv4 transfers

50

2 Core Concepts

userland N I

kernelspace | .I

system call interface

dentry

cache

inode

cache
pa

cache

<—>

network

Figure 2.10: Main components involved in servicing a NFS file |/O operation on the dCache
storage end

51

3 Linux Kernel Tracing and Probing

As the complexity of the Linux operating system has increased over the past decades, it has
become more and more difficult to understand its inner workings [68]. Especially the observa-
tion of the system at runtime with mere command line utilities makes relevant system aspects
appear to system administrators as if they were hidden in a black box. The development and
integration of tracing and probing mechanisms into the Linux operating system and the kernel
specifically, started at the beginning of the century [69].

To be absolutely clear about the semantics of the terms tracing and probing and what distin-
guishes them from one another, an apt definition with respect to the given context is provided

in the following.

The Cambridge Essential American English Dictionary provides two suitable definitions for the
term tracing. It describes the act of tracing as a method «to follow the movements, progress,
or development of something». The purpose of which is to find «proof that someone or
something was in a place» or not. The term probing is described as«to examine something
with a tool, especially in order to find something that is hidden». The mentioned «tool»
could also be referred to as a probe which in turn is defined as «a device that is put inside
something to test or record information» (all definitions from [70]). With these definitions at
hand, the transition into the domain of the Linux kernel can be made. That is, to describe

why and what to trace and probe inside the kernel at all.

One reason is to simply learn about the proceedings of the kernel. Reading the kernel source
code can already be considered a kind of tracing that promotes comprehension, yet neither a
very quick nor a dynamical one. Undoubtedly, it is essential to understand how the different
subsystems and layers of the kernel interact and which mechanisms allow for that interaction
during runtime. Tracing can provide knowledge about the temporal dependencies of events
and the flow of control on kernel code execution paths. Analogously to the above quote from
the Cambridge dictionary, tracing provides certainty about the fact whether the control flow

has come across a probepoint during execution or not.

Secondly, tracing enables the gathering of performance indicators or metrics. The aggregation
of these metrics allows for insights into system parameters, such as network throughput,

[/O latency, memory usage, CPU load, cache hits and misses and so forth. Thus, tracing

52

3 Linux Kernel Tracing and Probing

facilitates the evaluation of system parameters with respect to potential bottlenecks or other
performance degrading issues. To the first two reasons for applying tracing methods to the
running kernel, the third one adds the ability to perform debugging of potential performance
bottlenecks or system failures due to code flaws or incompatibilities, among many other issues.
Tracing-assisted debugging can be performed on a indication-based and less disruptive level
than interactive debugging with, e.g. GDB (GNU Debugger). [71]

3.1 Tracing and Metrics Collection Utilities

The Linux operating system offers a broad spectrum of built-in tracing mechanisms and
utilities. One of them was already introduced in Section 2.4. It is the userland syscall tracer
called strace. Other tracing utilities like ftrace [72, 73], tcpdump [25] and perf [69, 25] have
been an integral part of the Linux kernel's capabilities for spotting system specific issues since
the noughties. Even if each of them aims at tracing different system aspects, they all can
assist in collecting relevant metrics and identifying performance deficiencies in the operating
system during runtime [69].

In addition, Linux system administrators have a wide palette of commands at hand that can
be utilized to obtain system-specific metrics and statistics. These commands are issued from
within a Linux command shell like the bash, while the output is either written to the terminal

or can be redirected, e.g. into a file for later analysis.

3.1.1 The 1sof Command

For an administrator, the inspection of the file description table of a specific process identified
by its PID can be achieved by leveraging the powerful 1sof' command. Listing 3.1 shows
its invocation from the bash together with the option —p that allows to list the open files

of a process specified by its PID.

'The command’s shorthand name expands to: list open files (see man 1sof)

53

3 Linux Kernel Tracing and Probing

N
lsof —-p 1088623

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE

vim 1088623 root 4u REG 0,45 12288 21829222

NAME

/pnfs/desy.de/dot/volatile/.test_nfs42.swp
(dcache-dot—-door01.desy.de:/)

J

Listing 3.1: Excerpt output of the invocation of the 1sof command showing the remote file

.test nfs42.swp opened by the local program vim

The 1sof command output excerpt can be read as follows:

A command (or program) called vim that has the process ID 1088623, was issued by a user
called root and has a file of type regular opened. The index (or file descriptor, FD) in the
file description table of process 1088623 is number 4u, where the appended u denotes the
read and write access mode?. The device numbers, the current size or offset of the file and
the inode number precede the path listing to the actual file named .test nfs42.swp. Since
it is a file opened within an NFS share, 1sof even displays the hostname and mountpoint

information of the NFS server from which the file originates.

3.1.2 The /proc Filesystem

System administrators can also utilize the /proc pseudo filesystem, which is mounted at
system boot time, to retrieve process-related information otherwise hidden in the kernel.
Listing 3.2 shows a similar output content excerpt as above, namely a glance into the file
description table of the process with PID 1088623.

1s /proc/1088623/fd
lrwx—————— . 1 root root 64 Oct 21 16:58
4 —> /pnfs/desy.de/dot/volatile/.test_nfs42_12.swp

Listing 3.2: Excerpt listing output of the /proc/1088623/fd directory revealing the
remote file .test nfs42.swp opened by the user process with PID 1088623

The invocation of the 1s command with the /proc/<PID>/fd directory as argument
shows a symbolic link (or symlink) called 4 that points (->) to the associated path of the
file opened by a process with the given <PID>. The symlink 4 matches the value of the

actual file descriptor number 4 used by this process. But there is more information about

2 .
See Linux manual entry: man lsof

54

3 Linux Kernel Tracing and Probing

the file descriptor number 4 in the /proc/1088623/fdinfo directory. Running the cat
command on the /proc/1088623/fdinfo/4 file reveals the following output:

cat /proc/1088623/fdinfo/4
pos: 12288
flags: 02500002
mnt_id: 423
ino: 21829222

Listing 3.3: Output of the content of the /proc/1088623/fdinfo/4 file revealing the
offset (pos) plus file flags and the mount ID/inode number combination which

renders the inode number unique even across multiple mounted filesystems [3]

In Listing 3.3 even more metadata for the file referenced by file descriptor number 4 are
displayed. The current file offset shown here as pos (for position), the file flags and both, the
mount ID and the inode number of the associated inode, which in combination render the

inode number unique across multiple mounted filesystems [3] are the content of the file.

These small examples disclose only a tiny fraction of the possibilities that exist to obtain
relevant and otherwise hidden information from the kernel by querying the directories of the
/proc filesystem. Unfortunately, in certain cases a direct query can be rather uninformative
due to the fact that the /proc filesystem stores raw numeric values as kernel metrics, often
without any valuable formatting or description applied to it. Listing 3.4 gives an example of
the content of the file nfs that is meant to expose RPC and NFS related server and client

statistics.

cat /proc/net/rpc/nfs
net 0 0 0 O
rpc 1764145 6 1764167
procd4d 69 8 8 1482113 2 37...(only 6 values out of 65+ are shown)

Listing 3.4: Excerpt output of the content of the /proc/net/rpc/nfs file revealing only

numerical values without informative descriptions

In order to translate the above output into a descriptive and humanly readable form, com-
mands such as nfsstat and nfsiostat have been developed. They apply descriptive

labels and a decent formatting to the output values as shown in parts in Listing 3.5.

55

3 Linux Kernel Tracing and Probing

nfsstat
Client rpc stats:
calls retrans authrefrsh
1763984 6 1764006

Client nfs vi4:
null read write commit open
8 0% 8 0 1482113 84% 2 0% 37 0%

o\°
X

Listing 3.5: Excerpt output of the invocation of the nfsstat command which applies

informative labels to the numerical values from Listing 3.4

In the above Listing (3.5) RPC client statistics such as the call count, the number of re-
transmissions, and the refresh of the cached credential information are listed. Additionally,
NFSv4 client statistics about NFSv4 operation counts, such as the number of times a NULL
call was transmitted, and the same for READ, WRITE, COMMIT and OPEN operations are
shown exemplarily. The command called nfsiostat which translates values retrieved from
the /proc/self/mountstats file into a form that can be evaluated, exposes more 1/0
related statistics. It comprises values about the throughput of the READ and WRITE op-
eration, that is, the number of kilobytes read or written per second, as well as general NFS
related statistics such as the number of operations per second, the number of kilobytes read
or written per each operation, the cumulative average RPC queuing and round-trip times,
and the number of operations (READ or WRITE) that completed with an error.

It is most important to understand that most utilities including the two described above
aggregate |/O metrics on a per NFS client or per NFS server only. They do not allow the
association of transfer metrics with individual users or user processes. System administrators
are therefore limited in their scope when trying to interpret the obtained metrics with regard

to issue handling.

3.1.3 The rpcinfo, rpcectl and rpedebug Utilities

More RPC-related commands comprise the rpcinfo3 command which allows to probe a
given hostname and display all available rpc programs running on the remote machine. An
invocation of rpcinfo as shown in Listing 3.6 with the —a option set followed by the
server |P address and port number (for uadddr notation see Section 2.8.1.2) returns a sudden
response if the server's RPC service for the specified program number and version is available

and listening.

3 . .
See Linux manual entry: man 8 rpcinfo

56

3 Linux Kernel Tracing and Probing

rpcinfo -a 131.169.223.60.8.1 -T tcp 100003 4
program 100003 version 4 ready and waiting

Listing 3.6: Output of the invocation of the rpcinfo command with the -a option followed
by the server IP address and port number plus the transport to be used and the

specification of the RPC program number and version

The RPC program number (100003)4 in the example of Listing 3.6 corresponds to NFS and
the version is set to 4.

Another source of RPC connection metrics is the rpcctl5 utility. It can help to identify
connection flaws and gives the system administrators the possibility to actively manipulate
connection parameters on the RPC and xprt6 layer deep inside the kernel. Hence the name
rpcctl == rpc control of the program. The command can show RPC client connection metrics
as well as transport-related ones. Excerpts of the output of a rpcctl client show and

rpcctl xprt show invocation are shown in Listing 3.7.

rpcctl client show
clnt-1: switch-1, xprts 1, active 1, queue 0
xprt-1: tcp, 131.169.223.60 [main]
rpcctl xprt show
xprt-1: tcp, 131.169.223.60, port 2049, state <CONNECTED, BOUND>,
main
Source: 131.169.223.116, port 771, Requests: 2
Congestion: cur 0, win 256, Slots: min 2, max 65536
Queues: binding 0, sending 0, pending 0, backlog 0, tasks 0

Listing 3.7: Output of two invocations of the rpcct1l command showing RPC client and

transport (xprt) related metrics

The above output of the rpcctl client show invocation displays valuable metrics
about the connection state of the RPC client, such as which xprt number it uses to which
host, the transport protocol, and how many connections are currently active on the very RPC
client. The metrics exposed by the rpcctl xprt show invocation of the xprt used by
client 1 (cInt-1) are even more complete. The socket address, transport protocol and state
of the connection are revealed as well as congestion information such as window sizes and
metrics about the kernel's RPC workqueue which can carry information about potential issues

related to the transmission of the RPC calls.

*Defined as macro NFS_PROGRAM in /include/uapi/linux/nfs.h
5 .

See Linux manual entry: man 8 rpcctl

®Kernel developer's shorthand for the term transport

57

3 Linux Kernel Tracing and Probing

The last of the three utilities mentioned in the subsection’s title, named rpcdebug7, utilizes
dprintk statements distributed across the source code of RPC- and NFS-related kernel mod-
ules. Activating the functionality by setting a debug flag with the rpcdebug utility «causes
the kernel to emit messages to the system log in response to NFS activity» as the manual
entry states. According to the same rpcdebug manual pages, the file that is actually read
by the command is either one of the /proc/sys/sunrpc/{rpc,nfs,nfsd, nlm}_de—
bug files, depending on which module is chosen. Apart from NFS client and RPC modules it
evidently also allows to print debug messages from the Linux built-in NFS server, called nfsd
in Linux kernel parlance as well as the Network Locking Manager facility, n1m, which is not
used in the NFS protocol version 4+ anymore (see also Section 2.8.1.1). Listing 3.8 shows
the setting of all available debug flags (with the —s option) for the RPC module (-m rpc)
and lists them afterward. In addition, the system log output of a specific debug message is
listed subsequently, invoked by the dmesg -W command. The —W option causes the system

log output to wait for new messages and display them once they arrive.

rpcdebug -m rpc -s all
rpc xprt call debug nfs auth bind sched trans svcsock svcdsp
misc cache

dmesg -W

[4895451.213299] RPC: xs_tcp_send_request (372) = 0
[4895451.306931] RPC: xs_tcp_send_request (452) = 0

- J

Listing 3.8: Setting all available debug flags (with the —s option) for the RPC module (-

m rpc) using the rpcdebug utility followed by an invocation of the dmesg
command showing excerpts of the corresponding debug messages

The dmesg output shown in Listing 3.8 derives from a kernel function called xprt_sock_-
sendmsg () that is invoked within the body of the xs_tcp_send_request () routine.
They are defined in /net/sunrpc/socklib.c and /net/sunrpc/xprtsock.c, re-
spectively and are part of the kernel's TCP network stack. The actual dprintk statement

in the sources is shown in Listing 3.9.

"See Linux manual entry: man 8 rpcdebug

58

3 Linux Kernel Tracing and Probing

static int xs_tcp_send_request (struct rpc_rgst xreq)

{
status = xprt_sock_sendmsg(...);
dprintk ("RPC: xs_tcp_send_request (%u) = %d\n",
xdr->len - transport->xmit.offset, status);

}

J

Listing 3.9: Excerpt from the kernel sources in the /net/sunrpc/xprtsock.c file

revealing the responsilble dprintk statement and its parameters.

It reveals information on the displayed metrics. Obviously, the numerical value enclosed in
parentheses is the size of the XDR encoded RPC and NFS payload in bytes. The returned

zero value indicates the successful execution status of the transmission.

3.1.4 The tshark/wireshark Network Packet Tracer Utility

An absolutely powerful and indispensable tool, extensively utilized in every stage of this work’s
research and experimentation, is the t shark® /wireshark [1] utility. Since tshark is the
command-line-based version of the packet tracer that supports the same options as wire—
shark, it can be utilized whenever an interactive user interface is not available. In turn,
wireshark offers user-friendly graphical user interface, making the capturing, displaying of
dissection results, filtering, searching, importing and exporting of capture files and colorization
of packets an easily manageable task [1]. It allows to capture network packets and display
their dissection results, revealing all header and data information contained therein. The utility
can assist in studying the inner workings of a network protocol (like NFSv4+) by tracing the
communication between participating network components that exchange protocol-specific
messages. Once having acquired the ability to interpret the protocol-specific packet content,
the metrics provided by the wireshark utility help administrators to detect and ultimately
solve potential communication flaws between network components. Fortunately, the capture
file format produced by the Linux built-in tcpdump utility as well as the files produced by
tshark can be opened and displayed in the wi reshark utility for subsequent in-depth anal-
ysis conveniently. Unlike the above-mentioned tracing utilities, wireshark is an externally
developed community effort and has to be downloaded and installed prior to its utilization.
Appendix A shows a complete NFSv4.1 payload dissection of a Linux NFSv4.1 client request
from a NAF's worker node and the reply of the NFSv4.1 server from the dCache storage end
in Listings A.11 and A.12.

¥See Linux manual page entry: man tshark

59

3 Linux Kernel Tracing and Probing

3.1.5 ftrace - Linux Kernel Function Tracer

The ftrace facility was developed and is still maintained by kernel developer Steven Rostedt
[72]. It became part of the Linux mainline kernel in the year 2008 [73]. It has evolved
in functionality from a mere function-tracing utility toward enabling latency observations in
scheduling flows as well as event tracing [72]. In the context of this present thesis the function
tracer functionality and specifically the ability to record and display almost complete function
call graphs have been of major interest. The results that can be obtained by its application
are used to display the sequence of kernel function calls during the mount process of an NFS
share in Appendix A starting from Section A.3.1.

Since the ftrace infrastructure is embedded within the kernel, it is immediately available
and operational after system boot. All relevant files and directories of the function tracer
can be found under the /sys/kernel/tracing/ pseudo filesystem tree. The directory
holds all configuration files as well as those used for direct interaction and control of the
tracer itself. Although a front-end for ftrace called trace-cmd is provided to facilitate
the handling of the control files by creating one-liners that include all necessary instructions,
it has not been utilized during experimentation and verification phases of this thesis. Instead,
the tracer was configured and controlled by echoing values into the configuration and control
files (see Section 4.3).

A list of kernel functions that can be traced is found in the available_filter_func-—
tions file. Kernel modules of services like the NFS client which are not loaded at boot
time have to be loaded beforehand (or started as a systemd service) in order to appear in the
available_filter functions file.

The ftrace utility offers numerous options for configuration. An interesting one to men-
tion in the function graph tracer configuration is the parameter max_graph_depth which
allows to choose the number of functions the tracer will descend into and include in the trace
output. A second option enhances the focus on relevant function calls by preventing e.g.
interrupts to be traced. This is achieved by writing function names to be excluded from the

trace output into the set_graph_notrace file.

60

3 Linux Kernel Tracing and Probing

3.1.6 Event Tracing

It was mentioned before that ft race possesses event tracing capabilities. What defines an
event in the context of kernel tracing? According to [74] an event is the encounter of the
execution control flow at runtime and a probepoint. The latter denotes a single location
within the sequence of instructions that belong and correspond to a function's code block.
The probepoint can be located anywhere within the instruction sequence. Each time the
probepoint is hit by execution control flow an event is triggered. The consequence of the
triggered event has to be provided by the developer interested in observing the function's
execution context. By attaching or hooking a probe to a probepoint, the developer can inject
custom code into the probed function’s instruction sequence. Once an event is triggered at the
probepoint, the injected instructions are executed. After completion of the probe’s instruction
sequence, the execution of the next regular instruction inside the probed kernel function is
resumed. This mechanism allows for the collection of relevant runtime information that can
be analyzed and used for performance measurements, debugging or simply to gain insights
into the inner workings of the probed function as described at the beginning of this section.
Since the underlying mechanisms of event tracing are shared among tracing utilities, such as
perf, ftrace, eBPF and many others [74], the concepts of static as well as dynamic event

tracing will be briefly introduced in the following two sections.

3.1.6.1 Tracepoint-Based Event Tracing

Tracepoints in Linux are located at determined places in the kernel source code. They can be
recognized by the t race_-prefix preceding their function name. Listing 3.10 gives an example
of multiple tracepoint locations within the body of the xprt_request_transmit ()
kernel function defined in /net/sunrpc/xprt.c. Tracepoints are inserted into the source
code by kernel developers following a determined coding procedure involving a tracepoint
definition in a header file. Additionally, they need to define a tracepoint statement providing
a unique identifier for the tracepoint as described in the kernel documentation [75]. The
documentation also states that each dormant tracepoint (that does not have a probe attached
to it) does not cause any performance overhead except for a negligible time penalty for
checking a condition and a similarly small space penalty. Since the inserted tracepoints are
placed at fixed locations in the source code determined at the kernel code development stage,

they are commonly referred to as static probepoints.

61

3 Linux Kernel Tracing and Probing

1 static int
2 xprt_request_transmit (struct rpc_rgst *req, struct rpc_task
*snd_task)

3 { ...

4 / * Tracepoint 1 =/

5 trace_rpc_xdr_sendto (task, ®->rqg_snd_buf);
6 e

7 status = xprt->ops->send_request (req) ;

8 if (status != 0) {

9 reg->rg _ntrans——;

10 / * Tracepoint 2 «*/

11 trace_xprt_transmit (req, status);

12 return status;

13 }

14 if (is_retrans) {

15 task->tk_client->cl_stats->rpcretrans++;
16 / * Tracepoint 3 «/

17 trace_xprt_retransmit (req);

18 }

19

20 }

J

Listing 3.10: Excerpt from the xprt_request_transmit () kernel function reveals three

embedded tracepoints (comments added for clarity)

3.1.6.2 Kprobe-Based Event Tracing

Kernel Probes or kprobes, as they are commonly abbreviated to, are the dynamic counterpart
to tracepoints. As they are not predefined, the probepoints to which a probe can be hooked
can be virtually any instruction in the kernel code [76]. The kprobe mechanism works by
registering a kprobe for a probed instruction. As opposed to static tracepoints, the user of
the kprobe determines which instruction is to be probed. By registering a kprobe, which
includes hashing it into a list of registered probes, the original instruction is copied into a
memory space where it can be single-stepped out-of-line. It is then replaced by a breakpoint
instruction. Once the execution control flow hits the breakpoint, the kprobe infrastructure
code is notified and the hashed list of kprobes is searched for a registered kprobe corresponding
to the breakpoint. If a match is found, control is passed to a user-defined kprobe pre-handler
that allows the collection of relevant metrics before the original instruction is single-stepped.
After the completion of the pre-handler the copied instruction is single-stepped and a likewise
user-defined kprobe post-handler is executed that allows to record information after the

probed instruction. Once the post-handler completes, execution resumes normally at the

62

3 Linux Kernel Tracing and Probing

instruction after the probed one. The kprobe pre- and post-handler code is provided by the
user. Due to the general lack of code verification, erroneously written handlers can cause

kernel crashes or other less disruptive issues. [77]

3.2 eBPF (Extended Berkeley Packet Filter)

At the present time, the eBPF acronym has merely become the label for a technology, whose
abilities have gone far beyond the filtering of network packets. And since the acronym is
solely used when having to differentiate it from classic BPF (cBPF) [78], it has become a
custom to simply call it BPF (as will be done in the following). But what is BPF and how
does it differ from the tracing utilities mentioned so far?

As Brendan Gregg describes in his book about BPF Performance Tools, BPF is an in-kernel
«general-purpose execution engine» that can be utilized to «create advanced performance
analysis tools» [2]. Since this definition includes tracing, BPF can be also considered a
tracing technology. In fact, it is used to trace and probe the Linux operating system kernel. It
allows developers and system administrators to run custom programs safely within kernelspace
without having to change the kernel source code, load kernel modules or recompile the kernel.
Unlike the other tracing utilities so far mentioned, BPF programs not only allow administrators
to query the kernel for relevant system metrics at runtime, but also enable the application of
security [79] and networking policies [80] e.g. based on packet metrics. Similar to other tracing
utilities, BPF programs help with debugging runtime issues of kernel subsystems and modules
as well as analyzing system behavior. However, due to the way BPF programs are written, the
possibilities of tracing have become more customizable. BPF programs can be manufactured
and shaped according to the specific needs of system administrators. For example, the state
of virtually every instruction executed in the kernel can be monitored by leveraging the kprobe
infrastructure of the kernel in a safe way with only minimal performance overhead. While
utilizing the same underlying kernel tracing mechanisms, custom BPF program code has to
undergo a rigorous verification process prior to its inclusion into the kernel. This ensures
the preclusion of harmful program behavior due to programming flaws or malicious code and
consequently prevents crashes or corruption of the running kernel [2]. This opens up a fairly
larger and safer spectrum of feasible options for monitoring what is really happening deep
inside the Linux kernel at runtime.

The eBPF infrastructure including a bpf () system call was merged into the Linux kernel
version 3.18 in 2014 [81, 82]. It surely has evolved ever since and is currently still undergoing

vivid development. Expansions, improvements and new functionalities are added regularly [83].

63

3 Linux Kernel Tracing and Probing

Actually, the BPF infrastructure has become a kernel subsystem on its own [84]. Figure3.1
depicts the control flow across all components involved in the BPF infrastructure including

userland elements. Those will be described briefly in the following sections.

more...

BPF BPF
byte code
program
/P N userland
event_poll() bpf_syscalls()
4’ A4 kernel space
v BPF
BPF hel API
x rejected BPF rmg buffers mqps [cper]
ofe \
Verifier Events
V ,1/[fracepoints]
machine code kprobes]
5 Vlrfual
JIT-Compiler
kretprobes]

Figure 3.1: The eBPF infrastructure (drawn according to [2])

3.2.1 BPF Development Frameworks

In order to facilitate the development of custom BPF programs (according to the needs of
system administrators) a userland library called libbpf is provided by the Kernel development
community. It is a C language-based library that supports the preparation of compiled BPF
object files for verification, loading and attachment to hooks inside the kernel as well as their
removal®. Developers of BPF programs are able to utilize libbpf-provided APIs that allow
for interaction with the running in-kernel BPF program part across storage data structures
called maps. Additionally, libbpf supports the use of the BPF CO-RE (compile once - run
everywhere) concept for improved portability of BPF programs across kernel versions, which
will be touched upon in Section 3.2.5. In short, libbpf supports and helps with the effectuation

of necessary tasks throughout the four phases of a BPF program’s life-cycle, enabling the

The opening, loading (into the kernel), attachment (to a hook) and destruction (or tear-down from the
kernel) of an BPF object are commonly referred to as the four phases of the BPF object's life-cycle [85]

64

3 Linux Kernel Tracing and Probing

developer to focus on the BPF program’s content. [85]

Other libraries and frameworks exist, e.g. the ebpf-go project that provides an environment
for BPF program development in the GO programming language [86] or the Bcct® project
which offers a development toolchain for the creation of BPF programs with frontends in
Python and the Lua programming language [87]. Since libbpf is a fully self-contained Linux
library without external dependencies, and because it allows the whole development-cycle of
BPF programs to be carried out using the C programming language, it has been chosen for
the development of BPF programs in this present work. Thus, only the methods applying to
the BPF program development with libbpf will be described.

3.2.2 BPF Program Structure

As the dotted line that cuts through the BPF program-box of Figure 3.1 implies, BPF pro-
grams consist of two distinct parts. A userland part and a kernel part. The name of the
source code file containing the userland part conventionally ends with a .c file extension,
while the kernel part source code file ends with .bpf.c. Optionally, a header file (with .h ex-
tension) containing struct declarations and #defines used in both parts can be provided
as well. The userland code of a BPF program typically contains a main () function that
comprises code which handles the four phases of the BPF object’s life-cycle. Additionally, a
while-loop is included in the main () function to perform event polling (using the event_ -
poll () routine) on a ring buffer data structure serving as data vehicle from kernelspace BPF
program part to the userland part (see Figure 3.1). Finally, it contains the definition of a
handle event.“()11 routine which, as the name suggests, processes the event data collected by
the in-kernel part of the BPF program, e.g. by simply printing it to the console or performing
further computation before forwarding the results (e.g. in JSON format) to a visualization

and analysis platform like e.g. OpenSearch-Dashboards [88].

The kernel part of a BPF program is responsible for gathering, temporarily storing and trans-
ferring the desired metrics from the probepoints to which the BPF program is hooked to the
userland BPF program code. The gathering of metrics is achieved by utilizing the BPF helper
API. The function calls this API offers, permit a safe retrieval of valuable information from the
kernel hook's execution context. Examples of BPF helper functions will be listed in Section

3.2.4. In-kernel storage needed by the kernel-side BPF program part is provided by the above

"YBPF Compiler Collection
"The given function identifier is not mandatory, but semantically it is one of the few correct ways of naming
it.

65

3 Linux Kernel Tracing and Probing

mentioned map data structures and the transfer happens through a map-like data structure,
also mentioned above, called ring buffer [89]. Both parts of the BPF program can be com-
piled with the Clang compiler and its LLVM™ backend, which supports BPF as a compilation
target directly. The kernel BPF program part is first compiled into BPF-bytecode. LLVM
includes an optimizer that helps reduce the number of BPF-bytecode instructions emitted
which is an important aspect with respect to the next stage to which the kernel BPF program
bytecode has to proceed to: the BPF verifier. [2]

3.2.3 The BPF Verifier

The BPF bytecode verifier validates the integrity of the first stage compilation result of the
user provided kernel-side BPF program code. The BPF bytecode thereby undergoes a rigorous
verification process with respect to a set of rules enforcing compliance with predefined limits.
To prevent the leakage of sensitive kernel data to userland the bounds of valid memory access
are checked for every instruction. The BPF verifier also enforces a usable per BPF program
stack size limit of only 512 bytes. As already mentioned in Section 2.1 the kernel mode
stack is small and static in size and K. N. Billimoria, author of the book named Linux Kernel
Programming: A Comprehensive Guide to Kernel Internals [...] warns the aspiring kernel

developer to

[...] be very careful to not overflow your kernel stack by performing stack-intensive

work (such as using large local variables or recursion). [29]

This is prevented by the BPF verifiers strict stack limit verification.

Another aspect that is ensured by the verification process is the termination of the BPF
program'’s control flow. Thus, a complete path verification is performed. Every single decision
branch is tracked until an exit statement is met. This is especially important with respect to
the number of possible iterations that can be performed in a loop which currently is limited
to thirty-two. The BPF verifier imposes a stringent one million bytecode instruction limit for
its verification process. Taking into consideration that this instruction count limit includes
every single execution path the verifier has to track for every single iteration step in a loop, it
becomes evident that the overall complexity of the kernel-side BPF program is rather limited.
Eventually, should any of the above mentioned rules be violated or limits exceeded by the
BPF program code, the whole program is rejected and the execution of the BPF program
fails. [89]

2LLVM is not an acronym but the name of the project itself (see https://11lvm.org/).

66

https://llvm.org/

3 Linux Kernel Tracing and Probing

3.2.4 The In-Kernel BPF Virtual Machine

The core of the in-kernel BPF infrastructure is the BPF Virtual Machine (VM). It consists of a
software implementation of ten general-purpose 64-bit (virtual) registers. The BPF bytecode
instructions operate on these ten registers utilizing them for the maintenance of state at
program runtime. The probed function's return value is stored in register 0, while registers 1
through 5 hold the probed function's arguments, if there are any. Registers 6 through 9 hold
callee-saved values that are preserved across function calls. The read-only register number
10 holds the current stack-frame pointer. [2, 89]

The verified BPF bytecode is subsequently translated to native machine code that can be
executed on the corresponding processor architecture. This task is performed by a Just-In-
Time (JIT) compiler component at runtime. [2]

As mentioned in Section 3.2.2 already, the kernel-side BPF program code calls into a BPF-
helper API for the safer and easier retrieval of predefined metrics. These metrics include
a pointer of type struct task_struct to the currently executed task which can be
obtained by means of the bpf_get_current_task () helper function. Studying the
kernel source code™ reveals that the latter function simply returns a pointer to current, the
per-CPU variable seen in Section 2.2.1. Other helper functions with rather self-explanatory

. . . 14
names are shown in the non-exhaustive list™" below.

e bpf_get_current_pid_tgid()
e bpf_get_current_uid_gid()

e bpf_get_current_comm(voidx buf, __ _u32 bufsize)
obtain the name of the executable for the current task and write it into a buffer with
size bufsize pointed to by buf

e bpf_get_smp_processor_id()

e bpf_ktime_get_ns|()
obtain a kernel time stamp (time elapsed since boot time) in nanoseconds

e bpf_probe_read_kernel (void =xdst, u32 size,
const void xunsafe_ptr)

access kernel memory in read mode safely within bounds

13See /kernel/trace/bpf_trace.c
See Linux manual entry: man 7bpf-helpers

67

3 Linux Kernel Tracing and Probing

It must be added here that not all helper functions are available in all BPF programs depending
on the BPF program type that is used. BPF program types must be declared by the BPF
program developer. They depend on the subsystem and the kernel function that is to be
probed. A command line utility called bpftool that is installed by default in the Linux
RHEL distribution can be invoked with the feature argument to obtain information about
which BPF helper functions are currently supported by which BPF program type.[89] In fact,
the bpftool utility is of great help to the BPF program developer as it allows to inspect

the internals of the otherwise hidden BPF virtual machine.

3.2.5 BPF CO-RE and the BPF Type Format

Reading a value of a field from a kernel structure is a frequently performed operation within
a BPF program. One of the major drawbacks in BPF programming is the fact that fields can
change their offset position within a st ruct from one kernel version or kernel configuration
to another. This shift in field position due to alteration of struct layouts is referred to
as relocation. For obvious reasons, the relocation of fields is detrimental to the portability
of BPF programs between different kernel versions and configurations. Fortunately, libbpf
supports a concept called CO-RE (Compile Once - Run Everywhere) that makes reading
a struct field relocatable. By supplying so-called BPF Type Format (BTF) information
about the kernel's data structures and function layouts, libbpf is able to perform a relocation
of shifted offset values on the target kernel. Again, the bpftool utility mentioned in Section
3.2.4 comes to the rescue with the extraction of BTF information from the source kernel at
development time, rendering the provision of the BTF type information an easy task for
the BPF program developer. In conclusion, instead of using the above-mentioned bpf_—
probe_read_kernel () helper function to access fields from kernel memory, a macro
called BPF_CORE_READ () is used to perform the same task, but with correct offsets applied
according to the BTF information of the target kernel. [85, 90]

68

4 Methodology

The following sections contain the description of methods, environments and tooling utilized
to develop and verify the three custom BPF programs. The functionality of the BPF programs
as well as two use cases for their application in the NAF-dCache environment at DESY will

be presented.

4.1 The Test and Experimentation Environment

For the development and verification process of the custom BPF programs a test and exper-
imentation environment is used. It consists of a virtual machine’ (VM) running the Linux
RHEL 9.4 operating system with a 5.14.0-427.22.1.el9 4.x86 64 kernel version. Inside this
VM the BPF program code is developed using the command shell built-in vim text editor.

Requirements and dependencies for the build process of the BPF programs comprise the

following libraries and toolchains:
e libbpf (already installed as /usr/lib64/libbpf.s0.1.4.0)
e libelf (already installed as /usr/1ib64/1ibelf-0.191.s0)
e clang-18.1.8-3.el9.src.rpm (package must be installed)

To complete the development setup an NFS share” of the dot-dCache instance is mounted
onto the VM's local filesystem tree under the /pnfs root directory. Only the NFS version 4.1
is specified as mount option. (see Listing A.2 in Appendix A). The dot-dCache instance is a
dCache cluster used by the scientific computing group members for testing and debugging and
thus is not part of the productive dCache storage clusters. With the provision of an NFS share
to the dot-dCache instance, a close-to-reality environment is available for the development
and testing of the custom BPF programs, without having to interfere with, and potentially

be detrimental to, productive machines and production flows.

1Kindly set up by Thomas Hartmann, system administrator in charge of the NAF and Grid computing
facilities at DESY.
*Kindly provided by Christian Voss, head of the dCache operational team (hence the name dot) at DESY

69

4 Methodology

4.2 QOutline of the Custom BPF Programs

Three custom BPF programs are the outcome of the software development process. The
three programs are briefly presented in the following. The focus lies on their main purpose

and the specific nature of the implemented control flow.

4.2.1 BPF program 1: nfs4_byte_picker

The nfs4_byte_picker BPF program aims at the collection of NFSv4+ and RPC-related
metrics. Its purpose is to enable a system administrator to aggregate the amount of bytes
sent and the amount of bytes received by a single RPC request-reply round trip across the
network. The special feature of the nfs4_byte_picker is to allow the association of
the transferred bytes with a specific user process via its PID and TGID as well as with a
specific user via its UID and GID metric. A more detailed explanation is necessary with
respect to the obtained process identifiers. Two distinct points in time, at which the PIDs®
of the executing threads are obtained, have to be differentiated. The first one belongs to
the thread that executes the probed kernel hook and thus is active when the event fires. It
is retrieved from the pid field of the currently executed struct task_struct returned
by the bpf_get_current_task () helper function inside the BPF probe that is attached
to the hook. The second point in time occurs earlier in the sequence of function calls
involved here. Namely, during the execution of the rpc_init_task () routine defined in
/net/sunrpc/sched.c which is carried out with every single transmission of an NFS
request via the RPC layer. The purpose of the rpc_init_task () routine is to initialize
the fields of a freshly allocated st ruct rpc_task with values gathered earlier on the NFS
layer. One of those fields is the RPC task structure’'s tk_owner field. To the latter the
tgid of the currently executing thread is assigned as shown in Listing 4.1 .

£ 1 task->tk_owner = current->tgid;

)

Listing 4.1: Assignment of the tk_owner field of a new RPC task structure with the TGID

of the current task inside the rpc_init_task () routine

An evaluation of entries in the nfs4_byte_picker output shows that the two process
identifiers, namely the TGID of the thread executing the kernel hook and the TGID of the

thread executing the initialization of a new struct task_struct, can differ from each

*The TGID is always included with each mention of the PID from this point on, if not declared otherwise.

70

4 Methodology

other. This hints at the fact that the two routines are executed by two distinct threads.
Chapter 5 evaluates the implications of this circumstance.

Additionally, the time span from when a request is sent to when the reply is received can be cal-
culated from the obtained time stamps provided by the nfs4_byte_picker. More specif-
ically, from when an event is triggered in a probed kernel function hook called xs_tcp_-
send_request () (defined in /net/sunrpc/xprtsock.c) that performs the handover
of a request from the RPC layer to the TCP layer, to the moment an event is triggered in the
probed xprt_complete_rgst () routine (defined in /net/sunrpc/xprt.c) which
handles the incoming RPC reply.

4.2.2 BPF program 2: nfs4_path_finderV

The nfs4_path_finderV BPF program is designed to associate process and user iden-
tifiers with open file descriptors pointing to files stored in a mounted NFS share. More
specifically, it first performs a lookup of used file descriptors in the open_fds bitmap, as
described in Section 2.7 (see Figure 2.2 for orientation). For each file descriptor found in
the bitmap an associated file structure pointer is dereferenced until the i_mode field of the
associated inode becomes accessible and is read. The i_mode field contains the type of
a file. If the file in question is of type regular, the inode's i_sb field that points to the
associated struct super_block is further dereferenced until the name field of the as-
sociated struct file_system_type becomes accessible. The control flow of the BPF
probe evaluates whether the obtained name of the filesystem type corresponds to nfs4. If
the condition evaluates to false, the currently pursued file descriptor is ignored and the next
one, if applicable, is dereferenced up to this point in the way described above. Instead, if
the name of the filesystem type is equal to nfs4, the chain of pointers down to the name
of the current path component is followed. The path component’s name is stored in a ring
buffer whose entries are polled by the event_poll () routine in the userland part of the
nfs4_path_finderV BPF program (see Figure 3.1). When the root dentry ('/') of the
path is finally encountered, the reverse-assemblage of the path components (starting from
the root toward the final path component) is triggered and output after completion, together
with other collected metrics.

71

4 Methodology

4.2.3 BPF program 3: socket_collector

The third custom BPF program called socket_collector basically has the same control
flow design as the nfs4_path_finderV program. The former differs from the latter
in the evaluation of the filetype, which is accessed in the same way as described above.
This time only files of type socket are further pursued, and additionally, all filesystem types
are considered. The principal question the query performed by the socket_collector

addresses is:

e Which files of type socket are opened by which process and by which user?

4.3 Qutcome Verification Methods

During the early development phase, a feature provided by the ftrace infrastructure called
trace_pipe is utilized. It is located under the same /sys/kernel/tracing/ pseudo
filesystem path discussed earlier in Section 3.1.5. The trace_pipe file can be used to
stream live output of the function tracer to standard output. The stream will block until new
tracing events become available [72]. By using a BPF helper function called bpf_printk ()
inside BPF programs it is possible to write into the trace_pipe stream and view the values
of collected metrics displayed directly on the console. This method can be used for the
early stage of BPF development, when maps and ring buffers have not been implemented
yet and the access to kernel structure fields is tested. Since the bpf_printk () helper
negatively affects execution speed4 it should not be used in production code. Nevertheless it
is applicable for debugging purposes. In fact, all three custom BPF programs accept an —d
DEBUG argument that activates the printing to the t race_pipe stream for this purpose.

*Refer to the Linux manual entry: man 7 bpf-helpers

72

4 Methodology

kworker/ul28:2-3663906 [] bpf_printk: PID: 3663906

kworker/ul28:2-3663906 [] bpf_printk: UID: O

kworker/ul28:2-3663906 [012] bpf_printk: GID: O

kworker/ul28:2-3663906 |] bpf_printk: rpc_task_owner_ pid:
3663971

kworker/ul28:2-3663906 [012] bpf_printk: uid_cred: 1000

kworker/ul28:2-3663906 [012] bpf_printk: gid_cred: 51108

dd-3663971 [005] bpf_printk: cl_nodename: grid-dev-sandro0Ol.desy.de
dd-3663971 [005] bpf_printk: PID: 3663971

dd-3663971 [005] bpf_printk: UID: 1000

dd-3663971 [005] bpf_printk: GID: 51108

dd-3663971 [005] bpf_printk: rpc_task_owner_ pid: 3663971

dd-3663971 [005] bpf_printk: uid_cred: 1000

dd-3663971 [005] bpf_printk: gid_cred: 51108

J

Listing 4.2: Testing BPF probe functionality at an early development stage using trace_—

pipe live stream (time stamps omitted for brevity)

Listing 4.2 shows metrics delivered from the kernel probe and printed to the trace_pipe
stream. Only the information printed after each bpf printk: statement originates from the
kernel probe’'s bpf_printk () output. The command name, PID, [CPU] and time stamps
(omitted here for brevity) at the beginning of each line are provided by the ftrace facility.
These lines allow a first verification of the obtained metrics. It becomes evident from the
lines in Listing 4.2 that a kernel thread called kworker/u128:2 with PID 3663906 executes
the probed kernel function on behalf of a user process called dd with PID 3663971 whose
TGID is stored in the tk_owner field inside the corresponding struct rpc_task (refer
to Section 4.2.1).

In later development stages, maps and ring buffers are implemented to facilitate the transfer
of event records from kernelspace to the userland part of the BPF program. The collected
values of each event are mapped to their corresponding metrics in key-value pairs and stored
into files as JSON object entries, one for each fired event. An examplary JSON object entry

from a result file with self-explanatory metric:value-mappings is shown in Figure 4.1.

73

4 Methodology

"host": "grid-dev-sandro@l.desy.de",

"emd": "sshd",

"time_stp": 2458737062111,

"PID": 1381410,

"TGID": 1381419,

"UIiD": @,

"GID": 9,

"fd": 4,

"sock_type": "SOCK_STREAM",

"sock_state": "TCP_ESTABLISHED",
"sock_family": "AF_INETé",

"sock_src_addr": "2001:638:700:10df:0:0:1:74",
"src_port": 22,

"sock_dst_addr": "2001:638:700:1005:0:0:1:74",
"dst_port": 35962

Figure 4.1: JSON formatted entry from a socket_collector BPF program output

At this stage of development, each experiment performed with one of the custom BPF pro-
grams is accompanied by the simultaneous execution of four additional tracing methods. This
allows the verification of the obtained metrics from the BPF program output by comparing
the available metrics obtained with each executed tracing utility. The five tracing methods

applied simultaneously (including the BPF program under test) comprise:

e strace

e ftrace (see Section 3.1.5)

e tshark (see Section 3.1.4)

e rpcdebug (see Section 3.1.3)
e BPF program under test

The strace utility is mainly used to verify the correct behavior of the userland part of the

BPF program, with respect to the BPF system calls it issues.

74

4 Methodology

A typical workflow with the ft race facility aiming at the creation of function graphs as used

in the verification process is listed below.

1.

Choosing the appropriate tracer for the given purpose (function_graph in this case)
by writing into the current_tracer file:

echo function_graph > current_tracer

. Selecting the kernel function that is to be traced and set as root node of the function

call graph:

echo _ x64_sys_mount > set_graph_function

. Turning on tracing by writing a I into the tracing_on file:

echo 1 > tracing_on

. Executing a command or run an application that will trigger the kernel function set in

the set_graph_function. Here, exemplarily the mount (8) command is issued
along with appropriate mount options:

mount —o vers=4.1 dcache-dot-door0l.desy.de:/pnfs /pnfs

. Waiting until the mount process is completed and the command-line prompt returns.

. Redirecting the recorded trace output into a file for later analysis, e.g.:

cat trace > /data/test_mount_nfs_241019_217/ftrace_graph_217

. Turning off function tracing:

echo 0 > tracing_on

. Disabling the tracer again by writing nop into the current_tracer file:

echo nop > current_tracer

Throughout the testing phase, a max_graph_depth value of 0 is used which sets the

depth to infinity (see Section 3.1.5). This setting allows for the inclusion of every single

nested function invocation into the tracer's output, starting from the system call interface

down to the lowest level of the network stack before leaving the kernel's control domain and
back’.

In conclusion, cross-comparison of all tracing records obtained through the simultaneous

execution of the stated tracing utilities enables the verification of the accuracy of metrics

reported by the custom BPF programs under test.

*The __x64_sys_mount () system call e.g. causes 32351 kernel functions to be called between its opening
and closing curly bracket, after which it returns control to userland code again.

75

4 Methodology

4.4 Real-World Use Cases

Two use cases will be presented in this section. The use cases correspond to real-world
work flows in the operational proceedings performed by the system administrators of both,
the NAF/Grid6 computing facilities on the one hand and the dCache storage system on the
other. Their purpose is to demonstrate the sequence of actions currently taken by system
administrators in case an issue is detected or reported. No BPF program at all is involved
in these use cases. They are compared to the scenario that includes the application of
the nfs4_path_finderV eBPF program in Section 5. The two use cases describe the

following real-world scenarios:

1. An issue is first detected by an NAF user and reported to an NAF administrator

2. An issue is first detected on the dCache storage end by a dCache administrator

Figure 4.2 illustrates the sequence of actions taken for both use cases. All of the following
information is the result of the author's personal communication with the administrators at
DESY.

In use case number one, the user detects an issue with one or more of their jobs and informs
the NAF administrator about it. Not in all cases important job metrics such as the username,
UID or the worker node (WN) the job is running on are included in the user’s notification.
This means that additional time is spent for further communication with the user. The use
case assumes that the username of the user is known to the administrator. A HT Condor query
is started to obtain the name of the affected WN on which a potential issue with the user’s
job is assumed. At this point, the administrator has no information about the scope of the
issue. This also applies to other potentially affected users, who have not noticed issues yet, as
well as to other WNs. Consequently, the administrator’s query to find the affected WN and
the correct PID of the affected job is time consuming and has an uncertain outcome. The
NAF administrator quits the query due to the lack of information compared to the magnitude
of possibilities and returns to communicate this to the user who filed the issue in this use
case. In the best case, the user runs only one single job. This job is quickly identified, and
the slot it runs in is cleared. The actual issue is not necessarily resolved by the latter action.
Other users potentially experience similar issues with their jobs on that WN. In the worst case

scenario the whole WN needs to be rebooted, clearing all jobs off that machine.

®For the sake of brevity only the term NAF will be used in the text from now on. The Grid computation
infrastructure is always included, though, if not mentioned otherwise.

76

4 Methodology

The second use case describes a scenario with a lower time requirement. As seen in Section
2.9 the dCache administrator has more metrics available through the dCache admin interface
than the NAF administrator has in the case an issue is detected. The administrator of the
dCache storage system provides the IP address and port of the WN, the UID and the path to
the file the NFSv4+ client on the WN in question is accessing. This is valuable information
for the NAF administrator to start a query on the known WN in order to find the PIDs of
the user's jobs. With these PIDs at hand, if still present by then, a long-winded query via
the /proc/<PID>/fd filesystem path is started aimed at finally finding the corresponding
path. Since the path is known (from the dCache end) at that time, the corresponding PID is
the one that belongs to the faulty job which is subsequently cleared off the WN's slot.

Lastly, in case the dCache administrator perceives completely idle data movers which never
delivered a single byte (high LM value) to the NFSv4+ client, but the storage pools are in a
flawless state, an NFSv4+ client-server issue can be assumed. According to the dCache system
administrator there are typically three levels of escalation for the recovery of an NFSv4+
client or server. The levels increase in their effect on the system from less disruptive to most

disruptive:

1. The dCache admin interface provides a kill-client command. Despite the name,
the command only triggers the client to reconnect to one or more NFSv4+ servers it

previously was connected to.
2. A restart of the NFS door (metadata server).

3. A restart of the WN machine on which the NFSv4+ client resides.

77

4 Methodology

ad Job-Flow no BPF J

user submits
job

condor starts
jo

'

[job runs flawlessly]

[job stalls]

[dCache admin detects issue]

[issue undetected]

job

job

[user detects issue]

user
notifies NAF
admin

NAF admin
recvd user
notification

identify UID/GID
WN-IP and path
causing issue

dCache admin
notifies
NAF/Grid admin

NAF/Grid admin

identify affected WNs
(map UID -> WNs)
identify
recvd dCache admin affected
notification slot(s)

[failed]

identify UID/GID
causing issue

[failed]

[success]

[failed]

[success]

[success]

kill
{reboot WN} E;ser's job(sq

condor ends)

condor ends @

issue persists
[issue gone]
L admin user(s) recvd
notifies admin
user(s) notification

Figure 4.2: Activity diagram of a Job Workflow as described in use cases 1 and 2
(no custom BPF program involved)

78

5 Evaluation

This section presents the key findings of the present work with respect to the research objec-

tives proposed in Section 1.5. An overview of the key findings is listed below.
e Key Findings:

1. Kernel Metrics Count: A total of 33 different kernel metrics are made available
to the system administrators at DESY through the application of the custom-built
BPF programs

2. Time-Savings: The time span from notification of an issue to the point where the
system administrators obtain the relevant metrics for taking action is drastically

reduced

3. User Process ID Tracking: Experiments during the development process of the
BPF programs reveal that the PID of a user process can be tracked down to the
RPC layer of the kernel

4. NFSv4+ Bytes Per User PID: As a consequence thereof, a BPF program is
implemented that retrieves the amount of bytes sent and received with NFSv4+
on a per user process basis. This, to the best of the author's knowledge, did not

exist so far

5.1 Kernel Metrics Made Available Through BPF

Table 5.1 lists the kernel metrics available to system administrators through the application
of the three custom BPF programs. A total of 33 newly available metrics are now supplied.
The comparison of available metrics on the computing end (NAF) with those on the storage
end suggests a lack of balance between the two. This is certainly not accurate, since the new
metrics are made available to every member of the administrative team. Apart from that,
many of the new metrics, such as the RPC client ID or the open file descriptor value, either
do not apply on both ends of the network or they are not of any interest for the pursuit of

issues on either end.

79

5 Evaluation

Naturally, every single metric contributes to the resolution of an issue to a different degree.
These shares in contribution are highly dependent on the issue in question. Applied to use
case number one described in Section 4.4, where the administrator is left with the UID
of the user only, the metric of the path to an open NFS share (in combination with the
corresponding PID) contributes more to the process of localizing the WN and the exact slot
than the knowledge of e.g. the ID of the RPC client involved.

The 33 metrics presented are the result of experimentation. They represent the outcome of
research on the limit of what is feasible with the application of BPF technology. And they

are considered only a starting point.

80

5 Evaluation

No. | Metric NAF admin (BPF) | dCache admin (IF)
1 | command name + -
2 time stamp + +
3 | current CPU + -
4 | PID of current task + -
5 | TGID of current task + -
6 PID of RPC task owner + -
7 UID of current task + +
8 | GID of current task + +
9 | UID of RPC task owner + -
11 | GID of RPC task owner + -
12 | XID of RPC request/reply + -
13 | RPC client ID + -
14 | CGroup ID + -
15 | access protocol name + +
16 | access protocol number + -
17 | access protocol version + +
18 | transport protocol + -
19 | open file descriptor + -
20 | path string + +
21 | NFSv4 server name + +
22 | NFSv4 server port + +
23 | NFSv4 server IP address + +
24 | NFSv4 client name + +
25 | NFSv4 bytes sent p.process + -
26 | NFSv4 bytes received p.process + -
27 | NFSv4+ client ID - +
28 | NFSv4+ session ID - +
29 | NFSv4+ state ID - +
30 | NFSv4+ sequence ID - +
31 | NFSv4+ transfer status - +
32 | socket family + -
33 | socket type + -
34 | socket state + -
35 | socket source IP address + -
36 | socket source port + -
37 | socket destination IP address + -
38 | socket destination port + -

Table 5.1: Comparison of metrics obtained through BPF to available metrics through the
dCache admin interface (IF).
LEGEND:
+ = available
- = not available yet/does not apply

81

5 Evaluation

5.2 Time-Savings During Issue Management

Currently, the only custom BPF program running in an NAF production context at DESY
is the nfs4_path_finderV. While being executed on the worker nodes, its output file
stream is fed into a data aggregation and visualization software called Elastic Kibana [91].

The nfs4_path_finderV program scans the file descriptors of every process scheduled
on any of the multiple CPUs of a worker node. It reports the path, if applicable, to a file
on an NFS share that the process has currently opened, together with its PID and TGID.

Figure 5.1 shows the entirety of metrics the BPF program collects.

"host": "grid-dev-sandro@l.desy.de",
"emd": "vim",
"timestplus]":13856811940,

"cpu": 13,

"PID": 9502,

"TGID": 9502,

"UID": 1000,

"GID": 51108,

"cgroup_id": 9563,

"fd": 3,
"path":"/pnfs/desy.de/dot/volatile/test_nfs4_216"

Figure 5.1: A JSON formatted entry from the nfs4_path_finderV BPF program output

To measure the time the kernel needs to perform a listing of the /proc/<PID>/fd directory,
the 1s command is invoked together with the time utility on the Linux command shell as

shown in Listing 5.1.

S time 1ls /proc/943626/fd
l-wx—————— . 1 root root 64 Dec 26 20:46 0 —> /var/log/sssd/
sssd_sudo.log
(+ 17 more)

sys Om0.01l1ls

Listing 5.1: Timing the 1s /proc/<PID>/fd command

The 0.011 s that the command spends in kernel mode is the shortest time span out of 25
measurements with approximately 18 + 1 file descriptor lookups. The measurements are taken

on an idle machine with respect to user processes (other than the listing) and no open files

82

5 Evaluation

to NFS shares are involved. For comparison, table 5.2 shows the average time needed by the
nfs4_path_finderV to perform the same task of scanning 18 file descriptors on a busy
production NAF worker node. For each scanned file descriptor an entry as the one shown in
Figure 5.1 is generated in the output stream. The time to perform the JSON-formatted entry

in the userland part of the nfs4_path_finderV is not part of the measurement.

1ls /proc/<PID>/fd | nfs4_path_ finderV
0.011s 0.000944 s

Table 5.2: Comparison of time needed for the scanning of 18 file descriptors in the kernel

More important for the system administrators’ work than the result of the measurement show-
ing that the BPF program is processed about eleven times faster is the fact that it constantly
collects the metrics and pipes them to Elastic Kibana without any human interaction.

In the first use case scenario the NAF administrator gains a collection of job PIDs from the
HTCondor query to identify the WNs that potentially expose the issue in question. Conse-
quently, every single PID must be processed manually on the command shell or in a scripted
manner to finally find a path to an NFS share. By the time this is executed to completion, the
process causing the issue might be already removed or file descriptors might be unavailable.
Under these conditions, the administrator is not able to perform any further queries and has
to quit the issue tracking process.

In contrast to the above use case, now a scenario is possible in which the nfs4_path_-
finderV program is being executed in the WN's kernel, constantly piping metrics to Elastic
Kibana. The first action the NAF administrator takes is to query Kibana for open paths to
NFS shares given the UID at hand.

83

5 Evaluation

12,000

10,000

8,000

8,000

/group/topemsdesy/nanoaod_topv/mc/RunliSummer20UL1
user/lopesbea/ttgamma_analysis/pepper/pepper/_pycach
luser/lopesbea/ttgamma_analysis/pepper/pepper/__pycach

/group/topcmsdesy/nanoaod_topv/data/Run2016B/Single!

* & o o 0

[userflopesbealttgamma_analysis/pepper/pepper/_pycach
[userflopesbealttgamma_analysis/pepper/pepper/_pycach
[userflopesbea/tigamma_analysis/pepper/pepper/__pycach
[userflopesbea/tigamma_analysis/pepper/pepper/__pycach
luser/lopesbea/ttgamma_analysis/pepper/pepper/_pycach

user/lopesbea/ttgamma_analysis/pepper/pepper/_pycach

NanoAODAPVvI/W.etsToLNu_TuneCP5_13TeV-madgraphMLM-pythja8/NANOACDS
e__/tmp3I9wI2m0
e__/tmpattou8p5

uon/NANOAOD/ver2_HIPM_UL2016_MiniAODv2_NanoAODvI-v2/40 092-

e__/tmpnc3u3vwe
e__/tmpgxfhOvvy
e_/tmpz6y7ugbl
e_/tmpécz6_z4n
e_/tmpsDg4u59b

e_/tmpycmiZen4

* ® o @& @

Other

Count of records

4,000

2,000 B
| 1510 |55 15:20

15:06
December 17, 2024

Figure 5.2: Kibana query result showing NFSv4+ paths opened by processes with PIDs in
the range of 2505-2535 and their scheduling activity from user with UID 35XYZ
on the batch1568 worker node

15:25

@timestamp per 30 seconds

Figure 5.2 shows the visualization of a Kibana query. It shows how often processes selected
by PIDs in the range of 2505 through 2535 were scheduled on CPU cores of the batch1568
worker node over time. The opened NFSv4+ paths are listed partly as well. They all belong
to one user with a given UID. With the overview of activity patterns of processes over time,
the administrator is able to recognize issue-causing patterns more easily. Patterns resembling
no activity over longer periods hint at stalling 1/O requests, while unusually high bursts of
activity could hint at a forthcoming storage pool overload [18]. Especially when the same
file on an NFS share is opened by multiple user’s processes performing file 1/O concurrently.
Yet, since the information provided by the nfs4_path_finderV is already available, the
Kibana query performed to find out which other PIDs have the same path to a file opened is
a matter of seconds.

For comparison, time measurements of the first use case performed by the NAF system
administrator reveal an average time requirement of approximately 480s. This time value
includes the HT Condor query to find out whether any jobs from a user with a given UID are
still running and, if this is the case, on which WNs they are being executed. Also included
in the measured time span is the execution of the 1s /proc/<PID>/fd command on the
command shell as described above. In contrast, the time required to perform a Kibana query
yielding the same results takes an average time of approximately 61 s. This corresponds to a

time-saving of approximately 87 %.

84

5 Evaluation

ad Job-Flow with BPF)

user submits condor starts
job job

[job runs flawlessly]

0
condor ends

[dCache admin detects issue]

[job stalls]

[issue undetected]

job
~ @@

Y
condor ends

[user detects issue]

[

identify UID/GID
WN-IP and path
causing issue

J

al

user
notifies NAF
dmin

NAF admin
recvd user
notification

BPF provides
metrics

dCache admin queries
Elastic Kibana

~

job
~— @

Ve

J

Elastic Kibana

NAF admin queries
Elastic Kibana

)

P
dCache admin gathers
required information

~

A\

NAF admin gathers
required information

dCache admin
notifies
NAF admin

NAF admin recvd
dCache admin
notification

kill one
job only

admin
notifies
user

> >notiﬁcation

user recvd
admin

Figure 5.3: Activity diagram of a Job Workflow with custom BPF program involved

5.3 User Process ID Tracking

The discovery that the PID of the user process is traceable down to the kernel’s NFS and RPC
layer is considered a success. It paved the way for the development of the nfs4_byte_-
picker BPF program. There was a degree of uncertainty associated with this question
during the research phase to this thesis. At that time, from the mere study of the kernel

sources, it was not fully clear which task would assign its tgid field value to the tk_-

owner field of the initiated struct rpc_task (as explained in Section 4.2.1).

discovery emerged through experimentation during the development phase of the nfs4_—

byte_picker program and is verified by empirical evidence. This evidence derives from

5 Evaluation

the study of hundreds of experimentation records that contained output entries as the one
depicted in Figure 5.4 by comparing the PID/TGID (of current) to the PID of the RPC task
owner. Yet, there is the rare observation of a kernel thread being both, current and RPC
task owner. Thus, the question about which circumstances determine whether the rpc_-
init_task () routine is invoked by the userland thread or by a kernel thread leaving its

PID behind, is still left unanswered.

5.4 NFSv4+ Bytes Per User PID

Although the custom nfs4_byte_picker program is not running in production at DESY,
its functionality has been visualized with the help of Kibana plots. As explained in 4.2.1 the
nfs4_byte_picker program collects the bytes sent and received by the client via the
NFSv4+ protocol. Additionally, and this can be regarded its real strength, it associates those
transferred bytes to the PID of the originating user process. The full set of metrics derived

from the nfs4_byte_picker program is shown in Figure 5.4.

"host": "grid-dev-sandro@il.desy.de",
"ecmd": "kworker/ul28:0",
"timestp_xmit_start[us]": 19510944953,
"timestp_xmit_end[us]": 19510965117,
"cpu": 7,

"PID": 10742,

"TGID": 10742,

"UID": @,

"GID": @,

"cgroup_id": 1,

"rpc_task_owner_pid": 12503,
"rpc_task_owner_uid": 1000,
"rpc_task_owner_gid": 51108,
"xid_call": 118395688,

nyid_rply": 118395688,
"Xprt_protocol": "TCP",
"protocol_name": "nfs",
"protocol_number": 100003,
"protocol_version": 4,

"server_name": "dcache-dot-door@l.desy.de",
"server_port": 2049,

"server_ip_addr": "131.169.223.60",
"client_name": "grid-dev-sandro@l.desy.de",
"rpc_client_id": 3,

"bytes_sent": 388,

"bytes_rcvd": 532

Figure 5.4: JSON formatted entry from the nfs4_byte_picker BPF program output

86

5 Evaluation

As a proof of concept the plot displayed in Figure 5.5 was generated. It shows the course of
data transferred over time between a worker node and a NFSv4+ data server on a dCache
storage node. The transfer comprises a request for large tarball files from the NFS share.
Once transferred, the tarballs are extracted locally on the worker node. The extracted files
are subsequently sent back to the storage. This task is executed by one single user process on
the worker node. The shown plot is a result of an applied filter in Kibana. It is filtered by PID
and hostname and set to display the sum of each of the two metrics from the nfs4_byte_-—
picker program output, namely the bytes sent and the bytes rcvd metric, respectively.
The process was paused at 11:39 a.m. and resumed at 11:43 a.m. The dips in the graphs of

the shown plots reflect this interruption.

Sum of bytes_r...

® Sum of bytes_s...

Sum of bytes_rcvd

@timestamp per minute

Figure 5.5: A Kibana query result showing the NFSv4+ bytes sent (blue) and received (green)
by a process with given PID on the batch1255 worker node

Figure 5.6 shows the total amount of bytes that is transferred across the network interfaces
of the worker node. A comparable progression in the amount of transferred data over the

same time span can be recognized here as well.

87

5 Evaluation

Network (bytes/s) - batch1255

Bytes /s

50 MBfs
0Bfs
M T——
-50 MB/s
-100 MBs
-150 MB/s
125 11:30 M35 1140 45 11:50 15

eml.bytes_recv Mean: Last* Max Min: em2.bytes_recy Mean: Last*' Max: Min: == em3bytesrecy Mean: Last* Max: Min:

emd bytes_recy Mean: Last*® Max: Min: == enolbytes_recv Mean: 0B/s Last*: 0Bfs Max:0B/s Min: 0B/s
eno? bytes_recy Mean: 0Bfs Last*: 0B/s Max:0B/s Min: 0B/fs
eno33np0.bytes_recv Mean:26.4 MB/s Last*: 6.4 MB/s Max: 37.6 MB/s Min: 6.45MB/s

eno34nplbytes_recy Mean: 0 Bfs Last*:0 Bfs Max:0Bfs Min:0 B/s == lo.bytes_recy Mean: 464 Bfs Last*: 725 B/s Max: B90B/s Min: 203 B/s

emlbytes_sent Mean: Last* Max: Min: == em2bytes_sent Mean: Last* Max: Min: == em3.bytes_sent Mean: Last* Max: Min:

emd hvtes sent Mean: | ast* Max: Min: == ennlbutes sent Mean: 1R/s | ast* 0R/s Max:0R/s Min: 0R/s

Figure 5.6: Kibana query result showing the sum of all bytes sent (lower) and received (upper)

through the network cards of the batch1255 worker node

88

6 Discussion and Conclusion

This section concludes this thesis by discussing the implications and limitations of the achieved

objectives. Additionally, it presents a brief outlook on future application and extension.

The outcome of the research presented in Section 4 and 5 seems promising with respect to its
potential in accelerating the administrators’ process of narrowing down issues to their actual
origin. Especially, the aggregation and visualization of the obtained metrics with the help of
Elastic Kibana opens up a faster and more intuitive way of interpreting them and recognizing
inherent patterns. Whether it is a storage pool under heavy load or a stale NFSv4+ client,
most of the issues in a complex environment show characteristic patterns. The capability of
recognizing the cause of an issue by studying its pattern can be learned and comes naturally
with experience [67]. Still, the basis for every meaningful pattern to emerge is the presence
of meaningful metrics. Which of the metrics obtained by means of the three custom BPF
programs are to be considered more meaningful than others is a question that needs further
experimentation and evaluation. But the results show that the initially proposed combination
of a user process’ PID, UID and the path to open files on NFS shares favorably contribute to
the acceleration in issue management. Especially, the simultaneous gathering of the stated
PID and path information in concert with the transferred bytes per user process gives rise to

a facilitated pattern recognition process as the Kibana plots in Section 5.4 show.

As already stated, the total of 33 new metrics can be considered a valuable starting point
for a future extension of the list. Through the high degree of customization possible in BPF
programming, new metric queries can be added to the existing programs. A limitation to the
number of metrics gathered within one BPF program is the complexity constraint enforced by
the BPF verifier. Although seemingly impeding at first, the BPF verifier's constraints have a
good reason: They protect the aspiring BPF developer from developing BPF programs that
can potentially throttle the otherwise most efficiently performing Linux kernel. Despite the
fact that the verifier's constraints guarantee a minimal performance overhead [2], the accu-
mulation of time penalties caused by the simultaneous application of multiple BPF programs
can be non-negligible. Especially in high-throughput-computing environments such as the
NAF or the Grid at DESY, this has to be taken into consideration. The exploration of the

89

6 Discussion and Conclusion

exact circumstances that affect the performance of BPF programs in conjunction with mea-
surements of performance penalties caused by them could be the basis for future research. In
addition, a future extension of the already initiated work could comprise the development of
BPF programs for the other supported access protocols such as, e.g. WebDAV.

To gather further results and explore deeper insights in the potential advantages of using BPF
technology a longer in-production test phase will be needed. For the purpose of this thesis
and the research objectives within the frame of this work, however, the results clearly confirm
the benefit of leveraging BPF technology for the acceleration of issue management performed
by system administrators at DESY. Furthermore, they attest the feasibility of obtaining and
attributing the amount of bytes transferred via the NFSv4+ protocol to the PID of the user
process that originally requested the transferred data. This establishes the foundation for the
future development of NFS-related BPF probes that can be deployed on a per-user-process
basis. Moreover, the creation of new BPF probes is accelerated by this essential step. The
custom-built BPF programs created during the work on this thesis are publicly available and

hopefully helpful to other members of the community as well.

'The codebase for the three BPF programs is freely available at https://github.com/sandrol08/e
bpf_programs under the Apache License 2.0. Contributions are most welcome.

90

https://github.com/sandro108/ebpf_programs
https://github.com/sandro108/ebpf_programs

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

WIRESHARK FOUNDATION: Wireshark - Network Protocol Analyzer . — URL https:
//www.wireshark.org. — Retrieved on: 30.11.2024

GRECGG, B.: BPF Performance Tools. Addison-Wesley Professional, 2019. — ISBN
978-0-13-655482-0

MKRTCHYAN, T.: personal communication. — 05.11.2024

UNKNOWN, DESY WEBSITE: The decoding of matter. 2024. — URL https:

//www.desy.de/about_desy/desy/index_eng.html. — Retrieved on:
03.01.2025

UNKNOWN, DESY WEBSITE: Photon science. 2024. — URL https://www.

desy.de/research/photon_science/index_eng.html. — Retrieved on:

03.01.2025

PARTICLE PHYSICS RESEARCH DIVISION AT DESY: Any Light Particle Search.
unknown. — URL https://alps.desy.de/our_activities/axion_wisp_e

xperiments/alps_ii. — Retrieved on: 01.01.2025

UNKNOWN, DESY WEBSITE: Particle physics. 2024. — URL https://www.de
sy.de/research/particle_physics/index_eng.html. — Retrieved on:
03.01.2025

DEL R0sso, A.: How CERN IT keeps up with the data deluge. 2024. — URL
https://home.cern/news/news/computing/how—cern-it-keeps—-dat
a—deluge. — Retrieved on: 01.01.2025

UNKNOWN, DESY WEBSITE: Documentation for the Maxwell HPC Cluste. 2024. —
URL https://docs.desy.de/maxwell/. — Retrieved on: 03.01.2025

HaupT, A. ; KEMP, Y. ; NOWAK, F.: Evolution of Interactive Analysis Facilities: from
NAF to NAF 2.0. In: Journal of Physics: Conference Series 513 (2014), 06, S. 032072

91

https://www.wireshark.org
https://www.wireshark.org
https://www.desy.de/about_desy/desy/index_eng.html
https://www.desy.de/about_desy/desy/index_eng.html
https://www.desy.de/research/photon_science/index_eng.html
https://www.desy.de/research/photon_science/index_eng.html
https://alps.desy.de/our_activities/axion_wisp_experiments/alps_ii
https://alps.desy.de/our_activities/axion_wisp_experiments/alps_ii
https://www.desy.de/research/particle_physics/index_eng.html
https://www.desy.de/research/particle_physics/index_eng.html
https://home.cern/news/news/computing/how-cern-it-keeps-data-deluge
https://home.cern/news/news/computing/how-cern-it-keeps-data-deluge
https://docs.desy.de/maxwell/

References

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

MKRTCHYAN, T. ; CHITRAPU, K. ; GARONNE, V. ; LITVINTSEV, D. ; MEYER,
S.; MILLAR, P. ; MORSCHEL, L. ; RossI, A. ; SAHAKYAN, M.: dCache: Inter-
disciplinary storage system. In: EPJ Web Conf. 251 (2021), S. 02010. — URL https:
//doi.org/10.1051/epjcont/202125102010

HARTMANN, T.: personal communication. — 23.07.2024

CORDEIRO, C. ; SOUTHWICK, D. ; GIORDANO, D. ; BARBET, J.-M. ; MEDEIROS,
M. F.. HEP Benchmark Suite. — URL https://gitlab.cern.ch/hep-bench
marks/hep-benchmark-suite. — Retrieved on: 22.04.2024

ALEF, M. ; CORDEIRO, C. ; SALvO, A. D. ; GIRoLAMO, A. D. ; FIELD, L. ; GIOR-
DANO, D. ; GUERRI, M. ; ScHiavi, F. C. ; WIEBALCK, A.: Benchmarking Cloud
Resources for HEP. In: Journal of Physics: Conference Series 898 (2017), oct, Nr. 9,
S. 092056. — URL https://dx.doi.org/10.1088/1742-6596/898/9/0920
56

BEYER, C. ; Bujack, S. ; DIETRICH, S. ; FINNERN, T. ; FLEMMING, M. ;
FUHRMANN, P. ; GASTHUBER, M. : GELLRICH, A. ; GUELZOW, V. ; HARTMANN,
T. ; REPPIN, J. ; KEMP, Y. ; LEWENDEL, B. ; SCHLUENZEN, F. ; SCHUH, M. ;
STERNBERGER, S. ; Voss, C. ; WENGERT, M.: Beyond HEP: Photon and accelerator
science computing infrastructure at DESY. In: EPJ Web Conf. 245 (2020), S. 07036.
— URL https://doi.org/10.1051/epjconf/202024507036

HTCoNDOR COMMUNITY: HTCondor Overview. — URL https://htcondor.o
rg/htcondor/overview/. — Retrieved on: 23.04.2024

SION, R.: Strong WORM. In: 2008 The 28th International Conference on Distributed
Computing Systems, URL https://dl.acm.org/doi/10.1109/ICDCS.2008.
20, 2008, S. 69-76

GEBHARDT, L.. Erkennung von verfiigbarkeitsgefahrdendem Nutzerverhalten im
dCache-System, HAW Hamburg, Bachelorarbeit, 2023

CHRISTIANS, F.: Anomaly Detection in verteilten Speichersystemen: Vorbereiten einer
MAPE Loop, HAW Darmstadt, Bachelorarbeit, 2024

DonNg, X. ; Liu, Z.: Multi-dimensional detection of Linux network congestion based on
eBPF. In: 2022 14th International Conference on Measuring Technology and Mecha-
tronics Automation (ICMTMA), 2022, S. 925-930

92

https://doi.org/10.1051/epjconf/202125102010
https://doi.org/10.1051/epjconf/202125102010
https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite
https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite
https://dx.doi.org/10.1088/1742-6596/898/9/092056
https://dx.doi.org/10.1088/1742-6596/898/9/092056
https://doi.org/10.1051/epjconf/202024507036
https://htcondor.org/htcondor/overview/
https://htcondor.org/htcondor/overview/
https://dl.acm.org/doi/10.1109/ICDCS.2008.20
https://dl.acm.org/doi/10.1109/ICDCS.2008.20

References

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

LIAN, Z.; L1, Y. ; CHEN, Z. ; SHAN, S. ; HAN, B. ; Su, Y.: eBPF-based Working Set
Size Estimation in Memory Management. In: 2022 International Conference on Service
Science (ICSS), 2022, S. 188-195

LAFORET, V. ; Loz, J.-P. ; LAwALL, J.: BPF Hybrid Lock: Using eBPF to commu-
nicate with the scheduler. (2023). — URL https://inria.hal.science/hal-0
4266815

ZHANG, X. ; Liu, Z. ; Bar, J.: Linux Network Situation Prediction Model Based on
eBPF and LSTM. In: 2021 16th International Conference on Intelligent Systems and
Knowledge Engineering (ISKE), 2021, S. 551-556

DERI, L. ; SABELLA, S. ; MAINARDI, S. ; DEGANO, P. ; ZUNINO, R.: Combining
System Visibility and Security Using eBPF. In: ITASEC Bd. 2315, 2019

GREGG, B.: Systems Performance. Addison-Wesley Professional, 2021. — ISBN 978-0-
13-682015-4

DuBuc, T. ; Vicar-BLANC, P. ; OLIVIER, P. ; CALLAU-ZORI, M. ; HUBERT, C. ;
TcCHANA, A.: Tracklops: Real-Time NFS Performance Metrics Extractor. In: Proceed-
ings of the 4th Workshop on Challenges and Opportunities of Efficient and Performant
Storage Systems. New York, NY, USA : Association for Computing Machinery, 2024
(CHEOPS '24), S. 1-8. — URL https://doi.org/10.1145/3642963.365220
2. — ISBN 9798400705380

BoOVET, D. ; CESATI, M.: Understanding The Linux Kernel. Oreilly & Associates Inc,
3rd edition, 2005. — ISBN 978-0-596-00565-8

LoVE, M.: Linux Kernel Development. Addison-Wesley Professional, 3rd edition, 2010.
— ISBN 978-0-672-32946-3

BiLLiMORIA, K.N.: Linux Kernel Programming: A Comprehensive Guide to Kernel In-
ternals, Writing Kernel Modules, and Kernel Synchronization. Packt Publishing, Limited,
2024 (Expert insight). — ISBN 9781803232225

ENBERG, P. AND LAMETER, C.: /sys/kernel/slab/<cache>/ Documentation. 2007-
2011. — URL https://www.kernel.org/doc/Documentation/ABI/testi
ng/sysfs—kernel-slab. — Retrieved on: 23.11.2024

CORBET, J.: Per-CPU variables and the realtime tree. 2011. — URL https://lwn.
net/Articles/452884/. — Retrieved on: 25.11.2024

93

https://inria.hal.science/hal-04266815
https://inria.hal.science/hal-04266815
https://doi.org/10.1145/3642963.3652202
https://doi.org/10.1145/3642963.3652202
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-kernel-slab
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-kernel-slab
https://lwn.net/Articles/452884/
https://lwn.net/Articles/452884/

References

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

0xXxAX AND COMMUNITY: Linux Insides. last commit in 2020. — URL https:
//github.com/0xAX/linux-insides/blob/master/Concepts/linux-c
pu-1.md. — Retrieved on: 26.11.2024

STALLMAN, R. M. ; GCC DEVELOPER COMMUNITY the: Using the GNU Compiler
Collection for GCC Version 14.2.0. GNU Press, Free Software Foundation, Boston, USA,
2024

ADVANCED MICRO DEVICES INC: AMDG64 Architecture Programmer's Manual Vol-
ume 1, Rev. 3.23. 2020. — URL https://www.amd.com/content/dam/amd/en
/documents/processor—-tech-docs/programmer—-references/24592.
pdf. — Retrieved on: 27.11.2024

LETTIERI, G: Stack Canaries. 2023. — URL https://lettieri.iet.unipi.i
t/hacking/canaries.pdf. — Retrieved on: 26.11.2024

MAUERER, W.: Professional Linux Kernel Architecture. John Wiley & Sons., 2008. —
ISBN 978-04-703-4343-2

TORVALDS, L.: RE: Userspace breakage. 2005. — URL https://lore.kernel.
org/lkml/CA+55aFy98A+LJK4+GWMcbzaalzsPBRo76g+1i0E jbox—uaMKH6U
w@mail.gmail.com/. — Retrieved on: 26.10.2024

TorvAaLDs, L.: WE DO NOT BREAK USERSPACE! 2012. — URL https://lore
.kernel.org/all/Pine.LNX.4.64.0512291451440.3298Q@g5.0sdl.org
/T/#u. — Retrieved on: 26.10.2024

BROWN, N.: Object-oriented design patterns in the kernel. 2011. — URL https:
//lwn.net/Articles/444910/. — Retrieved on: 26.10.2024

CHARATAN, Q. ; KANS, A.: Java in Two Semesters. Springer Nature Switzerland AG
2019, 2019. - URL https://doi.org/10.1007/978-3-319-99420-8. —
ISBN 978-3-319-99419-2

GAMMA, E. ; HELM, R. ; JOHNSON, R. ; VLISSIDES, J.: Design patterns: elements of
reusable object-oriented software. USA : Addison-Wesley Longman Publishing Co., Inc.,
1995. — ISBN 978-03-217-0069-8

VENNERS, B.: Design Principles from Design Patterns A Conversation with Erich
Gamma, Part Ill. 2005. — URL https://www.artima.com/articles/design
-principles-from—-design-patterns. — Retrieved on: 25.10.2024

94

https://github.com/0xAX/linux-insides/blob/master/Concepts/linux-cpu-1.md
https://github.com/0xAX/linux-insides/blob/master/Concepts/linux-cpu-1.md
https://github.com/0xAX/linux-insides/blob/master/Concepts/linux-cpu-1.md
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24592.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24592.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24592.pdf
https://lettieri.iet.unipi.it/hacking/canaries.pdf
https://lettieri.iet.unipi.it/hacking/canaries.pdf
https://lore.kernel.org/lkml/CA+55aFy98A+LJK4+GWMcbzaa1zsPBRo76q+ioEjbx-uaMKH6Uw@mail.gmail.com/
https://lore.kernel.org/lkml/CA+55aFy98A+LJK4+GWMcbzaa1zsPBRo76q+ioEjbx-uaMKH6Uw@mail.gmail.com/
https://lore.kernel.org/lkml/CA+55aFy98A+LJK4+GWMcbzaa1zsPBRo76q+ioEjbx-uaMKH6Uw@mail.gmail.com/
https://lore.kernel.org/all/Pine.LNX.4.64.0512291451440.3298@g5.osdl.org/T/#u
https://lore.kernel.org/all/Pine.LNX.4.64.0512291451440.3298@g5.osdl.org/T/#u
https://lore.kernel.org/all/Pine.LNX.4.64.0512291451440.3298@g5.osdl.org/T/#u
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://doi.org/10.1007/978-3-319-99420-8
https://www.artima.com/articles/design-principles-from-design-patterns
https://www.artima.com/articles/design-principles-from-design-patterns

References

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

KLEIMAN, S. R.: Vnodes: An Architecture for Multiple File System Types in Sun
UNIX. In: Proceedings of the USENIX Summer Conference, Altanta, GA, USA, June
1986, USENIX Association, 1986, S. 238-247

BrROWN, N.: Filesystems in the Linux kernel » Pathname lookup. 2015. — URL
https://www.kernel.org/doc./html/next/filesystems/path-looku
p.html. — Retrieved on: 19.11.2024

GooCH, R.: Filesystems in the Linux kernel » Overview of the Linux Virtual File
System. 2005. — URL https://www.kernel.org/doc/html/v5.4/filesys
tems/vfs.html. — Retrieved on: 19.11.2024

TORVALDS, L.: comp.os.mimix. 1991. — URL https://web.archive.org/we
b/20130509134305/http://groups.google.com/group/comp.os.mini
x/msg/b813d52cbc5a044b. — Retrieved on: 01.01.2025

SANDBERG, R. ; GOLDBERG, D. ; KLEIMAN, S. L. ; WALSH, D. ; LYoN, B.: Design
and implementation of the Sun network filesystem. In: USENIX (1985), S. 119-130. —
URL https://api.semanticscholar.org/CorpusID:61413305

HAYNES, T. ; NOVECK, D.: Network File System (NFS) Version 4 Protocol. RFC
7530. Marz 2015. — URL https://www.rfc—editor.org/info/rfc7530

INTERNET ENGINEERING TASK FORCE (IETF): RFC 8881, Network File System
(NFS) Version 4 Minor Version 1 Protocol. 2020. — URL https://datatracker.
ietf.org/doc/rfc8881/. — Retrieved on: 08.11.2024

HAYNES, T.: Network File System (NFS) Version 4 Minor Version 2 Protocol. RFC
7862. November 2016. — URL https://www.rfc-editor.org/info/rfc7862

E1SLER, M.: XDR: External Data Representation Standard. RFC 4506. Mai 2006. —
URL https://www.rfc—editor.org/info/rfc4506

THURLOW, M.: RPC: Remote Procedure Call Protocol Specification Version 2. RFC
5531. Mai 2009. — URL https://www.rfc—editor.org/info/rfc5531

MYKLEBUST, T.; LEVER, C.: Towards Remote Procedure Call Encryption by Default.
RFC 9289. September 2022. — URL https://www.rfc—editor.org/info/rfc
9289

95

https://www.kernel.org/doc./html/next/filesystems/path-lookup.html
https://www.kernel.org/doc./html/next/filesystems/path-lookup.html
https://www.kernel.org/doc/html/v5.4/filesystems/vfs.html
https://www.kernel.org/doc/html/v5.4/filesystems/vfs.html
https://web.archive.org/web/20130509134305/http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b
https://web.archive.org/web/20130509134305/http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b
https://web.archive.org/web/20130509134305/http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b
https://api.semanticscholar.org/CorpusID:61413305
https://www.rfc-editor.org/info/rfc7530
https://datatracker.ietf.org/doc/rfc8881/
https://datatracker.ietf.org/doc/rfc8881/
https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc4506
https://www.rfc-editor.org/info/rfc5531
https://www.rfc-editor.org/info/rfc9289
https://www.rfc-editor.org/info/rfc9289

References

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

EISLER, M.: IANA Considerations for Remote Procedure Call (RPC) Network Identifiers
and Universal Address Formats. RFC 5665. Januar 2010. — URL https://www.rf
c-editor.org/info/rfc5665

IANA INTERNET ASSIGNED NUMBERS AUTHORITY: Service Name and Transport
Protocol Port Number Registry. — URL https://www.iana.org/assignments
/service-names-port-numbers/service-names-port-numbers.xht

ml?&page=37. — Retrieved on: 28.11.2024

MILLAR, A.; BARANOVA, T.; BEHRMANN, G ; BERNARDT, C ; FUHRMANN, P. :
LiTviINTSEV, D. ; MKRTCHYAN, T. ; PETERSEN, A ; Ross1, A.: DCache, agile
adoption of storage technology. In: Journal of Physics Conference Series 396 (2012),
12

GIBSON, G.: pNFS Problem Statement. https://datatracker.ietf.org/d
oc/html/draft-gibson-pnfs—-problem-statement-00.txt. 2004

FUHRMANN, P.: A perfectly normal namespace for the DESY open storage manager,
URL http://www-zeuthen.desy.de/CHEP97 /paper/409.ps, 1997

MKRTCHYAN, T.; CHITRAPU, K ; LITVINTSEV, D. ; MEYER, S. ; MILLAR, P. ;
L. MoORSCHEL, L. ; Rossi, A. ; SAHAKYAN, M.: DB Back-ended Filesystem for
Science. In: Proceedings of the 35th GI-Workshop on Foundations of Databases (2024),
Mai. — URL https://ceur-ws.org/Vol-3710/paper9.pdf

DCACHE DEVELOPERS TEAM: dCache -The Book- A general guide for administrators.
dcache.org, The Book v10.2, 2024. — URL https://www.dcache.org/manuals
/Book-10.2

HALEVY, B. ; HAYNES, T.: Parallel NFS (pNFS) Flexible File Layout. RFC 8435.
August 2018. — URL https://www.rfc-editor.org/info/rfc8435

DCACHE DEVELOPERS TEAM: About us. 2007. — URL https://dcache.org/a
bout/. — Retrieved on: 02.01.2025

FUHRMANN, P.: dCache. 2007. — URL https://indico.cern.ch/event/2
0080/contributions/1484377/subcontributions/134209/attachmen
£s/300209/419545/1cg-reliable-services-meeting-261107.pdf. —
Retrieved on: 06.12.2024

DCACHE DEVELOPERS TEAM: dCache Github Repository. — URL https://gith
ub.com/dCache/dcache. — Retrieved on: 08.12.2024

96

https://www.rfc-editor.org/info/rfc5665
https://www.rfc-editor.org/info/rfc5665
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=37
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=37
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=37
https://datatracker.ietf.org/doc/html/draft-gibson-pnfs-problem-statement-00.txt
https://datatracker.ietf.org/doc/html/draft-gibson-pnfs-problem-statement-00.txt
http://www-zeuthen.desy.de/CHEP97/paper/409.ps
https://ceur-ws.org/Vol-3710/paper9.pdf
https://www.dcache.org/manuals/Book-10.2
https://www.dcache.org/manuals/Book-10.2
https://www.rfc-editor.org/info/rfc8435
https://dcache.org/about/
https://dcache.org/about/
https://indico.cern.ch/event/20080/contributions/1484377/subcontributions/134209/attachments/300209/419545/lcg-reliable-services-meeting-261107.pdf
https://indico.cern.ch/event/20080/contributions/1484377/subcontributions/134209/attachments/300209/419545/lcg-reliable-services-meeting-261107.pdf
https://indico.cern.ch/event/20080/contributions/1484377/subcontributions/134209/attachments/300209/419545/lcg-reliable-services-meeting-261107.pdf
https://github.com/dCache/dcache
https://github.com/dCache/dcache

References

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

MKRTCHYAN, T. ; ADEYEMI, O. ; FUHRMANN, P. : GARONNE, V. ; LITVINTSEV,
D.; MILLAR, A. ; RossI, A. ; SAHAKYAN, M. ; STAREK, J. ; YASAR, S.: dCache -

storage for advanced scientific use cases and beyond. In: EPJ Web of Conferences 214
(2019), 01, S. 04042

THE APACHE SOFTWARE FOUNDATION: Apache Zookeeper. — URL https:
//zookeeper.apache.org/. — Retrieved on: 08.12.2024

Voss, C.: personal communication. — 11.10.2024

OLSzZEWSKI, M. ; MIERLE, K. ; CzAJKOWSKI, A. ; BROWN, A. D.: JIT instrumenta-
tion: a novel approach to dynamically instrument operating systems. 41 (2007), Nr. 3.
— URL https://doi.org/10.1145/1272998.1273000. — ISSN 0163-5980

ZANNONI, E.: An Introduction To Linux Tracing And Its Concepts. 2021. — URL
https://www.linuxfoundation.org/webinars/an-introduction-t

o—linux-tracing-and-its—concepts. — Retrieved on: 25.05.2024

CAMBRIDGE UNIVERSITY PRESS & ASSESSMENT 2024: The Cambridge Essential
American English Dictionary. — URL https://dictionary.cambridge.org/d

ictionary/essential-american—english/. — Retrieved on: 20.12.2024

BOOTLIN - EMBEDDED LINUX AND KERNEL ENGINEERING: Linux debugging, pro-
filing and tracing training. — URL https://bootlin.com/doc/training/deb
ugging/debugging-slides.pdf. — Retrieved on: 20.12.2024

ROSTEDT, S.: ftrace - Function Tracer. — URL https://www.kernel.org/doc
/html/v5.14/trace/ftrace.html. — Retrieved on: 02.11.2024

CORBET, J.: 2.6.27: what's coming. 2008. — URL https://lwn.net/Articles
/289990/. — Retrieved on: 25.05.2024

GEBAI, M. ; DAGENAIS, M. R.: Survey and Analysis of Kernel and Userspace Tracers
on Linux. In: ACM Computing Surveys (CSUR) 51 (2018), S. 1 — 33. — URL https:
//api.semanticscholar.org/CorpusID:4556704

DESNOYERS, M.: Using the Linux Kernel Tracepoints. unknown. — URL https:
//docs.kernel.org/trace/tracepoints.html. — Retrieved on: 23.12.2024

HirAMATSU, M.: Kernel Probes (Kprobes). unknown. — URL https://docs.ker
nel.org/trace/kprobes.html. — Retrieved on: 25.05.2024

97

https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://doi.org/10.1145/1272998.1273000
https://www.linuxfoundation.org/webinars/an-introduction-to-linux-tracing-and-its-concepts
https://www.linuxfoundation.org/webinars/an-introduction-to-linux-tracing-and-its-concepts
https://dictionary.cambridge.org/dictionary/essential-american-english/
https://dictionary.cambridge.org/dictionary/essential-american-english/
https://bootlin.com/doc/training/debugging/debugging-slides.pdf
https://bootlin.com/doc/training/debugging/debugging-slides.pdf
https://www.kernel.org/doc/html/v5.14/trace/ftrace.html
https://www.kernel.org/doc/html/v5.14/trace/ftrace.html
https://lwn.net/Articles/289990/
https://lwn.net/Articles/289990/
https://api.semanticscholar.org/CorpusID:4556704
https://api.semanticscholar.org/CorpusID:4556704
https://docs.kernel.org/trace/tracepoints.html
https://docs.kernel.org/trace/tracepoints.html
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/trace/kprobes.html

References

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

MAVINAKAYANAHALLI, A. ; PANCHAMUKHI, P. ; KENISTON, J. ; KESHAVAMURTHY,
A.S.; HIRAMATSU, M.: Probing the Guts of Kprobes, URL https://api.semant
icscholar.org/CorpusID:221597225, 2010

CORBET, J.: BPF: the universal in-kernel virtual machine. 2014. — URL https:
//lwn.net/Articles/599755/. — Retrieved on: 24.12.2024

Jia, J.; ZHU, Y. ; WILLIAMS, D. ; ARCANGELI, A. ; CANELLA, C. ; FRANKE, H. ;
FELDMAN-FITZTHUM, T.; SKARLATOS, D. ; Gruss, D. ; Xu, T.: Programmable
System Call Security with eBPF. 2023. — URL https://arxiv.org/abs/2302
.10366

HADI1, H. J. ; ADNAN, M. ; CA0O, Y. ; HussAIN, F. B. ; AHMAD, N. ; ALSHARA,
M. A. ; JAVED, Y.: iKern: Advanced Intrusion Detection and Prevention at the Kernel
Level Using eBPF. In: Technologies 12 (2024), Nr. 8. — URL https://www.mdpi
.com/2227-7080/12/8/122. — ISSN 2227-7080

CORBET, J.: The BPF system call API, version 14. 2014. — URL https://lwn.ne
t/Articles/612878/. — Retrieved on: 24.12.2024

KERNELNEWBIES COMMUNITY: Linux 3.18 has been released on Sun, 7 Dec 2014
. 2017. - URL https://kernelnewbies.org/Linux_3.18. — Retrieved on:
24.12.2024

ALDEN, D.: Modernizing BPF for the next 10 years. 2024. — URL https://lwn.
net/Articles/977013/. — Retrieved on: 24.12.2024

KERNEL DEVELOPER COMMUNITY: HOWTO interact with BPF subsystem. — URL
https://docs.kernel.org/bpf/bpf_devel_ QA.html. — Retrieved on:
05.01.2025

LiNnux KERNEL DEVELOPER COMMUNITY: libbpf Overview. unknown. — URL
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html. —
Retrieved on: 25.12.2024

Go DEVELOPER COMMUNITY: The eBPF Library for Go. 2023. — URL https:
//ebpf-go.dev/. — Retrieved on: 25.12.2024

FLEMING, M.: An introduction to the BPF Compiler Collection. 2017. — URL https:
//1lwn.net/Articles/742082/. — Retrieved on: 25.12.2024

98

https://api.semanticscholar.org/CorpusID:221597225
https://api.semanticscholar.org/CorpusID:221597225
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://arxiv.org/abs/2302.10366
https://arxiv.org/abs/2302.10366
https://www.mdpi.com/2227-7080/12/8/122
https://www.mdpi.com/2227-7080/12/8/122
https://lwn.net/Articles/612878/
https://lwn.net/Articles/612878/
https://kernelnewbies.org/Linux_3.18
https://lwn.net/Articles/977013/
https://lwn.net/Articles/977013/
https://docs.kernel.org/bpf/bpf_devel_QA.html
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://ebpf-go.dev/
https://ebpf-go.dev/
https://lwn.net/Articles/742082/
https://lwn.net/Articles/742082/

References

[88] OPENSEARCH DEVELOPER COMMUNITY: The OpenSearch project. 2024. — URL
https://github.com/opensearch-project. — Retrieved on: 25.12.2024

[89] RICE, L.: Learning eBPF. O'Reilly, 2023. — ISBN 978-1098135126

[90] NAKRYIKO, A.: BPF CO-RE reference guide. 2021. — URL https://nakryiko.c
om/posts/bpf-core-reference—guide/. — Retrieved on: 26.12.2024

[91] ELASTIC - THE SEARCH Al COMPANY: Entdecken, iterieren und beheben mit ES|QL
auf Kibana. — URL https://www.elastic.co/de/kibana. — Retrieved on:
05.01.2025

[92] THE KERNEL DEVELOPMENT COMMUNITY: Filesystems in the Linux kernel » Filesys-
tem Mount API. 2016. — URL https://www.kernel.org/doc/html/v5.1
4/filesystems/mount_api.html#the-filesystem-context. — Retrieved
on: 09.11.2024

99

https://github.com/opensearch-project
https://nakryiko.com/posts/bpf-core-reference-guide/
https://nakryiko.com/posts/bpf-core-reference-guide/
https://www.elastic.co/de/kibana
https://www.kernel.org/doc/html/v5.14/filesystems/mount_api.html#the-filesystem-context
https://www.kernel.org/doc/html/v5.14/filesystems/mount_api.html#the-filesystem-context

Acknowledgments

The author wishes to express his gratitude to the following individuals:

Thomas Hartmann and Christian Voss for their support at DESY. Philine Pommerencke,
Luca Gebhardt, Simon Boehling and Aaron Friedenberg for just being there. Nadja Grizzo
and Tigran Mkrtchyan for their patience and Heike Peper for everything else including the

above.

100

A Appendix

A.1 Expansion Macros

N\

1 #define _ pcpu_type_ 8 ub4d

#define __ pcpu_op2_8(op, src, dst) op "g " src ", " dst
#define __ percpu_arg (x) __percpu_prefix "$" #x

#ifdef CONFIG_SMP

#define __ percpu_prefix "$%"__stringify(__percpu_seg)":"
#ifdef CONFIG_X86_64

#define _ percpu_seg gs

0 N o a »~ W N

#define __ pcpu_reg_8 (mod, x) mod "r" (x)

J

Listing A.1: Definitions in /arch/x86/include/asm/percpu.h used to expand the

percpu_stable_op macro (see 2.8)

101

A Appendix

A.2 Mounting a NFSv4+ Share

In order to demonstrate an example of the ability the VFS layer has in switching control
to the correct filesystem implementation, a mount request for a NFSv4+ share issued by a
user on the Linux command shell is followed from userland into kernelspace and described in
more detail here. By utilizing the shell's system call tracing utility strace’, the userland
section of the mount process can be traced and logged. The pursuit starts with a mount(8)2

command issued from within a Linux command shell, like the bash.

[# strace mount -o vers=4.1 dcache-door0l.desy.de:/pnfs /pnfs]

Listing A.2: The mount(8) command issued from the Linux command shell.

Listing A.3 shows the terminal output caused by invocation of the st race command issued
in Listing A.2. As can be seen in line 1 of Listing A.3, a new user process with PID 9893 was
created. It executes an execve, which in turn executes the mount binary that lives in the
/usr/bin/ directory. It causes openat () syscalls into libraries like 1ibmount.so.1
and libc.so. 6, searching for the appropriate implementation of the mount () syscall to
be used for the transition into kernelspace. After cloning itself into a child process with
PID 9894, execve executes a more specific mount binary named mount.nfs(8) from the
/sbin/ directory. The manual pages found with man 8 mount.nfs state the following
information about this NFS mount helper command: «mount.nfs is a part of nfs(5) utilities
package, which provides NFS client functionality. mount.nfs is meant to be used by the
mount(8) command for mounting NFS shares.» And furthermore about the synopsis of the
command: «mount.nfs remotetarget dir [...][-0 options]» and a brief description of the argu-
ments: «remotetarget is a server share usually in the form of servername:/path/to/share. dir
is the directory onto which the file system is to be mounted.» All of the stated arguments
to mount .nfs listed in line 11 of Listing A.3 were specified by the user and passed to the

mount(8) command on the command shell as shown in Listing A.2.

Since the NFSv4+ client requests the NFS share from an NFSv4+ server across a network,
it is necessary to open a socket and establish a network connection to the NFSv4+ server
address referenced by the hostname first. The syscalls to socket, bind and connect are
listed in the strace output in lines 14-18 of Listing A.3. Finally, in line 22, the original
mount command from Listing A.2 is turned into its last userland permutation:

the mount () system call.

1
See also strace manual pages: $ man strace

*see also mount(8) manual pages: $ man 8 mount

102

A Appendix

1 PID syscall(args) = return value

9893 execve ("/usr/bin/mount", ["mount", "-o", "vers=4.1", "dcache

—dot-door01l.desy.de:/pnfs", "/pnfs"], O0x7ffc512eebe8) = 0

=3
9893 openat (AT_FDCWD, "/1lib64/libc.so.6", O_RDONLY|O_CLOEXEC) =

8 9893 clone (child_stack=NULL, flags=CLONE_CHILD_CLEARTID |

9 CLONE_CHILD_SETTID| SIGCHLD, child_tidptr=0x7f469265cad0)

10 = 9894

11 9894 execve ("/sbin/mount.nfs", ["/sbin/mount.nfs", "dcache-dot-
12 door0l.desy.de:/pnfs", "/pnfs", "-o", "rw,vers=4.1"],

13 0x7ffe40331638) = 0

14 9894 socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP) = 3
15 9894 bind (3, {sa_family=AF_INET, sin_port=htons(0),

16 sin_addr=inet_addr("0.0.0.0")}, 16) = O

17 9894 connect (3, {sa_family=AF_INET, sin_port=htons (0),

18 sin_addr=inet_addr ("131.169.XYZ.ABC")}, 1l6) = 0

19 9894 getsockname (3, {sa_family=AF_INET, sin_port=htons(29161),
20 sin_addr=inet_addr ("131.169.XYZ.ABC")}, [28 => 16]) = 0

21 9894 close(3) = 0
22 9894 mount ("dcache-dot-door0l.desy.de:/pnfs", "/pnfs", "nfs", 0
23 "vers=4.1,addr=131.169.XYZ.256,cli"...) =0

24 /* from here onward kernel routines are executed x*/

3
4
5 9893 openat (AT_FDCWD, "/1lib64/libmount.so.1", O_RDONLY |O_CLOEXEC)
6
7

3

4

Listing A.3: Excerpt from the output of the strace mount call (user PID: 9893)

Similar to the syscall tracing command strace that was used in Listing A.2, the kernel offers

a tracing infrastructure called ftrace [72]. This infrastructure is discussed in more detail in

Chapter 3 in Section 3.1.5. In these examples it is used to visualize the call graph starting form

the point where st race hands over control to kernel routines. In the transition from userland

to kernelspace the syscall interface translates the mount () system call to the kernel routine

_ x64_sys_mount () shown in line 1 of Listing A.4. This first function within kernelspace

is the starting point for numerous examples beginning with Section A.3.1.

103

A Appendix

A.3 Filesystem Context and Superblock Objects with
NFSv4+

The question of interest in the NFSv4+ context is: What defines a superblock for a remote
network filesystem type like NFSv4+ as opposed to a local, disk-based mount? How is the
superblock accessed and constituted in NFSv4+, since it cannot be simply read and copied

from a local disk partition into kernel memory ?

With NFSv4+, the superblock’s content is collected from two main sources of information.
The mount options, which the user provides across the mount(2) syscall, form the first
source of information about the forthcoming filesystem mount. These mount options, like
the filesystem type or the flags which determine whether the mount should be a read-only
mount or whether write access should also be allowed, are stored in an object called st ruct
fs_context. The kernel documentation of the mount API states: «The creation and
reconfiguration of a superblock is governed by a filesystem context» [92]. It is a common
view to perceive this filesystem context as a preliminary superblock configuration data struc-
ture used by the VFS as long as no other information sources are available yet (see also

documentation in the kernel sources e.g. in /fs/nfs/fs_context)

The second source of filesystem information in the case of the network filesystem is the
NFSv4+ server. Being the owner of the filesystem it exports, the NFSv4+ server pos-
sesses all knowledge about its attributes and shares these with the NFSv4+ client at an
early stage of a NFSv4+ session via the GETATTR* operation. Starting from network
packet with number 775 in Figure A.1 (leftmost column) the client actively requests the
server to transfer the filesystem metadata, specified via bitmap data structures defined in
/fs/nfs/nfsdproc.c. As a reference to the filesystem in question, the client sends the
filehandle (FH) of the root directory, obtained earlier in the commencing handshakes, with
every GETATTR operation request. As a matter of fact, every GETATTR listed in the packet
capture of Figure A.1, is a compound procedure consisting of a SEQUENCE, a PUTFH and a
GETATTR operation all transmitted inside of a single RPC request (more in Section 2.8).

Kernel function calls involved in the gradual gathering of filesystem metadata from both,
user and server source which are ultimately used to fill the NFSv4+ superblock appear in
the function call graphs of listings A.4 and A.6 through A.8, initially triggered by the mount

request issued from userland as shown in Listing A.2.

*Most presumably resolves to get attributes semantically.
*Capitalization of NFSv4+ operations follows common practice inside RFC 8881 [49]

104

A Appendix

A.3.1 Entering kernelspace

Resuming the description of the mount process from where it was left at the end of Section
A.2, the first set of functions within the __x64_sys_mount syscall simply copy the options
and parameters passed to the mount (8) invocation of Listing A.2 into kernel memory. Since
the path to the desired local mountpoint is part of the parameter list, the kernel performs a
path lookup (lines 5 through 12 of Listing A.4) in order to resolve the directory entries of the
path components to their corresponding inodes. After the path lookup, the actual kernel-side
mount process is initiated with the path_mount () routine defined in /£s/namespace.c.
Therein, the mount options passed by the user are saved in two bitmaps called mnt_flags

and sb_flags.

s M
1 _ x64_sys_mount () {
2 /#* copy mount arguments from userland to kernelspace */
3 copy_mount_options () {...}
4 /+ perform path lookup */
5 filename_lookup () {
6 path_lookupat () {
7 path_init () {...}
8 link_path_walk () {...}
9 walk_component () {...}
10 complete_walk () {...}
11 terminate_walk () {...}
12 }
13 /+ set mount flags */
14 path_mount () {
15 do_new_mount () {
16 /% find filesystem type by name #*/
17 get_fs_type() {...}
18 fs_context_for_mount () {
19 /%
20 * function pointer call to
21 + /init_ fs context’ inside:
22 */
23 alloc_fs_context () {
24 /% ... does actually invoke: x*/
25 nfs_init_fs_context [nfs] () {...}
26 /% tbc in next listing */
27 }

J

Listing A.4: Excerpt from a function graph traced with ftrace showing the begin of the
in-kernel call sequence for the __ x64_sys_mount () syscall (comments added
for clarity)

105

A Appendix

The path_mount () routine returns calling the do_new_mount () function, passing the
two bitmaps as arguments. The do_new_mount () function invokes routines for the initial-
ization of a filesystem context. The control switch from the VFS to the NFS can be observed

in the call graph beyond this point as described below.

After retrieving the filesystem type with the get_fs_type () routine, as described in Sec-
tion 2.6.1, the routine fs_context_ for mount () defined in /fs/fs_context.c in-
vokes the alloc_fs_context () routine in turn. As the routine's name suggests, a
struct fs_context is allocated in kernel memory (line 6) and filled with all filesystem
metadata available up to this point (line 8 of Listing A.5). Furthermore, a function pointer

with the signature int (xinit_fs_context) (struct fs_context x) is declared

in line 3.

1 struct fs_contextx alloc_fs_context (...) {

2 /* declare function pointer x/

3 int (*init_fs_context) (struct fs_context *);

4 struct fs_context =*fc;

5 /+ allocate kernel memory */

6 fc = kzalloc(sizeof (struct fs_context), GFP_KERNEL);
7 /% save struct file system type to fs contextx/

8 fc—>fs_type = get_filesystem(fs_type);

9 ..

10 / *

11 * assign memory address of filesystem specific

12 * implementation to function pointer

13 */

14 init_fs_context = fc->fs_type->init_fs_context;

15 o000

16 /* here nfs_init_fs context () is actually called */
17 ret = init_fs_context (fc);

18

19 }

Listing A.5: Excerpt from the body of the alloc_fs_context () routine (comments and

omissions added for clarity)

In the description of struct file_system_type in Section 2.6.1, Listing 2.13 it is seen
that the NFSv4 module assigns the memory address of a NFS specific implementation of
the init_fs_context () routine to a function pointer. This very function pointer is now
assigned to the function pointer in the alloc_fs_context () routine as listed in line

14 of Listing A.5. As a consequence, not the init_fs_context () routine, but the NFS

106

A Appendix

specific routine called nfs_init_fs_context () is actually invoked in line 17 of the same

listing.

The commentary for the nfs_init_fs_context () definition in /fs/nfs/fs_con-
text.c reads: «Prepare superblock configuration. [...]». Thus, the routine allocates a NFS
specific struct nfs_fs_context and a struct nfs_fh (a data structure contain-
ing a NFS filehandle) in kernel memory. The struct nfs_fs_context is subsequently
initialized with default filesystem metadata which indicate that information about the forth-

coming filesystem is still unspecified.

After returning from the £fs_context_for_mount () routine in line 18 of Listing A.4 the
next milestone for the VFS in the mount process is the attempt to obtain more metadata
about the NFS share in question and use those metadata to create a client-side superblock

representation in memory.

28 vfs_get_tree() {

29 nfs_get_tree [nfs] () {

30 nfsd4_try get_tree [nfsv4d] () {

31 do_nfs4_mount [nfsv4d] {

32 /* no tree without server, so first: =*/

33 nfs4_create_server [nfsv4] () {

34 nfs_alloc_server [nfs] () {...}

35 nfsd4_init_server [nfsv4] () {

36 /+* secondly: */

37 nfs4_set_client [nfsv4d] () {

38 nfs_get_client [nfs] () {

39 nfs4_alloc_client [nfsv4] () {...}

40 /* thirdly, one layer down: x/

41 nfs_create_rpc_client [nfs] () {...}
42 /%

43 * perform procedure NULL op: 0

44 * across the network,

45 * to test connectivity between NFSv4 client
46 * and server

47 */

48 rpc_ping [sunrpc] () {

49 rpc_call_null_helper [sunrpc] () {...}
50 }

51 /+ 1f that was successful: x/

52 nfsd4l _init_client [nfsv4] () {

53 ... /% tbc in next listing #*/

Listing A.6: Sequel #1 of the in-kernel call sequence for the __x64_sys_mount () syscall

(comments added for clarity)

107

A Appendix

This is accomplished by invoking the vfs_get_tree () routine (top line of Listing A.6)
defined in /fs/super.c. By means of the function pointer mechanism seen earlier, this
routine delegates a task from the VFS to the NFS layer by invoking the get_tree () function
prototype alias nfs_get_tree (). The latter routine is a decision point. If a field of type
boolean, inside struct nfs_fs_context called internal is set to false, the function
try_get_tree () aliasnfs4_try_get_tree () iscalled. Orelse, nfs_get_tree_-
common () is called. Since at this point the internal field is still untouched, it evaluates
to false.

The nfs4_try_get_tree () routine is a wrapper for the do_nfs4_mount () routine,
both defined in /fs/nfs/nfsd4super.c. It expects a struct nfs_server as first
argument. But since no struct nfs_server has been defined in the course of the call
graph yet, a routine called nfs4_create_server () is passed as a parameter. This
routine invokes a sheer cascade of functions that help setting up the NFSv4+ client and
server structs in kernel memory (lines 33 through 39 of Listing A.6), create an RPC client
(line 41) and start network communication across the TCP/IP stack of the kernel (lines 48
through 50). All of this aims at obtaining more filesystem metadata for initialization of the

NFS server structure and the creation of a VFS superblock, still pending at this point.

Lines 60 through 70 of Listing A.7 show the consecutive invocation of the NFSv4 routines
called nfs4_server_capabilities (), nfs4_do_fsinfo () and nfs4_proc_-
pathconf (). Each of them requests filesystem attributes from the remote NFSv4 server.

(The term attributes is interchangeably used with the term metadata).

108

A Appendix

54 nfs4_alloc_session [nfsv4] () {...}
55 /% EXCHANGE_ID op: 42 */

56 nfs4_proc_exchange_id [nfsv4] () {
57 /+ PUTROOTFH op: 24 */

58 nfs4_lookup_root [nfsv4] () {...}
59 /% PUTFH & GETATTR ops: 22 & 9 */
60 nfsd_server_capabilities [nfsv4] () {...}
61 / *

62 * PUTFH & GETATTR ops: 22 & 9

63 * with a ’"nfs4 _fsinfo_bitmap’

64 */

65 nfs4_do_fsinfo [nfsv4] () {...}

66 / *

67 * PUTFH & GETATTR ops: 22 & 9

68 * with a ‘nfs4_pathconf bitmap’

69 */

70 nfs4_proc_pathconf [nfsv4] () {...}
71 ... /% tbhc in next listing x/

Listing A.7: Sequel #2 of the in-kernel call sequence for the ___x64_sys_mount () syscall

showing NFS specific function invocations (comments added for clarity)

It is worth mentioning two aspects regarding the creation of struct nfs_client and
struct nfs_server. Interestingly, both are declared in /include/linux/nfs_-
fs_sb.h, while the ...fs_sb... part of the header file's name, most probably expands to

filesystem superblock.

The first aspect about the NFSv4+ client creation is, that inside the nfs4_set_client ()
routine in line 37 of Listing A.6, all NFSv4+ client-related information are assigned to the
fields of a structure called struct nfs_client_initdata. Three data structures filled
with NFSv4 specific functions are saved into a structure called struct nfs_subversion
defined in /fs/nfs/nfs4super.c. One of these data structures is of type struct
file_system_type called nfs4_fs_type described in Section 2.6.1. A second data
structure is of type struct super_operations declared in include/linux/fs.h,
which contains superblock-related routines. The third data structure is called struct
nfs_rpc_ops and contains 47 single function pointer assignments and 4 further collections
of function pointers. Two of the collections are of type st ruct inode_operations, one

of type struct dentry_operations and the last one, not surprisingly, of type st ruct

109

A Appendix

file_operations. This shows that in the definition of struct nfs_subversion all
filesystem related routines for all common file model objects are stored together and form
the interface to the VFS. In conclusion, inside the function body of nfs4_set_client ()
the memory address of this whole palette of routines (that also includes other client related
metrics such as the hostname, a corresponding IP address and so forth) is assigned to a field
called nfs_mod inside struct nfs_client_initdata . These metrics get passed to
the client in the course of its creation, namely in the body of the nfs4_alloc_client ()
routine (line 39 of Listing A.6) to a field called c1_nfs_mod of type struct nfs_-
client. From this point onward, the NFSv4+ client is fully capable of servicing every

request made by the VFS by invoking proper NFSv4+ specific implementations.

Interestingly, the st ruct nfs_client maintains a list to known NFS servers, filled with
struct nfs_server entries, which is called ¢/ superblocks. This identifier gives a hint
to what the VFS superblock representation for the NFSv4+ layer might be, and leads to
the second aspect mentioned earlier. This second aspect regarding the NFS server reveals
itself by examining the contents of the struct nfs_server. Apart from entries dealing
with network related metrics, like the server’'s hostname, IP address, port or protocol specific
timeout values and authentication related information - all things the VFS is not even re-
motely interested in - the structure contains very filesystem specific data. These comprise the
minimum and maximum attribute cache timeouts for regular files as well as for directories,
read and write sizes, allowed name length, a numerical filesystem identifier (with major and
minor number) and a set of bitmask arrays of type unsigned 32-bit integer, as a space saving
means to transfer attributes supported by the exported filesystem to the NFS client.

The struct nfs_server also includes its VFS equivalent in form of a struct su-
per_block, with which it shares filesystem attributes like the maximum file size allowed
and, more importantly, the block size that is used on the server's storage devices. This all
shows that with respect to the NFS filesystem type, the struct nfs_server is the ac-
tual in-kernel representation of the filesystem metadata. Still sharing VFS related metadata
with the struct super_block, whose creation process will be briefly and conclusively

described in the following.

Returning to the point in the call graph of the mount process, where the nfs4_create_-
server () routine (line 33 of Listing A.6) returns to its caller after setup and activation
of necessary components for the network communication as well as successful retrieval of

filesystem metadata from the remote NFSv4+ server.

110

A Appendix

The first relevant actions occuring inside the body of the do_nfs4_mount () function (line
72 of Listing A.8) is the assignment of a boolean value equal to true to the above mentioned

internal field of type struct nfs_fs_context.

Secondly, the retrieved filesystem metadata are parsed and saved in the superblock configu-

ration context, namely the same struct nfs_fs_context.

And thirdly, a routine called fc_mount is invoked, which immediately starts a second attempt
at creating the superblock by calling vfs_get_tree () once more. Reaching the decision
point within the nfs_get_tree () routine, with internal set to true, this time the
second branch is followed. Since it is not longer necessary to try to get the tree, now, with
all filesystem metadata at hand, it is possible to simply get it. This is accomplished with a
call to nfs_get_tree_common () routine defined in /fs/nfs/super.c. Inside which,
the function sget_fc () gets called with the nfs_set_super () callback function set in

its parameter list.

After allocating and initializing a blank superblock, the first metadata from the filesystem
context, like the filesystem type, flags, name and the like, are assigned. The nfs_set_-
super () callback function (line 85 of Listing A.8 adds the dentry operations structure from
the NFSv4+ client to the newborn superblock. A final assignment of filesystem attributes
occurs after returning from the nfs_set_super () callback to the nfs_get_tree_-
common () routine, which invokes a routine named nfs_fill_super () from within its
function body. Here, the superblock receives its struct super_operations from the
NFSv4+ client, which maintains all VFS function pointer assignments of NFSv4 specific
implementations, as described earlier. But also filesystem metadata like the block size, time
granularity, maximum file size, etc., are assigned to the struct super_block, finalizing
its creation in kernel memory. To demonstrate this has been the actual purpose of this deep
dive into the NFSv4+ mount process up to this point.

111

A Appendix

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

do_nfs4 mount [nfsv4d] () {
vis_parse_fs_param() {...}
fc_mount () {
/%

}

J/ *

* Now, with more information about
* the filesystem exported by the server,
* try to setup a superblock in client memory.
*/
vis_get_tree () {
nfs_get_tree [nfs] () |
nfs_get_tree_common [nfs] () {
sget_fc() {...}
alloc_super () {...}
nfs_set_super [nfs] () {...}
/+ finally constitute superblock #*/
nfs_fill_super [nfs] () {...}
nfs_get_root [nfs] () {
/% PUTFH & GETATTR ops: 22 & 9 x*/
nfs4_proc_get_root [nfsv4] () {...}
nfs4_proc_getattr [nfsv4] () {...}
nfs_fhget [nfs] () {
iget5_locked() {
ilookupS5() {...}
alloc_inode() {...}
inode_insert5() {...}

}

d_make_root () {
_d alloc() {...}
d_set_d_op();
__d_instantiate () {
_ d_set_inode_and_type() {...}

}

end __ _x64_sys _mount () =*/

Listing A.8: Sequel #3 of the in-kernel call sequence for the ___x64_sys_mount () syscall

(comments added for clarity)

112

A Appendix

A.4 Inode Objects and NFSv4+

In his book about Linux kernel development, Robert Love states that «][...] the inode object
is constructed in memory in whatever manner is applicable to the filesystem» [28]. The rest
of this section will attempt to shed some light on how this is brought about in the case of

NFSv4+ by scrutinizing the corresponding Linux kernel sources.

As a sequel to previous descriptions, the NFSv4+ mount process will be the basis of the
ongoing investigation once again. At the end of Section A.3.1 the description of the mount
process’ call graph was left at the point where a superblock object representing the NFS share

was assigned filesystem attributes provided by the remote NFS server.

After having completed the collection of general filesystem information, a NFSv4+ request
is initiated, which aims at retrieving metadata about the root directory of the forthcoming
filesystem tree shared across the network. Line 88 of Listing A.8 shows the invocation of
the nfs_get_root () routine, which is defined in /fs/nfs/getroot.c. Before the
request is prepared and subsequently sent to the remote NFS4+ server, a NFS4+ specific
data structure called struct nfs_fattr (fattr, shorthand for file attributes), which is
declared in /include/linux/nfs_xdr.h, has to be allocated. Examining the contents
of this essential data container, the impression arises that it could be considered a traveling
inode, since it covers most fields also present in the st ruct inode plus some NFS+ specific
metrics, like the filehandle mentioned above and a file id. It gets filled with file attributes, or
changes thereof, by the NFSv4+ client and the server alternately, and continuously transported
back and forth between them with every GETATTR or SETATTR request.

Thus, one of the first actions performed in the body of the nfs_get_root () routine
is the allocation of a struct nfs_fattr. Wrapped inside another data structure it is
passed to a function pointer call as an argument together with a struct nfs_fh and a
struct nfs_server instance. The function pointer invokes the nfs4_proc_get_-

root () routine, which in turn calls nfs4_proc_getattr () (line 91 of Listing A.8).

After returning from the round trip across the network with all above mentioned data struc-
tures filled with the required metadata about the root directory of the NFS share, the in-
stantiation of the new filesystem's first inode structure is started by the invocation of the
iget5_locked () routine. This routine takes a struct super_block, the fileid,
a callback function named nfs_init_locked () and a data structure that comprises both,

the freshly obtained file handle and the file attributes in their respective structs as arguments.

113

A Appendix

The fileid argument serves as a component used by a hash () function defined in /f-
s/inode.c. Therein, it is used in concert with the memory address of the corresponding
superblock to calculate a unique hash value for identifying and placing a newborn inode inside

a data structure called inode_hashtable alias the inode cache.

But before allocating a brand new inode, an inode cache lookup is performed in order to
ensure that an inode with the passed fileid (alias inode number) does not already exist
in memory. This is checked by calling the 11cokup5 () routine immediately after entering
iget5_locked().

After acquiring a lock for the inode cache the find_inode () function is invoked, inside
which the inode cache is iteratively browsed for the given hash value and superblock. Since
this is the middle of a mount process and the attributes for the root directory have been
delivered to the NFS client only recently, no proper inode can be returned by the find_-
inode () routine. The unsuccessful inode inquiry is propagated back up the call graph as
NULL value.

Having reached the iget5_locked () routine, the NULL value triggers a call to a VFS
alloc_inode () function defined in /fs/inode.c. Using the now well-known function
pointer assignment mechanism, the NFS specific routine named nfs_alloc_inode () is
invoked therein. As the name suggests, this routine causes an allocation of a st ruct nfs_-
inode within the inode cache area reserved for the NFSv4 in kernel memory. Additionally,
it returns the memory address to the above mentioned vfs_inode field of the struct
nfs_inode, since a return value of type pointer to struct inode is expected from the

call to the nfs_alloc_inode () function pointer.

The initialization of the newly allocated inode takes place inside the inode_init_al-
ways () call, where all fields of the blank struct inode are initialized to default values,
except one. Only the field of type struct super_block is assigned the appropriate

address of the superblock the new inode belongs to.

Returning from the alloc_inode () routine inside the body of iget5_locked (), a last
sanity check has to be performed. The point here is, that while the control flow described
above left the allocating routine and entered the initialization process inside inode_init_-—
always (), another process could have managed to allocate, initialize and insert the same
inode in the inode cache. To avoid this error-prone situation of having two inodes with
the same hash in the inode cache, a second iterative search through the inode cache is

indispensable. For this purpose the inode_insert5 () routine is called, which rehashes

114

A Appendix

the inode’'s fileid value passed in earlier and calls the already known find_inode ()
routine again. Amusingly enough, in case the mentioned scenario really occurs and an inode
with the same hash value was inserted into the inode cache by another process, the kernel
developer's commentary in the source code of the inode_insert5() in /fs/inode.c

reads as follows:

«Uhhuh, somebody else created the same inode under us.

Use the old inode instead of the preallocated one.»

Fortunately, this did not occur in this case study. Thus, the new inode can be added firstly to
the inode cache and secondly to a list of inodes, which the superblock manages in its function

as administrator for one specific filesystem within the kernel's VFS layer.

The new inode for the root directory of the exported NFS share is finally successfully returned

from the iget5_locked () routine into the body of the nfs_fhget () function again.

This walk-through has hopefully made it clear that the VFS involves its own routines to a great
extent in the process of the creation of a single inode while falling back onto filesystem specific

implementations only where needed. Or, as the authors of [27] put it more concisely:

«In some sense, the VFS could be considered a “generic” filesystem,

that relies, when necessary, on specific ones.»

A.5 Dentries in the NFS Mount Process

Starting from line 99, Listing A.8 shows a few example function calls that are invoked whenever
the root dentry is created and associated with its inode in the mount process. The invocation
of the d_make_root () routine (this and all following are defined in /fs/dcache.c)
which takes the recently acquired inode as an argument, essentially calls the __d_alloc ()
function that in turn takes the superblock from the inode as an argument. As could be deduced
from the name, the __d_alloc () routine allocates a new struct dentry inthe dcache.
Additionally, since it is the root directory, a forward slash is assigned to its struct gstr
name field. Additionally, a reference to the superblock parameter is added. Inside the _-
_d_alloc () routine the newborn dentry receives the struct dentry_operations,
again taken from the superblock parameter in a subsequent call to d_set_d_op (). If a
valid dentry is finally returned from __d_alloc (), it is time for its instantiation in a routine

called d_instantiate. The kernel source documentation for this routine happily states:

115

A Appendix

«d_instantiate - fill in inode information for a dentry [...]

This turns negative dentries into productive full members of society.»

And that is exactly what happens in a subsequent call to __d_set_inode_and_type (),
which finally assigns the passed inode to the d_inode field of the new root dentry struc-

ture.

A.6 XDR Encoding of a NFSv4+ LOOKUP Operation

Some of the topics touched upon in Section 2.8 have been considered separately from the
circumstances in the Linux kernel. In order to gain a better insight into the interactions within
the kernel, the relevant part of the function call graph shown in Listing A.10 will form the
basis of illustration and be discussed in more detail with a special focus on the occurrence of
the XDR encoding and the NFS-RPC layer interplay.

Following the relevant kernel source files, it will be demonstrated how the NFSv4 layer handles
a request coming in from the VFS layer and prepares it for transmission across the network in
conjunction with the RPC layer. Let an arbitrary VFS operation like the lookup of an inode
object serve as an example. In order to make the comprehension of the call graph easier to
pursue, it shall be defined that all occurrences of the shorthand fragment proc, appearing
in the following kernel source code identifiers, actually represent the term procedures. As
described in subsection 2.8.1.4, a procedure is a compound that encompasses a set of single
operations (see also nomenclature used in RFC 8881 [49]). These NFSv4.1 operations can be
filesystem specific tasks enforced by the VFS, like LOOKUP, OPEN, READ, WRITE, CLOSE
etc. as well as protocol specific operations such as EXCHANGE ID, CREATE SESSION,
GETDEVICEINFO and LAYOUTGET for instance.

When a struct nfs_client is first allocated in kernel memory during the execution
of the nfs_alloc_client () routine (see Listing A.4), the memory address of a vari-
able called nfs_v4_clientops of type struct nfs_rpc_ops is assigned to the client
structure field called rpc_ops. After this assignment, the rpc_ops field points to a col-
lection of available NFSv4 client related routines. Some of which are claimed by the VFS
and therefore assigned to VFS function pointers by a known mechanism already described in
Section 2.6.1. For example, the VFS function pointer called (x1lookup) found in struct

inode_operations inside of the struct inode is assigned the memory address of

®The interpretation of proc as procedure has to be defined here, since it can not be proven out of the
kernel sources itself, but is most probable, within the given context.

116

A Appendix

a NFSv4 routine called nfs4_proc_lookup (). The latter routine calls nfs4_proc_-—
lookup_common (), which in turn calls _nfs4_proc_lookup (). Inside this function,
a struct rpc_message is filled with information about which XDR related functions are
to be used to encode the lookup operation prior to its transmission via TCP. Here is how this
information is gradually gathered:

At the uppermost level it is a simple assignment of the pointer to an array entry, to a field called
rpc_proc inside of struct rpc_message. The array is called nfs4_procedures[]
and contains macros with function prototypes needed to XDR encode and decode NFSv4+
operations. It is of type struct rpc_procinfo and defined in /fs/nfs/nfsdxdr.c.
The entry found at index NFSPROC4_CLNT_LOOKUP of the array turns out to be a macro
called PROC (LOOKUP, enc_lookup, dec_lookup). The purpose of this macro is first
to append the prefix nfs4_xdr_ to enc_lookup, resulting in the function name nfs4_-
xdr_enc_lookup, and secondly to assign this function to a field called p_encode of a
struct rpc_procinfo, which lives inside the aforementioned struct rpc_message
and that again, as stated above, is filled inside the body of the _nfs4_proc_lookup ()
routine. Summing things up, the assignment can be represented by the following sequence of

pointer dereferences:

1 struct rpc_message msg;
2 msg.rpc_proc—->p_encode
3 msg.rpc_proc—>p_decode

nfs4_xdr_enc_lookup;
nfs4_xdr_dec_lookup;

Listing A.9: Assigning the encode/decode routines for the NFSv4+ lookup operation

For simplicity, the focus will be put on the encoding part only from now onward. Taking a
closer look into the nfs4_xdr_enc_lookup () encoding routine assigned in Listing A.9,

it appears as a wrapper for five further routines, namely
e encode_sequence ()
e cncode_putfh ()
e encode_lookup ()
e encode_getfh ()

e encode_getfattr().

Before transmission, down in the RPC layer of the function call graph, the nfs4_xdr_enc_-
lookup () routine will induce the XDR encoding of the five NFSv4+ operations specified in
the suffixes of the five function names listed above. These will be transmitted collectively, as

a compound procedure, within one single RPC request. A look inside encode_1lookup ()

117

A Appendix

reveals even more encoding routines. The first of which is called encode_op_hdr () and
encodes the NFSv4+ operation number associated with the lookup operation represented by
the enumeration type enum nfs_opnum4 defined in /include/linux/nfs4.h. Itis
called OP_LOOKUP and has a numerical value equal to 15. Needless to mention, that the
operation number OP_LOOKUP = 15, which is to be transmitted by the Linux NFSv4+ client
inside its RPC message, must be understood by any NFSv4+ server implementation as a
request for a lookup operation, according to the specification found in RFC 8881 [49]. This
NFSv4.1 server could also be a Java based metadata server on the dCache storage end of a
HTC environment, like the NAF at DESY, for instance.

Naturally, at this point, the question arises: What happens after the preparation of the
NFSv4+ lookup procedure within the _nfs4_proc_lookup () routine as described above ?
Unfortunately, the enormously high number of routines called on the RPC and underlying layers
of the network stack prohibits a more detailed discussion, since it leads far beyond the scope
of this thesis. Therefore, only the main cornerstones of the function call graph starting from
the _nfs4_proc_lookup () routine, down to the point where the actual XDR encoding
of the NFSv4+ operations is triggered, is displayed in Listing A.10.

1 ..

2 _nfs4_proc_lookup [nfsv4] ()

3 nfs4_do_call_sync [nfsv4] ()

4 rpc_run_task [sunrpc] ()

5 /* rpc_message 1s assigned to rpc_task here */
6 rpc_task_set_rpc_message [sunrpc] ()
7 rpc_execute [sunrpc] ()

8 nfs4_setup_sequence [nfsv4d] ()

9 nfs4_find_or_create_slot [nfsv4d] ()
10 call_start [sunrpc] ()

11 call_allocate [sunrpc] ()

12 call_encode [sunrpc] ()

13 rpc_xdr_encode [sunrpc] ()

14 rpcauth_wrap_reqg_encode [sunrpc] ()
15 /* encoding of NFSv4 ops triggered here =/
16 nfs4_xdr_enc_lookup [nfsv4] ()

17 encode_compound_hdr [nfsv4] ()
18 encode_sequence [nfsv4] ()

19 encode_putfh [nfsv4] ()

20 encode_getattr [nfsv4d] ()

21

Listing A.10: Excerpt from the mount process function call graph in the NFS and RPC layer

(curly brackets and most ommission dots omitted comments added for clarity)

118

A Appendix

In the context of eBPF development it is indispensable to know the exact locations in the
function call graph where XDR encoding and decoding take place. This knowledge allows for
a more targeted approach when choosing the adequate kernel functions for obtaining relevant

NFSv4+ metrics in their unencoded form.

\No. - Proto\Length\tcp Len \Info

131 NFS 110 44 V4 NULL Call (Reply In 136)

136 NFS 94 28 V4 NULL Reply (Call In 131)

757 NFS 362 296 V4 Call (Reply In 759) EXCHANGE_ID

759 NFS 222 156 V4 Reply (Call In 757) EXCHANGE_ID

761 NFS 362 296 V4 Call (Reply In 762) EXCHANGE_ID

762 NFS 222 156 V4 Reply (Call In 761) EXCHANGE_ID

763 NFS 306 240 V4 Call (Reply In 766) CREATE_SESSION

766 NFS 194 128 V4 Reply (Call In 763) CREATE_SESSION

767 NFS 214 148 V4 Call (Reply In 768) RECLAIM_COMPLETE

768 NFS 158 92 V4 Reply (Call In 767) RECLAIM_COMPLETE

769 NFS 222 156 V4 Call (Reply In 771) SECINFO_NO_NAME

771 NFS 174 108 V4 Reply (Call In 769) SECINFO_NO_NAME

772 NFS 234 168 V4 Call (Reply In 774) PUTROOTFH | GETATTR
774 NFS 350 284 V4 Reply (Call In 772) PUTROOTFH | GETATTR
775 NFS 266 200 V4 Call (Reply In 778) GETATTR FH: 0xc3ae9285
778 NFS 238 172 V4 Reply (Call In 775) GETATTR

779 NFS 262 196 V4 Call (Reply In 781) GETATTR FH: @xc3ae9285
781 NFS 234 168 V4 Reply (Call In 779) GETATTR

782 NFS 266 200 V4 Call (Reply In 784) GETATTR FH: @0xc3ae9285
784 NFS 238 172 V4 Reply (Call In 782) GETATTR

785 NFS 262 196 V4 Call (Reply In 786) GETATTR FH: 0Oxc3ae9285
786 NFS 234 168 V4 Reply (Call In 785) GETATTR

789 NFS 258 192 V4 Call (Reply In 790) GETATTR FH: 0xc3ae9285
790 NFS 186 120 V4 Reply (Call In 789) GETATTR

792 NFS 266 200 V4 Call (Reply In 793) GETATTR FH: 0xc3ae9285
793 NFS 238 172 V4 Reply (Call In 792) GETATTR

794 NFS 262 196 V4 Call (Reply In 795) GETATTR FH: @xc3ae9285
795 NFS 310 244 V4 Reply (Call In 794) GETATTR

796 NFS 270 204 V4 Call (Reply In 797) ACCESS FH: 0xc3ae9285, [Check: RD LU MD XT DL]
797 NFS 238 172 V4 Reply (Call In 796) ACCESS, [Access Denied: MD XT DL], [Allowed: RD LU]
798 NFS 278 212 V4 Call (Reply In 801) LOOKUP DH: 0xc3ae9285/pnfs
801 NFS 358 292 V4 Reply (Call In 798) LOOKUP

Figure A.1: NFS network packets exchanged between NFS client and server during the mount
process started with the command in Listing A.2 (captured by t shark, displayed
by Wireshark)

119

A Appendix

A.7 Wireshark NFSv4.1 payload dissection

~

Network File System, Ops(4): SEQUENCE, PUTROOTFH, GETFH, GETATTR
[Program Version: 4]
[V4 Procedure: COMPOUND (1)]
Tag: <EMPTY>
length: 0
contents: <EMPTY>
minorversion: 1
Operations (count: 4): SEQUENCE, PUTROOTFH, GETFH, GETATTR
Opcode: SEQUENCE (53)
sessionid: 668aea5b0001006a0000000000000001
seqgid: 0x00000003
slot id: O
high slot id: O
cache this?: No
Opcode: PUTROOTFH (24)
Opcode: GETFH (10)
Opcode: GETATTR (9)
Attr mask[0]: 0x001001la (Type, Change, Size, FSID,
FileId)
<[5 Attr counts]>
reqd_attr: Type (1)
reqd_attr: Change (3)
reqd_attr: Size (4)
reqgd_attr: FSID (8)
reco_attr: FileId (20)
Attr mask[1l]: 0x00b0a23a (Mode, NumLinks, Owner,

Owner_Group,
Time_Modify,

RawDev,

<[10 Attr

reco_attr:
reco_attr:
reco_attr:
reco_attr:
reco_attr:
reco_attr:
reco_attr:
reco_attr:
reco_attr:
reco_attr:
PUTROOTFH

[Main Opcode:

[Main Opcode: GETATTR

Space_Used,
Mounted_on_FileId)

Time_Access,

counts]>
Mode (33)
NumLinks (35)
(36)
Owner_Group
(41)
Space_Used
Time_Access (47)
Time_Metadata (52)
Time_Modify (53)
Mounted_on_FileId
(24)]
(9) 1

Owner
(37)
RawDev
(45)

(55)

Time_Metadata,

Listing A.11: Linux NFSv4.1 client PUTROOTFH request dissected by wireshark

120

A Appendix

Network File System, Ops(4): SEQUENCE PUTROOTFH GETFH GETATTR
[Program Version: 4]
[V4 Procedure: COMPOUND (1)]
Status: NFS4_OK (0)
<Status: OK (0)>
Tag: <EMPTY>
length: O
contents: <EMPTY>
Operations (count: 4)
Opcode: SEQUENCE (53)
Status: NFS4_OK (0)
<Status: OK (0)>
sessionid: 668aea5b0001006a0000000000000001
seqgid: 0x00000003
slot id: O
high slot id: 15
target high slot id: 15
status flags: 0x00000000
Opcode: PUTROOTFH (24)
Status: NEFS4_OK (0)
<Status: OK (0)>
Opcode: GETFH (10)
Status: NFS4_OK (0)
<Status: OK (0)>
Filehandle
length: 27
[hash (CRC-32): 0xc3ae9285]
version: 1
generation: 0x00000000
export_id: 0x00000000
fh type: INODE (0)
fh opaque data: 0000000000000001
Opcode: GETATTR (9)
Status: NEFS4_OK (0)
<Status: OK (0)>

FileId)
<[5 Attr counts]>
reqd_attr: Type (1)
ftyped: NF4DIR (2)
reqgd_attr: Change (3)
changeid: 33
reqd_attr: Size (4)
size: 512
reqd_attr: FSID (8)
fattrd fsid
fsid4 .major: 17
fsid4.minor: 17

Attr mask[0]: 0x001001la (Type, Change, Size, FSID,

A Appendix

reco_attr: FileId (20)
fileid: 1
Attr mask([1l]: 0x00b0Oa23a (Mode, NumLinks, Owner,
Owner_Group, RawDev, Space_Used, Time_Access, Time_Metadata,
Time_Modify, Mounted_on_FileId)
<[10 Attr counts]>
reco_attr: Mode (33)

reco_attr: NumLinks (35)
numlinks: 17
reco_attr: Owner (36)
fattr4_owner: O
length: 1
contents: 0
fill bytes: opaque data
reco_attr: Owner_Group (37)
fattr4_owner_group: root@desy.afs
length: 13
contents: root@desy.afs
fill bytes: opaque data
reco_attr: RawDev (41)
specdatal: O
specdataz: 0
reco_attr: Space_Used (45)
space_used: 512
reco_attr: Time_Access (47)
seconds: 1502883811
nseconds: 914000000
reco_attr: Time_Metadata (52)
seconds: 1720288779
nseconds: 5000000
reco_attr: Time_Modify (53)
seconds: 1720288779
nseconds: 5000000
reco_attr: Mounted_on_FileId (55)
fileid: 0x0000000000000001
[Main Opcode: PUTROOTFH (24)]
[Main Opcode: GETATTR (9)]

Listing A.12: NFSv4+ server reply (on the dCache end) dissected by wireshark

122

Erklarung zur selbstindigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig verfasst
und nur die angegebenen Hilfsmittel benutzt habe. Woértlich oder dem Sinn nach aus anderen

Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

123

	List of Figures
	List of Tables
	Listings
	List Of Acronyms
	Introduction
	Experimental Physics and Research at DESY and abroad
	The Scientific Computing Infrastructure at DESY
	The National Analysis Facility (NAF)
	Bird's Eye View of a Job Workflow

	Current State Analysis
	Research Objectives
	Related Work

	Core Concepts
	Processes and Threads
	The Process Descriptor
	The current Macro
	Declaring a Per-CPU Variable for the current_task
	Retrieval of the Per-CPU Variable

	Process Identifiers
	The System Call Interface
	The Virtual Filesystem Switch (VFS)
	The Common File Model
	Filesystem Type Objects
	Superblock Objects
	Inode Objects
	Dentry Objects
	File Objects

	The File Description Table
	The Network Filesystem Protocol Version 4
	NFSv4 Features
	Unified Core Protocol
	Statefulness
	Sessions
	Compound Procedures and Callbacks
	Parallel NFS

	The dCache Storage System
	Main Components of a dCache Instance
	An Entry Point to dCache
	The dCache Namespace Provider
	Storage Pools and the Poolmanager Service
	dCache Data Mover
	dCache Internal File ID
	Java NFSv4 Server and RPC Implementations Used by dCache
	The dCache admin interface

	Linux Kernel Tracing and Probing
	Tracing and Metrics Collection Utilities
	The lsof Command
	The /proc Filesystem
	The rpcinfo, rpcctl and rpcdebug Utilities
	The tshark/wireshark Network Packet Tracer Utility
	ftrace - Linux Kernel Function Tracer
	Event Tracing
	Tracepoint-Based Event Tracing
	Kprobe-Based Event Tracing

	eBPF (Extended Berkeley Packet Filter)
	BPF Development Frameworks
	BPF Program Structure
	The BPF Verifier
	The In-Kernel BPF Virtual Machine
	BPF CO-RE and the BPF Type Format

	Methodology
	The Test and Experimentation Environment
	Outline of the Custom BPF Programs
	BPF program 1: nfs4_byte_picker
	BPF program 2: nfs4_path_finderV
	BPF program 3: socket_collector

	Outcome Verification Methods
	Real-World Use Cases

	Evaluation
	Kernel Metrics Made Available Through BPF
	Time-Savings During Issue Management
	User Process ID Tracking
	NFSv4 Bytes Per User PID

	Discussion and Conclusion
	References
	Acknowledgments
	Appendix
	Expansion Macros
	Mounting a NFSv4 Share
	Filesystem Context and Superblock Objects with NFSv4
	Entering kernelspace

	Inode Objects and NFSv4
	Dentries in the NFS Mount Process
	XDR Encoding of a NFSv4 LOOKUP Operation
	Wireshark NFSv4.1 payload dissection

	Declaration of Authorship

